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Abstract

We investigate the feasibility of inferring the choices people would make (if given the 

opportunity) based on their neural responses to the pertinent prospects when they are not engaged 

in actual decision making. The ability to make such inferences is of potential value when choice 

data are unavailable, or limited in ways that render standard methods of estimating choice 

mappings problematic. We formulate prediction models relating choices to “non-choice” neural 

responses and use them to predict out-of-sample choices for new items and for new groups of 

individuals. The predictions are sufficiently accurate to establish the feasibility of our approach.

I. Introduction

A central problem in microeconomics is to predict the distribution of households' choices in 

not-yet-observed situations (e.g., after some policy intervention). The dominant tradition is 

to draw inferences from actual choices within some closely related domain. Unfortunately, 

that traditional approach often proves problematic due to various practical limitations of 

choice data: in some settings, data for closely related choices are either unavailable or 

extremely limited; the opportunity sets for naturally occurring choice problems are often 

impossible to characterize absent strong assumptions about expectations and other important 

considerations; and concerns about uncontrolled factors, selection, and the endogeneity of 

opportunity sets are endemic.

A sizable literature on stated preference (SP) techniques explores the feasibility of drawing 

reliable inferences from hypothetical choice data in contexts where actual choice data are 
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either absent or deficient (for overviews, see Shogren, 2005, 2006). It is well established that 

answers to standard hypothetical questions are systematically biased, typically in the 

direction of overstating willingness-to-pay (WTP) and toward alternatives that are viewed as 

more virtuous.1 Two classes of solutions have been examined: one attempts to “fix” the 

hypothetical question;2 the other seeks to correct for the bias through ex post statistical 

calibration.3 Because the limitations of those approaches are widely acknowledged, their use 

is largely confined to contexts where choice data pertaining to closely related decisions are 

entirely unavailable (e.g., in the environmental context, to value pristine coastlines, 

biodiversity, and the like),4 rather than merely deficient.

Despite the limitations of stated preference techniques, measures of elicited preferences 

remain potentially useful as long as it is possible to uncover stable predictive relationships 

between them and real choices. Furthermore, since there may also be stable relationships 

between real choices and a much broader class of non-choice variables, there is no a priori 

reason to limit a prediction exercise to elicited preferences. Potential predictors include any 

reaction to elements of a contemplated opportunity set that occur when an individual is not 

engaged in actual decision-making (e.g., a subjective report or neural measurement assessed 

while imagining a consumption experience).

These observations suggest a more general strategy for predicting choices in situations 

where standard revealed preference methods are problematic: uncover the statistical 

relationships between real choices and combinations of non-choice variables, and use them 

(along with assessed values of the non-choice variables) to predict behavior out of sample in 

domains of interest. Because accurate forecasts of real choices “reveal preferences” in the 

classic sense of identifying what an individual would choose, we refer to this general class 

of procedures as non-choice revealed preference (NCRP).5 Viewed from this perspective of 

this broader strategy, the historical success of the stated preferences approach may have 

been limited by its narrow focus on answers to hypothetical questions.

1See, for example, Cummings et al. (1995), Johannesson et al. (1998), List and Gallet (2001), Little and Berrens (2004), Murphy et al. 
(2005), Blumenschein et al. (2007).
2Specific approaches include the use of (1) certainty scales as in Champ et al., (1997), (2) entreaties to behave as if the decisions were 
real as in the “cheap-talk” protocol of Cummings and Taylor, 1999, or more recently the “solemn oath” protocol of Jacquemet et al., 
2012), and (3) “dissonance-minimizing” protocols (as in Blamey et al., 1999, and Loomis et al., 1999, which allow respondents to 
express support for a public good while also indicating a low WTP).
3See Shogren (1993), Blackburn, Harrison, and Rutstrom (1994), Fox et al. (1998), List and Shogren (1998 2002), and, to a lesser 
extent, Mansfield (1998). Ex post calibration (which can be traced to Kurz (1974), and was mandated by the National Oceanographic 
and Atmospheric Association, 1994), exploits a statistical relationship between real and hypothetical choices.
4In some cases, the object is to shed light on dimensions of preferences for which real choice data are unavailable by using real and 
hypothetical choice data in combination; see, e.g., Brownstone et al. (2000) and Small, Winston, and Yan (2005).
5We have repeatedly heard the following objection to the NCRP agenda (including all SP techniques): it involves out-of-sample 
predictions to domains for which actual choices may never be observed, and hence for which the stability of the predictive relationship 
cannot be verified. That objection is misguided. Out-of-sample prediction is commonplace in applied microeconomics; for example, it 
is present in any study that extrapolates an outcome (e.g., a policy effect) that is not directly observed. Whether an out-of-sample 
prediction can be verified is a function of the application, not of the method used to make the prediction (i.e., NCRP methods or 
traditional choice-based methods). Thus the objection is properly viewed not as a challenge to the NCRP approach per se, but rather to 
the wisdom of particular applied agendas, such as valuing environmental damage by assessing the willingness-to-pay for a pristine 
environment. That said, we believe that even those applications are defensible. If a predictive relationship is shown to be stable over a 
sufficiently broad domain (including contexts related to the question of interest), and if a sufficiently large collection of out-of-sample 
predictions are successfully validated, then one can have reasonable confidence in the accuracy of out-of-sample predictions that 
cannot be validated. Those predictions in effect rely on identifying assumptions concerning the stability of the predictive relationship. 
As elsewhere in economics, one cannot test identifying restrictions, but one can make reasonable cases for them.

Smith et al. Page 2

Am Econ J Microecon. Author manuscript; available in PMC 2015 February 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Potentially predictive non-choice measures fall into two broad categories: subjective reports 

(including but not limited to hypothetical choices), and physiological and neurobiological 

responses. An obvious virtue of relying on subjective reports is that the data are 

comparatively cheaper to collect. However, a rapidly growing body of work in psychology 

and neuroscience suggests that the biological measures might have predictive value-added 

over the subjective reports, probably because choices are systematically influenced by 

automatic processes that are not accessible to conscious awareness, but that can be measured 

with neurobiological techniques (see Dijksterhuis et al., 2006, Berns et al., 2010, Chua et al., 

2011, and Falk et al., 2011). It is important to emphasize that the actual predictive power of 

non-choice responses is by no means evident without empirical confirmation, and hard to 

judge a priori without the type of systematic exercise carried out here.

This paper takes a first step in the development of NCRP methods that exploit non-choice 

physiological responses: it evaluates the promise of those methods by investigating whether 

(and to what extent) non-choice neural responses measured using whole brain functional 

magnetic resonance imaging (fMRI) predict real choices.6 We recognize that the use of 

neural data raises issues of practicality, as its collection is likely to remain costly and 

inconvenient in the near term. In comparison, other physiological responses such as pupil 

dilation and skin conductance are easier to measure (and subjective responses are easier 

still). We nevertheless focus on whole brain fMRI measures because they provide a fairly 

comprehensive (albeit not perfect) picture of all the responses to a given stimulus, and thus 

are more likely to capture predictive information. By establishing the predictive power of 

such measures, we lay the foundation for subsequent efforts to identify the physiological 

manifestations of the predictive neural responses that are most easily and practically 

measured.

Because this first step is a substantial undertaking, the current paper does not fully execute 

the agenda articulated above. In particular, we make no attempt here to evaluate the 

incremental predictive power of neural data (over and above non-choice subjective reports), 

identify the most cost-effective physiological predictors, develop prediction models 

exploiting multiple varieties of non-choice variables, or bring the methods to practical 

applications. Nor have we exhausted all the possibilities for fine-tuning our methods to 

achieve the greatest possible predictive power from neural data (either at the image 

acquisition stage or the statistical analyses stage). These are tasks for ongoing and 

subsequent work.

Consistent with our objective of providing proof of concept, we confine attention to a 

narrow choice domain, consisting of choices among food items. Subjects “passively” view 

pictures of 100 snacks while undergoing an fMRI brain scan. After the passive scan is 

complete, they are unexpectedly asked to make choices among 50 pairs of snacks (one of 

which is implemented), with each snack appearing in one and only one pair. After 

6In other parallel work, some of us are currently evaluating the predictive power of a broad range of non-choice subjective reports. 
Our ultimate objective is to identify the combinations of non-choice responses – both subjective reports and physiological reactions – 
with the greatest predictive power.
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completing the choices, they are asked to rate the extent to which they liked each item. 

Section III describes our experimental procedures in greater detail.

Our first objective is to construct, for each subject, a statistical model that predicts that 

subject's choices accurately out of sample (Section IV.A). Leaving out two pairs of items at 

a time, we estimate a prediction model based on the other 48 pairs, and use it to predict the 

individual's choice for the excluded pairs. Were we studying continuous choices, we would 

examine prediction bias, both overall and conditional on the values of the predictors. 

Because we are instead predicting dichotomous choices, we examine calibration, which is 

analogous to bias. A probability model is well-calibrated if predicted probabilities closely 

match actual choice frequencies. For example, events that are predicted to occur with 70% 

probability should actually occur 70% of the time. We evaluate calibration both overall and 

conditional on the values of the predictors.

A high degree of calibration would not, by itself, imply that non-choice neural responses are 

powerful predictors of choices. For example, a model that employs no predictors and assigns 

a 50% probability to the first of any two randomly ordered alternatives is perfectly 

calibrated. However, that model performs poorly with respect to resolution. Resolution is 

high when the predicted probability is close to 0% or to 100%. A perfectly calibrated model 

with perfect resolution is ideal in the sense that it always predicts the outcome correctly.

Our focus on evaluating the calibration and resolution of probabilistic predictions is one of 

several important factors that distinguish this paper from the rest of the literature on the 

neural correlates of choice (see Section II for additional detail). A common practice in that 

literature is to report rates of successful classification (“success rates” for short). While we 

also report success rates (using probability > 50% as the classifier), we are of the view that 

the calibration and resolution of probabilistic forecasts are of greater interest to economists. 

A success rate reflects a particular blend of a model's calibration and resolution, one that 

provides a sufficient statistic for predictive performance under circumstances not commonly 

encountered in economics (e.g., where the object is to decide whether or not to treat a 

medical condition in a setting with a symmetric loss function). Knowing whether a success 

rate is high or low does not reveal whether one can use a model to construct accurate 

probability distributions for predicted choices, which is a paramount concern in economic 

applications.

For just over half of our subjects, we find that non-choice neural responses contain 

information that is useful in predicting choices, in the sense that our models significantly 

improve upon uninformed out-of-sample predictions (a 50% success rate), usually with p < 

0.01. Moreover, even though there is no necessary relationship between success rates and 

calibration, we find that these models are on the whole well-calibrated out of sample. The 

difference between overall success rate (68.2%) and the expected success rate (72.9%) is 

modest. More significantly, across choice problems (within subject), there is a striking 

relationship between predicted probabilities and realized frequencies: a 10-percentage point 

increase in the former translates into roughly an 8-percentage point increase in the latter. 

Notably, that relationship is not driven by extreme cases (i.e., choice problems for which 
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one item is universally and strongly preferred). While by no means perfect, this performance 

is, in our view, reasonably impressive in light of the task.

In contrast, for just under half of our subjects, success rates are low (below 60%), and our 

models do not significantly improve upon uninformed predictions (50% success rate), even 

at p < 0.10. Though low success rates do not necessarily imply poor calibration, these 

models also yield inaccurate out-of-sample probability statements. Thus, our procedure 

works well for just over half of our subjects, but not at all for the others.

Predicting choices on the level of a single individual is a demanding objective, one that goes 

beyond the requirements of most economic analyses, which are more typically concerned 

with aspects of group behavior – averages, aggregates, and possibly distributions. Group 

averages may be easier to predict, for example because various types of noise average out 

over multiple individuals. Accordingly, we next ask whether it is possible, for any particular 

group of individuals, to fit a model relating a measure of average subjective value to average 

non-choice neural responses for one set of items, and use that model successfully to predict 

the average subjective values of items not contained in the original set, based on the non-

choice neural responses they induce (see Section IV.B). Compared with the successful half 

of our individual-level prediction exercises, our group-level prediction exercise achieves 

higher resolution and success rates, and the quality of calibration is comparable. We achieve 

this result despite including all subjects in the group-level analysis, regardless of whether 

their individual-level prediction exercises were successful.

If non-choice neural activity exhibits a sufficiently similar relation to choice across subjects, 

then it should be possible to construct a single prediction model and use it without 

recalibration to predict choices based on neural measurements taken from new individuals or 

groups. Such a model would have considerable practical value in that, once estimated, it 

would vastly simplify the steps required to formulate additional predictions. To predict 

behavior in new situations, one could collect data on non-choice neural responses to the 

relevant prospects for a new group of individuals and apply an existing predictive model. It 

would not be necessary to gather the requisite data to estimate new predictive models for 

those subjects. Accordingly, we also investigate whether predictive models are portable 

across groups of individuals. We achieve a moderate degree of success when predicting a 

group's average valuation for new objects from a relationship estimated with data pertaining 

to other objects, gathered from another group.

Taken together, our results demonstrate that non-choice neural reactions to images of 

potentially desirable objects contain a great deal of information that can be used to predict 

decisions made by a particular individual, or average decisions made by a group of 

individuals, in new choice situations. Future improvements in methods and measurement 

technologies are likely to enhance the success of this approach.

II. Related literature on the neurobiology of choice

There is a substantial literature in neuroscience concerning the neural correlates of choice. 

With very few exceptions (discussed below), that literature is concerned with identifying 

neural activity that reliably encodes value signals during the act of choice; see, for example, 
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Hsu et al., (2005), Kable & Glimcher (2007), Knutson et al. (2007), Plassmann et al. (2007, 

2010), Hare et al. (2008), and Levy et al. (2010). Consequently, the issues those studies 

address differ fundamentally from the ones that motivate our inquiry. Certainly, as Knutson 

et al. (2007) emphasize, it is possible to predict choices from neural activity measured 

during the act of decision-making. However, some economists take the view that there is 

little value in predicting choices in a setting where choices are themselves observable. If 

one's objective is to extrapolate choices based on neural activity in settings where choices 

are not observed, correlations between choice and choice-related neural reactions are not 

helpful (at least not directly).

Two recent studies suggest, however, that the brain's valuation circuitry may be active even 

when people are not actively engaged in choice. Lebreton et al. (2009) show that activity in 

the ventromedial prefrontal cortex (vmPFC) and the ventral striatum (vStr) while subjects 

were asked to judge the age of paintings, faces, and houses correlates with their subjective 

ratings for the same items (elicited in a separate task). Kang et al. (2011) show that activity 

in the vmPFC and the vStr correlates with the value of the stimuli during both real and 

hypothetical choices, which suggests that neural responses to real and hypothetical choices 

may share many common features. Thus, there is reason to hope that one can also reliably 

predict choices based on non-choice neural responses.

The current study is most closely related to recent neuroscience papers by Tusche et al. 

(2010) and Levy et al. (2011), both of which have elements of predicting choice (or tasks 

related to choice) from non-choice neural responses.7 To understand the key differences 

from our work, it is helpful to summarize several features of our analysis that are critical for 

the economic applications we envision. First, we are concerned with predicting real choices 

from neural responses during non-choice activity. Second, our interest is in out-of-sample 

prediction, rather than within-sample fit. We are concerned with predicting choices over one 

set of alternatives using a relationship estimated with data for a disjoint set of alternatives.8 

Third, our objective is not merely to predict the more likely choice, but in addition to derive 

reliable probability statements concerning the alternatives. We seek a procedure that reliably 

indicates whether a particular alternative will be chosen with, say, 60% probability rather 

than 90% probability. Fourth, we are concerned with several distinct types of prediction 

exercises: within subject, within group, across subjects, and across groups. Predicting 

average behavior within and across groups likely has the greatest potential value for 

economics.

These four features distinguish our paper from the two studies listed above. None of them 

attempts to predict choices among one set of alternatives from a relationship estimated with 

a disjoint set of alternatives, nor do they attempt to derive and validate probability 

7Our study is also related to Hampton and O'Doherty (2007), Grosenick et al. (2008), Krajbich et al. (2009), and Clithero et al. (2009, 
2011). These papers employ the same class of methods from the statistical learning literature used here. However, in contrast to this 
paper, they do not try to predict out-of-scanner choices from non-choice neural activity. See also Haxby et al. (2001) for an early 
application of pattern classification techniques to fMRI data, and Pereira, Mitchell and Botvinick (2009), and Haynes (2011) for 
overviews of how methods from statistical learning are used more generally in brain imaging.
8There is both an economic reason and a technical reason for this requirement. The economic reason is that we are ultimately 
concerned with predicting decisions for choice problems that are difficult or impossible to implement in practice. The technical 
reason, which we explain at the end of Section IV.A.1, is that statistical procedures might otherwise predict choices correctly by 
exploiting neural indicators of the alternatives' identities, rather than of their perceived values.
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statements concerning alternatives. Both studies focus exclusively on within-subject 

classification or prediction, and they do not attempt to predict average behavior for groups, 

or choices across subjects. Tusche et al. (2010) study the neural correlates of hypothetical 

choices rather than real choices. Levy et al. (2011) predict real choices, but their subjects 

also made real decisions concerning the same objects during scanning, and hence their 

procedure does not truly involve non-choice neural responses in the sense defined here.

To be precise, the exercise in Levy et al. (2011) involves two phases: a localizer task and a 

neurometric prediction task. In the localizer task, subjects make decisions about whether or 

not to play lotteries. The goal of the task is to localize areas of the brain involved in 

valuation computations for each individual subject. In the prediction task, subjects are 

passively shown pictures of various types of goods (DVDs, CDs, stationary, monetary 

lotteries) and neural responses in the value areas identified in the localizer task are taken for 

each subject and good. After scanning, subjects make choices for every possible two-

element subset of the items, repeated twice. Several differences between their design and 

ours deserve emphasis. First, we predict choices on entirely new choice sets: in our task the 

choice pair consists of two new items, neither of which was used in fitting our model. 

Second, in Levy et al. subjects are also asked, every few trials, to make a purchase decision 

regarding the same stimuli used in the prediction task. Although these trials are not used in 

their neurometric prediction exercise, there is a concern that the mere presence of 

interspersed choice trials alters a subject's outlook on the items in question, so that they treat 

the passive trials more like actual purchase decisions. These differences between our task 

and that of Levy et al. are likely to make our exercise relatively more difficult than theirs. 

Finally, we employ a different prediction methodology that makes use of all the voxels in 

the brain rather than a specific region. In practice we are able to improve modestly upon the 

overall success rates achieved by Levy et al., despite the greater difficulty of the task.

The current paper also bears on the debate over the role of neuroeconomics within the 

broader field of economics. Various possibilities, such as the potential to develop useful 

neural tests of economic theories, remain controversial (see, for example, the contrasting 

views of Camerer, Loewenstein, and Prelec, 2004, Gul and Pesendorfer, 2008, and 

Bernheim, 2009). In contrast, it is hard to imagine even a traditionalist objecting to our 

agenda on the grounds that it is orthogonal to the goals of the field (in that our goals 

coincide with those of the stated preference method), or that it pursues those goals in a 

manner that is conceptually illegitimate (in that the task at hand is simply one of predicting 

an outcome using statistical models along with information that one could in principle 

collect). A skeptic might well question whether the method will prove useful in practice, but 

that is an empirical question, and hence one that should be resolved on the basis of evidence 

rather than prior belief.

III. Experimental Design

A. Procedures

Thirty-five right-handed subjects participated in the experiment (age range: 19 to 36 years 

old, 11 female).9 Subjects were pre-screened to ensure that they regularly ate the types of 

foods used in the experiment, and that they met the standard criteria required for the safe and 
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reliable acquisition of fMRI data. Subjects were paid $100 for participating, and were 

offered a $10 bonus for limiting their head motion during the fMRI task (which, if 

excessive, invalidates the procedure). Despite these incentives, in-scanner head motion for 

eight subjects exceeded a pre-specified limit of 2mm in any direction during a scanner run. 

After excluding those eight subjects, 27 usable subjects remained.

Subjects were instructed to refrain from eating or drinking anything other than water for four 

hours prior to the experiment. At the outset of a session, they were advised that the 

experiment would consist of three stages, and that they would receive the instructions for 

each stage only after completing the previous stage.10 Thus, as described below, when 

viewing images of snack foods in stage 1, subjects were not aware that they would 

subsequently face choices among pairs of those items in stage 2.

Stage 1. Passive viewing of foods during fMRI scan—In the first stage, subjects 

viewed images of 100 different snack foods while we measured their neural responses (see 

Figure A1 of Appendix A for sample images, and Table A1 of Appendix A for a list of all 

foods used in the experiment). Foods were shown in randomized order with each item 

appearing three times. Each image was visible for 2.75 seconds. Between images, a small 

white fixation cross centered on a black screen was shown for 8.25 seconds. For technical 

reasons related to the acquisition of the neural data, each session was divided into 6 identical 

blocks each consisting of 50 image presentations, separated by breaks of roughly one 

minute.

To enhance the psychological salience of the images, we told subjects that they would be 

required to eat at least three spoonfuls of one of the food items at the end of the session. 

With 50% probability, the item would be selected at random, and with 50% probability it 

would be determined in a subsequent stage of the experiment. However, subjects were not 

told that that they would be asked to make choices among the alternatives.

Given the tedious nature of the task, we inserted five additional “catch” trials at random 

intervals within every block. During each such trial, the subject was instructed to press a 

button indicating whether the displayed item was sweet or salty. Subjects were given a 

maximum of 2.75 seconds to respond, after which a fixation cross screen appeared for 8.25 

seconds. The foods shown in the catch trials were different from those used in the passive 

viewing trials, and we did not use the neural responses from the catch trials in the prediction 

exercises described below. In 93.1% of the catch trials, subjects responded within the time 

allowed, which suggests that they attended to the images.11

We collected measures of neural activity using BOLD-fMRI (blood-oxygenated level 

dependent functional magnetic resonance imaging).12 Instead of making assumptions as to 

which brain regions were likely to generate predictive non-choice responses, we measured 

9Subjects were recruited at Caltech, and the Caltech Institutional Review Board approved the experimental procedures.
10A copy of the instructions is included in Appendix A.
11For one subject, we did not observe any responses to catch trials during the last two blocks. This subject is included in our analyses, 
but excluding him does not affect our results substantially.
12The fMRI data were collected at the Caltech Brain Imaging Center using a Siemens 3T Trio scanner. We acquired gradient-echo 
T2* weighted echo planar (EPI) images with BOLD contrast. We used an oblique acquisition angle of 30
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activity throughout the entire brain, and used all of the data in our prediction exercises. It is 

natural to conjecture that brain regions previously shown to be involved in valuation, such as 

the medial prefrontal cortex or the ventral striatum,13 will play critical roles in predicting 

choices. However, we decided to carry out our prediction exercise using the entire set of 

brain responses for three reasons. First, we wanted to demonstrate that the NCRP 

methodology proposed here does not depend on knowledge of which brain circuits are 

involved in the choice process, or how to measure their activity. Second, the usefulness of a 

brain region for our predictive task depends on: 1) how cleanly we can measure neural 

activity in the region; 2) how well that activity correlates with automatic valuations; and 3) 

how much predictive information the activity in that region adds over and above other 

activity used to construct the predictions. We use data from the whole brain to allow for the 

possibility that neural activity in some brain regions will prove informative after accounting 

for neural activity in other regions. This is particularly important, because the signal-to-

noise of BOLD-fMRI in areas typically associated with valuation (like ventral striatum and 

ventromedial prefrontal cortex) is relatively low. In fact, the accuracy of our method 

declines when we restrict attention solely to the ventral striatum and ventromedial prefrontal 

cortex, indicating the value of our whole-brain approach. Third, many psychological 

processes exhibit some correlation with value, such as attention and arousal. This implies 

that many voxels, besides those in areas known to be involved in valuation, will also degrees 

relative to the anterior commissure-posterior commissure line (Deichmann et al., 2003) and 

an 8-channel phased array head coil to maximize functional contrast-to-noise in areas of the 

ventromedial prefrontal cortex which, as described in Section II, have been shown to play a 

critical role in valuation. Each volume consisted of 44 axial slices covering the entire brain. 

The imaging parameters were: echo time, 30ms; field of view, 192mm; in-plane resolution 

and slice thickness, 3mm; repetition time (TR), 2.75s. correlate with values, and would have 

independent noise (Litt et al., 2011). These independent measurements are useful in 

prediction.

BOLD-fMRI operates by measuring changes in local magnetic fields resulting from local 

inflows of oxygenated hemoglobin and outflows of de-oxygenated hemoglobin that occur 

when neurons fire. The BOLD signal is correlated with aggregate neural activity within 

relatively small “neighborhoods” (tiny cubes, known as voxels). One complication is that 

BOLD responses are slower than the associated neuronal responses: although the bulk of the 

neuronal response takes place in 4 to 6 seconds, subsequent BOLD measurements are 

affected for as much as 24 seconds. Even so, as long as trials are spaced sufficiently far 

apart, one can attribute most of the BOLD signal to trial-specific neural responses. In our 

experiment, each trial spanned a total of 11 seconds (2.75 seconds for an image, and 8.25 

seconds for a fixation cross on a black screen), and BOLD measurements were obtained in 

3-mm3 voxels every 2.75 seconds. With this design, the BOLD signal provides a good 

measure of local neural responses to each image. This is an approximation, but it suffices for 

our purposes. Presumably, a sharper measure of neural activity would yield even greater 

predictive power than that of the somewhat noisy measure used here.

13For a review of the literature see Rangel and Hare (2010).
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Stage 2: Pairwise choices—In the second stage of the experiment, subjects were shown 

pairs of food items outside the scanner, and were asked to choose their preferred item from 

each pair. They were told that, with 50% probability, one of the pairs would be selected at 

random, and they would receive their choice from that pair.

The first ten subjects were shown 200 pairs of items drawn randomly with replacement from 

the 100 foods viewed in stage 1. The remaining 17 subjects were shown 50 randomly 

selected pairs, with each item appearing in a single pair. As discussed below, the first 

procedure is not appropriate for some portions of our analysis (a fact which we did not 

realize until we examined some preliminary results). Accordingly, some of the results 

reported below are based on all 27 subjects, while others are based on the last 17.

Foods were randomly assigned to left and right positions on the screen. As is common in 

such tasks, there was a small spatial bias: subjects chose the left item 53% of the time 

(p<0.05, binomial test). When estimating our forecasting models, it is important to ensure 

that our predictions do not benefit artificially from this bias (as they would if we used 

models describing the probability of choosing the object displayed on the left). Accordingly, 

for every subject, we randomly divided the choice pairs into two equal sets: in one, the 

chosen item was designated as the “target,” while in the other the item not chosen was so 

designated. The choice for any trial was then coded as a 1 if the target item was chosen, and 

as a 0 otherwise. With this assignment, the unconditional probability that our discrete choice 

variable equals 1 in any given trial is exactly 50 percent, and the predictive success of more 

elaborate models must be judged against that neutral benchmark (rather than 53 percent).14

Stage 3: Preference ratings—In the final stage of the experiment, subjects were asked 

to indicate the extent to which they liked each food item, using a discrete scale from -3 

(strongly dislike) to 3 (strongly like). They viewed pictures of all 100 items sequentially and 

entered liking ratings through button presses, proceeding at their own pace. They were told 

that their ratings would not affect the item they received at the end of stage 3, but they were 

also strongly encouraged to provide ratings that reflected their true preferences.

After each subject finished rating the items, we tossed a coin to determine whether he or she 

would receive an item chosen at random, or the item chosen in a randomly selected choice 

trial from stage 2 (where the item or choice trial was selected by drawing a number from an 

envelope). Subjects were required to eat at least three spoonfuls of the selected item, and 

were allowed to eat more if desired. Subjects were instructed to remain in the lab for 30 

minutes, during which time they were not permitted to eat anything else.

B. Initial data processing

Before analyzing the predictive power of non-choice BOLD responses, the raw data must be 

converted into a usable form. First, we corrected for head motion to ensure that the time 

series of BOLD measurements recorded at a specific spatial location within the scanner is 

14Note that because the target item is designated at random, spatial bias effectively introduces random variation into the discrete 
choice variable that is inherently not predictable from stage 1 measurements. Thus, spatial bias necessarily reduces the predictive 
accuracy of our models.
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always associated with the same brain location throughout the experiment.15 Second, we 

removed low-frequency signals that are unlikely to be associated with neuronal responses to 

individual trials.16 Third, we realigned the BOLD responses for each individual into a 

common neuroanatomical frame (the standard Montreal Neurological Institute EPI 

template). This step, called spatial normalization, is necessary because brains come in 

different shapes and sizes, and as a result a given spatial location maps to different brain 

regions in different subjects. Spatial normalization involves a nonlinear re-shaping of the 

brain to maximize the match with a target template. Although the transformed data are not 

perfectly aligned across subjects due to remaining neuroanatomical heterogeneity, the 

process suffices for the purposes of this study. Any imperfections in the re-alignment 

process introduce noise that reduces our ability to predict choices.

For the analyses described in Sections V (which involve comparisons across subjects), we 

also spatially smoothed the BOLD data for each subject, by making BOLD responses for 

each voxel a weighted sum of the responses in neighboring voxels, with the weights 

decreasing with distance.17 This transformation addresses residual problems arising from 

neuroanatomical heterogeneity across subjects. In effect, smoothing assumes that any 

particular voxel in one subject's brain can play the same predictive role as neighboring 

voxels in another subject's brain; without smoothing, we would be assuming that only the 

same voxel can play the same predictive role.

The final step was to compute, for each subject and each voxel, the average non-choice 

neural response to each food item. We began by removing predicted neural responses that 

were related to the task (e.g., seeing the image of a food item) but common to all items.18 

The object of this step is to restrict attention to BOLD responses that are specific to 

individual food items, and therefore likely to be helpful in predicting choices. Second, we 

averaged the residual response over the three presentations of each food item, collected 2.75 

and 5.5 seconds after the onset of stimulus. In constructing this average, we omitted 

measurements from full brain scans (known as volumes) that exhibited excessive within-

volume variation across voxels.19 This exclusion criterion reduces noise (and thereby 

improves predictive accuracy) by eliminating signals that are outliers with respect to the 

typical range of BOLD responses for food items.

15BOLD measurements were corrected for head motion by aligning them to the first full brain scan and normalizing to the Montreal 
Neurological Institute's EPI template. This entails estimating a six-parameter model of the head motion (3 parameters for center 
movement, and 3 parameters for rotation) for each volume, and then removing the motion using these parameters. For details, see 
Friston et al. (1996).
16Specifically, we applied a high-pass temporal filter to the BOLD data with a cut-off of 128 seconds.
17Smoothing was performed using an 8 mm full-width half-maximum Gaussian kernel.
18We carried out this step by estimating a general linear model (GLM) of BOLD responses with an AR(1) structure. The model 
included the following regressors: an indicator function for the moment at which the image of an item appears on the screen, 
convolved with a canonical hemodynamic responses function (Friston et al., 1998) that captures the manner in which neural responses 
are mapped to delayed changes in the BOLD signal, six block dummies, and the time series of head motion parameters estimated in 
the pre-processing step described above. The residuals from this regression capture the BOLD responses from each trial that are item-
specific. For reasons of practicality, we performed this calculation only for gray-matter voxels (of which there are approximately 
45,000 per-subject). We identified gray matter in each subject using the Automated Anatomical Labeling (AAL) Tool and the MNI 
gray-matter mask (Tzourio-Mazoyer et al 2002).
19For each volume we computed the variance across voxels (known as global signal variation), as well as the mean and standard 
deviation of this variance across volumes. We excluded data on volumes for which the global signal variation exceeded the median 
plus five mean absolute deviations.
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IV. Predicting choices involving new items, within subjects and groups

The canonical task motivating our investigation is to determine how people will behave 

when confronted with some new or difficult-to-observe choice situations. Imagine 

assembling a group of individuals, measuring their non-choice neural responses to prospects 

that we can actually implement, as well as to the new choice situations, and then presenting 

them with unanticipated choices among the implementable prospects. We can then estimate 

the relationship between their choices and non-choice responses for the implementable 

prospects, and use that relationship along with non-choice neural responses for the new 

situations to predict behavior in those situations. Do the non-choice neural responses contain 

enough information to make reasonably accurate predictions?

In this section, we implement the procedure outlined in the previous paragraph and use it to 

make and evaluate predictions both within subjects and within groups.

A. Within-subject predictions

In this subsection, we focus on the accuracy of within-subject predictions. For reasons 

detailed below, we restrict attention to subjects 11 through 27, each of whom made 

decisions for 50 pairs of food items, with no item appearing twice.

Statistical methods—We adopt a logit probability model for choices. For every subject i 

and choice pair t, let yit = 1 if the target food was chosen, and yit = 0 otherwise.20 For every 

subject i, choice pair t, and brain voxel v, let ditv denote the difference between the measured 

neural responses in voxel v to the target and non-target food items offered in choice pair t 

(i.e., the response for the target food minus the response for the non-target food). Also let Dit 

denote the vector of differential neural responses for all voxels. The following probability 

statement describes our model:

(1)

Because our object is accurate out-of-sample prediction, we employ standard methods for 

estimating and evaluating predictive models. A central tenet of the prediction literature is 

that within-sample fit is a poor gauge of out-of-sample fit (cf. Efron, 1986). Therefore, we 

employ cross-validation (Stone, 1974) for both model assessment and model selection. 

Typically, one proceeds by dividing the sample into a “training sample” which is used for 

estimation, and a “hold-out” sample that is used to evaluate predictions. By removing two 

choice pairs at a time from the set of 50, we create 25 training samples (each consisting of 

48 observations) and 25 associated hold-out samples (each consisting of 2 observations). For 

each training sample, we estimate the model and use it to predict choices for the associated 

hold-out observations. We then assess the model's out-of-sample predictive performance 

over all 25 hold-out samples (50 predictions in all).

20As described in the previous section, one item in every pair was randomly designated as the target.
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To ensure the representativeness of both the training and hold-out samples, we randomly 

partitioned the 50 choices into 25 pairs, with each pair containing one choice from which the 

target item was chosen, and another from which it was not chosen. Each such pair served as 

a hold-out sample, and the complement served as a training sample. This procedure, known 

as stratified cross-validation, yields training and hold-out samples in which the target item is 

chosen exactly 50 percent of the time, just as in the full sample (by construction). Leave-

one-out cross-validation is an approximately unbiased method for estimating the true 

(expected) prediction error (Hastie et. al, 2009, page 242). However, leave-one-out cross 

validation estimators may have high variance, and simulation studies have concluded that 

stratified cross-validation has better performance in terms of both bias and variance than 

regular cross-validation (Kohavi, 1995). Because our samples are unbalanced with leave-

one-out cross validation, we compromise and employ stratified leave-two-out cross 

validation.

As the literature recognizes, evaluating the predictive performance of a categorical 

probability model involves some inherent ambiguities. Alternative standards for defining a 

“predicted outcome” have been proposed. In the context of binary models, Cramer (1999) 

proposes identifying an alternative as the predicted outcome if its predicted probability 

exceeds its baseline frequency in the population.21 By construction, in our experiment, the 

baseline frequency for selecting the target item is exactly 50% for each subject. 

Consequently, we classify the target item as the predicted choice if its predicted probability 

exceeds 50%; otherwise, the non-target item is the predicted choice. We classify a particular 

prediction as a “success” if the predicted item was in fact chosen.

Notice that our task involves prediction from small samples (48 observations). It therefore 

raises two important and closely related issues: model selection and overfitting.

The model selection problem is obvious: because we estimate each model using only 48 

observations, we cannot use all 45,000 potential predictors (voxel-specific BOLD signals).22 

Instead we must focus on a small handful of predictors, in effect leaving out large numbers 

of presumably relevant variables. If we intended to interpret estimated parameters as 

reflecting causal effects, the left-out variable problem would be fatal. Accordingly, it is 

essential to emphasize that our objective here is purely prediction. When predicting from a 

small sample, it is worthwhile to include a variable only if the incremental predictive 

information it carries is sufficient to justify sacrificing a scarce degree of freedom. Thus, for 

example, when two important causal factors are highly correlated, it is often appropriate to 

include only one, because each reflects most of the predictive information contained in the 

other. Naturally, with either factor omitted, the coefficient of the included factor will not 

measure its causal effect; on the contrary, that coefficient will also reflect the causal effect 

of the omitted factor. Even so, the omission of a causal factor does not impart a bias to 

predictions (conditional on the included predictors), and may well reduce variance. 

Statistical tools for model selection include the Akaike Information Criterion (AIC), the 

21Even that alternative is recognized as somewhat arbitrary; see Green (2003), p. 685.
22See Chapter 18 of Hastie et al. (2009) for an overview of statistical techniques for prediction problems when the predictors greatly 
outnumber the observations. Within the economics literature, see also Fan, Lv, and Qi (2011), and Belloni, Chernozhukov, and 
Hansen (2011).
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Bayesian Information Criterion (BIC), cross-validated predictive performance, LASSO 

(which we describe and implement below), and others.

The overfitting problem arises because, with small samples (and especially with many 

predictors), there is a substantial likelihood that some predictor will be highly correlated 

(within sample) with the outcome variable purely by chance. While OLS estimates will still 

yield statistically unbiased predictions, the variance of the prediction error can be extremely 

high, and hence predictions can prove inaccurate. The most obvious case occurs when the 

number of predictors equals the number of observations. In our analysis, any combination of 

48 linearly independent predictors will yield a perfect fit within sample, but the resulting 

model will generally perform very poorly out of sample.

Various techniques have been developed to address the overfitting problem. Shrinkage 

estimators (of which ridge regression is the best known example) compensate for overfitting 

by shrinking the overall size of the estimated coefficient vector. Such estimators can 

attenuate the sensitivity of predictions to changes in the predictors, and hence reduce 

variance, thereby improving the overall accuracy of out-of-sample predictive performance 

according to measures such as mean-squared prediction error (a commonly used statistic that 

encompasses both the bias and the precision of a prediction). We address the model 

selection and overfitting issues using LASSO (the Least Absolute Shrinkage and Selection 

Operator; see Tibshirani, 1996) combined with cross-validation. As the name implies, 

LASSO, like ridge regression, is a shrinkage procedure.23 For both procedures, one 

optimizes a standard criterion for within-sample fit (for example, minimizing the sum of 

squared residuals in the case of a regression, or maximizing likelihood) subject to a penalty 

that increases monotonically in the size of the coefficient vector. For ridge regression, one 

measures the size of the coefficient vector using the L2-norm (i.e., the square root of the 

sum of squared coefficients). For LASSO, one uses the L1-norm (i.e., the sum of the 

absolute values of the coefficients). While both methods of penalization lead to shrinkage, 

only LASSO also accomplishes variable selection.24

In our context, the LASSO procedure involves maximizing the following penalized log-

likelihood function over the parameters γ0 and γ = (γ1,…,γνi), where νi is the number of 

voxels for subject i:

(2)

Here, T denotes the number of trials in the training set, pit = Pr [yit = l[Dit] and ║γ║1 

denotes the L1 norm on γ.25 In the LASSO objective function the L1 penalty receives a 

23In a linear regression context, one can also interpret LASSO as a Bayesian regression with double exponential priors; see Tibshirani 
(1996). In the Bayesian context, shrinkage results from the priors.
24Relative to an L2-penalty, an L1-penalty favors coefficient vectors wherein some elements equal zero. Notice, for example, that in a 
model with two coefficients, γ1 and γ2, as we move linearly from (γ1, γ2) = (a, 0) to (γ1, γ2) = (α/2, α/2), the L1-penalty remains 
constant while the L2-penalty declines monotonically. More importantly, because iso-penalty curves are smooth when one uses the 
L2-norm, solutions involve coefficients of zero only by coincidence. In contrast, because isopenalty curves are kinked at the axes 
when one uses the L1-norm, solutions typically involve setting many coefficients equal to zero.
25Note that the probabilities pit depend on y0, but that this term is not penalized in the LASSO specification.
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weight of λ.26 Larger values of λ lead to greater shrinkage and to more aggressive variable 

selection. The value of λ is determined through cross-validation, which is a procedure for 

simulating out-of-sample predictive performance entirely within a training sample. For our 

analysis, we randomly divided each training sample into five sets of approximately equal 

size, indexed k = 1,…,5 (called folds in the statistical prediction and machine learning 

literatures). For each k, we estimated the penalized regression model for each possible value 

of λ in a pre-specified grid using only the data from the k − 1 other folds. We then used the 

estimated models to predict choices for the left-out fold, and computed the accuracy of the 

predictions by comparing them to the actual choices. The value of λ with the highest 

successful prediction rate across all of the folds, λ*, was then used to estimate the model 

with all of the observations in the training sample.27 Importantly, note that the selection of 

λ* is blind with respect to outcomes in the actual hold-out sample; thus, accuracy within the 

hold-out samples remains a valid gauge of the procedure's out-of-sample performance.

The LASSO procedure not only achieves beneficial shrinkage, but also in effect ensures that 

a variable remains in the model with a non-zero coefficient only if its incremental predictive 

value is sufficient to justify the sacrifice of a degree of freedom. Thus, in our setting the 

procedure selects the brain voxels with the neural responses that provide the most valuable 

predictive informative concerning subsequent choices.

Prior to implementing the LASSO procedure, we reduced the vast set of candidate voxels by 

excluding those that failed to meet a simple statistical criterion. Ryali et al. (2010) have 

shown that this initial screening step can improve predictive accuracy in studies employing 

fMRI data, even when the subsequent estimation procedure selects voxels automatically (as 

is the case here). For every voxel, we computed a simple two-sided t-test for the hypothesis 

of no difference between neural responses (within the training sample) to foods that were 

chosen and those that were not. We then ranked voxels by the absolute values of their t-

statistics, and retained only those exceeding some threshold percentile.28 Intuitively, the 

purpose of this initial screening step is to focus attention on voxels that are likely to contain 

highly predictive information. For each prediction task, we examine the robustness of 

prediction success rates with respect to a range of screening criteria, and then present more 

detailed results based on analyses for which the top 1% of voxels were retained. Note that 

the voxel selection procedure, like the selection of λ*, is completely blind with respect to 

outcomes in the actual hold-out sample; thus, accuracy within the hold-out samples remains 

a valid gauge of the procedure's out-of-sample performance.

As we mentioned at the outset of this section, data gathered from our first 10 subjects were 

not used for within-subject predictions. Recall that those subjects made choices from 200 

pairs of items, drawn randomly with replacement from our set of 100 items. Thus, when the 

full sample is divided into a training sample and a hold-out sample, the items that belong to 

pairs in the hold-out sample also typically belong to pairs in the training sample. The 

26To fit the model we used the glmnet software package for MATLAB (Friedman, Hastie, & Tibshirani 2010).
27We use the out-of sample prediction (success) rate here and throughout this paper as our criteria for selecting λ*, in order to 
maximize predictive success. An alternative criterion is log-likelihood.
28According to Ryali et al. (2010), this screening step can improve predictive performance in these settings.
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resulting overlap between the sets of items represented in the training and hold-out samples 

can lead to spurious predictive accuracy. 29

Results—Figure 1 plots the mean success rates, defined as the fraction of holdout 

observations for which the predicted item was chosen, as a function of the percent of voxels 

retained after initial screening, with the retained percentiles ranging from 0.01% to 100%. 

When 1% of voxels are retained, the mean success rate is 61.3%, which represents an 

economically and statistically significant improvement over the uninformed 50% benchmark 

(p < 0.0001, one-sided t-test). Performance falls sharply when fewer than 1% of voxels are 

retained, but declines only slightly when fewer are eliminated. Indeed, when we abandon the 

initial screening step (i.e., retain all voxels), our overall success rate, 59.3%, remains 

significantly better than the uninformed benchmark (p < 0.001), and is not significantly 

different from the rate obtained when retaining 1% of voxels (p=0.23, paired t-test). Thus we 

find, in contrast to Ryali et al. (2010), that the initial voxel-screening step yields only a small 

and statistically insignificant improvement in this measure of predictive accuracy. For the 

rest of this section, we will focus on the results obtained using the 1% screening criterion; 

our conclusions are not substantially affected by applying less restrictive screens.

The first data column in Table 1 provides results on success rates for each subject 

(numbered 11 through 27 because this analysis excludes the first ten subjects). There was 

considerable cross-subject variation in success rates, which ranged from a low of 44% to a 

high of 76%, with all but one exceeding 50% and four exceeding 70%. These rates exceeded 

the uninformed benchmark by a statistically significant margin for 9 out of 17 subjects at the 

5% level (amongst whom the overall success rate was 68%), and for 8 out of 17 subjects at 

the 1% level. Plainly, non-choice neural responses contain a substantial amount of predictive 

information for those subjects. For subsequent reference, we have shaded all of the rows in 

the table associated with high-success-rate subjects (i.e., those whose success rates exceeded 

the uninformed benchmark by statistically significant margins), so that their results are 

easily distinguished from those of low-success-rate subjects (i.e., the complementary set).

As we mentioned in the introduction, a success rate is a particular blend of the resolution 

and calibration of a probabilistic prediction.30 Resolution refers to the degree of certainty. 

The statement that an individual will choose the target item with either 1% or 99% 

probability involves high resolution, while the statement that he will choose that item with 

29To see why, suppose for the purpose of illustration that the subject's choices are pair-wise transitive. From the choices in the 
training sample, one can then predict many choices perfectly out of sample. For example, if the individual chooses a over b as well as 
b over c in the training sample, we can confidently predict that he will pick a over c out of sample; no neural information is required. 
This observation is problematic because, with 45,000 voxels, there is a substantial likelihood that each item will be associated with 
some voxel within which neural activity was high when the item in question, and only that item, was presented. That voxel serves as a 
spurious neural identifier for the item. LASSO tends to retain those voxels and assign them coefficients that reflect each item's place 
in the subject's preference ordering. In our example, it might assign coefficients of 1, 0, and -1 to the voxels identifying, respectively, 
items a, b, and c. Accordingly, the resulting model will predict that a will be chosen over c out of sample, but only because the neural 
activity spuriously identifies the item, and not because it is correlated with some provisional assessment of subjective value. We 
discovered this problem after collecting data on the first 10 subjects and obtaining results indicating a degree of predictive accuracy 
that seemed too good to be true (i.e., well in excess of 80%). Subsequently, we avoided the problem by selecting the choice pairs for 
subjects 11 through 27 so that each item appeared in one and only one pair. We include the data gathered from the first ten subjects 
only in the analyses of Sections IV.B and V, where the problem does not arise.
30These terms refer to a decomposition of the mean squared forecast error or Brier score (Brier 1950). Our discussion follows 
Murphy's (1973) decomposition; see also Yates (1982), and Murphy & Winkler (1987).
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either 49% or 51% probability involves low resolution. Calibration refers to the degree to 

which the probabilistic prediction matches actual frequencies. To illustrate, suppose that for 

some group of pairwise choices, a model predicts that the target will be chosen with an 

average probability of 75%. The model's predictions are well-calibrated if the realized 

frequency that the target is chosen, for any reasonably large group of observations, is close 

to the average predicted probability. If it is not close, the model's predictions are poorly 

calibrated. In the preceding example, if the realized frequency is 55% rather than 75%, the 

model's probabilistic predictions are poorly calibrated. The same is true if the frequency is 

95%.

According to these definitions, the predictions of the uninformed benchmark (50-50) have 

zero resolution but are perfectly calibrated (because the overall success rate, 50%, matches 

the predicted probability of the most likely item in every pair). In contrast, the typical 

deterministic model will be highly resolved, but in all likelihood poorly calibrated (because 

it is rarely possible to forecast outcomes with certainty).

Knowing only that the average success rate for our procedure is 61.3%, one cannot say 

anything about the resolution or calibration of the underlying predictions. Yet such 

distinctions are plainly crucial. If our procedure typically yielded predicted probabilities of 

the more likely item on the order of 90% but achieved an overall success rate near 60%, its 

success would be only directional, and one would not be able to take its probabilistic 

predictions seriously. On the other hand, if on average our procedure yielded predicted 

probabilities of the more likely item near 60% (i.e., in line with the observed success rate), 

then although one could complain that its predictions had somewhat low resolution, at least 

they would be well-calibrated.31

With respect to potential complaints concerning low resolution, it bears emphasizing that the 

value of an accurate predictive model should not be discounted merely because its 

predictions are not as highly resolved as one might like. On the individual level, certain 

determinants of choice may be fundamentally unpredictable (see, e.g., Krajbich, Armel, and 

Rangel, 2010), in which case the resolution of any well-calibrated probabilistic prediction is 

necessarily limited. Fortunately, such idiosyncratic randomness likely averages out over 

multiple decisions, so it should still be possible to predict the average behavior of groups 

with reasonably high resolution (see Sections IV.B and V).

The second data column in Table 1 sheds light on the resolution of our procedure's 

predictions. Focusing for the moment on the second-to-last row, we see that the mean 

predicted probability of the more likely item is 72.7%. For a perfectly calibrated model, this 

number equals the expected success rate. Yet we see that there is a sizable and highly 

statistically significant gap (or bias) of 11.4 percentage points between the mean predicted 

probability and the overall success rate of 61.3% (p <0.001). At this level of aggregation, 

one cannot describe the models' probabilistic predictions as well-calibrated.

31As explained below, further investigation would be required before reaching that conclusion.
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A careful examination of the results for individual subjects tells a more interesting and 

nuanced story. Based on our initial analysis of success rates for individual subjects, it is 

entirely possible that our procedure works well for some subjects, and poorly (or not at all) 

for others. For example, some subjects may not meaningfully attend to the images of food 

items during stage 1.32

To evaluate the calibration of the predictive model for each subject, we first test the 

hypothesis that the success rate equals the mean predicted probability of the more likely 

item. The fourth column of Table 1 contains the p-values for those subject-specific tests. 

Comparing the shaded and unshaded lines, we see a striking pattern. We cannot reject 

equality of the success rate and the expected success rate with 95% confidence for any of the 

high-success-rate subjects, and we reject equality with 90% confidence for only two of these 

subjects (and would have expected roughly one rejection by chance). In contrast, we reject 

equality at the 90% confidence level for seven of the eight low-success rate subjects (and 

with 88% confidence for the eighth), at the 95% confidence level for five, and at the 99% 

confidence level for three. Visually, asterisks (indicating levels of statistical significance) 

tend to appear in the first data column when no asterisks appear in the fourth, and vice versa.

Overall, for high-success-rate subjects, the mean success rate is 68.2%, while the expected 

success rate is 72.9%; the difference (or bias) is modest but statistically significant (p = 

0.042). Though the predictions are not right on the mark, they are remarkably close given 

the nature of our out-of-sample prediction exercise. Interestingly, our predictions are equally 

resolved for the low-success-rate subjects: the expected success rate is 72.6%. However, the 

mean success rate for those subjects is only 53.5%, and the difference (or bias) is large and 

highly statistically significant (p < 0.001).

One might be tempted to discount the preceding results as a possible coincidence: if the 

overall success rate is below the overall mean predicted probability, and if the latter does not 

vary between low- and high-success-rate subjects, then it is not surprising that the success 

rate for high-success-rate subjects is closer to that group's mean predicted probability of the 

more likely item. Thus, we view this first test as providing only a relatively weak 

preliminary indication concerning the model's performance among high-success-rate 

subjects.

Fortunately, a more demanding test is available. So far, we have made no use of variation in 

the strength of predictions across hold-out observations (e.g., whether the predicted 

probability of choosing the target item is 51% or 98%). According to Table 1, the mean 

within-subject standard deviation of the predicted probability is substantial (0.140). 

Moreover, the predicted probability of the more likely item is distributed fairly evenly 

between 50% and 100% (see Figure A2 in Appendix A). Using this variation allows us to 

determine whether our predictive procedure is functioning properly. If, for example, the 

predicted probability averages 60% within one large group of hold-out observations and 

32Additional sources of subject-level variation in predictive success might include: local temperature variation during scanning, 
variability in the functioning of the imaging hardware, physiological noise (such as heart-rate variability), or subject motion. See 
Huettel et al. (2009), Chapter 8, for a discussion of noise sources in fMRI. We remove these factors when possible, but some (e.g. 
thermal and scanner-related noise) are difficult to measure and therefore to control.
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80% within a second group, and if the model is generating valid out-of-sample probabilities, 

the frequency with which the more likely item is chosen should be approximately 60% in the 

first group and approximately 80% in the second. Even if the model is just capturing 

tendencies, that frequency should be noticeably higher in the second group than in the first.

We implement this idea as follows. First, we rank the hold-out observations (pooled across 

all subjects) according to the predicted probability of the more likely choice (i.e., the 

probability of choosing the target item if the model indicates that the target is more likely, 

and the probability of choosing the non-target item if the model indicates that the non-target 

item is more likely). Second, we divide the observations into deciles based on that 

probability. Third, for each decile, we compute the frequency with which the item identified 

as more likely was in fact chosen (i.e., the success frequency). Finally, we examine the 

relationship across deciles between the average predicted probability of choosing the more 

likely item and the actual frequency with which that item was actually chosen.33

Figure 2A plots the results, pooled over all subjects. The horizontal axis shows the predicted 

probability of choosing the more likely item, while the vertical axis shows the frequency 

with which that item was actually chosen. For an ideal predictive model, the data points 

would line up along the 45-degree line (i.e., the predicted probabilities and the success 

frequencies would always coincide). Though our procedure does not achieve this ideal, there 

is nevertheless an obvious and reasonably strong positive relationship between the predicted 

probabilities and success frequencies. Between the first and eighth deciles, the actual 

success rate increases roughly half a percentage point for every one percentage point 

increase in the predicted probability; beyond the eighth decile, it declines modestly. Overall, 

the predictive performance of the model is encouraging, at least directionally.

Figure 2B performs the same analysis separately for low- and high-success-rate subjects. 

The results are striking. For the eight low-success-rate subjects, there is no relationship 

between success frequencies and predicted probabilities: the line moves up and down a bit, 

but overall is fairly flat. With these problematic subjects removed, the procedure's 

performance is much improved. For the nine high-success-rate subjects, the relationship 

between success frequencies and predicted probabilities increases more sharply than the one 

in Figure 2A, and is much closer to the ideal (i.e., the 45 degree line). For the lowest two 

deciles, within which the average predicted probability is 53.8%, the overall success 

frequency is 56.7%, while for the highest two deciles, within which the average predicted 

probability is 92.7%, the overall success frequency is 84.4%.

To sharpen these impressions, we conduct additional statistical analyses. For each subject i 

and choice trial t, we define a binary success indicator, Sit, which equals unity when the 

subject chooses the item predicted as more likely (with this trial treated as a hold-out 

observation), and zero otherwise. Let Pit denote the predicted probability that the subject i 

will choose the item identified as more likely in choice trial t (again, when this choice trial is 

treated as a hold-out observation). Assuming that Pit is in fact a correct probability, it 

33This procedure is motivated by and closely related to a goodness-of-fit test for binary choice models described by Lemeshow and 
Hosmer (1982).

Smith et al. Page 19

Am Econ J Microecon. Author manuscript; available in PMC 2015 February 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



follows trivially that E[Sit|Pit] = Pit. Thus, Sit = Pit + εit, where E[εit|Pit] = 0 (in particular, εit 
equals 1-Pit with probability Pit, and -Pit with probability 1- Pit). Accordingly, our strategy 

is to estimate simple linear probability models (LPMs) of the following form:

(3)

If the predicted probability statements are in fact correct, we should obtain α=0 and β=1.

We estimate two versions of the preceding linear probability models, one for the nine high-

success-rate subjects, and one for the eight low-success-rate subjects. We use weighted least 

squares to account for the inherent heteroskedasticity in the linear probability models, 

following the procedure in Wooldridge (2003, page 455). In these regressions, each 

observation consists of a single hold-out choice pair; thus, the regression for high-success-

rate subjects uses 50 × 9 = 450 observations, while the regression for low-success-rate 

subjects uses 50 × 8 = 400 observations. For the eight low-success-rate subjects, we obtain 

an intercept of 0.551 (s.e. = 0.129) and a slope of −0.023 (s.e. = 0.174). The combination of 

low success rates and the absence of any detectable relationship between the two variables 

indicates that our forecasting procedure fails for those subjects. In contrast, for the nine 

high-success-rate subjects, we obtain an intercept to 0.118 (s.e. = 0.113) and a slope 0.775 

(s.e. = 0.152). Here, the relationship between the two variables is strong, positive, highly 

statistically significant, and within the general vicinity of the ideal. However, we reject the 

hypothesis that the intercept is in fact zero and the slope unity (p = 0.012). With that 

qualification, our prediction model performs well out of sample for the nine high-success-

rate subjects.

Conceivably, the strong results obtained for the LPM estimated with high-success-rate 

subjects could be attributable to compositional effects: success rates might be unrelated to 

predicted probabilities within subject, but subjects with higher success rates might also have 

higher predicted probabilities. In practice, Table 1 provides little reason to anticipate 

significant compositional effects, because the means and standard deviations of the 

predicted probabilities (the second and third data columns) are quite similar across subjects 

(the cross-subject standard-deviations of these statistics are only 0.028 in the case of the 

within-subject mean, and 0.010 in the case of the within-subject standard deviation).

To rule out the possibility that our LPM results for high-success-rate subjects reflect 

compositional effects, we estimate another LPM with subject-fixed effects. Our estimate of 

β increases to 0.808 (s.e. = 0.157). We also estimate an LPM separately for every subject. 

The slope coefficients and associated standard errors are reported in the last two data 

columns of Table 1. Because each regression employs only 50 observations, the standard 

errors are large. Still, the overall pattern is striking. For the high-success-rate subjects, the 

slopes are all positive and range from a low of 0.133 to a high of 1.579. The mean slope is 

0.818 and the median is 0.955, with three of the nine slopes exceeding unity. In contrast, for 

the low-success-rate subjects, five of the eight slopes are negative. They range from a low of 

−0.420 to a high of 0.698, with a mean of −0.002 and a median of −0.194.
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We conclude that our within-subject procedure for predicting choices involving new items 

performs successfully for roughly half (nine of seventeen) of our subjects. The overall 

success rate is 68% for that group, and subject-specific success rates are close to subject-

specific mean predicted probabilities of the more likely item, our expected success rates. 

Moreover, success frequencies mirror predicted probabilities across hold-out observations, 

both overall and within subjects. The predicted probabilities are not always spot-on for this 

group, but they are close.

We acknowledge that the procedure works poorly for the rest of our subjects: the overall 

success rate is only 54%, subject-specific success rates differ considerably from subject-

specific mean predicted probabilities, and success frequencies bear no discernable relation to 

predicted probabilities across hold-out observations.34

B. Within-group predictions

Our investigation in this subsection parallels that of Section 4.A, except that we study 

average behavior among groups, rather than the choices of specific individuals. Our 

objective is determine whether the average neural responses among a group of individuals 

contain enough information to make reasonably accurate predictions concerning the group's 

average behavior in new situations, using a model estimated with data concerning the same 

group.

Here we predict measures of subjective valuation, averaged across group members. A 

natural alternative strategy would have been to predict the fraction of subjects choosing the 

target item from a given pair. Unfortunately, that alternative is inconsistent with our 

experimental design, which employed different random pairings of the items for different 

subjects.

As explained in Section III, stage 3 of our experiment elicits preference ratings (on a scale of 

−3 to +3) for each item from every subject. We acknowledge that that our elicitation 

protocol is not incentive-compatible and that these ratings may not provide cardinally 

meaningful measures of willingness-to-pay (WTP), but we study them nevertheless for two 

reasons. First, preference ratings were elicited after the subjects made incentivized choices, 

from which it follows that (i) subjects had already thought about their preferences for each 

item in an incentive-compatible context, and (ii) subjects were likely to provide ratings that 

rationalized their choices. Second, these ratings were in fact highly correlated with choices: 

subjects choose the item with the highest rating 85.1% of the time in the 50-choice condition 

34An obvious question is whether there are any systematic and predictable differences between the subjects for whom the procedure 
works well and those for whom it works poorly. Although the experiment was not designed to address this question, we carried out the 
following three post-hoc exercises. First, we hypothesized that more attentive subjects might have higher success rates. However, we 
find no relationship between success rates and a subject's mean response time (RT) on catch trials, which is a proxy for attentiveness 
(Spearman's rho -0.15, p = 0.56 for a test of the hypothesis of no correlation). Second, we hypothesized that it might be more difficult 
to predict choices for subjects who had weaker preferences across foods. The variance in their reported ratings is a proxy for the 
strength of their preferences. However, we found no relationship between this variance and success rates (Spearman's rho -0.10, p = 
0.70). Finally, since head motion is a well-known source of noise in fMRI studies, we investigated if this factor played a role. 
Standard fMRI preprocessing software computes 6 measures of head motion: shifts in the x, y, and z direction as well as the rotation 
measures pitch, roll, and yaw. Following common practice, we ignored rotation and dropped subjects whose head motion exceeded 
2mm in any direction in any of the six scanner runs. Among the remaining subjects, we found no relationship between motion and 
success rates (Spearman's rho -0.04, p = 0.88).
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(subjects 1-10; p<10-12, one-sided t-test vs. chance) and 90.1% of the time in the 200-choice 

condition (subjects 11-27: p<10-8, one-sided t-test vs. chance). Third, and more importantly, 

to the extent preference ratings are noisy measures of subjective valuation, our results likely 

understate the true predictive power of non-choice neural responses.

Statistical methods—Before aggregating subjective ratings across our 27 subjects, we 

normalized each subject's ratings using a z-score transformation. We then computed the 

mean normalized ratings for the group, denoted Zj for item j, as well as the group's mean 

non-choice neural responses, denoted Mj for item j, where Mj is a vector containing the 

average (across the group) neural response for each voxel v, denoted Mvj.35

As a first step, we simply ask whether the average non-choice neural responses to an item 

predict whether its average subjective rating is above or below the median rating (denoted 

Zmed). This is an interesting comparison because it stands in for a binary choice between the 

item in question and the median-rated alternative. We assume that the probability of an 

above-median rating for any item j is given by the logistic function:36

(4)

Plainly, realizations of this process cannot be independent across items (because half of the 

items must be above the median). However, with a sufficient number of items, correlations 

across observations are presumably small, so we ignore them and treat the model as a simple 

approximation of the true process.

By removing two items at a time from the set of 100, we create 50 training samples (each 

consisting of 98 observations) and 50 associated hold-out samples (each consisting of two 

observations). For each training sample, we then estimate the model and use it to predict 

whether the average valuations for the hold-out observations will fall above or below the 

median valuation of items within the training sample. We then assess the model's out-of-

sample predictive performance over all 100 predictions. We classify a prediction as a 

success if the item's average subjective rating falls into the half of the training sample rating 

distribution that the model identifies as more likely.

As in the previous section, we applied a screening criterion to reduce the number of 

candidate voxels prior to estimating the model for any given training sample. Using only the 

training data, for each voxel v we regressed Mvj on a binary variable indicating whether Zj 

was above Zmed. We then ranked the voxels according to the absolute values of the t-

statistics of the slope coefficients and retained those falling within some specified quantile. 

Then we estimated the probability model using the LASSO procedure, selecting the penalty 

parameter through 5-fold cross-validation, where the folds were assigned at random.

35See Figure A3 in Appendix A for the distribution of mean normalized ratings across food items.
36The probability of any item falling above the median clearly depends on the entire vector of neural responses to all items. However, 
in our analysis, that vector is identical for all items (because all items are part of the same group); consequently, we suppress it in the 
notation.
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The second step in our analysis of group behavior was to predict the actual value of Zj, an 

item's average subjective rating across all subjects, rather than a binary indicator of its 

position relative to the median. For this analysis, we employed a LASSO-penalized linear 

regression of Zj on Mj. In the initial screening step, for each voxel v we regressed Mvj on Zj, 

then ranked all voxels by the t-statistics of the slope coefficients, and retained the highest 

1%. All other procedures were identical, except that the LASSO penalty parameter, λ*, was 

chosen to maximize cross-validated mean-squared-error (which is appropriate here given 

that the objective is to predict a continuous variable).

As mentioned previously, the data gathered from our first 10 subjects are suitable for this 

analysis. Only the stage 2 choice data for those subjects have the feature that a single item 

plays a role in more than one observation (which produces violations of the assumed 

separation between training and hold-out samples), and we do not use those data here. Thus, 

throughout this section we present results based on all 27 subjects.

Results—We begin with an analysis of predictions concerning the probability that the 

average subjective rating for a given hold-out item will fall above the median rating for 

items in the training sample. Figure 1 plots the overall success rate as a function of the 

percent of voxels retained after initial screening, with the retained percent ranging from 

0.01% to 100%. Our procedure maximizes the success rate when 0.5% of voxels are 

retained. The overall success rate is then 77%, which represents an economically and 

statistically significant improvement over the uninformed 50% benchmark (p < 0.001, one-

sided t-test). Performance falls sharply when fewer than 0.5% of voxels are retained in the 

initial screening step, but is fairly robust when fewer are eliminated, with success rates 

generally exceeding 70%. Recalling that classifications of ratings relative to the median 

stand in for binary choices between any given item and an alternative of median value, we 

note that we achieve a significantly higher overall success rate for within-group predictions 

than for the within-subject predictions discussed in Sections IV.A (compare the pertinent 

lines in Figure 1). To avoid cherry-picking results section-by-section, we adopt the same 

screening criterion here as in the previous section (1%), which yields a success rate of 73%, 

rather than the success-rate-maximizing 0.5% criterion. Our conclusions are not 

substantially affected by applying less restrictive screens.

Figure 3A illustrates the relationship between the predicted probability of an above-median 

rating and an item's average rating. Each data point corresponds to a food item; circles and 

crosses represent, respectively, correctly and incorrectly classified items. A strong positive 

relationship is easily discerned: our model plainly tends to predict higher probabilities of 

above-median ratings for more highly rated items.

As in Section IV.A, we perform an initial test of the validity of the model's predictive 

probability statements by comparing the average predicted probability with the overall 

success rate. On average, the model predicts that items will fall into the more likely half of 

the rating distribution with 79% probability. This figure is close to the actual success rate 

(73%), and the gap is statistically insignificant (p = 0.388, two-sided t-test).
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For a more discerning assessment of the model's predictive validity, we grouped items into 

quintiles (20 items in each) based on the predicted probability that the item's average rating 

exceeded the median, and then, for each quintile, computed the frequency with which the 

group's ratings of those items actually fell above the median. Results appear in Figure 3B. A 

strong positive relationship between predicted probabilities and realized frequencies is 

readily apparent. While the five data points do not line up along the 45 degree line, the 

empirical relation bears some resemblance to that ideal.

To sharpen this impression, we estimated a linear probability model (again using weighted 

least squares, to account for heteroskedasticity of the error term) relating a binary variable 

indicating whether an item's average rating was above the median to the predicted 

probability of that event. The estimated intercept is 0.173 (s.e. = 0.080), and the slope is 

0.624 (s.e. = 0.127). We reject the joint hypothesis that the intercept is zero and the slope is 

unity with 95% confidence (p = 0.013). Although the point estimates may not support a 

literal interpretation of the model's predictive probability statements, on the whole its 

quantitative out-of-sample performance is promising.

Next we turn to predictions of the average rating itself, rather than its relation to the median. 

Figure 4 plots average normalized ratings against predicted ratings. The predictions are by 

no means exact, but there is once again a strong positive relationship. To summarize that 

relation, we regress the actual rating on the predicted rating using ordinary least squares and 

plot the regression line. With unbiased predictions, our regression would yield an intercept 

of zero and a slope of unity. We obtain an intercept of -0.012 (s.e. = 0.060) and a slope of 

0.712 (s.e. = 0.144), and fail to reject the joint hypothesis of interest with 90% confidence (p 

= 0.136). The predicted ratings account for 20% of the variation in the actual ratings.

We conclude that our within-group procedure for predicting the average ratings of new 

items performs with considerable success. For the binary prediction task, the overall success 

rate is well over 70%, considerably higher than for within-subject predictions, and predicted 

probabilities match up reasonably well with realized frequencies. Predicted ratings also track 

average ratings and plainly contain usefully predictive information.

Conceivably, one might achieve greater predictive accuracy by conditioning on higher 

moments of the distribution of predicted ratings. Likewise, it may be possible to predict 

additional parameters of the distribution of actual ratings, such as variance. These are 

important questions, but we leave them for future research.

V. Predicting choices across groups

The method of prediction developed and implemented in the previous section requires the 

use of separate forecasting models calibrated to each individual or group. If non-choice 

neural activity exhibits a sufficiently similar relation to choice across subjects, then it should 

be possible to construct a single prediction model and use it without recalibration to predict 

choices based on neural measurements taken from new individuals or groups. Such a model 

would have considerable practical value in that, once estimated, it would vastly simplify the 

steps required to formulate additional predictions. In particular, to predict behavior in new 

situations, one could collect data on non-choice neural responses to the relevant prospects 
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for a new group of individuals, and apply the existing model. It would not be necessary to 

collect new measurements from the same set of individuals used to estimate the original 

model, or to re-estimate the model with additional data elicited from the new group. Indeed, 

with sufficient research, it might be possible to converge upon a single, stable formula for 

predicting new choices based on non-choice neural responses.

In this section we explore the feasibility of developing a single model for predicting choices 

from non-choice neural responses that is portable from one group to another. Specifically, 

we investigate whether it is possible to estimate the model with data on one group's choice 

distributions over various sets of items and, with reasonable accuracy, use it to predict 

another group's choice distributions over sets of new items.

Statistical methods

The methods used here are identical to those of Section VI.B, with some exceptions 

involving the nature of the training and hold-out samples. As in Section IV.B, all twenty-

seven subjects were included in this analysis. Here, we randomly divide the subjects into a 

training group of 14 subjects and a hold-out group of 13 subjects. By removing two items at 

a time from the set of 100, we create 50 training sets (each consisting of 98 items) and 50 

associated hold-out sets (each consisting of two items).

For each set of training items, we then estimate the same two models as in Section IV.B 

using data on the training subjects. We use one model to predict whether the average ratings 

of the hold-out subjects for the hold-out items will fall above or below the average rating of 

the median item for the hold-out subjects, and the other to predict the average ratings 

themselves.

To ensure that our results cannot be attributed to a potentially idiosyncratic division of the 

subjects, we repeat this exercise 200 times, selecting the training and hold-out groups 

randomly each time. We thereby generate a total of 20,000 predictions.

Results and discussion

We begin with an analysis of predictions concerning the probability that the hold-out group's 

average subjective rating for a given hold-out item will fall above the median rating for 

items in the training data. Figure 1 plots the overall success rate (averaged over the 200 

population draws) as a function of the percent of voxels retained after initial screening, with 

the retained percent ranging from 0.01% to 100% of voxels. Our procedure maximizes this 

rate when 50% of voxels are retained. The average overall success rate is then 61.2%,37 

which represents an economically and statistically significant improvement over the 

uninformed 50% benchmark (p < 0.001, one-sided t-test). Here, the initial voxel selection 

criterion has a fairly small effect on the success rate. To avoid cherry-picking results 

section-by-section, we will adopt the same screening criterion here as in Section IV (1%), 

which yields an average overall success rate of 60.3%, rather than the success-rate-

37This figure represents the overall success rate averaged over the 200 population draws.
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maximizing 50% criterion. Our conclusions are not substantially affected by applying less 

restrictive screens.

As in Section IV, we perform an initial check on the validity of the model's predictive 

probability statements by comparing the typical probabilistic prediction with the average 

overall success rate. On average, the procedure predicts that items will fall into the more 

likely half of the rating distribution with 79.7% probability. That figure is not close to the 

average overall success rate of 60.3%, and the gap is statistically significant (p < 0.001, two-

sided t-test). Consequently, the procedure does not generate quantitatively accurate 

probability statements for the hold-out data.

For a more revealing assessment of the model's predictive validity, we grouped individual 

predictions into deciles (2000 predictions in each) based on the predicted probability that the 

hold-out item's average rating among the hold-out group would exceed the median, and 

then, for each decile, computed the frequency with which the hold-out group's average 

ratings of those items actually fell above the median. Results appear in Figure 5, which 

shows a strong positive relationship between predicted probabilities and realized 

frequencies. The relationship does not, however, lie close to the 45 degree line.

To sharpen these impressions, we estimated linear probability models (via weighted least 

squares) relating a binary variable indicating whether the hold-out group's average rating of 

a hold-out item was above the median, to the predicted probability of that event. Pooling all 

20,000 predictions, the estimated intercept is 0.317 (s = 0.006), and the slope is 0.364 (s.e. = 

0.010). Adding fixed effects for each of the 200 population draws, the coefficient estimates 

and standard errors are the same to three decimal places. We also estimated a separate LPM 

for each population draw. The mean slope is 0.360 (s.e. = 0.158), and the median is 0.354.38 

Although these estimates do not support a literal interpretation of the model's predictive 

probability statements, they are directionally accurate. Thus, they provide evidence that the 

predicted probabilities contain a good deal of information that is useful for predicting across 

subjects.

As in our within-group exercise, we also directly predict the average rating using a linear 

regression with LASSO penalty. We then estimate an ordinary least squares regression of 

mean normalized rating (for the hold-out food in the holdout group) on predicted rating for 

all 20,000 predictions, with fixed effects for each of the 200 population draws. The constant 

is -0.002 (s.e. 0.066) and the slope is 0.528 (se 0.012). The R2 from this regression is 

0.091.39 While the results from this exercise are not as strong as for the within-group 

analysis, the predicted ratings are clearly related to the actual ratings of the group.

VI. Some extensions

In this section, we briefly summarize two extensions of our analysis. The first investigates 

whether it is possible to improve upon predictions derived with LASSO estimates through 

38Figure A4 in Appendix A shows the distribution of the resulting slope coefficients.
39Figure A5 in Appendix A plots the mean normalized rating for each food, averaged over 200 population draws, versus the predicted 
rating for each food, again averaged over the population draws.
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the use of alternative statistical tools. The second examines the anatomical location of 

predictive brain activity.

Zou and Hastie (2005) propose a procedure known as the Elastic Net, which they argue 

improves upon LASSO in many settings. The Elastic Net penalty is a convex combination of 

the LASSO (L1) and Ridge (L2) penalties. Like LASSO, it accomplishes variable selection, 

but has a greater tendency to retain correlated predictors (e.g., in the current context, activity 

in neighboring voxels). The procedure yields modest improvements. For example, with 

respect to the first prediction task examined in Section IV.B (predicting whether the average 

food rating for a group is above or below the median rating), the overall success rate is 

unchanged at 73%. Notably, however, when we estimate a linear probability model relating 

an above-median indicator variable to the predicted probability that the item falls above the 

median, we obtain a slope coefficient that is close to unity (0.870, s.e. 0.171); moreover, we 

fail to reject the joint hypothesis that the slope is one and the intercept (0.064, s.e. = 0.100) 

is zero (p = 0.692).

It is natural to wonder whether the predictive voxels are concentrated in regions that are 

known to play important roles in valuation (Rangel and Hare, 2010). Because LASSO 

retains only a small handful of predictors (21.1 on average in our analysis) and typically 

discards all but one of any highly correlated set, there is a tendency for the predictive voxels 

to be widely dispersed. That tendency is not necessarily bad from a predictive perspective. 

LASSO may benefit by selecting anatomically distant voxels with activity that is associated 

with the underlying value signal but that does not mirror localized noise, and indeed the 

Elastic Net, which in contrast tends to retain predictive clusters, performs only marginally 

better. However, the Elastic Net proves more useful in generating images of the anatomical 

locations of predictive voxels. For the Elastic Net estimates, we find that the predictive 

voxels are to a large extent concentrated in brain regions that are broadly associated with 

choice and value, including the ventral striatum, subgenual cingulate cortex, orbitofrontal 

cortex, insula, and inferior parietal lobe.

VII. Concluding remarks

The preceding analysis points to the feasibility of inferring the choices people would make 

(if given the opportunity) at least in part based on their neural responses to prospects when 

they are not making actual decision making. It represents an important and challenging 

milestone in the process of developing methods for estimating choice mappings that could 

be used in settings where pertinent choice data are nonexistent, limited, or contaminated by 

spurious factors, so that more conventional methods of estimation are inapplicable or 

problematic. Possible examples include inferring willingness-to-pay for new products or for 

the avoidance of environmental damage, controlling for unobserved product characteristics 

in supply-and-demand estimation, and the estimation of the behavioral impact of 

interventions where naturally occurring events are insufficiently clean to permit reliable 

inferences.

It is important to acknowledge the limitations of our analysis. Our procedure is entirely 

unsuccessful for nearly half of our subjects. Moreover, even for subjects to whom it is 
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applied successfully, in many instances it yields relatively weak predictions (e.g., predicted 

probabilities near 50 percent rather than 100%), and consequently achieves only a moderate 

overall success rate (68.2%).

We note, however, that our procedure also yields strong predictions in many instances. For 

the individual-level models, the degree of resolution is reasonably high overall, and the 

models are well-calibrated for just over half of our subjects. Compared with the successful 

half of our individual-level prediction exercises, our group-level prediction exercise 

achieves higher resolution, and the quality of calibration is comparable (though somewhat 

lower), despite the fact that we include all subjects, regardless of whether their individual-

level prediction exercises were successful.

In addition, there is every reason to believe that refinements of the procedure will ultimately 

yield substantial improvements in predictive accuracy. Better methods can be developed to 

enhance attentiveness in the scanner and to weed out inattentive subjects. Advancements in 

knowledge of the brain and improved statistical methods may provide better guides to voxel 

selection. Technological advances will undoubtedly enhance our ability to detect and 

measure stimulus-specific neural responses.

Perhaps the greatest potential for improving predictive accuracy lies in exploring 

combinations of non-choice responses to potential prospects. One promising avenue is to 

supplement fMRI information with subjective non-choice responses, such as hypothetical 

choices, response times, and visual fixations, as well as other neurometric data, such as pupil 

dilation,40 facial temperature and muscle movement, SCRs, and the like. The latter types of 

measurements are easier and less costly to obtain than fMRI data, and may ultimately turn 

out to be highly predictive. Physiological responses may prove particularly valuable in 

detecting discrepancies between hypothetical statements and true tendencies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overall success rate as a function of the percent of voxels retained after initial screening 

when predicting choices for new items.

Notes: The between group standard errors are bootstrapped using the 200 population draws.
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Figure 2. 
Success rate for within-subject predictions of choices involving new items as a function of 

predictive choice probability of the more likely item.

Notes: (A) the entire group, and (B) separately for high-success-rate and low-success-rate 

subjects.

Smith et al. Page 34

Am Econ J Microecon. Author manuscript; available in PMC 2015 February 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Predicting above-and-below-median ratings for new items within groups.

Notes: (A) Scatter plot of mean ratings versus predicted probability that item is in the upper 

half of the group's valuation distribution. Circles denote correct predictions. Crosses denote 

incorrect predictions. (B) Fraction of items with ratings exceeding the median versus 

average predicted probability of rating exceeding the median, grouped by quintiles of the 

latter.

Smith et al. Page 35

Am Econ J Microecon. Author manuscript; available in PMC 2015 February 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
Predicting average ratings for new items within groups.

Notes: Scatter plot of actual vs. predicted mean normalized ratings for each item. Each point 

represents a different food item. Least-squares regression line included.
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Figure 5. 
Predicting above-and-below-median average ratings for new items and new groups.

Notes: Fraction of items with ratings exceeding the median versus average predicted 

probability of rating exceeding the median, grouped by deciles of the latter. Standard errors 

computed via bootstrap over the 200 population draws.
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