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An Interpolation-Based Approach to the Optimal H∞ Model Reduction

Garret M. Flagg

(ABSTRACT)

A model reduction technique that is optimal in the H∞-norm has long been pursued due

to its theoretical and practical importance. We consider the optimal H∞ model reduction

problem broadly from an interpolation-based approach, and give a method for finding the

approximation to a state-space symmetric dynamical system which is optimal over a family

of interpolants to the full order system. This family of interpolants has a simple param-

eterization that simplifies a direct search for the optimal interpolant. Several numerical

examples show that the interpolation points satisfying the Meier-Luenberger conditions for

H2 -optimal approximations are a good starting point for minimizing the H∞-norm of the

approximation error. Interpolation points satisfying the Meier-Luenberger conditions can

be computed iteratively using the IRKA algorithm [12]. We consider the special case of

state-space symmetric systems and show that simple sufficient conditions can be derived

for minimizing the approximation error when starting from the interpolation points found

by the IRKA algorithm. We then explore the relationship between potential theory in the

complex plane and the optimal H∞-norm interpolation points through several numerical ex-

periments. The results of these experiments suggest that the optimal H∞ approximation of

order r yields an error system for which significant pole-zero cancellation occurs, effectively

reducing an order n+ r error system to an order 2r+ 1 system. These observations lead to a

heuristic method for choosing interpolation points that involves solving a rational Zolatarev

problem over a discrete set of points in the complex plane.
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Chapter 1

Background

1.1 Introduction

Consider a single-input-single-output (SISO) linear time invariant dynamical system Σ de-

scribed by a system of first order differential equations with state space representation:

Σ :=

 ẋ(t) = Ax(t) + bu(t)

y(t) = cx(t) + du(t).
(1.1)

Where A ∈ Cn×n, b and cT ∈ Cn, d ∈ C, u(t) ∈ R and y(t) ∈ R. The order of Σ is n, the

dimension of A. In an ever increasing number of applications, n may become so large that

Σ as the solution to a simulation or control problem becomes computationally intractable.

The goal of model reduction is to search for a reduced-order system Σr of order r with

state-space-representation:

1
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Σr :=

 ẋ(t) = Arxr(t) + bru(t)

yr(t) = crxr(t) + dru(t)
(1.2)

having the same inputs as Σ, and satisfying ‖y(t)− yr(t)‖ small for some norm. As we

will see in the next section, one method of achieving this goal is to minimize the difference

between the full and reduced-order transfer functions in the H∞- norm. The problem of

achieving this minimization is called the optimal H∞ model reduction problem.

The basic objects involved in the H∞ model reduction problem for (SISO) systems are

complex-valued rational functions (the system’s transfer function) and their corresponding

zeros and poles. The system to be approximated can be thought of as a rational function

of very large degree, and the problem of finding a good reduced-order model of order r

essentially becomes the problem of finding a rational function of degree r so that their

difference is uniformly small in C+. The image one might start with involves hundreds of

positive and negative charges (poles and zeros of the error system respectively) distributed

throughout the complex plane. Loosely speaking, the goal is to choose a reduced-order model

so that the imaginary axis is an equipotential of this distribution of charges. In this sense,

the problem is an electrostatics problem, and so many of the tools from potential theory in

the complex plane may be applied to the H∞ model reduction problem. The fact that a

connection between model reduction and potential theory even exists is interesting in its own

right, and a continual effort to appreciate the import of this conceptual image eventually led

to the results we present here. The goal of this thesis is to present a simple and effective

method for reducing the H∞ error, and to give a conceptual account for its performance in

terms of this electrostatic analogy. This work is laid out as follows: In Chapter 1, we give

an overview of system norms and briefly survey the interpolation and SVD-based methods

of model reduction. In Chapter 2, we present a method for reducing the H∞-norm of the
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error when starting from the H2 -optimal reduced order model. In Chapter 3 we consider

the results of this method in potential theoretic terms and present a number of numerical

experiments that suggest the optimal H∞ problem can effectively be reduced to a rational

Zolatarev problem involving specific poles of the full order system.

1.2 System Norms: Measuring Error

For any reduced-order model to be worth its salt, it should be close to the full-order model

in some meaningful way. Naturally then, we should expect a system norm to measure

properties of the system which are invariant under representation. To obtain such a norm,

we first consider the external representation of the system 1.1 as the convolution operator

S that maps inputs u(t) to outputs y(t) by convolution with the impulse-response of the

system:

(Su)(t) = y(t) =

∫ ∞
0

h(t− τ)u(τ) dτ (1.3)

[1]. The kernel h(t) is the systems impulse-response and is defined as:

h(t) =

 ceAtb + δ(t)d t ≥ 0

0 t < 0
(1.4)

Taking the Laplacian of S and making use of the well-known result that convolution in the

time-domain is the same as multiplication in the frequency domain, we have:

Y (s) = H(s)U(s) (1.5)
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and solving for H(s) gives

H(s) = c(sI −A)−1b + d. (1.6)

H(s) is the system’s transfer function and is independent of the internal state-space represen-

tation of the system. Unless otherwise stated, we will always associate the system Σ with its

transfer function H(s) and the reduced order system Σr by with its transfer function Hr(s).

For SISO systems the transfer function H(s) is simply a rational function, and if the system

Σ is asymptotically stable all the poles of H(s) lie in C−. Thus, H(s) is holomorphic in C+,

and we may therefore apply standard Hardy space theory to H(s) [1]. The system norms in

the frequency domain then become the Hardy space p-norms of the transfer function H(s),

which are defined in the following way:

‖H(s)‖
Hp

=

(∫ ∞
−∞
|H(iω)|p dω

)1/p

(1.7)

The values of p we are interested in are p = 2 and p = ∞. When p = ∞ we define the

H∞-norm by

‖H(s)‖H∞ = sup
ω∈R
|H(iω)| (1.8)

Thus the H∞-norm of a SISO system is the maximum value of the modulus of the transfer

function, where the maximum is taken over the imaginary axis. The H∞-norm has a useful

interpretation in terms of the systems outputs y(t) in the time domain due to the following

result [1].

Theorem 1.2.1. Let H(s) = L(h)(s), and U(s) = L(u)(s) and suppose H(s) ∈ H∞(C+).

Then

‖H(s)‖H∞ = sup
U 6=0

||HU ||H2

||U ||H2

= sup
u6=0

||h ∗ u||L2

||u||L2

. (1.9)
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This means that the H∞-norm of H(s) gives us an upper bound on the magnitude of system

outputs in terms of the magnitude of the system inputs. If we consider the error system for

an order r approximation, its transfer function is E(s) = H(s)−Hr(s), and we therefore have

an upper bound on the magnitude of the error for all inputs of a certain magnitude. Such

an upper bound is useful in applications where the error cannot exceed a certain tolerance

at any point in the evolution of the system. We can now formally define the optimal H∞

model reduction problem.

Optimal H∞Model Reduction Problem 1.2.1. Given a stable system Σ of order n, and

r � n, find an asymptotically stable system Σ∗r of order r, such that

H∗r (s) = arg min
Hr∈H∞

‖H(s)−Hr(s)‖H∞ . (1.10)

Returning to the functional representation of Σ given by the convolution operator S we find

that the spectrum of S = Λ(S) = {H(iω) : ω ∈ R} and the set of singular values of S is

given by

Σ(S) = {|H(iω)| : ω ∈ R}

[7]. The largest entry of Σ(S) is the H∞-norm of H(s). Since the spectrum of S is a

continuum, it does not lend itself to results analogous to the Schmidt-Mirsky-Eckardt-Young

result for the optimal approximation of a matrix operator of rank n by a matrix of rank r

in the L2-induced norm defined for that operator [1]. The fact that the set of singular

values of S is a continuum is in some sense the cardinal difficulty in finding a reduced order

model which is optimal in the H∞-norm, since such a model would in turn minimize the L2

induced-norm of S − Sr. In light of this difficulty, the H∞ model reduction problem in an

interpolation framework avoids the problem of directly approximating an infinite dimensional

operator all together.
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1.3 Model Reduction in the Projection Framework

The model reduction problem in its most general form can be divided into two relatively

independent subproblems. The first problem is to develop a method for constructing reduced-

order models that preserve certain representational and intrinsic properties of the full-order

system. For example, if the H(s) has a realization H(s)=(A, b, c, d) where A is Hermitian,

we might search for method of model reduction which preserves this property. If in addition

the original system is passive, then ideally the method would preserve this intrinsic prop-

erty of the system. The second problem involves characterizing the reduced-order models

constructed by a particular method which are optimal, in the sense that they minimize the

error in some norm.

Given a system Σ, reduction in the projection framework is a method of constructing a system

Σr as in (1.2) from a Galerkin approximation to Σ [12]. In general, this can be accomplished

by choosing W ,V ∈ Rn×r, satisfying W ∗V = Ir, and defining the reduced-order model

(1.2) in terms of the projection Π = V W ∗:

Hr(s) :=

 ẋr(t) = W ∗AV xr(t) + W ∗bu(t)

yr(t) = cV x(t) + du(t).
(1.11)

The trajectory xr(t) = W ∗x(t) evolves in an r-dimensional subspace of the original state-

space. The system Σr given by (1.11) is a Petrov-Galerkin approximation in the the sense

that the error between the original state x(t) and the projected state Πx(t) is orthogonal

to W , and lies in the range of V . For more details, see [1], [12].

In this framework, the quality of the reduced order model depends directly on the choice

of the matrices V and W . Broadly speaking, the methods for choosing V and W can be

divided between two conceptual approaches: 1.) Π is chosen to guarantee the grammians of
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Σr satisfy certain properties, or 2.) Π is chosen to guarantee Σr satisfies some interpolation

conditions. The former we refer to as SVD-based methods, and the latter as interpolation-

based methods. We will return to SVD-based methods for optimal H∞ model reduction in

the next section. First we will consider model reduction by interpolation and its explicit

solution in the projection framework.

1.4 Interpolation-Based Model Reduction

Given a full-order system Σ, the jth moment of H(s) at σi is defined as c(σiI−A)−(j+1)b, and

is equivalent to the jth derivative of H(s) at the point σi. Given the points σ1, . . . , σk ∈ C the

problem of model reduction by interpolation, or moment-matching, involves finding a system

Hr(s) that matches H(s) at a prescribed number of moments for each point σi. This problem

can be generalized to matching moments of H(s) in the case where the interpolation point σ

is the point at infinity, in terms of the Taylor’s series expansion of H(s) about the point at

infinity, provided H(s) is analytic there. Trivially, moment matching can be accomplished

by computing the necessary moments and then solving for the coefficients of the numerator

and denominator polynomials of the reduced order transfer function. The problem with

this approach is that it is extremely numerically ill-conditioned, so if interpolation is to be

accomplished it must be done by some other means [9].

Rational interpolation by projection was first proposed by Skelton et al. [24],[26],[27]. Later,

Grimme [11] showed how to obtain the required projection, using the method of Ruhe.

Interpolation done by this method is much better conditioned, and avoids the problem of

computing higher order moments entirely. The rational interpolation results given here can

be extended to the general case of multi-input-multi-output (MIMO) systems, but for our

purposes, we will present only the special case of interpolation for SISO systems. Proposition



Garret M. Flagg Chapter 1. Background 8

1.4.1 guarantees Hermite interpolation by the reduced order system, which is an important

necessary condition for first-order H2 -optimal model reduction.

Proposition 1.4.1 ([12]). Consider the system Σ defined by A, b, c, a set of distinct shifts

given by {σi}rk=1, that is closed under conjugation, and subspaces spanned by the columns of

Vr, and Wr with

Ran(Vr) = span
{

(σ1I −A)−1b, . . . , (σrI −A)−1b
}
, (1.12)

Ran(Wr) = span
{

(σ1I −AT )−1c, . . . , (σrI −AT )−1c
}
. (1.13)

Then Vrand Wr can be chosen to be real matrices and the reduced order system Σr defined

by Ar=(W TVr)
−1W T

r AVr, br=(W T
r Vr)

−1W T
r b, cr=cVr is real and matches the first two

moments of H(s) at each of the interpolation points σk.

The matrices Vrand (W T
r Vr)

−1W T
r can easily be seen to correspond to V and W T as in the

projection framework, thus it becomes clear how interpolation in the projection framework

is accomplished. The general Rational Krylov Method, due to Grimme, gives us the ability

to construct Hr(s) with control over 2r distinct interpolation points [11] .

Proposition 1.4.2. Given 2r distinct points σ1, . . . , σ2r ∈ C, let

Vr = [(σ1I −A)−1b . . . (σrI −A)−1b] W T
r =


cT (σr+1I −A)−1

...

cT (σ2rI −A)−1

 .

If det(W T
r Vr) 6=0,

define Hr(s) by:
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Hr(s) :=
Ar = (W T

r Vr)
−1W T

r AVr br = (W T
r Vr)

−1W T
r b

cr = cVr dr = d.

Then H(σi) = Hr(σi), i = 1, . . . 2r.

We conclude this section with an important result in interpolation-based model reduction

that provides the necessary first-order conditions for optimality in the H2 -norm. These

conditions are generally referred to as the Meier-Luenberger conditions [12].

Theorem 1.4.3 (H2 -Optimal Interpolation Conditions [12]). Let H(s) be stable and

of order n. If Hr(s) is a stable H2 -optimal reduced order model of order r, and the poles of

Hr(s) are λ̂1, . . . , λ̂r, then H(−λ̂i) = Hr(−λ̂i) for i = 1, . . . , r, and H ′(−λ̂i) = H ′r(−λ̂i) for

i = 1, . . . , r.

To satisfy these necessary conditions requires us to force interpolation of the full-order trans-

fer function and its derivative at the mirror image of the poles of the reduced-order system.

Since we cannot know the reduced order systems poles a priori, we compute them iteratively

using the Iterative Rational Krylov Algorithm (IRKA) developed by Gugercin et al. [12].

This algorithm is a fixed point iteration, outlined as follows:

Algorithm 1.4.1 (An Iterative Rational Krylov Algorithm).

1. Make an initial selection of interpolation points σi, for i = 1, . . . , r that is closed under

conjugation and fix a convergence tolerance tol.

2. Choose Vr and Wr satisfying the hypotheses of Proposition 1.4.1.

3. while (relative change in {σi} < tol)

a.) Ar=W T
r AVr
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b.) Assign σi ← −λ(Ar) for i = 1, . . . , r.

c.) Update Vr and Wr to satisfy hypotheses of Proposition 1.4.1 with new σi’s.

4. Ar=W T
r AVr, br=W T

r b cr=crVr

It has been observed that IRKA has good convergence behavior, and tends to converge to

at least a local minimum of the H2 optimal model reduction problem. [12]

1.5 SVD-Based Approach To Model Reduction

Recall that the spectrum of the convolution operator S associated with the system Σ is a

continuum. This presents the cardinal difficulty for approaching the H∞ model reduction

problem from the position of approximating the spectrum of S: there is simply no good way

to order the importance of points in the spectrum [1]. In light of this difficulty, researchers

turned their attention to the Hankel operator associated with Σ. The Hankel operator of Σ

can be viewed as a map of previous inputs u−(t) to future outputs y+(t) and is defined in

the following way:

H(u)(t) =

∫ 0

−∞
h(t− τ)u(τ) dτ. (1.14)

The operator H is compact and bounded, and therefore has a discrete SVD [1]. The singular

values of H are called the Hankel singular values of Σ. If Σ is asymptotically stable and if

H has domain L2(R−) and codomain L2(R+), then the L2-induced norm of H is

‖H‖
L2−induced

= σmax(H) = ‖Σ‖H ≤ ‖H(s)‖H∞ . (1.15)



Garret M. Flagg Chapter 1. Background 11

The quantity ‖Σ‖H is the Hankel-norm of Σ. The Hankel singular values give a break-down

of the system states that require the most energy to control and the states that produce the

smallest amount of observable energy. This can be seen directly by considering the infinite

observability and controllability gramians P and Q respectively. If Σ=(A, b, c, d) is stable,

then the infinite observability and controllability gramians are given as the solutions of the

following Lyapunov equations:

AP + PA∗ + b∗b = 0, (1.16)

A∗Q + QA + cc∗ = 0. (1.17)

Furthermore, if Σ is completely reachable and completely observable, then P and Q are

positive definite. The minimal L2-energy required for Σ to reach a given state x is then

given by

Er = x∗P−1x,

and the largest observable L2-energy produced by the state x is given by

Eo = x∗Qx.

Therefore the states which are hard to reach or hard to control have significant components

in the direction of the eigenvectors of P with the smallest eigenvalues, and the states which

are easiest to observe have components in the direction of the eigenvectors corresponding

to the largest eigenvalues of Q. Unfortunately, these states do not necessarily coincide for

an arbitrary realization of Σ, so if we throw away states which are very hard to control

we might also be throwing away the states which are easiest to observe, and vice-versa.



Garret M. Flagg Chapter 1. Background 12

However if Q=P=Σ, where Σ is a diagonal matrix, then the states which produce the

largest observability energy are also the states which require the smallest energy to control.

It turns out that the Hankel singular values of Σ are given by the following equation:

σ(H) =
√

Λ(PQ). (1.18)

So if

P = Q = Σ, (1.19)

then the diagonal entries of Σ are precisely the Hankel singular values ofH. If the solutions to

the Lyapunov equations for a realization of the system Σ satisfy (1.19), then the realization

is called a principle-axis balanced realization. If Σ is a stable system, then it is always

possible to find a state-space transformation for which the corresponding realization of Σ is

balanced. The standard SVD-based approach to model reduction is to transform Σ to its

balanced realization and then simply throw away the states corresponding the the smallest

Hankel singular values of Σ. This method is called balanced truncation. If Hbal(s) is a

reduced order model constructed by balanced truncation, then we have the following upper

bound on the error given in terms of the discarded Hankel singular values of Σ:

‖H(s)−Hbal(s)‖H∞ ≤ 2
n∑

i=r+1

σi. (1.20)

Balanced truncation is roughly analogous to the optimal method of approximating a rank n

matrix A by a rank r matrix Ar, which is done by simply truncating A at its rth singular

value. This analogy breaks down at the error bounds that balanced truncation yields for

the H∞-norm of the error. However, it is possible to completely extend the approximation

analogy to dynamical systems if we instead replace the H∞-norm by the Hankel-norm of Σ,
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and consider the operatorH, rather than S. This is an important and nontrivial result, which

we summarize in the theorem below. The interested reader can find the full development of

this result and the related results for balanced truncation presented above in the following

references [14], [28], [1].

Theorem 1.5.1. If Σ is a stable system of order n, and Σr is stable and of order r < n,

then

‖Σ− Σr‖H ≥ σr+1.

Furthermore, there exists a stable system ΣHank of order r such that

‖Σ− ΣHank‖H = σr+1. (1.21)

and

‖H(s)−HHank(s)‖H∞ ≤
n∑

i=r+1

σi. (1.22)

This result also yields the following lower bound on the error due to an order r approximation

in the H∞-norm.

Corollary 1.5.2. If Σ is a stable system of order n and Σr is a stable system of order r,

then

‖H(s)−Hr(s)‖H∞ ≥ σr+1. (1.23)

The approximation HHank(s) is called the optimal Hankel norm approximation to Σ, and

it serves as the starting point for more complicated approximation methods involving the

solution of linear matrix inequalities that can further reduce the H∞-norm of the error

system. For example, Kavronoglu [13] actually gives a characterization of the solution to

the optimal H∞-norm model reduction problem using the techniques of matrix dilation

developed by Glover et al. Unfortunately, as Kavronoglu points out, his method of solution
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bottlenecks at the step of determining the exact lower-bound γ ≥ σr+1 on the error for all

approximations of order r. Given that our goal is to reduce the order of very large systems,

the main disadvantage to the SVD and LMI-based approaches is their dependence on the

solution of Lyapunov equations that are on the order of the full system. The work required

to solve the Lyapunov equations is on the order of n3, so for large systems this becomes

impractical. The most obvious strength of the SVD-based methods is that they yield tight

upper bounds on the approximation error in the H∞-norm.



Chapter 2

Interpolation and the system D-term

2.1 Emancipating D

As the chapter heading suggests, the hero of this chapter is the D-term of the reduced-order

system. Surprisingly enough, this one parameter does a number of things for us all at once:

it will enable us to increase the number of interpolation points we control by one, to bound

the behavior of the system at infinity away from zero, and even to avail ourselves of simple

expressions for the state-space representation of the transfer function’s inverse and zeros. But

in order to make use of D, we will first have to emancipate it from its current enthrallment

to full-order system. Anyone who doubts its servitude in the interpolation framework need

only cast a cursory glance over Hr(s) defined as in Theorem 1.4.2 and simply note that we

do not arbitrarily fix dr = d, but that this is necessary for the result to hold. How then do

we construct reduced-order models from interpolation with an independent dr-term? The

answer is to look at interpolation of a perturbed version H̃(s) of H(s) [5]. If the D-term of

H̃(s) is the D-term desired for the reduced order system, and if H̃(s) takes the same value at

the points σ1, . . . , σ2r , as H(s), then it is sufficient to apply the Rational Krylov method to

15
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H̃(s) to guarantee Hr(s) interpolates H(s) [5]. This is precisely the method of interpolation

achieved by Beattie and Gugercin in [5], which we will demonstrate below.

First, we begin with σ1, . . . , σ2r ∈ C and define Vr and Wr as in the Rational Krylov method

with respect to H(s):

Vr = [(σ1I −A)−1b . . . (σrI −A)−1b] W T
r =


cT (σr+1I −A)−1

...

cT (σ2rI −A)−1

 .

Then for any dr ∈ C, let

Ã = A− drgfT , b̃ = b− drgfT , and c̃ = c− drfT , (2.1)

where f and g are solutions to

fTVr = eT and W T
r g = e. (2.2)

and e is a column vector of r ones. Then we define the perturbed system H̃(s):

H̃(s) = c̃T (sI − Ã)−1b̃ + dr (2.3)

Note that because we put no constraints on dr, H̃(s) may only be stable, or even unstable,

even if H(s) is not, due to the fact that Ã is a rank one perturbation of A. Nevertheless,

the following result holds provided H̃(s) is analytic at the points σ1, . . . , σ2r.

Theorem 2.1.1. For Ã, b̃, c̃ as defined in (2.1),
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(σiI −A)−1b = (σiI − Ã)−1b̃ and cT (σiI −A)−1 = c̃T (σiI − Ã)−1 (2.4)

It follows that H(σi) = H̃(σi), i = 1 . . . 2r.

Proof. Observe that

(σiI − Ã)(σiI −A)−1b

= (σiI −A− drgfT )(σiI −A)−1b

= b− drgfTVrei

= b− drg = b̃

and result follows similarly for the second equality in (2.4).

Therefore we have

H(σi)− H̃(σi) = cT (σiI −A)−1b− c̃T (σiI − Ã)−1b̃− dr

= (cT − cT + drf
T )(σiI −A)−1b− dr

= (drf
T )(σiI −A)−1b− dr

= (drf
T )Vrei − dr

= dr − dr = 0.

Corollary 2.1.2. Let Hr(s) correspond to model reduction of H̃(s) as in (2.3) via the oblique

projection Π = Ṽr(W̃r
T
Ṽr)

−1W̃r
T

where
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Ṽr = [(σ1I − Ã)−1b̃ . . . (σrI − Ã)−1b̃] W̃ T
r =


c̃T (σr+1I − Ã)−1

...

c̃T (σ2rI − Ã)−1

 .

Then Hr(s) interpolates H(s) at σi. Furthermore, Hr(s) = (br−dreT )(sIr−(Ar−(W T
r Vr)

−1eeT )−1(br−

dr(W
T
r Vr)

−1e), where Ar, br, cr, are defined as in 1.4.2 applied to H(s).

Proof. Hr(s) interpolates H̃(s) by 1.4.2. From 2.1.1, it follows that H̃(σi) = H(σi) =

Hr(σi) i = 1, . . . , 2r. Also from 2.1.1 we have that Wr=W̃r and Vr=Ṽr.

So

Hr(s) = c̃Ṽr(sIr − (W̃r
T
Ṽr)

−1W̃r
T
ÃṼr)

−1(W̃r
T
Ṽr)

−1W̃r
T
b̃

= (cVr − drfTVr)(sIr − (W T
r Vr)

−1W T
r AVr+

dr(W
T
r Vr)

−1W T
r gfTVr)

−1((W T
r Vr)

−1W T
r b− drW T

r Vr)
−1W T

r g)

= (cr − dreT )(sIr − (Ar + dr(W
T
r Vr)

−1eeT ))−1(br − dr(W T
r Vr)

−1e).

For the remainder of the paper we will denote the transfer function Hr(s) of Corollary 2.1

by Hdr
r (s) to emphasize its dependence on the dr-term of its state-space realization, and use

Hr(s) only to refer to a reduced-order system that does not have any special dependence

on dr. An important result of the above characterization of Hdr
r (s) is that it gives us a

parameterization of all reduced-order models that interpolate H(s) at some fixed 2r points

in C [17]. This means that for any initial selection of interpolation points, we now have a

convenient means of searching for the Hdr
r (s) which provides the minimal error to H(s) in

the H∞-norm. Indeed, this is the basis for the method of approximation we develop here.
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A second important result of this freedom in the dr term is that it is now possible to construct

reduced-order models of order r satsifying 2r+ 1 interpolation conditions. This result is not

of small consequence; indeed, it is an essential step towards constructing reduced-order

models that are minimal in the H∞-norm. To see this, consider the following theorem due to

Trefethen [23]. In the original work, his argument was in the context of functions holomorphic

on the unit disc with singularities outside the disc, but our formulation is specific to rational

functions and is equivalent under a conformal mapping of the right half plane to the unit

disc.

Theorem 2.1.3. If H(s) is asymptotically stable, then Hr(s) is an optimal order r approxi-

mation to H(s) if H(s)-Hr(s) has at least 2r+ 1 zeros in the right half plane, and the image

of the imaginary axis under H(s)-Hr(s) is a perfect circle about the origin.

Thus, control over 2r + 1 interpolation points of the reduced-order models Hdr
r (s) allows

us, at least in principle, to satisfy sufficient conditions for H∞-optimal approximations to

H(s). With this theorem in hand we may finally begin to attack the H∞- optimal problem

from an interpolation-based approach. But before we become lost in the ecstasies of this

accomplishment, we remember the very sobering fact that the theorems above give us no

insight whatsoever into where the optimal interpolation points are located in the right half

plane. Indeed, there are very few results available that might give us insight into where these

prized points lie, with only certain notable exceptions [3]. In light of this fact, we leave off

our merrymaking for the moment, and instead begin experimenting with approximations.

Starting with a set of at least r interpolation points, Algorithm 2.1.1 gives us a simple but

computationally expensive method for obtaining the reduced order model Ĥdr
r (s) that both

satisfies the interpolation constraints and produces the smallest error in the H∞-norm.
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Algorithm 2.1.1 (Finding the Optimal Interpolant Ĥdr
r (s)).

1. Choose an initial set of 2r interpolation constraints (at least r interpolation points)

2. Compute Ĥdr
r = arg min

dr∈R

∥∥H(s)−Hdr
r (s)

∥∥
H∞

Offhand, we note that the approximation to H(s) that consistently yields small errors in

the H∞-norm is the optimal Hankel norm approximation, but since finding the interpolation

points which would give the optimal Hankel norm approximation can only be done by com-

puting the optimal Hankel norm approximation first, it would be better to choose a different

approximation to work with. Instead, we take a shot in the dark, and play with the result

of starting with the r interpolation points which satisfy the Meier-Luenberger conditions for

optimal- H2 approximations. Recall that if Hr(s) is an optimal H2 approximation to H(s),

then Hr(s) interpolates H(s) and H ′r(s) interpolates H ′(s) at the reflection of the poles of

Hr(s) across the imaginary axis.

We therefore modify Algorithm 2.1.1 slightly, replacing Step 1.) with Step 1.a) which is to

compute the interpolations points which satisfy the necessary conditions for H2 -optimality

via IRKA, and then proceed with the rest of Algorithm 2.1.1 as usual.

2.1.1 Numerical Results

Here are the results of this simple method applied to two Oberwolfach benchmark examples.

The first is an order 10 approximation to the canonical CD Player Model of order 120, and

the second an order 4 approximation to the Spiral-Inductor PEEC model of order 1434 . We

compared our method with balanced truncation, the optimal hankel norm approximation,

and the H2 -optimal approximation.



Garret M. Flagg Chapter 2. Interpolation and the system D-term 21

Table 2.1: Comparison of Order 10 Approximations to Order 120 CD Player Model

Order 10 Approx. (σ11 = 4.02× 10−2)
Rel. Er. Abs. Error D

Hdr
r (s) 8.56× 10−4 5.86× 10−2 −3.57× 10−2

Opt. Hankel 1.1× 10−3 7.41× 10−2 −8.1× 10−3

Bal. Trun. 1.3× 10−3 9.1× 10−2 0
Bal. Trun. D 1.24× 10−3 8.5× 10−2 −9.6× 10−3

Opt. H2 1.4× 10−3 9.38× 10−2 0

Table 2.2: Comparison of Order 4 Approximations to Order 1434 Spiral-Inductor Model

Order 4 Approx. (σ5 = 1.218× 10−4)
Rel. Er. Abs. Error D

Hdr
r (s) 1.51× 10−4 2.35× 10−4 1.0× 10−4

Opt. Hankel 7.93× 10−5 1.24× 10−4 1.24× 10−4

Bal. Trun. 1.78× 10−4 2.78× 10−4 0
Opt. H2 2.1× 10−4 3.3× 10−4 0

These results were obtained by computing the actual H∞-norm of the error system at each

function call of the optimization routine. However, it was possible to obtain comparable

results by computing an approximation to the H∞-norm through sampling of frequencies

along the imaginary axis. The number of samples was not exhorbinantly large (500 frequen-

cies logarithimically scaled along the imaginary axis). In the case of the CD player model, it

produced an absolute error of 5.87e-2. Thus, it is clear that the H∞-norm of the H2 -optimal

approximation can be significantly improved upon, and potentially at a small computational

cost. The approximation Ĥdr
r to the full order PEEC model yielded similar results, and we

found it was possible in both cases to nearly match the H∞-error by the optimal dr-term.

In general, significant improvements on the H2 -optimal approximation Hr(s), appeared to

depend heavily on the sensitivity of the poles of Hr(s) to the perturbation which yields the

approximation Hdr
r (s). If the approximations Hdr

r (s) were stable in only a very small range
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of values for dr relative to the lower bound on the approximation error, the approximation

Hdr
r (s) tended to yield only minor improvements. The CD player model, and PEEC model

are examples of systems for which there was significant freedom in the dr-term for the IRKA

interpolation points.

Pursuing this method of approximation in its own right, we will side step the investigation

of H∞-optimal interpolation points for the remainder of the chapter, and instead consider

whether there is a cheaper way to find the optimal dr-term. Further experiments for a variety

of hard to approximate dynamical systems makes it reasonable to choose the H2 -optimal

interpolation points as the starting point of the dr-term minimization. Therefore we will

restrict ourselves to this initialization of Algorithm 2.1.1, and further look at the special

case of finding the optimal dr-term for the class of state-space symmetric systems.

2.2 The optimal dr-term for state-space symmetric

systems

The systems that we will focus on are called state-space symmetric (SSS). A dynamical

system H(s)=(A, b, c, d) is SSS provided that A=AT , and b = cT . The relaxation

dynamics which characterize SSS systems make them particularly easy to approximate by

systems of very low order, and thus our interest lies primarily in minimizing the cost of

the model reduction. SSS systems regularly occur on a very large scale in partial element

equivalent circuits (PEEC) that arise from a partial discretization of the Maxwell’s equations

governing inductance in a circuit. The spiral inductor model we approximated in Section

2.1 provides a good example of an SSS system. The results developed here are motivated by

the repeated and consistent observation that if the interpolation points {σi}ri=1 satisfied the
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necessary conditions for H2 optimality, then H̃dr
r solved the following minimization problem

H̃dr
r = arg min

dr∈R

∥∥H(s)−Hdr
r (s)

∥∥
H∞

(2.5)

provided there exists some point iω̃ 6= 0 such that
∥∥∥H̃dr

r (s)
∥∥∥
H∞

= H̃dr
r (iω̃) = H̃dr

r (0). More-

over, the point iω̃ generally corresponded to the point at ∞. This observation suggested

that finding H̃dr
r (s) was equivalent in most cases to finding the the value of dr-term for which

Hdr
r (0) = dr. Searching for the dr-term which satisfied this condition would therefore allow

us to avoid the very costly computation of the H∞-norm at each step of the minimization

routine.

We first consider SSS systems having the zeros-interlacing-the-poles (ZIP) property.

Definition 1. A system

H(s) = K

n−1∏
i=1

(s− zi)
n∏
j=1

(s− λj)
(2.6)

is a strictly proper ZIP system provided that λ1 < z1 < λ2 < z2 < λ3 < · · · < zn−1 < λn. If

H(s) is minimal and |H(∞)| = K > 0 then H(s) is ZIP provided that it can be factored as:

H(s) = K + P (s)/D(s), (2.7)

where P (s)/D(s) is a strictly proper ZIP system.

ZIP systems have a number of interesting simplifying properties which we will find useful in

our search to find the approximation Hdr
r (s) that produces the minimal error. We first prove

a new result which shows every state-space symmetric system with real coefficients is either a

ZIP system, or reducible to a minimal system which is ZIP. We will then exploit this pole-zero
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structure to give a new proof of the important result that if H(s) is ZIP, then ‖H(s)‖H∞ =

|H(0)|. First, we will need a number of alternative but equivalent characterizations of ZIP

systems summarized in the following theorem due to B. Srinivasan, and P. Myszkorowski

[21].

Proposition 2.2.1 (Characterization of ZIP Systems [21]). The following statements

are equivalent:

(i) H(s) is a strictly proper ZIP system

(ii) H(s) can be written as

H(s) =
n∑
i=1

bi
s− λi

(2.8)

with λi < 0, bi > 0 λi 6= λj ∀i 6= j.

(iii) H(s) has a diagonal realization H(s)=(A, b, c, 0), where A=diag(λ1, λ2, . . . , λn), and

bT = c = [
√
b1,
√
b2, . . . ,

√
bn].

(iv) H(s) has a SSS principle axis balanced realization.

Lemma 2.2.2. If H(s) is SSS and H(∞) = 0, then H(s) is minimal if and only if the

poles of H(s) are distinct. Further, every SSS system H(s) satisfying H(∞) = 0 has a SSS

minimal realization with distinct poles, and is therefore a strictly proper ZIP system.

Proof. Suppose to the contrary that H(s)=(A, b, c, d) is SSS and minimal and has a

pole λ∗ of order k > 1. A is symmetric means it is normal, and therefore has a unitary

diagonalization A=UTΛU . Thus, H(s) = (Λ, b̃, b̃T ), where b̃(i) =
√
|UTb(i)|, and b(i)

denotes the ith entry of the vector b. Therefore H(s) can be written as:
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H(s) =
n∑
i=1

˜b(i)
2

s− λi
(2.9)

=
k∑
l=1

b̃(il)
2

s− λ∗
+

n−k∑
j=1

b̃(ij)
2

s− λij
(2.10)

=

∑k
i=1 b̃(il)

2

s− λ∗
+

n−k∑
j=1

b̃(ij)
2

s− λij
(2.11)

Thus, H(s) is not minimal, which is a contradiction. Now suppose that the poles of H(s)

are all distinct. Then, since A is normal, H(s) can be written as in (iii) of Proposition 2.2.1,

and is therefore minimal. It follows that if H(s) is not minimal, it may be reduced to a

minimal system given by equation 2.11 with a SSS realization given by (ii) of Proposition

2.2.1, and is therefore a strictly proper ZIP system.

Lemma 2.2.2 implies that any properties which hold for the transfer function of a ZIP system

must hold for the transfer function of a SSS system. We make use of this fact in the proof

of Theorem 2.2.3 given below.

Theorem 2.2.3. If H(s) is asympotically stable and SSS with H(∞) = 0, then ‖H(s)‖H∞ =

|H(0)|

Proof. We may assume by Lemma 2.2.2 that H(s) is ZIP in the sense that it has a minimal

realization which is ZIP. Thus, it suffices to show that |H(iω)| has a global max at ω = 0.

Let f(ω) = log(|H(iω)|). Then

f(ω) = log(K) +
n−1∑
i=1

log(|iω + zi|)−
n+1∑
j=1

log |(iω + λi)| (2.12)
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and therefore

f ′(ω) =
n−1∑
i=1

ω

z2
i + ω2

−
n∑
j=1

ω

λ2
i + ω2

. (2.13)

It is clear from (2.13) that f ′(0) = 0, and the ZIP property guarantees that for ω > 0,

f ′(ω) < 0, since ω
ω2+z2i

< ω
ω2+λ2

i
. Multiplying through this inequality by -1, we see that when

ω < 0, f ′(ω) > 0. Thus f(0) is a global maximum, hence |H(0)| is the global maximum,

and therefore |H(0)| = ‖H(s)‖H∞ .

The results of [16] show that if H(s) is SSS and Hr(s) is computed by balanced truncation,

or if Hr(s) is an optimal Hankel norm approximation to H(s) then Hr(s) is also SSS, and

therefore ZIP. Ideally then, we would like to find reduced order models by interpolation that

also preserve the ZIP property. When H(s) is SSS and the shifts used to construct Vr and

Wr are equal, then Vr=Wr. Let QrR = Vr be the QR decomposition of Vr. Then we may

use Qr as our projection matrix in place of Vr by Proposition 1.4.1.

The reduced order model Hr(s) constructed from the Rational Krylov method then becomes

Hr(s) = bTQr(sI −QT
r AQr)

−1QT
r b (2.14)

and Hr(s) is clearly SSS. The family of systems Hdr
r (s) parameterized by the dr-term which

interpolate H(s) at the same 2r interpolation points as Hr(s) can easily be written in terms

of the projection QrQ
T
r . Let fQ and gQ be the solutions to

fT
QQr = eTR−1, QT

r gQ = R−Te, (2.15)
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and let

eQ = R−Te. (2.16)

Then substituting these expressions into the original equation for Hdr
r (s) gives:

Hdr
r (s) = (bTQrR− drfTQrR)(sRTQT

r QrR− (2.17)

RTQT
r AQrR− drRTQT

r gfTQrR)−1(RTQT
r b− drRTQT

r g) + dr

= (bTQr − dreTQ)(sI − (QT
r AQr + dreQeTQ))−1(QT

r b− dreQ) + dr. (2.18)

We summarize these results in the following proposition.

Proposition 2.2.4. Given a stable, order n, SSS system with transfer function H(s) having

simple poles, every reduced-order system Hr(s) of order r, constructed by a one sided projec-

tion Qr having orthonormal columns, is also state-space symmetric and has the ZIP prop-

erty. If Hr(s) has a minimal state space realization Hr(s) = (QT
r AQr,Q

T
r b, bTQr, 0), then

the perturbed system Hdr
r (s) with state space realization Hdr

r (s) = (QT
r AQr + dreeT ,QT

r b−

dre, b
TQr − dre, dr) is also state-space symmetric and ZIP, but not strictly proper.

Proof. It is clear that both Hr(s) and Hdr
r (s) have state-space symmetric realizations. It

only remains to show that their respective poles are simple, and the proposition follows by

Lemma 2.2.2. Since the poles of H(s) are simple, the eigenvalues of A are distinct, and since

QT
r AQ = Ar is a compression of A, its eigenvalues are distinct by the Cauchy interlacing

theorem. Similarly since the eigenvalues of Ar are distinct, then by the Weyl Interlacing

theorems the eigenvalues of Ar+dreeT are distinct, and provided Ar+dreeT < 0 the system

remains stable. Hdr
r (s) is therefore ZIP, but not strictly proper, since it can be written as a

strictly proper ZIP system plus its D-term.

In the SSS case, the necessary conditions for optimal H2 interpolation points force Vr=Wr
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in IRKA. Thus if H(s) is SSS, and Hr(s) is a reduced order model computed by IRKA, then

Hr(s) is also SSS. It follows that Hr(s) inherits all the ZIP properties of the original system.

Moreover, if Hr(s) is computed from IRKA, we may view it as the result of a compression of

the full order state-space by taking an orthonormal basis for Vr for the underlying projection,

so Hr(s) is a special case of a more general method of model reduction done by compression.

For model reduction done by compression we obtain the following upper bound on the H∞-

norm of the reduced order model.

Lemma 2.2.5. If A ∈ Rn×n is hermitian negative definite and QT
r AQr is a compression of

A, then AQ = −A−1 + Qr(Q
T
r AQr)

−1QT
r ≥ 0 and if rank(Qr)=r, then rank(AQ) = n− r.

Proof. Let -A= LLT be the Cholesky factorization of -A. Then

AQ = L−TL−1 −Qr(Q
T
r LLTQr)

−1QT
r .

Factoring out L−T on the left and L on the right we have

AQ = L−T (I −LTQr(Q
T
r LLTQr)

−1QT
r L)L−1.

By a theorem in [18],

(I −LTQr(Q
T
r LLTQr)

−1QT
r L)

is positive semi-definite and of rank n− r, and the theorem follows.

Corollary 2.2.6. If H(s) is SSS and Hr(s) is a reduced order model constructed from a

compression of the full order state-space, then ‖Hr(s)‖H∞ ≤ ‖H(s)‖H∞

Proof. Both H(s) and Hr(s) are SSS, and therefore H(0) = ‖H(s)‖H∞ and Hr(0) =
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‖Hr(s)‖H∞ . Thus, it suffices to show that H(0)−Hr(0) ≥ 0.

H(0)−Hr(0) = −bTA−1b + bTQr(Q
T
r AQr)

−1QT
r b (2.19)

= bT (−A−1 + Qr(Q
T
r AQr)

−1QT
r )b (2.20)

≥ 0 by Lemma 2.2.5.

With this result, and the two lemmas that follow we will be able to produce the main result

of this section.

The first lemma is a curious property of IRKA applied to SSS systems.

Lemma 2.2.7. Suppose Hr(s) is computed by IRKA applied to the full order SSS system

H(s). Assume that in place of Vr, we use Qr as our projection basis, and let Ar, eQ, br be

as in 2.18. Then eTQA−1
r br=0 if r is even and -2 if r is odd.

Proof. From [4] we have that

Ar = (Σ− qeT ) (2.21)

Where Σ=diag(σ1, . . . , σr), e is a column of r ones and q = (W T
r Vr)

−1V T
r b, with Wr and

Vr defined as in the Rational Krylov method. It follows from 2.21 that

I −A−1
r Σ−A−1

r bre
T = 0 (2.22)

eT + eTA−1
r Σ− eTA−1

r bre
T = 0. (2.23)

If eT is a left eigenvector of A−1
r Σ with eigenvalue -1 for r even and 1 for r odd the Lemma



Garret M. Flagg Chapter 2. Interpolation and the system D-term 30

follows. Making use of the Shurman-Morrison identity we have:

−eTA−1
r Σ = eT (Σ−1 +

1

1− eTΣ−1q
Σ−1qeTΣ−1)−Σ−1

= −(eT +
eTΣ−1qeT

1− eTΣ−1q
)

=
−eT

1− eTΣ−1q
. (2.24)

Thus for eT to be a left eigenvector of A−1
r Σ with eigenvalue -1 for r even, 1 for r odd,

eTΣ−1q must be 0 for r even and 2 for r odd. From [4] we have that qi = p(σi)/w
′(σi) where

p=det(Iz − Σ) is a monic polynomial of degree r, and w′(σi) = Πr
j 6=i(σi − σj). Since p is

monic and of degree r, p(z) − zr is a polynomial of degree r − 1 and is therefore uniquely

determined by the points σ1, . . . , σr. If w(z) = Πr
i=1(z − σi) then we have that

p(z)− zr =
r∑
i=1

(p(σi)− σri )(
w(z)

w′(σi)(z − σi)
) (2.25)

=
r∑
i=1

p(σi)w(z)

w′(σi)(z − σi)
−

r∑
i=1

σriw(z)

w′(σi)(z − σi)
. (2.26)

Evaluating p(z) at 0 we have:

Πr
i=1σi = ((−1)r+1Πr

i=1σi)(
r∑
i=1

p(σi)

w′(σi)σi
−

r∑
i=1

σr−1
i

w′(σi)
) (2.27)

implies that:

(−1)r+1 = eTΣ−1q −
r∑
i=1

σr−1
i

w′(σi)
. (2.28)
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Finally we reduce the conclusion to demonstrating that

r∑
i=1

σr−1
i

w′(σi)
= 1. (2.29)

This amounts to demonstrating that 2.29 is a rather odd way of writing det(V)/det(V),

where V is the Vandermonde matrix

V =



1 σ1 σ2
1 . . . σr−1

1

1 σ2 σ2
2 . . . σr−1

2

1 σ3 σ2
3 . . . σr−1

3

...
...

...
. . .

...

1 σ2
r σ3

r . . . σr−1
r


. (2.30)

Since all the shifts are distinct, this determinant is nonzero, so det(V)/det(V) makes sense.

r∑
i=1

σr−1
i

w′(σi)
=

r∑
k=1

(−1)r+1σr−kk

k−1∏
j=1

(σk − σj)
r∏

j=k+1

(σj − σk)
(2.31)

thus, for a fixed term k∗ and k < k∗, the terms in the denominator of k that are absent

from k∗ are
r∏

j=k+1

(σj − σk), j 6= k∗ Assumming that terms missing from the denominator of

k∗ are added sequentially by first adding terms for k = 1, then for k = 2, ... and so on then

for k > k∗, terms of
k−1∏
j=1

(σj − σk) will already be included for each j < k and we need only

include the terms
r∏

j=k+1

(σj − σk) in the denominator of the k∗th summand. Thus, arranging

this sum with a common denominator gives:
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r∑
k=1

σr−1
k

w′(σk)
=

r∑
k=1

(−1)r−kσr−1
k

∏
1≤i<j≤r,i 6=k

(σj − σi)∏
1≤i<j≤r

(σj − σi)
=

r∑
k=1

(−1)r−kσr−1
k

∏
1≤i<j≤r,i 6=k

(σj − σi)∏
1≤i<j≤r

(σj − σi)

(2.32)

= det(V)/ det(V). (2.33)

Where 2.33 follows from the well known equality det V =
∏

1≤i<j≤r
(σj − σi) which occurs in

the denominator, and the fact that if we consider the minors of V found by eliminating the

rth column and kth row of V, these minors are r− 1 by r− 1 Vandermonde matrices, so for

a fixed k, the determinant of the kth minor is given by
∏

1≤i<j≤r,i6=k
(σj − σi). Thus we may

view the sum in the numerator as computation of det V by expansion by minors, and the

result follows.

This curious result is crucial to understanding the behavior of the function f(dr) = Hdr
r (0).

We summarize some of the key properties of f(dr) in the lemma below.

Lemma 2.2.8. Let Hr(s) be computed from IRKA. Define f(dr) = −(bTr − dre
T )(Ar −

dreet)−1(br − dre), where f(0) = Hr(0). Then f ′(0) = 0, f is convex, and for dr > 0,

f(dr) > f(−dr).

Proof. Let

v = bTr (Ar + dreeT )−1e (2.34)

and

u = −eT (Ar + dreeT )−1e. (2.35)

.
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Then

f ′(dr) = v2 + 2v + 2druv + 2dru+ d2
ru

2, (2.36)

so f ′(0) = (bTr A−1
r e)2 + 2bTr A−1

r e. By Lemma 2.2.7, f ′(0) is therefore 0, regardless of the

parity of the shifts.

f ′′(dr) = 2uv2 + 4uv + 4dru
2v + 2u+ 4dru

2 + 2d2
ru

3 (2.37)

Using the fact that

v = bTr (Ar + dreeT )−1e = bTr A−1
r e− drb

T
r A−1

r eeTA−1
r e

1 + dreTA−1
r e

,

due to the Shurman-Morrison identity, we see that v = 0 whenever r is even. Note that

u > 0 for all dr since(Ar + dreeT ) is negative definite. Therefore, for an even number of

shifts, f ′′(dr) is the sum of nonnegative terms and f is convex. When r is odd,

v = −2 +
2dre

TA−1
r e

1 + dreTA−1
r e

,

and

u = −eTA−1
r e +

dr(e
TA−1

r eeTA−1
r e)

1 + dreTA−1
r e

.

Substituting u and v into the equation for f ′′ and simplifying we find that

f ′′(dr) =
−2eTA−1

r e

(1 + dreTA−1
r e)3

> 0

for all dr in the domain of f . Hence, f is convex regardless of the parity of the shifts, and

since f ′(0) = 0, f is increasing for dr > 0 and decreasing for dr < 0. Now suppose dr > 0. If
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r is even, then after some tedious algebraic simplification we have

f(dr)− f(−dr) =
d3
r(e

TA−1
r e)2

1 + dreTA−1
r e

+
d3
r(e

TA−1
r e)2

1− dreTA−1
r e

> 0

for all dr in the domain of f , since dr is in the domain with Ar + dreeT negative definite is

equivalent, by the Shurman-Morrison identity, to 1+dre
TAre > 0 for dr > 0. If r is odd,

then again after simplifying we have

f(dr)− f(−dr) =
(1 + dr)d

3
r(e

TA−1
r e)3(1− eTA−1

r e)

−1− dreTA−1
r e

> 0

for all dr in the domain of f .

In broad strokes the picture afforded by the above lemmas is that finding the optimal dr-term

involves sliding the the value of H(0)−Hdr
r (0) down by increasing the value of dr which at the

same time increases |H(∞) −Hdr
r (∞)|. Assuming the error at these two points dominates

the error along the imaginary axis for all values of dr minimizing the error then amounts to

finding the dr-term for which the error system at zero is equal to the error system at infinity.

When the error at some finite point along the imaginary axis grows larger than the value of

the error at infinity, we obtain the result that to match the error at 0 with the error at this

interior point is locally optimal.

Theorem 2.2.9. Let σr+1 be the r + 1th Hankel singular value of the SSS system H(s).

Let Hr(s)be a reduced ordered model computed by IRKA. If dr* ≥ σr+1 and H
d∗r
r (s) is

asymptotically stable with
∥∥∥H(s)−Hd∗r

r (s)
∥∥∥
H∞

= d∗r, and H(0) − H
d∗r
r (0) = d∗r, then d∗r =

arg min
dr∈R

∥∥H(s)−Hdr
r (s)

∥∥
H∞

.

Proof. Suppose 0 ≤ D < d∗r and
∥∥H(s)−HD

r

∥∥
H∞
≤
∥∥∥H(s)−Hd∗r

r (s)
∥∥∥
H∞

. From Lemma
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2.2.8, HD
r (0) < H

d∗r
r (0), so it follows that H(0) − HD

r (0) > H − H
d∗r
r (0) = d∗r. But this

contradicts the original assumption. If −d∗r ≤ D ≤ 0, we have H(0) − HD
r (0) > H(0) −

H−Dr (0) > H(0)−Hd∗r
r (0), also by Lemma 2. Hence, d∗r = min

dr∈R

∥∥H(s)−Hdr
r (s)

∥∥
H∞

.

Theorem 2.2.10. Suppose Hr(s) is a reduced order model of H(s) computed by IRKA, and

let Edr = H(s) − Hdr
r (s). Let D0 = {dr ≥ 0 : Edr(0) = ‖Edr(s)‖H∞ and Hdr

r (s) is stable}

and assume D0 6= ∅. If d∗r = supD0 then d∗r ∈ D0, and there exists some point iω∗ such

that Ed∗r (0) = Ed∗r (iω∗) = ‖Edr(s)‖H∞. Furthermore, if −d∗r < dr < d∗r, then ‖Edr(s)‖H∞ >∥∥Ed∗r (s)
∥∥
H∞

.

Proof. Let Hdr
r (s) = H(dr, s) = f(dr)g(dr, s)h(dr) where f(dr) = cr − dre

T , g(dr, s) =

(sI −Ar − dreeT )−1 and h(dr) = br − dre. h and f are clearly continuous functions of dr,

and g is continuous as a function of dr due to the fact that the eigenvalues of Ar + dreeT

are continuous functions of dr. Thus H(dr, s) is a continuous function of dr. The poles of

Hdr
r (s) are increasing as dr increases, but since H

d∗r
r (s) is stable, H(dr, s) is holomorphic in a

full half-pslane for Re(z) > µ and µ < 0. Thus, H(dr, s) is holomorphic along the imaginary

axis. It follows that for some ε > 0, if dr ∈ [d∗r−ε, d∗r+ε] then the curve |Edr(iω)| = |H(iω)−

H(dr, iω)| is homotopic to the curve |Ed∗r (iω)|. So suppose that |Ed∗r (0)| − |Ed∗r (iω)| = s < 0

for some ω ∈ R+. Let δ < max{ε, s/2}. Then there exists some dr ∈ D0 such that

| |Edr(iω)| − |Ed∗r (iω)| | < δ and Edr(0) < Ed∗r (0) + δ by Lemma 2.2.8 and the fact that we

can choose dr ∈ [d∗r − δ, d∗r + δ]. But | |Edr(iω)| − |Ed∗r (iω)| | < s/2 ⇒ Edr(0) < |Edr(iω)|,

which contradicts our assumption that dr ∈ D0. Thus, |Ed∗r (0)|− |Ed∗r (iω)| = s ≥ 0, ∀ω ∈ R,

and d∗r ∈ D0.

|Edr(s)|2 is a rational function, so it oscillates a fixed number of times depending on the

zeros of Hdr
r (s). By Rouche’s Theorem, the zeros of Hdr

r (s) are continuous in dr, so for dr

sufficiently close to d∗r, the local extrema of Edr(s) will occur in a neighborhood of the local

extrema of Ed∗r (s). Let Ed∗r (0) − Ed∗r (iωmax) = u > 0 where iωmax is the next largest local
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maximum compared to Ed∗r (0). Then choose δ > 0 so that if |d∗r − dr| < δ → ||Edr(iω)| −

|Ed∗r (iω)|| < u/2. Then for any dr in the interval, (d∗r, dr + δ), dr ∈ D0 which contradicts

the assumption that d∗r = supD0. Thus u = 0. Finally, it is clear that the H∞-norm

of any Edr(s) with −d∗r < dr < d∗r is at most Edr(0), and for every dr in this interval

Edr(0) > Ed∗r (0) = ‖Edr∗(s)‖H∞

These results suggests a cheap and practical method for searching for the optimal Hdr
r (s)

that does not require computing the H∞ norm. Namely, we start by finding the dr-term

that satisfies the condition H(0)−Hdr
r (0) = dr We then sample the imaginary axis one time,

comparing the values of the error system at the sample points to the values at 0 and infinity.

If there is some value in the interior of the interval from 0 to infinity which is larger than the

value at the endpoints, we take a small collection of sample points in a neighborhood about

this maximum, and decrease the dr-term until the value of the error system at zero is equal

to the max over this collection of sample points. Some examples below show the results of

this method.

Example 2.2.1. Let H(s)=(A,b,c, 0) of order 400 be SSS where the eigenvalues of A

are logarithmically spaced in the interval [-1e-1,-1e-3], and b=ones(400,1). This system was

chosen due to the fact that the Hankel singular values of H(s)decay slowly, so it more difficult

to approximate. The order of approximation is r = 4. A system H̃dr
r (s) was found which

satisfied the conditions of Theorem 2.2.9, and is therefore optimal over the family of systems

Hdr
r (s). The H∞-norm of the error was

∥∥∥H(s)− Ĥdr
r (s)

∥∥∥
H∞

= .0491, and σ5 = .0436. We

show the magnitude bode plot of error function H(s) − H̃dr
r (s) along with the error plots

for the optimal Hankel norm approximation and the approximation computed by balanced

truncation in Figure 2.1.

Example 2.2.2. Here the full order system to be approximated is the spiral inductor system

PEEC model. This system has a minimal SSS realization of order 1434, making it moderately
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Figure 2.1: Comparison of the Error Systems
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large and therefore expensive to reduce. Here again, the order of approximation was r = 4.

The reduced order model Ĥdr
r (s) that forced H(0) − Ĥdr

r (0) = H(∞) − Ĥdr
r (∞) did not

satisfy the conditions of Theorem 2.2.9, so we instead searched for the system H̃dr
r (s) that

minimized the value of the error system at 0 and at some point in (0,∞). The H∞-norm of

the error was
∥∥∥H(s)− Ĥdr

r (s)
∥∥∥
H∞

= 1.45×10−4, and σ5 = 1.38×10−4. The bode plot of the

error systems for the approximations Ĥdr
r , and H̃dr

r (s), along with the optimal Hankel norm

approximation and the approximation computed by balanced truncation is shown in Figure

2.2. It is clear from the bode plot that the system Ĥdr
r yields a smaller approximation error

than the system H̃dr
r (s), as is expected from theorem 2.2.10. Note that because the linear

solves required in the method were expensive, only 30 points along the imaginary axis were

sampled, and only 10 were used in the maximum of the other 30, yielding good results.
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Figure 2.2: Comparison of the Error Systems For PEEC Model
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The results presented in this section lead to a numerically efficient method for constructing

reduced order models of SSS systems that are locally H∞-optimal. Starting from the locally

H2 -optimal approximation, Hr(s), we found the nearby system H̃dr
r (s) that minimized the

H∞-norm of the error over all stable reduced order models Hdr
r (s) satisfying the same inter-

polation conditions as Hr(s). Surprisingly, this tweaking of the approximation Hr(s) yields

an approximation that in many cases is nearly optimal. The method’s dependence on the

dynamics of SISO SSS systems does not in principle lend itself to generalization, but it does

offer a further advantage in the pursuit of general H∞ optimal interpolation conditions by

providing examples of interpolation zeros which yield nearly optimal results. Analyzing these

interpolation points may offer insight into the general problem of H∞ optimal interpolation

points. To that end, we now turn to an empirical investigation of general patterns in the

nearly optimal interpolation points.



Chapter 3

How Then Shall We Balance Our

Charges?

3.1 Potential Theory and Rational Interpolation in the

Complex Plane

The connections between rational interpolation and potential theory in the complex plane

are well known and have been developed at length by Walsh, Bagby and others [25], [20].

Its relevance to the optimal H∞ model reduction problem is easily motivated by considering

the logarithm of the modulus of the error system H(s)-Hr(s)=E(s):

39
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log |E(s)| = log


n+r∏
i=1

|(s− zi)|

n+r∏
k=1

|(s− λk)|

 (3.1)

=
n+r∑
i=1

log(|s− zi|)−
n+r∑
k=1

(s− λk) (3.2)

The singularities of the this sum occur at the zeros and poles of the E(s), and 3.2 can be

thought of as the sum of the potentials in the complex plane associated with point charges

of amplitude -1 located at the zeros and of amplitude 1 located at the poles. Recall from

Theorem 2.1.3 that for Hr(s) to be optimal it is sufficient for E(s) to be constant along the

imaginary axis, and have at least 2r+1 zeros in the C+. This translates into the requirement

that the sum (3.2) be constant along the imaginary axis, hence the imaginary axis is an

equipotential of the the charge distribution. We can see that this occurs even for nearly

optimal approximations. Figure 3.1 shows the equipotentials of the error system for an

order 4 optimal Hankel norm approximation to an order 10 SSS system H(s). The poles

of H(s) are randomly distributed through the interval (-1, 0), and the approximation is

essentially optimal (numerically speaking).

In so far as the optimal H∞-problem is difficult (and it is), the problem of inducing an

equipotential along the imaginary axis given a fixed distribution of charges in the left half

plane is equally difficult. Following a layman’s derivation of this problem’s connection to

potential theory inspired by [8], we can simplify this problem somewhat by taking the limit

as n→∞ of a rescaled problem:

f(z) = n−1
n∑
i=1

log |z − zi| − n−1

n∑
k=1

log |z − λk|+ C
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Figure 3.1: Equipotentials of the Error System
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In the limit as n→∞ we imagine a unit positive charge distributed in a continuous fashion

through the left half plane and a unit negative charge distributed through the right half plane

and and assume there is no conductivity over the imaginary axis. This situation is analogous

in the physical setting to charging an electric capacitor. The aim is to minimize the max

over the imaginary axis of f(z). The negative charge settles to an equilibrium distribution

over the set S− where all the poles lie in the left half plane and the positive charge settles to

an equilibrium over the set S+ where all the zeros lie in the right half plane. The sets S− and

S+ can be viewed as the positive and negatively charged plates of the capacitor. Formally,

we assume that the set Sc = S− ∪ S+ is a doubly connected set, and in the language of

potential theory it is called a condenser [10]. In a process called balayage this distribution

of charge is ”swept” to the boundaries of the condenser so that the equipotentials of the

charge distribution remain the same when viewed from the compliment of the Sc [8]. It has
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been shown by [25], and [2] et al that it is possible to choose discrete sets of points along the

boundary of Sc, such as the Bagby-Leja, or Walsh-Fekete points, which are asymptotically

equivalent to the equilibrium charge distribution over the boundary. It follows that these

points would be asymptotically minimal interpolation points in the H∞-norm. For a given

order of approximation r, we can therefore view the 2r + 1 interpolation points which are

optimal, or nearly optimal, as the set of point charges which induce a nearly equivalent

equipotential profile to the full distribution of charges. In the same spirit, a reasonable

heuristic strategy would be to find the r+ 1 points in S− which are ”equivalent” to the total

charge distribution in S−, and then match both these r + 1 points, and the r reduced order

poles with interpolation zeros on the boundary of S+. Thus we are effectively replacing the

spectrum of A with r + 1 equivalent charges and matching these equivalent charges in the

right half plane. This strategy is plausible provided that the remaining interpolation zeros

do not make any significant contribution to the total potential. In some sense then, the

problem depends on interpolation zeros which we have no a priori knowledge of, but are

ancillary to the enforcement of the 2r + 1 interpolation conditions we control. We will call

these zeros the ancillary zeros of the error system. The question that naturally arises is

where these ancillary zeros occur? Plausibly, if one could in some way anticipate these zeros

of the error system in a manner relatively independent of the interpolation zeros, one would

then be free to choose the appropriate interpolation points accordingly. With this possibility

in mind, we start with the empirical observation that for a nearly optimal approximation,

the n− r− 1 ancillary zeros of the error system essentially cancel n− r− 1 poles of the full

order system, in a sense reducing the error system to an order 2r+ 1 rational function. This

observation is hinted at qualitatively Figures 3.2-3.5, which show the ancillary zeros and

full system poles of several different benchmark models. The zeros in these figures plainly

capture the spectrum of the full order system coefficient matrix.
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Figure 3.2: Poles of 2-D beam model and ancillary zeros of order 20 optimal Hankel norm
approximation
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Figure 3.3: Poles of CD Player model and ancillary zeros of order 8 optimal Hdr
r (s) approx-

imation
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Figure 3.4: Poles of International Space-Station Model Order 270 and Ancillary Zeros of
Order 4 Optimal Hankel Norm Approximation
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A further experiment that lends credibility to our observation involves measuring, for a

given model, the distance from the ancillary zeros of a nearly optimal approximation to

their nearest neighbors in the set of full-system poles.

Let Z = {zi, i = 1, . . . , n + r} and Λ = {λi, i = 1, . . . , n + r}. If Z ( C−, then set

Z = Z̃ = (Z −C+)∪−(Z −C−). Assume that each zi ∈ Z may be uniquely paired with its

nearest neighbor λk ∈ Λ, and order the λk’s so that the nearest neighbor of zi is λi. Let

φi = zi − λi (3.3)
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Figure 3.5: Poles of Eady Model Order 548 and Ancillary Zeros of Order 10 Optimal Hankel
Norm Approximation
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Writing the expression for the error according to this ordering we obtain:

log |E(iω)| = log |β|+ log


n+r∏
i=1

|(iω − zi)|

n+r∏
k=1

|(iω − λk)|

 (3.4)

=
n+r∑
i=1

log |1− φi
iω − λi

|, (3.5)

where β is the value of the system at infinity. For any point iω, negative terms of the sum

can only reduce the total error at the point, so to get a crude sense of how large the sum
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might become, we need only look at the positive terms. Each term of the sum reaches a

unique maximum at some point along the imaginary axis, roughly when iω − Im(λi) = 0.

Let Mi = log |1 − φi

−Re(λi)
|. Focusing on the contribution to the sum due to the ancillary

zero-pole pairings, we might expect that the effect of near pole-zero cancellation on the total

contribution would be on the order of

M =
∑

k,Mik
>0

Mik (3.6)

and that this contribution be substantially less than the value of log |β|. Indeed, this is in

general what we find when the approximation is nearly optimal. In the table below, we

looked at the optimal Hankel norm and balanced truncation approximation to the ISS-1R

model for orders 2 through 20, omitting the odd valued orders because of the slow decay

of the Hankel singular values. For each order We compared the value of M for the optimal

Hankel norm and balanced truncation approximations for each order. Note that the order 18

approximation seems to be an exception to the trend, however we found that in this case the

ancillary zeros which appeared to be farthest from all full-system poles had a unique nearest

neighbor in the set of reduced order poles. Adding these poles into the collection of error

system poles and recomputing M yielded a result consistent with the other approximations.

The value of M for the balanced truncation could not be similarly reduced in a significant

way.



Garret M. Flagg Chapter 3. Location of Interpolation Points 48

Table 3.1: Contribution of Ancillary Zeros to Error for International Space Station Model

Order Lower Bound log(βH) log(MH) log(Mbal)
2 1.69× 10−2 -4.08 5.59× 10−7 26.54
4 5.31× 10−3 -5.28 1.76× 10−6 32.8
6 1.50× 10−4 -6.5 6.12× 10−6 32.8
8 5.93× 10−4 -7.43 1.20× 10−5 31.5
10 3.21× 10−4 -8.04 8.73× 10−3 23.3
12 2.52× 10−4 -8.419 3.98× 10−2 20.6
14 1.13× 10−4 -9.11 0.128 43.79
16 1.10× 10−4 -9.12 8.54× 10−2 35.3
18 1.08× 10−4 -9.36 11.37 37.7
20 1.00× 10−4 -9.206 0.14 38.8

Table 3.2: Comparison of error norms for approximations of table 3.1

Order Lower Bound ‖H(s)−HH(s)‖H∞ ‖H(s)−Hbal(s)‖H∞
2 1.69× 10−2 1.7× 10−2 3.37× 10−2

4 5.31× 10−3 5.32× 10−3 1.06× 10−2

6 1.50× 10−4 1.53× 10−4 3.00× 10−3

8 5.93× 10−4 6.12× 10−4 1.20× 10−3

10 3.21× 10−4 3.37× 10−4 6.43× 10−4

12 2.52× 10−4 2.73× 10−4 4.51× 10−4

14 1.13× 10−4 1.26× 10−4 2.27× 10−4

16 1.10× 10−4 1.61× 10−4 2.21× 10−4

18 1.08× 10−4 1.271× 10−4 2.17× 10−4

20 1.00× 10−4 1.04× 10−4 2.01× 10−4

3.2 Observations on Where the Ancillary Zeros of the

Error System Do Not Occur

One further experimental observation will serve to motivate a heuristic method of approxi-

mation which we hope to develop further in the future. In general, we found that the poles of

the full order system that were essentially unmatched by the ancillary zeros of an arbitrary

stable order r approximation were, statistically speaking, invariant. Figure 3.2 illustrates

this behavior by plotting the average distance from a full order pole to its nearest neighbor
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in the set of ancillary zeros. The average was taken by fixing an order of approximation, and

then randomly selecting interpolation points within a boundary that roughly approximated

the reflection of the spectrum of A over the imaginary axis. From these interpolation points

a reduced order model was constructed, and then its corresponding set of ancillary zeros

was computed by simply removing the known interpolation points from the set of all the

error system zeros. Finally, the distance from a pole of the full order system to its nearest

neighbor in this set of ancillary zeros was computed. We kept track of this distance for each

pole for several thousand randomly chosen sets of interpolation points and then averaged

the distances.

Figure 3.6: Average Distance of CD-Player Poles to Nearest Ancillary Zeros of Order 6
Approximations
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The significance of these unmatched poles derives from the fact that one can closely identify

the neighborhood of good interpolation points by noting which poles, on the average, have

the farthest nearest neighbor in a random set of ancillary zeros. To the extent that this

observation holds, it suggests that a good starting point for choosing interpolation points

which make the H∞-norm of the error small are near the mirror image of the poles that
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are difficult to match with the ancillary zeros of an arbitrary approximation. Of course,

we do not want to have to compute several thousand random approximations just to get

within a neighborhood of the ”good” points, so it is noteworthy that we found that these

unmatched poles often lie very close to the interpolation points computed by IRKA, which

gives a plausible account of why the interpolation points found using IRKA often perform

so well in the H∞-norm for many of our examples. Table 3.2 demonstrates this pattern with

four models having significantly different pole distributions. The averages for the unmatched

poles were computed in the same manner as above and then compared with the fixed points

of IRKA, initialized with 4 interpolation points.

Table 3.3: Correspondence of Unmatched Poles to IRKA Interpolation Points For Order 4
Approximations to Various Models

Model Unmatched Poles IRKA interpolation points
CD player −12.27± 306.54i, −19.75± 196.6i 12.3± 306.6i, 19.8± 196.2i

ISS-1R −0.0039± 0.7751i, −0.0100± 1.9920i 0.0039± 0.7751i, 0.0100± 1.9920i
2-D Beam −0.0051± 0.1047i,−0.0066± 0.5686i 0.0051± .1047i,0.0066± 0.5683i
Random −0.01± 789i, −353± 3104i 0.01± 789i, 594± 3090i

A continued investigation of these types of patterns reveals many other interesting correla-

tions between the IRKA points and interpolations points which effectively make the H∞-

norm small. For example, we also found that when the optimal model Hdr
r (s) was found,

starting from the H2 optimal model, the poles of this reduced order model tended to lie very

close to the poles of the optimal Hankel norm model, provided that the optimal Hankel norm

model was an especially good approximation.



Garret M. Flagg Chapter 3. Location of Interpolation Points 51

3.3 Interpolation Points from Penzl’s Heuristic Method

If the unmatched poles of the full system are λ1, λ2, . . . , λr+1, and the reduced system poles

are λ̃1, . . . , λ̃r then, the the problem of choosing the optimal interpolation points amounts

to choosing interpolation points z∗1 , . . . , z
∗
2r+1, such that

{z∗1 , . . . , z∗2r+1} = arg min
z1,...,z2r+1∈C

max
z∈C

2r+1∏
i=1

|(z − zi)|

r+1∏
i=1

|z − λi|
r∏
j=1

|z − λ̃i|
. (3.7)

This minimization and the previous observations we have made suggest the following rule of

thumb, which we have found generally produces reduced-order models with a smallH∞-norm

error.

RULE OF THUMB:

Choosing approximately r+1 interpolation points at the mirror image of the most poorly

matched poles of the full-order system, and r interpolation points at the mirror image

of the reduced order poles yields good approximations in the H∞-norm.

The minimization problem 3.7 is a very close relative to the the rational Zolatarev problem,

for which all the zeros and poles are free in the minimization [10]. The rational Zolatarev

problem has been the subject of much research, in part because the solution to this problem

over the spectrum of a matrix provides a solution (in an asymptotic sense) to finding the

optimal shifts in the ADI iteration [22]. Penzl developed an effective heuristic method for

solving the optimal ADI parameters problem [19]. Instead of solving the rational Zolatarev

problem over a condenser, he suggested minimizing (3.7) over a set of Ritz values, and

harmonic Ritz values of A. This method has a good theoretical basis, since the Ritz values of

A have an interpretation in terms of potential theory as the set of charges that induce a nearly
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equivalent potential to the potential of the original distribution of eigenvalues [15]. The

points chosen by Penzl’s algorithm are also the Bagby-Leja interpolation points computed

over a discrete set [19]. We made use of Penzl’s heuristic by solving the same minimization

problem, but over a different set of discrete points. Instead of using the Ritz values of A and

the harmonic Ritz values of A, we used the IRKA points and the harmonic Ritz values of A.

We found by repeated experiment that the Ritz values of A tended to be poor interpolation

points, so these were not included in the set over which we minimized. The idea was to

use the Penzl algorithm to get r + 1 interpolation points. The remaining r interpolation

points would be forced at the mirror image of the reduced order poles, so they effectively

made no contribution to the error. The dr-term in this case was simply the chosen to enforce

interpolation at the r+ 1st interpolation point (always real-valued) which we did not use to

construct either Wr or Vr. We will refer to this method as the Equivalent Charges method.

We found that this approach yielded improvements over the optimal H2 approximation for

smaller orders of approximation–between r = 2 and r = 8. The tables show this for three

different systems. The number of harmonic Ritz values we computed was r + 1, and when

the order is small, these values coincided closely with the H2 -optimal points computed from

IRKA. For higher orders of approximation, the similarities between the harmonic Ritz values

and the H2 -optimal interpolation points diverged completely, which may explain why the

Equivalent Charges method of choosing interpolation points performed poorly for higher

orders of approximation on models with several resonances.

Table 3.4: Comparison of Method Performance For Heat Model of Order 197

Order ‖Ebal‖H∞ ‖EHank‖H∞ ‖EH2‖H∞
∥∥∥Ẽdr

∥∥∥
H∞

‖EEq. Charges‖H∞
2 0.462 0.267 0.462 0.257 0.280
4 4.01× 10−2 2.02−2 3.94× 10−2 2.10× 10−2 2.98× 10−2

6 1.10× 10−3 4.95× 10−4 1.30× 10−3 5.50× 10−4 1.00× 10−3

8 1.80× 10−4 1.32× 10−4 2.12× 10−4 1.67× 10−4 1.70× 10−4
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Figure 3.7: Magnitude Bode Plot of FOM Model and Equivalent Charges Approximation of
Order 12
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Table 3.5: Comparison of Method Performance For Eady Model Order 598

Order ‖Ebal‖H∞ ‖EHank‖H∞ ‖EH2‖H∞
∥∥∥Ẽdr

∥∥∥
H∞

‖EEq. Charges‖H∞
2 197 136 261 259 220
4 71.7 43.5 77.7 77.5 77.1
6 18.8 8.54 20.4 20.28 19.542
8 2.585 1.32 2.365 2.29 2.48

Table 3.6: Comparison of Method Performance For FOM Model Order 1006

Order ‖Ebal‖H∞ ‖EH2‖H∞ ‖Ematch‖H∞
6 7.29 7.28 4.25
8 1.00 2.16 0.395
10 0.100 0.264 0.122
12 9.00× 10−3 2.16× 10−2 9.20× 10−3

14 7.37× 10−4 1.65× 10−3 4.64× 10−4

16 5.58× 10−5 1.19× 10−4 5.23× 10−5

These results suggest that searching for the r + 1 points which are good equivalent charges

to the full spectrum is a promising route for an interpolation-based approach to the optimal

H∞ model reduction problem.



Chapter 4

Conclusions and Future Work

The H∞ model reduction problem has been around for some time, and has even obtained

the prominence of an ”unsolved problem” [6], due to its difficulty and evident importance in

applications. A great deal of work has been done on this problem from an SVD-based ap-

proached to model reduction, but even a lengthy search of the literature will reveal that little

has been done on the H∞model reduction problem from an interpolation-based approach.

The results we presented here show that an interpolation-based approach to this problem

bears much fruit. We showed it was possible to parameterize all interpolants of a given order

by the D-term of the system realization, and that this parameterization can be exploited

to significantly improve the H∞-norm of the H2 -optimal approximation, as in the case of

the CD-player model, or for state-space symmetric systems generally. For the special case

of state-space symmetric systems, theorems 2.2.9 and 2.2.10 provide sufficient conditions for

an inexpensive means of minimizing the H∞ approximation error when starting from the

H2 -optimal approximation computed from the IRKA iteration. Our results showed that this

method consistently yielded approximations which well outperformed the balanced trunca-

tion method. Finally, we presented several numerical experiments which suggest that finding

55
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the optimal interpolation points will ultimately depend on concretizing the close connections

between rational interpolation and potential theory. One possible way to solidify these con-

nections would involve computing the Bagby-Leja and Walsh-Fekete points for condensers

which approximate the equilibrium charge distribution over the numerical range of the A-

matrix and testing the ability of these points to yield interpolants with small approximation

error. Effective methods have already been developed for computing the Walsh-Fekete and

Bagby-Leja points over polygonal domains [22]. Another possible direction for further re-

search would be to develop a characterization of the phenomena of the unmatched full-order

poles. In particular, understanding where they occur and why they occur. Finally, we hope

to investigate how the parameterization of interpolants by the system’s D-term might be

similarly exploited in the multi-input multi-ouput setting.



Bibliography

[1] A.C. Antoulas. Approximation of large-scale dynamical systems. Society for Industrial

Mathematics, 2005.

[2] T. Bagby. On interpolation by rational functions. Duke Math. J, 36(1):95–104, 1969.

[3] CA Beattie and S. Gugercin. Krylov-based model reduction of second-order systems

with proportional damping. In 44th IEEE Conference on Decision and Control, 2005

and 2005 European Control Conference. CDC-ECC’05, pages 2278–2283, 2005.

[4] CA Beattie and S. Gugercin. Structured Perturbations in Rational Krylov Methods for

Model Reduction. 2007.

[5] Christopher Beattie and Serkan Gugercin. Interpolatory projection methods for

structure-preserving model reduction. Systems & Control Letters, 58(3):225 – 232, 2009.

[6] V. Blondel and A. Megretski. Unsolved problems in mathematical systems and control

theory. Princeton University Press, 2004.
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