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(ABSTRACT) 

This thesis presents a theoretical analysis of active control of sound radiation from 

elastic plates with the use of piezoelectric transducers as actuators. A strain-energy 

model (SEM), based upen the conservation of strain energy, for a laminate beam with 

attached or embedded finite-length spatially distributed induced strain actuators was first 

developed to determine the induced strain distribution. The equivalent axial force and 

bending moment induced by the embedded or surface bonded actuators were also cal- 

culated. The one-dimensional SEM was then extended to a two-dimensional model by 

employing the classical laminate plate theory and utilizing Heaviside functions to inte- 

grate the actuator influence on the substructure. The mechanics model can determine 

the structural coupling effect and predict the structural response as a result of 

piezoelectric actuation. 

A baffled simply-supported rectangular plate subjected to harmonic disturbances 

was considered as the plant. Piezoceramic materials bonded to the surfaces of the plate 

or point force shakers were applied as control actuators. Both microphones in the ra- 

diated far-field and accelerometers located on the plate were considered as error sensors. 

In addition, distributed sensors for pressure and structural motion were modelled. The 
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cost function was formulated as the modulus squared of the error signal. Linear quad- 

ratic optimal control theory was then applied to minimize the cost function to obtain the 

optimal input voltages to the actuators. Both near-field and far-field pressure and in- 

tensity responses as well as plate displacement distributions were presented to show the 

effectiveness and mechanisms of control for various configurations of the actuators and 

sensors. Plate wavenumber analysis was also shown to provide a further insight into 

control technique. The results show that piezoelectric actuators perform very well as 

control sources, and that pressure sensors have many advantages over acceleration sen- 

sors while distributed sensors are superior to discrete sensors. 

The optimal placement of multiple fixed size piezoelectric actuators in sound radi- 

ation control is also presented. A solution strategy is proposed to calculate the applied 

voltages to piezoelectric actuators with the use of linear quadratic optimal control the- 

ory. The location of piezoelectric actuator is then determined by minimizing an objec- 

tive function, which is defined as the sum of the mean square sound pressure measured 

by a number of error microphones. The optimal location of piezoelectric actuators for 

sound radiation control is found so as to minimize the objective function and shown to 

be dependent on the excitation frequency. In particular, the optimal placement of mul- 

tiple piezoelectric actuators for on-resonance and off-resonance excitation is presented. 

Results show that the optimally placed piezoelectric actuators perform far better in 

sound radiation control than arbitrarily selected. This work leads to a design method- 

ology for adaptive or intelligent material systems with highly integrated actuators and 

sensors. The optimization procedure also leads to a reduction in the number of control 

transducers. 
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Chapter 1 : Introduction 

1.1] Background 

Noise control has become an increasingly important issue. Noise, unwanted sound 

usually irritating and bothersome, is a by-product of the highly industrialized societies. 

There are various kinds of noise sources, for examples jets, automobiles, machines and 

so on, which are necessary as part of our present society but they have the disadvantage 

of creating annoyance in many applications. 

In addition to environmental concerns, noise control is also important for some 

special applications. Submarines need to be quiet while operating in order to keep their 

position undetected by enemy forces. Cabin noise from the aircraft engines can cause 

psychological fatigue to pilots and passengers, due to prolong exposure in a high level 

sound environment affecting not only comfort but also job performance. It is becoming 

increasingly important to maintain an “acceptable” quiet environment, which will pro- 

vide passengers with a comfortable trip and ensure crew a safe performance. 
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Noise control is a process to attenuate the unwanted sound to an acceptable level. 

Most noises come from vibrating structures, whose motions arise from operating ma- 

chines. Since sound transmission can be either air-borne or structure-borne, much effort 

has been made to identify the noise source and its paths such that a suitable, effective 

control method can be applied. There are two main categories of control methods, 

passive and active controls. Passive control is customarily adopted to reduce the noise 

transmission by changing the physical properties of the structures, for instance, absorp- 

tion materials, damping layers, vibration isolators; however, their effectiveness is limited. 

Active control appears to be an effective way to reduce low frequency sound radiation 

and transmission without the disadvantages of passive control, such as weight, size, etc. 

The two main techniques of active control are (1) to apply active forces directly to vi- 

brating structures so as to suppress the structural vibration, which contributes to the 

sound radiation, and (2) to employ active sound sources in the radiation field so as to 

cancel the radiating sound waves. 

Recently, active control of noise and vibration has generated a great deal of interest, 

due to not only the control effectiveness but also the development of rapid micro- 

processors, low power distributed sensors and actuators, and suitable adaptive control 

algorithms. The so-called “smart, adaptive, or intelligent structures”, which are struc- 

tural systems with integrated sensors and actuators, have become an exciting new ap- 

proach in the field of noise and vibration control. The following sections will discuss 

active control systems and detail the definition and application of their components as 

well as review the research and development of active control systems. In particular, the 

active structural acoustic control (ASAC) approach which is the main objective of this 

thesis is discussed. 
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1.2 Active Control Systems for Structural Acoustic Control 

A basic active control system consists of a plant, sensor, actuator and controller. 

Figure 1(a) shows a schematic of the feedback control block diagram. The sensor is used 

to detect the system output, so that the measured output signal can be compared to the 

desired output. The compared error, the difference between the measured output and 

the desired output, is processed through a controller to drive the actuator which can af- 

fect the plant response. Therefore, the system output can be controlled as desired. 

Figure 1(b) shows a schematic of a feedforward control block diagram. The controller 

is optimized in order to minimize the least mean square of the error signal, which is the 

difference between the control input and system output measured by the sensor. Hence, 

the control actuator can change plant response as desired. The following sections indi- 

vidually describe more about the nature and characteristics of each component as well 

as a brief literature review of active noise control. Figure 2 shows an overview of active 

structural acoustic and vibration control systems. 

1.2.1 Plant 

The plant or the process whose variables are to be controlled is the central element 

of a control system. In structural acoustic control, plants can be structures, such as 

beams, plates, shells and cylinders or other enclosures, which can be found in the real 

world. There is extensive literature dealing with the active control of sound radiation 

from different structures. The following discussion reviews references in ASAC associ- 

ated with various structures, including beams, circular plates, rectangular plates, cylin- 
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ders and enclosures individually. Saunders, Robertshaw and Rogers (1990) presented 

the use of Shape Memory Alloy (SMA) fibers embedded in composite beams to mini- 

mize the sound radiation from harmonic beam vibration. They experimentally showed 

the feasibility of SMA for structural acoustic control. Burdisso and Fuller (1990) ana- 

lytically studied the sound radiation from beam with the use of piezoelectric actuators 

by adopting feedforward control theory. Their work demonstrated that the controlled 

structure system will possess a new set of eigenvalues and eigenfunctions (mode shapes) 

due to the influence of the controller dynamics. 

Fuller (1990a) analytically studied the active control of sound radiation from a 

clamped elastic circular thin plate by oscillating forces applied directly to the structures. 

The main advantage of applying control forces directly to the structure in the form of 

vibration inputs is that only a low number of control actuators are needed to suppress 

the structural modes coupling to the acoustic field. However, the implementation of 

vibrational forces (i.e., magnetic electric shakers) has some drawbacks, such as large 

volume and requiring a support structure. Dimitriadis and Fuller (1989) presented a 

theoretical study of using a pie-shaped piezoelectric actuators bonded to a circular plate 

surface and showed the control ability of piezoelectric actuators in sound radiation from 

a baffled thin clamped circular plate. These compact distributed actuators overcome the 

disadvantages of point force shakers. 

Deffayet and Nelson (1988) proposed an active control technique which uses a 

number of discrete monopole “secondary” sound sources to suppress the radiated sound 

pressure due to the “primary” source from a baffled simply-supported rectangular plate. 

Quadratic optimization theory was used to minimize the total radiated power. Results 

showed appreciable reduction in power output can be achieved. However, a number of 
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the secondary sources are necessary to match the radiation characteristics of the plate 

mode. Wang, Dimitriadis and Fuller (1989, 1990) analytically studied the use of two 

small rectangular piezoceramic patches, which are bonded to two sides of the plate sur- 

faces symmetrically and driven 180° out-of-phase, as actuators to actively control sound 

radiation from a baffled simply-supported rectangular plate in conjunction with the use 

of LMS adaptive control approaches. They showed the potential of using piezoelectric 

actuators in a two-dimensional structural acoustic control. Meirovitch and Thangjitham 

(1990a, 1990b) presented the active control of sound radiation from rectangular plate 

with/without coupled fluid loading. They essentially proposed to generate feedback 

control forces (point forces) to suppress structural vibration so as to reduce sound radi- 

ation in the far-field. With their approach, a high number of actuators are required to 

control a relatively large number of modes participating in the sound radiation. The 

structural system with such a large number of shakers become “bulky” and impractical. 

Compact distributed actuators and adaptive feedforward control approaches which will 

be discussed further in Sections 1.2.3 and 1.2.4 respectively can overcome this disad- 

vantage. 

Lester and Fuller (1987, 1990) and Jones and Fuller (1989) studied the active control 

of interior noise inside a flexible cylinder as a simulation of an aircraft fuselage. Lester 

and Fuller (1987, 1990) applied multiple monopole control sources (termed “active 

acoustic control”, AAC) distributed inside the cylinder to minimize the area-weighted, 

mean-square acoustic pressure in the circular plane. Jones and Fuller (1989) applied 

multiple vibrational control forces (termed “active vibrational control”, AVC). The sig- 

nificant difference between the AAC and AVC is that the AAC requires twice the num- 

ber of control sources as the circumferential mode order to be controlled, while the AVC 

needs only one point controller per mode regardless of circumferential mode order. This 
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is due to the difference of control physics between monopole sources and vibrational 

forces which will be explained in details in Section 1.2.3. 

Bullmore et al. (1987) applied a number of secondary sources located in a rectan- 

gular enclosure to minimize the total time averaged acoustic potential energy in a har- 

monically excited enclosure. They analytically demonstrated that the optimal locations 

of secondary sources for maximum power reduction are to be positioned at the locations 

of maximum pressure response of the primary field. The performance and characteristic 

of different types of sensors will be discussed further in next section. 

1.2.2 Sensors 

A sensor is used to detect the system response such that the system output can be 

monitored and compared to the desired output in order to generate an error signal. The 

error can then be utilized to determine the control signal in order to operate the 

actuators and to modify the system response under direction of the control algorithms. 

In this way, the system output can then be controlled to within a desirable range; hence, 

the system is called “controlled.” 

Sensors can be categorized into two groups: (1) discrete and (2) distributed sensors. 

Accelerometers and microphones, essentially discrete sensors, are most commonly used 

in ASAC. A few previous works have used accelerometer sensors in ASAC, such as 

(Meirovitch and Thangjitham, 1990a,1990b). However, microphones are the most pop- 

ular sensors used in ASAC, for examples (Lester and Fuller, 1990), (Simpson et al., 1989) 

and (Saunders, Robertshaw, and Rogers, 1990). It is noted that since microphones are 

to measure the sound pressures in the radiating field while accelerometers measuring the 
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vibration response, microphones generally perform superior to accelerometers in ASAC. 

This phenomenon was discussed by Fuller and Jones (1987). They concluded that for 

ASAC, the use of microphone sensors in the radiating field, which generates error signals 

containing the structural acoustic coupling information, is advantageous over the use 

of accelerometers on the structure, which only provide the structural response informa- 

tion. 

Dimitriadis and Fuller (1989) and Wang, Dimitriadis and Fuller (1989, 1990) devel- 

oped a formulation for sound radiation control associated with a cost function which is 

based on the continuous pressure sensor measurements over a hemisphere in the radi- 

ating field. This type of sensor is distributed in nature; however, it is difficult to build 

such a pressure sensor. Newly developed distributed sensors, such as piezoceramic, 

PVDF (Polyvinylidene fluoride) and optical fibers, which can be bonded or embedded in 

the structures, will result in electrical output signals due to the structural response, so 

they can also be applied to ASAC. Lee (1990a) presented a theory of laminated 

piezoelectric plates for the design of distributed sensors which can sense motions, such 

as bending, torsion, shearing, shrinking and stretching of a flexible plate. Lee and Moon 

(1990b) demonstrated a theory of distributed sensors with a one-dimensional modal 

sensors using PVDF thin film. The sensor was built similar to modal-filtering by prop- 

erly shaping the PVDF film to sense each individual mode. Collins et al. (1990) pre- 

sented a similar distributed piezoelectric film sensor, but different shape from that of Lee 

and Moon (1990b), applicable to space robotics. Optical fibers, another branch of 

compact distributed sensors, have also been successfully embedded into composite ma- 

terials as strain sensors. Claus et al. (1989) presented a brief review of different sensing 

techniques for optical fiber induced by local strain field, and this will not be repeated 

here. A practical application of optical fiber strain sensors (Cox, 1990) to beam vi- 
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bration control is discussed. Cox designed a digital feedback control system to derive 

control signals from a mcdal domain fiber optic sensor, and applied them to piezoelectric 

actuators. He experimentally demonstrated the use of a modal domain fiber optic sensor 

for vibration control of a flexible cantilever beam. 

Much literature was found dealing with the distributed sensors primarily focused on 

active vibration control (AVC), but little was found to have been concerned with 

ASAC. Recently, Clark and Fuller (1990b) have shown the feasibility of PVDF 

piezoelectric films attached to the surface of a plate as error sensors in LMS adaptive 

feedforward control approaches to minimize sound radiation to the far-field. They used 

two narrow strips of PVDF sensors positioned symmetrically on the plate in order to 

observe the odd-odd modes which are the more efficient acoustic radiators. Their work 

showed much encouragement for the use of compact near-field distributed sensors in- 

stead of far-field error microphones, which may not be practical in many circumstances. 

This work indicates that compact distributed near-field sensors will have a substantial 

impact in the future development of ASAC. 

1.2.3 Actuators 

An actuator is a device that can influence the plant response, e.g., the radiating 

sound from an active structural acoustic control system. Lueg (1936) first proposed to 

cancel the primary sound wave with the use of secondary sound wave 180° out-of-phase 

with respect to the primary wave. The sound source (speaker) is applied in the acoustic 

radiating field to cancel the sound wave. The sound source is not a “real” actuator, 

which can actively drive structures and then influence the structural sound radiation, but 
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it acts like an active sound source to cancel the radiated sound in the acoustic field. 

Many others have also shown the feasibility of using sound sources for sound cancella- 

tion. Lester and Fuller (1987, 1990) and Deffayet and Nelson (1988) made use of either 

monopoles or dipoles as «he transducers in active control of sound radiation and showed 

a favorable noise reduction. However, the application of sound sources to active noise 

control has their limitation. A number of secondary sound sources are necessary to 

match the radiation characteristic of the plate mode, as demonstrated by Daffayet and 

Nelson (1988). 

An effective form of actuator to achieve ASAC is to apply vibrational forces directly 

to vibrating structures. A small number of point force actuators are sufficient to sup- 

press those structural modes which are well coupled to the radiated sound field, and to 

achieve an appreciable radiated power reduction. Point force shakers are commonly 

used in ASAC, such as mentioned previously (Jones and Fuller, 1989), (Meirovitch and 

Thangjitham, 1990a, 1990b) and (Fuller, 1988, 1990a). Those studies showed that 

shakers can effectively contro] the sound radiation; however, shakers have substantial 

disadvantages, due to their large volume, large weight and requiring support. 

Distributed actuators have increasingly generated a great deal of interest in either 

sound or vibration control, because of their light weight and easy implementation. 

However, most works were concentrated on AVC, and only a few works were associated 

with ASAC. Recently, distributed actuators, such as piezoceramics and shape memory 

alloys (SMA), have beer attached or embedded in structures to actively control struc- 

tural vibration and sound radiation. Crawley and de Luis (1987) and Bailey and 

Hubbard (1985) introduced piezoceramic materials embedded or bonded to beams as 

control sources to suppress beam lateral vibration. Such an arrangement can also be 
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applied to ASAC. Dimitriadis, Fuller and Rogers (1991) extended the Crawley and de 

Luis’s work to rectangular plates, i.e., two-dimensional structure problems, with 

piezoceramic patches ideally bonded to the top and bottom surfaces symmetrically and 

activated 180° out-of-phase. They showed that properly configured piezoceramic 

patches can effectively excite the plate out-of-plane motion so as to control plate vi- 

bration as well as sound radiation. Dimitriadis and Fuller (1989) and Wang, Dimitriadis 

and Fuller (1989,1990) presented the theoretical analysis for the use of piezoelectric 

actuators on active control of sound radiation from elastic plates. A cost function, 

which is the integration of mean square sound pressure over a hemisphere in the radi- 

ation field, was constructed based on the LMS adaptive control approach. Linear 

quadratic optimal control theory (LQOCT) (Lester and Fuller, 1990) was then employed 

to minimize the cost function in order to find the optimal control voltages applied to the 

piezoelectric actuators. Effective sound radiation control was shown to be achieved by 

appropriately tailoring the location and size of piezoelectric actuators. 

Liang, Jia and Roger (1989) showed that a SMA reinforced composite structure can 

modify its eigenproperties (termed “active properties tuning,” APT) and induce recovery 

forces (termed “active strain energy tuning,” ASET) by activating the SMA fibers. Both 

characteristics of SMA, APT and ASET, have been applied to control sound radiation 

from composite plates. Analytical results showed that plate transmission loss (TL) 

profiles can be shifted due to the change of material properties such that TL is increased 

at fundamental frequencies. Saunders, Robertshaw and Rogers (1990) experimentally 

demonstrated the use of SMA embedded into a composite beam for ASAC. Two control 

methods were used to attenuate sound radiation. First, minimization control, based on 

gradient search techniques, was effective in reducing the measured radiated sound pres- 

sure to the background noise levels. Second, peak radiation frequency placement con- 
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trol, applying a first-order thermal model to drive the system response, allowed tuning 

of the beam radiation response. These works showed much potential of using distrib- 

uted actuators in ASAC. 

1.2.4 Controller 

In addition to the above mentioned components in an active control system, an 

appropriate controller is needed to perform the system control. Several types of control 

algorithms have been successfully implemented for ASAC. However, very little work 

has been concerned with experiments. Meirovitch and Thangjitham (1990b) analytically 

developed a feedback control algorithm by monitoring the states of the system, namely 

the displacement and the velocity fields. Their approach is to suppress the total struc- 

tural vibration so as to reduce the sound radiation. However, their approach required 

many actuators and sensors in order to achieve sound radiation control. This may not 

be practical because the plant physical properties, such as weight and size, will be 

changed due to the attachment of a large number of actuators and sensors, and hence 

the actual structural response becomes complicated and difficult to predict, thus affect- 

ing the optimal gains. 

LMS adaptive feedforward control algorithms have been successfully applied to 

ASAC with a steady state sinusoidal input, such as (Elliott et al., 1987) and (Fuller et 

al., 1989). The algorithra is used to adjust the magnitude and phases of the sinusoidal 

inputs to the control actuators so as to minimize the sum of the mean squares pressures 

which are measured by a set of error microphone sensors. For a feedback control ap- 

proach, only the system output measured directly from the sensor is processed to acti- 
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vate actuators in order to influence plant response. On the other hand, in addition to 

the measured system output, the feedforward control approach requires a reference input 

correlated to the primary (disturbance) source to control signals, as illustrated in Figure 

1. Here, “adaptive” means that the actuation signals applied to actuators can be ad- 

justed through controller by minimizing the least mean square (LMS) of error signal. 

Therefore, the control actuator inputs can be properly adjusted to affect the plate re- 

sponse and cancel the primary source input. Figure 3 shows an example of such an ar- 

rangement of the LMS adaptive feedforward control (Fuller et al., 1989) designed to 

reduce sound transmission through a plate by vibration inputs. Error microphones were 

used to measure the sound pressure in the radiating field. The LMS algorithm is then 

used to adjust the adaptive filters to drive the control shakers such that the mean square 

of error signals can be minimized. This type of control algorithm can effectively adapt 

and track the disturbance inputs in the time domain. 

1.3 Scope and Objectives 

To study sound radiation and control characteristics, this thesis is limited to steady 

state single frequency disturbance conditions. However, the results can be easily ex- 

tended to broad-band disturbance signals by superposition. The dominant behavior of 

most practical structures of interest can be represented by rectangular, uniform, flat 

plates. Therefore, a simply-supported rectangular baffled plate was considered as the 

plant to study the control mechanism and to demonstrate the use of the newly proposed 

compact distributed actuators, 1.¢., piezoceramic patches bonded to the surfaces of 

plates, in ASAC. Both ciscrete and distributed accelerometers or microphones serve as 
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error sensors, and the corresponding cost functions are constructed based on the use of 

the feedforward control algorithm. Linear quadratic optimal control theory (LQOCT) 

is utilized to minimize a particular cost function corresponding to a specific type of 

sensors and to find the cptimal control voltages applied to actuators. The specific ob- 

jectives of this thesis are: 

1. to develop a mechanics model which will describe the loading function due to 

the piezoelectric actuators embedded or attached to plates; 

2. to employ the LQOCT to optimize control voltage inputs applied to the 

actuators so as to minimize a particular cost function associated with ASAC; 

3. to compare the effectiveness of different forms of actuators and sensors in 

sound radiation control for feedforward control approaches; 

4. to optimize the placement of piezoelectric actuators in sound radiation control 

for feedforward control approaches. 

Two forms of primary inputs (disturbances) are considered in this thesis. They are 

point force and incident plane wave inputs. The main difference between these two 

disturbance inputs in terms of spatial transform is that the point force can equally induce 

all of the plate wavenumber components, while the incident plane wave will intensify the 

low plate wavenumber components. This can be understood by the analogy between the 

temporal and spatial transforms. The temporal transform of the impact force, which 

will result in a white noise response (i.e., equally induce all frequency contents), is analog 

to the spatial transform of the point force, which can equally induce all of the plate 

wavenumber components. Similarly, the temporal transform of an impact force with a 
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period of duration, which can intensify the low frequency contents, is analog to the 

spatial transform of the incident plane wave, which will intensify the low plate 

wavenumber components. More explanation of the difference between the point force 

and the incident plane wave disturbance inputs will be discussed in Section 3.5. 

1.4 Organization of Thesis 

This thesis basically deals with three main topics: (1) the development of mechanics 

model, in conjunction with the use of classical laminate plate theory, which describes the 

structural coupling effect between actuators and structures and predicts the structural 

response due to the piezoelectric actuation; (2) the application of multiple piezoelectric 

actuators to the feedforward active control of structural sound radiation from baffled 

elastic plates due to a harmonic primary input; (3) the optimal placement of piezoelectric 

actuators for feedforward control in ASAC. A brief literature review associated with 

each topic is given at the front of each chapter. 

Chapter 2 discusses the development of a strain-energy model for a piezoelectric 

actuator-beam and -plate systems and shows several examples of its applications. A case 

of pure bending for an actuator-beam system is illustrated and verified by a finite ele- 

ment approach for both static and dynamic analyses. The cases of pure bending, pure 

extension and the combination of both for piezoelectric actuator-plate are also presented 

and compared to other models. 
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Chapter 3 analytically studies active control of sound radiation under various 

disturbance/actuator/sensor configurations. The Chapter first studies the vibration of 

plates excited by point forces, uniformly distributed pressures, incident plane waves and 

piezoceramic patches. The radiated sound pressure in the near- and far-fields is then 

evaluated by Rayleigh Integral. Next, linear quadratic optimal contro] theory is applied 

to obtain the control inputs to the actuators so as to minimize a cost function, which 

can be the mean square of acceleration or pressure for discrete sensors and vibration 

energy density or radiating power for distributed sensors individually. Several case 

studies are presented to show (1) the control effectiveness of point force and piezoelectric 

actuators, (2) the potential of using piezoelectric actuators in ASAC, (3) the near-field 

pressure and intensity distributions and plate wavenumber analysis under various con- 

trol situations, and (4) the use and performance of different forms of cost functions. 

Chapter 4 is concerned with the formulation of the optimization problem for the 

optimal placement of piezoelectric actuators in ASAC in conjunction with the 

feedforward control algorithm. Design variables, objective functions and physical con- 

straints are identified respectively. A nonlinear constraint minimization IMSL subrou- 

tine, using the successive quadratic programming algorithm and a finite difference 

gradient, is then applied to solve for the optima. Optimal placements of multiple 

piezoelectric actuators in sound radiation from plates are demonstrated and shown to 

achieve efficient control. 

Chapter 5 contains the main conclusions of the work and also recommends several 

promising related research topics. 
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Chapter 2 : Mechanics Model of Piezoelectric 

Actuator-Beam and Actuator-Plate Systems 

“Intelligent material systems and structures”, i.e., materials integrated with distrib- 

uted sensors and actuators, have provoked a great deal of interest in the area of vi- 

bration and noise control in recent years. Distributed induced strain actuators, such as 

piezoceramic materials, have been widely chosen to achieve active control in both 

structural vibration (Crawley and de Luis, 1987; Bailey and Hubbard, 1985; Fanson and 

Chen, 1986) and structural acoustics (Dimitriadis and Fuller, 1989; Wang, Dimitriadis 

and Fuller, 1989,1990). 

To fully understand induced strain actuators, a description of the mechanical cou- 

pling between the actuators and the structure is needed, and many researchers have been 

concentrating on developing a model for the interaction between actuators and struc- 

tures. Fanson and Chen (1986) showed the feasibility of using piezoelectric materials 

as actuators and sensors in beam vibration control. They introduced the concept of 

piezoelectric active members to replace passive structural elements for the control of 
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large space structures (LSS). Crawley and de Luis (1987) developed a static model for 

one-dimensional piezoceramic patches bonded to the surface or embedded into the body 

of beams. They showed that piezoceramic patches perfectly bonded symmetrically to the 

top and bottom surfaces and driven 180° out-of-phase result in two equivalent concen- 

trated moments acting at the edges of the actuator patches. Recently, Im and Alturi 

(1989) proposed a refined model including the transverse shear and axial forces in addi- 

tion to the bending moments induced by actuators. Dimitriadis, Fuller and Rogers 

(1991) presented a two-dimensional model for piezoceramic patches ideally bonded to 

the top and bottom surfaces of a rectangular plate and subjected to 180° out-of-phase 

voltages, and showed that, under the assumption of spherical pure bending, the resultant 

moments induced by the piezoceramic patches were along the four edges. Clark, Fuller 

and Wicks (1990a) developed the one-dimensional beam and actuator formulation from 

the plate model obtained by Dimitriadis, Fuller and Rogers (1991), and experimentally 

verified the analytical model for a wide range of excitation frequencies applied to a 

simply-supported beam. Those results generally agree with previous one-dimensional 

results (Crawley and de Luis, 1987). 

Tzou and Tseng (1990) developed a finite element formulation for the application of 

distributed actuators to flexible shells and plates and presented two case study examples. 

They studied a piezoelectric micro-position device and the distributed vibration identifi- 

cation and control. Ha and Chang (1990) also used finite element analysis to simulate 

the mechanical and electrical responses of fiber-reinforced laminated composites with the 

use of distributed piezoelectric actuators. Wang and Rogers (1991b) applied classical 

laminate plate theory (CLPT) for finite-length, spatially-distributed induced strain 

actuators embedded or bonded to a plate to determine the equivalent force and moment 

induced by actuators. They showed that actuators can induce in-plane forces and line 
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moments along the four edges of the actuator applied to the laminate and result in the 

coupling of laminate plate extension and bending. 

In addition to the use of distributed induced strain actuators in vibration or noise con- 

trol, the design of distributed induced strain actuators has been investigated with en- 

couraging results. Lee (1987) applied the classical laminate plate theory to the design 

of piezoelectric laminate for bending and torsional modal control. His experimental re- 

sults showed that PVDF or PVF; (polyvinylidene fluoride) actuators can generate plate 

bending and twisting independently or simultaneously, and PVDF is suitable for active 

damping control of a flexible structure. Lazarus and Crawley (1989) developed the pin- 

force and consistent-plate models for the design of induced strain actuators. Exact sol- 

utions can be found only for the unconstrained boundary conditions; however, they also 

employed the Ritz assumed mode method to solve for problems with other boundary 

conditions. However, although much progress has been made deriving the basic 

equations of piezoelectric actuator-structural response, there still remains many areas to 

investigate and behavior to be understood. 

This chapter addresses the development of a theoretical model to determine the 

equivalent force and moment induced by spatially distributed induced strain actuators 

attached or embedded in laminate beams and plates either symmetrically or asymmet- 

rically. The strain-energy model (SEM) for a laminate actuator-beam was derived first 

for a one-dimensional case and then extended to a two-dimensional, laminate actuator- 

plate problem. The CLPT for induced strain actuators developed by Wang and Rogers 

(1991b) was revised by the use of the strain-energy model for laminate beams described 

below. The current approach compares favorably with several other modelling ap- 

proaches. The cases of pure bending in the beam and plate were illustrated and com- 
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pared to the pin-force model (Lazarus and Crawley, 1989), the spherical pure bending 

model (Dimitriadis, Fuller and Rogers, 1991) and a finite element formulation (Robbins 

and Reddy, 1990). The cases of pure extension and a two layer laminate were also pre- 

sented. 

2.1 Theoretical Analysis 

2.1.1 Strain-Energy Model for a Laminate Actuator-Beam 

Figure 4 shows the arrangement and coordinates of an arbitrary laminate beam with 

attached or embedded, finite-length, spatially-distributed actuators. The laminate 

actuator-beam with a length, L, and a width, b, has n layers, and contains m embedded 

actuators with a length, L,, and a width, b,. The purpose here is to determine the 

equivalent axial force and bending moment induced by these actuators. The basic as- 

sumptions are as follow: 

1. utilization of the Euler-Bernoulli beam theory 

2. ideal bonding between layers and actuators 

3. infinite beam with finite-length actuators, ie. L>> L, 

4. linear strain distribution, as illustrated in Figure 5, due to an induced strain 

actuator 
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5. conservation of strain energy associated with the actuator and the assumed 

linear strain distribution of the laminate structure. 

First, the k-th actuator, as shown in Figure 5, was considered to determine its in- 

duced axial force and bending moment. The free strain of the k-th actuator is: 

d 
A,=—— 

t a Ve (2.1) 

Furthermore, the induced strain of the beam by this actuator was assumed to be a 

linear distribution, as shown in Figure 5, and has a magnitude of ef = K,A, at the 

actuator’s location. Note that K, is the unknown parameter. The distributed strain 

equations through the thickness of the beam above and below of the actuator can be 

expressed as: 

_ __&k ly 
ua? (2.2) 

2 7% 

+ 

E t eat (by) (2.3) 
> + 2a, 

Because of the assumption of a linear strain distribution, the resultant actuator 

strain becomes the difference of the free strain of the actuator and the assumed strain. 

Therefore, the stress in the k-th actuator can be postulated to be uniform and expressed 

as 

Oa, = Fa(An— tx) = Ea(1 — Kids (2.4) 

The axial force and bending moment drawn by this stress can be found by: 
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Pa, = ba,Fa,(1 — Ky)baAx (2.5) 

Ma, = 24,4, Fa,(I — Ky)bag (2.6) 

Next, from the assumed linear strain distribution, the stress distribution can also be 

postulated. The induced equivalent bending moment can be obtained by the following 

integral through the beam thickness: 

Sy 
2 

My = |  ozbade (2.7) 

> 

where o is the stress distribution due to the assumed strain. By substituting the strain 

Equations (2.2) and (2.3) into Equation (2.7) and integrating Equation (2.7), the equiv- 

alent bending moment becomes 

  

Mey = AnKyba (2.8) 

where 

Pp 

E; ly 2 2 zp 24 
Ay = by [a & 23} 3 J 

i=1 2. “4% 

p<k (2.9) 
m+n 3 

E; boa 2 2; — Zj—1 
+ ty [= Gi Z;-3) + 3 ] 

i=p 2 + Za, 

p>k 

Based upon the assumption of an infinite beam, the equivalent bending moment 

induced by the single actuator must be equal to the bending moment induced by the 
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assumed strain distribution. This statement is valid because of the conservation of strain 

energy, which is proportional to the bending moment. By setting Equations (2.6) and 

(2.8) equal, K, can be found as: 

Za,ta, Ea, 
ay ay 

K, = ——-.———" 2.10 
k Zq,ta, Ea, +A, ( ) 

The equivalent axial force and bending moment induced by the k-th actuator can 

be found by substituting K, into Equations (2.5) and (2.6): 

  Poy = tq, Ea, (s Ze. +h, ——— )b, Ax (2.11) 

May = 24,14, Fa, (> “a Zi, #Ie )b,Ar (2.12) 

By superposition, the total equivalent axial force and bending moment induced by 

m actuators are 

m 

Pog = > Ph (2.13) 

Muy = ) Ma (2.14) 

Therefore, the resultant force and moment can be considered as external loads to 

the laminate beam. In particular, for the application of the induced strain actuators to 

Chapter 2 : Mechanics Model of Piezoelectric Actuator-Beam and Actuator-Plate Systems 27



the beam lateral vibration control, the equivalent axial force can be generally negligible. 

However, this axial normal force does exist and can generate the vibrational power flow 

as shown by Gibbs and Fuller (1990). Im and Alturi (1989) demonstrated that actuators 

result in both the bending moment and the axial force simultaneously, except for the 

case of pure bending or extension in which the bending moment and axial force exist 

independently. 

2.1.2 Strain-Energy Model for a Laminate Actuator-Plate 

Let us consider a rectangular, laminated plate with multiple, embedded induced 

strain actuators, such as piezoceramic patches. Figure 6 shows the arrangement and 

coordinates of the actuator-plate model. Under the plane stress state, the stress-strain 

relations for a lamina in |2-coordinate reduce to 

3G; Q1, Qin 0 Ey 

52 |=| Q2, Qa 9 €9 (2.15) 

*12 0 0 OB | L”2 

or in short form 

{o} = [Q]{é} (2.16) 

Then the stress-strain relations for a lamina in xy-coordinate can be shown as: 

on Or Ore fy 

{a} = [O}{e} = Or. On On by (2.17) 

Or6 One O66 yy 
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Figure 6. Arrangement and coordinates of laminate actuator-plate 
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The expressions for Q, and Q, can be easily found (Jones,1975). The total strain can 

be shown as the sum of the mechanical and induced actuator strains. 

{e} = {2} + {A} 

Under the Kirchhoff’s assumption, the mechanical strain vector is given by 

{e"} = {e°} + z{x} 

where the midplane mechanical strains: 

      

Lo 
ey 

{e° = ey = 

0 Oty 
| | ay 

    

Oup 
Ox 

OV 

  

dy 

0 Vo 

Ox 

  

  

  

  
and the actuator strains: 
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(2.21) 
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— ~ a d. 

As] |) LHe 26.) — Mle = 2h GO Will — Ky Rilo) 
k=] k 

(A)=] A, [=] CHG — af) — He 2h GP HCl ~ Ky) Ryxw) | 2.22) 
k=1 Re 

Ay | | > [ae —2f)— He ~ 2h) pO Hill — KRG) 
~ k=1 k 

L -   
Note that K;,,Ki, and K;,,, the new terms not included in the previous work of Wang 

and Rogers (1991b), are defined similarly to K, in Equation (2.10) except that A, should 

be replaced by 4,,, 4s, and J,,, respectively, and E£; in Equation (2.9) should be replaced 

by E£,, Ei, and E, y Lhe Heaviside function, H(z — zo), is defined as follows: 

H(z — Zo) = l, Z2 2, 

(2.23) 
= 0, z< Zo 

and the generalized location function is defined as: 

Rix, yy) = 1, (He SX S Or) We SYS Orde 
(2.24) 

= 0, elsewhere 

For simple application, it is assumed that each actuator patch has the same 

piezoelectric strain coefficient, i.e. (dj); = (dj). = °* = (dj)m = ;, and the same location 

on the xy-plane, ie. R, = R,=-:=R, = R. Let R(x, y) be expressed with the Heaviside 

function: 

R(x, y) = [A(x — x)) — A(x — x, )ILAY — y) -— HY — y2)] (2.25) 

Also, the derivatives of generalized location function are expressed as: 
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OR 

  

SR = [8x — 11) — 6x — =) THY — 9) — HO — WWI] (2.26) 

So = LH — x) — Her JIL — 1) — 6 -W)I (2.27) 

aR = [6 -6 6 — d(y- 2.28 Seay 7 Ll — ¥1) ~ 6 — x)ILSW — 11) — dy — ye) (2.28) 

PR A189 é’ Jt H 2.29 5x2 = [6'(x — x1) — O'(x — x) THY — y) — HY — y2)I (2.29) 

PR tH H é 2.30 ay? = [H(x — x1) — H(x— x16’ — y;) — 0° — y2)] (2.30) 

The mathematical interpretation of the Heaviside and Delta functions is illustrated 

in Figure 7. As [H(x--—x,)— H(x—™)] represents a uniform distribution between 

x, and x, [6(x — x,) — d(x — x.)] represents two concentrated sources at x, and x re- 

spectively, and [6’(x — x) — 6’(x — »:)] represents two moment sources at x, and x, re- 

spectively. Thus the derivatives of generalized location function can be graphically 

shown in Table 1. The physical meanings of the derivatives of the generalized location 

function will be discussed further. 

Equation (2.17) shows the stress-strain relation for the k-th layer lamina. Equation 

(2.17) is integrated through the thickness of the laminate to obtain the following 

Equation (2.31). Also, Equation (2.17) is multiplied by z and integrated through the 

thickness of the laminate to obtain the following Equation (2.32). 

(N} = [A] fe} + [B](«} — [El{d) (2.31) 

and 
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[H(X- X,)- H(x- Xj : [8(x- x,)- &(x- x,)] 7 [8(x- X,)- &{x- X2)] 
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| x xX. } Xo | x fe 

Heaviside Delta 1st Derivative of 

Function Function Delta Function 

Figure 7. Illustration of Heaviside and Delta functions 
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Table 1. Physical meaning of the derivatives of the generalized location function 

  

R(x,y)= [H(x- %4)- H(x- x2)] [H(¥- ¥1)- H(y- ya] JG Xp¥Q) 

Oey) O¥,) 

A 

  

aa [8(x- x,)- 8(x- x2] [H(y- y,)- H(y- Yo) a 
  

+ [H(X- x,)= H(x- x} [8(y- ¥4)- OLY Yad] 
  

2 

am [8(x- x,)- B{x- x2) [H(y- ¥4)- HCY Ya) 
  

fm. [H(x- x,)- H(x- xa} Ely: yy Oly- ya) 
  

2 aR 
x By 7 FBR X3)- Be xa LO(Y- ¥a)> BUY Val       

oe 
nhewe” 
eK 
a7     
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{M} = [B]{e°} + [D]{x} — LF1{d} (2.32) 

where 

N,. A Ox 

2 
{N} = Ny -| , By dz (2.33) 

Nyy 2 Txy 

M,. h Oo; 

2 
{M}=| M, -| ay |zdz (2.34) 

A 

My ; Txy 

a;,R 

{a} =| 43.R (2.35) 

d3,R 

The i-th row and j-th column element of matrices [A],[B],[D],[E], and [F] is as fol- 

lows: 

Ay = YG — 21) (2.36) 

By=> x (Oy) alze — 2% -1) (2.37) 

Dy=y y (Oyulek — 22-1) (2.38) 
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f= YG Ky )Ve i j= 1 
\| »
 

(Q”k — Ky)Vey if j= 2 (2.39) 

=
 " 1 

lI 

i
 (QU Ky )Ver if f= 3 

YY
 M 1 

on
 Il 

S
e
 

(O,)e(1 - - K; ) Vilzp++zy-), if j= 

= il 

Oi)O ~ KV +26), if j=? (2.40) II 
r
f
—
 

l X
s
 

t
s
 

l a 
2 (Opi - Ky Vielzge + 2-), if f= 3 

Note that K,,, Ki, and K,,,, the k-th actuator induced strain constants, are functions of 

the material and physical properties of the laminate actuator-plate, and relate the inter- 

action of layers and actuators. The equilibrium equations are given as: 

    

  

    

ON,  ONyy 3 uy 

an aN. ay xy yp oo 
at ay h 7 (2.42) 

a*M. My aM, h wy 7 43 

pat 12 Oxdy top = PRG a aed (2.43) 
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where 

Prlty 
= » | (2.44) 

If Equations (2.31) and (2.32) are substituted into the equilibrium equations in 

terms of the midplane displacements us, v) and wo, and the symbols u, v and w are used 

for brevity, then the equations of motion become 

Oru Ou é7u é°v Ov é°y 
[41 ae + 2Aj¢6 axdy + Age ay? + Aig —> ae 7 + (Aj2 + A66) axdy + Ay ay? ] 

cB, 2” 438,24 (B+ 2B ss wip ow, (2.45) ~[B,, + 3B, + (By + + . Na 6 Bay 12 6) aay? 1 ay 

a’ 
= ph oP + [(£, 143, + £12432 + Eyedyg) 2% “ + (E\643; + Exes. + Esedye) 2% ay RK 

  

[A146 > ou + (Ay. + Age) Bray eu yt A> ou + Age av + 2Ar oy +A av ] 
Ax? ay’ ax? dxdy » ay’ 

— [By 2% + (Byy + 2Bgg) + 3Byg + By, 2 J (2.46) 
ax? Ox *ay Oxdy* ay’ 

a’y OR 
= ph ae + [(E,643, + F46432 + Esgdag) OR an + (E4143, + Eq2d3. + Eng dye) “ey 
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Ou Ou Ou au 
B,, —+3B,,—>— + (B,, + 2B.) —— + By [ il ax? 16 axay ( 12 66) axdy? 26 ay 

ary ary ary ay + Big 4+ (Bry + 2Bee) + 3Byg —"— + B J 16-53 12 66 axtay 26 axoy" 22 ay? 

aw aw ow ow aw ~[D,, 2% + 4D, 2 + 2D 2 + 2Dge) ——— + AD yg 4+ Dy, *] [Di ax! 16 axay (D;2 66 axtay? 26 axdy" 22 ay! 

(2.47) 
a” a’R 

= ph > — (xy) + (Fda, + Fy2d32 + F636) —> 
Ot Ox 

4 a°R 
+ (F143, + Foydq. + Fro6436) —; 

dy 

a’R 
+ 2(F 643; + Fo6d32 + Foes) Oxoy 

Equations (2.45)-(2.47) are the equations of motion in terms of the midplane dis- 

placement. The last two terms of the right hand side of Equations (2.45) and (2.46) in- 

clude the 0R/Ox and 0R/dy which can be recognized as vertical line forces illustrated in 

Table 1. The third and fourth terms of the right hand side of Equation (2.47) include 

O?R/dx? and 0?R/dy respectively which can be recognized as line moments along the 

edges of actuator patch illustrated in Table 1. Additionally, the fifth term of the right 

hand side of Equation (2.47) includes 0?R/dxdy which can be recognized as the concen- 

trated forces at the corners of the actuator patch also shown in Table 1. It is noted that 

these concentrated forces result in laminate twisting. 

To solve the equations of motion, boundary conditions need to be specified. The 

general boundary conditions can be categorized as follow (Whitney, 1989): 

1. simply supported: N,= Nx =w=M,=0 
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2. hinged-free in the normal direction: N,=u,=w=M,=0 

3. hinged-free in the tangential direction: u.=N,.=w=M,=0 

4. clamped: u4,.=u,=w=M,=0 

OM.,, 

OS 
  5. free: N=N,=w= +Q0,=0 

2.2 Examples 

2.2.1 Illustration of Actuator-Beam (Pure Bending) 

Consider a beam with two actuators attached to the top and bottom of its surface 

symmetrically as shown on Figure 8, and activated 180 ° out of phase, ie. VY. = — M2. 

The stresses of both actuators can be postulated as 

0,,=E(-Ate )=—E,(1— Kya (2.48) 

Oy, = E{A—e )=E(1—K)A (2.49) 

where A = Vd3;/t,. Therefore, the axial force and bending moment induced by these two 

actuators are: 

P, = Py, + Py, =0 (2.50) 

M, = Mg, + Mo, = t,Eq(1 — K)b,A (2.51) 
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Figure 8. Illustration of actuator-beam (pure bending) 
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Note that the sum of the axial forces by these two actuators is zero because the 

actuators were arranged symmetrically and activated 180° out-of-phase. As shown in 

Figure 8, if the assumed induced strain distributions, ¢«, and €, are linear, then the 

equivalent bending moment drawn by these two assumed strain distributions can be de- 

rived as: 

2 
M. = oko in An (2.52) 
q- 6 a . 

By setting Equations (2.51) and (2.52) equal, i.e. the conservation of the strain energy 

is maintained, K can be found as 

  

  

___ 6 
K= 64 (2.53) 

where 

bE, 
Y= E, (2.54) 

Therefore, the induced equivalent bending moment can be determined by substituting 

Equation (2.53) into Equations (2.51) or (2.52) 

th E, 

Meg = Gry 
  b,A (2.55) 

This result agrees with those of the pin-force model (Lazarus and Crawley, 1989) 

and the ideal bonding case (Crawley and de Luis, 1987) because, for the case of pure 

bending, all of these models have the same assumed linear strain distributions. Table 2 

summarizes the results of several cases deduced from the strain-energy and the pin-force 

model. Only for cases (1) and (4) do both models conclude the same equivalent bending 
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Table 2. Comparison between strain-energy and pin-force models (Lazarus and Crawley, 1989) 
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moment and axial force. For other cases, they are somewhat different. This discrepancy 

is caused by the assumption of different types of strain distribution. 

2.2.1.1 Static Analysis 

A cantilever beam, as shown on the top of Figure 9, is subjected to the actuation 

of a pair of piezoelectric patches attached symmetrically at the top and bottom of the 

beam and driven 180° out-of-phase. The piezoelectric actuation is equivalent to two 

concentrated moments, as indicated in Equation (2.55), with opposite signs acting on the 

two edges of the piezoelectric patches. The beam deflection can then be determined by 

classical beam theory. 

For verification of the strain-energy model (SEM), a finite element code developed 

by Robbins and Reddy (1990) which utilizes generalized laminated plate theory (GLPT) 

was applied to obtain the static deflection of the beam. The GLPT, a generalization of 

existing high-order theories, accounts for transverse stresses and layer-wise approxi- 

mation of the displacement through the plate thickness. To compare the results, the 

relative error of the tip displacement of the cantilever actuator-beam was shown re- 

spective to the FEM results obtained by varying the ratio of the modulus to the thick- 

ness of the beam and actuators (Figures 9(a) and 9(b), respectively). The results show 

that the prediction error is generally less than 10 % between the SEM and FEM. It is 

noted that for static analysis, the SEM overestimates the static response for low thick- 

ness ratios. However, it will be also shown that the SEM agrees well with the FEM for 

dynamic responses, because thickness effects become insignificant in dynamic analysis. 

Fgiure 9 also shows the similar results for the SPBM, spherical pure bending model 

(Clark, Fuller, and Wicks, 1990a). The prediction error is generally less than 15 % be- 
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tween the SPBM and FEM. However, for low thickness ratios, in contrast to the SEM, 

the SPBM underestimates the static response. Section 2.2.2.1 explains this difference, 

due to the different assumptions of strain distribution in piezoceramic patches used by 

the SEM and SPBM. 

2.2.1.2 Dynamic Analysis 

To illustrate the utility of the model for dynamic analysis, a simply-supported 

actuator-beam harmonically excited by piezoelectric actuators in a pure bending manner 

as described in the previous case study was considered. The configurations of the beam 

are the same as that of Figure 9 except the boundary conditions, which are simply- 

supported at both ends. The lateral displacement of the beam can be described as: 

w(x)= >. W,, sin A (2.56) 
m=1 , 

where 

  (2.57) 

om = (ny [He (2.58) 
pbiL 

= a (cos a Xx; — COS ia x») (2.59) 
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Here, W,, is the modal amplitude, w,, the natural frequency, 7 the moment of inertia, 

and P,, is the modal force for piezoelectric actuators which results in concentrated mo- 

ments at both edges of the actuators. 

For verification of the strain-energy model (SEM), the finite element code developed 

by Robbins and Reddy (1990) was applied to solve the modal amplitudes which were 

compared to the theoretical results from the SEM. Several numerical examples are 

presented. The simply-supported beam made up of steel with a length of 0.4 m anda 

thickness of 0.002 m (t/t, = 10.49) or 0.0006 m (t/t, = 3.15) with G-1195 piezoceramic 

attached to the top and bottom of the beam, as shown in the top of Figure 9, was con- 

sidered. The material properties of the G-1195 piezoceramic patch are shown in Table 

3, and the natural frequencies of the two beams are tabulated in Table 4. 

Figure 10(a) shows the modal amplitude distributions and the steady-state modal 

response for piezoelectric actuators driven at w = 400 rad/sec, a frequency between the 

first and second modes, for the case of ¢,/t,= 10.49. The actuators can drive all modes, 

especially the first two. I: is shown that the FEM predicts higher modal amplitudes than 

either the SEM or spherical pure bending models (SPBM) (Clark, Fuller and Wicks, 

1990a); however, the modal amplitudes generally agree with one another. The modal 

response is exhibited a combination of the first and second modes. 

Figure 10(b) shows the case of a driving frequency at w = 700 rad/sec, a frequency 

very near the second mode. It is seen that the second mode is more efficiently excited 

than other modes. The FEM predicts much higher amplitude for the second mode than 

for the others because the driving frequency is closer to the second natural frequency 

predicted by FEM than to that predicted by SEM. It should also be noted that the 

truncating error from the finite element formulation is unavoidable with the higher 
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Table 3. Physical properties of G-1195 piezoceramic patch (Piezo Systems, 1987) 

  _ — 12 ¢_Mm_ _ 
d3; = d32 = 166 x 10 ( volt dz, = 0 

7650 (2 E,=63x 10° (~) 
m? — m? pa = 

t, = 1.905 (mm) Va = 0.28 
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Table 4. Natural frequencies of simply-supported beam (rad/sec) 

  

mode Theoretical 

1 
2 
3 
4 

3 
6 
7 
8 
9 
10 

tp = 0.002 m 

(ts/t2 = 10.49 ) 

182.6 
730.6 
1643.8 
2922.4 
4566.2 
6575.4 
8949.8 
11689.5 
14794.6 
18264.9 

FEM 

181.1 
728.1 
1649.2 
2968.5 
4708.9 
6849.1 
9531.2 
12666.4 
16451.4 
20633.8 

t, = 0.0006m 

(ts/ta = 3.15 ) 

Theoretical FEM 

54.8 54.9 

219.2 220.6 

493.2 502.4 

876.7 907.9 

1369.9 1399.7 

1972.6 2087.8 

2684.9 2814.6 

3506.9 3755.2 

4438.4 4807.5 

5479.5 6039.5 
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modes. Nevertheless, this truncating error is assumed small if large numbers of elements 

are used (40 elements were used here). In terms of steady state modal response, the 

FEM approach also shows a 20 % higher than the two analytical models for the maxi- 

mum. This corresponds to the higher prediction of the second modal amplitude from 

the FEM than others. However, the trend of the steady state modal response generally 

agrees to each other, and the SEM gives higher modal responses than the SPBM. 

For low thickness ratios, i.e., 4/t, = 3.15, Figure 11(a) and 11(b) show the modal 

amplitude distribution and steady-state modal response for piezoelectric actuators driven 

at wm = 130 rad/sec between the first and second modes and w = 210 rad/sec near the 

second mode respectively. It can be seen that the results of the SEM generally agree 

with those of the FEM; however, the SPBM underestimates the modal amplitudes. 

Therefore, the SEM is more favorable than the SPBM when the thickness ratio is low. 

2.2.2 Illustration of Actuator-Plate 

2.2.2.1 One Isotropic Layer with Two Piezoceramic Patches (Pure Bending) 

Considered a simply-supported, isotropic lamina with two actuator patches 

(piezoceramic) bonded to the top and bottom surfaces of the plate subjected to 180° 

out-of-phase voltages, as shown in Figure 12. The material properties for the isotropic 

layer are given as: 
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Figure 11. Modal amplitude and modal response for t)/t, = 3.15 
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Figure 12. One isotropic layer with two piezoceramic patches (pure bending) 
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The material properties for the actuator patch are given as: 

  

  

  

; E a 
-— a s 0 

l-vy, I-vw 

— E. E 
(oy-|\— —, 0 (2.61) 

I-v, I-v, 

Ey 
° 0 2(1 + v,)   

where £,v, E, and vy, are engineering constants for the isotropic layer and actuator 

patches. The typical physical properties of G-1195 piezoceramic patch was shown in 

Table 3. It is noted that the laminate is symmetry. If the applied voltages of the 

piezoceramic patches were out-of-phase, ie. Vi = — V,=— V, then the following re- 

lations result 

Ay = Qyh (2.62) 

By =0 (2.63) 

n= 
Dy = 77 Qy (2.64) 
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E, =0 (2.65) 

Fy = Q;V(1 — Ky(h + t,) (2.66) 

It is noted that (A +-£,) is the distance between the two piezoceramic patches, and 

K is defined in Equation (2.53). The equations of motion can be reduced to 

  

  

O-u Oru é’y _ Oru 
Ay ax? + Age ay? + (Aj. + Age) Oxdy p 3 (2.67) 

a7 u ay a’y a’y 
Aya + Age) sa + Age —> +A = ph— 2.68 (Ajo 66) Oxdy 66 ax? 22 ay p ar ( ) 

aw ow aw a’w 
D + 2(Dy. + Deg) —s—>_ +: Dy, — + ph — 11 ax? 12 66 ax*ay’ 22 ay' ar 

(2.69) 

_ | aR a’R 
= xy) + [F431 + Fy2d32) ae? + (F143) + Fy2432) ay 

One can observe that Equations (2.67) and (2.68) are coupled without any actuator 

effects, and Equation (2.69) with actuator effects is independent. Both Equations (2.67) 

and (2.68) are known as the stretching problem, and Equation (2.69) is known as the 

bending problem. These equations of motion show that the two actuator patches only 

induce laminate bending, and the equivalent external forces excited by the two actuator 

patches are the distributed line moments along the four edges of the actuator patch. 

This result is similar to that of the SPBM (Dimitriadis, Fuller and Rogers, 1991). The 

bending equation substituted by D, and F, can be written as: 

aw aR aR =C"A + 2.70 
or’ 0X ax? ay’ (2-70) 

      DV'w+ ph 
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where 

3 

D=j—t — (2.71) 
12(1 — v’) 

E 
Cg = ta 1 ~ K)(h + fg) 7 (2.72) 

a 

It is noted that actuators result in the equivalent line moments with a magnitude 

of CA acting along the edges of actuator. C’’s is the induced bending moment coefhi- 

cient. The corresponding equations derived from the SPBM (Dimitriadis, Fuller and 

Rogers, 1991) and the CLPT model (Wang and Rogers, 1991b) are the same except for 

the replacement of the induced bending moment coefficient C’’) by Cy) (SPBM) and C’, 

(CLPT) respectively. Cy) and C’, are defined as follow 

  

  

l+v, Pp 2,h, 
O=- ETT, l+v—(l+v,)P 3 a) (2.73) 

where 

h 
E _ y2 3ta( > )(A + t,) 

p=—~—2 4=¥ — (2.74) 
E j-y h 3 h.2 20(—-) +¢6)]43(=)7 

2 2 

and 

E, 
C’>9 = t,(h + t,) Tw (2.75) 

a 

To compare Cy, C’, and C’’y, the characteristic curves of C)/C’’» and C’o/C’’) varying 

the modulus and thickness ratios of plate and actuator are shown in Figures 13(a) and 
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Figure 13. IMlustration of Co/C’o and C’o/C’’y by varying thickness and modulus ratios 
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13(b) respectively. As seen in Fig 13(a), if E/E, is very large, C’)/C’’) approaches to 

unity, and C,/C’’) approaches to 0.94. This can be explained by determining 

C, C’) and C’’) with the assumption of E>> E,. Therefore, Co, C’x and C’’) become 

  Co = t,(h “a 76 0 = La +iT=y 3 (2. ) 

“y 642) 8-2 +6(—) +8(—) 

  

E, 
C9 = Cp = L(A + ) (2.77) 

l—v, 

As observed, both C’, and C’’, converge, and C’, is actually not changed. However, C) 

has a slightly different form. The main difference among the induced moment coeffi- 

cients is the last term of Equation (3.76), which is 0.94 for this case study. This corre- 

sponds to the result shown in Figure 13(a). If we let h>>1,, then 

E, Cy = Cp = Cp = th (2.78) 
l—v, 
  

The induced moment coefficients are equal. This agrees to what is observed in Figure 

13(b). When Aft, increases, both C,/C’’, and C’,/C’’) approach to unity. In summary, 

either the SEM, CLPT or SPBM converges and agree with each other, if plate thickness 

is much greater than actuator thickness while their modulus are fixed. In this situation, 

the interaction effect between the plate and actuators is relatively insignificant, and in- 

duced moment coefficients are simply proportional to the plate thickness. If the 

modulus ratio of plate and actuator increases while their thickness are fixed, the SPBM 

has a slight discrepancy from the SEM and CLPT, as shown in Equations (3.76) and 

(3.77). This can be explained that these models have different assumptions of strain 
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distribution in piezoceramic patches. The SEM assumes linear; the GLPT uniform; the 

SPBM trapezoid. 

As shown in previous results for the one-dimensional beam, the SPBM underesti- 

mates the dynamic response for low thickness ratios. On the other hand, the CLPT 

model generally overestimates the resultant force and moment. The SEM is more fa- 

vorable than both the SPBM and the CLPT model for a wide range of modulus and 

thickness ratios. Only the characteristic curves of C’’s are shown as follows. 

Figure 14(a) shows the induced line moment distribution obtained by varying the 

modulus ratio of the plate and the actuator for different thickness ratios of the plate and 

the actuator, while the physical properties of the piezoelectric actuators were assumed 

to be unchanged, i.e., 4, and £, remain constant. As the modulus ratio increases, the line 

moment generally increases. That is to say, a stiffer plate with the same specified 

piezoelectric actuation will result in a higher line moment. However, the line moment 

will approach a constant when the modulus ratio is very large. For low modulus ratios, 

the line moment is more sensitive when the modulus ratio is increased, especially for 

those of low thickness ratios. The typical modulus ratios for steel and aluminum are 

3.49 and 1.12 respectively, as shown in the plot. 

Figure 14(b) shows the line moment distribution for SEM model obtained by vary- 

ing the thickness ratio of the plate and actuator for various modulus ratios. It can be 

seen that the line moment increases as the thickness ratio increases; and it appears that 

there is a linear relationship between the line moment and the thickness ratio for high 

thickness and modulus ratios. The magnitude of the induced equivalent line moment is 

strongly relative to the plate thickness. 
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Illustration of C’’> by varying thickness and modulus ratios 
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2.2.2.2 One Isotropic Layer with Two Piezoceramic Patches (Pure Extension) 

In this case study, a similar plate was considered as that in the previous case study 

except that the applied voltages Vi = V¥,=V. The [AJ,LB] and [D] matrices are un- 

changed, and 

Ey = 20;V(1 — K) (2.79) 

F.=0 (2.80) 
Y 

The equations of motion can be reduced to 

eu e e Ay + Age E+ (Ayn + Ace) = ph + (Eyydyy + Eyydyy) 2% ae (2.81) 
ax? dy” or 

Ou ay av, av _ Vv 

(A12 + Age) axdy + Age ae + Ay) ay? = ph ae LYS (Eady, + Eqgdyy) OR 3) (2.82) 

ofw ow o-w 

Dy, * + 2D). + Des) 54> + D 11 ax! 12 66 ax ay? 227. 4) ay"      = 9(xy,) (2.83) 

One can observe that Equations (2.81) and (2.82) are coupled, and the piezoelectric 

effects are included; however, Equation (2.83) is independent without any actuation 

terms. Therefore, this example results in pure extension rather than the pure bending 

of the previous example. In Equations (2.81) and (2.82), the terms involved 0R/Ox and 

OR/dy which represent the in-plane forces along the edges are the equivalent external 

forces induced by the piezoceramic patches. 
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2.2.2.3 Two-Layered (6°] - 0°) Laminate with One Piezoceramic Patch 

Considered a two-layer, angle-ply laminate with one piezoceramic patch embedded 

within the laminate and between the two lamina. The laminated plate 1s illustrated in 

Figure 15. The following relations can be found 

Ay = 4 LQ); + Qi)21 (2.84) 

By= ie [(Qy)1 — (Gyo (2.85) 

Dy = te [(Q,); + (Qy)o] (2.86) 

Ey = OjV(1 — K) (2.87) 

F,=0 (2.88) ij 

It is noted that actuator bending-twisting stiffnesses, F,, are zero. That is to say, 

there is no bending and twisting induced by the piezoceramic patch; however, bending 

and extension are coupled due to the non-symmetric, angle-ply laminate. This coupling 

can be seen from the following equations of motion. 

[413 —> ou 7 + 2Ai6 fu, 4, Ou Ou > + Aig — > ay + (Ag + Age) oo + Ag 2 J 
x? oxdy dy’ ax? dxdy éy’ 

hw aw ew aw 
—[B,, ae a+ 3Bi5 5 axtay + (By. + 2B ee) axdy? + By, —- ay? ] (2.89) 

@ OR 
= ph a2 + (E, 143; + E\2432) “ax. 
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Figure 15. Two-layered (0°/ - 6°) laminate with one piezoceramic patch 
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Ou au Ou a’y oy a’y 
              Avye-——~ + (A, 4A yt +A Gxay +4 —] [ 16 ax? ( 12 66) Say 26 ay 66 ax? 22 ay? 

aw ow a a 

— [Byg + (Byy + 2Bes) So + 3Bygp — + By 21 (2.90) 
éx? Ox *ay Oxdy oy 

a-y 
= ph ay? + (£4143, + Endy) SE 

au Ou aru Ou 
[B,, —~ + 3Byg —s— + (By + 2Beg) ——> + Bog —— 11 ax 16 ax?ay ( 12 66) axay’ 26 ay? 

ay ary Fy ary 
+ Byg—> + (By, + 2B + 3By, ——— + By, ——] 16 ax 12 66) nT ax 2ay 26 axdy’ 22 ay? 

(2.91) 

tw o+w aw aw atw —[D,, 2 + 4D, — + AD + 2De6) —S > +: 4D, —“ + Dy, —] 
 ax4 © axtay 1 ax day? *° axay? = ay4 

(xy,t)   

      

All three equations, Equations (2.89)-(2.91), are coupled. The actuator patch re- 

sults in two equivalent external forces which are the last terms of Equation (2.89) and 

(2.90) respectively. To calculate the responses, Equations (2.89)-(2.91) must be solved 

simultaneously. 

2.3 Summary 

1. This chapter presents a strain-energy model for a laminate actuator-beam which is 

essentially based upon the conservation of strain energy. The induced strain con- 
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stant which relates the induced strain to the free strain of the piezoelectric actuator 

was derived. Therefore, the equivalent induced force and moment of the actuators 

can be determined. 

2. The strain-energy model for a laminate actuator-beam was then extended to a two- 

dimensional problem, i.e., a laminate actuator-plate, with the utilization of classical 

laminate plate theory and Heaviside functions to represent the size and location of 

the spatially distributed actuator patches. 

3. A case study example of pure bending for an actuator-beam including both static 

and dynamic analyses was presented, and a comparison among several models was 

made. This work agrees favorably with those of the pin-force model (Lazarus and 

Crawley, 1989), the spherical pure bending model (Clark, Fuller and Wicks, 1990a) 

and the finite element model developed by Robbins and Reddy (1990). In particular, 

the present model, SEM, is more suitable than SPBM over a wide range of thickness 

and modulus ratios of beam and actuator in comparison to the FEM results. 

4. <A case study example of pure bending for an actuator-plate was presented. The in- 

duced bending moment coefficients derived from the SEM, C's, was compared to 

Cy from the SPBM and C’", from the GLPT. The discrepancy is due to the different 

assumption of strain distribution in piezoceramic patches. According to the one- 

dimensional results, the SEM for two-dimensional plate should be more favorable 

than the CLPT and SPBM. 

5. Case study examples of pure extension and a general problem with the coupling of 

bending and extension for a laminate actuator-plate were also presented. 
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6. The proposed model is capable of predicting the equivalent axial force and bending 

moment induced by multiple spatially distributed actuators attached or embedded 

in laminate beams or plates, and provides a general approach of considerable utility 

for the use of induced strain actuators in active noise and vibration control. 
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Chapter 3 : Active Control of Sound Radiation 

In recent years, the problem of actively controlling sound and vibration has gener- 

ated strong interest both in industry and in the engineering research community. Ad- 

vances in contro] theory combined with recent developments in fast computing have 

made possible the treatment of problems on active structural sound and vibration con- 

trol that were infeasible only a few years ago. However, it is becoming increasingly clear 

that the development of corresponding control transducers has generally been lagging 

behind. Thus, in response to this need, a strong interest has also arisen in new concepts 

for control actuators and sensors. This chapter concerns the use of the proposed 

piezoelectric actuator (discussed in Chapter 2) which consists of layers of piezoelectric 

material bonded to the surface of the elastic structure to provide control inputs. 

It has been suggested that a structurally radiated sound can be best suppressed by 

directly applying active forces to the structure so as to affect the sound radiating vi- 

brations (Fuller, 1988). It was seen in the analysis (Fuller, 1988) as well as in companion 

experiments (Fuller et al., 1989) that point force actuators (i.e. electromagnetic shakers), 

while providing excellent sound reduction, have some disadvantages, such as their 
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weight/volume and their need for a support structure. Such drawbacks, inherent to 

point actuators, can be remedied by distributed actuators which are more compact in 

nature. A type of compac% actuator has been developed for the control of beam vibration 

by Crawley and de Luis (1987). Their actuator (as discussed in the previous Chapter) 

consisted of thin strips of piezoelectric material which were bonded to the beam surface 

and activated to vibrate parallel to the beam surface by an oscillating electric voltage, 

applied across the piezoelectric electrodes. 

Chapter 2 has presented a strain-energy model for a laminate beam or plate with 

embedded or attached spatially distributed piezoelectric actuators. It was further pro- 

posed that the piezoelectric strain can be employed to affect the plate vibrations and to 

suppress the coupled sound radiation. The feasibility of using a single surface mounted 

piezoelectric element to actively control sound transmission through a clamped circular 

plate was demonstrated by Dimitriadis and Fuller (1989). It was shown that when the 

excitation frequency was low, such that the fundamental mode of vibration was domi- 

nant, the radiated field could be significantly attenuated by a single actuator. However, 

as the frequency of excitation is increased, the modal response and corresponding radi- 

ation becomes “richer”, and the single actuator appears to be insufficient. Recent pre- 

liminary experiments of Fuller, Hansen and Snyder (1990c) have confirmed these 

observations and supported the analytical results of Dimitriadis and Fuller (1989) and 

Dimitriadis, Fuller and Rogers (1991). It is apparent that the appropriate tailoring of 

the actuators as far as their number, position and size concerned becomes increasingly 

important for higher modes. 

It is suggested here that multiple independently controlled piezoelectric actuators 

should greatly enhance the control effectiveness by further reducing the control spillover. 
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This observation is based on the work similar to that of Meirovitch and Norris (1984) 

in which it is analytically demonstrated that as many point force actuators as the num- 

ber of modes to be controlled are required to globally reduce beam vibration. However, 

in the present study of this thesis, we are only interested in controlling those panel modes 

which are significant radiators of sound, and this markedly reduces the required number 

of actuators. In other words, as demonstrated in (Fuller, 1988), the radiated field can 

be highly attenuated in some cases without significantly reducing overall plate 

vibrational amplitude with a reduced number of actuators. 

This chapter will first examine the dynamic response of a simply-supported rectan- 

gular plate subjected to four types of external loads: (1) point force, (2) uniformly dis- 

tributed pressure, (3) incident plane acoustic wave and (4) piezoceramic patch. These 

external loads will be used to model both primary (disturbance) and secondary (control) 

inputs where appropriate. The steady-state sound radiation of the baffle simply- 

supported rectangular plate is then studied. Both near-field and far-field sound pressure 

expressions are derived from the Rayleigh formula, which couples the structural dynamic 

response to sound radiation. When any type of external load is applied as a control 

source, linear quadratic optimal control theory (LQOCT), which is a minimization 

technique developed by Lester and Fuller (1990), is applied to calculate the optimal 

control voltages to be applied to the actuators, so as to minimize a cost function. The 

cost functions considered here are based on the use of: (1) distributed pressure sensor, 

(2) discrete pressure sensor (microphone), (3) distributed acceleration sensor, and (4) 

discrete acceleration sensor (accelerometer). Some special topics associated with struc- 

tural acoustics, such as time-averaged intensity, plate wavenumber analysis, transmission 

loss (TL) and radiation efficiency(c), are also addressed. Finally, several case studies are 

presented to show the active control of sound radiation as follows: 
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1. a harmonically excited structural disturbance input (uniformly distributed 

pressure) controlled by multiple piezoelectric actuators to show the feasibility 

of using compact distributed actuators in ASAC; 

2. an incident plane acoustic wave controlled by point force or piezoelectric 

actuators to evaluate the performance of the actuators (a transmission prob- 

lem); 

3. near-field pressure and intensity distribution and plate wavenumber analysis for 

a point force disturbance controlled by piezoelectric actuators to further un- 

derstand the characteristic and mechanism of LMS adaptive control ap- 

proaches in ASAC; 

4. a point force disturbance controlled by piezoelectric actuators to compare dif- 

ferent forms of cost functions in conjunction with the use of LMS adaptive 

control approaches. 

3.1 Plate Vibration 

Figure 16 shows the arrangement and coordinates of an elastic, simply-supported, rec- 

tangular plate with infinite rigid baffle. If the plate is subjected to an external load, then, 

under the assumption of harmonic excitation, the displacement of the simply-supported 

plate can be written as 
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Figure 16. Arrangement and coordinates of the baffled simply-supported plate 
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WE, nt) = 2 YY” Wyn Si K€ SiN Ky (3.1) 
m=l1n=1 

where the eigenvalues, i.e., the plate wavenumbers, are 

  

mn 
Ky = m= 1,2,... 3.2 

m™ Ly (3.2) 

nn 
K,=—— n= 1,2, (3.3) 

n Ly 

and the plate modal amplitude is given by 

Pinn 
i m,n = 1, 2,... (3.4) 

Here, Pr. is the modal force which depends on the exact description of the applied ex- 

ternal load. In other words, P,,, is the modal component of the generalized force de- 

scribing disturbance or control inputs. For the present analysis, the plate response is 

calculated for light fluid loading, and thus radiation loading effects on plate dynamics 

are ignored. Structural damping is also assumed to be negligible. 

3.1.1 Point Force 

For a point force of amplitude, F, the modal force, Pf,, is given as follow (Pilkey and 

Chang, 1975): 
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P= oan SIN KpXp SIN Ky (3.5) 
xty 

where x; and y, are the coordinates of the point force, as shown in Figure 16, and the 

superscript f will signify the point force. 

3.1.2 Uniformly Distributed Pressure 

For a uniformly distributed pressure of amplitude, qg, located between coordinates 

@, @, b, and b,, as shown in Figure 16, the modal force can be written as (Pilkey and 

Chang, 1975) 

q 
Pann = 

  > (cos K,,4; — COS K,,@))( COS K,b, — COS K,52) (3.6) 
mnt 

where the superscript g will hereafter signify the uniformly distributed pressure. 

3.1.3 Incident Plane Wave 

For an obliquely incident plane wave of amplitude, P,, and incident polar and azimuthal 

angles, 0; and ¢;, Roussos (1985) derived the modal force P#, as follows: 

Prin = 8Pilmln (3.7) 

where [,, and J, are functions of @, and ¢; given in (Roussos, 1985). The superscript p; 

denotes the incident plane wave. 
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3.1.4 Piezoelectric Excitation 

For an actuator consisting of two identical piezoceramic patches bonded symmetrically 

on the two opposite plate surfaces and activated 180° out-of-phase, the corresponding 

expression of modal force for piezoelectric excitation Ps, can be derived (Dimitriadis, 

Fuller and Rogers, 1991) as follow: 

Pin= an (K>, + K2)( COS KX] — COS Ky X>)( COS K pV} — COS KpV>) (3.8) 
mnn 

where xi, %2, yi and y, are the coordinates of the piezoelectric actuator, and the super- 

script a will signify the piezoelectric actuator. The parameter C’’)A was defined in 

Chapter 2; C’’s, as shown in Equation (2.72), is a constant of the piezoelectric material 

properties and dimensions; A=4,V/t, is the strain induced by an unconstrained 

piezoelectric layer of thickness, ¢,, when a voltage V is applied along its polarization di- 

rection, while d3, is the piezoelectric dielectric strain constant. 

By superposition, the total plate dynamic response by a number of external loads 

can be evaluated by the composite of individual response. For N, primary sources or 

N, control sources, the plate displacement can be derived as follows 

for primary sources: 

N Ss pi ee 
walEm D= el) > > Why sin ke Sil Ky (3.9) 

=ln=] 
4 

j=im 

for control sources: 
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N, oo co 

wen )= el) D1) Wear Sit Km SiN Ky (3.10) 
j=lm=ln=1 

If the primary and control sources act simultaneously, the resultant plate displacement 

can be viewed as a superposition of the above given plate displacement for steady-state 

harmonic excitation. The total plate displacement can be written as 

N, N, 

W,=W, +W, = > GB, + HA; (3.11) 

j=l j=l 

where B, and Aj are the plate displacement distribution functions for the j-th primary 

source and the j-th control source respectively, given by 

  

B(E,n)= >. Y On ay Sit Kye Sin ym (3.12) 
m=ln=1 

AXE = DD Qrny Si kgd SiD. Ky (3.13) 
m=ln=1 

where 

Wianj 

Oy =e (3.14) 
J 

Wranj 
Oj = (3.15) mnij H, 
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in which G, and H, are the amplitudes of the j-th primary and the j-th control sources 

respectively. G; and H; can be substituted by F; for point force, g; for uniformly distrib- 

uted pressure, (P,); for incident plane wave, and (C’’,A); for piezoelectric excitation. 

3.2 Sound Radiation 

3.2.1 Sound Pressure in the Near-Field 

The radiated sound pressure is related to the plate vibration. The Rayleigh integral 

which relates the plate velocity to the transmitted pressure is shown as follow (Roussos, 

1985): 

e FOr get dn! (3.16) tl? [~ jew dw(e',n’, t) 
2 at p(R, 8, 6)= | 

'=-L,/2*n'= —L,/2 

where (R, 6, d) are the radiation coordinates , and (€, 7) and (&’, 7’) the plate coordinates 

are defined as follow: 

, L, 

eT 

, 
n n > 

and 
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raJle-eP +-nlt? 

Both the plate and radiation field coordinates are illustrated in Figure 16. By the sub- 

stitution of Equation (3.1) into Equation (3.16), the radiated sound pressure can be ex- 

pressed as follow: 

  

2 oo 0° 
—_ po : ‘ 

Px, 2,0 = an eft yy » Winn 
m=ln=l 

{ L,|2 BI AB VOY + 0-nY +2") 

é ‘= —L,/2 v= yl 2 Je __ ey a (y— n'y’ +27 

(3.17) 
. L, . Ly sin {Xq(E’ + J} sin (y(6" + )}de a   

  

3.2.2 Sound Pressure in the Far-Field 

The above integral must be evaluated numerically. However, a closed-form solution for 

this integral can be obtained in the far-field. Junger and Feit (1986) used the stationary 

phase method while Roussos (1985) has used a solution of the Rayleigh’s integral at a 

large radial distance to derive a general expression for the far-field sound pressure radi- 

ated from a vibrating panel. By superposition, their analysis can be extended to describe 

the sound radiation from a panel excited by various primary and control sources. Thus, 

for N, primary sources or N, control sources, the sound pressure radiated to a point, 

P(R, @, @), in the far-field can be derived as follow: 

for primary sources: 

N, oo oo 

NV 

pAlR,8,6)=K> >) Wralnty (3.18) 
j=lm=in=1 
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for control sources: 

N; co oo 
XO 

PAR, 0,¢)=K> > > Wonlmlr (3.19) 
j=ilmeln=1 

where the constant K and the quantities J, and J, can be found in Roussos (1985) as 

functions of (R, 6, ¢). 

When the primary and control sources act simultaneously, the resulting sound pressure 

field can be viewed as a superposition of the above given sound pressures for steady- 

state harmonic excitation. The total pressure can be conveniently written as 

N, N, 

Pr=Pnt Po= >» GE; + > HA (3.20) 
j=l j=l 

where B, and 4A, are the sound pressure distribution functions for the j-th primary source 

and the j-th control source respectively, given by 

BAR, 0,6)=K) > Or ulmly (3.21) 
m=ln=1 

AAR,8,0)=K D> Ornslnl (3.22) 
m=ln=l 

in which @;,,, and Q¢,, are given in Equations (3.14) and (3.15) respectively. 
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3.3 Linear Quadratic Optimal Control 

The most general cost function can be formed as the integral of the mean squared 

sound pressure over a hemisphere of radius R in the far-field. Such a cost function gives 

a global sense of sound attenuation (in particular, it is proportional to the total radiated 

acoustic power); however, in practical application, it is difficult to measure a distributed 

surface pressure. Instead, a finite number of microphones can be used to measure sound 

pressures in the radiating field. Similarly, the cost function can also be defined through 

a finite number of accelerometers or distributed accelerometers located over the plate. 

The objective here is to apply an minimization procedure for a quadratic function de- 

veloped by Lester and Fuller (1990) using tensor calculus, and to calculate the input 

amplitude of the control source such that a selected cost function can be minimized. 

The derivation for each type of cost function is shown individually. 

3.3.1 Distributed Pressure Sensor 

If a pressure sensor is assumed to be distributed over an hemisphere of radius R in 

the radiating far-field, then the cost function can be defined as the integral of the mean 

squared sound pressure over the hemisphere as follow: 

Ina 
1 2 2 2. 

o,-+ | pl as= | | lp,| sin 0dOdd (3.23) 
R* vs 0 0 

and it is proportional to the radiated acoustic power. When the expression of p, from 

Equation (3.20) is substituted into Equation (3.23), the cost function is obviously quad- 
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ratic and positive definite and possesses a unique minimum. A minimization procedure 

(Lester and Fuller, 1990) for the quadratic function was employed to calculate the opti- 

mal contro] parameters. 

The total pressure of Equation (3.20) can be expressed in vector form as: 

    

    

pP,=B'G+A'H (3.24) 

where 

: a 

B, 

B= (3.25) 

By. 
~ “Nix 1 

TA, | 

A, 
A= (3.26) 

Ay, 
~ ~N,x1 

| Gy 
G, 

G = (3.27) 

Gy, 
~ "Nix 1     
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ar 

i, 

H= (3.28) 

Hy, 
— “Nx 1 

Then 

2 —Ty -—— —* —=T r= —* =—Tr — 
lp, = HLAA "1H" + 2Real{G LBA "JH }+G’ [BB 1G (3.29) 

where * denotes complex conjugate, and T denotes transpose of matrix; hence, the cost 

function can be written in matrix form as 

®, = HLA + 2RealfG"L BAH} + GLBIG (3.30) 

where 

~ 27 + __. 

CA, ew -| | [AA 7] sin 6dodd (3.31) 
¢ ¢e 0 0 

22 as ~ 2-—— 
[BA], y= | | [BA "] sin odddd (3.32) 

s ¢€ 0 0 

2a pe 

CBI, 2,7] [ur sin 0d0do (3.33) 
s s 

Since 
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PA, AA, iA 

A, A,A, AA; 
= 7* T *x * * 

LAA il (4, 4)-.-4yJ = 

A * * 
Ne | AyA, Avy.A, 

~ N,*1 a     
a typical element of [A A’7] is 

ny) 3 » > sont mns 
lf=lm= 

where Im = Inf, and then for a typical element of [A], y, 

~ 2" 2, 2 TE 

rs | [°« KD » > isnt ‘etry mns sin 6dbdo 
0 0 i 

Similarly, a typical element of [BA] y,xn, 18 aS follows: 

oo 
2x a . . 

BA,s -| fe K, K > » » Pk Onnellns sin Odbdp 

lli=lm= —
 n 

and a typical element of [B] Nyx N; 
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A, Ay, 

A,An, 
(3.34) 

Ay AN, 

~N, x N, 

(3.35) 

(3.36) 

(3.37) 
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= 
2 

n oo oOo oo co 
* NX) h n . . 

| K,K; 2, » > i Qinlbrltn sin 0dbdp (3.3 8) 
0 

=| 
0 k=l l=lm=in=l 

Since (G’LB 1G") is a constant, the cost function was then redefined as 

0, =0,-G'LBIG (3.39) 

If we let 

F’ =-—G'LBa] (3.40) 

then the optimal solution for the cost function can be found as (Lester and Fuller, 1990) 

H=(4] F (3.41) 

It is noted that H is the optimized vector which is defined in Equation (3.28). 

3.3.2 Discrete Pressure Sensor (Microphone) 

If a finite number of microphones located in the radiating field serve as error sensors, 

then the cost function can be defined as follow: 

N, mike 

Y, = » lp. (Ri 6, 4) | ° (3.42) 

i= 1 
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If the total pressure is expressed in vector form as Equation (3.24), then the cost func- 

tion can be written in matrix form as 

Y, = HLA + 2Real{GLBAIH} + GL BIG 

where 

    

Ninike 

[Bly n= [BRT] 
i=] 

Since 

A, | A\A; A,Aq 

A, A,A, AA; 
= >*T * * * 

LAA Inn. [4, 4).-.4yJ = 

A s 
N, Ay A, Ay A, 

~ ~N,%* 1 i   
a typical element of [A A’7] is 
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(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

N_xN. 
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A,A; = K,K, ) » 2, » ion mns 

1/=1 =in 

and then for a typical element of [A]y,,.», 

¢ ne oe 7 
On Qmns!trlmns a

 
l 

i: p a,
 

[4
s 1: 

[1
 

15
 

" — Yo
n ll _ _— ll — 3 It — x Hl — 

and a typical element of [ B] NexN, 

co 8= 

B,, = = Sx K; > » S' Sono! F asbinl, mns 
Smoved 

i=l k=l l=1m=1n=1 

Since (G’LB1G’) is a constant, the cost function was then redefined as 

¥,=¥,—-GLBIG 

If we let 

F’=-G’[BA] 
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(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 
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then the optimal solution for the cost function can be found as (Lester and Fuller, 1990) 

H=[(A] F (3.54) 

It is noted that H is the optimized vector which is defined in Equation (3.28). 

3.3.3 Distributed Acceleration Sensor 

As illustration of distributed pressure sensors in Section 3.3.1, a similar distributed 

accelerometer can also be assumed to be located over the plate to measure the plate 

dynamic response. Although, in practice, it 1s very difficult to implement, this type of 

distributed sensor represents the out-of-plane vibration energy density over the plate. 

On the other hand, as discussed in Chapter 1, distributed strain sensors, such as PVDF 

film sensors attached to the plate surface (Clark and Fuller, 1990b), can also be con- 

structed to be utilized in ASAC. These types of strain sensors, in contrast to the dis- 

tributed acceleration sensor discussed here which is phase independent, will tend to 

average out information over the plate with associated phase changes. This subject, 

however, is out of the context of the present work. The cost function corresponding to 

the distributed acceleration sensor can be defined as follow: 

2 bytlx 9 
o,=| |, dA =| | | w,] dxdy (3.55) 

A 0 “0 

It is noted that MD, can be viewed as the out-of-plane vibration energy density. When 

the expression of w, from Equation (3.11) is substituted into Equation (3.55), the cost 

function is obviously quadratic and positive definite and possesses a unique minimum. 
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A minimization procedure (Lester and Fuller, 1990) for the quadratic function was em- 

ployed to calculate the optimal control parameters. 

The total plate displacement of Equation (3.11) can be expressed in vector form 

    

    

w=B G+dA H (3.56) 

where 

Fd 

B, 

_ B, 
B= (3.57) 

By, 
L J Next 

- A 7 

A, 

_ Ay 
A = (3.58) 

Ay, 
~ ~N,X 1 

Then 

2 = nw Re -4 > —_— xn Ne —* = n Ne =* 

lwo =A'LA A JA +2Rea{G’[TB A?’ JH}+GLB BT JG (3.59) 

where * denotes complex conjugate, and T denotes transpose of matrix; hence, the cost 

function can be written in matrix form as 
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©, =H'LAIM + 2Real{G’LBAIH } + GL BIG 

where 

~ ype x ap 
[Alyen=] | C4 4°? latdn 

0 

Since 
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(3.61) 

(3.62) 

(3.63) 
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i 

A 
nw Re 2 Ax Ax Ax 

[4 AT ] = [A; 43... Ay J N,xN, |! 17°20" Newt x N, 

Ay, 
~ Aye 

A Aw * A \s 
pr, AA; An, 

A A A Ax A Nx 

A,A, A2A2 A,Ay, 

A Ax A At * 

Ay A; Ay.Ap Ay Any, 

~ Tye,     

h Ae oo oo oo + . . . 

Al = SY SY Cis OSneSheShns sin O40de 
1 

where S,, = Sin Kmé sin x,7, and then a typical element of [4], 

oo _ Ll, Ll, oo co oo . . 

A, = | | » » » Ort OmnsStirSmns4€4n 
0 0 =] k=l l=1m=t1n 

Similarly, a typical element of [BA] y,xw, i8 as follows: 
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x Ne 

(3.66) 
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BA, = i i > 3 Soh Oishi Se Sinnsdbdn (3.67) 

k=1l=1m=1n=1 

and a typical element of [B],, , », 

B= | , i SS YY ohor shear (3.68) 
k=1 ‘linn tt 

Since (G’LBJG’) is a constant, the cost function, in order to provide the optimal sol- 

ution, can then be redefined as 

©,=0,-G LB1G (3.69) 

If we let 

F’=—G'[Ba] (3.70) 

then the optimal solution to minimize the cost function can be found as (Lester and 

Fuller, 1990) 

H=[A] F (3.71) 

It is noted that H is the optimized vector which is defined in Equation (3.28). The 

minimized value of cost function, therefore, represents the residual vibrational energy 

density over the plate after control. 
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3.3.4 Discrete Acceleration Sensor (Accelerometer) 

If a finite number of accelerometers located on the plate serve as error sensors, then the 

cost function can be defined as the sum of the mean square acceleration: 

Noce 

. 2 Wy = > ly p 9p) (3.72) 
i=1 

Hence, the cost function can be written in matrix form as 

Y, = ALAIM + 2Real{G’LBAJH}+G'LBIG (3.73) 

where 

Noce _— —_ 

[4lyen =p [4 47 J (3.74) 
=] 

Nace —_ —_— 

[BA], y=) [BR 47 J (3.75) 
i=1 

Nace — — 

[Bly .y=2C8 BY J (3.76) 
i=1 

Since 
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- , - 

Ay 

A 
nw Re 2 Aw Axe Nx 

T [A Ao Jy y=: LA; 4)... Aw] 
c e x N, 

. 

Ay. 

~ ~N,% 1 

(3.77) 

rn Ax N Ax A Ne 

A,A, A,A; A, Ay, 

Ah Nx N Ax N Ne 

A,A, AA; A,AN, 

A Ax A he A Ax 

Ay.A, Ay.A) Ay Ay, 

~ Nx N,   
atypical element of [A AT ]is 

. oo co oo oo . . 

A,As = » » » > Oi QineSkr Ss (3.78) 

l 

_ LT s" CAC el ce 
Ars = » » » LG QmnsS kis mns (3.79) 

Similarly, a typical element of [BA]],,, y, is as follows: 

ll oe
 Nl — ~
 H — 3 i! —
 x ll — 
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= ce oo 

BA,= > 2, >> d Y atoinsis Sia (3.80 
lk=1l=s1m ~

 

and a typical element of [B] Nex Ny 

. SS. 
Bys = » » » » > Qh PnsSkirShns (3.81) 

Since (GL BJG’) is a constant, the cost function was then redefined as 

Y,=¥,-G LBIG (3.82) 

If we let 

F’=—G'LBA] (3.83) 

then the optimal solution for the cost function can be found as (Lester and Fuller, 1990) 

H=(Al F (3.84) 

It is noted that H is the optimized vector which is defined in Equation (3.28). 

In summary, ©, and ®, are measured by ideal sensors, which may not be practical 

in reality; however, D, and ®, represent the power of sound radiation or energy density 

of out-of-plane structural vibration respectively. They can be used as an index of control 

effectiveness. For practical application, ‘Y, and Y, are the alternative option. A rea- 

sonable number and location of sensors shall be selected to estimate the actual system 
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distributed response, such that an optimal solution can be found without losing the 

general nature of the response. 

3.4 Special Topics in Structural Acoustics 

3.4.1 Plate Transmission Loss 

For an incident acoustic plane wave at angle @,, the incident acoustic power to the 

plate of dimension L, and L, is easily shown to be (Roussos, 1985) 

P?LyLy cos 6; | = (3.85) 
2pc 

where p and c are mass density of air and sound speed in air, and the total radiated 

acoustic power from the plate (on the other side) associated with Equation (3.23) can 

be shown as 

  

10 ae 2 4 
2 

nl, = | | a R? sin 0d0db = ©, (3.86) 
0 0 

Then, the plate transmission loss (TL) through the plate can be defined as follow 

I, 
TL = 10 log( — (3.87) 

MT, 
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Transmission loss is an evaluation of the inverse of sound transmission efficiency; hence, 

the larger the value of TL, the less sound power is transmitted through the panel with 

a corresponding improvement in reduction of global sound radiation. 

3.4.2 Time-Averaged Intensity 

The distribution of vectors associated with the magnitude and direction of intensity 

in acoustic fields have been proved useful in studying the flow of energy. The two 

microphone technique (Pettersen, 1979), which is based on the finite difference method, 

has been widely adopted to measure or calculate the acoustic intensity for its simplicity 

(Krishnappa and McDougall, 1989; Kristiansen, 1981). The schematic used for the in- 

tensity calculation by the finite difference method is shown in Figure 17 for the z- 

direction. From the fundamental relationship between acoustic pressure and velocity 

and the finite difference approximation, the averaged acoustic pressure and particle ve- 

locity in the z-direction (for example) between points 1 and 2 can be formulated as fol- 

lows (Pettersen, 1979): 

where 

PirX fit Pd) (3.88) 

~ =P) (3.89) u, ~— 
4120 jpwAz12 

Im{p,} 
Retp,} ) (3.90) P\ = |p; | o/% ’ —, = tan™'( 
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™ 1 

AZ, 

ya 2 y 
X 

Ps | [P| 2,57 2 paz 2upaz (6, - %) 

P= pelt 

P2= Pole!®. 

Figure 17. Schematic of intensity calculation 
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. _, I 
P= |p. |e? ; go, = tan ey) (3.91) 

Hence, the time-averaged intensity in the z-direction between the two points can be 

shown to be (Pettersen, 1979) 

Ip,l pol. 
22 “2p@Az,y_ sin(o, — $2) (3.92) 

Similarly, the time-averaged intensity distribution for other directions can also be derived 

by the replacement of the separated distance Az,. and the appropriate variables. The 

total intensity is then the vector sum of the intensities in the x,y and z directions. 

3.4.3 Plate Wavenumber Analysis 

The plate velocity distribution derived from Equation (3.1) can be transformed to 

the central origin plate coordinates (&’, n') as 

oy oo 

WE, Wt) = Joe SY” Wyn Sin Kyl’ + Ly/2) sin Keg(a! + Ly/2) (3.93) 
m=zln=]1 

The wavenumber transform, which is the Fourier integral transform, of plate velocity is 

then given by (Fahy, 1985) 

~ Lek oo 

V(Kx, Ky) = | | w(E', "Je VP de dy! 
0 40 

= joe S" S) WianVinn 
m=ltn=1 

(3.94) 

Chapter 3 : Active Control of Sound Radiation 96



where 

4 
Vinn(Kxs Ky) = a Des — {L sin2(mn/2) sin?(nn/2) cos(x,L,/2) cos(x,L,/2) 

m xXN*n y 

  

— cos’(mn/2) cos'(nn/2) sin(x,L,/2) sin(k,L,/2)] (3.95) 

— JL sin’(mn/2) cos*(nn]2) cos(x,L,/2) sin(kyLy/2) 

+ cos’(mn/2) sin’(nn/2) sin(x,L,/2) cos(x,Ly/2)]} 

Hence, the plate spectral velocity distribution can be obtained from the inverse Fourier 

transform 

oe pr e 1 ee = —j(K,t'+ «,n’ 
wen =e | | Vex, Kyle Ht 9 aie diy (3.96) 

OO " —0O 

The radiated power has been shown in (Fahy, 1985) to be related to the integration 

of the modulus square of Vir, K,) over the wavenumber domain. Therefore, it is of in- 

terest to evaluate the wavenumber modulus spectrum of plate velocity, | V( key K,) 1’. It 

is noted that the wavenumber modulus spectrum of modal velocity is a function of 

K,, kK, and is composed of a double infinite sum of modes. Only wavenumber compo- 

nents satisfying the condition (x? + x?) < x? (i.e., supersonic wavenumbers) contribute to 

sound power radiation; other components are associated with reactive near-field radi- 

ation loadings (Fahy, 1985). Thus the range of integration is limited to — x < x, < x and 

—K<K,<K. 
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The sound pressure in the radiated acoustic far-field can also be evaluated from the 

wavenumber transform of plate acceleration using the method of stationary phase 

(Junger and Feit, 1986) as 

  

  

pel ~ wpe” ~ 

plr, 6, ) = nr Ww (x, Ky) =J ~ Onr Vik, Ky) 

, ow (3.97) 
pw eer 

= — nr ~ » » WinanVinn 
m=lin=1 

where the points of stationary phase are 

K,=xKsin@cos@ (3.98) 
x 

Ky =k sin @ sing (3.99) 

One can demonstrate that Equation (3.97) is equivalent to Equation (3.20). 

3.4.4 Radiation Efficiency 

The mechanism of structural sound radiation has been a great deal of interest. For 

the appropriate design of sound radiation control, it is necessary to understand struc- 

tural radiation characteristics. The radiation efficiency of a vibrating structure quantifies 

the degree of acoustic coupling between sound radiation and structural vibration. The 

following will show the definition and derivation of the individual mode radiation effi- 

ciency and the average radiation efficiency, which is associated with total radiated power 

from a series of modes existing simultaneously. 
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3.4.4.1 Mode Radiation Efficiency 

The plate displacement distribution corresponding to the (m,n) mode can be shown 

to be as follow: 

WranlEs Nol) = Winn SIN Km SIN Ky (3.100) 

and the plate velocity corresponding to the (m,n) mode is: 

Umn(Es Nyt) = Joe W yay SIN KE SIN KM (3.101) 

The sound pressure in the far-field from Equation (3.20) can also be expressed as: 

-> Lo (Pi)mn (3.102) 

where (,)ma is the sound pressure corresponding to the (m,n) plate flexural mode. The 

radiation efficiency of the (m,n) mode is defined as (Wallace, 1972): 

  

I] 
Omn = a 5 (3.103) 

pcL,Ly < linal > 

where 

2a | 

Tan -| ie Mma” "— R? sin 0d0dd (3.104) 
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(3.105) 

] 
= g ow Worn 

In Equation (3.104), Ile, is the radiated power due to the (m,n) mode response, and 

< |i!’ >, in Equation (3.105), is the temporal and spatial average of the square of the 

(m,n) mode plate velocity. By substituting Equations (3.104) and (3.105) into Equation 

(3.103), the radiation efficiency of the (m,n) mode can be expressed as: 

SIL an 
= (3.106) 

pcL,Lyw" Wan? 
Omn 

It is noted that o,,, represents the radiation efficiency of the (m,n) mode and can be 

considered as a structural-acoustic property which indicates the acoustic coupling be- 

tween mechanical vibration of particular mode and sound radiation. Radiation effi- 

ciency is defined as the ratio of the acoustic power radiated from the elastic plate to the 

power radiated from a rigid piston of same area vibrating with an amplitude equal to the 

time-spatial average of the plate velocity. For illustration, Figure 18 (Wallace, 1972) 

shows the modal radiation efficiency for a square plate plotted against the wavenumber 

ratio (note that the modal radiation efficiencies for the rectangular plate used in the 

numerical examples in Section 3.5.4.1 are shown in Figures 56 and 57). The 

wavenumber ratio is defined as: 

y= e (3.107) 

where 
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Cc = o4 
S 

> 
© 
Cc 

@ 
OS 0.01 
— 
® 

Cc 

oO 

@ 
S 0.001 
; 

0.0001 

23 

(2,2) 
0.00001 

0.01 0.1 1 10 

wavenumber ratio, Y 

Figure 18. The radiation efficiency of the (m,n) mode for a square plate (Wallace, 1972) 
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2 1/4 

kp=(—-) (3.108)   

When the wavenumber ratio equals to | (i.e, y = 1), the “critical frequency” can be 

defined as follow: 

o.=c? ph (3.109) 

For low wavenumber ratios, the odd-odd modes, such as the (1,1), (3,1) and (3,3) 

modes which strongly couple the sound radiation and mechanical vibration, have higher 

radiation efficiency than the odd-even or even-odd modes ((2,1) or (2,3) modes) and the 

even-even mode ((2,2) mode), which are subjected to the radiation cancellation. The 

physical reason that even modes generally do not radiate efficiently is due to volumetric 

cancellation. At low frequencies, fluid from one cell is “shunted” over to an adjacent cell 

of equal area but moving out-of-phase. Radiation comes from energy due to a change 

in momentum associated with a change in the direction of fluid motion. For y greater 

than 1, 1.e., excitation frequency above the critical frequency, the radiation efficiency 

approaches asymptotically to unity for all modes. This indicates that each mode has an 

equivalent contribution in terms of acoustic coupling. For y >> 1, the acoustic wave- 

length becomes shorter than distance between “cell” on the plate, so they do not interact 

but radiate independently. 

Also, the primary structural wavenumber, Kn, can be defined as: 

Kmn = (Km + Kp) (3.110) 

If - = 1, then the “modal critical frequency” for the (m,n) mode can be defined as: 
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, 4 _ 
Onn = 0 mn (3.111) 

Table 5 shows the definition of the associated wavenumbers and frequencies. Figure 

19 illustrates the distributions of wavenumbers and their physical interpretation regard- 

ing to radiation characteristic of an elastic plate. As shown on the top of Figure 19 

(Mathur, Gardner and Burge, 1990), wavenumbers are plotted against frequency. The 

thick solid line denotes the acoustic wavenumber, which is linearly related to the 

excitation frequency. The thin solid line denotes the free structural wavenumber while 

the circle mark denotes the primary structural wavenumber. The critical frequency is 

defined in Equation (3.109), when the acoustic wavenumber equals to the free structural 

wavenumber. For excitation frequencies above the critical frequency denoted as Region 

(3), the corresponding wavenumber distribution in the wavevector domain is shown on 

the bottom-right of Figure 19 (Maidanik, 1974). In this region, the resonant modes near 

K, are included in what are termed “surface modes”, which are the most effective radi- 

ators, since they are driven well above y= 1. For excitation frequencies below the critical 

frequency, two regions can be characterized: Region (1): x <x, < 2'x; and Region (2): 

K, > 2x. x, 18 the free structural wavenumber while x is the acoustic wavenumber 

corresponding to the excitation frequency. In Region (1), the sound radiation is con- 

tributed from the surface modes and the resonant modes, which include both the edge 

and corner modes as shown on the left-bottom of Figure 19. In Region (2), the resonant 

modes include only both the x- and y-edge modes while there is still some surface modes. 

To physically understand the corner, edge and surface mode radiations, Figure 20 

depicts the displacement pattern for each type of radiation. The relative phases are in- 

dicated by + and —, and the uncanceled areas are shaded. Figure 20(a) shows the cor- 
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Table 5. Summary of frequency and wavenumber 

  

  

  

  

exciation frequency w 

natural frequency of plate Onn = oa (x2, + x2) 
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h 1A 

modal critical frequency Osi = c( -) / Omn 

. w 
acoustic wavenumber k= 

a? pyh 1/4 

free structural wavenumber Kp = (7? 

primary structural wavenumber Kimn = ./ K2, + KF 

mm 
structural normal mode wavenumber k,, = L 

x 

nm 
kK, = 

y 

structural modal wavenumber K, =k sin 0 cos @ 

Ky =k sin @ sin @ 
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Figure 19. Illustration of wavenumber distribution (Mathur, Gardner, and Burge, 1990; Maidanik, 
1974) 
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ner mode radiator for those structural normal mode wavenumbers greater than acoustic 

wavenumber (i.e., K, >,K, > ). The central region of the plate motion is subjected 

to quadrapole or dipole cancellation due to a structural wavelength shorter than the 

acoustic wavelength. Thus, only four corner cells acts as four monopole sources effec- 

tively radiating power. Figures 20(b) and (c) show the x-edge (km < kK, K, > K) and y-edge 

(Kn > K,K,< kK) mode radiators respectively. There is cancellation in the middle of the 

plate and leads to leaving uncanceled strips at both edges radiating power. Figure 20(d) 

shows the surface mode radiator (kK, <«,«,<«). The cancellation phenomenon breaks 

down due to the structural wavelength being much greater than acoustic wavelength, 

and thus the entire plate contributes to far-field radiation. 

3.4.4.2 Average Radiation Efficiency 

Similar to definition of the (m,n) mode radiation efficiency, the average radiation 

efficiency can also be defined as (Berry, Guyada, and Nicolas, 1990) 

7-—_ 6.119 
pcL,L, < |u| > 

where the total power radiated from the plate, IT, is 

2 2a pe 2 Ipl ; ‘ | F— R’ sin bdbdp =-K— ©, (3.113)   

and < |u| >? is the temporal and spatial average of the square of the plate velocity. 
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(3.114) 

+2" 
By substituting Equations (3.113) and (3.114) to Equation (3.112), the average radiation 

efficiency can be expressed as: 

a= se (3.115) 
X 

pcL,Lyw 2, LY 

  

The average radiation efficiency indicates the overall acoustic coupling between the total 

mechanical vibration and sound radiation for the baffled simply-supported plate sub- 

jected to a specific disturbance input. In contrast to Equation (3.106), Equation (3.115) 

also includes the summation of the cross product of modal amplitudes (W,,,). This cross 

product has significant effect on the average radiation efficiency. On the other hand, the 

radiation efficiency of the (m,n) mode as shown in Equation (3.106), which only con- 

siders the (m,n) mode contribution, is independent of disturbance input and can be 

viewed as a structural-acoustic property of the free plate system. 

3.5 Analytical Results 

As mentioned in Chapter 1, different forms of disturbance inputs have significantly 

different radiation characteristics. Point force inputs generally drive situations in Re- 

gions (1) and (2), as illustrated in Figure 19, while incident plane wave inputs drive 
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modes for Region (3) due to the constant phase and pressure over the plate. Hence, 

different types of disturbance inputs will result in different radiation characteristics in 

term of the distribution of plate wavenumber components. 

To study the plate vibration and sound radiation characteristics, several fundamen- 

tal mode shapes of simply-supported rectangular plate and (m,l) mode radiation 

directivity are illustrated in Figure 21 for future reference. It is noted, in Figure 21 (b), 

that the “+” and ”-” indicate the sign of the pressure phase angle. For y > > 1, the (m,1) 

mode radiation directivity shows m-1 dips across the xz-plane. For y < < 1, radiation 

patterns associated with higher order modes are similar to higher mode radiation 

directivities appears as lower mode radiation characteristics. In the following numerical 

examples, the latter condition of y < < 1 is presented. 

3.5.1 Structural Disturbance Input Controlled by Piezoelectric Actuators 

This section is concerned with an analysis of the optimization of the complex volt- 

ages needed to be applied to one or more independent piezoelectric actuators so as to 

minimize the total radiated sound power from a baffled, simply supported, rectangular 

plate. The optimization procedure is shown in Section 3.3.1. The disturbance for the 

primary plate excitation is assumed to be a set of one or more non-contacting 

electromagnetic exciters. The applied force by such a disturbance source is approxi- 

mated by a constant amplitude, single frequency, uniformly distributed pressure over a 

small square area on the plate. 

A few representative examples are given below to show the effects of number, size, 

and location of actuators under different disturbance conditions. All cases considered 
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Figure 21. Illustration of mode shapes of simply-supported rectangular plate and modal radiation 
directivity (Clark and Fuller, 1990b) 
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are below coincidence corresponding to the cases in Region (1) as shown in Figure 19. 

Table 6 shows the specifications of the steel plate used in the simulations. Natural fre- 

quencies are tabulated in Table 7 (Pilkey and Chang, 1978). Note, for the following re- 

sults, that no damping was included in the analysis. In order to calculate the plate 

response and radiated field, it was necessary to truncate the modal sums in the above 

equations. Upon consideration of computing time, &, /, m, and ,m were truncated at 5 

(i.e., 25 modes were considered), and it was found to provide sufficient convergence of 

series in Equations (3.1) and (3.16). In particular, for the cases of low wavenumber 

excitation considered here, the plate displacement and the radiated sound pressure am- 

plitude have no more than 0.01 % difference in comparison to those results which in- 

cluded 100 modes (i.e., m=n= 10). 

The following results consist of the distribution of plate vibrational amplitude plot- 

ted along the y = L,/2 horizontal plate midline. The results are normalized by the largest 

amplitude obtained in each case. Radiation directivity patterns are also presented along 

the y=L,/2. For convenience, all @ angular positions to the left of the origin in the 

directivity pattern plots below correspond to ¢=7 far-field positions. Similarly, the 

right half of each plot corresponds to 6=0. In this case, the input disturbance ampli- 

tude is fixed at q=20N/m’, which gives an input force of 0.32 N located at 

a, = 0.06m, a = 0.1m, b; = 0.06m and 4, =0.1m. The plate is assumed to radiate into the 

air; the radiated pressure is plotted in dB re 20x 10-* Pa. In order to show the shape 

of the residual radiation directivity, some figures reveal negative dB, which corresponds 

to pressure less than the reference level. The total radiated pressure was calculated at a 

distance of 1.8 m from the plate central origin using the far-field pressure expression of 

Equation (3.20). These variables, as well as radiated acoustic power in dB re 10-"W, 
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Table 6. Plate specification 

  

  

E = 207 x 10° (~- ) v= 0.292 L, = 0.38 (m) 

kg pp = 7870 (—=) h = 1.5875 (mm) L, = 0.30 (m) 
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Table 7. Natural frequencies of plate h= 1.5875 mm (Hz) 
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198.29 
278.48 
412.14 
599.26 
839.85 

3 

412.74 
492.93 
626.59 
813.71 
1054.30 

4 

712.96 
793.16 
926.82 
1113.94 
1354.52 

5 

1098.97 
1179.16 
1312.82 
1499.94 
1740.53 
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are presented for a range of frequencies and different primary source arrangements in 

order to demonstrate the effectiveness of the multiple piezoelectric induced control. 

3.5.1.1 Effect of Number of Actuators 

Figure 22 presents the vibration amplitude distribution of the plate for differing 

number and arrangement of piezoelectric control actuators, when the disturbance 

excitation frequency was 68.4 Hz, near the resonant frequency of the (1,1) mode given 

in Table 7. At the side of Figure 22 and all the following figures, the plate with pre- 

scribed disturbance input and actuator locations and size are drawn to scale looking into 

the plate from the radiated field. The black block represents the primary source, while 

the blank block depicts the size and location of the piezoelectric actuators. 

In Figure 22, the solid line depicts the displacement distribution for the primary field, 

and it can be seen to be very close to that of the (1,1) mode as expected, since it is near 

its resonant frequency. When the various configuration of control actuators were ap- 

plied, the vibration amplitudes were significantly reduced, and the (1,1) mode was well 

controlled for all cases. 

Figure 23 shows the corresponding radiation directivities to the cases of Figure 22. 

As expected, the radiation directivity is uniform corresponding to a monopole source 

case, the (1,1) mode dorninates the radiated primary field due to its high structural re- 

sponse and radiation efficiency. When one actuator was used, the (1,1) mode is con- 

trolled, and the (2,1) mode becomes significant. By applying two actuators as shown in 

Figure 23, the (1,1) modes and the (2,1) modes can be controlled simultaneously still 
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Figure 22. Plate displacement distribution for different number of piezoelectric actuators, f= 68.4 Hz 
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leaving the (1,1) mode to contribute significantly to the residual radiation field. Further 

reduction is observed with the use of three and four actuators, and the residual sound 

field appears to be composed of a combination of the (3,1) and (1,1) modes. Addi- 

tionally, the total reduction in radiated acoustic power is shown at the bottom of Figure 

23 in dB. It is apparent that, for this frequency, as the number of (appropriately posi- 

tioned) actuators is increased, the corresponding radiated acoustic power decreases. 

However, on resonance one actuator is seen to provide maximum attenuation level that 

would be achievable in practice (due to background noise, controller accuracy limitation, 

etc.) 

Next, Figure 24 and Figure 25 show the vibration amplitude distribution and sound 

radiation directivity for different actuator configurations and a disturbance excitation 

frequency of 148.8 Hz, near the (2,1) resonant frequency of Table 7. The results of 

Figure 24 indicate that the displacement distribution of the disturbance is close to the 

(2,1) mode with some (1,1) contribution (as the driving frequency is not right on reso- 

nance). When one actuator located in the center of the plate is used, very little control 

is achieved, as the actuator in this position cannot couple into the (2,1) mode. In fact, 

the displacement distribution becomes more symmetric and lobe indicating that the (1,1) 

mode has been controlled. When two actuators are used as shown in the scale diagrams, 

the (2,1) mode is significantly reduced, and the (3,1) mode becomes the dominant resi- 

dual mode. Increasing the number of actuators to three and then four leads to further 

small reductions in the amplitude. However, the main effect is that the displacement 

distribution becomes far more complex. This complex distribution in conjunction with 

phase reversals across the plate leads to a low radiation efficiency and a reduction in 

radiated power without significantly controlling the plate vibration as shown in Figures 

24 and 25. Similar results have been seen in (Fuller, 1988; Dimitriadis and Fuller, 1989). 
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Figure 24. Plate displacement distribution for different number of piezoelectric actuators, f= 148.8 Hz 
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This behavior is apparently due to the actuators controlling the lower order panel modes 

and leaving the more complex higher order modes, which also have lower radiation effi- 

ciency, as residuals. 

Figure 25 indicates that for a disturbance input frequency of 148.8 Hz the (2,1) mode 

dominates the radiation field. When one actuator is employed, it can be seen from 

Figure 22 that virtually no reduction is achieved. It can also be seen that for the L,/2 

plane the sound levels near 6 =0 have increased with one control applied. However, out 

of this plane, the levels should be slightly reduced. When two actuators are employed, 

significant reductions are now achieved. Increasing the number of actuators to three 

has little effect, as the centrally located actuators do not effectively couple into impor- 

tant n modes. However, when four actuators, arranged as shown in Figure 25, are used 

to control the m- and n-modal response simultaneously, and a further reduction in ra- 

diated levels and corresponding radiated power is achieved. In this case, to achieve 

maximum attenuation, the results indicate that multiple actuators will be required. 

Figure 26 shows the radiation directivity for the same actuator and disturbance 

configurations, except for a excitation frequency of 108 Hz, ie. an off-resonance 

excitation case located between the (1,1) and (2,1) modes. For this disturbance input, 

the (1,1) mode dominates the radiated primary field, as the (1,1) mode has a high struc- 

tural response and radiation efficiency. When one actuator was used as shown in Figure 

26, the radiated field is somewhat reduced but not nearly to the degree of the resonance 

case of Figure 23. This is also illustrated by the corresponding total power reductions 

which are 16.9 dB and 58.7 dB respectively. 

This behavior can be understood with the help of the radiation patterns in Figure 

26. For the case of one actuator, it is apparent that two modes, the (1,1) and (2,1), are 
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Figure 26. Radiation directivity pattern for different number of piezoelectric actuators, f= 108.0 Hz 
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contributing to the radiated field, as evidenced by the slight dip at 6=0°. Thus the 

single actuator minimizes the field by acting on the (1,1) mode while the (2,1) mode be- 

comes important. The optimal voltage is then a compromise between the contribution 

of each mode, i.e. further minimizing the (1,1) mode will lead to an increase in the (2,1) 

due to spillover and vice-versa. 

By applying two actuators, Figure 26 shows that further reduction is possible by 

controlling the (2,1) and (1,1) simultaneously. Increasing the number of actuators from 

three and then four leads to increased attenuation, as more modes are simultaneously 

controlled. The final residual radiation field appears to have contributions from both 

the (3,1) and (1,1) modes. 

The off-resonance case thus requires more actuators for high control due to the 

higher number of modes responding relatively strongly (in terms of radiated pressure) 

being higher. The importance of the (1,1) mode, due to its high radiation efficiency, is 

evident through the residual plots of Figure 26, even though the excitation frequency is 

well off its natural resonance frequency. 

Finally, Figure 27 presents the radiated acoustic power over a range of frequencies 

up to KL, = 6.96. The solid line denotes the radiated acoustic power for the disturbance 

source alone. Several peaks are observed to occur where natural frequencies are located, 

and the plate response is high. Note however (for examples) that large peaks are not 

observed at the (2,1), (1,2), and (2,2) frequencies, as these modes have a low radiation 

efficiency. 

It is clear from Figure 27 that when the piezoelectric actuators are located along the 

L,/2 axis, effective sound radiation control at low frequencies including the (1,1), (2,1) 
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and (3,1) modes is obtained. However, for this symmetric configuration the (1,2), (2,2) 

and (1,3) are uncontrollable, as can be observed in Figure 27. Increasing the piezoelectric 

actuators to four (case (4) with some positioned off the L,/2 axis) leads, nevertheless, to 

improved broad band power reduction. At very high frequencies, f ~ 1000 Hz, very 

little attenuation is obtained. For example, for f = 1000 Hz, the wavenumber ratio 

y = 0.41 indicates that the radiation efficiencies of higher modes increase. Hence, a 

higher modal density of the plate response is contributing to sound radiation. In other 

words, a large number of plate modes is significantly involved in the sound radiation to 

the far-field. More actuators or other control strategies, such as edge or corner radiation 

control which is under investigation, are needed to control sound radiation from plates 

subjected to high frequency excitation. 

The results of Figure 27 are very encouraging, because they predict that the radiated 

power from the plate can be controlled over the frequency range from 0 < f < 750Hz 

with just four actuators (whose positions are not optimized). Table 7 shows that the 

number of plate modes encompassed in this frequency range is 13. This result illustrates 

the efficiency of the control approach. 

3.5.1.2 Effect of Size of Actuators 

In order to study the size effects of the actuators, a single primary source and single 

actuator with a fixed central (of the actuator) location was studied at two different fre- 

quencies. For Table 8, the center of the patch is atx = 190 mm, y = 150 mm. For 

Table 9, the center of the patch is located at x = 170 mm, y = 150 mm, in other words, 

asymmetrically positioned so that it can couple into the (2,1) mode. Table 8 and 9 give 
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Table 8. Effect of size of piezoelectric actuators, f= 68.4 Hz 

  

  

  

              

    
  

  

  

  

a be FT ee 

2 
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size of Voltage of radiated 

case piezoceramic piezoceramic power 

patch patch reduction 

xxy (cm xcm) (volt) (dB) 

1 1x1 221.55 A 

2 2*2 55.51 

3 3%3 24.76 

4 4x4 14.00 

) 6x6 6.32 

6 10x10 2.38 58.7 

7 12x12 1.71 

8 15*15 1.16 

9 20*20 0.75 

10 38x30 0.47 y 
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Table 9. Effect of size of piezoelectric actuators, f= 148.8 Hz 

  

  

  

            

  

      

  

  

Tt 

size of Voltage of radiated 

case piezoceramic piezoceramic power 

patch patch reduction 

xxy (cmxcm) (volt) (dB) 

1 2x2 119.00 15.1 

2 4%*4 30.31 15.1 

3 6x6 13.90 15.0 

4 8x8 8.17 14.9 

5 10*10 5.54 14.8 
6 14*14 3.31 14.5 
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the required optimal control voltage amplitude (with a different magnitude of 

g = 1 N/m’ from that in the previous case studies) for a driving frequency of 68.4 and 

148.8 Hz respectively. The location of the disturbance input and actuator is again 

symbolically shown on the top of the tables. 

Table 8 demonstrates that when the size of the actuator was increased, while the 

power reduction was generally the same, the optimal voltage was decreased. Similar re- 

sults can be observed in Table 9. It may be concluded that (at least for the two cases 

considered here) the size of the piezoceramic patch does not appear to significantly affect 

sound attenuation. However, the input voltages of the actuators are strongly dependent 

upon size. Thus it is essential to choose the proper size of actuators such that the ap- 

plied voltages are in the specified operating range for the piezoelectric material. Of 

course, for other driving frequencies when the expanding patch may cross nodal lines 

of important modes, then. different results may be obtained. The above examples are 

meant only to illustrate an important operating characteristic of the piezoelectric ele- 

ment. To determine the optimal voltages and size of piezoceramics for more general 

configurations is out of the scope of this thesis. 

3.5.1.3 Effect of Location of Actuators 

In order to study the effect of actuator location, the number of disturbance inputs 

has been increased to two each with magnitude of q = 20 N/m’ and located symmet- 

rically at both side of the plate and driven 180° out-of-phase such that the (2,1) mode 

can be efficiently excited. The coordinates of the two uniformly distributed pressure 

disturbance inputs are: (1) a@=0.12m, a,=0.16m, 5,=0.13m, 2.=0.17m; (2) 

a =0.22m, a = 0.26m, 5; = 0.13m, 5, = 0.17m. 
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Figure 28 and Figure 29 show the vibration amplitude distribution and radiation 

directivity for primary sources arranged to excite the (2,1) mode at 148.8 Hz, near the 

(2,1) mode resonant frequency. When one actuator located in the center of the plate is 

used, no control is achieved, because the actuator cannot couple into the (2,1) mode. 

Next, the actuator was moved slightly to the left as shown (1b) in Figure 28 so that its 

edge is located next to the nodal line. In this case, the vibration amplitude is signif- 

icantly reduced, but the radiation field of Figure 29 shows only a relatively small re- 

duction in level (although total power is reduced by over 18 dB) due to spillover into the 

(1,1) mode as can be observed from the uniform radiation pattern. To effectively elimi- 

nate the (2,1) mode with little spillover into the (1,1) mode, two independent actuators 

are needed, as shown for case (2) in Figure 28. In this case, the vibration amplitude is 

reduced to be a higher order residual, and the radiation field of Figure 28 shows very 

high reductions in levels and power. 

Finally, Figure 30 shows the radiated acoustic power versus frequency for the con- 

figurations of Figures 28 and 29. The solid line for the primary sources does not dem- 

onstrate any high peaks at odd-odd, odd-even and even-odd mode natural frequencies 

due to the arrangement of the primary input. In Figure 30, the results for one centrally 

located actuator (case la) are coincident with that for the disturbance; no control is 

achievable for this actuator position. The actuator next to the (2,1) nodal line (case 1b) 

can only reduce the radiated power by 18 dB at 148.8 Hz. However, two actuators can 

be seen to provide high attenuations in radiated acoustic power over a wide range of 

frequencies. Note that there is no attenuation at 490 Hz near the (4,1) mode resonant 

frequency due to such a symmetrical arrangement of actuators. 
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Figure 28. Plate displacement distribution for different location of piezoelectric actuators, f= 148.8 Hz 
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3.5.1.4 Summary 

Active control of structurally radiated sound from a modally responding panel has 

been analytically studied. The control inputs were multiple independently controllable 

piezoelectric patches bonded to the panel surface. The work demonstrates that multiple 

piezoelectric actuators have much potential for control of vibration and its associated 

radiated primary field. Several significant observations may be summarized as follows: 

e Multiple piezoelectric actuators generally have better sound radiation control 

characteristics than single actuators due to reduced spillover. 

e The location and number of actuators significantly affect the amount of sound 

reduction achievable. For on-resonance, high attenuation can be generally 

achieved with only one properly located actuator. However, for off-resonance, 

multiple actuators are needed. 

e With proper choice of number and location of actuators, high sound atten- 

uation over a broad frequency range up to approximately AL, = 5 for the con- 

figurations considered here can be achieved. 

e Within limits, the size of the piezoelectric patch does not appear to significantly 

affect sound attenuation. However, the input optimal voltages are strongly 

dependent on the size of the piezoceramic patch. 
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3.5.2 Incident Plane Wave Disturbance Controlled by Point Force or 

Piezoelectric Actuators 

In this section, plane acoustic waves incident on a simply-supported thin rectangu- 

lar plate are considered as a primary input. Such a plane wave disturbance input will 

result in high modal contribution at low plate wavenumbers as previously discussed. 

The phase motion is thus dominantly by lower order modes acting as surface modes in 

Region (3) of Figure 19. Either piezoelectric or point force actuators are employed as 

structural control inputs to reduce the sound transmission through the plate. An opti- 

mal control theory (Lester and Fuller, 1990), as discussed in Section 3.3, is adopted to 

optimize the input complex voltages to the piezoelectric or point force actuators so as 

to minimize the total radiated acoustic power, ®,, as shown in Equation (3.23). The 

optimal solution (ie., the optimal voltages to be applied to actuators), is shown in 

Equation (3.41). This has the effect of increasing the transmission loss of the plate. The 

performance of the piezoelectric and point force actuators is evaluated for various input 

frequencies and number and location of control inputs. Finally, a comparison between 

the effectiveness of piezoelectric actuators versus point force actuators in terms of re- 

duction of transmitted sound and power is made. The investigation is thought to lay 

out the fundamental aspects of piezoelectric devices in terms of practical applications to 

active control of sound transmission, in such applications as aircraft interior noise, ma- 

chine hull noise and high transmission loss lightweight barriers. 

The physical properties of the rectangular plate which was used for illustrating re- 

sults here are the same as those shown in Table 6 except for the plate thickness h = 2 

mm. Table 10 shows the natural frequencies of the simply supported plate for modes 
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(m,n). The optimal process is suitable for controlling multiple primary sources; however, 

only a harmonic incident plane wave with input parameters, 0;=45°,¢,=0° and 

P,; = 10 N/m’, was considered for the following results. Both the radiation directivity and 

plate displacement distribution were presented to demonstrate the control effectiveness 

of sound transmission by using piezoelectric or point force actuators. 

3.5.2.1 Effect of Number of Control Sources 

3.5.2.1.1 Piezoelectric Actuators 

Figure 31 shows the radiation directivity for the disturbance input consisting of an 

incident plane wave on the plate at 6;= 45°, ¢; = 0° with circular frequency 85 Hz near 

the (1,1) mode controlled by one, two and three piezoelectric actuators respectively. The 

locations and size of the piezoelectric actuators are sketched to scale on the top of Fig- 

ure 31. The primary source radiation directivity denoted by the solid line has the char- 

acteristic shape of the dominant mode (1,1), as shown in Figure 21. For one 

piezoelectric actuator located in the middle of the plate, the (1,1) mode is well controlled. 

The remaining significant residual mode in terms of radiation is the (2,1) as shown in 

Figure 31. 

For two independently controlled piezoelectric actuators as illustrated on the top 

of Figure 31, the actuators can control not only the (1,1) mode but also the (2,1) mode, 

so that the (3,1) mode becomes the dominant mode. When three independently con- 

trolled piezoelectric actuators are applied as shown in Figure 31, the actuators can si- 

multaneously control several modes such as modes (1,1), (2,1) and (3,1); thereafter, the 

remaining dominant radiating mode is a combination of modes (1,1) and (3,1). The total 
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Table 10. Natural frequencies of plate h=2 mm (Hz) 

  

m\n 1 2 

1 87.71 249.81 
2 188.74 350.85 

3 357.13 519.23 
4 592.88 754.98 
5 895.98 1058.08 

3 

519.98 
621.02 
789.40 
1025.15 
1328.25 

4 

898.22 
999.25 
1167.64 
1403.39 
1706.48 

rs) 

1384.53 
1485.56 
1653.95 
1889.69 
2192.79 
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Figure 31. Radiation directivity pattern for different location of piezoelectric actuators, f= 85 Hz 
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reduction of radiated acoustic power shown in Table 11 is 76.16 dB for one piezoelectric 

actuator, 79.42 dB for two and 96.81 dB for three. It may be concluded that increasing 

the numbers of actuators leads to an increase in reduction of radiated acoustic power. 

For all cases, however, significant reduction in the radiated sound pressure levels is 

demonstrated. For this case, the practical limit of attenuation is seen to be achieved 

with just one actuator. 

Figure 32 presents the plate displacement distribution corresponding to the cases 

of Figure 31. These distributions, partially decomposed into modal amplitudes of vary- 

ing m with n= 1, are also given in Table 12. The modal amplitude of the (m,n) mode 

expressed in dB is normalized by that of the (1,1) mode due to the incident plane wave 

alone. As expected, the (1,1) mode dominates the plate vibration due to the disturbance 

input harmonically excited near the (1,1) mode resonant frequency. When one 

piezoelectric is employed, the (1,1) mode is well controlled; however, the significant en- 

ergy is spilled into the (3,1) mode, and the amplitude of the (3,1) mode is raised. The 

residual plate displacement distribution thus takes on the shape of the (3,1) mode. Note, 

however, that the (2,1) amplitude is unchanged due to the central location of the single 

actuator. This result accounts for the sound radiation pattern observed in Figure 31. 

When two actuators are employed, the (2,1) amplitude is now reduced, but further con- 

trol spillover occurs into the (3,1). However, the total sound power radiated falls due 

to cancellation of other plate modes leading to plate displacement distribution appearing 

as higher mode response with a lower radiation efficiency as discussed in Section 3.4.4. 

The results correspond to what is termed “modal restructuring” (Fuller, Hansen and 

Snyder, 1990c). Finally, when three actuators are used, the (1,1) and (2,1) amplitudes 

remain attenuated, and control spillover to the (3,1) is now observed in Table 12. This 

is also reflected in the displacement plot of Figure 32 which appears to have a shape, 
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Figure 32. Plate displacement distribution for different location of piezoelectric actuators, f= 8S Hz 
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Table 12. Modal! amplitude of plate vibration (dB), f= 85 Hz 

  

Incident 1-Piezo 2-Piezo 3-Piezo 

m n= 1 n=1 n=1 n=1 

1 0.00 -43.07 -43.23 -48.18 
2 -55.25 -55.25 -89.71 -89.72 
3 -57.87 -35.35 -30.51 -43.66 
4 -82.97 -82.91 -68.89 -68.89 
5 -78.73 -44,79 -45.04 -44.85 
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due to the response, of many higher order modes. This higher mode plate response re- 

sults in volumetric cancellation, and thus explain the high power reduction as observed 

in Figure 31. 

For the next results, the circular frequency of the incident plane wave was increased 

to 190 Hz near the resonance of the (2,1) mode. Figure 33 shows the resultant radiation 

directivity for one, two and three piezoelectric actuators with the same size and locations 

as those in Figure 31. As can be seen, the primary field appears to have the shape of a 

distorted (2,1) mode; that is logical, since the mode is near the excitation frequency and 

will dominate the response. This is supported by the results of Table 13 which are 

maximum contributions of plate modes to the total radiated sound pressure at R = 10 

m. This table reveals that the (2,1) mode is indeed dominant, and the next most im- 

portant mode is the (1,1); both modes account for the distorted radiation directivity 

pattern due to the oblique incident plane wave 6; = 45°, ¢; = 0°. 

When one piezoelectric actuator is used, Table 13 shows that the (1,1) contribution 

is reduced, and this is supported by Figure 33 which now shows a symmetric radiation 

pattern similar to the (2,1) thus confirming the removal of the (1,1) contribution; how- 

ever, there again has been significant spillover into the (3,1) mode which accounts for 

the mode at 6=0° not being identically zero. The (2,1) is uncontrollable due to the 

central location of the actuator. 

The number of actuators were again increased to two, and now significant control 

of the (2,1) contribution is observed both in Figure 33 and Table 13. This is, of course, 

due to the location of the two piezoelectric element which can now couple into the (2,1) 

mode. Note that the residual field in this case has the characteristic shape of the (3,1) 
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Table 13. Modal amplitude of sound pressure (dB), f= 190 Hz 

  

Incident 

n=] 3 

-13.10 
0.00 

-43.06 
-68.92 
-70.46 mn 

&
 
W
h
 =
 

1-Piezo 

n= 1 

~22.04 
0.00 

~23.55 
-68.92 
-39.87 
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2-Piezo 

n=1 

-9.92 
-68.55 
-7.26 

-34.49 
-28.40 

3-Piezo 

n=1 

-26.48 
-68.55 
-31.76 
-54.49 
-38.11 
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mode. On increasing the number of actuators to three, control is now achievable over 

the (1,1), (2,1) and (3,1) contributions simultaneously, and large reductions are achieved. 

Figure 34 gives the displacement distribution corresponding to the cases of Figure 

34. It is interesting to note that little change occurs in the displacement distribution 

when one control element is used, although significant change in the radiation field are 

observed. This result is due to the fact that the (1,1) mode has a much higher radiation 

efficiency than the (2,1), thus its displacement response may be far lower than the (2,1), 

but it can still contribute significantly to the radiated field; hence, small changes in plate 

response can lead to large changes in the radiated field. It is also apparent that the total 

plate response increases at x/L, = 0.5, and this is due to spillover into the (3,1) mode. 

However, this is again not manifest in an increase in radiated levels due to the phe- 

nomenon of “modal restructuring” (Fuller, Hansen, and Snyder, 1990c). The character- 

istic of modal restructuring implies that when control is applied, the plate response is 

not globally reduced but possibly even increased and changed to a higher order response. 

This higher order plate response generally has a smaller radiation efficiency; therefore, 

sound radiation from the plate is eventually attenuated, even though plate response has 

increased. Similar results can be observed for other actuator configurations in Figure 

34 and correspond well to what is seen in Figure 33 and Table 13. 

3.5.2.2 Comparison Between Piezoelectric and Point Force Actuators 

It will be of great interest to compare the control performance between piezoelectric 

and point force actuators. Piezoelectric actuators have been recently introduced to ac- 

tive structural acoustic control, while point force actuators are customarily used. The 

radiation directivity patterns and displacement distributions for using point force 
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Figure 34. Plate displacement distribution for different location of piezoelectric actuators, f= 190 Hz 
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actuators were found to be similar to those for using piezoelectric actuators in Figures 

31, 32, 33 and 34. Thus, these results were not shown, instead, a comparison between 

piezoelectric and point force actuators in terms of control performance was made. In 

order to compare the control effectiveness of piezoelectric actuators with that of point 

force actuators, the point force was chosen to be located at the center of a piezoceramic 

patch. The effects of size and location of the piezoceramic patch, however, were not 

addressed in this paper. Previous section discussed these effects and demonstrated that 

the locations of actuators were best chosen where the plate has the largest response. 

Here the radiation directivity, plate displacement distributions and total reduction of 

radiated acoustic power were shown to evaluate the relative performance of piezoelectric 

and point force actuators. 

3.5.2.2.1 One Actuator 

Figure 35 shows the radiation directivity for a frequency of f= 85 Hz near the (1,1) 

mode resonant point. In this case, the control achieved by a single centrally located 

piezoelectric element and point force actuator is compared. Both the piezoelectric and 

point force actuators have nearly the same control effectiveness of sound radiation; 

however, the results of Figure 36, which are plate displacement distribution, indicates 

that the point force actuator gives better performance in terms of plate displacement, 

and its residual amplitude is less than that of the piezoelectric element. This can be in- 

terpreted as the point force actuator leading to less control spillover than the 

piezoelectric element contrary to what was previously understood about distributed 

actuators. The reason for this behavior is not presently understood; however, it is under 

investigation. Some potential ideas will be discussed in Section 3.5.2.2.3. 
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3.5.2.2.2 Two Actuators 

In the next comparison, the excitation frequency was increased to 190 Hz near the 

(2,1) mode resonant frequency. In this case, the (2,1) mode dominates the radiation field 

with significant contribution from the (1,1) mode, and the point force actuators clearly 

out perform the piezoelectric actuators in terms of reduction of radiated levels as shown 

in Figure 37. This is also observed in Figure 38 which are plots of the corresponding 

displacement distributions. It is apparent that the use of point force actuators has again 

lead to significantly less spillover into the residual (3,1) mode than the use of 

piezoelectric actuators. 

3.5.2.2.3 Three Actuators 

For a stringent comparison test, the excitation frequency was now reduced to 140 

Hz which is off-resonance between the (1,1) and (2,1) mode resonant frequencies. Being 

off-resonance, it is expected that more modes can contribute to the plate response, and 

the radiated field thus exacerbating control spillover effects. Figures 39 and 40 give the 

radiation directivities and displacement distribution of this frequency. Again, it is ap- 

parent that the point control forces lead to less spillover and improved control per- 

formance in terms of reduction of radiated sound level than piezoelectric excitations. 

Finally, Table 11 summarizes the total reduction of radiated acoustic power for 

three different excitation frequencies with either one, two or three piezoelectric patches 

or point forces as control sources. These results confirm that point forces indeed give 

better performance on a global basis than the piezoelectric elements. As stated previ- 

ously, this result is somewhat contrary to what was expected. The distributed control 

(i.e. in this case piezoelectric elements) is expected to give improved performance due to 
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the fact that the distributed element can couple into less modes leading to less spillover. 

However, on-going work stimulated by this result tends to point toward this distributed 

nature to be a disadvantage rather than an advantage, because the piezoelectric actuator 

generates line moments along the edges of the actuator, but not in the form of distrib- 

uted inputs over the area of the piezoceramic patch. This work has revealed that sound 

reduction occurs by the plate system assuming new eigenvalues and eigenfunctions 

(mode shapes) under feedforward control (Burdisso and Fuller, 1990). Highest reduction 

in sound levels is achieved by creating new modes with the lowest total response and/or 

radiation efficiency. In this case, a point force is an ideal actuator, as it is equally cou- 

pled to all uncontrolled modes in the wavenumber domain, while the piezoelectric ele- 

ment has reduced coupling and thus resulted in a reduced range of achievable modal 

modification, (i.e., the degree of modal restructuring is limited). However, this topic is 

out of the context of this thesis and will be the subject of another work. It is also in- 

teresting to note that the original concepts concerning the improved performance with 

distributed control were made from studies which considered an infinite number of point 

forces distributed over a beam (Meirovitch and Norris, 1984). Although piezoceramics 

are in a sense distributed, they exert a constant control input over finite regions of the 

structure, which is significantly different from the configuration of Meirovitch and 

Norris (1984), and this characteristic is believed to lead to the different conclusion ob- 

served in this work. 

Transmission loss defined in Equation (3.87), is an index of how much acoustic 

power is transmitted through the panel. Figure 41 shows the transmission loss over the 

frequency range 10 to 1000 Hz for the disturbance input of an incident plane wave and 

involving four separated cases of comparative control. For the controlled cases, the 

Chapter 3: Active Control of Sound Radiation 154



heavy lines correspond to piezoelectric actuators while the light lines correspond to point 

force control. 

For the incident plane wave disturbance, the transmission loss can be seen to dip at 

the resonant frequencies of the plate; however, the magnitude of the dip depends on the 

resonance modal number. For example, near 190 Hz the dip is fairly small. This be- 

havior is due to the (2,1) mode being a very inefficient radiator, and thus its plate re- 

sponse needs to be extremely high (i.e., right on resonance) for it to dominate the sound 

radiation field. 

It can be seen that the use of both types of actuators leads to increased transmission 

loss over the frequency range except at a number of frequencies corresponding to 

asymmetric modes in modal number n. These modes have nodal lines at the actuator 

locations and are thus uncontrollable. 

Figure 41 also exhibits an interesting behavior. As the number of actuators is in- 

creased, not only the transmission loss is seen to increase but also the dips which indi- 

cate the resonant frequencies of the controlled plate system have been shifted to higher 

frequencies. These shifted dips can be possibly visualized as the new eigenproperties of 

the controlled plate system as studied by Burdisso and Fuller (1990) for feed-forward 

control of a one dimensional beam. One would expect that the transmission loss would 

dip at the new eigenvalues or resonant frequencies of the closed loop system. It is 

thought that the phenomenon investigated by Burdisso and Fuller (1990) is occurring 

here. 
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For the single actuator, the piezoelectric and point force actuators give about the 

same performance especially at lower frequencies. However, some differences are ob- 

served about the (3,1) resonance for the reasons discussed above. 

3.5.2.3 Summary 

The active control of a plane sound wave transmitting through a rectangular plate 

at an angle has been analytically studied. Both piezoelectric and point force actuators 

are considered while the control cost function is derived from the far-field radiated 

acoustic power. The performance of the control system for an increasing number of 

control inputs is studied, and the attenuations obtained for point force and piezoelectric 

actuators are compared. The results show that both piezoelectric and point force 

actuators provide high reductions of sound transmitted through the plate if the proper 

size, number and location of actuators are chosen. In general, as the number of 

actuators is increased, higher reductions are observed. 

A very interesting result observed was that point force actuators were seen to per- 

form slightly better than piezoelectric actuators. This result is contrary to present beliefs 

about distributed actuators and is presently under detailed investigation. However, 

piezoelectric actuators possess a number of advantages, such as lightweight, low cost 

and compactness, over point force transducers. The study thus indicates that 

piezoelectric patch type actuators show much potential for active control of sound and 

vibration. 
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3.5.3 Near-Field Pressure and Intensity Distributions 

Previous sections have demonstrated the potential of multiple piezoelectric 

actuators as control sources in conjunction with distributed pressure sensors in the far- 

field to actively control sound radiation from structures, and showed the importance of 

properly selecting the number and location of actuators as key to efficient control of 

sound radiation. The far-field radiation directivity patterns as well as plate displacement 

distributions were presented to evaluate the control performance and mechanisms. 

However, little work has been done on studying the near-field pressure distributions and 

the radiated intensity distributions under the same conditions. These parameters are 

important for a number of reasons amongst which are they provide further insight into 

the control physical processes. It is also hoped to overcome the use of error micro- 

phones located in the far-field by the use of sensors near or on the structure. In this 

context, near-field pressure should provide insight into the configurations of near-field 

sensors required in order to provide reduction in far-field pressures. 

The objective of this section is to extend the analysis presented in previous sections 

to evaluate near-field pressure and time-averaged intensity distributions. In order to 

obtain the intensity distributions, the finite difference method of Pettersen (1979) will 

be used. A brief discussion is given in Section 3.4.2. This method has been used suc- 

cessfully by a number of authors to efficiently evaluate intensity distributions in complex 

radiating acoustic fields (Krishnappa and McDougall, 1989; Kristiansen, 1981). As dis- 

cussed by Thompson and Tree (1981), the finite difference approximation errors in 

acoustic intensity measurements are less than 2 dB from 0 to 10 kHz for a spatial sam- 

pling separation of 8 mm. 
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‘In this study, a simply-supported finite plate embedded in an infinite rigid baffle was 

considered as the structure. The plate was excited by a steady state harmonic disturb- 

ance in the form of an oscillating point force. Control inputs were applied by 

piezoelectric actuators bonded to plate surfaces, while error information was taken from 

a number of microphones located in the radiated acoustic far-field. In contrast to 

Sections 3.5.1 and 3.5.2 in which the total radiated power (distributed pressure sensors) 

is chosen as a cost function, the sum of mean square pressures measured by a number 

of discrete microphone sensors is now considered as the cost function. The optimal 

solution derived from Linear quadratic optimal control theory is shown in Section 3.5.3. 

Under this control condition, the near-field pressure (Equation (3.17)) and time-averaged 

intensity distributions (Equation (3.92)) were evaluated, while the plate uncontrolled and 

controlled motion was studied in this Section in the wavenumber domain. 

For brevity, this section only considers response of the plate of thickness 2 mm near 

the (3,1) response frequency. Table 6 gives the physical properties of the rectangular 

simply supported plate (except h = 2 mm), while Table 10 provides the associated na- 

tural frequencies of the plate. For simplicity, a single harmonic point force of amplitude 

F = 1 N located at x,= 0.3163 m, y=0.15 m (ie., at one sixth of the plate length and 

middle of the plate width), in order to effectively excite the (3,1) mode, was used as the 

primary disturbance. Likewise, a single control piezoelectric actuator of thickness 

t,= 0.1905 mm and dielectric constant of a, = 166 x 10-" m/V was employed, centrally 

located at x, = 0.15825 m, x.= 0.22175 m, y,= 0.1309 m, y.= 0.16905 m. The piezoelectric 

actuator is arranged not to activate even-even, even-odd and odd-even modes so as to 

simplify the control situation. Therefore, the mechanism and characteristics of this 

control technique can be conveniently studied. A single error sensor was assumed lo- 
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cated at either (R, 9, 6) = (1.8m,0°, 0°); termed mike # 1 or (1.8m,50°, 0°); termed mike 

# 2. 

Both pressure and the normal time-averaged intensity (i.e., the z component) to the 

X-y plane were calculated at a distance of 20 mm above the plate and expressed in dB 

re 20u Pa for pressure and dB re 10-"W/m? for intensity. In addition, the vector in- 

tensity components in x-z plane (1.e., vector sum of the z and x component) located at 

the central line of the plate in the y direction (1.e., y= L,/2 ) as well as the far-field ra- 

diation directivity in the same plane at a distance of R = 1.8 m were calculated. A 

x-plane (plate wavenumber) analysis of the plate response, which is discussed in Section 

3.4.3, was performed. The wavenumber spectra of modal velocity was plotted along the 

K, and x, axis. The x, and x, are structural modal wavenumber, as tabulated in Table 

3. 

The near-filed pressure was obtained directly by integrating Equation (3.17) using 

the Simpson’s one-third rule approach. These complex pressures were then used in the 

finite difference calculations of the intensity equations of Section 3.4.2 with a spacing 

of 1 mm. The modal sums in the above equations were truncated at m=n=5, i.e., 25 

modes were included in the analysis. This number of modes was found to provide suf- 

ficient convergence of series in Equations (3.1) and (3.16). In particular, for the study 

of the behavior of the (3,1) mode, the plate displacement and the radiated sound pressure 

have no more than 0.01 % difference in comparison to those results for including 100 

modes (1.e., m=n= 10). 
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3.5.3.1 Pressure and Intensity Distributions 

Figure 42 presents the far-field radiation directivity patterns for a frequency of 357 

Hz, which can be seen from Table 10 to be close to the (3,1) resonance point. The solid 

line denotes the primary field and can be seen to fairly constant with radiation angle. 

This behavior is due to the relatively long wavelength of the acoustic radiation relative 

to plate size, leading to the higher order plate mode giving a radiation field which is 

volumetric or monopole-like, i.e., the situation corresponds to an edge mode of case (b) 

of Figure 20 discussed previously. 

The controlled field is shown as a dashed line when the error sensor is located at 

6=0°; the primary field is strongly attenuated globally, and the residual field exhibits a 

dipole like radiation pattern due to the position of the error microphone. When the er- 

ror microphone is moved to @= 50°, similar values of attenuation are achieved; however, 

the null in the residual radiation field has moved to this angle. 

Although the different location of error microphone results in different residual ra- 

diation pattern, the optirnal voltages peak-to-peak applied to the piezoelectric actuator 

are 24.96 V and 24.93 V for the error microphone at 6=0° and 50° respectively. The 

total acoustic power reduction achieved in the two cases are 57.18 dB for 6=0° and 

51.68 dB for @= 50° respectively. The slight difference of voltage inputs and total power 

reduction for these two cases is due to the (3,1) mode response which results in non- 

uniform radiation directivity (i.e., different sound pressure level at the locations of the 

two error microphone positions). As seen in Figure 42, the sound pressure level at 

@=0° is higher than that at 2=50°. While the error microphone signal is to be driven 
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Figure 42, Radiation directivity for 2 mm plate, f= 357 Hz 
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to zero, the use of the error microphone at @=0° will result in more pressure reduction 

than that at 9=50°. Therefore, the case of error microphone at 0=0° requires addi- 

tional 0.03 V of control voltage and perform slightly better than the case of error 

microphone at 6= 50°. 

The corresponding near-field pressure distributions in the x-y plane for the primary 

and controlled (error microphone at 6=0°) fields are shown in Figures 43 and 44 re- 

spectively. The primary field can be seen to exhibit the cell-like behavior associated with 

the (3,1) mode shape of the plate, however, it is slightly distorted due to contribution 

from the (1,1) mode. When control is applied, two changes in the near-field pressure 

distribution of Figure 44 are observed. Firstly, the overall pressure amplitudes is reduced 

by around 10 dB. Secondly, the complexity of the pressure field is markedly increased, 

and there appears to be a semblance of a pressure node located around x = 100 mm. 

It is this kind of behavior that is interesting for the design of near-field sensors. The 

overall fall in near-field pressure indicates that if a distributed pressure sensor is located 

above and completely covers the plate, then minimizing the near-field sensor output 

might have the same control influence as a far-field point sensor, at least for plate modes 

on resonances. In effect, the use of a large distributed pressure sensor located near the 

plate may lead to an “unloading” of the plate radiation field and a drop in power; the 

plate will “see” a radiation impedance approaching zero. 

Figures 45 and 46 give the corresponding normal intensity distributions to Figures 

43 and 44. Regions of outgoing and ingoing intensity to the plate are marked (+) and 

(-) respectively. The prirnary field of Figure 45 strongly indicates the (3,1) plate behav- 

ior. As can be seen, the two outer cells give positive or outgoing intensity, while the 

inner cell has negative or in-going intensity. However, as discussed in works, such as 
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Figure 43. Pressure distribution (xy-plane) for the primary source only, 2 mm plate, f= 357 Hz 
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Maidanik (1974), the net effect for long acoustic wavelength relative to plate size is in- 

plane edge radiation, which appears like a monopole type source in the far-field. As the 

acoustic wavelengths are relatively long, radiation of each cell interacts with its neighbor 

leading to cancellation for the inner portions of the plate. The situation here corre- 

sponds to Region (1) in Figure 19 and Case (b) in Figure 20. When control is applied 

the intensity distribution is markedly changed. Figure 46 shows that the apparent plate 

source is far more complex and higher order. An integration of the intensity vector over 

the plate surface shows that the net power has been strongly attenuated. Since the single 

actuator can suppress strongly responding modes (in this case the (3,1) mode), the resi- 

dual plate modes are usually higher order. It is observed that both the controlled pres- 

sure and intensity fields of Figures 44 and 46 have a shape very similar to the (4,1) mode. 

This higher mode pattern has lower radiation efficiency, and this, in addition to the re- 

duction in amplitude, leads to a drop in radiated pressure. The first effect has been 

called “modal suppression” and the second “modal restructuring” (Fuller, Hansen, and 

Snyder, 1990c). 

Figures 47 and 48 show the controlled pressure field and normal intensity distrib- 

ution when the error microphone is located at 9=50°. The near-field pressure field ap- 

pears to be fairly similar to the distribution when the error microphone was located at 

8=0°, as shown in Figure 44; however, the intensity distribution is markedly different. 

In this case, the central cell, in which intensity flows into the plate, has greatly expanded, 

while the edge radiation components appear to have been reduced. In particular, the 

net power flow from the edge of the plate on the same side as the error microphone has 

been markedly attenuated. 
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Figures 49 and 50 present the near-field pressure distribution and intensity vector 

distribution in the central x-z plane for the primary source. Note that the intensity 

vector plots were calculated at a distance 20 mm above the plate and normalized in 

log-scale to the maximurn recorded value. The maximum intensity level and the corre- 

sponding vector is depicted at the bottom of the figure for scaling purpose. Note that 

decibels are scaled linearly in vector length. The pressure distributions clearly illustrate 

the volumetric radiation nature of the (3,1) mode at this low value of kL,= 2.48. Near 

the plate, the pressure distribution exhibits the three cell nature associated with the (3,1) 

mode; however, as the observation point moves to the far-field, the radiation field be- 

comes progressively more uniform and monopole like in behavior. Similarly, the inten- 

sity distributions of Figure 50 shows that the inner cell of the plate acts as an acoustic 

sink, and the radiated energy from the plate comes from near the edges. 

When control is applied, the pressure and intensity distributions for the error 

microphone at 6=0° demonstrate a marked change as shown in Figures 51 and 52. Two 

characteristics are again evident. Firstly, the overall pressure levels have fallen (due to 

response of the plate decreasing). Close to the plate, the pressure field exhibits behavior 

like the (3,1) mode; however, it is apparent that strong nodal type region of low pressure 

has been generated starting near x/L, = 0.4. Likewise, the intensity vector distribution 

for this case given in Figure 52 show that the net radiation from the edges has been ef- 

fectively cancelled. It is interesting to note from Figure 52 that the primary source ap- 

pears to be acting as an energy sink in this case. 

Moving the error microphone to 6= 50° gives additional interesting results, as can 

be seen in the pressure plots of Figure 53 and intensity vector plots of Figure 54. Again, 

the controlled pressure field exhibits behavior very similar to the (3,1) mode near the 
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plate without large changes in level; however, at increasing distances from the plate, the 

pressure field becomes increasingly more complex exhibiting a nodal type low pressure 

region towards the location of the error microphone. The intensity plots of Figure 54 

again demonstrate that the edge radiation is effectively reduced, this time on the side of 

the plate closest to the error microphone. In this control case, it appears that the energy 

leaving one side of the plate flows across the plate surface and is absorbed at the other 

side. 

Thus two important effects have been illustrated apart from the fact that control 

leads to a general lowering of radiation acoustic pressure. The results demonstrate that 

application of control leads to a change in the volumetric, monopole nature of the (3,1) 

mode in the far-field and also a reduction in the edge radiation component. 

3.5.3.2 Wavenumber Distributions 

In connection with the last observation, it is interesting to examine the wavenumber 

spectrum of the plate-baffle system uncontrolled and controlled response. Figures 55(a) 

and 55(b) give the modulus squared (the autospectrum) of the plate wavenumber com- 

ponents along x, and x, axis respectively. It is noted that only the positive components 

of x, and x, are shown in Figures 55(a) and 55(b) for brevity; however, the complete 

plate wavenumber spectrum should also include negative components. As the modes 

on the plate are separable, we can completely represent the plate wavenumber distrib- 

ution by the x, and k, plots. 

In Figures 55(a) and 55(b), the solid line denotes the spectrum of the primary field, 

while the short-dash line represents the controlled field for the error microphone at 
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6=0°, ¢=0° and the long-dash line for the case of the error microphone at 6=5S0°, 

@=0°. The spectrum of the primary field can be seen from Figures 55(a) to peak near 

values of x, = 32/L, and x, = 0 indicating that the plate response, as expected, is domi- 

nated by the (3,1) mode whose eigenvalues are x, = 32/L,, x, = n/L, respectively. Figure 

55(a) also indicates that there is substantial spectral component at x, = 0 indicating that 

there is significant (1,1) mode content in the plate response. This observation explains 

why the pressure and intensity fields of Figures 43 and 45 are slightly distorted from the 

pure (3,1) distribution. 

The spectral content of the controlled response can be seen to be strongly reduced 

at all wavenumbers for both microphone positions. This indicates that the plate re- 

sponse has globally fallen explaining the overall drop in near-field pressure observed 

previously. Also shown on the plots of Figures 55(a) and 55(b) is the position of the 

wavenumber component i, = x, = x; for this frequency x = w/c = 6.54 m™. It is noted 

that the case considered here corresponds to Region (1) in Figure 19. The resonant 

mode includes the (3,1) mode which is the dominant radiator recognized as x-edge radi- 

ation. As discussed by Maidanik (1974), wavenumber components above this line are 

subsonic and do not contribute to far-field pressure. However, the supersonic compo- 

nents below x do contribute to the far-field pressure. Thus it is interesting to note a 

number of further observations from Figure 55(a). Firstly, the wavenumber spectrum 

can be seen to be zero at x, =0 and x,=5 m"! for the controlled cases with the error 

microphone at @=0° and 50° respectively. This result supports the stationary phase 

result of Equations (3.97), (3.98) and (3.99) which states that radiation at a particular 

angle corresponds to discrete wavenumber components at x,=xsin@cos@ and 

Ky=* sin@sing. Thus, when the pressure is minimized in the far-field at a particular 

angle, the corresponding wavenumber component is suppressed in the structure. This 
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result suggests that a controller could be formulated in the wavenumber domain to re- 

move particular wavenumber components from the structure. The radiated pressure 

would then be minimized at the corresponding angle without the use of a microphone 

in the far-field. Control formulations of this nature have recently been completed by 

Fuller and Burdisso (1990b). 

The second interesting point of Figure 55(a) is that the supersonic components have 

also been more strongly reduced than the subsonic components. As discussed by Fahy 

(1985), the supersonic components (corresponding to the the shaded rectangular area, 

i.e., surface modes, in Figure 19) arise because of the finiteness of the plate embedded 

in the baffle (the reader is reminded that the wavenumber transform considers the com- 

plete plate-baffle system). As discussed previously, the resonance (3,1) mode, within the 

subsonic components, are the dominant radiator related to the edge motion of the plate. 

The phenomena is termed “edge radiation” (Maidanik, 1974). Reduction in the subsonic 

components thus implies a reduction or change in the edge radiation mechanism, and 

this is precisely the behavior that was observed in the intensity vector plots of Figures 

52 and 54 discussed previously. 

Finally, the controlled wavenumber distributions of Figures 55(a) and 55(b) show 

that the oscillations in the spectral distributions at low wavenumbers has been 

smoothed. This indicates that the residual response of the plate-baffle system is domi- 

nated by high wavenumber components or short wavelength high modal number mo- 

tion, as observed in the residual or controlled pressure and normal intensity plots. 

Thus wavenumber analysis appears to be a powerful alternative tool to investigate 

the system behavior. For example, what was previously term “modal suppression” 

(Fuller, Hansen and Snyder, 1990c), when the plate response falls globally corresponds 
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to a fall in wavenumber components across the spectrum. What was previously termed 

“modal restructuring” (Fuller, Hansen and Snyder, 1990c), which corresponds to a 

change or increase in plate vibration amplitude and complexity while radiated pressure 

falls, corresponds to a reduction in supersonic components while the subsonic compo- 

nents may even increase. This has also been referred to previously in this thesis as the 

controlled residual response having an overall lower radiation efficiency. Both of these 

types of behavior have been observed in the wavenumber domain in companion exper- 

iments (Clark and Fuller, 1990b). It is also apparent that the control behavior can be 

viewed in a number of ways; each of which provides valuable insight into system be- 

havior. 

3.5.3.3 Summary 

This section presented an analytical study of the near-field pressure and intensity 

distributions of actively controlled plate radiated sound. The results presented, although 

limited to the (3,1) mode resonance case, reveal a number of interesting characteristics. 

In general, when control was applied, a number of important characteristics were ob- 

served. Firstly, for this case of resonance, applying control leads to an overall fall in the 

magnitudes of near-field pressure and intensity vectors, because the mode on resonance 

has been significantly suppressed. Secondly, the controlled field appeared to exhibit ra- 

diation behavior similar to a higher order anti-symmetric mode. The monopole like na- 

ture of the far-field radiation pattern of the (3,1) mode was modified to a pattern with 

a nodal region near the location of the error microphone. Thirdly, the application of 

control appeared to reduce the acoustic intensity leaving the edges of the plate (edge 

radiation) resulting in an overall drop in radiated acoustic power. In connection with 

this, while the location of the error mike had little effect on the overall power reduction 
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and optimal control voltages, it had a significant effect on the near field pressures and 

intensity distributions (in particular, edge radiation characteristics). 

The results provide further insight into the mechanisms associated with the active 

structural control approach studied here. In particular, the results indicate possible 

strategies for the design of near-field sensors to minimize the far-field radiated power. 

For “on resonance” case, one strategy may be to use a distributed sensor which provides 

an error signal proportional to the average of the acoustic pressure over the plate sur- 

face. Another strategy could be to use a strip distributed error sensor which could lo- 

cated at the very low pressure regions of the controlled distribution. This would have 

the effect of forcing an asymmetry into the radiation field which has been shown in this 

section to be associated with a lower total radiated acoustic power. Finally, 

wavenumber analysis of the plate vibration has been shown to be a powerful alternative 

tool for studying the mechanisms of control. 

3.5.4 Comparison of Different Forms of Cost Functions 

This section evaluates the use of different forms of cost functions defined in Section 

3.3. To compare the control effectiveness of different forms of cost functions, an on- 

resonance and off-resonance excitation will be considered. Both the radiation directivity 

and plate displacement distribution are presented as well as the average radiation effi- 

ciency and radiated power, which are plotted against the excitation frequency. Addi- 

tionally, wavenumber domain analysis is also discussed. 

Numerical examples presented are based on the plate specification as shown in Ta- 

ble 6 (except the plate thickness which is now h = 2 mm), and the plate natural fre- 
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quencies are tabulated in Table 10. For simplicity, a single harmonic point force of 

amplitude F = 1 N located at x, = 0.3163 m, y; = 0.15 m was used as the primary dis- 

turbance. Likewise, a single control piezoelectric actuator of thickness 4, = 0.1905 mm 

with a dielectric constant of a3; = 166 x 10-" m/V was employed, located at x, = 0.15825 

m, xX. = 0.22175 m, y = 0.1309 m, y. = 0.16905 m. When a single error sensor was 

used, the microphone at (R, 6, d) = (1.8m,0°, 0°) in the far-field or an accelerometer lo- 

cated at (x,, y,) = (0.19m, 0.15m) on the plate is considered. 

3.5.4.1 Modal Radiation Efficiency 

As discussed previously, the radiation efficiency of the (m,n) mode can be consid- 

ered as a fixed structural acoustic property of the plate geometry. Figure 56 and 57 show 

the modal radiation efficiency for the simply-supported rectangular plate (h = 2 mm) 

plotted against wavenumber ratio and the excitation frequency respectively. The (1,1), 

(3,1) and (3,3) modes, (the odd-odd modes), have higher radiation efficiency than the 

(2,1), (2,3), (the odd-even and even-odd modes), and the (2,2) modes, (the even-even 

mode). This indicates that the odd-odd modes are the effective radiating modes for y < 

1 with strongly acoustic coupling between sound radiation and mechanical vibration, 

and the even-even modes, subjected to radiation cancellation, have smaller radiation ef- 

ficiencies. When the excitation frequency is greater than the modal critical frequency, 

which is tabulated in Table 14, the radiation efficiencies approach asymtotically to unity. 

The surprising observation from Figure 57 is that the (2,1) modal radiation efficiency is 

greater than the (3,1) modal radiation efficiency between 300 Hz and 1000 Hz which is 

within our study range (357 Hz for the (3,1) resonant mode). The (2,1) mode, previously 

thought to be a less effective radiator, actually has significant contribution. 
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Table 14. Modal critical frequencies of plate (Hz) 

  

m\n 1 

728.3 
1068.4 
1469.7 
1893.6 
2327.8 Ma 

B&B 
OQ 

NN
 

pe
 1229.2 

1456.7 
1772.1 
2136.9 
2529.7 

1773.4 
1938.0 
2185.0 
2490.0 
2834.3 

2330.8 
2458.4 
2657.4 
2913.4 
3212.6 

2893.7 
2997.5 
3162.8 
3380.7 
3641.7 
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For infinite plates, with the excitation frequency below the critical frequency, the 

plates do not radiate. Above the critical frequency, infinite plates do contribute sound 

radiation to the far-field. However, for finite plates, the radiation characteristics become 

more complex because of the finiteness of the plate. With excitation frequency below 

the critical frequency in region (1), as shown in Figure 19, in addition to the surface 

modes, the resonant modes include the x- and y-edge modes and the corner modes. In 

region (2), the resonant modes thus include the x- and y-edge modes only. With 

excitation frequency above the critical frequency, i.e., region (3), only surface modes ra- 

diate to the far-field. The following illustrated examples are located in region (1). 

3.5.4.2 On-Resonance Excitation 

Figure 58 shows the radiation directivity of the point force disturbance with a 

excitation frequency of 357 Hz near the (3,1) mode controlled by one piezoelectric 

actuator, which is sketched on the top of Figure 58. The primary sound radiation 

directivity, denoted by a solid line, can be seen to be fairly constant with radiation angle. 

This behavior is due to the relatively long wavelength of the acoustic radiation relative 

to plate size, leading to the higher order plate (3,1) mode giving a radiating field which 

is volumetric or monopole like. 

If the distributed pressure sensors over a hemisphere of radiating far-field are used, 

the corresponding cost function (®,) can be constructed as defined in Equation (3,23). 

The sound pressure level can be thus reduced globally over the radiating field as it is 

observed at all angles. The residual radiation directivity exhibits a combination of the 

(1,1) and (2,1) mode responses whose radiation characteristics are illustrated in Figure 

21. If a discrete pressure sensor (the corresponding cost function, ‘Y,, defined in 
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Equation (3.42)) is used and located at (R, 6, @) = (1.8m, 0°, 0°), the residual radiation 

directivity reveals a dipole response, because the sound pressure at the location of the 

error microphone is reduced to zero. Similarly, a distributed or discrete acceleration 

sensor located at (x, y) = (0.19m, 0.15m) on the plate can be used, and the cost functions 

are then defined in Equations (3.55) (®,) and (3.72) (¥,) respectively. The residual ra- 

diation directivity for these two selected cost functions, ©, and Y,, exhibits a monopole 

or a distorted monopole response. Generally, for on resonance, any one of the cost 

functions results in a global reduction of the far-field sound radiation; however, there 

are slight differences between the residual radiation pattern for different types of the cost 

function. These subtle differences reveal important insights into the different control 

mechanisms associated with each form of the cost function; and these effects are en- 

hanced for off-resonance control. The results again show that the pressure sensor is 

superior to the acceleration sensor in sound radiation control as discussed by Fuller and 

Jones (1987a), because the pressure sensor supplies the coupling information between 

sound radiation and mechanical vibration while the acceleration sensor supplies only the 

information of mechanical vibration. In other words, the pressure sensor directly 

measures the correct variable(s) to be minimized. 

Figure 59 shows the plate displacement distribution corresponding to the case of 

Figure 58. As expected, the (3,1) mode dominates the plate vibration due to the primary 

input frequency being near the (3,1) resonant point. For control with the use of one 

piezoelectric actuator, the plate response is attenuated globally for all cost functions and 

shows a slightly complex pattern. As observed, the residual plate response for ®, is 

generally the lowest, and there is a zero response at x/L,= 0.5 for ‘Y,, because of the 

central location of the accelerometer. Note that using accelerometer sensors will result 

in more attenuation of plate displacement than using pressure sensors; however, the 
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corresponding sound pressure levels are not generally attenuated to the degree that the 

plate displacement is attenuated. 

Table 15 shows the applied voltage to the piezoelectric actuator and the reduction 

of cost function and radiated power as well as the average radiation efficiency, when 

different forms of cost functions were used. The distributed pressure sensor is seen to 

be the most effective giving the most reduction of radiated power and the lowest average 

radiation efficiency. All four cost functions have nearly the same control voltages. Both 

the distributed and discrete pressure sensors have about the same reduction of radiated 

power, and generally perform better than the acceleration sensors, either distributed or 

discrete. 

Figures 60(a) and 60(b) show the plate wavenumber spectrum along axis x, and k, 

respectively. Only the positive components of x, and x, are shown for brevity. The 

spectrum of the primary field is denoted by a solid line shown in Figures 60(a). A peak 

near values of x, = 3z/L, and x, = 0 indicates that the plate response is dominated by the 

(3,1) mode whose eigenvalues are x, = 32/L,, x, = 2/L, respectively. Figure 60(a) also 

indicates that there is a substantial spectral component at x, = 0, i. e., the (1,1) mode is 

significant in the plate response. The spectral content of the controlled response can be 

seen to be strongly reduced at all wavenumbers for all of the cost functions. This indi- 

cates that the plate response has globally fallen explaining the overall drop in the plate 

response in Figure 59. Also shown on the plots of Figures 60(a) and 60(b) are the 

acoustic wavenumber, x=qw/c=654m"', and _ free_ structural wavenumber, 

K, = (w*ph/D)'* = 26.92 m-'. This case study here corresponds to Regions (2) in Figure 

19. Asis well known, only supersonic wavenumbers components (i.e., («2 + K?)-'? < x) 

radiate sound to the far-field. When control is applied, all supersonic wavenumber 
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Table 15. Summary of on- and off-resonance excitation cases 

  

on-resonance excitation, f = 357 Hz 
  

  

  

  

  

control average reduction reduction 
voltage radiation of cost of radiated 
V (volts) efficiency, ¢ function (dB) power (dB) 

Disturbance 0.03366 
QD, 24.958 0.00449 57.46 57.46 
@D,, 25.037 0.11336 54.56 49.28 
Y, 24.967 0.00566 144.03 57.18 
Y, 24.990 0.01584 153.81 54.74 

off-resonance excitation, f = 272 Hz 

control average reduction reduction 
voltage radiation of cost of radiated 
V (volts) efficiency, 0 function (dB) power (dB) 

Disturbance 0.01275 
@, 6.3449 0.00885 0.82 0.82 
®,, 16.573 0.04977 1.03 -4.88 
Y, 4.7574 0.00938 152.85 0.77 
YY, 17.572 0.05296 153.63 -5.16 
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components are seen to be reduced, corresponding to global control of sound radiation. 

When a discrete pressure sensor is used, the wavenumber components around k,, x, = 0 

are observed to be strongly attenuated, corresponding to a high local reduction in sound 

at the error microphone. 

Another interesting observation from Figure 60 is that the oscillations in the spec- 

tral distributions at low wavenumbers has been smoothed. This indicates that the resi- 

dual plate-baffle response is dominated by high wavenumber components or short 

wavelength, higher modal order motion. Thus two control mechanisms are observed. 

The first, termed “modal suppression” (Fuller, Hansen and Snyder, 1990c), implies that 

the plate response falls globally and corresponds to a fall in wavenumber components 

across the complete spectrum. The second, termed “modal restructuring” (Fuller, 

Hansen and Snyder, 1990c), implies that the plate residual response becomes more 

complex (higher modal order) with a lower radiation efficiency. Conversely “modal re- 

structuring” corresponds to a decrease in the supersonic wavenumber components while 

the subsonic components remain unchanged or even increase. Such behavior has also 

been observed in companion experiments (Clark and Fuller, 1990c) and is shown to be 

enhanced for off-resonance conditions studied in the next section. 

3.5.4.3 Off-Resonance Excitation 

Figure 61 shows the radiation directivity of the disturbance with an excitation fre- 

quency of 272 Hz between the (2,1) and (3,1) modes, controlled by one piezoelectric 

actuator as sketched on the top of Figure 61. The primary sound radiation directivity 

is denoted by a solid line, and can be seen to have a small dip at 9 = 0°. This indicates 

Chapter 3 : Active Control of Sound Radiation 195



    

          

  

      

  

  

pepe | Nose tee tee 

° 

45 6= O° 45. 

90° l L. L 90° 

100 75 50 25 0 25 50 75 100 

Sound Pressure Level (dB) 

Figure 6{. Radiation directivity for off-resonance excitation, f= 272 Hz 

Chapter 3 : Active Control of Sound Radiation 196



that the primary sound radiation directivity is contributed significantly by the (1,1) and 

(2,1) modes. The reduction of radiated power is only 0.82 (dB) and 0.77 (dB) for dis- 

tributed and discrete pressure sensors respectively. In the case of using pressure sensors, 

the discrete sensor has about the same residual response as the distributed except at 0 

= 0°, where the sound pressure is reduced to zero, because of the location of the discrete 

pressure sensor. Only a small amount of reduction of sound pressure level can be 

achieved. In the case of using acceleration sensors, the residual radiation directivity 

reveals spillover to the sound pressure in the far-field. Although the plate vibration en- 

ergy density or vibrational levels have been reduced (1.e., the reduction of cost function 

@, or Y,, which is referenced to 10-' W/m?), as observed in Table 15, the total reduction 

of radiated power is negative for acceleration sensors, i.e., the radiation field shows 

spillover. The control voltages required by acceleration sensors is higher than those by 

pressure Sensors. 

Figure 62 shows the displacement distribution corresponding to the cases of Figure 

61. In contrast to the radiation directivity shown in Figure 61, in which the (1,1) and 

(2,1) modes dominates the sound radiation to the far-field, the plate response is domi- 

nated by the (3,1) mode. As shown in Figure 57, the (1,1) and (2,1) modes have higher 

radiation efficiency than the (3,1) at f= 272 Hz; therefore, the (1,1) and (2,1) modes be- 

come the dominant radiating modes rather than the (3,1) mode. When pressure sensors 

are used, the plate residual displacement distribution is close to the (3,1) mode, but 

slightly distorted, and only attenuated a little. Thus control has achieved only 0.82 dB 

of power reduction as shown in Table 15. This is because the central location of 

piezoelectric actuator cannot excite the (2,1) mode which is one of the dominant radi- 

ating modes. In the case of using acceleration sensors, the plate response was atten- 

uated, and the (3,1) modal contribution has been cut down while the (1,1) and (2,1) 
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modes become dominant. This leads to the spillover in the radiating field and a 

monopole like response, because the (1,1) and (2,1) modes have higher radiation effi- 

ciencies. These results demonstrate a very important effect. Attenuating plate motion 

does not necessarily lead to reduction in radiated sound. In fact, for off-resonance cases, 

the inverse is often true with radiated sound levels increasing, while overall plate re- 

sponse decrease. 

Figure 63(a) and 63(b) show the plate wavenumber spectrum along axis x, and x, 

respectively corresponding to the cases of Figures 61 and 62. From Figure 63(a), the 

primary field reveals a maximum between 2z/L, and 3z/L, near the x, = 23.29 m~’, for 

this off-resonance excitation of f=272 Hz, and the spectra become smooth for super- 

sonic waves. The acoustic wavenumber (x = 4.98m-') is also marked as a dash line in 

Figures 63(a) and 63(b). As discussed previously, above this line the wavenumber com- 

ponents recognized as subsonic waves do not contribute to the sound radiation; how- 

ever, supersonic waves, i.e., wavenumber components below the acoustic wavenumber, 

do radiate to the far-field. In the case of using pressure sensors, the supersonic compo- 

nents have been reduced while the subsonic components were increased. This results in 

a small amount of radiated power reduction as shown in Table 15, and the phenomenon 

is termed “modal restructuring”, i.e., the plate vibration pattern become close to the (3,1) 

mode, as seen in Figure 62. In other words, the significant radiation modes have been 

changed to less efficient mode radiators due to the change of plate vibration pattern, and 

this change, thus, leads to a reduction or radiated power. In particular, the wavenumber 

spectrum equals to zero at x, = x, = 0, with the discrete pressure sensor located at (1.8m, 

0°, 0°). This can be explained from Equations (3.97), (3.98) and (3.99), as discussed 

previously. When the pressure is minimized in the far-field at a particular angle, the 

corresponding wavenumber component to that angle is suppressed. In the case of using 
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acceleration sensors, the subsonic components have been reduced while the supersonic 

components were increased. The increase at k, = x, = 0 especially indicates spillover of 

control energy into the (1,1) mode. This explains why the residual radiation directivity 

reveals a monopole response in the case of using acceleration sensors as shown in Figure 

61. Figure 63(b) shows the similar plot along the x, axis. The disturbance denoted by 

a solid line reveals a n=1 dominant mode pattern, i.e., the (3,1) mode. Again, the 

analysis of wavenumber spectra also demonstrates that pressure sensors perform better 

than acceleration sensors. In effect, the distributed far-field pressure sensor acts as dis- 

tributed structural-wavenumber sensor. They observe every radiating point on the plate 

and also every supersonic wavenumber component while not observing the subsonic 

components. 

3.5.4.4 Radiated Power and Average Radiation Efficiency 

Figure 64 shows the radiated power for the disturbance with and without control 

plotted against the excitation frequency for different forms of cost functions corre- 

sponding to the previous case. The solid line denotes the disturbance and reveals several 

peaks, such as at 87, 190, 357, 520 and 620 Hz, which are near the natural frequencies 

of the simply-supported plate. In the case of using pressure sensors, both discrete and 

distributed sensors have about the same residual radiated power, and a large amount of 

power reduction is achieved below 180 Hz near the (2,1) mode. For higher frequency 

excitation, since more high modal responses contribute to the sound radiation, only a 

slight reduction can be achieved for using just one actuator. Additionally, there is no 

improvement at excitation of the even modes, such as the (2,1), (2,2), (4,1) and (4,2) 

modes, because of the central location of the piezoelectric actuator. Of course, atten- 

Chapter 3: Active Control of Sound Radiation 201



    

  

. 2 - Noise p é, Yp 
            

  150 

  

    

  
  

  

                                    

f (Hz) 

Figure 64. Radiated power versus excitation frequency 

Chapter 3 : Active Control of Sound Radiation 202



uation could be achieved with multiple, appropriately located actuators as shown Sec- 

tion 3.5.1. 

In the case of using acceleration sensors, the radiated power has been attenuated 

at low frequency range, but the reduction is not as much as that using pressure sensors. 

The distributed acceleration sensor, located over the plate, generally performs better 

than the discrete acceleration sensor, located at the center of the plate. For the discrete 

acceleration sensor, the radiated power increases between 105 and 190 Hz, i.e., between 

the (1,1) and (2,1) modes, while the radiated power decreases for other selection of sen- 

sors. This is because the accelerometer cannot effectively observe the plate response at 

the central location in this range of excitation frequency, where the (2,1) mode domi- 

nates the plate response. The residual radiated power in the case of using distributed 

acceleration sensors is close to that of using pressure sensors between 110 and 190 Hz, 

but is higher at frequencies below 110 Hz. This can be explained by the observation that 

controlling the (1,1) plate modal response is not effective in the reduction of sound ra- 

diation within this range. However, controlling the (2,1) plate modal response is effec- 

tive since the (2,1) mode is the dominant radiator to radiated field in this frequency band. 

Figure 65 shows the average radiation efficiency plotted against the excitation fre- 

quency corresponding to the cases of Figure 64 with and without control. The average 

radiation efficiency generally agrees with the radiated power because of the coupling re- 

lations as shown in Equation (3.112). The disturbance denoted by a solid line reveals 

no peaks, unlike what was observed in Figure 64 for radiated power. In the case of using 

pressure sensors, average radiation efficiency generally decreases, except where the con- 

trol is not achievable, such as 190 and 280 Hz. In the case of using acceleration sensors, 

the average radiation efficiency increases over some frequency range where the overall 

Chapter 3 : Active Control of Scund Radiation 203



  
  

          
  

  

oe Noise 4p + fp 

  

  

1 
10 

    

2 
10 

3 

OE fey ” 
S10 

st 
10 7 

+4 
10 Aa 

10° TZ 
8 

10 49 20 30 50 100 200 300 500 1,000 
f (Hz) 

v
e
 

° oe . e e ® 

  

  

  

  

v
u
 

  

N 

                                      
  

Figure 65. Average radiation efficiency versus excitation frequency 

Chapter 3 : Active Control of Sound Radiation 204



acoustic coupling was intensified. For example, the average radiation efficiency for dis- 

turbance with control using acceleration sensors is increased at f = 272 Hz; In other 

words, control spillover occurs in the radiated pressure field. 

3.5.4.5 Summary 

This section evaluates the control effectiveness and control mechanism for different 

forms of cost functions used in the feedforward quadratic optimal control approach ap- 

plied to ASAC. The cost functions are constructed based on the use of either distributed 

or discrete pressure and acceleration sensors, with one piezoelectric actuator as the 

control input. Numerical examples illustrate the role of modal radiation efficiency which 

is associated with the structural acoustic coupling properties of the plate and is inde- 

pendent of the nature of disturbance. For low wavenumber, the odd-odd modes gener- 

ally have higher radiation efficiency than even-odd, odd-even or even-even modes. The 

average radiation efficiency, which is associated with the sum of all of modal contrib- 

utions and is thus dependent on the nature of disturbance, represents acoustic coupling 

between sound radiation and the residual mechanical vibration. Wavenumber domain 

analysis is also discussed and shown to be a very powerful tool which provides an alter- 

native view of ASAC. 

Results also showed that distributed sensors which can reveal global system re- 

sponse generally perform better than discrete sensors which can only provide a few point 

responses; however, in practice, a finite number of discrete sensors can only be used. In 

term of the reduction of radiated power, pressure sensors are superior to acceleration 

sensors, because pressure sensors inherently supply the structural acoustic coupling in- 

formation while acceleration sensors can only provide the mechanical vibration infor- 

Chapter 3 : Active Control of Sound Radiation 205



mation. The proposed control strategy can be applied to obtain the optimal location 

of actuators and sensors and to design near-field pressure sensors with the effect of 

minimizing the far-field pressure. 

3.6 Summary 

This chapter presents the theoretical analysis of active control of sound radiation 

from a vibrating plate with the use of multiple distributed actuators (i.e., piezoceramic 

patches) and pressure or acceleration sensors. The cost function was constructed based 

upon the adoption of a feedforward control approach. Linear quadratic optimal control 

theory is then employed to obtain the optimal control voltages applied to actuators so 

as to minimize the cost function which is linear quadratic in nature. Some important 

results are summarized as follow: 

1. Multiple piezoelectric actuators generally have better sound radiation control 

characteristics than single actuator due to reduced spillover. However, on 

resonance, high levels of attenuation, close to the practical limit of present 

control systems, can be generally obtained with a single actuator. 

2. With proper choice of number and location of actuators, a large amount of 

sound attenuation can be achieved over a broad frequency range for low 

wavenumber excitation up to approximately xL,= 5. 
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3. The size of piezoelectric actuator does not significantly affect sound atten- 

uation; however, the input optimal voltages are strongly dependent on the size 

of the piezoelectric patch. 

4. Point force actuators perform slightly better than piezoelectric actuators; 

however, piezoelectric actuators posses a number of practical advantages, such 

as lightweight, low cost and compactness, over point force transducers. 

5. Applying control can lead to an overall fall in the magnitudes of near-field 

pressure and intensity vectors and lead to a residual higher order radiation be- 

havior similar to anti-symmetric modes. The observation indicates that a sheet 

or a strip of distributed pressure sensor over the plate surface could be used 

as an effective error sensor in order to reduce far-field pressure. 

6. Plate wavenumber domain analysis demonstrates the influence of radiation 

characteristics. An overall drop in wavenumber components corresponds to 

“modal suppression”, while a drop in supersonic wavenumber components and 

an increase in subsonic correspond to “modal restructuring”. Modal sup- 

pression means that the plate vibration levels have been overall attenuated. 

And, modal restructuring indicates that the plate vibration pattern has been 

changed to a less efficient mode radiator, even though the plate displacement 

has not been reduced but may have been increased. 

7. Distributed sensors perform generally better than discrete sensors, and pressure 

sensors have considerable advantages over acceleration sensors in sound radi- 

ation control. Therefore, under the consideration of performance and practical 

use, a near-field distributed pressure sensor is desired. 
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Chapter 4 : Optimal Placement of Piezoelectric 

Actuators for Controlling Sound Radiation from 

Plates 

Piezoelectric actuators have been widely used in structural sound and vibration 

control. Chapter 3 has presented the theoretical analysis of the mechanics of 

piezoelectric actuators, and demonstrated their potential as transducers in structural 

sound control. However, the proper selection of number and location of piezoelectric 

actuators is critical to efficiently control structural sound radiation. Therefore, the de- 

termination of the optimal placement and number of piezoelectric actuators in sound 

radiation control is an important and interesting issue. 

Previous works, however, on optimal placement of actuators are mostly concerned 

with vibration control and particularly for feedback control system with the use of tra- 

ditional force transducers, such as point force shakers, (Norris and Skelton, 1989; Chang 

and Soong, 1980; Hamidi and Juang, 1981; Juang and Rodriguez, 1979). For state 

feedback control, a state space equation is first constructed to represent the system 
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model, and a performance index, which is a quadratic form in the state and control ef- 

fort, can then be defined. Finally, the optimal location is to be determined by minimiz- 

ing the performance index. Only a few literatures deal with the optimal location of 

distributed actuators, which are widely used in conjunction with so called “smart” 

structures. Jia (1990) studied the optimal position of piezoelectric actuators for beam 

vibration control by adopting independent modal space control approach (IMSC). Jia 

showed that the optimal location and size of piezoelectric actuators can be found by 

minimizing the objective function which can be either the structural response, control 

effort, residual response, spillover effect or combinations of all/any of these variables. 

However, Jia’s work is limited to consider only one-dimensional vibration control. 

Adaptive feedforward control, on the other hand, has been adopted for structural 

sound radiation control in recent years (Gibbs and Fuller, 1990; Burdisso and Fuller, 

1990; Simpson et al., 1989). The control algorithm is flexible, because it is not as crucial 

as feedback approaches to accurately model the system response. The adaptive 

feedforward controller can learn the system parameters by itself and converge to the 

optimal solution using various “training” approaches. However, little work has been 

discussed on the optimal placement of actuators, particularly distributed in nature, for 

feedforward control. This chapter is thus concerned with the formulation of the opti- 

mization problem for the placement of piezoelectric actuators in feedforward control 

systems, in particular for the ASAC. 

In this chapter, a general formulation for the optimal placement of piezoelectric 

actuators in a feedforward control approach is first presented and then applied to a 

typical sound radiation control system using piezoelectric actuators and microphone 

sensors. A baffled, simply-supported, rectangular plate is considered as an idealized 
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system. The plate is harmonically excited by a primary source (point force), and 

piezoelectric actuators are applied to control the plate vibration in order to reduce the 

associated sound radiation. The objective here is to determine the optimal location of 

piezoelectric actuators such that the sound pressure measured from the error micro- 

phones can be most efficiently reduced (i.e., with lowest actuator power and/or number 

of actuators). A solution strategy is proposed to calculate the applied voltages to 

piezoelectric actuators with the use of linear quadratic optimal control theory, as dis- 

cussed in Section 3.3.3. The location of the piezoelectric actuator(s) is then determined 

by minimizing the objective function, which is defined as the sum of the mean square 

sound pressure measured by a number of error microphones. The optimal locations for 

multiple piezoelectric actuators, up to three, were considered. The results show that the 

optimally placed actuators achieve a far better reduction of sound radiation than 

actuators whose positions are arbitrarily chosen. 

4.1 Mathematical Formulation for Optimization Problem 

4.1.1 Design Variable 

As shown in Figure 66, the optimal placement of the i-th piezoelectric actuator lo- 

cated inside the boundaries of the plate can contain five variables, x., yi, C., C,, and V;. 

The variables C,,and C,, denote the size of the i-th piezoelectric actuator, while 

x, and y; denote the central location of the actuator, and V; is the applied voltage to the 
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Figure 66. Illustration of design variables 
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piezoelectric actuator. If the primary source is known, and piezoelectric actuators are 

used as control sources, then the total radiated sound pressure can be shown as follow: 

Pr= PiXp Vir Cx Cys Vi) i=1,.., N, (4.1) 

As discussed in Chapter 3, V; can be calculated from the linear quadratic optimal control 

theory (LQOCT). The total radiated sound pressure can then be written as follow: 

Pr= PAX Vp Cy.» Cy Vi(Xin Vis Cy C,)) f=1,...,.Ne (4.2) 

However, if the size of piezoelectric actuators was first fixed, then the total radiated 

sound pressure become 

Pr = PX Vis Vil%H Vi) i=1,..,N, (4.3) 

The design variables,x,, y,, C,,, C,, and V;, can be properly selected based upon the con- 

cern of the size, location or both of the piezoelectric actuator and the control effort (i.e., 

the voltages or power required for piezoelectric actuators). 

4.1.2 Objective Function 

There are various choices for the objective function. Wang, Dimitriadis and Fuller 

(1990) chose the integral of the square of radiated sound pressure over a hemisphere of 

the radiating field, (i.e., ®,, as shown in Equation (3.23), is proportional to the radiated 

power) as the cost function. However, such a cost function, in practice, is not useful. 

Wang and Fuller (1991c) constructed a cost function which is the sum of the mean 

square radiated sound pressures measured by a limited number of microphones, ie., Y, 
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as shown in Equation (3.42). The consideration of the above two types of objective 

functions is particular of interest in sound radiation control. Since the sound radiation 

is strongly coupled with the structural vibration, the objective function may also be 

chosen as the sum of the mean square plate acceleration measured by a limited number 

of accelerometers or the integral of the square of plate acceleration over the vibrating 

surface. The possible candidates of the objective function used in sound radiation con- 

trol have been discussed in Section 3.3 and recalled as follows: 

(1) Distributed pressure sensors 

WaT 
1 2 2 2. 

o,-—+ | lp, as= | | lp,| sin @d0dd (4.4) 
R° 4s 0 “0 

(2) Discrete pressure sensors 

N, mike 

Y= > |pi(Re On ddl” (4.5) 
i=] 

(3) Distributed accelerometer sensors 

2 Lytle 9 
o,=| | w,| dA=| | |W, 1 dxdy (4.6) 

A 0 *0 

(4) Discrete accelerometer sensors 

N, acc . 3 

y= > lisp) | (4.7) 
i=1 

Chapter 4 : Optimal Piacement of Piezoelectric Actuators for Controlling Sound Radiation from Plates 213



It is noted that @, and @, are measured by idea! distributed sensors, which may not be 

practical in reality; however, ©, and ®, represent the power of sound radiation or energy 

density of out-of-plane structural vibration. They can be used as an index of control 

effectiveness. For practical applications, ‘Y, and ‘Y, are the alternative options. A rea- 

sonable number and location of sensors shall be selected to reflect the actual system re- 

sponse, such that an optimal solution can be found without losing the global nature of 

the problem. In effect, the discrete sensors should approach a form of numerical inte- 

gration of the objective function associated with the distributed sensors to be truly 

global. 

4.1.3 Design Constraint 

The design constraints have to be specified to confine the design variables within a 

reasonable range. The design constraints are necessary for providing a reasonable result 

by maintaining the rectangular shape of piezoelectric actuators, locating actuators inside 

the plate boundaries, avoiding overlapping between actuators, and operating actuators 

within the working voltage range. It is noted that the constraint set (iii) for avoiding 

overlapping is conceptually sketched in Figure 66. For the rectangular-shaped 

piezoelectric actuators as shown in Figure 66, the constraint sets are listed as follows: 

(1) To maintain the piezoelectric actuator a rectangular shape: 

0<C, <L,/2 
(4.8) 

0<C,<L,/2 

(11) To maintain the piezoelectric actuator inside of the plate: 
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X; — C,/2 220 

xj+ C,/2< Ly 
(4.9) 

ir C, [2 = 0 

fi+C)2<L, 

(111) To avoid overlapping between piezoelectric actuators: 

X41 —% > 0 

Vi-1 ~Hi> 9 (4.10) 

= _ _ _ 1/2 Cie + Gia WT” LUG 4+ GQ? HG, +Gy'A1>0 

(iv) To specify the working range of piezoelectric actuators: 

[V;,| < 150(volt p-p) (4.11) 

Note that the control power to the actuators is not an optimization variable. However, 

constraint (iv) ensures that the piezoelectric actuator is within a working range. 

4,2 Application to Optimal Placement of Piezoelectric 

Actuators 

For a simple application of the previous theoretical formulation to sound radiation 

control, the size of piezoelectric actuators is assumed fixed, ie., C,,= C,, = constant. 

The applied voltage to the i-th piezoelectric actuator, V;, can be calculated from 
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LQOCT, as discussed in Chapter 3. Only the optimal location of piezoelectric actuators, 

x, and y, will be determined. The objective function is chosen as the sum of the mean 

square sound pressure measured by a number of microphones in the far-field. Therefore, 

the optimization problem can be written as: 

N, mike 

2 
Objective function : '¥,, = ‘¥A(%), Vis Vii, i) = » lP(Rp 6,0)| i=1,..,N. (4.12) 

j=l 

design variables : (x;, y;) f=1,..,N, (4.13) 

design constraints : constraint set (ii), (111) and (iv) (4.14) 

The design variables are to be determined by minimizing the objective function subjected 

to a set of design constraints. Now, a suitable optimization algorithm must be adopted 

to solve the optimal solution. 

4.3 Optimization Algorithm 

An IMSL subroutine named NOONF (IMSL, 1989), for solving a general nonlinear 

programming problem using the successive quadratic programming algorithm and a fi- 

nite difference gradient, was adopted to calculate the optimal solution. The optimization 

problem is stated as follows: 
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min, jx) 

subject to g{x)=0, for j= 1,...,m, 

(4.15) 

g(x) >0, for j= my 4 1+. 

xX) SX<X, 

where the objective function, f, and the constraint functions, g{x), are assumed to be 

continuously differentiable. The suggested method is to obtain a sub-problem by using 

a quadratic approximation of the Lagrangian and by linearizing the constraints. The 

sub-problem is stated as: 

min, + d7B,d + V/tx,)"d 
Xe 2 

subject to Ve(x,)'d + g(x,)=0, for j=1,...,m, 

(4.16) 

Ve(x,)'d + g{xX,) 20, for f= me 4 15. 

X;—-X,5d<X,—X, 

where B, is a positive definite approximation of the Hessian, and x, is the current iterate. 

Let d, be the solution of the sub-problem. A line search is used to find a new point 

Xa 

Xa =X, td, O<A<!1 (4.17) 
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such that a merit function will have a lower value at the new point. Here the merit 

function is the augmented Lagrange function. 

The algorithm requires a high accuracy arithmetic in estimating the gradient. The 

central finite difference method was applied to approximate the gradient by adopting the 

IMSL CDGRD subroutine (IMSL, 1989). 

4.4 Solution Strategy 

To solve the above optimization problem, a solution strategy was developed. The 

flow chart of solution strategy is shown in Figure 67. The procedure to solve the prob- 

lem is first to set up the initial guess of the optimal central location of the i-th actuator, 

(X:)«s(ViJky Where & denote the number of iteration. The following steps are then pro- 

ceeded: 

1. utilize the linear quadratic optimal control theory to obtain the applied volt- 

ages, (V;),, to actuators at the current location, (%,),,(V;).. 

2. evaluate the objective function and constraints at the current location, 

(Xi) Vide 

3. evaluate the gradients of the objective function and constraints at the current 

location, (Xi)k,(Vi)s- 
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Figure 67. Flow chart of solution strategy 
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4. employ an optimization algorithm, NOONF, to update the optimal location, 

(Karr Widarr 

5. stop the procedure if the results pass the accuracy test; otherwise, update the 

current optimal location of actuators and repeat the above steps. 

It is noted that the design variables, the central location of piezoelectric actuators 

(x,, ¥), Was normalized by the plate length and width (L,, L,) respectively such that the 

design variables will be relocated between zero and one. This normalization process will 

benefit the solution process of the optimization problem. 

4.4.1 LQOCT for Solving Applied Voltages to Actuators 

Lester and Fuller (1990) presented an optimization algorithm to obtain the mini- 

mum for a linear quadratic function. Chapter 3 has shown the use of linear quadratic 

optimal control theory (LQOCT) to determine the applied voltages to minimize the se- 

lected objective function which is quadratic. Here, the LQOCT is adopted to solve the 

voltages independently. One of the advantages is that the optimal voltages can be al- 

ways determined whenever the location of actuators is known. The other reason to 

evaluate the optimal voltage separately because the order of voltage and the central lo- 

cation of piezoelectric actuator is not consistent arithmetically, even after the normal- 

ization process. Hence, upon the consideration of numerical difficulty and the number 

of design variables, it is beneficial to obtain the optimal voltage using LQOCT separately 

from solving the optimization problem. 
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4.5 Analytical Results 

Table 6 shows the physical properties of the simply-supported plate (except h=2 

mm) used for the following simulations. The structural disturbance was assumed to be 

a point force with magnitude of F, = 1 N and located at x, = 0.08 m, y, = 0.08 m. Nine 

error microphone sensors, whose locations are tabulated and listed in Table 16 and 

shown in Figure 68, were used; therefore, the objective function defined in Equation 

(4.5), which is the sum of mean square measured pressure, can be constructed. The 

reason to choose this number of microphones is based on the consideration of comput- 

ing time and a reasonable approximation to the continuous integral of pressure over the 

complete radiation hemisphere. Too few microphones will not reveal the actual system 

global radiation response. On the other hand, too many microphones will require too 

much computing effort to solve the optimization problem. The microphones located in 

the far-field are arranged five in a row across the central line of the plate in both the x- 

and y- directions, as shown in Table 16 The size of piezoelectric actuators is fixed, C,, 

= 0.06 m and C,, = 0.04 m. The location and applied voltages of piezoelectric actuators 

are to be determined. 

4.5.1 Sub-Region Search Method 

The determination of the optimal location of piezoelectric actuators is dependent on 

the excitation frequency. A different excitation frequency will lead to a different optimal 

location. For a particular frequency of excitation, all of the plate modes can be excited; 
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Table 16. Location of error microphones 

  

the i-th microphone (R,9,¢) 

(1.8, 75°, 180° ) 
(1.8, 45°, 180° ) 
(1.8, 0°, 0°) 
(1.8, 45°, 0°) 
(1.8, 75°, 0° ) 
(1.8, 75°, 90° ) 
(1.8, 45°, 90° ) 
(1.8, 45°, 270° ) 
(1.8, 75°, 270° ) O
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Figure 68. Location of error microphones 
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however, only the plate modes near the excitation frequency will contribute significantly 

to the plate response as well as the sound radiation. It is clear that if the plate was ex- 

cited near the (1,1) mode, the plate response will be shown as a convex surface. Similar 

characteristic can be found for the objective function. If the plate was excited at 87 Hz 

near the (1,1) mode, and the central location of piezoelectric actuator was varied and 

moved around the plate, then the objective function and the applied voltage can be cal- 

culated from LQOCT (presented in Section 3.3.2) and plotted as shown in Figure 69. 

Because the objective function is shown as a convex surface, an optimal location of the 

piezoelectric actuator can be always found to guarantee the minimum of the objective 

function. It is also noted, from Figure 69, that high control voltages are required for the 

actuator located near the corner of the plate to achieve sound radiation control. The 

actuator having the minimum control effort is located at about the same position as the 

actuator having the minimum objective function. 

Also shown in Figure 70, for an excitation frequency f = 357 Hz near the (3,1) 

mode, the objective function and the applied voltage reveal as a (3,1) mode shape. There 

are more than one minimum for the objective function; in fact, there is one local mini- 

mum at each division separated by nodal lines. This characteristic, related to the plate 

mode shapes, is similar to what has been seen in Figure 69. If the actuator is located 

near the nodal line of the plate mode, then sound radiation control is not effective, at 

least for on-resonance excitation, because of high control voltage and small control au- 

thority. 

Figure 71 shows the similar plots as Figures 69 and 70 except that the excitation 

frequency, f = 272 Hz, is between the (2,1) and (3,1) modes. One can see that those 

distributions become complex and results from combination of several plate modal re- 
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Figure 69. Distribution of objective function and control voltage for f= 87 Hz 
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sponses. Again, there are multiple minima; this make the optimization procedure to find 

a global minimum difficult. However, according to the characteristics shown in Figures 

69 and 70, a sub-region search method, which comes from the nature of the objective 

function distribution similar to that of the plate mode shapes, can be proposed. This 

search technique is to subdivide the plate into several cells based on the nodal lines of 

the plate mode shapes, which are set up to be the bound of the locations for the 

actuators. In other words, in addition to the design constraints illustrated previously, 

the upper and lower bounds of the locations for actuators can also be specified according 

to the nodal lines associated with the plate mode shapes. 

4.5.2 Optimal Location of One Actuator for Different Excitation Frequencies 

As discussed previous!y, the optimal location of piezoelectric actuators is dependent 

on the excitation frequency due to the variation of modal transfer function in frequen- 

cies. The optimal location of actuator has been of interest for many concerns. As dis- 

cussed by Juang and Rodriguez (1979), to control a single mode of beam vibration, there 

are multiple optimal locations for one actuator in high-mode control. If several modes 

contribute to the response simultaneously, and only a few actuators are applied, then the 

optimal location will be much different from that for single mode control. The 

feedforward control approach adopted here is to minimize the objective function, which 

is the mean square of sound pressure measured by error microphones, and thus to con- 

trol all of the modal contributions at the same time. Therefore, the optimal location and 

applied voltage of the actuator is solved under a compromise to eliminate the significant 

modal responses; however, this compromise will probably incur spillover to other higher 
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modes, which do not radiate efficiently to the error microphones, causing an increase in 

plate response. 

When one piezoelectric actuator was considered, the normalized optimal central lo- 

cation of the piezoelectric actuator and the applied voltage to the actuator are tabulated 

in Table 17 as well as the reduction of the objective function, radiated power and pres- 

sure modal amplitude. Table 17 is shown for different excitation frequencies varying 

from 87 Hz to 357 Hz, 1.e., between the (1,1) and (3,1) modes. The underlined values 

are for on-resonance excitation, such as 87 Hz near the (1,1) mode, 190 Hz near the (2,1) 

mode and 357 Hz near the (3,1) mode. One can see that the optimal central location 

of the actuator is located at about one third of the plate length and width, in the left- 

bottom quadrant of the plate, i.e., the same quadrant where the point force disturbance 

is located. As the excitation frequency increases, the optimal central location of the 

actuator moves in the direction toward the corner of the plate. This can be understood 

by the realization that when the excitation frequency increases, the contribution of 

higher modes becomes significant, and thus the optimal location of the actuator is placed 

where it can couple into all higher mode responses. In applying one actuator, for ex- 

ample f = 87 Hz near the resonance of the (1,1) mode, the actuator attempt to control 

all of the significant radiating mode responses, including the (1,1) and (2,1) modes, in- 

stead of just the (1,1) mode. Therefore, the optimal location is determined under a 

compromise to eliminate the significant modes; however, as one can see in Table 17, 

there is spillover to higher modes, such as (3,1), (4,1) and (5,1) modes. This result indi- 

cates that the optimal location of single actuator is to eliminate the significant modal 

response near the excitation frequency; however, this will result in spillover to higher 

modes, which ultimately limit the amount of attenuation. 
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Table 17. Results for one actuator with different excitation frequencies 
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On the other hand, when the excitation frequency increases, for example f= 357 Hz 

near the (3,1) mode excitation, the radiation from (3,1) mode is controlled as well as the 

(1,1) and (2,1) modes, but with less reduction. There is still spillover to the higher modes 

but less than at the lower frequency excitations. This can be explained that the (1,1) and 

(2,1) modes, having high radiation efficiency (see Figure 57), can contribute a larger 

amount of sound radiation to the far-field, even though the (3,1) mode is dominant on 

the plate due to the excitation frequency. Therefore, the optimal location is determined 

from a result of compromise to efficiently eliminate the most significant radiating modes, 

1.e., the (1,1), (2,1) and (3,1) modes in this case. However, this effort causes the spillover 

to higher modes, such as (4,1) and (5,1) modes, which have lower radiation efficiency 

(Wallace, 1972). It is also noted, from Table 17, that for on-resonance excitation, the 

reduction of radiated power is generally larger, and the control effort (voltage) is higher 

than those cases for off-resonance excitation. It is due to the fact that modes on reso- 

nance always contributes considerably more to the modal response and thus require 

more control effort. 

4.5.3 Optimal Location of Multiple Actuators for Different Excitation 

Frequencies 

4.5.3.1 On-Resonance Excitation, f = 357 Hz, Near (3,1) Resonant Mode 

Table 18 shows the cptimal central location and applied voltages of piezoelectric 

actuators as well as the reduction of objective function and radiated power for an 

excitation frequency of f = 357 Hz. As one can see, although the reduction of objective 
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function increases when more actuators are applied, the amount of attenuation of radi- 

ated power is not always increased. This means the optimization algorithm does work 

to find a better solution. However, the minimization of the objective function, which is 

the sum of mean square pressures measured by error microphones, will not guarantee 

the reduction of radiated power due to the spillover of sound pressure to other locations 

than the position of error microphones. In term of the attenuation of radiated power, 

to properly locate one actuator in controlling sound radiation is more effective than to 

use two or three actuators when a set of microphones are used as error sensors, as it 

reduces unnecessary spillover. 

Figure 72 shows the radiation directivity pattern for the excitation frequency f = 

357 Hz. The point force disturbance input and piezoelectric actuator patches are 

sketched to scale on the top of Figure 72. The disturbance response denoted by a solid 

line indicates a monopole like response, but 1s nonuniform, and evidently shows the ex- 

istence of the (3,1) mode and a significant (1,1) modal contribution. The optimal lo- 

cation of one actuator is at the left-bottom quadrant of the plate similar to the primary 

source. The residual pressure field is shown to be a combination of the (3,1) and (1,1) 

modes, whose characteristic radiation shapes are shown in Figure 21, and have a global 

reduction. 

For two-actuator control as shown on the top of Figure 72, the first optimally lo- 

cated actuator is somewhat near the optimal location for one-actuator control, and the 

second one is located at the up-right quadrant of the plate near the central line. As 

shown in Table 18, the reduction of objective function is increased, but the reduction 

of radiated power is decreased. A result such as this implies that more error micro- 

phones need to be used, due to spillover effects to unobserved radiation points. Never- 
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theless, the sound pressure level along the central line of the plate in both x- and 

y-direction is less than that using one actuator and exhibits a combination of the (4,1) 

and (1,1) modes. It can be seen that there are dips at @=0°, 75° for 6=0°, and 75° for 

g = 180° where the error microphones are located. For three-actuator control, the op- 

timal location of the first two actuators are close to those of two-actuator control, and 

the third one is located at the bottom-right quadrant of the plate. Again, the objective 

function has been further minimized. As shown in Figure 72 the dips at 6 = 0°, 75° for 

@=0° and 75° for 6= 180° are enhanced, but the reduction of radiated power has not 

increased. 

An interesting feature can be observed from the above results indicating that a 

one-by-one search method may be used to solve for the location of the successive 

actuator. The idea is first to find an optimal location for one-actuator control, and then 

to find a second optimal location for two-actuator control having the same location for 

the first actuator, and so on. With this searching technique, the computing time can be 

largely reduced, since it would cost less to optimize a reduced-parameter problem than 

a full-parameter problem. This method was tried; however, the results were not en- 

couraging, since the selected objective function cannot be attenuated further due to nu- 

merical difficulty (even though double precision number was used in program), while an 

additional actuator was considered. The author believes that if the objective function is 

reconstructed as the radiated power rather than the mean square pressure, the one-by- 

one search method would be appropriate and can reduce significant computing effort for 

multiple actuator control. Also, it appears that each actuator is optimally configured for 

separate modes, since their locations stay the same. Hence, an independent optimization 

procedure for each mode and its associated radiation might be tried. 
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Also shown in Figure 72 is an arbitrary selection of multiple actuators located at 

one sixth of the plate length or width (denoted lab arrangement). This arrangement is 

assigned to control the low modal number excitation based upon the nature of the plate 

mode shapes and was used in companion experiments (Clark and Fuller, 1990b). The 

results show that optimally configured one-, two- or three-actuator control is superior 

to the arbitrarily chosen actuators for the on-resonance excitation in terms of both ob- 

jective function and radiated power. 

Figure 73 shows the plate displacement distribution corresponding to the cases of 

Figure 72. The solid line depicts the disturbance response and reveals that the (3,1) 

mode is dominant. With control, the plate displacement has been reduced globally and 

exhibits a more complex pattern, and the (3,1) mode has been attenuated considerably. 

Further comments on the behavior are as in previous section. 

4.5.3.2 Off-Resonance Excitation, f = 272 Hz, Between (2,1) and (3,1) Resonant 

Modes 

Table 19 shows the optimal central location and applied voltages of piezoelectric 

actuators as well as the reduction of objective function and radiated power for an 

excitation frequency f = 272 Hz between the (2,1) and (3,1) modes. The control effort 

(1.e., the control voltages) is not necessary smaller than that for on-resonance excitation, 

unlike the previous observation for one-actuator control. In fact, either one of the 

actuators may require extremely high control voltages; however, others may simultane- 

ously need only a small voltage. The optimal location and required control voltages for 

multiple actuators are determined in a way not only to suppress the disturbance response 

but also to reduce the interactive spillover effects due to actuators themselves. 
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Figures 74 and 75 show the radiation directivity pattern and the plate displacement 

distribution respectively corresponding to the case in Table 19 for the off-resonance 

excitation. The optimal location of piezoelectric actuators, sketched on the top of Fig- 

ure 74, are very similar to that of the on-resonance excitation. From Figure 74, the 

primary radiated sound denoted by a solid line shows a small dip at 6 = 0° indicating 

the strong response of the (2,1) mode. In applying one actuator, the residual response 

shows a combination of the (3,1) and (1,1) modes, and there are no dips at any location 

of the error microphones. In applying two and three actuator, the residual response 

reveals a more complex pattern similar to the (4,1) and (5,1) modes respectively. Dips 

can now be seen located at the error microphone locations. It is again shown that in- 

creased actuators can further attenuate the pressures at error microphone position; 

however, the overall radiated power is not necessarily reduced, because of spillovers in 

sound pressure into other locations than the position of the error microphones. 

The plate displacement distribution for the case of disturbance, as shown in Figure 

75, exhibits the (2,1) mode characteristic shape. With control, the residual plate re- 

sponse reveals a more complex pattern and is not attenuated globally as what was seen 

in Figure 75 for resonance excitation. This phenomenon is referred to as “modal re- 

structuring” for the off-resonance excitation and “modal suppression” for the on- 

resonance excitation (Fuller, Hansen and Snyder, 1990c). 
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4.6 Computing Time Analysis 

In an optimization procedure, to find the gradient of objective function is generally 

the most difficult and the most CPU time consuming task. Table 20 shows the per- 

centage of CPU time consumed for each step in the optimization procedure. It takes 

about 20% of CPU time for steps 1 and 2, i.e., the evaluation of objective function and 

the applied voltages to actuators, and over 70% (up to 90% for three actuators) of CPU 

time for step 3, 1.e., the evaluation of the gradients of the objective function and con- 

straints in the optimization procedure. However, it takes only a small percentage of time 

for step 4 in calculating the update actuator’s location in the optimization subroutine. 

In order to efficiently solve the optimization problem, it is necessary to do a sensitivity 

analysis. For future work, it could be beneficial to apply an analytical or semi-analytical 

method rather than finite difference method to evaluate the gradients so that CPU time 

can be reduced for solving the optimization problem. Furthermore, the acoustic radiated 

power could also be considered as objective function to solve the optimal location of 

piezoelectric actuators. 

4.7 Summary 

This chapter has presented the mathematical formulation for the optimization 

problem of the placement of piezoelectric actuators in a feedforward control implemen- 

tation of ASAC. The analysis is applied to an example problem to obtain preliminary 
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information on how the cptimization procedure performs. Four different forms of ob- 

jective functions, which are differentiated by discrete or distributed and by vibrational 

or pressure sensor, are discussed for sound radiation control. An objective function, 

which is constructed based on the use of a number of discrete pressure sensors, is applied 

to the example of sound radiation control. Some significant observations may be sum- 

marized as follows: 

e Different excitation frequencies will result in different optimal locations of 

piezoelectric actuators. 

e The optimally located piezoelectric actuators can provide a large amount of 

reduction of sound radiated power and are seen to perform better than arbi- 

trarily chosen locations. 

¢ To properly locate one piezoelectric actuator generally gives higher reduction 

of radiated acoustic power than to use two or three actuators for the selected 

objective function which 1s the sum of mean square sound pressure measured 

by a limited number of microphones. This is due to control spillover resulting 

from driving down the error signals at all error microphones. An alternative 

would be to limit the attainable attenuation achieved at each error microphone 

or use the total radiated power as the objective function. 

e A computing time analysis shows that the evaluation of the gradients of the 

objective function and constraints consumes most of the CPU time. Sensitivity 

analysis, which can be used to analytically or semi-analytically evaluate the 

gradients, is required for future research. 
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e This work, which lays out the theory for optimal location of piezoelectric 

actuators, will be the basis for design of “smart” structures for ASAC with 

distributed actuators and sensors. 
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Chapter 5 : Overall Conclusions and 

Recommendations 

5.1 Overall Conclusions 

This thesis consists of three main categories: (1) the development of a mechanics 

model for spatially distributed actuators embedded or attached to laminate beams or 

plates (Chapter 2), (2) the use of multiple piezoelectric actuators in conjunction with 

pressure or acceleration sensors in structural sound radiation control with the use of a 

feedforward control approach (Chapter 3), (3) the optimization of the locations of 

piezoelectric actuators in structural sound radiation control (Chapter 4). 
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5.1.1 Category (1) 

A strain energy model (SEM) for laminate beams with embedded or attached, 

finite-length, distributed actuators was first developed and then extended to a two- 

dimensional case, i.e., a laminate plate, based upon the classical laminate plate theory 

(CLPT) with the use of Heaviside functions to represent the size and location of dis- 

tributed actuators. The SEM was verified and compared to a finite element formulation 

(FEM) (Robbin and Reddy, 1990) and an analytical approach (Clark, Fuller, and Wicks, 

1990a) based upon the assumption of spherical pure bending (SPBM) for both static and 

dynamic analyses in the case of one-dimensional pure bending. Results show a favorable 

agreement between the SEM and the FEM. Also, the SEM is a more accurate model 

than the SPBM over a wide range of thickness ratio, especially for low plate-actuator 

thickness ratios. Additionally, the SEM was also compared favorably to the CLPT 

(Wang and Rogers, 1991b) and the SPBM (Dimitriadis, Fuller and Rogers, 1991) for the 

case of two-dimensional pure bending. The proposed model, SEM (Wang and Rogers, 

1991la), provides a general formulation to determine the equivalent external forces or 

moments induced by actuators attached or embedded in any layer or location of lami- 

nate beams or plates. The SEM can be applied to determine the equivalent external 

forces or moments induced by the distributed actuators used in structural vibration and 

sound radiation control. 

5.1.2 Category (2) 

Chapter 3 presents the analysis of active control of sound radiation from a baffled, 

simply-supported, rectangular plate subjected to a harmonically excited disturbance with 
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the use of multiple piezoelectric actuators in conjunction with distributed or discrete 

pressure and acceleration error sensors. The SEM is applied to determine the control 

force induced by piezoelectric actuators. Plate vibration is first examined and then used 

in conjunction with Rayleigh Integral and a stationary phase approach to determine 

radiated sound pressure in the near- and far-fields. The linear quadratic optimal control 

theory (LQOCT) is then applied to obtain the optimal control voltages to the 

piezoelectric actuators, while four forms of cost functions are considered. The cost 

functions are constructed based on the use of: (1) distributed pressure sensors, (2) dis- 

crete pressure sensors, (3) distributed acceleration sensors and (4) discrete acceleration 

sensors. Several special topics associated with structural acoustic characteristics, in- 

cluding (1) Plate Transmission Loss, (2) Time-average intensity, (3) Plate wavenumber 

analysis and (4) Plate radiation efficiency, are discussed to further study the control 

mechanism and effectiveness. Study cases are then presented and discussed. Some im- 

portant results are summarized as follows: 

1. The potential of using multiple piezoelectric actuators in structural sound ra- 

diation control is demonstrated. 

2. Multiple piezoelectric actuators generally have better sound radiation control 

characteristics than single actuator, and the proper choice of the number and 

location of actuators are critical to effective structural sound radiation control. 

3. Point force actuators perform slightly better than piezoelectric actuators; 

however, piezoelectric actuators possess a number of practical advantages, 

such as light weight, low cost and compactness, over point force transducers. 
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4. The near-field pressure and intensity distributions provide further insight into 

the mechanisms associated with the active structural control. This will lead to 

a design strategy of near-field pressure sensors having the same effect as far- 

field microphone sensors. 

5. Distributed sensors which can reveal global system response are generally bet- 

ter than discrete sensors which can only provide discrete point responses; also, 

in practice, only a limited number of discrete sensors can be used. Pressure 

sensors, which can provide information of acoustic coupling between mechan- 

ical vibration and sound radiation, are superior to acceleration sensors, which 

can only provide the structural response. Therefore, to design a distributed 

near-field pressure sensor will be favorable for active noise control upon con- 

sideration of performance and practical use. 

5.1.3 Category (3) 

Chapter 4 develops a general formulation of optimization problem for the place- 

ment of distributed actuators in adaptive feedforward control for ASAC. The selection 

of objective function and identification of design variables and physical constraints are 

discussed separately. A case study for the optimal placement of multiple fixed-size 

piezoelectric actuators in sound radiation control is presented. A solution strategy is 

proposed to calculate the applied voltages to piezoelectric actuators with the use of lin- 

ear quadratic optimal control theory. The optimal location of piezoelectric actuators is 

then determined by minimizing the objective function which is defined as the sum of the 

mean square sound pressures measured by a number of error microphones. The optimal 
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location of piezoelectric actuators for sound radiation control is determined for different 

excitation frequencies. Particularly, the optimal placement of multiple piezoelectric 

actuators for both on- and off-resonance excitation is presented. Results show that the 

optimally located piezoelectric actuators provide better sound radiation control than 

those whose position is arbitrarily selected. This work leads to a design methodology for 

adaptive or intelligent material structures and systems with highly integrated actuators 

and sensors. 

5.2 Recommendations 

Intelligent (“adaptive” or “smart”) materials structures and systems which are highly 

integrated with embedded or attached actuators and sensors have generated great inter- 

est for use in sound and vibration control. Distributed actuators and sensors have been 

increasingly developed and applied to the structural vibration and sound radiation con- 

trol. Fast processible microprocessors are also available for implementation of adaptive 

versions of the feedforward algorithm with fast response time. Therefore, the “adaptive, 

smart, or intelligent material structures”, which are structures integrated with 

actuators/sensors under the direction of smart algorithms, have become a new era in 

active noise contro]. The work presented in this thesis has analytically demonstrated the 

fundamental use of such “smart” structures in structural sound radiation control by 

considering each element and then integrating them into a cohesive system designed to 

achieves a task: in this case, control of structurally radiated sound. As this new tech- 

nology is in its early development, there are many topics of interest for future researches. 

A few further interesting such topics are recommended as follows: 
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1. Investigation of mechanical and acoustic coupling between distributed 

actuators/sensors and structures: 

Plates, as plants, have been considered through out this thesis; however, 

other structures, used in practice such as cylinders and shells, are also of in- 

terest. In addition to including the shear and rotary inertia effects into the 

SEM for beams and plates, it is also of interest to expand the SEM into a 

three-dimensional shell problem. As discussed, near-field distributed pressure 

sensors are desirable for efficient active noise control. While the SEM is de- 

veloped particularly for the case of distributed strain actuators, the formulation 

of sensor equations is also of concern. Undoubtedly, it is necessary and ex- 

tremely important to fully understand the mechanical and acoustic coupling 

between actuators/sensors and structures so as to efficiently perform active 

noise control with compact transducers. 

2. Hybrid active and passive control of structural sound radiation 

This thesis recommends the use of compact distributed actuators 

(piezoceramic materials) to actively control sound radiation of elastic struc- 

tures. Besides developing and applying other forms of distributed actuators in 

sound radiation control, it is also considerably advantageous to combine the 

technologies of active and passive control, for example, stiffened structures 

with the use of active mean forces, composite structures with piezoelectric 

configured as damping materials integrated with embedded induced strain 

actuators and sensors, and so on. 

3. Optimal placement of distributed actuators/sensors in active control systems 

Chapter 5 : Overall Conclusions and Recommendations 251



As discussed, the location of actuators and senors plays an important role 

in the performance of active control systems. Although much literature deals 

with the optimal placement of actuators and sensors in feedback control system 

for vibrations, little, if any, deals with the optimal placement of the distributed 

actuators and sensors in feedforward control. While the technology of adap- 

tive smart material structures is growing, the placement of actuators and sen- 

sors embedded in structures is becoming an increasingly important issue. For 

future work, not only the optimal placement of actuators, as shown in Chapter 

4, but also the optimal placement of sensors should be considered in the active 

noise control approach. 

4. Single frequency control extended to broadband frequency control 

Harmonically driven single frequency disturbance is assumed for all of the 

analytical work of this thesis; however, in practice, the disturbance can be 

random or broadband in nature. It would be of a great interest to extend the 

current work to broadband frequency excitation. This could be achieved by 

using the principal of superposition of response. As shown, the optimal lo- 

cation of actuators is dependent on the excitation frequency. Therefore, to find 

the optimal location for actuators and sensors associated with random dis- 

turbances will be desirable and of great practical interest. 
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Appendix A. Nomenclature 

extensional stiffnesses 

sound pressure distribution function for control source: 

plate displacement distribution function for control source 

location of uniformly distributed pressure 

bending-twist coupling stiffnesses 

sound pressure distribution function for primary source 

plate displacement distribution function for primary source 

positive definite approximation of the Hessian 

beam width 

actuator width 

induced bending moment coefficient (SPBM) (Dimitriadis, Fuller and 

Rogers, 1989b) 

induced bending moment coefficient (CLPT) (Wang and Rogers, 

1990b) 

induced bending moment coefficient (SEM) (Chapter 2) 

size of the i-th piezoelectric actuator 
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[D] 

{4} 

(dij) 

[E] 

by
 

ak 

=
 

QO 
S
O
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sound speed in air 

bending stiffnesses 

flexural rigidity 

piezoelectric strain coefficient vectors 

piezoelectric strain coefficient for the k-th layer actuator patch 

design variables for sub-problem 

actuator extensional stiffnesses 

Young’s modulus of an isotropic plate 

Young’s modulus of the k-th actuator 

Young’s modulus of the i-th layer lamina for beam 

actuator bending-twisting stiffnesses 

amplitude of point force 

objective function 

amplitude of primary source 

amplitude vector of primary source 

constraint function 

amplitude of control source 

amplitude vector of control source 

Heaviside function 

thickness of laminate plate 

thickness of the k-th layer lamina 

moment of inertial of the beam 

functions derived from Rayleigh’s Integral solution (Roussos, 1985) 

Tad 

functions of modal force for incident plane wave (Roussos, 1985) 

time-averaged intensity in the z-direction 
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K, 

Kis Krys Ki,y = 

L 

L, 

L,, L, 

{M} 

Mar 

Ma 

Mi, 

M,, M,, My = 

m 

induced strain constant for pure bending of piezoelectric actuation 

(Chapter 2) 

function derived from Rayleigh’s Integral solution (Roussos, 1985) 

(Chapter 3) 

induced strain constant of the k-th actuator for beams 

induced strain constant of the k-th actuator for plates 

length of beam 

length of actuator 

length and width of laminate plate 

resultant moment vector 

bending moment induce by the k-th actuator 

equivalent bending moment induce by actuators 

equivalent bending moment induce by the k-th actuator 

resultant moments 

number of actuator patches 

resultant force vector 

number of accelerometers 

number of microphones 

number cf primary sources 

number cf control sources 

resultant forces 

number of laminae 

axial force induce by the k-th actuator 

equivalent axial force induce by actuators 

equivalent axial force induce by the k-th actuator 

amplitude of incident plane wave 
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Pan 

Phin 

Phan 

Pr 

Phan 

Pe 

Pr 

Pr 

[2] 

[QO] 

Qi 

(Qi) 

Qi 

Qinn 

Qin 

OQ, 

q(x,y,t) 

q 

Ri(x,y) 

(R, 8, ) 

(Ri, 8: i) 

TL 

modal force for beam lateral vibration by piezoelectric actuation 

modal force for plate lateral vibration 

modal force induced by piezoelectric actuators 

modal force induced by point forces 

modal force induced by incident plane wave 

modal force induced by uniformly distributed pressure 

sound pressure due to control sources (piezoelectric actuators) 

sound pressure due to primary sources 

total sound pressure 

material properties matrix in (x,y,z) coordinates 

material properties matrix in (1,2,3) coordinates 

material properties in (x,y,z) coordinates 

material properties of the k-th actuator in (x,y,z) coordinates 

material properties in (1,2,3) coordinates 

modal function for primary source 

modal! function for control source 

transverse shear in the normal direction 

transverse load (Chapter 2) 

amplitude of uniformly distributed pressure (Chapter 3) 

generalized location function of the k-th actuator patch 

polar coordinates of radiating field 

the i-th microphone coordinates 

plate transmission loss 

time constant 

thickness of actuator patch 

thickness of the k-th actuator patch 
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ly 

Umn 

(uo, vo, Wo) 

V 

Vr 

Vk, Ky) 

Wan 

Won 

Won 

We 

Wr 

Wi 

Wman 

(x,y, Z) 

(x, y, 2) 

Xs Vf 

(xiii 

Xiy Vi 

Xps Vp 

Xi; Xa, Vi, 2 = 

X 

X) 

Xy 

Zk 

Zit, Zh- 

thickness of beam 

plate velocity corresponding to the (m,n) mode 

plate midplane displacement, also expressed as (u, v, w) 

applied voltage to piezoceramic patch 

voltage applied to the k-th actuator patch 

wavenumber transform of plate velocity 

modal amplitude for beam lateral vibration 

modal amplitude for plate lateral vibration 

modal amplitude for control sources 

modal amplitude for primary sources 

plate lateral displacement due to control source 

plate lateral displacement due to primary source 

total plate lateral displacement 

plate lateral displacement due to the (m,n) mode 

the laminated plate coordinates (Chapter 2) 

Cartesian coordinates of radiating field (Chapter 3) 

location of point force 

position coordinates of actuator patches, (i= 1, 2), (k= 1,2, ... M) 

central location of the i-th piezoelectric actuator 

location of accelerometer 

location of piezoceramic patch 

design variables 

lower bound of design variables 

upper bound of design variables 

thickness coordinate of the k-th layer 

coordinate of actuator patch in z-direction 
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Az 

O(x — x0) 

6'(x — Xo) 

{e} 

{é} 

{e"} 

{e°} 

Ex, Ey, Vay 

Ex, Ey, xy 

Exy Eyy Vay 

E1, &2, Vi2 

eq 

Ey 

Ek 

{x} 

K 

Kn 

Kmy Kn 

Kp 

Kx, Ky 

Kyxy Ky, Kuy 

{A} 

coordinate of the k-th actuator 

the principal material coordinates for a lamina 

k/K,, wavenumber ratio 

divergence operator 

distance between point | and 2 

Delta function 

first derivative of Delta function 

total strain vector in (x,y,z) coordinates 

total strain vector in (1,2,3) coordinates 

mechanical strain vector 

midplane mechanical strain vector 

normal and shear strains 

mechanical normal and shear strains 

midplane normal and shear strains 

normal and shear strains in (1,2,3) coordinates 

assumed linear strain distributions below the actuator’s location 

assumed linear strain distributions above the actuator’s location 

magnitude of the assumed linear strain at the actuator’s location 

midplane mechanical curvature vector 

w/c, acoustic wavenumber 

primary structural wavenumber 

structural normal mode wavenumber 

free structural wavenumber 

structural modal wavenumber (Chapter 3) 

midplane mechanical curvature vector (Chapter 2) 

actuator strain vector 
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A 

Ax 

A,, Ay, Ag = 

A 

Ak 

IT; 

Thin 

I, 

dy,V/t,, free strain of piezoceramic patch 

free normal strain of the k-th actuator 

actuator normal and shear strain 

acoustic wavelength in air 

a force function for the A-th actuator 

radiated power due to incident plane wave 

radiated power due to the (m,n) mode 

total radiated power 

equivalent density of laminate (Chapter 2) 

mass density of air (Chapter 3) 

density of the k-th layer lamina 

mass density of plate 

Poison ratio of plate 

Poison ratio of actuator 

plate coordinates from edges of the plate 

transferred plate coordinates from the center of the plate 

stress vector in (x,y,z) coordinate 

stress vector in (1,2,3) coordinate 

assumed stress distribution (Chapter 2) 

average radiation efficiency (Chapter 3) 

normal stress in the k-th actuator 

the (m,n) mode radiation efficiency (Chapter 3) 

normal and shear stress 

cost function for continuous pressure sensor 

cost function for continuous acceleration sensor 

nondimenisional ratio of physical properties of beam and actuator 
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OW. 

sm 

WM mn 

¢ 
Winn 

cost function for discrete pressure sensor 

cost function for discrete acceleration sensor 

excitation frequency 

critical frequency 

natural frequency of beam 

natural frequency of plate 

modal critical frequency 

Superscript 

piezoelectric actuator 

control 

point force 

mechanical 

primary 

incident plane wave 

uniformly distributed force 

midplane 

Subscript 

actuator 

beam 

k-th layer 

normal direction 

tangential direction 
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