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Design Optimization Techniques for Time-Critical Cyber-Physical
Systems

Yecheng Zhao

(ABSTRACT)

Cyber-Physical Systems (CPS) are widely deployed in critical applications which are sub-

ject to strict timing constraints. To ensure correct timing behavior, much of the effort has

been dedicated to the development of validation and verification methods for CPS (e.g.,

system models and their timing and schedulability analysis). As CPS is becoming increas-

ingly complex, there is an urgent need for efficient optimization techniques that can aid the

design of large-scale systems. Specifically, techniques that can find good design options in a

reasonable amount of time while meeting all the timing and other critical requirements are

becoming vital. However, the current mindset is to use existing schedulability analysis and

optimization techniques for the design optimization of time-critical CPS. This has resulted in

two issues in today’s CPS design: 1) Existing timing and schedulability analysis are very dif-

ficult and inefficient to be integrated into well-established optimization frameworks such as

mathematical programming; 2) New system models and timing analysis are being developed

in a way that is increasingly unfriendly to optimization. Due to these difficulties, existing

practice for optimization mostly relies on meta or ad-hoc heuristics, which suffers either from

sub-optimality or limited applicability. In this dissertation, we seek to address these issues

and explore two new directions for developing optimization algorithms for time-critical CPS.

The first is to develop optimization-oriented timing analysis, that are efficient to formulate

in mathematical programming framework. The second is a domain-specific optimization

framework. The framework leverages domain-specific knowledge to provide methods that



abstract timing analysis into a simple mathematical form. This allows to efficiently handle

the complexity of timing analysis in optimization algorithms. The results on a number of case

studies show that the proposed approaches have the potential to significantly improve upon

scalability (several orders of magnitude faster) and solution quality, while being applicable

to various system models, timing analysis techniques, and design optimization problems in

time-critical CPS.
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(GENERAL AUDIENCE ABSTRACT)

Cyber-Physical Systems (CPS) tightly intertwine computing units and physical plants to

accomplish complex tasks such as control and monitoring. They are often deployed in critical

applications subject to strict timing constraints. For example, many control applications and

tasks are required to finished within bounded latencies. To guarantee such timing correctness,

much of the effort has been dedicated to studying methods for delay and latency estimation.

These techniques are known as schedulability analysis/timing analysis. As CPS becomes

increasingly complex, there is an urgent need for efficient optimization techniques that can

aid the design of large-scale and correct CPS. Specifically, techniques that can find good

design options in reasonable amount of time while meeting all the timing and other critical

requirements are becoming vital. However, most of the existing schedulability analysis are

either non-linear, non-convex, non-continuous or without closed form. This gives significant

challenge for integrating these analysis into optimization. In this dissertation, we explore

two new paradigm-shifting approaches for developing optimization algorithms for the design

of CPS. Experimental evaluations on both synthetic and industrial case studies show that

the new approaches significantly improve upon existing optimization techniques in terms of

scalability and quality of solution.
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Chapter 1

Introduction

1.1 Time-Critical Cyber-Physical Systems and Design

Optimization

A Cyber-Physical System (CPS) is a tight integration of cyber and physical components

for accomplishing complex control tasks and interaction with the physical world. Typically,

the cyber components consist of computing platform such as CPUs, ECUs, and buses, as

well as software tasks and messages that execute on them. They control the operation

of physical components, which in return provide feedback and environmental awareness to

the cyber components through sensors. CPS is widely used in different applications and

products such as automobile, avionic, medical devices and industrial plants. The economic

and societal potential of CPS is enormous. NIST estimates that in the U.S., a mere one

percent improvement in efficiency could save $2 billion in aviation fuel costs, $4.4 billion in

power generation, and $4.2 billion in health care each year [111].

Unfortunately, we long suffered from the inadequate capability of optimization techniques

for CPS, which has left much of its potential underachieved. As observed by Sangiovanni-

Vincentelli et al., “there is a widespread consensus in the industry that there is much to gain

by optimizing the implementation phase that today is only considering a very small subset of

the design space.” [129].

1
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Design optimization techniques are becoming vital and urgent for a number of CPS appli-

cation domains. For example, the automotive industry is pushed to adopt low-cost micro-

controllers with very limited hardware resources (typically 8 or 16-bit CPU with several

kilobytes of memory) for cost issues. Even for high-end micro-controllers (e.g., for engine con-

trol), often 32-bit CPU with 1-4 cores, the RAM memory is only several megabytes [82, 115].

Similarly, in the medical device domain, the technology innovation is largely driven by re-

duced size, weight, and power (SWaP) [23, 88]. Unmanned aerial vehicles (a.k.a. drones)

powered by batteries have a tight energy budget, hence they must carefully plan and operate

accordingly.

Furthermore, the industry is now moving towards adaptive architecture platforms recon-

figurable at runtime [141] to adequately respond to new internal and external situations,

especially because of their increasing autonomy [106, 141]. This raises an even greater chal-

lenge to optimization, as the new configuration shall be found in time comparable to the

dynamics of CPS (typically in seconds or shorter) [70, 87, 130].

Urgent and inadequate as optimization techniques may be, the design space for CPS is

arguably rather small, compared to systems we are able to successfully optimize. For ex-

ample, a modern automobile, one of the most sophisticated CPS [125], contains thousands

of software tasks, exchanging thousands of communication signals, supported by over 100

microcontrollers and dozens of in-vehicle communication buses [38, 67]. As a comparison,

over 20,000,000,000 transistors may reside in today’s highly optimized digital circuits [143].

Hence, there exist vast opportunities in developing transformative optimization techniques

to expedite the success in CPS design and operation [129, 130].

A unique challenge however, is that a CPS is typically time-critical, i.e., its functional cor-

rectness is subject to strict timing requirements. Consideration of such timing requirement

needs to be tightly incorporated into the process of design and optimization. The impor-
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tance of timing to CPS is well documented in various sources, including the CPS Vision

Statement from NITRD (Federal Networking & Information Technology Research & Devel-

opment) [113], various position papers from academia [11, 43, 91, 124, 129, 135, 140], and

industrial safety standards (e.g., [85, 126]). In particular, Edward Lee has put together a

strong argument that timing is a correctness criterion in CPS [92, 93].

There are plenty of reasons that CPS are time-critical. Processes in the physical environment

are unstoppable and always continue in their course of dynamic. To ensure correct and tight

interaction between the cyber and physical components, the response of cyber components

must be sufficiently prompt to match the dynamic of the physical processes. In practice, this

typically requires that tasks running on processors be properly assigned activation periods

and scheduled such that latency and deadline requirements are met. The consequences of

missing deadline can be catastrophic [34]. In addition, many design frameworks for CPS rely

on predictable timing correctness to avoid concurrency bugs [62, 77, 105].

As an example, the following gives a list of common timing-related parameters in many

control applications

• Period, which defines the activation interval for sampling input from the environment

and updating the output; The parameter is not only important for designing controllers

but also for embedded platform design in terms of task scheduling.

• Worst-case execution time (WCET), the maximum length of time a task may take to

execute;

• Response time, i.e., the time interval from a task’s activation to its completion;

• Scheduling priority, which determines the order currently released tasks are executed.

These parameters are involved in various constraints and design metrics, some of which
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conflict with each other in a number of scenarios. The following gives a few examples of

these constraints and design metrics.

Real-time schedulability. A task must finish before the deadline. Hence the task’s worst-

case response time (WCRT) must be no larger than its deadline. Such a deadline may come

from safety requirement, but may also be inherited from the functional correctness in many

design tools (see the next item).

Functional correctness. A popular design framework for CPS is model-based design using

modeling formalisms, including synchronous reactive (SR) models (e.g., Simulink [105]) and

the logic execution time (LTE) paradigm (e.g., Giotto [77] and PTIDES [62]). A main power

of such frameworks is the models’ concurrency determinism, that is, it provides the same

deterministic behavior of the system for any order among the concurrent functional blocks.

But this comes with some real-time schedulability constraints to allow a semantics-preserving

implementation, i.e., the implementation matches the behavior of the model. Specifically,

the Simulink tool requires that each functional block shall finish before its next activation,

imposing a deadline equal to the period; the LTE paradigm defines a time window for each

software program, within which it must finish.

Safety and End-to-end Latency. In distributed system, a functionality is usually im-

plemented by multiple tasks allocated on different platforms. For example, a sensing to

actuation chain may includes real-time tasks responsible for collecting sensor data, message

passing, data processing and actuation. The total delay of the functionality, also known as

the end-to-end latency, is determined by the delay of each individual task involved on the

end-to-end path. Distributed system imposes additional timing constraints on end-to-end

latency, i.e., it must not exceed a deadline. Such timing constraint has a different nature

than the traditional notion of schedulability which focuses only on meeting deadline for an

individual task. Thus, a non-trivial problem in the design of distributed systems is assigning
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priorities, periods and deadlines for real-time tasks such that all end-to-end latency deadlines

are satisfied.

Real-time schedulability vs. control performance. Embedded control applications are

usually implemented as periodic task systems. It has been shown that the quality of control

performance is related to the rate of the control tasks and the delay [103, 131]. Setting

higher rate for control tasks in feedback loop usually improves responsiveness and stability,

but increases system utilization which may lead other tasks to miss deadlines. Thus, a

relevant problem in the design of embedded control applications is assigning periods to tasks

such that the control performance is optimized while meeting real-time schedulability.

Real-time schedulability vs. energy. A standard technique in today’s low-power mi-

crocontrollers is dynamic voltage and frequency scaling (DVFS) [13]. It lowers the CPU

frequency to reduce power and energy consumption, but task WCETs are consequently

longer making the system more difficult to schedule.

Real-time schedulability vs. resource consumption. In multi-tasking, it is important

to protect shared memory from race condition. For real-time system, there are three solutions

to protecting shared memory. The first is to guarantee that the execution windows of the

communicating tasks are always separated. This typically requires each task to be able

to complete before the earliest next release of other communicating tasks. The solution

introduces no overhead in resource consumption but imposes additional timing requirements.

The second solution is to use semaphore lock. A semaphore lock introduces a moderate

amount of overhead in memory consumption. But it also introduces blocking to higher

priority tasks from lower priority ones which worsens schedulability. Wait-free buffers [66] on

the other hands, introduces no blocking time but consume much more memory to implement

(each task has its own copy of the share memory). Thus, a relevant problem is to optimally

select mechanisms for protecting share memory such that schedulability is met and memory
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consumption is minimized.

These examples show that design optimization of CPS needs to be very careful in choosing

design parameters while maintaining schedulability due to the potential conflicting require-

ments. This requires optimization algorithms to efficiently integrate schedulability analysis

into design space exploration.

1.2 Existing Approaches, Issues and Challenges

There has been a rich amount of research on the development of timing and schedulability

analysis over the past years. Most of them however, focused purely on the purpose of design

validation and did not consider the need of optimization. This has created a long-standing

lack of synergy between timing analysis and design optimization. For example, many of

the analyses are either impossible, or too inefficient, to use in well established optimization

frameworks (e.g., mathematical programming). As a result, existing practice often has to rely

on ad-hoc approaches, meta-heuristic and often times needs to additionally isolate different

decision domains to avoid scalability issues. This however, comes with either the loss of

solution quality or limited applicability. In the following, we summarize the three major

categories of existing approaches and analyze their limitations.

Problem-Specific Heuristics. The first is to develop heuristic that are strongly problem-

specific [76, 127, 156]. The major benefit of the approach is its computational tractability, as

it typically avoids the use of expensive design space exploration routines such as exhaustive

search. The average optimization quality is usually reasonable given sufficient exploitation of

problem-specific intuition. However, the approach suffers two main downsides: 1) it provides

no guarantee for finding the optimal solution or even just a feasible solution; 2) it is difficult

to generalize to a different system model or even just a different schedulability analysis.
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For example, [86] discusses the problem of allocating mixed-criticality tasks to multi-core

systems. It was shown that first-fit allocation strategy with decreasing-criticality ordering

of tasks gives better acceptance ratio (the percentage of systems schedulable) comparing

with decreasing-utilization ordering. However, in one of our study [164], we observed that

decreasing-criticality ordering is actually significantly worse than decreasing-utilization when

used with a more recent and accurate schedulability analysis. This reveals a critical issue in

the use of problem-specific approach in practice: It lacks the potential to catch up with new

advancement in system model and schedulability analysis research.

Meta heuristics. The second approach is to adopt meta heuristic algorithms such as

simulated annealing [22, 142] and genetic algorithm [75]. The major benefit of the approach

is their applicability to different problem settings. However, the performance is unpredictable

due to its random nature. It is also quite sensitive to problem formulation (i.e., definition

of genes) and parameter tuning, which causes issues for generalizing to different models and

analysis. It also suffers the same issue of giving no guarantee on convergence or finding a

feasible solution.

Mathematical Programming. The third approach resorts to the use of standard mathe-

matical programming framework such as convex optimization, geometric programming [42]

and integer linear programming [1, 12]. The typical practice is to formulate the given schedu-

lability analysis as mathematical programming constraints and solve the optimization prob-

lem with dedicated solvers (e.g., CPLEX, Gurobi, Matlab Optimization Toolbox). Unlike

the previous approaches, the approach is guaranteed to find globally optimal solution upon

termination. However, it suffers issues in complexity, scalability and limitation in the types

of problem settings that it can handle, as detailed in the following.

• Schedulability analysis and WCRT computation is notoriously difficult and inefficient
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to formulate as standard mathematical programming constraints. Consider the WCRT

analysis of the most simple Liu and Layland system model.

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1.1)

where Ri, Ci and Ti represents the WCRT, WCET, and period of a real-time task

indexed with i and hp(i) represents the set of higher priority tasks. It has been shown

that O(n2) number of integer variables are required to formulate the above analysis

as mixed-integer linear constraints. In a number of our studies, we observe that ILP

models using such formulation typically have difficulty scaling to systems with more

than 40 tasks. For system models with more sophisticated behaviors such as mixed-

criticality systems, their corresponding WCRT analysis usually poses an even more

severe concern in the complexity of formulation.

• Not all problem settings or schedulability analysis can be formulated in standard math-

ematical programming framework. Consider the WCRT analysis in (1.1) where both

priorities (namely hp(i)), and periods Ti are decision variables. There is no standard

mathematical programming framework that is capable of accepting such form of con-

straints. This hinders the possibility of improving quality of solution by co-optimizing

both priority and period assignments. For arbitrary deadline scheduling (deadlines are

allowed to be greater than periods), schedulability analysis requires to examine multi-

ple releases of a task for computing its WCRT. The actual number of releases necessary

to check however, is usually unknown without a complete knowledge of the parameters

such as periods. For problem settings where these parameters are part of the deci-

sion space, it is impossible to formulate the analysis in any standard mathematical

programming model.



1.3. Overview of Approach and Results 9

In this dissertation, we aim to address these issues and explore new directions for developing

optimization techniques for time-critical CPS. Our goal is to develop efficient algorithms

that find good quality and correct solution in the presence of complicated schedulability

analysis. For this purpose, we propose the following directions for developing optimization

algorithms for CPS design.

• Developing optimization-oriented timing/schedulability analysis.

• Developing new domain-specific optimization framework for time-critical CPS.

1.3 Overview of Approach and Results

In this section, we give an overview of the main ideas, the scope of application, and the

results that have been achieved for the two proposed directions.

1.3.1 Developing optimization-oriented schedulability analysis

This direction has two ideas pertaining to it. The first idea is to develop novel schedulability

analysis that is optimization friendly. Specifically, we seek to study alternative formulations

of existing schedulability analysis that are either exact or sufficient-only. The new analysis

is only marginally important for the purpose of timing analysis of a single design choice.

However, they have the potential to be much more efficient to formulate in standard math-

ematical programming framework, i.e., with a much smaller number of integer variables.

The second idea is to develop necessary-only but simple analysis. Necessary-only analysis

receives little to no attention from the research community due to the traditional emphasis

on safe timing validation. However, necessary-only analysis can be powerful for optimization
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purpose with the following three benefits. First, necessary only analysis can be significantly

faster than exact analysis, which is beneficial to design space exploration. Second, optimizing

with necessary-only analysis will never miss the true optimal solution. Third, a close-to-exact

necessary only analysis can quickly remove large number of infeasible solutions and efficiently

narrow down the search space for finding the true optimal solution.

Below we summarize the main contribution and results achieved by techniques developed

following this direction.

• We developed a sufficient-only schedulability analysis for systems scheduled according

to Adaptive-Mixed-Criticality (AMC). The analysis is within 4% difference in accu-

racy comparing with AMC-rtb and AMC-max analysis but has much more efficient

formulation in mixed-integer-linear-programming (MILP). The analysis has achieved

the following results.

1. We applied the analysis with MILP to optimizing Simulink Synchronous Reactive

Systems. The desigion variable is priority assignment. The analysis provides 2

orders of magnitude of speedup in run-time comparing with MILP based on AMC-

rtb analysis and more than 3 orders of magnitude of speedup comparing with

Branch-and-Bound (BnB) algorithms using AMC-rtb and AMC-max analysis.

2. We applied the analysis to finding feasible task allocation on multi-processor

systems. The analysis provides 10x to 20x speedup in runtime comparing with

BnB using AMC-max and MILP based on AMC-rtb analysis.

• We develop a necessary-only analysis for systems consisting of tasks implementing Syn-

chronous Finite State Machines (FSM). The analysis is integrated in to an framework

for optimizing the software implementation of FSM systems. It contributes to 10x

speed up in runtime.
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1.3.2 Developing new domain-specific optimization framework

The issues faced by mathematical programming based approaches are mainly due to the

attempt to exactly formulate a given schedulability analysis as feasibility constraints. We

seek to break this mindset by exploring the opposite direction: we avoid directly formulating

a schedulability analysis in mathematical programming frameworks. Instead, our main idea

is to iteratively refine the feasibility region through a series of generic, simple and abstracted

form of constraints. Specifically, we propose a new optimization paradigm based on a simple

3-step iterative procedure as follows.

• Step 1. Start with a mathematical programming model without any schedulability

constraint. Solve the model only w.r.t the objective function.

• Step 2. If solver returns an unschedulable solution, learn the cause of unschedulabil-

ity and generalize it to other solutions that are similarly unschedulable. Otherwise,

terminate with the optimal solution.

• Step 3. Remove the generalized unschedulable solutions from the feasibility region

by adding an abstracted form of constraint derived from the generalization. Return to

step 1.

A main contribution of this dissertation is the development of: 1) a learning and generaliza-

tion algorithm in step 2 that word with a variety of different schedulability analysis; and 2)

a generic abstracted form of constraint in step 3 for various different optimization problems.

Domain specific knowledge, such as schedulability analysis, is embedded into the learning

and generalization algorithm. The mathematical programming solver, on the other hands,

only deals directly with the abstracted form of constraints derived from the generalization.

This significantly simplifies the formulation of mathematical programming model since the
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underlying detail of schedulability analysis is hidden. It also addresses the issue of providing

general applicability for different schedulability analysis: If the designer chooses to use a

different system model and schedulability analysis for optimization, it is simply necessary to

plug in the new schedulability analysis for the learning and generalization routine, while the

mathematical programming model itself remains unchanged. It is also not difficult to see that

the above procedure always maintains global optimality as it only removes unschedulable

solutions from the feasibility region.

The new optimization framework runs orders of magnitudes faster than existing approaches

on various optimization problems while capable of handling a much wider variety of schedu-

lability analysis and decision variables. It is shown to be able to solve several industrial size

problems within minutes or even seconds. The framework has the potential to positively

impact current design of real-time system by offering a more agile and fluid workflow in

which designers can interact with the tools to explore system design using different system

models, schedulability analysis and design constraints. This improves the overall quality of

system design while shortening time-to-market duration. In addition, it also makes possible

the use of online optimization for finding the best system configuration (i.e., frequency level)

to match the changing dynamic in physical environment. This benefit would have been

difficult to exploit if optimization algorithms are too expensive and time consuming.

The main results achieved by techniques developed following this direction are summarized

below.

• We develop a framework for optimizing the priority assignment for systems scheduled

with fixed-priority. We applied the framework to optimizing Simulink Synchronous

Reactive System and achieve 3 to 5 orders of magnitude of speed up comparing with

MILP and BnB. We also apply the framework to minimizing memory consumption of
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AUTOSAR components and achieve 2 to 4 orders of magnitudes speed up comparing

with MILP.

• We develop a framework for optimizing the software implementation of FSM systems.

Decision variables are priority assignment. The framework provides 3 to 5 orders of

magnitude improvement in runtime and 60% improvement in quality of solution over

MILP and BnB.

• We develop a framework for optimizing priority assignment w.r.t minimizing worst-case

average/weighted average response times subject to memory and end-to-end latency

constraints. The framework provides 3 orders of magnitude improvement in run-time

comparing with MILP.

• We develop a framework for co-optimizing period and priority assignment for dis-

tributed systems subject to end-to-end latency constraints. The framework runs 10 to

100 times faster than the state-of-the-art approaches and gives 40% to 60% percent of

improvement in solution quality.

• We develop a framework for optimizing systems with sustainable schedulability anal-

ysis. We apply the framework to the problem of optimizing period and/or priority

assignment w.r.t control performance and achieve 10x to 20x improvements in run-

time and averagely 30% to 40% of improvement in quality of solution. We also apply

the framework to optimizing WCET w.r.t energy efficiency and achieve 10x to 100x

speedup and averagely 5% to 35% improvement in quality of solution.

• We develop a framework for optimizing priority assignments for systems and schedu-

lability analysis with the property of response-time dependency. We apply the frame-

work to mixed-criticality Network-on-Chip system and achieves 80%–100% improve-

ment in quality of solution comparing with BnB and MILP. We applied the framework
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to distributed systems with data-driven activation and achieve 100x speed up in run-

time comparing with MILP. We applied the framework to fixed-priority multiprocessor

scheduling and achieve 10% to 40% improvement in acceptance ratio comparing with

state-of-the-art approaches.

1.4 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents a study following

the approach of developing optimization-oriented schedulability analysis. We consider the

problem of formulating feasibility region of schedulability for use in optimization for Adap-

tive Mixed-Criticality (AMC) System [20]. State of the art schedulability analysis, known as

AMC-max, requires to examine the response time of each task in different criticality mode

change scenarios. The total number of these scenarios is usually on the order of dozens

or hundreds, which makes the analysis too complicated to formulate in standard mathe-

matical programming framework such as ILP. We developed an alternative schedulability

analysis based on request bound function. The new analysis is less efficient with bounded

pessimism comparing to the original analysis. However, it has a much simpler ILP formu-

lation. We apply the new formulation on two case studies. The first is optimization of

semantic-preserving implementation of Simulink Synchronous Reactive (SR) models, where

the proposed approach is close to optimal but runs averagely over two orders of magnitude

faster than a branch-and-bound exhaustive search algorithm and over one magnitude faster

than an ILP formulation using AMC-rtb analysis, a simpler variant of AMC-max. The sec-

ond is optimizing task allocations on multi-core platforms. The proposed approach achieves

close to optimal acceptance ratio (within 4% of sub-optimality) and is more than 10x faster

than branch-and-bound and the ILP formulation based on AMC-rtb analysis.
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In Chapter 3, we consider the problem of optimizing priority assignment subject to schedula-

bility constraint. Specifically, the problem aims to optimally enforce a set of partial priority

orders for a set of task pairs. We introduce the concept of unschedulability core, which rep-

resents a minimal subset of partial priority orders that cannot be simultaneously satisfied

by any schedulable priority assignment. An unschedulability core implies a knapsack con-

straint that shall always be satisfied by any solution. Our main idea is to formulate the

feasibility region using the knapsack constraint implied by unschedulability cores instead of

the schedulability analysis. This significantly simplifies the mathematical model and makes

it applicable to different schedulability analysis. Our overall framework follows the 3-step

procedure introduced in Section 1.3.1. We first apply the technique to the problem of opti-

mizing semantic-preserving implementation of Simulink Synchronous Reactive (SR) models

implemented with AMC systems. It runs over 3 orders of magnitude faster than ILP using

AMC-rtb analysis and 5 orders of magnitude faster than BnB. We then extend the con-

cept and apply it to the problem of minimizing memory consumption for share memory

protection. The proposed approach runs 2 orders of magnitude faster than ILP.

In Chapter 4, we apply the technique discussed in Chapter 3 for optimizing semantic-

preserving implementation of Simulink Synchronous Reactive (SR) models implemented with

synchronous finite state machine (FSM) systems. Synchronous FSM systems consists of a set

of real-time tasks modeled by FSMs. The schedulability analysis is significantly more com-

plicated than that of Liu and Layland system and mixed-criticality system and is practically

impossible to formulate in any mathematical programming framework. However the tech-

nique discussed in Chapter 3 readily avoids the issue as it does not directly use schedulability

analysis for formulating the feasibility region but instead uses the abstraction by unschedu-

lability cores. The derivation of unschedulability cores, however, involves large number of

schedulability analysis and is the major bottleneck for efficiency. We solve the problem with
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two strategies. The first is schedulability memoization. It exploits the reuse of result by

previous schedulability analysis. The second is a relaxation-recovery strategy that combines

the exact but expensive analysis with a necessary-only but much simpler schedulability anal-

ysis and form a hierarchical schedulability analysis algorithm. This effectively reduces the

number of times the expensive exact analysis is performed. The proposed framework runs

over 5 orders of magnitude faster than BnB and 3 orders of magnitude faster than a ILP

formulation based on an approximation analysis.

Chapter 5 considers the problem of optimizing priority assignment w.r.t minimizing aver-

age/weighted average worst-case response times of tasks. We first consider a simplified

version of the problem where schedulability is the only constraint. We show that it has

a simple optimal solution called WCET-monotonic priority assignment. We then extend

to the more general problem where additional constraints exist such as end-to-end latency

deadline and available memory. Traditionally, the general problem can only be solved using

standard mathematical programming framework that formulates the schedulability analy-

sis as feasibility constraints. This however, suffers severe scalability issues. We follow the

direction of domain-specific optimization framework. Specifically, we first reformulate the

problem as a deadline assignment optimization problem. Then we introduce the concept

of Maximal Unschedulable Deadline Assignment (MUDA), which represents an inextensible

range of deadline assignments for which no priority assignment can satisfy. A MUDA can be

computed as a generalization of a single unschedulable deadline assignment. Each MUDA

implies a disjunctive form of constraint that any schedulable deadline assignment shall sat-

isfy. Our overall idea is to use the implied disjunctive constraint instead of the schedulability

analysis for modeling the feasibility region. The proposed framework consists mainly of a

3-step iterative procedure introduced in Section 1.3.1. We first apply the framework to op-

timizing an industrial vehicle system with end-to-end latency constraints. It runs 2 to 5
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orders of magnitude faster than ILP. We then apply the approach to optimizing a simplified

fuel-injection case study subject to available memory constraints. It runs over 2 orders of

magnitude faster than ILP.

Chapter 6 considers the problem of co-optimizing period and priority assignment for dis-

tributed real-time systems with end-to-end latency deadline constraints. Existing approaches

can only handle priority assignment and period optimization independently. When both are

decision variables, the formulation of schedulability analysis contains fractional and non-

linear forms that are too complicated to use in standard optimization framework. Our

solution is to extend the concept of MUDA proposed in Chapter 5 to include period assign-

ment. Specifically, the new concept becomes Maximal Unschedulable Period and Deadline

Assignment (MUPDA). A MUPDA similarly implies a disjunctive form of constraint that

can be used to represent the feasibility region. We then develop an algorithm that extends

the optimization framework in Chapter 5 with the new concept of MUPDA. We apply the

technique to optimizing an industrial vehicle system subject to end-to-end latency dead-

line constraints. Results show that the framework is capable of finding significantly better

solution comparing to existing approaches that separate period or priority assignment in

optimization. The framework also at the same time runs much faster.

Chapter 7 further generalizes the optimization framework discussed in Chapter 5 and Chap-

ter 6. Specifically, the we shows that as long as the schedulability analysis are sustainable

w.r.t the decision variables, we can develop a concept similar to MUDA/MUPDA and a

framework that can be used to solve the optimization problem. We introduce a new concept

Maximal-Unschedulable-Assignment (MUA) as generalization of MUDA and MUPDA. The

chapter also aims to address the following issues suffered by the techniques presented in

Chapter 5 and Chapter 6: 1) The framework is inefficient to handle objective that involves

many variables, 2) the framework relies on MILP and thus is limited only to problems with
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linear objectives, 3) the framework does not give any feasible solution unless it solves to opti-

mality. To address these issues, we improves upon the framework by integrating three novel

techniques: 1) an algorithm that replaces MILP, 2) an improved algorithm for computing

MUA that provides faster convergence and 3) two heuristic algorithms for exploring schedu-

lable and good-quality solutions. We evaluate the generalized and improved framework on

various problems including control performance optimization and energy optimization. Re-

sults show that the framework is capable of solving optimization problems involving different

mixtures of decision variables with close-to-optimal solutions. The framework also provides

much better scalability comparing to straightforward approaches.

The types of system models and schedulability analysis considered in the above chapters

share a common helpful property: There is an efficient algorithm for checking schedulability

such as the Audsley’s algorithm. In Chapter 8, we consider the problem of optimizing pri-

ority assignment for a special type of schedulability analysis characterized by response time

dependency: schedulability of a particular task depends on the WCRT of other tasks. Unlike

previous analysis, schedulability analysis with response time dependency generally has no

efficient algorithm for finding a feasible priority assignment, which makes optimization more

challenging. Our main approach is to eliminate the dependency by diverting it instead to a

given estimation of response times for tasks. This makes Audsley’s algorithm applicable for

finding feasible priority assignments. The problem then becomes to find a safe response time

estimation. We follow the direction of domain-specific optimization framework and introduce

the concept of Maximal Unschedulable response Time Estimation Range (MUTER). It repre-

sents an inextensible range of response time estimations that are not safe. We then develop

an optimization framework following the 3-step procedure discussed in Section 1.3.1. We

apply the proposed technique to optimizing 1) mixed-criticality Network-on-Chip systems

scheduled according to wormhole protocol, 2) industrial vehicle system using event-driven
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scheduling and 3) fixed-priority multiprocessor scheduling. Results show that the proposed

technique is capable of achieving 2 orders of magnitude speedup comparing with ILP while

capable of handling a wider range of schedulability analysis that is difficult to use in standard

mathematical programming framework.

Finally Chapter 9 concludes the dissertation, summarizes the studies presented in the dis-

sertation and discusses some remaining challenges that can be addressed in future research.
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Chapter 2

An Efficient Schedulability Analysis

for Optimizing Systems with Adaptive

Mixed-Criticality Scheduling

2.1 Introduction

The design of real-time embedded systems is often subject to many requirements and objec-

tives in addition to real-time constraints, including limited resources (e.g., memory), cost,

quality of control, and energy consumption. For example, the automotive industry is hard

pressed to deliver products with low cost, due to the large volume and the competitive in-

ternational market [38]. Similarly, the technology innovation for medical devices is mainly

driven by reduced size, weight, and power (SWaP) [23]. In these application domains, it is

important to perform design optimization in order to find the best design (i.e., optimized

according to an objective function) while satisfying all the critical requirements.

Formally, a design optimization problem is defined by decision variables, constraints, and

an objective function. The decision variables represent the set of design parameters that

the designer hope to optimize. The set of constraints represents the requirements that the

design and the choice of design parameters have to satisfied. They form the domain of the

21
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allowed values for the decision variables. The objective function represents the concerned

design metrics. In general, design optimization needs to solve an optimization problem

for decision variables w.r.t the objective function within the feasibility region. For real-

time systems, the feasibility region (also called schedulability region if concerning only real-

time schedulability) must only contain the designs that satisfy the schedulability constraints

whereby tasks complete before their deadlines.

In this chapter, we consider the design optimization for mixed-criticality systems with Adap-

tive Mixed-Criticality scheduling [20]. We briefly introduce the related work and background

below.

Real-time systems nowadays often need to integrate applications with different criticality

levels. For example, automotive safety certification standard ISO 26262 [85] specifies four

criticality levels. Likewise, in the safety standard IEC 62304 for medical device software [84],

three safety classes are defined. Mixed-Criticality Scheduling (MCS) [145] is a concept moti-

vated by integrating applications at different levels of criticality on the same computational

platform while still achieving strong temporal protection for high-criticality applications.

To achieve different levels of assurance, a task τi is characterized with multiple estimates of

WCET (Worst-Case Execution Time), one for each criticality level. For example, a task may

have a tight, optimistic estimate of WCET for LO-critical level that may be occasionally

exceeded, and a loose, pessimistic WCET for HI-critical level that should rarely, if ever, be

exceeded.

MCS has been a very active research topic in recent years, see a comprehensive review from

Burns and Davis [32]. The current research on mixed-criticality systems has introduced new

task models as well as schedulability analysis techniques. In particular, Baruah et al. [20]

consider a recurring sporadic taskset with dual-criticality and fixed task priority. They

introduce Adaptive Mixed-Criticality (AMC) scheduling on execution platforms that support
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runtime monitoring and enforcement of task execution time limits. In AMC, all LO-critical

tasks are dropped if any job (from any task τi) executes for more than Ci(LO), triggering

system-wide criticality change from LO to HI. Two methods for sufficient schedulability

analysis of an AMC taskset are presented, by computing each task’s worst case response

time (WCRT): AMC-rtb (for response time bound), and AMC-max1. It is proven that AMC-

max dominates AMC-rtb in terms of analysis accuracy [20].

Huang et al. [78] show that AMC provides the best schedulability compared to other pre-

emptive fixed-priority scheduling schemes, including Static Mixed-Criticality (SMC) schedul-

ing [17, 145], slack scheduling [54], and period transformation [145]. Fleming et al. [68]

extend AMC to an arbitrary number of criticality levels. AMC has been integrated with

preemption threshold [157, 159] and deferred preemption [31]. Zhao et al. [158] revise the

Priority Ceiling Protocol [71] to allow resource sharing across different criticality levels under

AMC.

In this chapter, we aim at developing efficient schedulability analysis for design optimization

of systems scheduled with AMC. The current analysis techniques of AMC [20], AMC-rtb

and AMC-max, are based on the computation of task response time. This is ill-suited for

design optimization process, as it either requires an iterative procedure to find the fixed

point of the response time formula (too slow to check a large number of design candidates),

or a large set of integer variables to define the feasibility region (see Section 2.4 for the

formulation).

Our Contributions. In this chapter, we provide an improved formulation of the feasibility

region. Our new schedulability analysis, called AMC-rbf, is based on the request bound

function (rbf) [18, 25, 95, 155]. We prove that it is guaranteed to be safe and with bounded

1We realize there is another analysis for AMC documented in [78]. We leave it out for now as it may be
optimistic [32].
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pessimism. The new analysis allows an efficient formulation of the schedulability region in

an optimization process that makes it much more scalable but with small loss of optimality.

We first evaluate the analysis accuracy of AMC-rbf with random tasksets. The experiment

demonstrates that AMC-rbf is no more than 7% worse in weighted schedulability compared

to AMC-max.

We then apply AMC-rbf to two problems of design optimization, to show its effectiveness

and applicability in optimization. The first is the software synthesis of multi-rate Simulink

models [109]. The design variables are the priority assignment of software tasks mapped from

functional blocks in Simulink models [105]. The constraints are that the system is feasible

with respect to deadline and memory resource, and preserves the communication flows with

respect to the model semantics. The objective is to minimize the functional delays to improve

control quality. The experiments using synthetic systems and an industrial case study show

that AMC-rbf based optimization algorithm provides designs within 4% of the best solution.

However, for large systems it runs one or two magnitudes faster than AMC-max or AMC-rtb

based approaches.

The second is the task allocation on multicore systems with fixed-priority partitioned schedul-

ing [86]. Here we exploit the allocation of tasks to cores as the design variables, to find a

schedulable solution. We compare with heuristics as well as two other algorithms that

exhaustively search in the design space: One is based on branch-and-bound (bnb) with

AMC-max as the schedulability test; the other adopts AMC-rtb analysis in the Integer Linear

Programming (ILP) optimization framework. The proposed AMC-rbf based optimization

procedure is only slightly worse (4% in terms of schedulable tasksets) than AMC-max, but

can scale to much larger systems.

The rest of the chapter is organized as follows. Section 2.2 summarizes the AMC task
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model and the current schedulability analysis techniques AMC-rtb and AMC-max. Section 2.3

proposes the new analysis method AMC-rbf based on rbf, and proves its safety and bounded

pessimism. Section 2.4 uses an illustrative example to explain the advantages of AMC-rbf in

optimization. Section 2.5 extends the analysis AMC-rbf to systems with multiple levels of

criticality. Section 2.6 describes the experimental results before concluding the chapter in

Section 2.7.

2.2 AMC Task Model and Schedulability Analysis

In this chapter we consider mixed-criticality systems scheduled with AMC [20]. The taskset

contains a set of independent sporadic tasks Γ = {τ1, τ2, ...}. In the following (Section 2.3–

2.4), we first consider dual-criticality systems, where the two criticality levels are denoted as

LO-critical and HI-critical (or simply LO and HI) respectively. HI is regarded as a higher level

than LO: HI > LO. In Section 2.5, we discuss the analysis for multiple levels of criticality.

They are scheduled by fixed priority on the same core. The platform can be either single-core

processor, or multicore with partitioned scheduling (so the scheduling is done independently

on each core). Each task τi has a tuple of attributes ⟨Li, Ti, Di, Ci(LO), Ci(HI), pi⟩ where

Li is its criticality level (LO or HI); Ti is its period (minimum arrival interval); Di is its

deadline, assuming Di ≤ Ti; Ci(LO) is its WCET in LO-critical mode; Ci(HI) is its WCET

in HI-critical mode (Ci(HI) = Ci(LO) if Li = LO, and Ci(LO) ≤ Ci(HI) if Li = HI); and

pi is its priority.

In AMC, jobs are dispatched for execution according to the following rules [20]:

• R1: The system has a indicator for criticality level Ψ. It is initialized to LO. The

system operates in either LO-criticality mode (Ψ = LO) or HI-criticality mode ((Ψ =

HI)) at any time instant.
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• R2: While (Ψ = LO), the waiting job of the task with highest priority is scheduled at

any time instant.

• R3: If the currently-executing job executes for more than its estimation of LO-critical

WCET without completion, then the system enters HI-critical mode, i.e., Ψ← HI.

• R4: Once (Ψ = HI), LO-critical jobs will be dropped. Hence, at each instant the

waiting job from the HI-critical task with the highest priority is selected for execution.

• R4: Once system enters HI-criticality mode (Ψ = HI), LO-critical jobs will be

dropped. Only the waiting job from the HI-critical task with the highest priority

is scheduled afterwards at any time instant.

From [20], three conditions need to be checked to verify schedulability of an AMC taskset:

▷ 1) schedulability of the stable LO-critical mode;

▷ 2) schedulability of the stable HI-critical mode;

▷ 3) schedulability of the LO-to-HI criticality change phase.

The third condition is necessary to take into consideration as it cannot be deduced from the

first and/or second condition. This is a well-known result for real-time systems that switch

between different modes of operation at runtime. Let RLO
i , RHI

i , RCC
i denote WCRT values

of τi under the afore-mentioned three conditions, respectively. For the two stable modes,

standard WCRT analysis equations apply:

RLO
i = Ci(LO) +

∑
j∈hp(i)

⌈
RLO

i

Tj

⌉
Cj(LO) (2.1)

RHI
i = Ci(HI) +

∑
j∈hpH(i)

⌈
RHI

i

Tj

⌉
Cj(HI) (2.2)

where hp(i) is the set of higher priority tasks than τi, and hpH(i) (hpL(i)) is the set of
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HI-critical (LO-critical) tasks with priority higher than that of τi.

For WCRT during criticality change phase, Baruah et al. [20] present two sufficient analysis

techniques: AMC-rtb and AMC-max. We review them below.

AMC-rtb: For a HI-critical task τi, since the criticality change to HI-critical mode must

occur before RLO
i (otherwise, τi has finished before the criticality change), its WCRT during

the criticality change phase is bounded by:

RCC
i =Ci(HI) +

∑
k∈hpL(i)

⌈
RLO

i

Tk

⌉
Ck(LO) +

∑
j∈hpH(i)

⌈
RCC

i

Tj

⌉
Cj(HI) (2.3)

AMC-max: AMC-max reduces the pessimism of AMC-rtb by noticing that HI-critical tasks

execute with LO-critical WCETs before the criticality change. If the criticality change occurs

at time s (with s < RLO
i ), then we can use Equation (2.4) to obtain WCRT RCC

i (s) for a

HI-critical task τi:

RCC
i (s) = Ci(HI) + IL(s) + JH(s,RCC

i (s)) (2.4)

where IL and JH denote the interference from LO-critical tasks and HI-critical tasks respec-

tively.

Since LO-critical tasks are dropped after time s, their worst-case interference IL(s) experi-

enced by τi in time interval [0, s] is bounded by Equation (2.5), assuming that any LO-critical

job started at or before s completes its execution:

IL(s) =
∑

k∈hpL(i)

(⌊
s

Tk

⌋
+ 1

)
Ck(LO) (2.5)

For the interference function JH(s, t) from HI-critical tasks, it takes two parameters, s and

t with t > s. The concerned interval [s, t) of HI-critical mode ranges from criticality change
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time s to any time instant t. In particular, for response time based analysis, t is the response

time of the task, the variable to solve for in the iterative procedure of (2.4).

The maximum number of jobs from a HI-critical task τj that execute in HI-critical mode in

time interval [s, t) is [20]:

Nj(s, t) = min
{⌈

t− s− (Tj −Dj)

Tj

⌉
+ 1,

⌈
t

Tj

⌉}
(2.6)

The number of jobs from τj finished in the LO-critical mode is obtained by subtracting

Nj(s, t) from the total number of releases in an interval of length t. Therefore, the total

interference JH(s, t) from HI-critical tasks is [20]:

JH(s, t) =
∑

j∈hpH(i)

{
Nj(s, t) · Cj(HI) +

(⌈
t

Tj

⌉
−Nj(s, t)

)
Cj(LO)

}
(2.7)

The response time during criticality change for τi is

RCC
i = max

∀s∈[0,RLO
i )

{
RCC

i (s)
}

(2.8)

We focus on the formulation of the real-time feasibility region, i.e., the range of systems that

are deemed schedulable.

Definition 1. The feasibility region of task τi ∈ Γ is the region of the design variables within

which τi is schedulable. The feasibility region of the task set Γ is defined as the intersection

of the feasibility regions of all tasks in Γ.

The feasibility region is attached to a particular schedulability analysis (since for the same

system, different analysis techniques may return different schedulability results). For exam-

ple, the region for τi based on the AMC-max schedulability analysis, denoted as Mi, can be
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written as

Mi =
{

max(RLO
i , RHI

i , RCC
i ) ≤ Di

}
. (2.9)

where RLO
i , RHI

i , and RCC
i are computed in Equations (2.1), (2.2), and (2.8) respectively.

The region based on AMC-rtb can be formed in the same way except that RCC
i is derived

from (2.3).

2.3 Request Bound Function based Analysis

We now develop the schedulability analysis based on request bound function [18] instead

of directly calculating the response time, for the use in optimization procedure. For any

t ≤ Di, the request bound function of task τi, denoted as τi.rbf(t), represents the cumulative

execution time requested by τi within any time interval of length t. The sum of the rbf

functions from tasks with priority higher than or equal to that of τi (including τi itself), is

denoted as Si(t). In the LO-critical mode, it takes the following form:

SLO
i (t) = Ci(LO) +

∑
j∈hp(i)

⌈
t

Tj

⌉
Cj(LO) (2.10)

The same concept applies to stable HI-critical mode and criticality change phase.

SHI
i (t) = Ci(HI) +

∑
j∈hpH(i)

⌈
t

Tj

⌉
Cj(HI) (2.11)

SCC
i (s, t) = Ci(HI) + IL(s) + JH(s, t) (2.12)
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where IL(s) and JH(s, t) are defined in (2.5) and (2.7), respectively. Hence, the feasibility

region of a HI-critical task τi according to AMC-max can be re-written as

Mi = MLO
i

∩
MHI

i

∩
MCC

i , where

MLO
i =

{
∃t ∈ [0, Di], S

LO
i (t) ≤ t

}
MHI

i =
{
∃t ≤ [0, Di], S

HI
i (t) ≤ t

}
MCC

i =
{
∀s ∈ [0, RLO

i ), ∃t ∈ (s,Di], S
CC
i (s, t) ≤ t

}
(2.13)

Here s is the time instant for criticality change, and t is the time instant that τi completes.

The schedulability of a LO-critical task τi only concerns stable LO-mode (Mi = MLO
i ). For a

HI-critical task τi, the formulation of the schedulability region, in particular MCC
i in (2.13),

is complex for optimization process. First, MCC
i relies on the availability of the response

time RLO
i in LO-critical mode, which may be a design variable in optimization (AMC-rtb has

this difficulty as well). Second, the ∀ quantifier (on s) is preceded by the ∃ quantifier (on t),

meaning for each s, a possibly different t is needed to satisfy the schedulability constraint.

This requires many binary encoding variables in ILP [155] (see an illustrative example in

Section 2.4.3).

We now present the main result of this section, a safe approximation of the feasibility region

with bounded pessimism, but which is much more scalable than that of Equation (2.13).

Theorem 1. The feasibility region of τi based on AMC-rbf, denoted as Bi, is defined as

Bi = BCC
i , where

BCC
i =

{
∃t ∈ [0, Di], ∀s ∈ [0, t), QCC

i (s, t) ≤ t
} (2.14)
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The function QCC
i (s, t) is defined for any s and t with s < t:

QCC
i (s, t) = Ci(HI) + IL(s) + IH(s, t), where

IH(s, t) =
∑

j∈hpH(i)

{(⌈
t

Tj

⌉
−Mj(0, s)

)
Cj(HI) +Mj(0, s)Cj(LO)

} (2.15)

and the function Mj(t1, t2) is defined for any t1 and t2 with t1 ≤ t2:

Mj(t1, t2) = max
{⌊

t2 − t1 −Dj

Tj

⌋
, 0

}
(2.16)

Intuitively, Mj(t1, t2) gives a lower bound on the maximum number of instances from τj that

can occur in interval [t1, t2).

Compared to Mi in (2.13), Bi is always safe with bounded pessimism:

LCC
i ⊆ Bi ⊆Mi (2.17)

where LCC
i derives from MCC

i by adding a positive over-approximation A(t) to SCC(s, t) for

rbf calculation during criticality change:

LCC
i =

{
∀s ∈ [0, RLO

i ),∃t ∈ (s,Di], S
CC
i (s, t) + A(t) ≤ t

} (2.18)
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The term A(t) above is defined as

A(t) = Y (t) + Z

Y (t) = max {0,W (t) · V +X}

V =
∑

j∈hp(i)

Cj(LO)

Tj

−
∑

j∈hpH(i)

Cj(HI)

Tj

W (t) =

 RLO
i V < 0

t−RLO
i otherwise

X =
∑

j∈hpL(i)

Cj(LO) +
∑

j∈hpH(i)

(
Dj

Tj

+ 1

)
(Cj(HI)− Cj(LO))

Z =
∑

j∈hpH(i)

(Cj(HI)− Cj(LO))

(2.19)

The approximate region Bi can be constructed from Mi in four steps as below. The correct-

ness of Theorem 1 relies on that of the four steps. For clarity, we establish the correctness

of all four steps before formally proving Theorem 1 in Section 2.3.6.

We first elaborate the steps of constructing Bi from Mi.

• Step 1: Replace SCC
i (s, t) with QCC

i (s, t);

• Step 2: Exchange the position of the ∀ quantifier and ∃ quantifier in the definition of

MCC
i ;

• Step 3: Extend the interval of criticality change s from [0, RLO
i ) to [0, t);

• Step 4: Eliminate MLO
i and MHI

i from the definition of Bi.

In Step 1, QCC
i (s, t) is derived from SCC

i (s, t) of Equation (2.12) by replacing JH(s, t) with

IH(s, t). The difference between JH(s, t) and IH(s, t) lies in the way to bound the number of
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instances of a HI-critical task τj that can fit into the interval [s, t) (and executes in HI-mode):

In the former, Nj(s, t) gives the upper bound, while in the latter, it relies on Mj(0, s), the

minimum number of LO instances that fit into interval [0, s) (assuming the total number of

instances is ⌈ t
Tj
⌉).

QCC
i (s, t) has a useful property that it can be written as the sum of two functions Gi(t) and

Hi(s) (as in Equation (2.21) below), which allows to study them separately. In particular, it

leads to the exchange of the ∀ and ∃ quantifiers without affecting the schedulability (Step 2).

The new schedulability region is much more efficient in ILP formulation, as the ∃ quantifier

(disjunction of constraints) is at the outermost level, largely reducing the required binary

encoding variables.

The AMC-max analysis and its direct formulation Mi require RLO
i to bound the criticality

change instant s. This drawback applies to AMC-rtb as well. Section 2.4.2 demonstrates that

formulating RLO
i in ILP is very expensive as it introduces a large number of integer variables

(O(n2) where n is the number of tasks). We avoid this difficulty by relaxing s from s < RLO
i

to s < t (Step 3). Since any t defining BCC
i satisfies t ≥ RLO

i (Lemma 5), this step gives a

safe approximation.

Remark 2.1. Similar to AMC-rtb and AMC-max [20], AMC-rbf satisfies the desired prop-

erties of Audsley’s algorithm [7], which remains optimal for finding a schedulable priority

assignment.

Remark 2.2. Note that removing the bound on criticality change s is fundamentally differ-

ent from Static Mixed-Criticality (SMC) based scheduling, another fixed priority scheduling

scheme [17]. In SMC there is no criticality change and each task τi is allowed to execute up

to Ci(Li).

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Ti

⌉
Cj(min(Li, Lj)) (2.20)
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where HI is regarded as a higher level than LO, hence min(LO,HI) = LO.

As in the above equation, the response time analysis of SMC for a HI-critical task τi, SMC

assumes that all jobs from higher priority HI-critical task τj execute up to Cj(HI). In

contrast, AMC-rbf imposes that all jobs from τj finished before criticality change execute no

more than Cj(LO), the same as AMC-max.

In the rest of the section, we first discuss the sufficient test sets for t and s for representing

Bi. We then prove the safety and study the pessimism of each step above. Specifically, we

will show that steps 1 and 3 are the only steps that introduce bounded pessimism, while

steps 2 and 4 provide equivalent formulation of the feasibility region. Finally, we prove the

correctness of the main result Theorem 1.

2.3.1 Sufficient Test Sets for Analysis

We note that in the representation of the feasibility region, the ∃ quantifier can be equiva-

lently expressed as the min operator (as in Equation (2.21)) or logic-OR operation (
∨

, as in

(2.22)). Likewise, the ∀ quantifier can be translated to the max operator or logic-AND (
∧

)

operation. We rewrite Bi as:

Bi =

{
min
t≤Di

max
s<t

Gi(t) +Hi(s)

t
≤ 1

}
, where

Gi(t) =Ci(HI) +
∑

j∈hpH(i)

⌈
t

Tj

⌉
Cj(HI)

Hi(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO)

+
∑

j∈hpH(i)

max
(
0,

⌊
s−Dj

Tj

⌋)
(Cj(LO)− Cj(HI))

(2.21)
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We now derive a theorem for identifying sufficient test sets of s and t for representing Bi,

assuming that Theorem 1 is correct. Note that in the definition of Bi (Equation (2.14)), we

relax the range of s from s < RLO
i to s < t. This is safe since any t defining Bi satisfies

t ≥ RLO
i (Lemma 5).

Theorem 2. For a HI task τi with constrained deadline, the schedulability region Bi can be

described as

Bi =

∨
t∈Ti

∧
s∈Si(t)

Gi(t) +Hi(s) ≤ t

 , where

Ti ={Di}
∪
{kTj : j ∈ hp(i), k ∈ N+, kTj ≤ Di}

Si(t) ={kTj : j ∈ hpL(i), k ∈ N, kTj < t}

(2.22)

where N (N+) is the set of non-negative (positive) integers.

Proof. Note that Hi(s) only increases its value at the release time of jobs in hpL(i). Thus,

Si(t), which includes the integer multiples of periods for tasks in hpL(i), is sufficient for s.

We now prove the function

B(t) = max
s<t

Gi(t) +Hi(s)

t

can only achieve its minimum value at a time in Ti, hence Ti is sufficient. Consider two

consecutive points t1 < t2 in Ti ∪ {0}, i.e., there is no t′ ∈ Ti such that t1 < t′ < t2. Since Ti

includes the integer multiples of periods for all higher priority tasks, it is a superset of Si(t)

for any t ∈ Ti. Hence, for any s ∈ (t1, t2), Hi(s) ≤ Hi(t1) as Hi can only decrease in the time

interval (t1, t2). Consequently,

∀t ∈ (t1, t2), max
s<t

Hi(s) = max
s<t2

Hi(s) = Hi(t1)
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Also, we have Gi(t) = Gi(t2) (Gi may only change at time t ∈ Ti). Hence,

∀t ∈ (t1, t2), B(t) > B(t2)

Since this property applies to any pair of consecutive points in Ti ∪ {0}, we conclude that

only points in Ti can achieve the global minimum for B(t).

One difficulty of using the above sets Ti and Si directly for optimization is that these sets

may grow exponentially with the number of tasks, especially if the tasks have low level of

period harmony and large difference between their maximum and minimum periods. In

the non-MCS context, Zeng et al. [155] demonstrate that many of the points in the set are

redundant for defining the feasibility region and introduce algorithms to removing them. The

basic ideas can be extended to AMC-rbf and we omit the details in this chapter. Instead, we

give an illustrative example in Section 2.4.3.

2.3.2 Safety and Bounded Pessimism of Step 1

In the following, we explain the steps that lead to Theorem 1, starting from step 1 and

show their safety and correctness. Theorem 3 proves the safety and bounded pessimism

of step 1, which uses QCC
i (as defined in (2.15)) in place of SCC

i in the analysis: QCC
i is

more conservative than SCC
i in estimating the interferences from HI-critical tasks, but the

over-estimation is bounded.

Theorem 3. ∀s < t, QCC(s, t) and SCC(s, t) satisfy

0 ≤ QCC
i (s, t)− SCC

i (s, t) ≤
∑

j∈hpH(i)

(Cj(HI)− Cj(LO)) (2.23)
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Proof. For any pair of real numbers x and y, we have [148]

⌈x⌉+ ⌈y⌉ − 1 ≤ ⌈x+ y⌉ ≤ ⌈x⌉+ ⌈y⌉ (2.24)

Also, negating the parameter in the ceiling function switches to floor and changes the

sign [148]

⌈−y⌉ = −⌊y⌋ (2.25)

Hence, if we replace y with its negation in (2.24), it is

⌈x⌉ − ⌊y⌋ − 1 ≤ ⌈x− y⌉ ≤ ⌈x⌉ − ⌊y⌋ (2.26)

In the following, we let x = t
Tj

, y =
s−Dj

Tj
. Nj(s, t) can be rewritten as

Nj(s, t) = min
{⌈

t− s− (Tj −Dj)

Tj

⌉
+ 1,

⌈
t

Tj

⌉}
= min {⌈x− y − 1⌉+ 1, ⌈x⌉}

= min {⌈x− y⌉ , ⌈x⌉}

Thus, by (2.26), Nj(s, t) is bounded as

Nj(s, t) ≤ min {⌈x⌉ − ⌊y⌋ , ⌈x⌉}

= ⌈x⌉ −max {⌊y⌋ , 0}

Nj(s, t) ≥ min {⌈x⌉ − ⌊y⌋ − 1, ⌈x⌉ − 1}

= ⌈x⌉ −max {⌊y⌋ , 0} − 1

(2.27)
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We now rewrite the term QCC
i (s, t)− SCC

i (s, t)

QCC
i (s, t)− SCC

i (s, t)

= IH(s, t)− JH(s, t)

=
∑

j∈hpH(i)

(⌈
t

Tj

⌉
−Mj(0, s)−Nj(s, t)

)
(Cj(HI)− Cj(LO))

=
∑

j∈hpH(i)

(⌈x⌉ −max {⌊y⌋ , 0} −Nj(s, t)) (Cj(HI)− Cj(LO))

Applying the inequations in (2.27), we can bound it as in (2.23).

2.3.3 Exactness of Step 2

Next we consider the exactness of step 2, by proving (in Theorem 7) that when using

QCC
i (s, t) as the interference estimation, the two quantifiers, ∀ and ∃, can be exchanged

without affecting the feasibility region. Before presenting Theorem 7, we first look at some

properties of QCC
i (s, t), which help to find a bound for such t. The following lemma states

that for any given t, the rbf in LO mode is no larger than that in criticality change.

Lemma 4. Given a HI-critical task τi, we have

∀t > 0, max
∀s<t

QCC
i (s, t) ≥ SLO

i (t) (2.28)

Proof. For any t > 0, choose an s∗ such that,

s∗ ∈ (T lb, t), where T lb = max
j∈hp(i)

{kTj|k ∈ N, kTj < t} (2.29)
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We now prove that QCC
i (s∗, t) ≥ SLO

i (t), thus the lemma holds. For such s∗, we have

∀j ∈ hp(i),

⌈
s∗

Tj

⌉
=

⌈
t

Tj

⌉
and

⌊
s∗

Tj

⌋
=

⌈
t

Tj

⌉
− 1 (2.30)

Substituting the above equation into the definition of IL(s∗)

IL(s∗) =
∑

j∈hpL(i)

(⌊
s∗

Tj

⌋
+ 1

)
Cj(LO) =

∑
j∈hpL(i)

⌈
t

Tj

⌉
Cj(LO) (2.31)

For IH(s∗, t), it is no smaller than the interference assuming all jobs of all tasks τj in hpH(i)

execute with Cj(LO), as Cj(HI) ≥ Cj(LO)

IH(s∗, t)

=
∑

j∈hpH(i)

{(⌈
t

Tj

⌉
−Mj(0, s

∗)

)
Cj(HI) +Mj(0, s

∗)Cj(LO)

}

≥
∑

j∈hpH(i)

⌈
t

Tj

⌉
Cj(LO)

(2.32)

With the above inequations (2.31) and (2.32), and also that Ci(HI) ≥ Ci(LO), it is

QCC
i (s∗, t)

=Ci(HI) + IL(s∗) + IH(s∗, t)

≥Ci(LO) +
∑

j∈hpL(i)

⌈
t

Tj

⌉
Cj(LO) +

∑
j∈hpH(i)

⌈
t

Tj

⌉
Cj(LO)

=SLO
i (t)

Consequently, max
∀s<t

QCC
i (s, t) ≥ QCC

i (s∗, t) ≥ SLO
i (t).

Lemma 4 leads to a useful bound on any t that defines BCC
i : t has to be no smaller than

RLO
i .
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Lemma 5. For any t > 0 that satisfies

∀s < t,QCC
i (s, t) ≤ t (2.33)

it must be t ≥ RLO
i .

Proof. Prove by contradiction. Let tp < RLO
i be a time instant that satisfies the condition

(2.33). Since tp < RLO
i and that RLO

i is the least fixed point of SLO
i (t) = t, we have

SLO
i (tp) > tp ⇒ max

∀s<tp
QCC

i (s, tp) ≤ tp < SLO
i (tp) (2.34)

This is contradictory to Lemma 4.

We provide a stronger version of the main result in Step 2, as stated in the following theorem.

This stronger theorem will also be utilized in the proof of Theorem 1.

Theorem 6. (2.36) is a sufficient and necessary condition for representing (2.35).

∀s ∈ [0, RLO
i ),∃t ∈ (s,Di], Q

CC
i (s, t) + F (t) ≤ t (2.35)

∃t ∈ [0, Di], ∀s ∈ [0, RLO
i ), QCC

i (s, t) + F (t) ≤ t (2.36)

where F is any function of t such that F (t) ≥ 0,∀t > 0.

Proof. Sufficiency. Assume (2.36) is satisfied and t∗ is such a time instant. Generalizing

Lemma 5 as it holds for any increase F (t) on the rbf QCC
i (s, t), we have t∗ ≥ RLO

i . This

implies that

∀s ∈ [0, RLO
i ),∃t = t∗ ∈ (s,Di], Q

CC
i (s, t) + F (t) ≤ t (2.37)

Hence, (2.35) is satisfied.
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Necessity. Note that QCC
i (s, t) is rewritten as QCC

i (s, t) = Gi(t) +Hi(s), where Gi(t) and

Hi(s) are defined in (2.21). We denote

sp =

{
sp : Hi(sp) = max

s<RLO
i

Hi(s)

}

i.e., sp is the criticality change instant that maximizes the function Hi(s). Assume that

(2.35) is satisfied, and let tp ∈ (sp, Di] be a time instant such that QCC
i (sp, tp) + F (tp) ≤ tp.

We first prove that RLO
i ≤ tp. Otherwise, since RLO

i is the least fixed point for SLO
i (t) = t,

tp < SLO
i (tp). However, this is contradictory to the following inequation, where the last step

utilizes Lemma 4:
tp ≥ Gi(tp) +Hi(sp)

= Gi(tp) + max
∀s<tp

Hi(s)

= max
∀s<tp

QCC
i (s, tp)

≥ SLO
i (tp)

(2.38)

We now prove that tp guarantees QCC
i (s, tp) + F (tp) ≤ tp for any s < RLO

i , hence (2.36) is

also satisfied. This is because s < RLO
i ≤ tp, and

QCC
i (s, tp) = Gi(tp) +Hi(s)

≤ Gi(tp) +Hi(sp)

= QCC
i (sp, tp)

≤ tp − F (tp)

(2.39)

As a special case, the following theorem shows that step 2 is exact.

Theorem 7. Given a HI-critical task τi, the two regions P = {(2.40) is satisfied} and Q =
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{(2.41) is satisfied}, both of which utilize the function QCC
i (s, t) but with different orders of

the ∃ and ∀ quantifiers, are equivalent.

∀s ∈ [0, RLO
i ),∃t ∈ (s,Di], Q

CC
i (s, t) ≤ t (2.40)

∃t ∈ [0, Di],∀s ∈ [0, RLO
i ), QCC

i (s, t) ≤ t (2.41)

Proof. It is a direct corollary of Theorem 6, by setting F (t) ≡ 0,∀t > 0.

2.3.4 Safety and Bounded Pessimism of Step 3

In this step, we relax the dependency on the availability of RLO
i to bound criticality change

instant s. We demonstrate its safety and bounded pessimism in Theorem 8. Before present-

ing the theorem, we note that by Lemma 5, any t satisfying (2.41) must be t ≥ RLO
i .

Theorem 8. Given a task τi, relaxing s from s ∈ [0, RLO
i ) to s ∈ [0, t) in (2.41) introduces

an over-estimation ϵ that can be bounded as

0 ≤ ϵ ≤ Y (t) = max {0,W (t) · V +X} (2.42)

where given a test point t ≥ RLO
i , the over estimation incurred by this relaxation is defined

as

ϵ = max
∀s∈[0,t)

QCC
i (s, t)− max

∀s∈[0,RLO
i )

QCC
i (s, t) (2.43)

and W (t), V , and X are defined as in Equation (2.19).
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Proof. Since QCC
i (s, t) = Gi(t) +Hi(s) as defined in (2.21)

ϵ = max
∀s∈[0,t)

Hi(s)− max
∀s∈[0,RLO

i )
Hi(s)

= max
{
0, max

∀s∈[RLO
i ,t)

Hi(s)− max
∀s∈[0,RLO

i )
Hi(s)

} (2.44)

We now derive a linear upper bound for function Hi(s). Note that

∀s,
⌊
s

Tj

⌋
≤ s

Tj

∧ s−Dj

Tj

− 1 ≤
⌊
s−Dj

Tj

⌋
≤Mj(0, s)

In Hi(s), we replace ⌊ s
Tj
⌋ with s

Tj
, and replace Mj(0, s) with s−Dj

Tj
− 1, resulting an upper

bound on Hi(s) as follows

HUB
i (s) =

∑
j∈hpL(i)

(
s

Tj

+ 1

)
Cj(LO) +

∑
j∈hpH(i)

(
s−Dj

Tj

− 1

)
(Cj(LO)− Cj(HI))

= s · V +X

(2.45)

Similarly, since

∀s,
⌊
s

Tj

⌋
+ 1 ≥ s

Tj

∧ s

Tj

≥Mj(0, s)

a linear lower bound on Hi(s) is

HLB
i (s) =

∑
j∈hpL(i)

s

Tj

Cj(LO) +
∑

j∈hpH(i)

s

Tj

(Cj(LO)− Cj(HI))

=s · V

(2.46)

With these linear upper and lower bounds on Hi(s), we have

ϵ ≤ max
{
0, max

∀s∈[RLO
i ,t)

HUB
i (s)− max

∀s∈[0,RLO
i )

HLB
i (s)

}
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Since both HUB
i (s) and HLB

i (s) are linear to s with the same slope V , we discuss the two

cases based on the sign of V .

Case 1: V ≥ 0. HUB
i (s) and HLB

i (s) are linearly increasing with s, and

ϵ ≤ max{0, HUB
i (t)−HLB

i (RLO
i )}

= max{0, (t−RLO
i )V +X}

(2.47)

Case 2: V < 0. HUB
i (s) and HLB

i (s) are linearly decreasing with s, and

ϵ ≤ max{0, HUB
i (RLO

i )−HLB
i (0)}

= max{0, RLO
i · V +X}

(2.48)

Combining the above two cases, Equation (2.42) is proven.

Remark 2.3. V stands for the difference between the system utilization in LO mode and

that in HI mode. If the system contains more HI-critical tasks, V is more likely to be

negative, and the error ϵ introduced in this step becomes smaller or even approaching zero.

2.3.5 Exactness of Step 4

Finally we consider step 4. We prove that MLO
i and MHI

i are redundant in defining the

feasibility region Bi, thus can be safely eliminated without changing the feasibility region.

Theorem 9. Given a HI task τi, MLO
i , MHI

i , and BCC
i satisfy

Bi = MLO
i

∩
MHI

i

∩
BCC

i = BCC
i (2.49)
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Proof. It is sufficient to prove BCC
i ⊆MHI

i and BCC
i ⊆MLO

i . Consider any t that satisfies

QCC
i (s, t) ≤ t,∀s < t. In particular, we consider s = 0 in the following equation. Because

∀j,Mj(0, 0) = 0, we have

SHI
i (t) = Ci(HI) +

∑
j∈hpH(i)

⌈
t

Tj

⌉
Cj(HI)

= Ci(HI) + IH(0, t)

≤ Ci(HI) + IL(0) + IH(0, t)

= QCC
i (0, t)

(2.50)

Hence, SHI
i (t) ≤ t, and consequently BCC

i ⊆MHI
i .

By Lemma 4, it is SLO
i (t) ≤ max

s<t
QCC

i (s, t) ≤ t, which implies BCC
i ⊆MLO

i .

2.3.6 Proof of Theorem 1

We now present the complete proof for Theorem 1.

Proof. This derives from the results in Theorems 3–9. We notice that Y (t) is a non-negative

function of t: ∀t, Y (t) ≥ 0.

By Theorem 3, 0 ≤ QCC(s, t)− SCC(s, t) ≤ Z, which implies:

LCC
i ⊆ L(1)

∧
M(1) ⊆MCC

i , where

L(1) = {∀s ∈ [0, RLO
i ),∃t ∈ (s,Di], Q

CC
i (s, t) + Y (t) ≤ t}

M(1) = {∀s ∈ [0, RLO
i ),∃t ∈ (s,Di], Q

CC
i (s, t) ≤ t}

Intuitively, M(1) is a smaller region than MCC
i as its schedulability condition is more re-
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stricted:

QCC(s, t) ≥ SCC(s, t)

The same reason applies to derive LCC
i ⊆ L(1):

QCC(s, t) + Y (t) ≤ SCC(s, t) + A(t)

By Theorem 6 where F (t) is set to be F ≡ Y (t) and F ≡ 0 respectively, and Lemma 5, we

have
L(2) = L(1)

∧
M(2) = M(1), where

L(2) = {∃t ∈ [0, Di],∀s ∈ [0, t), QCC
i (s, t) + Y (t) ≤ t}

M(2) = {∃t ∈ [0, Di],∀s ∈ [0, t), QCC
i (s, t) ≤ t}

By Theorem 8, we have

L(2) ⊆ BCC
i ⊆M(2)

Combining the above equations together,

LCC
i ⊆ L(1) = L(2) ⊆ BCC

i ⊆M(2) = M(1) ⊆MCC
i

or simply

LCC
i ⊆ BCC

i ⊆MCC
i (2.51)

Since BCC
i ⊆MLO

i

∩
MHI

i (Theorem 9) and LCC
i ⊆ BCC

i , we also have

LCC
i = MLO

i

∩
MHI

i

∩
LCC

i
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With the above equation, Equation (2.51) is intersected with (MLO
i

∩
MHI

i ) to derive (2.17)

MLO
i

∩
MHI

i

∩
LCC

i = LCC
i

⊆ MLO
i

∩
MHI

i

∩
BCC

i = Bi

⊆ MLO
i

∩
MHI

i

∩
MCC

i = Mi

2.4 Schedulability Region in ILP Formulation

We now discuss the formulation of the feasibility region. We denote the vector of Ci of all

tasks as C, and so on. In this work, we consider criticality levels L, periods T, and deadlines

D as given parameters. The design variable X can be the WCETs C, the priority order P,

or both.

We give two example scenarios where the worst-case task execution times are design variables.

For example, for systems with dynamic voltage and frequency scaling [39], the execution time

of a task may change according to the selected clock frequency and voltage. The problem is to

minimize the energy consumed by the system while keeping all tasks schedulable. Another

scenario occurs in automotive software design on multicore systems [55]. The behaviors

associated with the functional blocks need to be mapped into tasks. A functional block with

period Ti can be mapped into any task with the same period or a submultiple of it (Tj = Ti/k,

namely, the block execute only once every k activations) on any core. Depending on the block

to task allocation, the worst case task execution times may be different.

In the following, we illustrate the formulation of schedulability region in Integer Linear

Programming (ILP) framework. In ILP, some design variables are restricted to be integers,
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and the optimization objective and constraints are linear functions of the design variables.

For simplicity, we focus on two simple cases: either WCETs C are design variables (and task

priorities P are given); or priorities P are treated as variables (and WCETs are assumed to

be constant). However, the ILP formulation can be generalized to cases that both C and P

are design variables.

We present the ILP formulation for the analysis technique AMC-rbf in Section 2.4.1. To ex-

plain the motivation of developing AMC-rbf, we provide the formulation of the schedulability

region based on AMC-rbf in Section 2.4.2. We also illustrate the ILP formulations with a

small example in Section 2.4.3.

Generally speaking, for a set of n tasks where m < n of them are HI-critical, we need at least
n(n−1)

2
+ m(m−1)

2
= O(n2) integer variables to encode the number of interferences in AMC-

rtb. In contrast, AMC-rbf is a much more efficient analysis for ILP: in all the experiments

on design optimization (Sections 2.6.3 and 2.6.2), it only needs no more than two binary

variables for each task, in total O(n) binary variables. Such a significant reduction in the

number of discrete decision variables leads to great savings in the runtime to solve the

optimization problem, as demonstrated in the experiments of Section 2.6.

We omit AMC-max as its ILP formulation is too complex for two reasons. Consider a HI-

critical task τi. First, it is necessary to calculate RCC
i for each criticality change instant

s ≤ RLO
i , where RLO

i is unknown (a design variable). Second, RCC
i (s) for a given s requires

a set of integer variables to capture JH(s,RCC
i (s)) as defined in (2.7). Nevertheless, all these

analysis techniques (in particular AMC-max) may be used in other optimization frameworks

such as branch-and-bound.



2.4. Schedulability Region in ILP Formulation 49

2.4.1 Schedulability Region of AMC-rbf

WCET as Decision Variable

The schedulability of a LO-critical task τi only concerns stable LO-mode where standard

schedulability analysis [25, 95] applies. Hence it follows the formulation in [155], and we

refer the readers to the details therein.

In AMC-rbf, for a HI task τi with constrained deadline, the schedulability region Bi can be

described as the disjunction of a set of conjuncted constraints:

Bi =

∨
t∈Ti

∧
s∈Si(t)

Gi(t) +Hi(s) ≤ t


Here we assume that the test points Ti and Si(t) are given, either as those defined in (2.22)

or resulted from the reduction procedure similar to [155].

We index the points ti,m ∈ Ti in increasing order, such that ti,0 denotes the smallest, and

ti,mi−1 the largest, where mi = |Ti|. We use ki = ⌈log2mi⌉ binary variables {bi,k|k =

0, ..., ki− 1} to encode these mi points. The following function associates a binary encoding

for each variable bi,k to the set of conjunctive constraints on point ti,m.

Ei(m, k) =

 bi,k if (m bitwise-AND 2k = 0),

1− bi,k otherwise.
(2.52)

Thus, the disjunction on constraints that define the schedulability of τi can be encoded using
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the standard “big-M” formulation for conditional constraints:


∀ti,m ∈ Ti, ∀s ∈ Si(ti,m), Gi(ti,m) +Hi(s) ≤ ti,m +M

ki−1∑
k=0

Ei(m, k)

ki−1∑
k=0

(2k × bi,k) ≤ mi − 1

(2.53)

where M is a constant larger than any other quantity involved in the constraint, and Gi(t)

and Hi(s) are defined as (copied from (2.21))

Gi(t) =Ci(HI) +
∑

j∈hpH(i)

⌈
t

Tj

⌉
Cj(HI)

Hi(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO)

+
∑

j∈hpH(i)

max
(
0,

⌊
s−Dj

Tj

⌋)
(Cj(LO)− Cj(HI))

(2.54)

The second constraint of (2.53) ensures that the binary encoding only takes values within

the maximum index of the points in Ti. This makes sure that only one of the first set of

inequalities in (2.53) is enforced.

For example, assume Ti = {ti,0, ti,1}, hence mi = 2. We use one binary variable bi,0 for

defining the feasibility region of task τi. Since k = 0, the function Ei(m, 0) as defined

in (2.52) becomes

Ei(m, 0) =

 bi,0 if m = 0 (m bitwise-AND 20 = 0),

1− bi,0 if m = 1 (m bitwise-AND 20 ̸= 0).
(2.55)
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According to (2.56), the formulation of the schedulability region for τi is


∀s ∈ Si(ti,0), Gi(ti,0) +Hi(s) ≤ ti,0 +M · bi,0

∀s ∈ Si(ti,1), Gi(ti,1) +Hi(s) ≤ ti,1 +M(1− bi,0)

20 · bi,0 ≤ 1

(2.56)

Task Priority as Decision Variable

The formulation in (2.53) requires the knowledge of task priority assignment as Gi(t) and

Hi(s) are defined with given information on hpH(i) and hpL(i). If the task priority assign-

ments are design variables, the above formulation is not applicable. Instead, we introduce a

set of binary variables indicating the priority order of τi and any other task τj, as follows

pj,i =

 1 τj has a higher priority than τi,

0 otherwise.
(2.57)

Now Gi(t) and Hi(s) can be rewritten as

Gi(t) =Ci(HI) +
∑

j ̸=i,Lj=HI

⌈
t

Tj

⌉
Cj(HI) · pj,i

Hi(s) =
∑

j ̸=i,Lj=LO

(⌊
s

Tj

⌋
+ 1

)
Cj(LO) · pj,i

+
∑

j ̸=i,Lj=HI

max
(
0,

⌊
s−Dj

Tj

⌋)
(Cj(LO)− Cj(HI)) · pj,i

(2.58)

Here Gi(t) takes the sum over all other HI-critical tasks, but the interference from τj is

enforced to be zero if and only if pj,i = 0. Hi(s) is constructed in the same way.
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2.4.2 Schedulability Region of AMC-rtb

WCET as Decision Variable

Recall that AMC-rtb is formulated as follows

RLO
i = Ci(LO) +

∑
j∈hp(i)

⌈
RLO

i

Tj

⌉
· Cj(LO)

RCC
i = Ci(HI) +

∑
j∈hpL(i)

⌈
RLO

i

Ti

⌉
· Cj(LO) +

∑
j∈hpH(i)

⌈
RCC

i

Tj

⌉
· Cj(HI)

(2.59)

We note that RHI
i is always no larger than RCC

i hence it can be safely omitted in the

formulation.

To model the above computation in ILP, we introduce a set of integer variables ILOj,i ∈ N+ to

denote the term
⌈
RLO

i

Tj

⌉
, the number of interferences from any higher priority task j ∈ hp(i)

on τi in LO-mode. Similarly, another set of variables ICC
j,i ∈ N+ is used to denote the term⌈

RCC
i

Tj

⌉
, the number of interferences from any higher priority HI-critical task j ∈ hpH(i) on

τi during criticality change.

ILOj,i and ICC
j,i can be modeled in ILP by the following constraints.

ILOj,i =

⌈
RLO

i

Tj

⌉
⇒

RLO
j

Ti

≤ ILOj,i <
RLO

j

Ti

+ 1

ICC
j,i =

⌈
RCC

i

Tj

⌉
⇒

RCC
j

Ti

≤ ICC
j,i <

RCC
j

Ti

+ 1

(2.60)

The response time calculation according to AMC-rtb can then be written as the following
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constraints

RLO
i = Ci(LO) +

∑
j∈hp(i)

ILOj,i · Cj(LO)

RCC
i = Ci(HI) +

∑
j∈hpL(i)

ILOj,i · Cj(LO) +
∑

j∈hpH(i)

ICC
j,i · Cj(HI)

(2.61)

The above constraints contain the product of an integer variable ILOj,i and a real variable

Ci(LO), hence they are not linear. They can be linearized with additional variables [116].

All tasks have to be schedulable. This means ∀i, RLO
i ≤ Di

∀i such that Li = HI, RCC
i ≤ Di

(2.62)

Priority as Decision Variable

If the task priority assignments are also design variables, we use a set of binary variables pj,i

indicating the priority order of τi and any other task τj, as in (2.57).

We redefine ILOj,i by giving it a slightly different meaning: it is equal to the number of

interferences if and only if τj has a higher priority than τi. ICC
j,i is similarly revised. Hence,
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(2.60) can be replaced by

ILOj,i = pj,i

⌈
RLO

i

Tj

⌉
⇒


RLO

j

Ti
≤ ILOj,i +M(1− pj,i)

ILOj,i <
RLO

j

Ti
+ 1 +M(1− pj,i)

ILOj,i ≤ Mpj,i

ICC
j,i = pj,i

⌈
RCC

i

Tj

⌉
⇒


RCC

j

Ti
≤ ICC

j,i +M(1− pj,i)

ICC
j,i <

RCC
j

Ti
+ 1 +M(1− pj,i)

ICC
j,i ≤ Mpj,i

(2.63)

where M is a big enough constant. With the above changes to ILOj,i and ICC
j,i , the response

time formulation remains the same as (2.61).

2.4.3 An Illustrative Example

We exemplify the two formulations using the HI-critical task τ4 in the example taskset in

Table 2.1. We assume that WCET is the decision variable and focus on AMC-rbf and AMC-rtb

only.

Table 2.1: An Example Task System

Task Criticality Period Deadline Priority
τ1 HI 10 10 1
τ2 LO 10 10 2
τ3 LO 18 18 3
τ4 HI 30 30 4

ILP formulation for AMC-rbf. By Theorem 2, the initial set of test points for t is

T4 = {10, 18, 20, 30}. The union of the criticality change instants, i.e., S4 =
∪
S4(t), is

{0, 10, 18, 20}.

For simplicity, we focus on explaining the benefit of exchanging the ∃ and ∀ quantifiers (step
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2 in Section 2.3), and ignore the fact that s < RLO
4 . Before the exchange, the schedulability

region is the conjunction (logic-AND, denoted with the “{” symbol) of several disjunctions

(logic-OR, denoted with the “||” symbol), as constructed below.



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

G4(10) +H4(0) ≤ 10 t = 10, s = 0

G4(18) +H4(0) ≤ 18 t = 18, s = 0

G4(20) +H4(0) ≤ 20 t = 20, s = 0

G4(30) +H4(0) ≤ 30 t = 30, s = 0∥∥∥∥∥∥∥∥∥∥∥
G4(18) +H4(10) ≤ 18 t = 18, s = 10

G4(20) +H4(10) ≤ 20 t = 20, s = 10

G4(30) +H4(10) ≤ 30 t = 30, s = 10∥∥∥∥∥∥∥
G4(20) +H4(18) ≤ 20 t = 20, s = 18

G4(30) +H4(18) ≤ 30 t = 30, s = 18

G4(30) +H4(20) ≤ 30 t = 30, s = 20

(2.64)

Each disjunction above introduces ⌈log2 k⌉ encoding variables in ILP, where k is the number

of constraints in the disjunction [155] (also see Equations (2.68)–(2.69) for an example).

Therefore, the constraints in (2.64) require a total of 5 (= ⌈log2 4⌉ + ⌈log2 3⌉ + ⌈log2 2⌉ +

⌈log2 1⌉) binary encoding variables in ILP.

After exchanging the ∃ and ∀ quantifiers, the schedulability region is constructed as a set

of conjuncted constraints for each t, which are then OR-ed at the top level. The resulting
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formulation becomes: ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

G4(10) +H4(0) ≤ 10 t = 10, s = 0
G4(18) +H4(0) ≤ 18 t = 18, s = 0

G4(18) +H4(10) ≤ 18 t = 18, s = 10
G4(20) +H4(0) ≤ 20 t = 20, s = 0

G4(20) +H4(10) ≤ 20 t = 20, s = 10

G4(20) +H4(18) ≤ 20 t = 20, s = 18

G4(30) +H4(0) ≤ 30 t = 30, s = 0

G4(30) +H4(10) ≤ 30 t = 30, s = 10

G4(30) +H4(18) ≤ 30 t = 30, s = 18

G4(30) +H4(20) ≤ 30 t = 30, s = 20

(2.65)

The constraints in (2.65) contain only one disjunction. Thus the total number of binary

encoding variables required is ⌈log2 4⌉ = 2, as opposed to 5 required by (2.64). It can be

further simplified while not affecting the feasibility region, using algorithms similar to [155].

For example, the constraint G4(10) +H4(0) ≤ 10 can be expanded as

C4(HI) + C3(LO) + C2(LO) + C1(HI) ≤ 10

The constraint is more restricted than those for

t = 30, s ∈ {0, 10, 18, 20} (2.66)
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Therefore, these constraints are redundant in the logic-OR operation.



C4(HI) + C3(LO) + C2(LO) + 3C1(HI) ≤ 30

C4(HI) + C3(LO) + 2C2(LO) + 3C1(HI) ≤ 30

C4(HI) + 2C3(LO) + 2C2(LO) + 3C1(HI) ≤ 30

C4(HI) + 2C3(LO) + 3C2(LO) + 2C1(HI) + C1(LO) ≤ 30

(2.67)

In the end, the feasibility region can be represented as

∥∥∥∥∥∥∥∥∥∥∥
G4(18) +H4(10) ≤ 18

G4(30) +H4(18) ≤ 30

G4(30) +H4(20) ≤ 30

(2.68)

This can be formulated in ILP where only one binary variable is needed. Define b as

b =


0 if the first constraint in (2.68) is satisfied,

1 otherwise.

The ILP formulation is (using the “big-M” formula)


G4(18) +H4(10) ≤ 18 +Mb

G4(30) +H4(18) ≤ 30 +M(1− b)

G4(30) +H4(20) ≤ 30 +M(1− b)

(2.69)

where M is a big enough constant, G4(18) +H4(10) can be expanded as

C4(HI) + C3(LO) + 2C2(LO) + 2C1(HI)
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and G4(30) + H4(18) and G4(30) + H4(20) are expanded as in the last two constraints in

(2.67).

ILP formulation for AMC-rtb. We now discuss the formulation for the schedulability of τ4

under AMC-rtb. First, as noted in [20], it is easy to verify that RCC
4 ≥ RHI

4 and RCC
4 ≥ RLO

4 .

However, to calculate RCC
4 by (2.3), it is still necessary to know RLO

4 . Hence, we focus on the

formulation of RLO
4 and RCC

4 . We define the set of integer variables to denote the number of

interferences from the higher priority tasks hp(4) = {τ1, τ2, τ3} in LO mode, formulated as

ILO1,4 =

⌈
RLO

4

T1

⌉
⇒ RLO

4

T1

≤ ILO1,4 <
RLO

4

T1

+ 1

ILO2,4 =

⌈
RLO

4

T2

⌉
⇒ RLO

4

T2

≤ ILO2,4 <
RLO

4

T2

+ 1

ILO3,4 =

⌈
RLO

4

T3

⌉
⇒ RLO

4

T3

≤ ILO3,4 <
RLO

4

T3

+ 1

Now RLO
4 calculated according to (2.1) is

RLO
4 = C4(LO) + ILO3,4 C3(LO) + ILO2,4 C2(LO) + ILO1,4 C1(LO)

For RCC
4 calculated by (2.3), we need an additional integer variable ICC

1,4 to denote the number

of interferences by the only task τ1 in hpH(4) during criticality change phase.

ICC
1,4 =

⌈
RCC

4

T1

⌉
⇒ RCC

4

T1

≤ ICC
1,4 <

RCC
4

T1

+ 1

Now RCC
4 calculated according to (2.3) is

RCC
4 = C4(HI) + ILO3,4 C3(LO) + ILO2,4 C2(LO) + ICC

1,4 C1(HI)
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For AMC-rtb, in total it requires four integer variables to formulate the schedulability re-

gion of τ4 in ILP. As a comparison, it is sufficient to use only one binary variable in the

schedulability region formulation of AMC-rtb.

2.5 Extension to Multiple Criticality Levels

In this section, we discuss how the proposed analysis technique AMC-rbf can be extended

to system with multiple criticality levels. We first summarize the notation and scheduling

scheme of multi-criticality systems under AMC, then proceed to derive the corresponding

rbf based schedulability analysis.

2.5.1 System Semantics

Let Γ be a system containing K+1 criticality level where K is an arbitrary positive integer.

Let Ψk represent the k-th criticality level, k = 0, · · · , K. The higher the value of k, the

higher the criticality level. The LO criticality level, or the normal mode, is represented by

Ψ0. We use LO and Ψ0 interchangeably in the following discussion. Each task τi is affiliated

with a criticality level ΨLi
and a set of WCETs Ci(Ψ0), ...Ci(ΨLi

) corresponding to each

lower or equal criticality level. We assume Ci(Ψk) ≤ Ci(Ψj) for all k < j ≤ Li. The rules of

the task dispatch under AMC policy are summarized as follows:

• The system starts with the initial criticality level of Ψ0, i.e., LO-crit mode.

• In each criticality level Ψk, only tasks with Li ≥ k are allowed to execute for up to

Ci(Ψk). Other tasks with lower criticality levels are abandoned.

• The system criticality level can only change between consecutive levels at a time.
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• Criticality change from level Ψk−1 to Ψk is triggered when a task with Li ≥ k executes

for Ci(Ψk−1) without signaling completion.

2.5.2 Request Bound Function based Analysis

Similar to dual-criticality systems, three conditions shall be checked to verify the system

schedulability for each criticality level Ψl.

• Stable LO-criticality: The system remains to be in the lowest criticality level all the

time.

• Stable Ψl criticality: The system maintains in criticality level Ψl all the time.

• Ψl criticality change phase: The system dynamically changes from LO criticality

level to Ψl criticality level during execution.

Thus correspondingly, we define three types of request bound functions for each mode at

criticality level Ψl, denoted as SLO
i , SHI,Ψl

i and QCC,Ψl
i respectively.

SLO
i is a function of time interval [0, t] and is the same for all τi and all criticality levels. It

can be formulated in the same way as in dual-criticality systems

SLO
i (t) = Ci(LO) +

∑
j∈hp(i)

⌈
t

Tj

⌉
Cj(LO) (2.70)

SHI,Ψl
i is a function of time interval [0, t] and can be computed by considering the execution

of τi as well as all higher priority tasks whose criticality level are higher than or equal to Ψl
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in stable Ψl mode.

SHI,Ψl
i (t) = Ci(Ψl) +

K∑
k≥l

∑
j∈hp(i,Ψk)

⌈
t

Tj

⌉
Cj(Ψl) (2.71)

where hp(i,Ψk) represents the set of higher priority tasks of criticality level Ψk.

QCC,Ψl
i is a function of both the time interval [0, t] and the criticality change instants. In

multiple criticality systems, a criticality change phase is defined as a vector −→sl = [s1, s2, ...sl],

where sk represents the time instant of criticality change from level Ψk−1 to Ψk. For conve-

nience, we denote s0 = 0. Hence, s0 < s1 < · · · < sl < t.

Intuitively, −→sl denotes a trace of criticality change that leads from LO to criticality level Ψl.

To distinguish −→sl from the time instant sk, we refer to the former as criticality change trace,

or simply trace, and the latter as individual criticality change. To estimate the interference

from a higher priority task τj, we consider the following three cases.

Case 1: τj ∈ hp(i,Ψ0). That is, τj is a LO criticality task. τj introduces interference up to

s1, which can be computed in the same way as in dual-criticality systems.

IΨ0
i,j (
−→sl ) =

(⌊
s1
Tj

⌋
+ 1

)
Cj(Ψ0) (2.72)

Case 2: τj ∈ hp(i,Ψk) where 1 ≤ k = Lj < l. That is, τj is an intermediate criticality

task relative to the concerned level Ψl. τj introduces interference up to sk+1 and executes at

criticality level Ψq in each interval of [sq, sq+1), q = 0, · · · , k−1. Thus, a sufficient estimation
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of its interference can be computed by

IΨk
i,j (
−→sl ) =

k−1∑
q=0

Mj(sq, sq+1) · Cj(Ψq)

+

(⌈
sk+1

Tj

⌉
−

k−1∑
q=0

Mj(sq, sq+1)

)
Cj(Ψk)

(2.73)

Mj(t1, t2), as defined in Equation (2.16), provides an lower bound on the maximum num-

ber of instances from τj that can occur in interval [t1, t2). Hence, the term (
⌈
sk+1

Tj

⌉
−∑k−1

q=0 Mj(sq, sq+1)) gives an upper bound on the number of instances that can occur at

τj’s criticality level Lj = k. Since the higher the criticality, the larger the WCET, this

estimation is safe.

Case 3: τj ∈ hp(i,Ψk) where k = Lj ≥ l. That is, τj at a criticality level higher than or

equal to the concerned one Ψl. It introduces interference up to t. In each interval of [sq, sq+1)

where q = 0, · · · , l− 1, it executes at criticality level Ψq. In the interval [sl, t], it executes at

criticality level Ψl. The interference can be computed as

IΨl
i,j (
−→sl , t) =

l−1∑
q=0

Mj(sq, sq+1) · Cj(Ψq)

+

(⌈
t

Tj

⌉
−

l−1∑
q=0

Mj(sq, sq+1)

)
Cj(Ψl)

(2.74)

QCC,Ψl
i (−→sl , t) is then obtained by summing up (2.72)–(2.74) for all higher priority tasks as

well as the execution of τi at level Ψl.

QCC,Ψl
i (−→sl , t) = Ci(Ψl) +

l−1∑
k=0

∑
j∈hp(i,Ψk)

IΨk
i,j (
−→sl ) +

K∑
k=l

∑
j∈hp(i,Ψk)

IΨl
i,j (
−→sl , t) (2.75)

We now discuss the notion of response time using the request bound functions defined above.
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The response time in LO criticality mode and stable Ψl criticality mode, denoted respectively

as RLO
i and RHI,Ψl

i , are the least fixed point solutions of the following equations respectively.

RLO
i = SLO

i (RLO
i )

RHI,Ψl
i = SHI,Ψl

i (RHI,Ψl
i )

(2.76)

The response time of τi in Ψl criticality change phase with the given trace −→sl , denoted as

RCC,Ψl
i (−→sl ), is essentially the least fixed point of the following equation

RCC,Ψl
i (−→sl ) = QCC,Ψl

i (−→sl , RCC,Ψl
i (−→sl )) (2.77)

The worst case response time of τi in Ψl criticality change mode is the maximum response

time for all possible traces

RCC,Ψl
i = max

−→sl∈S
Ψl
i

RCC,Ψl
i (−→sl ) (2.78)

where SΨl
i is the set of all valid −→sl , defined in Equation (2.80) below.

The worst case response time of τi at level Ψl, denoted as RΨl
i is the maximum of the worst

case response time in the three modes at Ψl

RΨl
i = max{RLO

i , RHI,Ψl
i , RCC,Ψl

i } (2.79)

We now discuss the definition of SΨl
i . Similar to dual-criticality systems, in multiple criticality

systems, each individual criticality change instant sk, which triggers system criticality level

change from Ψk−1 to Ψk, must occur before R
Ψk−1

i . Thus SΨl
i can be formulated as

SΨl
i = {−→sl | (sp ≤ sq,∀p < q)

∧
(sk < R

Ψk−1

i ,∀k)} (2.80)
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We now study some of the properties of QCC,Ψl
i (−→sl , t), by which we will build the rbf-based

analysis (Corollary 13).

Theorem 10. Given τi such that Li ≥ 1, RCC,Ψl
i ≥ RHI,Ψl

i for all criticality level Ψl,

l = 1, ·, Li.

Proof. Choose the criticality change trace −→s∗l = [s1, ...sl] such that sk = 0 for all k =

1, · · · , l. It is easy to verify that

⌊
s1
Tj

⌋
= 0 ⇒ IΨ0

i,j (
−→
s∗l ) = Cj(Ψ0)

∀k < l,

⌈
sk
Tj

⌉
= 0

∧
Mj(sk, sk+1) = 0 ⇒ ∀k < l, IΨk

i,j (
−→
s∗l ) = 0

(2.81)

Therefore, QCC,Ψl
i (

−→s∗l , t) with the given trace −→s∗l = [s1, ...sl] becomes

QCC,Ψl
i (

−→
s∗l , t) ≥ Ci(Ψl) +

K∑
k=l

∑
j∈hp(i,Ψk)

IΨl
i,j (
−→
s∗l , t)

= Ci(Ψl) +
K∑
k=l

∑
j∈hp(i,Ψk)

⌈
t

Tj

⌉
Cj(Ψl)

= SHI,Ψl
i (t)

(2.82)

The above equation implies that

max
−→s ∈SΨl

i (t)

QCC,Ψl
i (−→sl , t) ≥ SHI,Ψl

i (t), ∀t ∈ [0, RHI,Ψl
i ] (2.83)

Since RHI,Ψl
i is the least fixed point of t = SHI,Ψl

i (t), RCC,Ψl
i , the least fixed point of

t = max
−→s ∈SΨl

i (t)

QCC,Ψl
i (−→sl , t) (2.84)
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must be greater than RHI,Ψl
i .

Theorem 11. Given τi such that Li ≥ 1, we have RCC,Ψ1

i ≥ RLO
i .

Proof. Since QCC,Ψ1

i (−→s1 , t) has the same form as QCC
i (s, t) in dual-criticality system, the

proof for the theorem follows directly from Theorem 4.

Theorem 12. Given τi such that Li ≥ 2, it must be RCC,Ψk
i ≥ R

CC,Ψk−1

i for all k = 2, · · · , Li.

Proof. We prove the theorem by induction.

Base Case.

Consider RCC,Ψ1

i and RCC,Ψ2

i and the corresponding request bound function QCC,Ψ1

i (−→s1 , t)

and QCC,Ψ2

i (−→s2 , t). For any −→s1 = [s1] ∈ SΨ1 and t ∈ (s1, R
CC,Ψ1

i ], choose −→s2 = [−→s1 , s2] that

satisfies the following

s2 ∈ [T lb, t) (2.85)

where

T lb = max{s1,max{k | k = m · Tj < t, ∀j, ∀m ∈ N+}} (2.86)

and N+ is the set of positive integers.

Since RCC,Ψ1

i ≥ RLO
i and RCC,Ψ1

i ≥ RHI,Ψ1

i (by Theorems 10 and 11), it is RΨ1
i = RCC,Ψ1

i .

Also, since −→s1 ∈ SΨ1 , there is s1 < RLO
i ≤ RΨ1

i = RCC,Ψ1

i . Thus it is always possible to

construct such an s2 for which −→s2 ∈ SΨ2(t). Note that if RCC,Ψ1

i < RLO
i , t and s2 above may

not exists for −→s1 where s1 ∈ [RCC,Ψ1

i , RLO
i ).

s2 selected above satisfies the following property

⌈
s2
Tj

⌉
=

⌈
t

Tj

⌉
,∀j (2.87)
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Consider functions QCC,Ψ2

i (−→s2 , t) and QCC,Ψ1

i (−→s1 , t) for the above −→s1 , −→s2 and t

QCC,Ψ1

i (−→s1 , t) = Ci(Ψ1) +
∑

j∈hp(i,Ψ0)

(⌊
s1
Tj

⌋
+ 1

)
Cj(LO)

+
K∑
k=1

∑
j∈hp(i,Ψk)

{
Mj(0, s1)Cj(Ψ0)

+

(⌈
t

Tj

⌉
−Mj(0, s1)

)
Cj(Ψ1)

}
(2.88)

QCC,Ψ2

i (−→s1 , t) = Ci(Ψ2) +
∑

j∈hp(i,Ψ0)

(⌊
s1
Tj

⌋
+ 1

)
Cj(LO)

+
∑

j∈hp(i,Ψ1)

Mj(0, s1) · Cj(Ψ0) +

(⌈
s2
Tj

⌉
−Mj(0, s1)

)
Cj(Ψ1)

+
K∑
k=2

∑
j∈hp(i,Ψk)

{
Mj(0, s1) · Cj(Ψ0) +Mj(s1, s2) · Cj(Ψ1)

+

(⌈
t

Tj

⌉
−Mj(0, s1)−Mj(s1, s2)

)
Cj(Ψ2)

}
(2.89)

Subtracting QCC,Ψ1

i (−→s1 , t) from QCC,Ψ2

i (−→s2 , t), and substituting for the relationship in (2.87),

it is
QCC,Ψ2

i (−→s2 , t)−QCC,Ψ1

i (−→s1 , t)

=Ci(Ψ2)− Ci(Ψ1)

+
K∑
k=2

∑
j∈hp(i,Ψk)

{(
Mj(s1, s2) +Mj(0, s1)−

⌈
t

Tj

⌉)
Cj(Ψ1)

+

(⌈
t

Tj

⌉
−Mj(0, s1)−Mj(s1, s2)

)
Cj(Ψ2)

}
(2.90)

By the fact that ∀j, Cj(Ψ2) ≥ Cj(Ψ1), we have QCC,Ψ2

i (−→s2 , t) ≥ QCC,Ψ1

i (−→s1 , t). Also since

RCC,Ψ1

i is the least fixed point of

max
−→s1∈SΨ1

i (t)

QCC,Ψ1

i (−→s1 , t) = t (2.91)
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there is,

max
−→s2∈SΨ2

i (t)

QCC,Ψ2

i (−→s2 , t) ≥ max
−→s1∈SΨ1

i (t)

QCC,Ψ1

i (−→s1 , t) > t, ∀t ∈ (s1, R
Ψ1
i ) (2.92)

which implies that RCC,Ψ2

i ≥ RCC,Ψ1

i ≥ RLO
i .

Step Case.

Assumes that RCC,Ψq

i ≥ R
CC,Ψq−1

i for all q = 1, · · · , k. We now show that RCC,Ψk+1

i ≥ RCC,Ψk
i .

For any −→sk ∈ SΨk
i and t ∈ (sk, R

ΨCC,k

i ], construct −−→sk+1 = [−→sk , sk+1], where sk+1 satisfies the

following

sk+1 ∈ [T lb, t) (2.93)

where

T lb = max{sk,max{n | n = m · Tj < t, ∀j, ∀m ∈ N+}} (2.94)

By the inductive hypothesis, there is R
CC,Ψq

i = R
Ψq

i ,∀q = 1, · · · , k. Since −→sk ∈ SΨk , sk <

R
Ψk−1

i = R
CC,Ψk−1

i ≤ RCC,Ψk
i . Thus, it is always possible to construct such an sk+1.

Similar to the base case, sk+1 has the following property

⌈
sk+1

Tj

⌉
=

⌈
t

Tj

⌉
,∀j (2.95)

Similar to (2.90), the difference between QCC,Ψk
i (−→sk , t) and Q

CC,Ψk+1

i (−−→sk+1, t) can be derived
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as follows by substituting with (2.95)

Q
CC,Ψk+1

i (−−→sk+1, t)−QCC,Ψk
i (−→sk , t)

=Ci(Ψk+1)− Ci(Ψk)

+
K∑

p=k+1

∑
j∈hp(i,Ψp)

{( k∑
q=0

Mj(sq, sq+1)−
⌈
t

Tj

⌉)
Cj(Ψk)

+

(⌈
t

Tj

⌉
−

k∑
q=0

Mj(sq, sq+1)

)
Cj(Ψk+1)

}
(2.96)

where s0 is defined as 0.

Because ∀j, Cj(Ψk+1) ≥ Cj(Ψk), we have Q
CC,Ψk+1

i (−−→sk+1, t) ≥ QCC,Ψk
i (−→sk , t). Since RCC,Ψk

i is

the least fixed point of

max
−→sk∈S

Ψk
i (t)

QCC,Ψk
i (−→sk , t) = t (2.97)

it is

max
−−→sk+1∈S

Ψk+1
i (t)

Q
CC,Ψk+1

i (−−→sk+1, t) ≥ max
−→sk∈S

Ψk
i (t)

QCC,Ψk
i (−→sk , t) > t, ∀t ∈ (sk, R

Ψk
i ) (2.98)

which implies that R
CC,Ψk+1

i ≥ RCC,Ψk
i ≥ RLO

i .

The above three theorems, Theorems 10–12 imply that the worst case response time for τi

always occur in criticality change mode at τi’s highest criticality level. Thus τi is schedulable

if

R
CC,ΨLi
i ≤ Di (2.99)

This directly implies the following corollary on rbf-based analysis for systems multiple criti-

cality levels.
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Corollary 13. τi is schedulable if

∀−→sLi
∈ SΨLi

i , ∃t ∈ (sLi
, Di] s.t. Q

CC,ΨLi
i (−→sLi

, t) ≤ t (2.100)

where SΨLi
i is defined as in (2.80), repeated below.

SΨLi
i = {−→sLi

| (sp ≤ sq,∀p < q)
∧

(sk < R
Ψk−1

i ,∀k)} (2.101)

We now prove that the ∃ and ∀ quantifiers can be exchanged without affecting the accuracy.

Theorem 14. (2.102) is a sufficient and necessary condition of (2.100).

∃t ∈ (0, Di], s.t. ∀−→sLi
∈ SΨLi

i (t), Q
CC,ΨLi
i (−→sLi

, t) ≤ t (2.102)

where SΨLi (t) is refined from SΨLi (Equation (2.101)) by adding the constraint sk < t, ∀k =

1, · · · , Li.

Proof.

Sufficiency.

Let tp be the time instant that satisfies condition in (2.102). Equation (2.98) implies that

tp ≥ RΨk
i for all k < Li. Thus, SΨLi

i = SΨLi
i (tp). Clearly,

∀−→sLi
∈ SΨLi

i , ∃t = tp ∈ (sLi
, Di] s.t. Q

CC,ΨLi
i (−→sLi

, t) ≤ t (2.103)

Necessity.

Assume that (2.100) is satisfied. Since Q
CC,ΨLi
i (−→sLi

, t) is separable in −→sLi
and t, it can be
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written as

Q
CC,ΨLi
i (−→sLi

, t) = H(−→sLi
) +G(t) (2.104)

where H(−→sLi
) and G(t) is defined as

G(t) = Ci(ΨLi
) +

K∑
k=Li

∑
j∈hp(i,Ψk)

⌈
t

Tj

⌉
Cj(ΨLi

)

H(−→sLi
) =

Li−1∑
k=0

∑
j∈hp(i,Ψk)

IΨk
i,j (
−→sLi

) +
K∑

k=Li

∑
j∈hp(i,Ψk)

I
′ΨLi
i,j (−→sLi

)

I
′ΨLi
i,j (−→sLi

) =

Li−1∑
q=0

Mj(sq, sq+1) · Cj(Ψq)−

(
Li−1∑
q=0

Mj(sq, sq+1)

)
Cj(ΨLi

)

(2.105)

Let −→s∗Li
be the criticality change trace that achieves the maximum of H(−→sLi

), i.e.,

H(
−→
s∗Li

) = max
−→sLi

∈S
ΨLi
i

H(−→sLi
) (2.106)

Let tp be a time instant that satisfies Q
CC,ΨLi
i (

−→s∗Li
, tp) ≤ tp. By assumption, tp ∈ (s∗Li

, Di]

and thus −→s∗Li
∈ SΨLi

i (tp). Notice that

max
−→sLi

∈S
ΨLi
i (tp)

Q
CC,ΨLi
i (−→sLi

, tp) = G(tp) + max
−→sLi

∈S
ΨLi
i (tp)

H(−→sLi
)

= G(tp) +H(
−→
s∗Li

)

= Q
CC,ΨLi
i (

−→
s∗Li

, tp)

(2.107)

Therefore, it is

Q
CC,ΨLi
i (−→sLi

, tp) ≤ Q
CC,ΨLi
i (

−→
s∗Li

, tp) ≤ tp,∀−→sLi
∈ SΨLi

i (tp) (2.108)
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which clearly indicates that

∃t = tp ∈ (0, Di], s.t. ∀−→sLi
∈ SΨLi

i (tp), Q
CC,ΨLi
i (−→sLi

, tp) ≤ tp (2.109)

Theorem 15 relaxes the constraints on the criticality change instant sk from sk < R
Ψk−1

i to

sk < t.

Theorem 15. τi is schedulable if

∃t ∈ (0, Di], s.t. ∀−→sLi
∈ S

′ΨLi
i (t), Q

CC,ΨLi
i (−→sLi

, t) ≤ t (2.110)

where S′ΨLi
i (t) is defined as

S′ΨLi
i (t) = {−→sLi

| (sp ≤ sq, ∀p < q)
∧

(sk < t, ∀k)} (2.111)

Proof. It is easy to see that SΨLi
i (t) ⊆ S′ΨLi

i (t). In fact S′ΨLi
i (t) is essentially a relaxation

from SΨLi
i (t) by removing the requirement sk < R

Ψk−1

i . Thus any time instant t that satisfies

condition (2.110) also satisfies (2.102).

2.5.3 Bounded Pessimism

We now study the boundedness of pessimism introduced by relaxation in (2.111). We provide

a high level intuition and omit the detailed proof for better readability.

Let −→s∗Li
be the worst case criticality change trace in set SΨLi and

−→
s′Li

be the worst case criti-

cality change trace in set S′ΨLi . When pessimism does occur due to relaxation, it can only

be the case that s∗k < R
Ψk−1

i ≤ s′k for some k where 1 ≤ k ≤ Li. Now consider the smallest
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of such k. In the scenario behind −→s∗Li
, the system executes at Ψk−1 criticality level in interval

[s∗k−1, s
∗
k) and at Ψk criticality level in interval [s∗k, s′k). In the scenario represented by

−→
s′Li

, the

system executes at Ψk−1 criticality level for the entire interval [s∗k−1, s
′
k). Comparing to −→s∗Li

,
−→
s′Li

introduces an extra estimation of Ψk−1-level workload in interval [s∗k, s′k) but correspond-

ingly cut away the estimation of Ψk-level workload in the same interval. Let WΨl(t1, t2)

represents the amount of workload in [t1, t2). The difference in workload estimation by −→s∗Li

and
−→
s′Li

in [s∗k−1, s
′
k) can then be represented as

WΨk−1(s∗k, s
′
k)−WΨk(s∗k, s

′
k) (2.112)

Intuitively, the difference is clearly bounded by the amount of Ψk−1 workload that can occur

in interval [s∗k, s′k). It can also be seen that pessimism occurs mostly when lower criticality

levels have higher workload, in which case (2.112) tends to be positive. Note that in the

opposite case, both s∗k and s′k tend to be small value and thus are more likely to be smaller

than R
Ψk−1

i , which gives s∗k = s′k (no pessimism).

Similar to dual-criticality systems, the amount of pessimism for a given t can be quantified

as

B(t) = max
−→sLi

∈S
′ΨLi (t)

Hi(
−→sLi

)− max
−→sLi

∈SΨLi (t)

Hi(
−→sLi

) (2.113)

We make use of the following relationships



s1
Tj

− 1 ≤
⌊
s1
Tj

⌋
≤ s1

Tj

sk
Tj

≤
⌈
sk
Tj

⌉
≤ sk

Tj

+ 1

sp − sq −Dj

Tj

− 1 ≤
⌊
sp − sq −Dj

Tj

⌋
≤Mj(sq, sp) ≤

sp − sq
Tj

(2.114)
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A linear lower bound on Hi(
−→sLi

) can be constructed by substituting s1
Tj
−1 for the term

⌊
s1
Tj

⌋
,

sk
Tj

for
⌈
sk
Tj

⌉
, and sp−sq

Tj
for Mj(sq, sp)

HLB
i (−→sLi

) =

Li∑
k=1

Vk · sk (2.115)

where Vk is defined as

V1 =
∑

j∈hp(i,Ψ0)

Cj(Ψ0)

Tj

∀k ≥ 2, Vk =

Li∑
p=k−1

∑
j∈hp(i,Ψp)

Cj(Ψk−1)

Tj

−
Li∑
p=k

∑
j∈hp(i,Ψp)

Cj(Ψk)

Tj

(2.116)

Similarly, a linear upper bound can be constructed by substituting s1
Tj

for the term
⌊
s1
Tj

⌋
,

sk
Tj

+ 1 for
⌈
sk
Tj

⌉
, and sp−sq−Di

Tj
− 1 for Mj(sq, sp)

HUB
i (−→sLi

) =

Li∑
k=1

Vk · sk +X (2.117)

where the constant X is defined as

X =

Li∑
k=0

∑
j∈hp(i,Ψk)

QΨk
i,j (2.118)
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and QΨk
i,j is defined as

QΨk
i,j =



Cj(Ψ0), k = 0

Cj(Ψk) +
k−1∑
q=0

Tj +Dj

Tj

(Cj(Ψq+1)− Cj(Ψq)), 1 ≤ k < Li

Li−1∑
q=0

Tj +Dj

Tj

(Cj(ΨLi
)− Cj(Ψq)), k = Li

(2.119)

With HUB
i (−→sLi

) and HLB
i (−→sLi

), B(t) can be upper bounded by

B(t) ≤ max
−→sLi

∈S
′ΨLi (t)

HUB
i (−→sLi

)− max
−→sLi

∈SΨLi (t)

HLB
i (−→sLi

) (2.120)

Let −→suLi
and
−→
slLi

be the trace that achieve the maximum of HUB
i (−→sLi

) and HLB
i (−→sLi

) respec-

tively. The upper bound on the amount of pessimism B(t) is the optimal value of the

following linear programming problem

max
Li∑
k=1

Vk · (sui − sli) +X

s.t. suk < t, ∀k = 1..Li

sup < suq ,∀p < q

slk < min{t, RΨk
i },∀i = 1, · · · , Li

slp < slq,∀p < q

(2.121)

2.6 Experimental Results

In this section we present three sets of experiments to evaluate the proposed schedulability

analysis AMC-rbf. In the first set of experiments, we evaluate the accuracy of AMC-rbf by
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comparing it with AMC-max and AMC-rtb. We then extensively test the solution quality

and scalability of the optimization algorithms which use AMC-rbf to formulate schedulabil-

ity region in ILP (Integer Linear Programming) framework. This is done on two design

optimization problems. One is the software synthesis of Simulink models. The other is the

task allocation on multicore with fixed priority partitioned scheduling. All experiments are

run on a machine with a 3.40GHz quad-core processor and 8GB memory, and all ILP related

problems are solved using CPLEX [83].

2.6.1 Comparison of Schedulability Tests

We first compare the following four methods of schedulability test:

▷ AMC-max: The AMC-max method described in [20];

▷ AMC-rtb: The AMC-rtb method introduced in [20];

▷ AMC-rbf: The AMC-rbf analysis as formulated in (2.14);

▷ AMC-rbf-ub: Schedulability test assuming worst case over-approximation, i.e., LCC
i de-

fined in (2.18).

Controlled LO-crit Utilization

We first generate random task systems that have controlled system utilization at LO-crit

level (ULO). Utilization of each task at LO-crit level is generated using the UUnifast-Discard

algorithm [50]. We generate random task systems that vary in several system parameters,

including system utilization at LO-crit level (ULO), criticality factor (CF, defined as C(HI)
C(LO)

),

HI-critical task percentage (HIP), and number of tasks (TN). Default values of CF, HIP

and TN are set to 2.0, 50%, and 20 respectively. Periods of tasks follow the log-uniform

distribution. Audsley’s algorithm [7] is used to try to find a feasible priority assignment
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Figure 2.1: Acceptance Ratio vs. LO-crit Utilization (ULO)

for each method. If success, the taskset is considered as schedulable under that method;

otherwise, it is deemed as unschedulable. For each setting of system parameters, 1000 test

cases are generated.

Fig. 2.1 plots the acceptance ratio versus different LO-crit system utilization. It can be seen

that AMC-rbf has a very close accuracy with that of AMC-rtb, as the two curves are almost

indistinguishable. Compared to AMC-max, AMC-rbf loses some accuracy but it is always

safe as indicated by Theorem 1. On the other hand, AMC-rbf-ub provides a safe, but quite

pessimistic bound for AMC-rbf. The result similar to that of Fig. 2.1 but for tasks with

constrained deadlines (D ≤ T ), is illustrated in Fig. 2.2. The deadline of each task τi is

chosen randomly from interval [Ci(Li), Ti]. Again, this confirms that AMC-rbf provides a

close and safe approximation to AMC-max.

Experiments with other parameter settings have similar results. Figs. 2.3, 2.4 and 2.5 plot
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Figure 2.2: Acceptance Ratio vs. LO-crit Utilization (ULO), Constrained Deadline

Figure 2.3: Weighted Schedulability vs. Criticality Factor (CF)
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Figure 2.4: Weighted Schedulability vs. HI-critical Task Percentage (HIP)

Figure 2.5: Weighted Schedulability vs. Number of Tasks (TN)
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the accuracy versus CF, HIP and TN respectively. In these experiments, system LO-crit

utilization (ULO) is randomly chosen from the interval [0.025, 0.975]. Observing that systems

with higher utilization are typically harder to schedule, we adopt the weighted schedulability

as a metric of accuracy [21], defined as W =
∑

i bi·ULO
i∑

i U
LO
i

, where bi ∈ {0, 1} indicates whether

the taskset indexed by i is schedulable and ULO
i represents its LO-crit system utilization.

In these three figures (Figs. 2.3–2.5), AMC-rbf is no more than 5.51% worse than AMC-max

in weighted schedulability, and within 2.69% of difference compared to AMC-rtb. Fig. 2.3

demonstrates that the performance of AMC-rbf is slightly less sensitive to the increase in

criticality factor compared with AMC-max and AMC-rtb, but it generally follows very closely

to these two in the entire range of CF. In Fig. 2.4, AMC-rbf is slightly inferior to AMC-max

and AMC-rtb in schedulability when the percentage of HI-critical tasks (HIP) is below 50%.

But as HIP becomes larger than 50%, AMC-rbf begins to outperform AMC-rtb and becomes

almost identical as AMC-max. This is intuitively consistent with Theorem 1 and Remark 2.3:

the higher HIP is, the greater the likelihood that V is negative, which reduces the amount

of overestimation A(t). In Fig. 2.5, a small accuracy loss can be observed on AMC-rbf as

compared to AMC-rtb when the task system is small. However, as the number of tasks

increases, AMC-rbf becomes more accurate than AMC-rtb, and its accuracy is close to that

of AMC-max.

Controlled Utilization at Criticality Level

We re-perform the experiment on evaluating analysis accuracy, but with controlled total

system utilization at each task’s criticality level (UC)

UC =
∑
i

C(Li)

Ti
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Figure 2.6: Acceptance Ratio vs. Utilization at Criticality Level (UC)

By default, UC is a random value selected from interval [0.5, 1.6]. Utilization for each task is

then generated using UUnifast algorithm. However, the generated utilization is now treated

as the utilization of each task at its criticality level. In this way, UC is essentially the

sum of each task’s utilization at its highest criticality level, which can be greater than 1.

The corresponding utilization at lower criticality level is obtained by dividing it with the

criticality factor. For example, if a HI-crit task τi of period 10 is assigned utilization 0.4,

then Ci(HI) = 4 and Ci(LO) = 2. The other parameters are generated in the same way as

Section 2.6.1. The default value of CF, HIP and TN are set to 0.5, 50% and 20 respectively.

Periods are generated by log-uniform distribution. Deadline are set equal to period.

Figs. 2.7, 2.8 and 2.9 shows the results of the experiment that varies UL, CF, HIP, and

TN respectively, while keeping other parameters at their default configurations. Fig. 2.10

performs the same experiment as Fig. 2.6 but uses constrained deadline for each task. The

deadline are chosen randomly from interval [Ci(LO), Ti] for LO tasks and [Ci(HI), Ti] for
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Figure 2.7: Weighted Schedulability vs. Criticality Factor (CF)

Figure 2.8: Weighted Schedulability vs. HI-critical Task Percentage (HIP)

HI tasks. As shown by the result, AMC-rbf has a larger accuracy degradation for the

new experimental setting compared to that of Section 2.6.1: maximum 6.28% worse than
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Figure 2.9: Acceptance Ratio vs. Number of Tasks (TN)

Figure 2.10: Acceptance Ratio vs. Utilization at Criticality Level (UC), Constrained Dead-
line
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AMC-max in weighted schedulability, as opposed to 5.51% for the setting of Section 2.6.1.

We give our intuitive explanation and observation as follows.

The pessimism of AMC-rbf comes mainly from the conservative estimation of request bound

function using QCC
i (s, t) in place of SCC

i (s, t) and the relaxation of criticality change range

from [0, RLO
i ] to [0, t]. The former is mainly due to a different use of ceiling and flooring

function in estimating the number of interfering HI and LO jobs (Mj(0, s) and Nj(s, t)) and

thus occurs mostly in rare corner cases. The latter source of pessimism becomes present

only when the worst case criticality change (the value of s that achieves the maximum

of QCC
i (s, t)) is beyond the corresponding RLO

i in range (RLO
i , t]. By a careful inspection

of Equation (2.15), it can be seen that this scenario happens mostly when the workload

from higher priority tasks in LO mode is greater than that in HI mode (thus the latter

the criticality change, the higher the interference). Since the above experiments set 50% of

the tasks to be HI-criticality by default and generate utilization at the highest criticality

level, the sum of utilization of HI tasks are roughly the same as that of LO tasks. Noticing

that HI tasks also contribute to LO mode workload, the above experimental setting naturally

distribute more workload to LO mode than HI mode, in which case the proposed test AMC-

rbf tends to introduced more pessimism.

However, the proposed test AMC-rbf bears an advantage compared to AMC-rtb in that

it never assumes coexistence of HI instances and LO instances. For example, AMC-rtb as-

sumes that LO tasks execute for Ci(LO) while HI tasks execute for Ci(HI) interval [0, RLO
i ],

which is clearly pessimistic. AMC-rbf on the other hand assumes that both execute for

Ci(LO) in [0, s] and HI tasks execute for Ci(HI) only in [s, t], during which LO tasks are

ignored. Therefore, we speculate that in the converse case where HI mode has higher work-

load than LO mode, the proposed test AMC-rbf should give better performance. In fact,

this is already reflected in figure 2.8, which shows that AMC-rbf grows above AMC-rtb
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Figure 2.11: Weighted Schedulability vs. Utilization at Criticality Level (UC), HIP=70%

with higher percentage of HI tasks.

To further confirm it, we perform another two sets of experiments of varying system total

utilization. In the first set, we increase the default HIP from 50% to 70%. In the second

set we keep the HIP to be 50% but distribute 70% of the total utilization to HI tasks, i.e.,

UHI = 70%× UC where

UHI =
∑

i:Li=HI

Ci(HI)

Ti

The results are respectively shown in Figs. 2.11 and 2.12, which demonstrate a closer and even

better performance of AMC-rbf than AMC-rtb. This confirms with our observation that

the proposed technique AMC-rbf is more accurate when applied to system with relatively

high HI criticality workload.



2.6. Experimental Results 85

Figure 2.12: Acceptance Ratio vs. Utilization at Criticality Level (UC), UHI = 70%× UC

2.6.2 Optimizing Software Synthesis of Simulink Models

In this experiment, we consider the optimization of minimizing the control performance in the

semantics-preserving implementation of Simulink models. We briefly describe the problem

below, and refer interested readers to [109] for more details.

A Simulink model is a Directed Acyclic Graph (DAG) where nodes represent functional

blocks and links represent data communication between functional blocks. We assume each

functional block is implemented in a dedicated task (hence use the terms functional block and

task interchangeably). The semantics-preserving implementation of the model has to match

its functional behavior. This typically requires the addition of a Rate Transition (RT) block

between a reader and a writer with different but harmonic periods, which is a special type

of wait-free communication buffers. However, the costs of RT blocks are additional memory

overheads and in some cases, functional delays in result delivering. The latter degrades

control performance. As a simple example, consider a fast reader τr and slow writer τw that
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writes to τr. Assigning higher priority to τr generally helps schedulability as it conforms

with the rate monotonic policy. However, since the reader now executes before the writer,

an RT block is needed to store the data from the previous instance of the writer, which also

incurs a functional delay. On the other hand, if τr can be assigned with a lower priority

while keeping the system schedulable, then no RT block is needed. The software synthesis

of Simulink model is to exploit priority assignment as the design variable to minimize the

functional delays introduced by the RT blocks (hence improving control quality). We note

that Audsley’s algorithm is no longer optimal as schedulability is not the only constraint,

and the design should optimize the control quality.

We first discuss ILP formulation using AMC-rbf for the problem. Let V denote the set of

nodes and E the set of directed edges. Each edge (i, j) is associated with two weights: ci,j

indicating the penalty on control performance due to introduction of unit delay on the link,

and gi,j denoting the memory cost. We assume each node (functional block) is mapped to a

dedicated task. In Simulink, tasks have the same offset and their deadlines are the same as

the periods [109].

Let the binary variable pj,i denote the relative priority level between task τj and τi, as in

(2.57). We assume the priority order is unique, i.e., no two tasks have the same priority.

∀i ̸= j, pi,j + pj,i = 1 (2.122)

The transitive properties of the priority order must hold true: if τi has a higher priority than

τj and τj has a higher priority than τk, then τi must have a higher priority than τk.

∀i ̸= j ̸= k, pi,j + pj,k ≤ 1 + pi,k (2.123)
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To make sure that tasks are schedulable, the problem should include the schedulability region

formulation. The AMC-rbf based formulation is described in Section 2.4.1, while Section 2.4.2

gives the AMC-rtb based formulation.

For each High-to-Low (HL, where high rate writer τi sends data to low rate reader τj)

communication link in the DAG, RT block of type HL is necessary if reader cannot finish

before the next writer instance is released (i.e., within the period of the writer). To represent

this condition, a binary variable zi,j is added as follows

zi,j =

 0 reader τj finishes in Ti,

1 otherwise.
(2.124)

This can be formulated as if we check the schedulability of τj assuming its deadline is Ti.

For each LH communication link (low rate writer τi and high rate reader τj), RT block of

type LH is necessary if the reader τj is assigned with a higher priority. This is perfectly

captured by the binary variable pj,i: an RT block of type LH is needed for the link (i, j) if

and only if pj,i = 1.

The total memory usage by RT block shall not exceed the amount provided by the platform,

denoted as λ. This corresponds to the following constraint

∑
(i,j)∈E:Ti<Tj

gi,j · zi,j +
∑

(i,j)∈E:Ti>Tj

gi,j · pj,i ≤ λ (2.125)

The objective is to minimize the penalty on the control performance introduced by the RT

blocks of type LH

min
∑

(i,j)∈E:Ti>Tj

pj,i · ci,j (2.126)

Note that RT blocks of type HL are excluded in the above objective as they only incur
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memory overhead, but no functional delay.

We consider the problem where the Simulink model contains functional blocks with different

criticality levels. To determine the task criticality level, we follow the criteria in [15]: first,

criticality (LO or HI) is randomly assigned to sink tasks in the DAG; then it is propagated

to other tasks as follows:

• If a task is the predecessor of any HI-critical block, then it is assigned a HI-critical

level as well;

• All tasks not assigned HI-critical by the above rule are assigned LO-critical level.

We vary different parameters of the task systems including system utilization in LO mode,

total number of tasks, and criticality factors. System utilization ranges from 0.5 to 0.95.

Criticality factor varies from 1.0 to 5.5. Total number of tasks ranges from 5 to 40. In each

experiment, we vary one parameter while the other two are either kept at a default value or

randomly generated.

We randomly select from a set of predefined values for task periods.

{10, 20, 40, 50, 100, 200, 400, 500, 1000} (2.127)

This set contains all the period factors of the task periods for the real-world automotive

benchmark in [89]. We use TGFF [61] to generate random, acyclic task graphs. Tasks

communicating with each other have harmonic periods as required by the Simulink tool [105].

Besides the size of the communication data, which is a random value from range [1, 256], each

link is assigned with a random weight in range [1, 50] to indicate the degradation of control

performance if the reader has a higher priority. For each combination of system parameters,

1000 task systems are instantiated.
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Figure 2.13: Minimized Functional Delay vs. Number of Tasks (TN)

We compare four optimization algorithms on their normalized functional delay (defined as the

sum of the weights for links with delay divided by the total weights of the links) and runtime:

bnb-AMC-max, bnb-AMC-rtb, ILP-AMC-rtb, and ILP-AMC-rbf. (As discussed in Section 2.4,

AMC-max is too complicated for ILP formulation.) The first two use branch-and-bound

(bnb) exhaustive search algorithm for enumerating the possible priority assignments. Also,

we follow [47] for suggested initial value of response times in stable modes. The last two are

ILP formulations with AMC-rtb and our proposed analysis AMC-rbf.

The first two figures (Fig. 2.13 for solution quality in terms of minimized functional delay,

Fig. 2.14 for average runtime in log-scale) show the results for systems with different number

of tasks, where the total utilization is chosen randomly from interval [0.5, 0.95], and the

criticality factor is set to a default value 2.0. The results illustrate that bnb based algorithms

scale much worse than ILP-based approaches. This demonstrates the benefit of leveraging

ILP framework in complex problems: the modern solvers like CPLEX [83] employ many
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Figure 2.14: Average Runtime vs. Number of Tasks (TN)

sophisticated techniques and are generally much faster than plain bnb.

While both being ILP-based, ILP-AMC-rbf is about one magnitude faster than ILP-AMC-rtb

and the difference grows larger for bigger systems. This shows that AMC-rbf is much more

efficient in formulating schedulability region. Because AMC-max is more accurate than AMC-

rbf, bnb-AMC-max should always provide a better solution than AMC-rbf based approaches.

However, the maximum sub-optimality for ILP-AMC-rbf is 2.17%, which is in parity with

that of bnb-AMC-rtb or ILP-AMC-rtb (3.34%).

In the rest of the experiment, we focus on the solution quality of the algorithms. bnb-AMC-rtb

is omitted in the comparison since it always gives the same solution as ILP-AMC-rtb. Fig. 2.15

shows the results for 18-task systems with different utilizations, where the criticality factor

is set to 2.0. The normalized delay by ILP-AMC-rbf is almost the same as bnb-AMC-max

with a maximum sub-optimality of 3.14%. Fig. 2.16 performs a similar experiment but

assigns random criticality factors in the range [1.0, 5.5] for each task in the system, where
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Figure 2.15: Minimized Functional Delay vs. Utilization (U)

Figure 2.16: Minimized Functional Delay vs. Utilization (U), Random CF

the maximum degradation is 1.36%. Finally, Fig. 2.17 shows the normalized delay versus

criticality factor, where the system utilization is randomly chosen from [0.5, 0.95], and the
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Figure 2.17: Minimized Functional Delay vs. Criticality Factor (CF)

Table 2.2: Optimization of a Fuel Injection System

Memory ILP-AMC-rbf ILP-AMC-rtb bnb-AMC-max bnb-AMC-rtb
Cost Time Cost Time Cost Time Cost Time

9300 Inf 124s Inf 1.7h N/A > 48h N/A > 48h
9400 23 20.8s 23 18.6h N/A > 48h N/A > 48h
9600 23 115s 23 6.2h N/A > 48h N/A > 48h
12000 23 134s 23 15.3h 24 > 48h 23 > 48h

number of tasks remains to be 18. In this figure, ILP-AMC-rbf returns a solution that is no

worse than 2.27% compared to bnb-AMC-max. Also, neither ILP-AMC-rbf nor ILP-AMC-rtb

dominates the other, and the largest difference between them is 2.31% in the three figures.

Furthermore, we apply the optimization algorithms on an industrial case study [109], a

simplified version of an industrial fuel injection controller that contains 90 functional blocks

and 106 communication links. The system utilization in LO mode is 94.1%. We assign task

criticality in the same way as [15], resulting 42 HI-critical tasks. The criticality factor is set

to 2.0.
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We set a 48-hour time limit for the algorithms, and the results are summarized in Table 2.2.

Here the memory size from the microcontroller is given in column “Memory”. As in the

table, ILP-AMC-rbf can find the best solution or prove it is infeasible (like the case with

memory = 9300) in a couple of minutes. ILP-AMC-rtb requires a much longer time to obtain

the optimal solution (or prove infeasibility), on average more than two magnitudes (100×)

of that by ILP-AMC-rbf. bnb-AMC-max is unable to solve any of the problems within the

48-hour time limit. It is only able to find a feasible solution in one of the problem settings.

Likewise, bnb-AMC-rtb only finds a solution of the same quality as the optimal solution in

one problem setting. However, it is unable to prove its optimality within the time limit.

This highlights that an efficient schedulability analysis is critical to scale the optimization

techniques up for real world designs.

2.6.3 Optimizing Task Allocation on Multicore

In this experiment, we apply our optimization framework to the problem of finding a feasible

task allocation for mixed-criticality task systems on multicore processors, scheduled with

fixed-priority partitioned scheduling [86]. The design variable is the allocation of tasks to

cores, while the task priority order follows rate-monotonic policy. Several heuristic algorithms

for task allocation are studied [86], all of which can be summarized as the allocation of tasks

to cores one-by-one. The different task ordering methods are Decreasing-Utilization (DU)

and Decreasing-Criticality (DC). The task assignment to core strategies are First-Fit (FF),

Best-Fit (BF) and Worst-Fit (WF). We adopt the most accurate analysis AMC-max as the

schedulability test for these heuristics.

We first discuss ILP formulation for the problem using the proposed AMC-rbf analysis. A
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set of binary variables ai,k is defined to indicate the mapping of task τi to core k, as follows

ai,k =

 1 τi is mapped to core k,

0 otherwise.
(2.128)

Since each task must be mapped to exactly one core, we have the following constraints

∀i,
K∑
k=1

ai,k = 1 (2.129)

We add a redundant constraint that the total utilization for each core (in either LO mode

or HI mode) cannot exceed 100%. It is simple but is effective for removing obviously un-

schedulable solution.

∀k,
∑
i

ai,k ·
Ci(LO)

Ti
≤ 1

∧ ∑
i:Li=HI

ai,k ·
Ci(HI)

Ti
≤ 1 (2.130)

The problem should also include the formulation of the schedulability region as follows.

ILP for AMC-rbf. It takes a similar form as (2.53), but the functions G and H need to be

redefined, to add the index of the core k

Gi,k(t) = Ci(HI) · ai,k +
∑

j∈hpH(i)

⌈
t

Tj

⌉
Cj(HI) · aj,k

Hi,k(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO) · aj,k

+
∑

j∈hpH(i)

max
(
0,

⌊
s−Dj

Tj

⌋)
(Cj(LO)− Cj(HI)) · aj,k

(2.131)

Now the schedulability constraint (2.53) should be modified accordingly, to reflect that a
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higher priority task τj can only interfere τi if both of them are mapped to core k



∀ti,m ∈ Ti, ∀s ∈ Si(ti,m),∀k, Gi,k(ti,m) +Hi,k(s)

≤ ti,m +M

ki−1∑
k=0

Ei(m, k) +M(1− ai,k)

ki−1∑
k=0

(2k × bi,k) ≤ mi − 1

(2.132)

ILP for AMC-rtb. Since a task can be interfered by another higher priority task only when

they are mapped to the same core, (2.61) is modified as follows

∀k, RLO
i +M(1− ai,k) ≥ Ci(LO) +

∑
j∈hp(i)

ILOj,i · aj,k · Cj(LO)

∀k, RCC
i +M(1− ai,k) ≥ Ci(HI) +

∑
j∈hpL(i)

ILOj,i · aj,k · Cj(LO)

+
∑

j∈hpH(i)

ICC
j,i · aj,k · Cj(HI)

(2.133)

The constraints in (2.133) contain some nonlinear terms ILOj,i · aj,k and ICC
j,i · aj,k. They can

be linearized, by replacing them respectively with variables ΠLO
j,i,k ∈ N and ΠCC

j,i,k ∈ N that

satisfy the following constraints.

ILOj,i −M(1− aj,k) ≤ ΠLO
j,i,k ≤ ILOj,i

ICC
j,i −M(1− aj,k) ≤ ΠCC

j,i,k ≤ ICC
j,i

(2.134)

We compare between the solutions returned by ILP-AMC-rbf, ILP-AMC-rtb and those by the

heuristics discussed in [86]. To measure the possible sub-optimality introduced by AMC-rbf,

we include bnb-AMC-max, which exhaustively searches for task allocation, with AMC-max

as the schedulability analysis. Algorithm 1 describes the bnb procedure for task allocation
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Algorithm 1 The Branch and Bound Algorithm for Task Allocation
1: function Bnb
2: return Recur(τ0, 0)
3: end function
4: function Recur(Task τi, Core k)
5: Allocate τi on core k
6: if core k is not schedulable then
7: Deallocate τi on core k
8: return 0
9: end if

10: if No more task to allocate then
11: return 1
12: end if
13: τj = FetchNextTask()
14: for each core m do
15: status = RECUR(τj, m)
16: if status = 1 then
17: return 1
18: end if
19: end for
20: Deallocate τi on core k
21: return 0
22: end function

in multicore. In the algorithm, each recursion level decides on the core allocation for a

particular task. Procedure FetchNextTask returns a task that is unallocated from the task

set. We omit bnb-AMC-rtb since it has the same solution quality as ILP-AMC-rtb but runs

slower, demonstrated in the previous experiment (Section 2.6.2).

We test the algorithms on synthetic task systems. The task periods are selected randomly

from the set {1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000}. The criticality factor is set

to 2.0, and the percentage of HI-critical tasks is set to 50%. The utilization of each task at

LO mode is generated using the UUnifast-Discard algorithm [50]. A timeout of 10 minutes is

set for the ILP and bnb based techniques to avoid excessive waiting: if the algorithm cannot

find a schedulable task allocation in 10 minutes, then the system is conservatively deemed
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Figure 2.18: Acceptance Ratio vs. Total System Utilization

Figure 2.19: Average Runtime vs. Total System Utilization

as unschedulable. Each data point in the figures is based on experiments on 1000 random

systems.
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Figs. 2.18 and 2.19 illustrate the acceptance ratio and runtime of the algorithms respectively

for systems of 40 tasks on 4 cores, where the total system utilization is varied. FF and BF

generally are close given the same task ordering method (DU or DC), while WF is always

worse than these two. For better clarity, we only present the results for DC-FF, DU-WF, and

DU-FF in the figures and omit other heuristics.

As shown in Fig. 2.18, all the heuristics are worse than ILP-AMC-rbf, even if they are using the

most accurate analysis AMC-max. This indicates that it is generally not easy to find a close-

to-optimal heuristic for task allocation. The other approaches, bnb-AMC-max, ILP-AMC-rtb,

and ILP-AMC-rbf, all exhaustively search for task allocation but use different schedulability

test. ILP-AMC-rtb and ILP-AMC-rbf are very close to each other for the solution quality.

However, ILP-AMC-rbf runs significantly faster than ILP-AMC-rtb. On the other hand, bnb-

AMC-max actually performs worse than the ILP-based approaches, since it often cannot find

any schedulable solution within the time limit (even if the system is actually schedulable).

An interesting phenomenon is that DU works better than DC under the same task allocation

strategy (e.g., DU-FF and DC-FF in Fig. 2.18), which seems inconsistent with the conclusion

in [86]. This is mainly due to the adoption of different scheduling schemes. Differently from

AMC in this chapter, [86] follows the scheduling policy of [145], which will always reserve

Ci(HI) for a LO-critical task τi , where Ci(HI) > Ci(LO). As such, DC ordering is more

likely to group tasks of the same criticality on the same CPU. Hence, in the setting of [86]

DC brings more significant benefits by avoiding interferences from higher priority LO-critical

tasks.

We also vary the number of tasks to see how the algorithms scale. We set the total system

utilization to be 320% (the average utilization on each core is 80%). As in Figs. 2.20–2.21,

ILP-AMC-rbf scales much better than bnb-AMC-max and ILP-AMC-rtb: it can handle well

systems with 100 tasks, significantly more than the other two. Also, ILP-AMC-rbf generally
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Figure 2.20: Acceptance Ratio vs. Number of Tasks

Figure 2.21: Average Runtime vs. Number of Tasks

performs better than bnb-AMC-max and ILP-AMC-rtb at larger systems as the other two often

hit the time limit and return unschedulability prematurely. The largest sub-optimality for
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ILP-AMC-rbf is at the case of systems with 20 number of tasks, where bnb-AMC-max is 4%

better in schedulable tasks. This demonstrates that AMC-rbf, while losing a small amount

of accuracy on schedulability analysis, is more scalable to large systems, hence more suitable

for optimization process.

2.7 Conclusion

In this work, we presented a schedulability analysis method based on request bound function

for AMC-scheduled mixed-criticality systems. The new analysis is safe and has bounded

pessimism compared to AMC-max, but it allows efficient formulation of the schedulability

region for optimization purposes. Experiments show that our optimization framework based

on the new analysis is able to provide close-to-optimal solutions and scale to large designs.



Chapter 3

The Concept of Unschedulability Core

for Optimizing Real-Time Systems

with Fixed-Priority Scheduling

3.1 Introduction

The design of real-time embedded systems is often subject to many requirements and ob-

jectives in addition to real-time schedulability constraints, including limited resources (e.g.,

memory), cost, quality of control, and energy consumption. For example, the automotive

industry is hard pressed to deliver products with low cost, due to the large volume and the

competitive international market [38]. Similarly, technology innovations for medical devices

are mainly driven by reduced size, weight, and power (SWaP) [23]. In these application

domains, it is important to perform design optimization in order to find the best design (i.e.,

optimized according to an objective function) while satisfying all the critical requirements.

Formally, a design optimization problem is defined by decision variables, constraints, and

an objective function. The decision variables represent the set of design parameters that

the designer hope to optimize. The set of constraints represents the requirements that the

design and the choice of design parameters have to satisfied. They form the domain of the

101
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allowed values for the decision variables. The objective function represents the concerned

design metrics. In general, design optimization needs to solve an optimization problem for

decision variables w.r.t the objective function within the feasibility region. For real-time

systems, the feasibility region (also called schedulability region if concerning only real-time

schedulability) must only contain the designs that satisfy the schedulability constraints where

each task completes before its deadline.

In this chapter, we consider the design optimization for real-time systems scheduled with

fixed priority. The decision variables may include task priority assignment and the selection

of mechanisms to ensure data consistency of shared variables. Besides real-time schedulabil-

ity, these problems often contain constraints or an objective function related to other metrics

(such as memory, power, thermal, etc.). Typically, this makes the problem complexity NP-

hard, including the two case studies in this chapter: the optimization of mixed-criticality

Simulink models with Adaptive Mixed Criticality (AMC) scheduling (Section 3.7.1), and

the memory minimization in the implementation of automotive AUTOSAR models (Sec-

tion 3.7.2). Below we provide a summary of related work, focusing on the underlining

approach but not intended to be complete.

3.1.1 Related Work

There is a large body of work on priority assignment for real-time systems with fixed pri-

ority scheduling. In particular, Audsley’s algorithm [8] is proven to be “optimal” for many

task models and scheduling schemes, if the designer is only concerned to find a schedulable

solution. See a recent survey by Davis et al. [53] on a complete list of applicable settings.

However, if the design optimization problem contains constraints or an objective function

related to other metrics (such as memory, power, thermal, etc.), Audsley’s algorithm is no
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longer guaranteed to be optimal.

In general, the current approaches for optimizing priority assignment in complex design

optimization problems (i.e., those without known polynomial-time optimal algorithms) can

be classified into three categories. The first is based on meta heuristics such as simulated

annealing (e.g., [22, 142]) and genetic algorithm (e.g., [75]). The second is to develop problem

specific heuristics (e.g., [127, 146, 156]). These two categories do not have any guarantee on

optimality.

The third category is to search for the exact optimum, often applying existing optimization

frameworks such as branch-and-bound (BnB) (e.g., [147]), or integer linear programming

(ILP) (e.g., [169]). However, this approach typically suffers from scalability issues and may

have difficulty to handle large industrial designs. For example, automotive engine control

system contains over a hundred functional blocks [120], but the ILP based approach can

only scale up to about 40 functional blocks (see Section 3.7). Furthermore, not all problems

can easily be formulated in a particular framework due to the complexity of schedulability

conditions. For example, the exact schedulability analysis for tasks with non-preemptive

scheduling requires to check all the task instances in the busy period, but the number of

instances is unknown a priori. Hence, it is difficult to formulate the exact schedulability

constraints in ILP [155].

The above existing mindset is also followed by optimization of problems with other decision

variables, such as the selection of mechanisms for protection of shared memory buffers [153],

the mapping of functional blocks to tasks [55], and the use of rate transition buffers for

semantics preservation in Simulink models [109]. Different from all existing work, our ap-

proach is to develop a domain-specific optimization framework that is optimal, scalable, yet

still applicable to a large class of real-time systems.
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3.1.2 Contributions and Chapter Structure

In this chapter, instead of directly reusing standard techniques (BnB, ILP, etc.), we present

customized optimization techniques for real-time systems with fixed priority scheduling.

Our framework can guarantee the optimality of the solution while drastically improving the

scalability. Specifically, we make the following contributions:

• We propose the concept of unschedulability core, an abstraction of the schedulability

conditions in real-time systems scheduled with fixed priority. It can be represented by

a set of new and compact constraints to be learned efficiently during the execution of

the optimization procedure (i.e., at runtime).

• We devise an optimization procedure that judiciously utilizes the unschedulability cores

to drastically improve the scalability.

• We use two design optimization problems to illustrate the benefit of the proposed

approach. The new unschedulability core guided optimization algorithm runs several

orders of magnitude faster than other optimal algorithms (BnB, ILP) while maintaining

the optimality of the solutions.

The rest of the chapter is organized as follows. From Section 3.2 to Section 3.4, we first con-

sider the optimization problems that assign priority orders to tasks. Specifically, Section 3.2

describes the task models and gives a formal definition of the problems that are suitable

for the proposed approach. Section 3.3 defines the concept of unschedulability core that

contains a set of partial priority orders among tasks, and studies its efficient calculation.

Section 3.4 presents the optimization procedure that leverages the unschedulability cores for

optimizing priority assignment, with proven properties on termination and optimality. In

Section 3.5, we extend the framework to optimization problems with other decision variables.
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We generalize the concept of unschedulability core that allows to take problem-specific in-

terpretations. We also discuss the applicability and efficiency for the proposed optimization

framework. Section 3.6 gives two examples of application. Section 3.7 evaluates the effective-

ness of the proposed approach with industrial case studies and synthetic systems. Finally,

Section 3.8 concludes the chapter.

3.2 Preliminary

We consider a real-time system scheduled by fixed priority. It consists of a set of tasks

Γ = {τ1, τ2, ...τn}. Each task τi is assumed to have a unique priority πi (the higher the number,

the higher the priority) to be assigned by the designer. The concept of unschedulability core

applies to any systems scheduled with fixed priority. However, its application in design

optimization is most effective when there is a simple algorithm to determine the existence

of a schedulable priority assignment for a given task set. Hence, we consider a list of task

models and scheduling schemes where Audsley’s algorithm [8] is applicable (i.e., it can find a

schedulable priority assignment if there exists one). The list, as summarized in [53], includes

a large number of task models and scheduling schemes:

• The periodic task model, where independent tasks are scheduled on a single-core plat-

form with preemptive scheduling. Each task is characterized by a tuple of parameters:

Ti denotes the period; Di = Ti represents the implicit relative deadline; Ci denotes the

worst-case execution time (WCET).

• Tasks with arbitrary deadlines, and/or static offsets.

• Probabilistic real-time systems where task WCETs are described by independent ran-

dom variables [3].
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• Systems scheduled with deferred preemption [49].

• Tasks modeled as arbitrary digraphs [137], where the vertices represent different kinds

of jobs, and the edges represent the possible flows of control.

• Tasks accessing shared resources protected by semaphore locks to ensure mutual ex-

clusion.

We note that Audsley’s algorithm runs very efficiently: out of the possible n! priority as-

signments, it only needs to explore O(n2) of them.

A priority assignment can be represented using a set of binary variables P = {pi,j|i ̸=

j, τi, τj ∈ Γ} denoting the partial priority orders among tasks, where pi,j is defined as

pi,j =

 1 πi > πj,

0 otherwise.
(3.1)

A priority assignment shall satisfy the antisymmetric and transitive properties: If τi has a

higher priority than τj (pi,j = 1), then τj has a lower priority than τi (pj,i = 0); If τi has a

higher priority than τj (pi,j = 1) and τj has a higher priority than τk (pj,k = 1), then τi must

have a higher priority than τk (pi,k = 1). These properties can be formally formulated as

Antisymmetry: pi,j + pj,i = 1, ∀i ̸= j

Transitivity: pi,j + pj,k ≤ 1 + pi,k, ∀i ̸= j ̸= k
(3.2)

We first focus on a design optimization problem where the decision variables X include the
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Table 3.1: An Example Task System Γe

τi Ti Di Ci τi Ti Di Ci

τ1 10 10 2 τ2 20 20 3
τ3 40 40 16 τ4 100 100 3
τ5 200 200 17 τ6 400 400 32

task priority assignment, i.e., P ⊆ X.

min C(X)

s.t. system schedulability

F(X) ≤ 0

(3.3)

Here C(X) is the objective function to be minimized, F(X) ≤ 0 defines the set of additional

constraints that the solutions in the feasibility region shall satisfy, including those in Equation

(3.2).

3.3 The Concept of Unschedulability Core

Our technique is centered around the concept of unschedulability core. Intuitively, it is an

irreducible set of partial priority orders that cause the system unschedulable. In this section,

we first introduce its formal definition, and study its properties and usage in modeling the

schedulability region. We then introduce an efficient algorithm for computing unschedual-

bility cores. We use an example system Γe configured as in Table 3.1 to illustrate, where all

tasks are assumed to be independent and preemptive.
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3.3.1 Definition of Unschedulability Core

Definition 2. A partial priority order (PPO), denoted as ri,j ≡ (πi > πj) ≡ (pi,j =

1), defines a priority order that τi has a higher priority than τj. A PPO set R =

{ri1,j1 , ri2,j2 , ..., rim,jm} is a collection of one or more partial priority orders that are con-

sistent with the properties in Equation (3.2). The number of elements in R is defined as its

cardinality, denoted as |R|.

Definition 3. Let Γ be a task system and R be a PPO set on Γ. Γ is R-schedulable if

and only if there exists a feasible priority assignment P that respects all elements (i.e., all

partial priority orders) in R.

For convenience, we also say that “R is schedulable” when Γ is R-schedulable, and similarly

“R is unschedulable” when Γ is not R-schedulable.

Example 3.1. Consider the system Γe in Table 3.1 and two PPO sets R1 = {r1,2, r2,3},

R2 = {r5,4, r4,3}. Γe is R1-schedulable, since the system is schedulable under rate-monotonic

priority assignment which respects R1. However, Γe is not R2-schedulable: τ1 must have a

higher priority than τ3 (due to C3 > D1), hence assigning τ4 and τ5 with higher priority than

τ3 will make τ3 miss its deadline.

The following theorem intuitively states that if the system is schedulable for a PPO set, then

the system is also schedulable for any of its subset.

Theorem 16. Let R and R′ be two PPO sets on Γ such that R′ ⊆ R. The following always

holds

Γ is R-schedulable =⇒ Γ is R′-schedulable (3.4)

The proof is straightforward as any priority assignment satisfying R must also satisfy R′.
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Applying the law of contrapositive on Theorem 16, we have that for any R′ ⊆ R,

Γ is not R′-schedulable =⇒ Γ is not R-schedulable (3.5)

We now give the definition of unschedulability core. Intuitively, it is an unschedulable PPO

set that is irreducible, such that removing any element from it allows a schedulable priority

assignment.

Definition 4. Let Γ be a task system and R be a PPO set on Γ. R is an unschedulability

core for Γ if and only if R satisfies the following two conditions:

• Γ is not R-schedulable;

• ∀R′ ⊂ R, Γ is R′-schedulable.

Remark 3.2. By Theorem 16, the second condition in Definition 4 can be replaced by

• ∀R′ ⊂ R s.t. |R′| = |R| − 1, Γ is R′-schedulable.

Example 3.3. Consider the PPO set R3 = {r5,4, r4,3, r3,6}, which equivalently defines the

priority order π5 > π4 > π3 > π6. Obviously, Γe is not R3-schedulable as it is not schedulable

for the subset R2 = {r5,4, r4,3} of R3 (see Example 3.1). However, R3 is not an unschedu-

lability core since it has a proper subset R2 for which Γe is not schedulable. R2 is a valid

unschedulability core, as for each of its proper subset, there exists a respecting feasible pri-

ority assignment: P = [π1 > π2 > π3 > π5 > π4 > π6] respects R(1)
2 = {r5,4} and R(2)

2 = ∅,

and P ′ = [π1 > π2 > π4 > π3 > π5 > π6] respects R(3)
2 = {r4,3}.

Let U denote an unschedulability core. The constraint that the PPOs in U cannot be

simultaneously satisfied is: ∑
ri,j∈U

pi,j ≤ |U| − 1 (3.6)
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Remark 3.4. An unschedulability core U essentially gives a necessary condition for schedu-

lability, that any feasible priority assignment shall differ from U for at least one partial

priority order. Constraint (3.6) captures such requirement and is much more friendly to ILP

solver. Its coefficients on the left hand side are all small integers (0 or 1), which in many

cases makes the ILP solver more efficient [96].

We now prove that the set of all unschedulability cores is a necessary and sufficient condition

that makes the system unschedulable.

Lemma 17. Let Γ be a schedulable task system and R be a PPO set on Γ. Γ is not

R-schedulable if and only if R contains at least one unschedulability core.

Proof. “If” Part: It is straightforward by the definition of unschedulability core and the

result in Equation (3.5).

“Only If” Part: Proof by induction on the cardinality of R.

Base case. Let R be any PPO set such that |R| = 1 and Γ is not R-schedulable. The only

proper subset of R is R′ = ∅. Since Γ is schedulable, R itself is an unschedulability core.

Inductive step. Assume any PPO set of cardinality from 1 to k − 1 such that Γ is not

schedulable contains an unschedulability core. We prove that anyR of cardinality k such that

Γ is not R-schedulable shall contain an unschedulability core. By Definition 4, there must

exist R′ ⊂ R such that Γ is not R′-schedulable (otherwise, R itself is an unschedulability

core). Now we consider R′, which has a cardinality smaller than k. By the assumption for

the inductive step, R′ contains an unschedulability core, so does R.

Theorem 18. Let Ũ denote the complete set of unschedulability cores. The exact feasibility
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Algorithm 2 Computing One Unschedulability Core
1: function UnschedCore(Task set Γ, PPO set R)
2: for each r ∈ R do
3: if Γ is not R\{r}-schedulable then
4: remove r from R
5: end if
6: end for
7: return R
8: end function

region can be represented by constraints (3.6) of all unschedulability cores in Ũ, i.e.,

∑
∀pi,j∈U

pi,j ≤ |U| − 1, ∀U ∈ Ũ (3.7)

Proof. By Lemma 17, every infeasible priority assignment must contain at least one

unschedulability core. Thus the space of feasible priority assignments can be obtained by

guaranteeing the absence of any unschedulability cores, which is equivalent to constraint

(3.7).

Theorem 18 states that if all the unschedulability cores for the system are known, then we can

formulate the exact schedulability region by adding constraint (3.6) for each unschedulability

core. However, the number of unschedulability cores may be exponential to the number of

tasks. Hence, it is inefficient to rely on the complete knowledge of the unschedulability

cores. In the following, we develop procedures that judiciously and efficiently add a selective

subset of unschedulability cores to gradually form the needed part of the schedulability

region. Specifically, in the rest of this section, we present procedures (Algorithms 2–3) that,

given an unschedulable priority assignment, efficiently calculate unschedulability cores. In

the next section, we propose an unschedulability core guided optimization algorithm.
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3.3.2 Computing Unschedulability Core

Algorithm 2 takes as inputs the task set Γ and a PPO set R, where Γ is not R-schedulable.

It leverages Remark 3.2 and checks if those subsets of R with cardinality |R| − 1 (i.e., one

less element) can allow Γ schedulable. Hence, it iterates through and tries to remove each

element r in R. If the resulting PPO set still does not allow Γ to be schedulable, then r is

removed. In the end, it will return one unschedulability core. Since the cardinality of R is

O(n2), the number of iterations in Algorithm 2 is O(n2).

We now prove that the resulting PPO set R of Algorithm 2 is indeed an unschedulability

core.

Theorem 19. Given a task set Γ and a PPO setR where Γ is notR-schedulable, Algorithm 2

produces an unschedulability core R that satisfies Definition 4.

Proof. The first condition in Definition 4 is satisfied since the algorithm maintains that Γ

is not R-schedulable.

For the second condition, it is sufficient to show that the condition in Remark 3.2 is satis-

fied. Consider any r∗ in the returned R. While Algorithm 2 iterates on r∗ at Line 2, the

corresponding PPO set R∗ must satisfy that R∗\{r∗} is schedulable (otherwise r∗ will be

removed and cannot be in R). Also, it must be R ⊆ R∗ since the later iterations will only

delete elements from R∗. Hence, by Theorem 16, Γ is R\{r∗}-schedulable.

Algorithm 2 depends on an efficient R-schedulability test (Line 3 in the algorithm). In this

chapter, we assume that Audsley’s algorithm is applicable to the task system (i.e., it can

find a schedulable priority assignment if one exists). For such systems, a revised Audsley’s

algorithm can check if Γ is R-schedulable. Similar to Audsley’s algorithm, it iteratively tries

to find a task that can be assigned with a particular priority level starting from the lowest
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Algorithm 3 Computing Multiple Unschedulability Cores
1: function MultiUnschedCore(Task set Γ, PPO setR, Number of Unschedulability cores

k, Set of cores U)
2: while |U| < k do
3: ⟨status,R′⟩ = Perturb(Γ, R, U)
4: if status == false then
5: return
6: end if
7: U = UnschedCore(Γ, R′)
8: U = U ∪ {U}
9: end while

10: end function
11: function Perturb(Task set Γ, PPO set R, Set of cores U)
12: for each PPO combination {r1, r2, ..., r|U|} of U do
13: remove r1, r2, ..., r|U| from R to get R′

14: if Γ is not R′-schedulable then
15: return ⟨true,R′⟩
16: end if
17: end for
18: return ⟨false, ∅⟩
19: end function

priority. However, when choosing the candidate task, it shall guarantee that assigning the

priority does not violate any partial priority order in R. This is done by checking if the

current task is a legal candidate: A task τi is a legal candidate if and only if (a) it has not

been assigned with a priority; and (b) all the tasks that should have a lower priority than τi

according to R have already been assigned with a priority.

Note that a PPO set R may contain more than one unschedulability cores. One way to

compute multiple unschedulability cores from a single unschedulable R is to perturb the

input PPO set R after every invocation of Algorithm 2, such that successive calls would

not return repetitive results. The key observation is that an unschedulability core U can

be computed from R only if U ⊆ R. Thus to prevent Algorithm 2 from returning U (that

is computed in the previous invocations), it suffices to modify R such that U ⊈ R. A

simple solution is to select a partial priority order r ∈ U and remove it from R but still
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keep the resulting R unschedulable. In this sense, given a U ⊆ R, there can be |U| different

modifications of R such that R ⊉ U (i.e., each by removing a different r ∈ U from R).

Accordingly, given a set of already computed unschedulability cores U = {U1, ...U|U|}, there

can be Π
|U|
i=1|Ui| different modifications to ensure that R ⊉ Ui,∀Ui ∈ U. It may be necessary

to examine each of them to find one modification that still maintains R to be unschedulable.

The new unschedulability core is guaranteed to be different from any Ui ∈ U.

Algorithm 3 details a procedure for computing multiple unschedulability cores from an un-

schedulable PPO set R. It takes as inputs the system Γ, a PPO set R, the desired number

of unschedulability cores k to compute, and U for storing computed unschedulability cores.

Algorithm 3 leverages a subroutine Perturb, which explores all possible PPO combinations

{r1, r2, ..., r|U|} consisting of one PPO ri from each unschedulability core Ui in U (Lines 12–

17). For each PPO combination, it removes the elements in the PPO combination from R

(Line 13). If any resulting PPO set is unschedulable, then the subroutine Perturb returns

true and an R′ that leads to a new unschedulability core (Lines 14–16). Otherwise, it returns

false to indicate there is no more unschedulability core.

In case Perturb returns true and an R′, Algorithm 3 uses Algorithm 2 to compute a new

unschedulability core and adds it to the set U (Lines 7–8). It iterates until k unschedulability

cores are found or there is no more unschedulability core (in which case Perturb returns

false).
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3.4 Unschedulability Core Guided Optimization Algo-

rithm

In this section, we develop a domain-specific optimization algorithm that leverages the con-

cept of unschedulability core. As discussed earlier, finding all the unschedulability cores

can form the complete schedulability region, but this is impractical due to their exponential

growth with the system size. However, we observe that the optimization objective may be

sensitive to only a small set of unschedulability cores. Hence, we consider the lazy constraint

paradigm that only selectively adds unschedulability cores into the problem formulation. The

paradigm starts with a relaxed problem that leaves out all the schedulability constraints.

That is, the schedulability constraints are temporarily put in a lazy constraint pool. A

constraint from the pool is added back only if it is violated by the solution returned for

the relaxed problem. In addition, instead of adding the violated schedulability constraints

back, we leverage the concept of unschedulability core to provide a much more compact

representation of these constraints. In the following, we first details the proposed algorithm

and then discusses its benefits compared with existing approaches.

3.4.1 Optimization Algorithm

The proposed procedure is summarized in Algorithm 4. It takes as inputs the task system

Γ and an integer number k which denotes the maximum number of unschedulability cores

to compute for each unschedulable solution (see Remark 3.5 below). The algorithm works

as follows.
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Algorithm 4 Unschedulability Core Guided Optimization Algorithm
1: function FindOptimal(Task set Γ, Integer k)
2: Build initial problem Π as in (3.8) // Step 1
3: while true do
4: X∗ =Solve(Π)
5: if Π is infeasible then
6: return Infeasibility
7: end if
8: Compute RX∗ as in (3.9)
9: if Γ is not RX∗-schedulable then

10: MultiUnschedCore(Γ, RX∗ , k, U)
11: Add Constraint (3.10) corresponding to U to Π
12: else
13: return priority assignment P respecting RX∗

14: end if
15: end while
16: end function

Step 1 (Line 2). Instantiate the relaxed problem Π as

minC(X)

s.t. F(X) ≤ 0
(3.8)

Different from the original problem in (3.3), (3.8) excludes all the system schedulability

constraints.

Step 2 (Lines 4–9). Solve problem Π in (3.8). If Π is infeasible, then the algorithm ter-

minates. Otherwise, let X∗ denote the obtained optimal solution of Π. Construct the

corresponding PPO set RX∗ as follows

RX∗ = {ri,j|pi,j = 1 in X∗} (3.9)

Apply the revised Audsley’s algorithm to testRx∗-schedulability. If Γ is notRX∗-schedulable,

go to step 3. Otherwise go to step 4.
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Step 3 (Lines 10–11). Apply Algorithm 3 to compute a set of (at most k) unschedulability

cores U. Update problem Π by adding the following constraints, then go to step 2.

∑
ri,j∈U

pi,j ≤ |U| − 1, ∀U ∈ U (3.10)

Step 4 (Line 13. Return the optimal priority assignment P that respects RX∗ with the

revised Audsley’s algorithm.

We now study the properties of Algorithm 4. We first prove that it always terminates.

Theorem 20. Algorithm 4 is guaranteed to terminate.

Proof. Let n denote the number of tasks in the system. There can be at most n× (n− 1)

partial priority orders. Since an unschedulability core is a subset of all PPOs, the total

number of unschedulability cores is bounded by 2n×(n−1).

We now prove by contradiction that each iteration in Algorithm 4 will compute a set of new

unschedulability cores, hence the total number of iterations is bounded by 2n×(n−1). At any

iteration, let U∗ be the set of known unschedulability cores, and U be a newly computed

unschedulability core returned from Line 10 of Algorithm 4 with RX∗ as the second input

and U∗ as the fourth input. Since U is computed from RX∗ , it is RX∗ ⊇ U . Now assume

that U ∈ U∗, then problem Π contains the constraint (3.6) induced by U , which X∗ and RX∗

must satisfy. That is, RX∗ cannot satisfy all PPOs from U . However, this contradicts with

the fact that RX∗ ⊇ U .

We now prove the correctness of Algorithm 4.

Theorem 21. Upon termination, Algorithm 4 reports infeasibility if the original problem

(3.3) is infeasible; otherwise it returns a feasible and globally optimal solution.
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Proof. Since each iteration of Algorithm 4 computes only a subset of all unschedulability

cores, the algorithm adds only a subset of the constraints in (3.7) to Π. By Theorem 18,

the feasibility region of Π is always maintained to be an over-approximation of that of the

original problem. We consider the following two cases on how Algorithm 4 terminates.

Case 1: The algorithm terminates at Line 6. This means that problem Π is infeasible. Since

the feasibility region of Π is always no smaller than that of the original problem, the original

problem must be infeasible as well.

Case 2: The algorithm exists at Line 13. Line 13 is reached only when the system is RX∗-

schedulable, which by Definition 3 is a stricter condition on schedulability. Thus the returned

P is guaranteed to be feasible. Since an optimal solution in the over-approximated region

that is also feasible must be optimal in the exact feasibility region, the returned priority

assignment is guaranteed to be optimal.

Remark 3.5. The parameter k in Algorithm 4 does not affect the optimality of the algo-

rithm, but influences its runtime. If k is too small, the algorithm may need many iterations to

terminate, which incurs solving a large number of problem Π. If k is too large, Algorithm 3

may need to explore numerous PPO combinations. In Section 3.7, we will use dedicated

experiments to study the best choice of k.

We now illustrate Algorithm 4 by applying it to the example Γe in Table 3.1, where the

parameter k is set to 1.

Example 3.6. Consider the following objective function

C(X) = −p3,1 − p4,1 − p4,2 − p4,3 − p5,4 (3.11)

The algorithm constructs the relaxed problem Π as (3.8), where F(X) ≤ 0 only contains the
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set of antisymmetry and transitivity constraints as defined in (3.2).

The algorithm enters the first iteration and solves Π by possibly using ILP solvers. The

solution is (for simplicity, we omit those not affecting the objective function)

X∗ = [p3,1, p4,1, p4,2, p4,3, p5,4] = [1, 1, 1, 1, 1]

and the PPO set is RX∗ = {r3,1, r4,1, r4,2, r4,3, r5,4}. Clearly, Γe is not RX∗-schedulable. Al-

gorithm 4 computes one unschedulability core of RX∗ as U1 = {r4,3, r5,4}. The corresponding

constraint is added to Π which becomes

minC(X)

s.t. F(X) ≤ 0

p4,3 + p5,4 ≤ 1

(3.12)

In the second iteration, solving (3.12) gives the solution X∗ = [p3,1, p4,1, p4,2, p4,3, p5,4] =

[1, 1, 1, 1, 0]. The corresponding PPO set is RX∗ = {r3,1, r4,1, r4,2, r4,3, r4,5}. Since Γ is still

not RX∗-schedulable, the algorithm computes another unschedulability core as U2 = {r3,1}.

The problem Π is correspondingly updated as

minC(X)

s.t. F(X) ≤ 0

p4,3 + p5,4 ≤ 1, p3,1 ≤ 0

(3.13)

In the third iteration, (3.13) is solved to obtain the solution X∗ = [p3,1, p4,1, p4,2, p4,3, p5,4] =

[0, 1, 1, 1, 0]. The corresponding PPO set is RX∗ = {r1,3, r4,1, r4,2, r4,3, r4,5}. At this point, Γe

becomes RX∗-schedulable. The algorithm then terminates and returns the following optimal
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solution

P = [π4 > π1 > π2 > π3 > π5 > π6]

3.4.2 Advantages

We now discuss the possible limitations of standard optimization frameworks such as BnB

and ILP, before highlighting the advantages of our approach. First, a straightforward for-

mulation of the schedulability region in these standard frameworks may force to check the

schedulability of a large number of solutions, since the schedulability condition is often so-

phisticated and makes it difficult to find similarities among different solutions. Second,

the complexity of the schedulability analysis may even prevent us from leveraging existing

optimization frameworks. Consider the problem in Section 3.7.1, i.e., to optimize the mixed-

criticality Simulink models under Adaptive Mixed Criticality (AMC) scheduling [20]. The

most accurate schedulability analysis for AMC, AMC-max [20], hinders a possible formula-

tion in ILP: It requires to check, for each possible time instant c of criticality change, whether

the corresponding response time is within the deadline. However, the range of c is unknown

a priori as it depends on the task response time in LO mode.

Comparably, Algorithm 4 comes with three advantages. First, it avoids modeling the com-

plete schedulability region. Instead, it explores, in an objective-guided manner, much simpler

over-approximations that are sufficient to establish an optimal solution. Second, it hides the

complicated schedulability conditions by converting them into simple constraints induced

from unschedulability cores, where system schedulability is checked using a separate and

dedicated procedure (Line 3, Algorithm 2). This also allows to easily accommodate any

form of schedulability analysis that may be difficult to formulate in frameworks such as

ILP. Third, the conversion to unschedulability core is essentially a generalization from one
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infeasible solution to many, which is a key in the algorithm efficiency.

3.5 Generalization

In this section, we generalize to problems that may involve decision variables other than pri-

ority assignment. We first provide an alternative interpretation of the original optimization

problem and generalize the concept of unschedulability core. We then discuss the applica-

bility and efficiency of the generalized framework.

3.5.1 Generalized Concept of Unschedulability Core

Consider the illustrative problem in Example 3.6. The objective function depends on the

satisfaction of a set of partial priority orders {r3,1, r4,1, r4,2, r4,3, r5,4}, each of which represents

an additional constraint on scheduling. Unlike the hard constraint of the problem, e.g.,

system schedulability, the constraint imposed by ri,j only need to be optionally satisfied. In

other words, ri,j is regarded as a soft scheduling constraint. Its satisfaction comes with a

reward of an improved objective, but also a possible penalty on the schedulability since now

τi has to be assigned with a higher priority than τj. The optimization problem in Example 3.6

is to optimally satisfy a subset of those scheduling constraints {r3,1, r4,1, r4,2, r4,3, r5,4} subject

to system schedulability.

Besides priority assignment, there are many design choices that may affect system schedu-

lability and can be considered as a scheduling constraint. Examples include

• Functional block to task mapping, where all blocks mapped to the same task share the

same priority;
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• The use of semaphore locks to protect shared resource, where a task suffers a blocking

time equal to the largest WCET of the critical section from lower priority tasks;

• As an alternative to semaphore locks, it is also sufficient to prove that the tasks shar-

ing the same resources do not preempt each other. However, this imposes a tighter

execution window as a task must finish before the next activation of higher priority

tasks that share the same resource.

We now introduce the general form of optimization problems that can be handled by the

proposed framework.

Definition 5. Let L = {ζ1, ...ζm} be a set of scheduling constraints that only need to be

optionally satisfied. The satisfaction of each constraint ζi is associated with a cost. A

scheduling constraint optimization problem is to optimally satisfy the given scheduling that

the total cost is minimized. Formally, the problem is expressed as follows

min C(b)

s.t. system schedulability

bk = 1 =⇒ ζk is enforced, ∀ζk ∈ L

(3.14)

where b = {b1, ...bm} is the set of binary variables that define bk for each ζk as follows

bk =

 1 ζk is enforced,

0 otherwise.
(3.15)

The problem considered in the previous three sections can be understood as a special instance

of (3.14) where ζk is a partial priority order. Still, for this general form of optimization

problem, the challenge mainly lies in the difficulty of efficiently formulating the feasibility
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region. To address this challenge, we extend the idea of schedulability region abstraction

using unschedulability core. We first establish similar concepts and properties as those in

Section 3.3.

Definition 6. A scheduling constraint set R is a set of scheduling constraints in L, i.e.,

R ⊆ L. R is said to be schedulable if and only if the following problem is feasible.

min 0

s.t. system schedulability

ζk is enforced, ∀ζk ∈ R

(3.16)

Comparing to problem (3.14), problem (3.16) removes the objective and treats all scheduling

constraints ζk inR as hard constraints. Informally, R is schedulable if and only if there exists

a feasible solution such that all scheduling constraints in R are satisfied and all tasks are

schedulable.

Theorem 22. Given two scheduling constraint sets R1 and R2 such that R1 ⊇ R2, the

following properties hold.

R1 is schedulable =⇒ R2 is schedulable

R2 is not schedulable =⇒ R1 is not schedulable
(3.17)

Proof. Each element in a scheduling constraint set R imposes an additional constraint on

problem (3.16). Since R1 ⊇ R2, R1 is stricter than R2. Thus if R1 is schedulable, R2 must

also be schedulable.

Definition 7. A scheduling constraint set U is an unschedulability core if and only if the

following two conditions hold.
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• U is not schedulable.

• For all R ⊂ U , R is schedulable.

Intuitively, an unschedulability core refers to a minimal subset of L that can not be simul-

taneously satisfied. It implies the following constraints that must always be met.

∑
∀ζk∈U

bk ≤ |U| − 1 (3.18)

We refer to (3.18) as the implied constraint by unschedulability core U . Similar to the

framework for optimizing partial priority orders, our overall idea is to use (3.18) as an

alternative form for modeling the feasibility region of (3.14). The algorithms (Algorithms 2–

4) for calculating unschedulability cores and the optimization procedure are applicable to the

new concept of unschedulability core. This comes from the general property of the scheduling

constraints as stated in Theorem 22: the system schedulability is monotonic with respect to

the set of scheduling constraints.

3.5.2 Applicability and Algorithm Efficiency

In the following, we discuss the factors that affect the algorithm efficiency of the proposed

framework and highlight where it is beneficial (i.e., much faster than existing approaches

such as ILP). We note in each iteration Algorithm 4 mainly performs two operations: the

computation of unschedulability cores (Line 10 in the algorithm) and solving the relaxed

problem Π (Line 4).

By Algorithm 2, the computation of unschedulability core can be further decomposed into

a series of schedulability test on a given scheduling constraint set R, i.e., testing the feasi-

bility of (3.16). Obviously, such a subroutine depends on the actual form of the scheduling
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constraint ζk and the task model. For example, the problem considered in Sections 3.2–3.4

defines ζk as a partial priority order. In this case, for many task models and scheduling

schemes as summarized in [53], schedulability of R can be tested using a revised Audsley’s

algorithm. It only needs to check O(n2) priority assignments out of the n! possible ones.

However, for some other forms of scheduling constraints or task models, the test for the

schedulability of R may be much more difficult. For example, for systems with preemp-

tion threshold scheduling [147], Audsley’s algorithm is inapplicable, and the exact test of

schedulability of R may require to check an exponential number of priority assignments.

In general, if checking the schedulability R needs to explore a large number of scheduling

constraint sets, the proposed framework may not be advantageous compared to other ap-

proaches (such as ILP). In the next section, we use two examples to illustrate how certain

scheduling constraints can be handled.

An important consideration in the development process is how the priority assignments are

stable with respect to small changes, which may arise unforeseeably. In cases where (revised)

Audsley’s algorithm is still optimal, for example, for robustness to additional interference [44],

our framework can be applied.

To compute unschedulability cores, it also relies on the schedulability analysis, i.e., to analyze

if the system is schedulable for a given valuation on the decision variables. Although our

framework is applicable for any schedulability analysis technique, its efficiency depends on

that of the schedulability analysis. In practice, the schedulability analysis is typically efficient

enough (as demonstrated in Section 3.7.1 for AMC-scheduled systems). However, it can still

be a major bottleneck. For example, the analysis of digraph real-time tasks [138] (and

similarly systems modeled with finite state machines [152]) requires to enumerate all paths

in the digraph of a higher priority task to identify its worst-case interference. In this scenario,

our framework has the flexibility, and it is usually beneficial, to optimize the implementation
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of schedulability analysis. For example, within one invocation of Algorithm 3, the resulting

unschedulability cores across consecutive iterations are mostly similar, suggesting that some

previous results of schedulability analysis can likely be reused. In addition, during the

computation of unschedulability cores, typically most invocations of schedulability analysis

will return unschedulability. This suggests that the use of fast, but mostly accurate necessary

only analysis may be helpful, as it can quickly detect obviously unschedulable solutions.

We apply the proposed framework in Algorithm 4 to optimizing the implementation of

synchronous finite state machines [165]. Our experimental results show that with a direct

use of the analysis technique in [152], over 95% of the total runtime is spent on schedulability

analysis. However, this bottleneck is avoided and the overall runtime is reduced by 3 orders

of magnitude, by combining a schedulability memoization technique (which exploits the

reuse of previous schedulability analysis results), and a relaxation-recovery strategy (which

leverages a simple necessary only analysis for ruling out obviously infeasible solutions).

We now discuss the difficulty of solving the relaxed problem Π. Since Π does not contain the

schedulability constraints, it opens the possibility to use appropriate mathematical program-

ming framework while adopting the most accurate, but possibly sophisticated schedulability

analysis. For example, if the objective and constraints in (3.14) are all linear (except the

schedulability constraints), then we can leverage integer linear programming solvers such as

CPLEX to solve Π. Our framework allows to combine the power of these modern solvers

(which adopt numerous highly sophisticated techniques for generic branch and cut strat-

egy) and domain-specific algorithms (such as Audsley’s algorithm for finding a schedulable

priority assignment).
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3.6 Examples of Application

In this section, we provide two examples of optimization problems that fit the proposed opti-

mization framework, both proven to be NP-hard [109, 149]. The first is optimizing semantics-

preserving implementation of Simulink models, optionally with memory constraint. The

second is minimizing memory consumption for shared resource protection, in the context of

the automotive AUTOSAR standard. In Section 3.7, we apply our framework to these two

example systems and compare with standard techniques (BnB, ILP).

3.6.1 Optimizing Implementation of Simulink Models

A Simulink model is a Directed Acyclic Graph (DAG) where nodes represent functional

blocks and links represent data communication between the blocks [109].

For simplicity and demonstration purpose only, we assume that each functional block is

implemented in a dedicated task (hence use the terms functional block and task interchange-

ably). However, it should be noted that in practice, a design may contain hundreds or

thousands of blocks and thus a more common strategy is to allocate multiple blocks to a

single task where blocks inside the task are statically scheduled. Mapping of blocks to tasks

have been studied in various works (e.g., [156]). The focus of this chapter is instead on

priority assignment. It is possible to simultaneously consider both function-to-task mapping

and priority assignment, and we leave it as future work.

The semantics-preserving implementation of a Simulink model has to match its functional

behavior. This typically requires the addition of a Rate Transition (RT) block between a

reader and a writer with different but harmonic periods, which is a special type of wait-free

communication buffers. However, the costs of RT blocks are additional memory overheads
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and in some cases, functional delays in result delivery. The latter degrades control perfor-

mance.

Consider a fast reader τr and slow writer τw that writes to τr. Assigning higher priority to τr

generally helps schedulability as it conforms with the rate monotonic policy. However, since

the reader now executes before the writer, an RT block is needed to store the data from the

previous instance of the writer, which also incurs a functional delay. On the other hand, if

τr can be assigned with a lower priority while keeping the system schedulable, then no RT

block is needed and no functional delay is introduced.

The software synthesis of Simulink model is to exploit priority assignment as the design

variable to minimize the weighted sum of functional delays introduced by the RT blocks

(hence improving control quality). We note that Audsley’s algorithm is no longer optimal as

system schedulability is not the only constraint. Formally, the problem can be formulated

as follows.
min

∑
∀(w,r)

βw,r · pr,w

s.t. system schedulability

constraints in (3.2)

(3.19)

where (w, r) represents a pair of communicating tasks, and the parameter βw,r is the penalty

on control performance if τr is assigned with a higher priority than τw.

Optionally, the implementation of Simulink models may be subject to memory constraints.

An RT block is essentially a wait-free buffer between the reader and the writer, and thus

comes with memory cost. A unit delay RT block, necessary whenever the reader task τr

has a higher priority than the writer τw, is twice the size of the protected shared variable.

For a higher priority writer and a lower priority reader, the RT block has a memory cost

of the same size as the shared variable. However, it can be avoided if we can ensure the
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absence of preemption, i.e., the lower priority reader finishes before the next activation of

the writer to ensure the absence of preemption by the writer. In Simulink, the reader and

writer tasks always have harmonic periods (one period is an integer multiple of the other)

with synchronized release offsets. Hence, it suffices to ensure that the worst-case response

time of the reader Rr satisfies Rr ≤ or,w = min{Tr, Tw}, where or,w is the smallest offset

from an activation of τr to the next activation of τw. To summarize, an RT block can be

avoided if the following scheduling constraint is satisfied

(pw,r = 1) ∧Rr ≤ min{Tr, Tw} (3.20)

Thus, for each writer and reader pair (τw, τr), we introduce the additional scheduling con-

straint

ζw,r ≡ constraint by (3.20) (3.21)

The associated binary variable bζw,r is defined as 1 if ζw,r is enforced and 0 otherwise. To

ensure the memory budget, we add the following constraint to the problem (3.19)

∑
∀(τw,τr)

(
mw,r(pw,r − bζw,r) + 2mw,r · pr,w

)
≤M (3.22)

where mw,r is the size of the memory buffer shared between τw and τr, and M is the available

memory for RT blocks.

We now discuss the schedulability test for R with the newly defined scheduling constraint

(3.21). In addition to a partial priority order, it also specifies an upper-bound on the worst-

case response time of the reader tasks τr, or equivalently a virtual deadline. Thus, a given

scheduling constraint set R essentially specifies a set of partial priority orders as well as

virtual deadlines for certain reader tasks. The revised Audsley’s algorithm discussed in
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Section 3.3 can still be applied to test the schedulability of R: it tries to find a feasible

priority assignment respecting R where the deadline of any task τr for ζw,r ∈ R is set

to min{Tr, Tw}. Thus the problem can be efficiently solved by the general framework in

Algorithm 4.

3.6.2 Minimizing Memory of AUTOSAR models

The second example is to minimize the memory usage of AUTOSAR components [65], where

a set of runnables (the AUTOSAR term for functional blocks) communicates through shared

buffers that shall be appropriately protected to ensure data integrity. We assume that each

runnable is implemented in a dedicated task, and use the terms runnable and task inter-

changeably. We consider the problem for the optimal selection of (a) the priority assignment

to tasks; (b) the selection of the appropriate mechanism for protecting shared buffers among

a set of possible choices, including ensuring absence of preemption, lock-based method (pri-

ority ceiling semaphore lock), and wait-free method [65]. These mechanisms are associated

with different scheduling constraints and memory costs.

1) Ensuring absence of preemption. It has no memory or timing cost, but requires that the

two communicating tasks satisfy that the lower priority task always finish before the next

activation of the higher priority task. Specifically, the minimum distance between activations

of two communicating tasks τi and τj is given by the greatest common divisor of their period,

i.e., gcd(Ti, Tj). To ensure absence of preemption, it suffices to guarantee that


Ri ≤ gcd(Ti, Tj)

Rj ≤ gcd(Ti, Tj)

(3.23)

2) Wait-free method imposes no extra timing constraints but incurs a memory cost equal to
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the size of the shared buffer.

3) Lock-based method introduces blocking delay to higher priority tasks but reduces the

memory overhead to minimal (only one-bit for implementing semaphore locks). Let s denote

the shared variable between τi and τj. The timing constraints are formally expressed as

follows 
Bi ≥ Cs

j , if τj has lower priority than τi

Bj ≥ Cs
i , if τi has lower priority than τj

(3.24)

where Bi (Bj) represents the blocking time of τi (τj), and Cs
i (Cs

j ) represents the worst-case

execution time of the critical section for τi (τj) to access s.

The objective is to minimize the total memory usage while ensuring system schedulability.

In the following, we show how the problem can be solved by the general framework in

Algorithm 4.

Specifically, for each pair of communicating tasks (τi, τj), we define the following scheduling

constraints for each of the three mechanisms to protect the shared variable

absence of preemption: ζai,j ≡ constraint by (3.23)

wait-free method: ζwi,j ≡ None

lock-based method: ζ li,j ≡ constraint by (3.24)

(3.25)

Note that the wait-free method does not impose an additional scheduling constraint but

comes with an additional memory cost, hence the scheduling constraint associated with ζwi,j

is empty. Also, we define the binary variables bζai,j , bζwi,j and bζli,j to denote the use of each of
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the mechanisms.
bζai,j = 1 =⇒ ζai,j is enforced

bζwi,j = 1 =⇒ ζwi,j is enforced

bζli,j = 1 =⇒ ζ li,j is enforced

(3.26)

It is sufficient to protect each communication pair with one of the mechanisms

bζai,j + bζwi,j + bζli,j ≥ 1, ∀(τi, τj) (3.27)

The optimization objective can be written as

C(X) =
∑

∀(τi,τj)

βw
i,jbζwi,j + βl

i,jbζli,j (3.28)

where βw
i,j and βl

i,j are the memory cost for wait-free method and lock-based method, respec-

tively. The optimization problem is to minimize the memory cost in (3.28), subject to the

constraints in (3.26), (3.27), (3.2), and system schedulability.

We now examine whether there is an efficient schedulability test for R over the schedul-

ing constraints. Constraint (3.23) is equivalent to setting a virtual deadline for τi and τj.

Constraint (3.24) specifies how blocking time should be computed. Thus a given scheduling

constraint set R essentially specifies a PPO set as well as a setting of virtual deadlines and

blocking times for associated tasks. Finding a schedulable priority assignment under the

specified setting can still be performed using the revised Audsley’s algorithm. This allows

to keep the algorithm efficiency of the general framework in Algorithm 4.
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3.7 Experimental Evaluation

In this section, we present results of our experimental evaluation for the proposed technique.

We consider the two example problems discussed in the previous section.

3.7.1 Optimizing Implementation of Mixed-Criticality Simulink

Models

To demonstrate that our approach can accommodate any schedulability analysis, we consider

the problem of software synthesis for Simulink model as discussed in Section 3.6.1, but the

model contains functional blocks with different criticality levels scheduled with the Adaptive

Mixed Criticality (AMC) scheme [20]. This problem is NP-hard as the special case where all

tasks are LO-critical is proven to be NP-hard [109]. The schedulability of AMC scheduled

systems can be analyzed with two methods [20]: AMC-max and AMC-rtb. We compare the

proposed technique and a direct ILP formulation. The straightforward ILP formulation of

AMC-max is excluded due to its extreme high complexity (see Section 3.4). We also include

brute-force BnB algorithms, to evaluate the benefit from modern ILP solvers (e.g., CPLEX).

The list of compared methods includes:

• UC-AMC-max: Unschedulability core guided algorithm (Algorithm 4) with AMC-

max as schedulability analysis;

• UC-AMC-rtb: Algorithm 4 with AMC-rtb analysis;

• ILP-AMC-rtb: ILP with AMC-rtb analysis, solved by CPLEX;

• BnB-AMC-max: BnB with AMC-max analysis;

• BnB-AMC-rtb: BnB with AMC-rtb analysis.
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Figure 3.1: Runtime vs. System Size for Implementation of Simulink Model

We use TGFF [61] to generate random systems. Each functional block has at most an in-

degree of 3 and an out-degree of 2. We first randomly choose a number of sink functional

blocks and assign it with HI-criticality. The criticality of the remaining blocks are determined

by the following rules [15]:

• If a block is the predecessor of any HI-critical block, then it is assigned an HI-critical

level as well;

• All blocks not assigned HI-critical by the above rule are assigned LO-critical level.

We first study the scalability with respect to the number of functional blocks which varies

from 5 to 100. The system utilization in LO-criticality mode is randomly selected from

[0.5, 0.95]. For each task in the system, its utilization is generated using the UUnifast-

Discard algorithm [50]. Task period is randomly chosen from a predefined set of values
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{10,20,40,50,100,200,400,500,1000}. The criticality factor of HI-criticality task is uniformly

set to 2.0 (Ci(HI)
Ci(LO)

= 2.0). We generate 1000 systems and report their average for each point in

the plots. We first set k to 5 in Algorithm 4 as the corresponding runtime is typically within

10% of the optimal setting. For all random systems (including those in Section 3.7.2), we

set a timeout of 900s for each problem instance for all algorithms to avoid excessive waiting.

Figure 3.1 illustrates the runtime of these methods. AMC-max based methods give slightly

better optimal solutions (no more than 5%) due to the better accuracy of AMC-max than

AMC-rtb, but they also run slower than their counterpart based on AMC-rtb (e.g., UC-

AMC-max vs. UC-AMC-rtb). The superiority of branch-and-bound based algorithms

in small-sized systems is mainly due to the overhead in ILP model construction in other

methods, which consumes a significant portion of the runtime when the ILP problem is rather

simple. The scalability for UC-AMC-rtb and UC-AMC-max is remarkably better than

that of the other methods. For example, for systems with 35 tasks, the unschedulability core

guided techniques are more than 1000 times faster compared to ILP-AMC-rtb. In addition,

UC-AMC-rtb and UC-AMC-max are quite close in their runtimes, demonstrating that

Algorithm 4 is not very sensitive to the complexity of the schedulability analysis. Finally,

ILP-AMC-rtb scales much better than BnB-AMC-rtb. This demonstrates that modern

ILP solvers, which are equipped with various sophisticated techniques, are generally more

efficient than brute force BnB.

We also evaluate the scalability of UC-AMC-max and UC-AMC-rtb with respect to

different system utilization ranging from 0.05 to 0.90. The number of functional blocks in

a system is fixed to 70 while the other parameters remain the same. The result is shown in

Figure 3.2. The optimization problem is relatively easy at very low utilization levels, as the

system is easily schedulable for most of the priority assignments. As utilization continues to

increase, the runtime grows but eventually remains at a similar value. The result illustrates
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Figure 3.2: Runtime vs. Utilization for Implementation of Simulink Model

that the scalability of unschedulability core guided algorithms is not sensitive to system

utilization.

We next study the effect of parameter k, the number of unschedulability cores to compute

for each infeasible solution, on the algorithm efficiency. The number of functional blocks and

system utilization are fixed to 70 and 70% respectively. The other parameters and system

generation scheme remain the same. Figure 3.3 shows the average runtime of the algorithms

UC-AMC-max and UC-AMC-rtb w.r.t. different values of k. It can be seen that the

algorithms run the fastest when k = 5. In cases with other system sizes and utilizations,

k = 5 still remains to be a good choice.

Finally, we apply the proposed technique to an industrial fuel injection controller case

study [109]. The system contains 90 functional blocks and 106 communication links. The
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Table 3.2: Results on fuel injection case study

Method Objective Runtime Status
UC-AMC-max 23 1.32s Terminate
UC-AMC-rtb 23 0.19s Terminate
ILP-AMC-rtb 23 17.3h Terminate

BnB-AMC-max 23 ≥ 24h Timeout
BnB-AMC-rtb 23 ≥ 24h Timeout

total utilization in LO mode is 94.1%. We assign task criticality in the same way as the

randomly generated synthetic systems, which results in 42 HI-critical tasks. The criticality

factor is set to 2.0. We compare the same methods, and we set a time limit of 24 hours.
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The results are summarized in Table 3.2. As in the table, the proposed UC-AMC-max

and UC-AMC-rtb solve the optimization problem in about a second, which is 4 orders of

magnitude faster than the other approaches.

3.7.2 Minimizing Memory of AUTOSAR Components

In this experiment, we consider the problem discussed in Section 3.6.2, where the tasks are

assumed to be periodic. We compare our technique (denoted as UC) with the request bound

function based ILP formulation [155] (denoted as ILP) on randomly generated synthetic task

systems. We omit BnB as it is demonstrated to be less scalable than ILP. Task utilization

and period are generated in the same way as Section 3.7.1. Each task communicates with

0 to 5 other tasks. The size of the shared buffer is randomly selected between 1 to 512

bytes. The WCET of the critical section for each task τi on each shared buffer is randomly

generated from (0, 0.1 · Ci].

Figure 3.4 plots the runtime versus system sizes for the synthetic systems. As in the figure,

UC always takes significantly smaller amount of time than ILP while giving the same

optimal results, and the difference becomes larger with larger systems. For example, for

systems with 25 runnables, UC runs about 200 times faster than ILP. This demonstrates

that the carefully crafted algorithm UC can achieve much better scalability than the other

exact algorithms while maintaining optimality.

Finally, we study the effect of k on the algorithm runtime. Figure 3.5 shows the results for

systems with 35 tasks. Similar to Figure 3.3, k being too large or too small may negatively

affect the algorithm efficiency, and k = 5 is typically suitable for most problem settings.
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3.8 Conclusions

In this work, we introduce the concept of unschedulability core, a compact representation

of schedulability conditions for use in design optimization of real-time systems with fixed

priority scheduling. We develop efficient algorithms for calculating unschedulability cores

and present an unschedulability core guided optimization framework. Experiments show

that our framework can provide optimal solutions while scaling much better than standard

optimization approaches such as BnB and ILP.
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Chapter 4

Optimization of Real-Time Software

Implementing Multi-Rate

Synchronous Finite State Machines

4.1 Introduction

Model-based design using formal models and associated tools provides an efficient approach

for the development of complex embedded systems. It greatly increases productivity and

reduces design errors thanks to its capability for advanced verification and validation. In

particular, the use of Synchronous Reactive (SR) models is widely adopted for software

development in the automotive and avionics industries. Tools and modeling environment

supporting SR include synchronous programming languages (e.g., Esterel [30], Lustre [74],

SIGNAL [94], and more recently, Prelude [69]) and the Simulink graphical language [105].

An SR model is a network of two types of functional blocks. Regular blocks, called Dataflow

in Simulink, are executed at their periods (integer multiples of the system-wide base period)

and perform a simple operation. Other blocks are Extended Finite State Machines, or FSMs,

which are known as Stateflow blocks in Simulink. In Stateflow blocks, a state transition and

execution of an action (a function) may be triggered by an event. In the following, we also

141
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use the terms Dataflow and Stateflow to refer to regular and FSM blocks respectively.

In this chapter, we consider the problem of optimizing the software implementation of SR

models containing both regular and FSM blocks, under preemptive fixed priority scheduling

on single-core platforms. The implementation shall (1) preserve the logical-time execution

semantics (the rate and order of execution of the blocks and the communication flows),

including the satisfaction of the timing requirement imposed by the model semantics (i.e.,

ensuring real-time schedulability1); (2) optimize some performance metric, such as a weighted

sum of the functional delays in the SR model to approximate the control quality (Section 4.2).

The past research on the optimization of SR model software implementations all have sig-

nificant drawbacks when it comes to systems with FSMs. The first approach, like those

for synchronous languages [122], works well only with single-rate systems (i.e., systems that

are triggered by events with the same rate). However, most complex control systems are

multi-rate where the trigger events have largely different rates (e.g., in automotive the de-

mand of cruise control is typically sampled at a lower rate than the acceleration pedal). The

second approach improves upon the first [58], but still treats each FSM as a regular block. It

easily generates suboptimal solutions since it substantially overestimates the workload and

is largely pessimistic in the real-time schedulability analysis.

The schedulability analysis used in the current approaches can be checked in time linear to the

number of transitions. On the contrary, the exact schedulability analysis of multi-rate FSMs

is strongly NP-complete, and requires exploring all possible transition sequences (which is

exponential in the number of transitions) in the FSM [29]. Consequently, the optimization

framework, within which the schedulability analysis serves as a subroutine to ensure the

returned solution is feasible, is very difficult to scale to large systems while maintaining

1Here the term “schedulability” refers to whether the system meets all the timing requirements, hence it
has a different meaning than what is typical of synchronous language (absence of causality loop).
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solution quality.

4.1.1 Our Contributions

In this chapter, we aim to improve the existing approach [58] and adopt the more accurate

schedulability analysis in [152] (see Section 4.3). The challenge is to develop an efficient

optimization framework that can accommodate the complexity of such an analysis. For this,

we develop a list of techniques as follows.

• We propose an optimization framework that judiciously combines the power of com-

mercial Integer Linear Programming (ILP) solvers for generic branch-and-bound and

the problem-specific Audsley’s algorithm for finding a feasible priority assignment.

• We utilize the concept of unschedulability core (see Section 4.4.2), to form a compact

abstraction of the schedulability condition.

• We propose two techniques to further improve scalability, one is a relaxation-and-

recovery mechanism based on a fast relaxation on schedulability analysis, the other is

memoization enhanced with schedulability conditions.

We use synthetic systems as well as an industrial case study to demonstrate that the frame-

work is optimal but runs several magnitudes faster than branch-and-bound. Also, it provides

much better solutions than the existing approach [58].

The rest of the chapter is organized as follows. Section 4.2 provides an overview on SR model

semantics and implementation. Section 4.3 summarizes the real-time schedulability analysis.

Section 4.4 proposes the optimization framework. Section 4.5 presents the experimental

results. Section 4.6 reviews the related work. Finally, Section 4.7 concludes the chapter.
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4.2 SR Models and Implementation

In this section, we briefly review the semantics and implementation of SR models that are

relevant to real-time schedulability. For a more comprehensive discussion, we refer the readers

to [36, 90].

4.2.1 SR Model Semantics

An SR model Γ is represented by a Directed Graph (V , E), where V is the set of vertices,

representing the functional blocks (or in short, blocks), and E is the set of edges or links,

representing data communication between blocks. Each link may optionally carry a unit

functional delay that impacts the model semantics (see Section 4.2.2). Each block has a set

of input and output signals. When a block is activated, it samples the input signals, processes

them, produces the result of the computation on the output ports, and (optionally) transits

to a new state. We assume that the block shall finish before its next activation, semantics

commonly followed by tools such as Prelude [69] and Simulink [105].

A Dataflow block Fi is executed at its period. Ti is the activation period of Fi, which should

be an integer multiple of the system base period Tb. Fi is also characterized by a worst case

execution time (WCET) Ci, and a deadline Di equal to its period Ti, hence matching the

Liu-Layland (LL) real-time task model [100].

A Stateflow block is a tuple F = {S, sα, I,O,E,A} (for ease of presentation, we drop the

index on F and its tuple elements in this paragraph), where S is the set of states, sα is

the initial state, I and O are respectively the sets of input and output signals, E is the

set of trigger events, and A is the set of transitions. Each trigger event ei ∈ E triggers a

subset of transitions. It occurs only at its period T (ei), which is an integer multiple of Tb.
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Each transition θj ∈ A is defined by a tuple θj = {src(θj), snk(θj), e(θj), aj}, where src(θj)

and snk(θj) respectively denote the source and destination state, e(θj) denotes the event

that triggers the transition, aj denotes the action associated with θj (if θj is taken, aj is

executed). aj can be triggered at any time that is an integer multiple of the trigger event

period. We denote T (aj) = {k×T (e(aj)) | k is a non-negative integer} as the set of possible

trigger times for aj, and Aj,r as the action instance of aj triggered at time r ∈ T (aj). To

match the SR model semantics, aj needs to complete before the next transition in the same

FSM. Hence, each action aj is characterized by a WCET C(aj), and each action instance

Aj,r is associated with a deadline D(Aj,r). Each transition may also be associated with a

guard condition, however, it has no effect on the worst case timing behavior and is omitted

in the discussion. The semantics of FSM also defines modeling artifacts for hierarchy such

as superstates, but a hierarchical FSM can typically be transformed into an equivalent flat

FSM [90]. We assume flat FSMs in this chapter.
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Figure 4.1: An example FSM. The trigger event, action, and WCET are denoted for each
transition. T (e1) = 2, T (e2) = 5.

Example 4.1. Fig. 4.1 shows an example FSM. The WCET of each transition (the number

alongside the transition) is denoted in the figure. The trigger events e1 and e2 have periods 2
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e1/a2
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e2/a3

Figure 4.2: An example trace of the FSM in Figure 4.1.

and 5 time units respectively. Hence, they occur simultaneously every 10 units. The deadline

of A1,0, action a1 triggered at time 0, is 2, since the next transition is triggered at time 2.

Figure 4.2 shows a possible state transition trace for the example. The FSM is initially in

state S1. It executes action a1 (triggered by e1) and transits to state S2 at time t = 0 since

the trigger event e1 is present. At t = 2, event e1 becomes present again and triggers the

transition from S2 to S3. The event of e1 at t = 4 has no effect since S3 does not have any

outgoing transition triggered by it. Finally at t = 5, e2 becomes present and triggers the

transition from S3 to S1.

We consider implementing the SR model Γ on a single-core platform with preemptive fixed

priority scheduling, supported by the automotive AUTOSAR/OSEK operating systems stan-

dard, as well as the commercial code generation tools for Simulink. We assume that each

block is implemented in a dedicated software task (i.e., thread, the scheduling entity), and

use the terms task and functional block interchangeably. Hence, we also use Γ to denote the

implementing task system. Each block Fi is assigned with a unique priority πi. If Fi has

higher priority than Fj, denoted as πi > πj, Fi is always selected to execute when both are

ready.
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4.2.2 Implementing SR Model: Tradeoff Analysis

The SR model semantics consist of two fundamental parts. The first is the rules dictating the

order of evaluation for the blocks. A block shall not be executed if its output depends on its

input and that the blocks driving its input has not been executed. Hence, the link between

the block and its input block represents a precedence constraint. Other blocks set their

outputs according to their current state only (along with input values acquired in previous

time steps and initial conditions specified as a block parameter) hence with no precedence

constraint on the input links.

The second is what is broadly known as the synchronous assumption. The time that the

block takes to update the outputs and the state is not relevant, provided that reactions

converge and computations complete before the next event. This corresponds to an intuitive

(but formally inaccurate) concept of instantaneous (zero-time) computations and communi-

cations.

The general conditions for a semantics-preserving implementation of SR models on a single-

core platform are discussed in [36]. Briefly speaking, in a correct implementation, the ex-

ecution order (and correspondingly the priority assignment) of the tasks implementing the

blocks is required to be in consistence with their partial order in the model. Also, the signal

values communicated among blocks in the logical time execution must be preserved in the

implementation, regardless of possible preemption or variable execution times.

The semantics-preserving implementation of SR models requires that all predecessors of a

functional block be assigned with higher priorities. This, however, may lead to system un-

schedulability. As a possible remedy, the precedence constraint can be broken by associating

a unit functional delay on the links. Specifically, if the link Ei,j = (Fi, Fj) has no delay on

it, called a feedthrough link, then there exists a precedence constraint, enforced by assigning
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higher priority to the writer Fi than the reader Fj. If the link Ei,j is associated with a unit

delay, then the precedence constraint is broken and we are free to assign a higher priority to

Fj than Fi.

T1 = 2

π1 = 2

F1 F2 F2 F2F1 F2

T2 = 1

π2 = 1

time 0 1 2 3

F1 F2

Figure 4.3: SR model semantics and the corresponding schedule for the case without func-
tional delay.

T1 = 2

π1 = 1

T2 = 1

π2 = 2
F1 F2

F1F2 F2 F2 F2F1

0 1 2 3 time 

-1

Figure 4.4: SR model semantics and the corresponding schedule for the case with unit
functional delay.

Fig. 4.3 illustrates a multi-rate SR model without functional delay on a low-rate-to-high-rate

edge. In the figure, F1 with period T1 = 2 produces output that is consumed by another

block F2 with period T2 = 1, without functional delay on the link. In the corresponding

schedule (bottom part of the figure), there is a precedence constraint. For example, F1 must

execute before the instance of F2 activated at the same time, such that the dataflow from F1

to F2 denoted by the dotted arrows is correct. This shall be achieved by assigning block F1

with a higher priority than F2. However, in general, the system becomes more difficult to
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schedule. Intuitively, although the deadline of F1 is 2, it is required to finish with a deadline

1: the lower priority task F2, and consequently, F1 which is feeding F2, has to finish in 1

time unit after its activation.

On the contrary, Fig. 4.4 shows the model semantics and the corresponding schedule when

the edge between F1 and F2 carries a unit delay. Specifically, the instance of F2 activated

at time 2 reads the data generated by F1 activated at 0 (as opposed to F1 activated at 2 for

the case without delay). This causes an additional delay of T1 (= 2) for the dataflow from

F1 to F2. In this case, the precedence constraint from F1 to F2 is eliminated, provided that

F1 finishes before its next activation. Hence, we are free to adopt the priority assignment

that maximizes schedulability.

However, adding such functional delays comes at a cost. It generally worsens the control

performance [2, 5] since it adds delay to the feedback control loop. It also has memory

overheads since its implementation consists of a switched buffer [58]. Hence, we associate

each link Ei,j = (Fi, Fj) with a cost βi,j, to denote the penalty on control performance and/or

buffer size if Ei,j carries a unit functional delay.

Often, a correct software implementation may not be schedulable. A common strategy is

to modify the model by adding functional delays on selected links to relax the precedence

constraint. This however, may introduce performance and memory costs. The trade-off

can be formalized as the following design optimization problem: finding the schedulable

implementation that requires the minimum use of functional delays, or, as better stated, the

use of functional delays with minimum performance and/or memory penalty.
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4.3 Schedulability Analysis

We now summarize the schedulability analysis for FSMs, and highlight the significant pes-

simism in existing approaches [58, 122].

The software synthesis for synchronous languages [122] checks the schedulability by making

sure the longest chain of blocks to be executed at any cycle fits in the base period of the model.

Thus, it is only concerned with finding the action with the largest WCET for each FSM.

For example, consider an SR model containing two blocks F1 and F2, where F1 implements

the FSM in Figure 4.1, and F2 implements a Dataflow block with WCET 1 and period 100.

Hence, the system base period is 1. The analysis then checks whether the sum of the largest

WCET from F1 and F2 can fit in to a base period, i.e., if 0.25 + 1 ≤ 1. The violation of

the condition deems the system unschedulable, despite that the system utilization is very

low (lower than 26%). This approach imposes a very strong condition on schedulability and

is ill-suited for systems with largely varying rates (for example, the real-world automotive

benchmark with periods ranging from 1ms to 1000ms [89]).

The approach in [58] treats an FSM as a Dataflow block. That is, it characterizes each FSM

as an LL task [100], with a period parameter equal to the greatest common divisor (gcd) of

the event periods, a single value of WCET equal to the largest WCET among all actions,

and an implicit deadline equal to the period. This comes with two sources of pessimism: one

is the assignment of action deadline, the other is the characterization of the workload (see

Example 4.2).

Figure 4.5 shows the workload characterization by the approach for FSM in Figure 4.1. The

gcd of all event periods equals 1 and the largest WCET equals 0.25. Thus the FSM is

characterized as an LL task with period of 1 and WCET of 0.25. As proposed in [29, 152], a

more accurate characterization of the timing behavior of an FSM is to model it as a digraph
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task [139].

The exact schedulability analysis is proven to be strongly NP-complete [29], by a reduction

from the schedulability of digraph tasks which is known to be NP-complete in the strong

sense [136]. Hence, there is no pseudo-polynomial time algorithm for determining the exact

schedulability of systems with synchronous FSMs unless P=NP.

We apply the sufficient-only analysis presented in [152], as it is shown to be several magni-

tudes faster than the exact analysis but is almost as accurate [29]. This allows us to compare

our optimization framework with other approaches such as branch-and-bound, as in the ex-

perimental results (Section 4.5). However, the proposed optimization framework does not

depend on the specific schedulability analysis and only uses it as a sub-routine. Thus it is

general enough to adopt other analysis techniques such as the exact analysis [29].

The exact analysis requires considering, in the worst case, the workload of each transition

sequence from every higher priority FSM [29]. The algorithm complexity is exponential in

the number of transitions. To avoid such exponential complexity, the sufficient schedulability

analysis uses one function to quantify the workload for each FSM, defined as below [152].

This reduces the complexity to be cubic in the number of transitions.

Definition 8. The request bound function (rbf) of a block F during a time interval

∆ = [s, f) where s is inclusive and f is exclusive, denoted as F.rbf(∆), is the maximum sum

of execution times by the actions of F that have their activation time within ∆.

The schedulability condition using rbf is stated as follows.
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Theorem 23. [152] The block Fi is schedulable if

∀Aj,r such that aj ∈ Fi

∧
r ∈ T (aj)

∧
r ∈ Si,

∀s ≤ r, ∃t ≤ D(Aj,r),
∑

k∈hpe(i)

Fk.rbf([s, s+ t)) ≤ t
(4.1)

Here hpe(i) = hp(i)
∪
{Fi} is the set hp(i) of blocks with higher priority than Fi plus Fi itself,

the set Si includes all the integer multiples of the event periods within the first hyperperiod

(the least common multiple of event periods for FSMs in hpe(i)) [152], and s and t are the

start and finish times of the busy period (a time interval where the CPU is always busy

executing tasks from hpe(i)) respectively. Essentially, Equation (4.1) requires to check that,

for each action instance Aj,r triggered in the first hyperperiod (the first line of the equation),

it always meets its deadline for all busy periods started before r considering the worst case

workload from tasks in hpe(i) (the second line of the equation).

We observe that the schedulability condition in Equation (4.1) has the following useful

properties. To check if Fi is schedulable, it only requires the knowledge on the set of higher

priority tasks hp(i), but not the particular priority order among tasks in hp(i), nor those with

lower priority. In addition, if the priority of Fi is raised to a higher level (hence with a smaller

set of hp(i)), the schedulability of Fi can only get better. By [53], these properties enable

to apply Audsley’s algorithm [10] to find a schedulable priority assignment. The algorithm

only needs to check O(n2) priority orders that is quadratic to the number of blocks n in the

system. In Section 4.4, we will leverage it to develop our optimization framework.

Example 4.2. For the example FSM in Fig. 4.1, the rbf([2, t)) function is illustrated in

Fig. 4.5. With the LL task model (i.e., as in the schedulability analysis of existing work [58]),

its period and deadline are 1 (the gcd of the periods of events e1 and e2), and its WCET

is 0.25 (the maximum WCET among all actions). The rbf([2, t)) function will increase at



4.4. Optimization Framework 153

t ))([2,rbf

2 63 4 5

0.2

0.4

0.6

0.8

1.0

1.2

0
t7

Exact value as in this work

Overestimation by [18]

0.5

1.0

1.25

0.2
0.3

0.55
0.65

0.25

0.75

Figure 4.5: The overestimation (by [58]) and the exact value of rbf([2, t)) for the FSM in
Fig. 4.1.

each integer time with a step of 0.25. The rbf([2, t)) estimated by this approach [58] is

very pessimistic. For example, the exact value of rbf([2, 4)) is 0.2 as the worst case transi-

tion sequence contains only a2 triggered at time 2. However, the LL task model calculates

rbf([2, 4)) as 0.5 by assuming an action with WCET 0.25 activated at both time 2 and 3.

This is obviously impossible since a3, the action with WCET 0.25, only activates at integer

multiples of 5. Furthermore, the deadline calculated in the LL task model is overly tight.

For example, a1 is always followed by a2, both of which are triggered by e1 hence separated

by T (e1) = 2. Hence, the deadline of all instances of a1 should be 2. However, the LL task

model always assumes a deadline of 1 for a1.

4.4 Optimization Framework

The problem of optimizing software implementations of SR models involves assigning priority

orders to the tasks. We define a set of binary variables P = {pi,j}, where pi,j represents the
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relative priority order between tasks Fi and Fj, defined as

pi,j =

 1 πi > πj,

0 otherwise.
(4.2)

P shall satisfy the antisymmetry property: if Fi has a higher priority than Fj (pi,j = 1), then

Fj has a lower priority than Fi (pj,i = 0). It also shall satisfy the transitivity property: if Fi

has a higher priority than Fj (pi,j = 1) and Fj has a higher priority than Fk (pj,k = 1), then

Fi must have a higher priority than Fk (pi,k = 1).

 Antisymmetry: pi,j + pj,i = 1, ∀i ≠ j

Transitivity: pi,j + pj,k ≤ 1 + pi,k, ∀i ̸= j ̸= k
(4.3)

The objective is to minimize the total weighted cost of the links where the writer is assigned

with a lower priority than the reader (i.e., the links associated with a unit delay) while each

task is schedulable. Thus, the problem can be formulated as

min
∑

(Fi,Fj)∈E

βi,j · pi,j

s.t. Equation (4.3) is satisfied;

each task Fi is schedulable.

(4.4)

In the rest of the section, we first give an overview on the optimization framework in Sec-

tion 4.4.1, then present the three techniques for improving the scalability of the framework

in Section 4.4.2–4.4.4 respectively. In Section 4.4.5 we discuss a few key properties in the

framework and explain why it is much more efficient than standard approaches such as plain

branch-and-bound.
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4.4.1 Overview of Optimization Framework

The optimization problem in Equation (4.4) can be regarded as the combination of two

subproblems. The first is the schedulability analysis, which checks if each task is schedulable

given a priority assignment. The second is to find a schedulable priority assignment that

minimizes a linear cost function. As elaborated in Section 4.3, the exact schedulability

analysis is strongly NP-complete. Even the sufficient-only analysis in Equation (4.1) is

still NP-complete. The second subproblem is also NP-complete, even if we assume the

schedulability analysis is simple (i.e., in constant time complexity) [57, 58]. There exists no

exact algorithm that explores only a polynomial number of priority assignments to find the

optimal one, unless P=NP. Hence, the overall problem is highly complex.

We also note that the schedulability condition may prevent us from directly leveraging some

existing optimization frameworks. The analysis in Equation (4.1) hinders a possible formu-

lation in ILP: as exemplified in Fig. 4.5, the rbf function for an FSM is generally irregular

and cannot be represented as a closed form function.

Our optimization framework combines the strength of two techniques: the commercial ILP

solver that is tuned for generic branch-and-bound based search, and the efficient (modified)

Audsley’s algorithm for checking system schedulability. Another key is to leverage and ex-

tend the concept of unschedulability core as a compact over-approximation of schedulability

region.

The framework contains two iterative steps, as illustrated in Fig. 4.6. The first step (Step

1) is an ILP formulation Π that avoids the direct formulation of Equation (4.1), the schedu-

lability conditions based on rbf functions. Initially Π only concerns the antisymmetry and

transitivity of the priority order variables P as in Equation (4.3). Gradually, it adds con-

straints on P (and implicitly the schedulability conditions) depending on the results of the
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Solve ILP formulation    
with CPLEX

Optimal priority assignment by relaxed analysis

Schedulable?
No

Yes

Start with ILP formulation   without 
any forms of schedulability constraints

Step 2.1: Use relaxed analysis in Equation (6)

Step 2

Can Algorithm 2 find 
unschedulability cores?

No

Yes

Report unschedulability

Schedulable?
No

Yes

Step 2.2: Use analysis in Equation (1)

Can Algorithm 2 find 
unschedulability cores?

No

Yes

Report unschedulability

Valuation on 
priority order P

 Add linear constraints 
induced by unschedulability 

cores to  

Optimal priority 
assignment by 

relaxed analysis

Report optimal priority 
assignment

Step 1

Figure 4.6: The two-step iterative optimization framework.
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second step.

Given a valuation on the priority order variables P from Step 1, the second step (Step 2)

either confirms that the tasks are schedulable, or use Algorithm 6 (see Section 4.4.2) to learn

a summation showing why they are not. In the latter case where we find that the system

is unschedulable because some tasks violate their deadlines, instead of directly adding the

schedulability conditions based on rbf for these tasks, we seek to add constraints on P as

a much more compact representation. It also tries to generalize to rule out other similar

unschedulable priority orders: as detailed in Algorithm 6, starting from an unschedulable

priority assignment (an infeasible valuation on P), it iterates through each pi,j and tries to

relax the valuation on it. If the resulting partial valuation on P still does not make the

system schedulable, then the valuation on pi,j is relaxed. In the end, it will (1) either return

a compact and general representation (defined as an unschedulability core) on why the given

valuation of P makes the system unschedulable, in the form of a linear constraint on P (see

Example 4.5 below) ; (2) or report unschedulability if the system remains unschedulable

after relaxing valuations on all pi,j. This step leverages two types of unschedulability cores,

one (as in Step 2.2) is based on the analysis in Equation (4.1), the other (as in Step 2.1) is

a generalized version based on a relaxation on Equation (4.1) (see Section 4.4.3).

4.4.2 Calculating Unschedulability Cores

The concept of unschedulability core is defined as follows [160]. Intuitively, an unschedula-

bility core is an irreducible set of partial priority orders that makes a system unschedulable.

Definition 9. [160] A partial priority order (PPO), denoted as ri,j ≡ (pi,j = 1), defines

a priority order where Fi has a higher priority than Fj. A PPO set R is a collection of

one or more PPOs that are consistent with the properties in Equation (4.3). The number of
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elements in R is defined as its cardinality, denoted as |R|.

Let Γ be a task system and R be a PPO set on Γ. Γ is R-schedulable if and only if

there exists a feasible priority assignment P that respects all the PPOs in R. R is an

unschedulability core for Γ if and only if R satisfies the following two conditions:

• Γ is not R-schedulable;

• ∀R′ ⊂ R, Γ is R′-schedulable.

Remark 4.3. The concept of unschedulability core is conceptually similar to the concept

of minimal unsatisfiability core in the context of Boolean satisfiability solvers, which

refers to a minimal unsatisfiable subset of clauses. In a similar manner, an unschedulability

core is essentially a minimal subset of priority partial orders that can not be simultaneously

satisfied by any feasible priority assignment.

In systems with FSMs, the test on R-schedulability can be performed using a revised Aud-

sley’s algorithm, detailed in Algorithm 5. It inherits the property of Audsley’s algorithm in

that it is optimal in terms of checking if there exists a schedulable priority assignment [10].

Similar to Audsley’s algorithm, it iteratively finds a task schedulable at a particular priority

level starting from the lowest priority. However, when choosing the candidate task Fi, it

shall also guarantee that assigning the current priority to Fi does not violate any PPO in R

(i.e., satisfying the condition ∄ ri,j ∈ R in Line 3). When Fi is assigned with the priority,

it shall be removed from the set of unassigned tasks (Line 6). Also, all the PPOs rj,i in R,

i.e., those requiring a higher priority than Fi for some unassigned task Fj, are satisfied and

can be removed (Line 7).

Example 4.4. We consider an example system Γe as in Table 4.1, in which all functional

blocks are of type Dataflow, but the concept applies to systems with FSMs. R1 = {r2,1, r4,1}
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Algorithm 5 Algorithm for Computing Unschedulability Core
1: function UnschedCore(Task set Γ, PPO set R)
2: for each priority level k from lowest to highest do
3: if Fi is schedulable at level k then
4: assign priority level k to Fi;
5: Γ = Γ\{Fi};
6: R = R\{rj,i|Fj ∈ Γ}
7: continue to next priority level
8: else
9: return false

10: end if
11: end for
12: return R
13: end function

Table 4.1: An Example Task System Γe

Fi Ti Di Ci

F1 10 10 2
F2 20 20 3
F3 40 40 16
F4 100 100 6

is a valid unschedulability core, as (a) Γe is R1-unschedulable; and (b) for each of its proper

subset, there exists a respecting feasible priority assignment: P = [π2 > π1 > π3 > π4]

respects R(1)
1 = {r2,1} and R(2)

1 = ∅, and P ′ = [π4 > π1 > π2 > π3] respects R(3)
1 = {r4,1}.

For FSM systems, since for any R′′ ⊆ R′, R′-schedulability implies R′′-schedulability, the

second condition in Definition 9 can be replaced by

• ∀R′ ⊂ R s.t. |R′| = |R| − 1, Γ is R′-schedulable.

The equivalence can be proved by noticing that for any R′′ ⊂ R, there must exists an R′

s.t. R′′ ⊆ R′, |R′| = |R| − 1.

Algorithm 6 gives an efficient procedure for computing unschedulability cores. It takes as

input the task set Γ and a PPO set R, where Γ is not R-schedulable. It checks if all subsets
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Algorithm 6 Algorithm for Computing Unschedulability Core
1: function UnschedCore(Task set Γ, PPO set R)
2: for each r ∈ R do
3: if ModifiedAudsley(Γ, R\{r}) == false then
4: remove r from R
5: end if
6: end for
7: if R is empty then
8: report Unschedulability
9: else

10: return R
11: end if
12: end function

of R with cardinality |R| − 1 (i.e., one less element) can allow Γ schedulable by using the

function ModifiedAudsley(). Hence, it iterates through and tries to remove each element

r in R (Lines 2–6). If the resulted PPO set still does not allow Γ to be schedulable, then

r is removed (Lines 3–5). In the end, if all elements in R are removed (Line 7), it means

that the modified Audsley’s algorithm cannot find a schedulable priority assignment even

though no priority order is imposed (i.e., Line 4 is executed because ModifiedAudsley(Γ, ∅)

returns false), and Γ is unschedulable (Line 8). Otherwise, the algorithm will return one

unschedulability core (Line 10).

Let U denote an unschedulability core for Γ. The constraint that the PPOs in U cannot be

simultaneously satisfied is ∑
ri,j∈U

pi,j ≤ |U| − 1 (4.5)

Example 4.5. Assume Step 1 gives a valuation on P as R = {r2,1, r2,3, r2,4, r4,1, r4,3, r1,3}.

This corresponds to an unschedulable priority assignment [π2 > π4 > π1 > π3]. Algorithm 6

calculates the unschedulability core R1 = {r2,1, r4,1}, which imposes the constraint p2,1 +

p4,1 ≤ 1. By adding this constraint back to Step 1, many unschedulable solutions besides R

are ruled out in the next iteration, such as R′ = {r2,1, r2,3, r2,4, r4,1, r4,3, r3,1} (i.e., priority
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assignment [π2 > π4 > π3 > π1]).

Remark 4.6. Our framework makes sure each call to Algorithm 6 will return a different

unschedulability core, as the input parameter R to the algorithm is a valuation on P that

respects all the previously calculated unschedulability cores. Also, the number of unschedu-

lability cores is finite, since the number of PPO sets is finite. Hence, the framework will

always terminate.

Remark 4.7. The idea of unschedulability core is critical to reduce the number of iterations

between step 1 and step 2: each time step 1 makes a mistake in that it gives an unschedulable

valuation on P, we use the efficient modified Audsley’s algorithm to generalize this mistake

as much as possible.

4.4.3 Relaxation-and-Recovery

In general, analysis based on Theorem 23 is expensive as the set Si in Equation (4.1) may

be very large. We present two techniques that effectively reduce the complexity while main-

taining optimality. The first is based on the idea of fast relaxation of the schedulability

condition, stated in the following theorem.

Theorem 24. If we use a relaxed schedulability condition in Line 4 of Algorithm 5, Algo-

rithm 6 will still return a correct unschedulability core U , in the sense that the task system

Γ is not U -schedulable.

Proof. It follows directly from the property of relaxed (necessary-only) schedulability condi-

tion: if the task set is deemed unschedulable by this relaxed condition, then it must also be

unschedulable by the accurate condition.



162
Chapter 4. Optimization of Real-Time Software Implementing Multi-Rate Synchronous

Finite State Machines

We observe that the major difficulty of checking Equation (4.1) lies in the potentially large set

of action instances and busy periods to be checked. One simple but very effective relaxation

is to: a) consider only the action instances Aj,r triggered in a small subset S ′
i of Si; and b)

for each action instance, consider only the busy period starting at the trigger time of Aj,r

(s = r instead of s ≤ r). This results in the following necessary condition

∀Aj,r such that aj ∈ Fi

∧
r ∈ T (aj)

∧
r ∈ S ′

i,

∀s = r,∃t ≤ D(Aj,r),
∑

k∈hpe(i)

Fk.rbf([s, s+ t)) ≤ t
(4.6)

We will show in our experimental study that, for more than 99.99% of the cases, the un-

schedulability can be detected by testing only the first three action instances in the hyper-

period using Equation (4.6).

Equation (4.6) is a relaxation of the exact schedulability condition that is much simpler to

check but still provides very close approximation. Using such a condition may give correct

schedulability analysis results in most cases while greatly improving efficiency. Due to the

necessary-only nature, the returned priority assignment (at the end of Step 2.1 in Fig. 4.6)

may not be truly schedulable. Such rare cases can be handled by adding appropriate sanity

check and recovery mechanisms to guarantee soundness. When the expected benefit from

relaxation outweighs the expected cost at recovery, an overall improvement is achieved.

The relaxation-and-recovery framework is shown in Fig. 4.6. Relaxed (necessary-only) anal-

ysis instead of the accurate analysis is used in Step 2.1. The possible false positive on

schedulability can be excluded by performing a sanity check using the accurate condition

(Step 2.2). If indeed unschedulable, the procedure computes unschedulability cores using

the accurate analysis.
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4.4.4 Schedulability-based Memoization

We further propose schedulability-based memoization, which stores the schedulability re-

sults for previously visited priority assignments and reuses them whenever a similar scenario

reoccurs. We observe the following two properties of the schedulability condition (4.1):

• if block Fi is schedulable with higher priority task set hp(i), it is also schedulable for

any hp′(i) where hp′(i) ⊆ hp(i);

• if Fi is unschedulable with higher priority task set hp(i), it is also unschedulable for

any hp′(i) where hp′(i) ⊇ hp(i).

Thus for each FSM Fi, we maintain two lists H+
i and H−

i , storing the encodings of hp(i)

under which Fi is known to be schedulable and unschedulable respectively. When performing

schedulability analysis (Line 4, Algorithm 5) with a given set hp(i) of higher priority tasks,

the procedure first checks if (a) there exists hp′(i) ∈ H+
i such that hp′(i) ⊆ hp(i), or (b)

hp′(i) ∈ H−
i such that hp′(i) ⊇ hp(i). In both cases the schedulability can immediately be

inferred. The actual schedulability test is performed only when it cannot find such an hp′(i).

After the schedulability with hp(i) is established, H+
i and H−

i are updated accordingly to

record the new result.

The existence of such an hp′(i) is essentially a problem of subset and superset query. This can

be efficiently implemented using proper encodings of hp(i) and a data structure for H+
i and

H−
i that facilitates set inclusion queries. Specifically, we use a bit-vector B (implemented

as an array of integers) of length n to encode hp(i), where the m-th bit of B is set to 1

if Fm ∈ hp(i), and n is the number of tasks. The subset and superset relationship can be

efficiently tested using the following bitwise logic operations on integers, available in most

programming languages:
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• hpj(i) ⊇ hpk(i) ⇐⇒ Bj (bitwise AND) Bk = Bk;

• hpj(i) ⊆ hpk(i) ⇐⇒ Bj (bitwise OR) Bk = Bk.

This idea can be generalized to consider the dominance of a pair of FSMs with respect to

their rbf functions.

Definition 10. For two FSMs Fi and Fj, if Fi’s rbf function is always no smaller than that

of Fj, i.e.,

∀s,∀t ≥ s, Fi.rbf([s, t)) ≥ Fj.rbf([s, t)) (4.7)

then Fi is said to dominate Fj or equivalently, Fj is dominated by Fi. We denote this

relationship as Fi ⪰ Fj.

The dominance relationship between two sets of FSMs are similarly defined.

Definition 11. For two sets of FSMs h and h′, if the sum of the rbf functions of all FSMs

in h is always no smaller than that of h′, i.e.,

∀s, ∀t ≥ s,
∑
Fi∈h

Fi.rbf([s, t)) ≥
∑
Fj∈h′

Fj.rbf([s, t)) (4.8)

then h is said to dominate h′ or equivalently, h′ is dominated by h. We denote this rela-

tionship as h ⪰ h′.

Now the following properties hold for the schedulability analysis:

• if block Fi is schedulable with higher priority task set hp(i), it is also schedulable for

any hp′(i) where hp′(i) ⪯ hp(i);

• if Fi is unschedulable with higher priority task set hp(i), it is also unschedulable for

any hp′(i) where hp′(i) ⪰ hp(i).
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The storage structure H+
i and H−

i is partitioned into smaller subgroups H+,l
i and H−,l

i , where

l denotes the cardinality of the corresponding hp(i). When querying of subset of hp(i) in

H+
i for example, the search space needs only consider those H+,l

i such that l ≤ |hp(i)|.

4.4.5 Discussion on Algorithm Design

We first remark that the proposed optimization framework is optimal: it guarantees the

optimality2 of the returned solution since it always maintains an over-approximation of the

exact feasibility region (a subset of all constraints) in Step 1. In case the system is unschedu-

lable, it will appropriately detect that since it will find the system is unschedulable with no

enforced priority orders (Algorithm 5 becomes the original Audsley’s algorithm when the

input R is empty). It also guarantees to terminate as detailed in Remark 4.6.

The current approach for complex optimal priority assignment problems (i.e., those without

known polynomial-time optimal algorithms) is to directly apply existing optimization frame-

works such as branch-and-bound (e.g., [57]) or integer linear programming (ILP) (e.g., [58]).

Comparably, the proposed framework is a few magnitudes faster for industrial case stud-

ies. As in the experimental results (Table 4.3, Section 4.5), for the plain branch-and-bound

algorithm we implement where each FSM is modeled with the accurate digraph task (i.e.,

BnB-Digraph in the table), our approach (UC-Digraph-M-RR) is 20,000× faster. If

we follow the approach in [58] and treat each FSM as an LL task, the problem can be for-

mulated in the ILP framework (i.e., ILP-LL). Still, our approach (UC-LL-M) is about

80,000× faster. This may seem surprising as modern ILP solvers such as CPLEX implement

many sophisticated techniques to efficiently search in the design space. In the following, we

provide our insights explaining this result.
2Here the term “optimality” is slightly abused as the schedulability analysis in Equation (4.1) is sufficient

only. However, the optimization algorithm itself is optimal in the sense that if we replace Equation (4.1)
with the exact analysis, it will return the exact optimal solution.



166
Chapter 4. Optimization of Real-Time Software Implementing Multi-Rate Synchronous

Finite State Machines

Our first insight is that in a system with n blocks, although there are in total n! possible

priority assignments, typically only a small subset of all the priority order variables P are

objective-sensitive. As in Equation (4.4), only those priority orders pi,j which adhere to a

link (Fi, Fj) ∈ E affect the optimization objective.

Our second insight is that Audsley’s algorithm [10] can efficiently find a schedulable priority

assignment if there exists one [53]: it only needs to check O(n2) priority assignments out of

the n! possible ones. The intelligence in such a problem specific algorithm can be difficult to

match for generic constraint solvers like CPLEX, as evidenced in the experimental results.

Our framework is also designed to judiciously avoid the complexity of schedulability analysis

whenever possible, using the following two techniques. The first is the development of a fast

relaxation on the schedulability condition (Section 4.4.3). It quickly returns a solution that

is almost always schedulable, without using the expensive analysis of Equation (4.1). The

second is schedulability-based memoization (Section 4.4.4): the analysis is performed only

when it cannot be inferred from previous analysis results. The effectiveness of the above

two techniques is evidential in the experiments (Fig. 4.9): without these techniques, the

schedulability analysis dominates the overall runtime.

4.5 Experimental Evaluation

In this section, we conduct an experimental study to evaluate the unschedulability core (UC)

based optimization methods proposed in Section 4.4. We include a brute-force branch-and-

bound (BnB) algorithm to evaluate the algorithm efficiency, as ILP is not applicable due to

the irregularity of rbf functions for FSMs. To evaluate the benefit in solution quality from

the more accurate schedulability analysis with a digraph task model, we include the previous

approach which approximates each FSM as an LL task [58]. We omit the approach typical
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of synchronous language compilers (i.e., a single-task implementation) as it is shown to be

very inefficient for multi-rate systems [58]. The list of compared methods includes:

• BnB-Digraph: BnB algorithm that uses the analysis in Equation (4.1), i.e., with a

digraph task model;

• UC-Digraph: unschedulability core (UC) based optimization with digraph task model;

• UC-Digraph-M: UC-Digraph plus memoization technique discussed in Section 4.4.4;

• UC-Digraph-M-RR: UC-Digraph-M plus relaxation-and-recovery mechanism (Sec-

tion 4.4.3);

• UC-LL-M: The same as UC-Digraph-M, but treats each FSM as an LL task;

• ILP-LL: The ILP formulation as in [58], which models each FSM as an LL task.

All ILP problems are solved with CPLEX 12.6.1. All runtimes are the wall-clock time on a

dedicated machine with a 3.40GHz quad-core processor and 8GB memory.

We first use relatively small synthetic systems to study the scalability with respect to the

number of functional blocks. We follow guidelines on the real-world automotive bench-

mark [89] to generate random systems. Each point in the plots represents the average over

1000 random systems. Each functional block has at most an in-degree of 3 and out-degree

of 2. The system utilization is fixed as 40%. 70% of the functional blocks have 1 state (i.e.,

it is a Dataflow block), 6% with 5 states, 6% with 10 states, 6% with 15 states, 6% with

20 states, 3% with 25 states, and 3% with 50 states. Each state has 3 outgoing transitions

on average. For event periods, first each FSM Fi is assigned with a base period randomly

selected from {1, 2, 5, 10, 20, 25, 50, 100, 1000, 2000}, then each event in Fi is assigned with

a period by multiplying the based period with a factor randomly chosen from {1, 2, 5, 10}.
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Figure 4.7: Normalized Delay vs. Number of Blocks

We set a time limit of 1200 seconds for CPLEX to avoid excessive waiting. If the method

terminates without finding a feasible solution, the objective is set to be the sum of weights

of all communication edges.

Fig. 4.7 shows the optimized functional delay (normalized by the sum of edge weights) for

each algorithm. We note that in most cases the random systems are unschedulable without

added functional delays (i.e., with cost equal to zero). The methods with digraph-based

schedulability analysis always return the same optimized cost (except those which cannot

finish in the 1200-second time limit). The optimized cost of LL task based approaches (UC-

LL-M and ILP-LL) is) is averagely more than twice larger than that of digraph based ones,

demonstrating the significant sub-optimality from LL task based schedulability analysis in

existing work [58].
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Figure 4.8: Runtime vs. Number of Functional Blocks

Fig. 4.8 illustrates the runtime for each algorithm we compare. From the figure, it is clear

that the unschedulability core based methods (i.e., UC-Digraph, UC-Digraph-M, UC-

Digraph-M-RR) outperform plain BnB (BnB-Digraph). For example, for systems with

15 functional blocks, UC-Digraph is able to provide more than two magnitudes of im-

provement in runtime, and UC-Digraph-M and UC-Digraph-M-RR further improve

over UC-Digraph by more than an order of magnitude. The memoization technique makes

UC-Digraph-M 80 times faster on average than UC-Digraph for systems of 35 blocks.

The relaxation-and-recovery technique provides a speedup of about 5 to 10 times for rel-

atively large systems (with 20 blocks or more). UC-LL-M is faster than UC-Digraph-

M-RR on smaller-sized systems for its simpler analysis. However, UC-LL-M takes more

iterations to reach optimality, due to its smaller feasibility region which requires more effort

to refine, thus becoming slower than UC-Digraph-M-RR on larger systems. UC-LL-M
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Figure 4.9: Runtime Percentage of Step 2 vs. Number of Blocks

is much faster than ILP-LL, which again confirms the efficiency of the proposed framework.

Fig. 4.9 plots the percentage of runtime spent on computing unschedulability cores (Step 2 in

Fig. 4.6). UC-Digraph spends almost the entire time (e.g., more than 99.97% for systems

with 35 blocks) on Step 2 while the time in Step 1 (ILP for priority assignment) is mostly

negligible. This suggests the importance and potential benefit in reducing schedulability

analysis complexity. The memoization technique and the relaxation-and-recovery mechanism

combined together make the two steps in the optimization framework almost balanced in

UC-Digraph-M-RR.

We also perform experiments to study the scalability of the proposed framework with respect

to different system utilizations. The number of tasks is fixed to 25 while the system utilization

now varies from 5% to 90%. Other parameters remain the same as in the previous experiment.
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Overall, we observe that the runtime of the UC-based algorithms is not sensitive to the system

utilization. For example, the runtime of UC-LL-M-RR only differs by no more than two

times over the whole range of the system utilization.

We now discuss the statistic significance behind the design of the necessary-only analysis

proposed in Section 4.4.3. The method UC-Digraph performs a total of 24863497 schedu-

lability analysis on FSMs that are indeed unschedulable. The number of action instances

tested before detecting unschedulability and the corresponding percentage are summarized

in Table 4.2. In our implementation, action instances are tested by the order of their starting

time.

Table 4.2: Number of action instances tested before detecting unschedulability

# Occurrence Percentage Accumulative Percentage
1 24757199 99.5725% 99.5725%
2 101895 0.4098% 99.9823%
3 2520 0.0101% 99.9924%
≥ 4 1883 0.0076% 100%

It can be seen from the table that for more than 99.99% of the cases, unschedulability can

be detected by testing only the first 3 action instances in the hyperperiod. In other words,

optimistically asserting an FSM is schedulable using the necessary-only analysis is correct in

more than 99.99% of the cases. We also investigate the busy period [s, t) tested for detecting

unschedulability. It turns out that for all the analysis, unschedulability can be detected by

testing only the busy period with s = 0. All these statistical data motivate the design of our

necessary-only analysis.

Finally, we apply the optimization techniques on an industrial case study of a fuel injection

system [58], consisting of 90 functional blocks and 106 communication links. The weight on

each link is assumed to be the same (all equal to 1). The base period of the functional block

is within the set {4, 5, 8, 12, 50, 100, 1000}(ms). A central control block has 50 states, and
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Table 4.3: Results on the industrial case study

Method Time Status Cost
BnB-Digraph > 48h Timeout 51
UC-Digraph 1725s Optimal 22
UC-Digraph-M 33s Optimal 22
UC-Digraph-M-RR 8s Optimal 22
ILP-LL [58] > 48h Timeout 27
UC-LL-M 2s Optimal (by LL model) 26

the other blocks contain 1-25 states.

The results are summarized in Table 4.3, where “Timeout” means that the method is unable

to confirm the solution optimality within 48 hours. This experiment confirms the advantages

of the proposed optimization techniques. Compared to a plain branch-and-bound algorithm,

its runtime is over 20,000× shorter (8 seconds vs. over 48 hours). Compared to the previous

approach using the LL task model [58], it provides better solution quality by exploring a

better task model and more accurate schedulability analysis, while requiring a comparable

amount of runtime.

4.6 Related Work

Typically, models developed using Esterel and Lustre are implemented as a single task. A

event server model [122] is then used to run it. Reactions to events consists of a number of

atomic actions. The atomic actions form a partially order according to the causality analysis

of the program. This is used to generate a scheduling of functional blocks at the compile

time, where the generated code can execute without the support of an operating system [122].

The worst case execution time is determined by the the longest chain of reactions to any

event. This shall be within the base period of the system, which is defined as the greatest

common divisor of all the periods in the system. For multi-rate systems, this imposes a
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very strong condition on real-time schedulability that is typically infeasible in cost-sensitive

application domains such as automotive [58].

In the commercial code generators for Simulink models (such as Simulink Coder from Math-

Works or TargetLink from dSPACE), two options are available. The first is a single-task

(executing at the base period), which is essentially the same approach as in [122]. The

second is multitask implementation scheduled with fixed-priority. Specifically, one task is

generated for each period in the model and all the tasks are scheduled by Rate Monotonic

policy. Caspi et al. [36] provide the conditions of semantics-preservation in a multi-task

implementation. Di Natale et al. [57] discuss the problem of optimizing the multitask im-

plementation of multi-rate Simulink models with respect to the control performance and

the required memory, and develop a branch-and-bound algorithm. Later in [58], an ILP

formulation is provided. Both papers [57, 58] treat each FSM as a Dataflow block, i.e., the

schedulability analysis is performed by modeling each FSM block with the Liu-Layland task

model [100]. A more accurate schedulability analysis of Stateflow models is discussed in [152]

based on an analogy with the digraph task model [137, 139]. The schedulability analysis is

tractable (i.e., pseudo-polynomial time) for bounded-utilization systems.

There are a number of papers for the implementation of SR models on architecture platforms

different than the one assumed in this chapter (i.e., single-core platform with preemptive

fixed priority scheduling). We selectively review them below. The recent synchronous lan-

guage Prelude [69, 118] defines real-time primitives to enable the programming of multi-rate

systems. It allos the designers to select mapping on to platforms scheduled with Earli-

est Deadline First (EDF), including multicore architectures [119, 123] through a number of

rules and operators. It uses a deadline modification algorithm to enforce the partial order of

execution required by the SR model semantics. [151] discusses how communication mecha-

nisms can be extended to model implementations on multicore platforms. The implemen-
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tation of Esterel/Lustre on asynchronous and distributed architectures has been discussed

in, e.g., [35, 37, 121, 144]. Specifically, techniques for generating semantics-preserving im-

plementations of synchronous models on Time-Triggered Architecture (TTA) are presented

in [35]. Desynchronization methods in distributed implementations are discussed in [37, 121].

A mapping framework from SR models to unsynchronized architecture platforms is presented

in [144], where the mapping uses intermediate layers with queues and then back-pressure

communication channels.

The multitask implementation of Stateflow blocks, i.e., decomposing each FSM into multiple

software tasks/threads, is proposed and studied in [108, 168]. We assume a dedicated task

to implement each FSM, and leave the optimization on multitask implementation to future

work.

4.7 Conclusions

In this work, we study the problem of optimizing real-time software implementing systems

modeled with synchronous finite state machines. We leverage and extend the concept of

unschedulability core, and develop a set of optimization techniques to improve the algorithm

efficiency while maintaining the solution optimality. The experimental study on synthetic

systems and an industrial case study shows that the proposed optimization framework runs

100-10000 times faster compared to conventional branch-and-bound. In the future, we plan

to develop techniques to optimize the multitask implementation for each FSM [108].



Chapter 5

The Virtual Deadline based

Optimization Algorithm for Priority

Assignment in Fixed-Priority

Scheduling

5.1 Introduction

The design optimization of real-time systems is to find, at design time, a suitable design

candidate that is (a) predictably correct, i.e., with design-time guarantees that requirements

on critical metrics (such as timing, control quality, and memory) are satisfied; and (b)

(optionally) optimal with respect to a given optimization objective function. In this chapter,

we focus on real-time systems with partitioned, fixed priority scheduling. We consider the

problems where the task priority assignment is part of the decision variables, and the task

worst-case response times (WCRTs) are involved in the design constraints and/or objective

function.

We discuss a few application scenarios. The first is the direct minimization of the average

WCRT over (a subset of) the tasks [4, 128], i.e., the system performance is measured by

175
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the promptness of task completion given that task schedulability is guaranteed. The second

is the design of control systems, where the control error is approximately proportional to

the response time of the controller task [27, 98]. The third is that modern cyber-physical

systems are characterized by complex functional content deployed on a distributed platform,

where timing constraints and performance metrics are expressed on end-to-end paths [41].

The worst-case end-to-end delay for each time-critical path equals the sum of the WCRTs

and periods of all tasks and messages in the path. Examples include active safety features

in automotive that spans over several Electronic Control Units (ECUs) connected by com-

munication buses such as Controller Area Network (CAN).

Since the subproblem of task WCRT calculation is shown to be NP-hard [63], the over-

all problem complexity is NP-hard. A straightforward approach is to formulate the design

optimization as a mathematical program. This approach may be appealing since modern

mathematical program solvers, such as CPLEX for Integer Linear Programs (ILP), incorpo-

rate many sophisticated techniques to efficiently prune the search space, and are typically

much better than plain branch-and-bound. However, despite the efficiency of modern solvers,

it is still very difficult to scale to large scale industrial systems.

Surprisingly, our framework runs 1,000 times faster than CPLEX while maintaining the

solution quality. The framework is carefully crafted based on a few problem-specific insights

that are difficult to match for generic constraint solvers such as CPLEX. The first is that the

WCRT calculation, although NP-hard, is actually very efficient in practice [47]. However,

the corresponding ILP formulation requires a possibly large number of integer variables (in

the order of O(n2), where n is the number of tasks) [155]. The second is that there are

algorithms which can efficiently find a schedulable priority assignment if there exists one,

such as rate monotonic policy for periodic tasks with preemptive scheduling [99] or Audsley’s

Algorithm for many task models [8], both of which run in polynomial time to the number



5.1. Introduction 177

of tasks. The intelligence in such problem specific algorithms, carefully studied by real-time

systems experts (e.g., [8, 44, 50]), may not be captured in solvers like CPLEX.

Hence, we propose an optimization framework that judiciously leverage the power of com-

mercial ILP solver (for generic branch-and-bound based search) and develop a problem-

specific algorithm (to efficiently find the optimal solution for a subproblem). We establish

an abstraction layer which hides the detail of WCRT analysis from the ILP solver but still

faithfully respects its accuracy. We envision such a drastically improved optimization capa-

bility will have profound impacts for the considered class of real-time systems. For example,

it may enable a new, agile and fluid design flow in which the designers can interact with the

optimization tools.

Specifically, our work makes the following contributions.

• We study the problem of minimum average WCRT and show that it has an efficient

optimal solution.

• We leverage the above algorithm, and introduce the concepts of virtual deadline and

Maximal Unschedulable Deadline Assignment (MUDA), the latter is a set of maximal

virtual deadlines for individual tasks and weighted sum of task WCRTs such that the

task system is unschedulable.

• We devise an optimization framework based on the concept of MUDA, which prudently

combines the efficient algorithm for calculating MUDA and ILP for generic branch-

and-bound.

• We apply our optimization framework to two industrial case studies and show that

the proposed technique runs 1, 000× faster over standard approach while maintaining

optimality.
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The rest of the chapter is organized as follows. Section 5.2 summarizes the task model and

optimization problem considered in this chapter. Sections 5.3 and 5.4 study the problem

of minimizing average WCRT and its weighted version, respectively. Section 5.5 introduces

the concepts of virtual deadline and MUDA, while Section 5.6 presents the optimization

framework built upon it. Section 5.7 presents the experimental results. Section 5.8 discusses

the related work. Finally, Section 5.9 concludes the chapter.

5.2 System Model and Notations

We consider a real-time system Γ containing a set of periodic or sporadic tasks {τ1, τ2, · · · , τn}

with constrained deadline. Each task τi is characterized by a tuple ⟨Ci, Ti, Di⟩, where Ci is

its Worst-Case Execution Time (WCET), Ti is the minimal inter-arrival time, and Di ≤ Ti is

the deadline. Without loss of generality, we assume these parameters are all positive integers.

Each task τi is assigned with a fixed priority that is subject to the designers’ decision. We

denote τi > τj if τi has higher priority than τj. We consider two possible scheduling policies:

preemptive scheduling and non-preemptive scheduling. These scheduling policies are widely

adopted in practical systems, such as the automotive AUTOSAR/OSEK real-time operating

systems (RTOS) standard, the modern RTOSes including LynxOS and QNX Neutrino, and

the Controller Area Network (CAN) protocol and its recent extension CAN-FD (CAN with

Flexible Data-rate).

For preemptive scheduling, the worst-case response time (WCRT) of task τi is the smallest

fixed point solution of the following formula

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
Cj (5.1)
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where hp(i) represents the set of higher priority tasks than τi.

For non-preemptive scheduling, we adopt the following computation of WCRT that is safe

for tasks with constrained deadline [46]. Specifically, the waiting time (also called queuing

delay), the longest time that the task stays in the waiting queue before starting execution,

is calculated as

wi = max(Bi, Ci) +
∑

∀j∈hp(i)

⌈
wi

Tj

⌉
Cj (5.2)

Here Bi denotes the maximum blocking time from lower priority tasks. The analysis is

based on the observation that τi can either suffer the blocking of a lower priority task or the

push through interference from the previous instance of the same task, but not both. For

convenience, we denote

B̃i = max(Bi, Ci) = max
∀j∈lp(i)∪{i}

Cj (5.3)

where lp(i) is the set of lower priority tasks than τi. Finally, the WCRT of a non-preemptive

task can be bounded as

Ri = Ci + wi (5.4)

The analysis in Equations (5.2)–(5.4) is only sufficient but not necessary, in the sense that

it may over-estimate the WCRT of a non-preemptive task. However, we adopt this analysis

instead of the exact one, for two reasons. One is that its accuracy is very good in practice,

especially for CAN [59]. The other is that we can derive some nice properties from such an

analysis to provide an efficient optimization algorithm (see Section 5.3).

We consider a design optimization problem where the design variables include the task

priority assignment. As part of the feasibility constraints, the tasks are required to be

schedulable. Besides, the problem also requires the precise information on the WCRTs of (a

subset of) the tasks.
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Formally, the problem can be expressed as the following mathematical programming problem

min
∑
∀i∈Ω

βi ·Ri

s.t. Tasks are schedulable

G(X) ≤ 0

(5.5)

Here X represents the vector of decision variables that include the task priority assignment

P and the task WCRTs R. The objective function is a weighted sum of the task WCRTs,

where βi ≥ 0 is the weight for task τi. G(X) ≤ 0 is the set of linear constraints on X that

the solutions in the feasibility region shall satisfy, in addition to the schedulability of each

task. For convenience, we denote Ω = {τi : βi > 0}, i.e., the set of tasks contributing to

the objective. We assume that G(X) is non-decreasing with task WCRTs, i.e., it imposes an

upper bound on the task WCRTs.

The problem in (5.5) is a suitable representation of a wide variety of applications. For

example, the control cost in real-time control systems depends on the WCRTs of the control

tasks, which can typically be linearized [103]. The end-to-end delay of distributed features

in automotive systems is the sum of WCRTs and periods for all tasks and messages in

the path [41], which may subject to end-to-end deadline (i.e., formulated in the constraint

G(X) ≤ 0) or serve as the objective function. In the experiments, we will illustrate with two

industrial case studies formulated in the above form.

5.3 Minimizing Average WCRT

In this section, we first study a specific instance of (5.5), known as the minimum average

WCRT problem, where all weights are the same and the constraints consist of only schedu-
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lability of all tasks. The mathematical form of the problem is expressed as follows

min
∑
∀i∈Ω

Ri

s.t. Tasks are schedulable
(5.6)

where Ω ⊆ Γ is the subset of tasks included in the objective for minimizing average WCRT.

In the next section, we generalize the result and design an algorithm for cases where tasks

have different weights.

We find that there is a simple optimal algorithm for (5.6), as detailed in Algorithm 7. It only

needs to explore a quadratic number O(n2) of priority orders out of the total n!, where n is

the number of tasks. This algorithm is a revision of Audsley’s algorithm [8] by augmenting

it with a simple strategy termed as “WCET Monotonic”. Similar to Audsley’s algorithm, it

iteratively assigns a task to a priority from the lowest level to the highest. At each priority

level, it checks if there is any unassigned task in Γ\Ω is schedulable (Lines 3–8). Otherwise,

it chooses the unassigned task in Ω with the longest WCET among those schedulable at this

level (Lines 9–14).

In the following, we first provide a set of sufficient conditions under which Algorithm 7 is

optimal. Consider a task system and an associated WCRT analysis M. Assume that M is

compliant with Audsley’s algorithm, i.e., it satisfies the following three conditions identified

in [50].

• The WCRT Ri of any task τi calculated by M does not depend on the relative order of

tasks in hp(i);

• Similarly, the calculation of Ri by M does not depend on the relative order of tasks in

lp(i);

• Ri is monotonically increasing with hp(i), i.e., if τi is dropped to a lower priority while
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Algorithm 7 Priority Assignment to Minimize Average WCRT
1: function MinAvgWCRT(Task set Γ, Concerned set Ω)
2: for each priority level k, from lowest to highest do
3: for each unassigned τi in Γ\Ω do
4: if τi is schedulable then
5: Assign priority k to τi
6: Continue to the next priority level
7: end if
8: end for
9: for each unassigned τi in Ω in non-increasing WCET order do

10: if τi is schedulable then
11: Assign priority k to τi
12: Continue to the next priority level
13: end if
14: end for
15: return unschedulable
16: end for
17: end function

τs
Priority Assignment B

(Before Swapping):

Priority Assignment A
(After Swapping):

τl  ... ...  ...

τl τs ...

HML

 ...  ...

Higher Priority 

Figure 5.1: Swapping τl with a lower priority task τs where Cl ≥ Cs, if maintaining schedu-
lability, reduces the average WCRT.

the relative order of other tasks remains the same, Ri will only increase.

Now let τs and τl be any two tasks such that Cl ≥ Cs. Namely, τl is the long task and τs

is the short task. Consider any feasible priority order in which τl has higher priority than

τs. The main idea in the following theorem is to ensure that swapping the priority levels
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of τl and τs, if schedulable, will not increase the average WCRT. We study the two priority

assignments before and after the swapping, denoted respectively as B and A in Figure 5.1.

A and B only differ in the priorities of τl and τs. The three sets of tasks H,M, and L, i.e.,

the sets of tasks with priority higher than, in between, and lower than τl and τs respectively,

remain the same.

Theorem 25. Consider a task system Γ and an associated WCRT analysis M that is compli-

ant with Audsley’s algorithm. As in Figure 5.1, we swap two tasks τs and τl with Cs ≤ Cl,

such that both A and B, the priority orders after and before swapping respectively, are

schedulable. If M additionally satisfies the following two conditions (where RA
i and RB

i

denote the WCRTs of τi in priority assignments A and B respectively)

RB
l +RB

s ≥ RA
l +RA

s

∀τm ∈M, RB
m ≥ RA

m

(5.7)

then Algorithm 7 is optimal for the problem in (5.6).

Proof. The WCRT of any task in H ∪ L remains the same, since the sets of its higher

priority and lower priority tasks are unchanged, and the analysis is compliant with Audsley’s

algorithm. This, combined with the conditions in (5.7), means that the average WCRT only

decreases after the swapping.

Now consider at any point in Algorithm 5.1 where it tries to find an unassigned task to

allocate the current priority k. Let S be the set of unassigned tasks that are schedulable at

this priority level. Further partition S into two disjoint sets C ∪ T = S where C ⊆ Ω and

T ⊆ Γ\Ω. Assume that S ̸= ∅ (otherwise the system is unschedulable). There are two cases.

Case 1. T ̸= ∅. We now show that for any τp ∈ T , there exists an optimal priority assign-

ment that assigns τp at the current priority level k. Consider any optimal priority assignment
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P that assigns a different task τq at priority k and τp at a higher priority. Construct another

priority assignment P′ by inserting τp immediately behind τq in the priority order. Since

τp /∈ Ω, the increased WCRT of τp will not affect the total cost. However all other tasks will

have equal or smaller WCRT since their priority is either shifted up by one level or remains

the same. Hence, the cost of P′ cannot be larger than that of P, indicating that P′ is also

optimal.

Case 2. T = ∅. Let τp be a task in C that has no smaller WCET than any other task in C.

Similarly, we show that there always exists an optimal priority assignment that assigns τp at

the current level k. Consider any optimal priority assignment P that assigns a different task

τq at level k and τp at a higher priority. τq has to be from C (since T = ∅), hence its WCET

cannot be smaller than τp. Now construct another priority assignment P′ by swapping τp

and τq in the priority order. Since Cp ≥ Cq, by (5.7) the cost of P′ can only be equal to or

smaller than that of P, indicating that P′ is also optimal.

The rest of the proof follows that of the Audsley’s algorithm [50], as Algorithm 7 always

constructs an optimal priority assignment by minimizing the cost at each priority level.

We now prove that the WCRT analysis methods in Equations (5.1)–(5.4) satisfy the condi-

tions in Theorem 25. We note that they are already known to be compliant with Audsley’s

algorithm [48]. For preemptive scheduling, we first observe the property of monotonicity

with priority order as formally stated in Lemma 26. We then demonstrate that the WCRT

analysis in (5.1) satisfies the conditions in (5.7), as stated in Theorem 27.

Lemma 26. In any feasible priority assignment for systems with preemptive scheduling, the

WCRT of a lower priority task τi is always no smaller than that of a higher priority task τj.
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Proof. We define the WCRT delay function Ri(·) for τi as

Ri(x) = Ci +
∑

∀k∈hp(i)

⌈
Ri

Tk

⌉
Ck

For τi and any higher priority task τj,

∀x > 0, Ri(x) ≥ Ci +

⌈
x

Tj

⌉
Cj +

∑
∀k∈hp(j)

⌈
x

Tk

⌉
Ck

≥ Cj +
∑

∀k∈hp(j)

⌈
x

Tk

⌉
Ck = Rj(x)

The delay function and WCRT satisfy the following property

∀x > 0,Ri(x) ≥ Rj(x) ⇒ Ri ≥ Rj (5.8)

since Ri (resp. Rj) is the first fixed point solution to the equation x = Ri(x) (resp. x =

Rj(x)).

Theorem 27. Theorem 25 holds for preemptive systems with the WCRT analysis in (5.1).

Proof. First, RB
l ≥ RA

s , as RB
l and RA

s have the same set of higher priority tasks H, and

Ri calculated in (5.1) is monotonically increasing with Ci.

Second, we prove RB
s = RA

l . Let R∗ = min{RB
s , R

A
l }. Obviously R∗ ≤ min{Ds, Dl} ≤

min{Ts, Tl}. Hence, R∗ is the first fixed point solution of the following equation

R∗ = Cs + Cl +
∑

∀j∈H∪M

⌈
R∗

Tj

⌉
Cj (5.9)
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We observe that R∗ is a fixed point solution to the following equation for calculating RB
s

RB
s = Cs +

⌈
RB

s

Tl

⌉
Cl +

∑
∀j∈H∪M

⌈
RB

s

Tj

⌉
Cj (5.10)

Also, since R∗ ≤ RB
s , and RB

s is the first fixed point solution to the above equation, it must

be R∗ = RB
s . Likewise, R∗ = RA

l . Thus, RB
s = RA

l , and RB
s +RB

l ≥ RA
s +RA

l .

Now consider any task τm ∈ M. By Lemma 26 and the above proven equation RB
s = RA

l ,

RA
m ≤ RA

l = RB
s ≤ Ts. Hence, τm only suffers one interference from τs in A. Since Cl ≥ Cs,

the amount of interference from τl to τm in B will only be larger than that from τs in A.

This, combined with the fact that the set of higher priority tasks for τm only differs from τl

in B to τs in A, implies RB
m ≥ RA

m.

In the following, we show that Theorem 25 also holds for the analysis in Equations (5.2)–(5.4)

for non-preemptive scheduling. We first establish a property similar to Lemma 26, but for

the waiting time calculated in (5.2). It relies on the definition of the waiting delay function

as below.

Definition 12. The waiting delay function of a task τi in systems with non-preemptive

scheduling is defined as

Wi(x) = B̃i +
∑

∀k∈hp(i)

⌈
x

Tk

⌉
Ck

Similar to (5.8), wi and Wi(x) have the following property

∀x > 0,Wi(x) ≥Wj(x) ⇒ wi ≥ wj (5.11)

Lemma 28. In any feasible priority ordering of non-preemptive systems where τi has lower

priority than τj, there is wi ≥ wj.
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Proof. We consider τi and its immediate higher priority task τi−1.

∀x > 0, Wi(x) ≥ B̃i +

⌈
x

Ti−1

⌉
Ci−1 +

∑
∀k∈hp(i−1)

⌈
x

Tk

⌉
Ck

≥ B̃i + Ci−1 +
∑

∀k∈hp(i−1)

⌈
x

Tk

⌉
Ck

≥ max{B̃i, Ci−1}+
∑

∀k∈hp(i−1)

⌈
x

Tk

⌉
Ck

= max{Bi−1, Ci−1}+
∑

∀k∈hp(i−1)

⌈
x

Tk

⌉
Ck

= Wi−1(x)

By induction, this relationship can be generalized to τi and any higher priority task τj.

Hence, the waiting time wi of τi is no smaller than that of any higher priority task.

The following two lemmas establish that the first condition in (5.7) is satisfied by the suffi-

cient WCRT analysis for non-preemptive scheduling.

Lemma 29. In Figure 5.1, it is wA
l ≤ wB

s for the analysis in Equations (5.2)–(5.4) for

non-preemptive scheduling.

Proof. The waiting time wB
s is computed as follows

wB
s = B̃B

s +

⌈
wB

s

Tl

⌉
Cl +

∑
∀j∈H

∪
M

⌈
wB

s

Tj

⌉
Cj (5.12)

Similarly for wA
l , it is computed as

wA
l = B̃A

l +

⌈
wA

l

Ts

⌉
Cs +

∑
∀j∈H

∪
M

⌈
wA

l

Tj

⌉
Cj (5.13)

On the right hand side of (5.13) we substitute wA
l with wB

s . Since wB
s ≤ Ts, we derive the



188
Chapter 5. The Virtual Deadline based Optimization Algorithm for Priority

Assignment in Fixed-Priority Scheduling

following quantity

w∗ = B̃A
l +

⌈
wB

s

Ts

⌉
Cs +

∑
∀j∈H

∪
M

⌈
wB

s

Tj

⌉
Cj

= B̃A
l + Cs +

∑
∀j∈H

∪
M

⌈
wB

s

Tj

⌉
Cj

(5.14)

We now prove that w∗ ≤ wB
s . We consider the following two cases.

Case 1. max
∀τj∈L

Cj ≥ Cl.

In this case, B̃A
l = B̃B

s = max
∀τj∈L

Cj. Also, since
⌈
wB

s

Tl

⌉
Cl ≥ Cs, we have w∗ ≤ wB

s .

Case 2. max
∀τj∈L

Cj < Cl.

In this case, there is B̃A
l = Cl and B̃B

s ∈ [Cs, Cl]. Since
⌈
wB

s

Tl

⌉
Cl ≥ Cl = B̃A

l and B̃B
s ≥ Cs,

it is again w∗ ≤ wB
s .

Combining the two cases, there is w∗ ≤ wB
s . With wB

s ≤ Ds ≤ Ts, this means that

wB
s ≥ B̃A

l +

⌈
wB

s

Ts

⌉
Cs +

∑
∀j∈H

∪
M

⌈
wB

s

Tj

⌉
Cj (5.15)

The above equation implies that the first fixed point solution of (5.13) must be no larger

than wB
s , i.e., wA

l ≤ wB
s .

Lemma 30. In Figure 5.1, we have wB
l = wA

s for the analysis in Equations (5.2)–(5.4) for

non-preemptive scheduling.

Proof. It can be easily seen that

B̃B
l = B̃A

s = max
∀j∈L∪M∪{τl,τs}

Cj
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Thus, wA
s and wB

l are computed as the first fixed point of the same equation as below

w = max
∀j∈L∪M∪{τl,τs}

Cj +
∑
∀k∈H

⌈
w

Tk

⌉
Ck (5.16)

This implies that wA
s = wB

l .

With the above three lemmas, we now are ready to formally prove Theorem 25 for non-

preemptive scheduling.

Theorem 31. Theorem 25 holds for the analysis in Equations (5.2)–(5.4) for non-preemptive

scheduling.

Proof. By Lemma 29 and Lemma 30

RA
s +RA

l − (RB
s +RB

l ) = (wA
l − wB

s ) + (wA
s − wB

l )

≤ 0

(5.17)

This proves the first condition in (5.7) is satisfied.

Now consider τm of intermediate priority level, i.e., τm ∈ M. By Lemma 28, there is

wA
m ≤ wA

l . By Lemma 29, wA
m ≤ wA

l ≤ wB
s ≤ Ds ≤ Ts. Therefore after swapping, τm

suffers exactly one instance of interference from τs. We use N denote the set of tasks in M

with priority higher than τm. Hence, in priority assignment A, the set of tasks with priority

higher than τm is H ∪N ∪ {τs}, and wA
m is

wA
m = B̃A

m +

⌈
wA

m

Ts

⌉
Cs +

∑
∀j∈H∪N

⌈
wA

m

Tj

⌉
Cj

= B̃A
m + Cs +

∑
∀j∈H∪N

⌈
wA

m

Tj

⌉
Cj

(5.18)

Likewise, in priority assignment B, the set of tasks with priority higher than τm isH∪N∪{τl},
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and wB
m is

wB
m = B̃B

m +

⌈
wB

m

Tl

⌉
Cl +

∑
∀j∈H∪N

⌈
wB

m

Tj

⌉
Cj (5.19)

We now prove wA
m ≤ wB

m, by considering the following two cases for B̃B
m.

Case 1. Cl < B̃B
m.

In this case, swapping Cl to a lower priority than τm does not change its blocking time, and

B̃A
m = B̃B

m. From the Equations (5.18)–(5.19) for calculating wA
m and wB

m, the right hand side

of the equations, i.e., the waiting time functions satisfy the property that

∀x > 0, WB
m(x) = B̃B

m +

⌈
x

Tl

⌉
Cl +

∑
∀j∈H∪N

⌈
x

Tj

⌉
Cj

≥ B̃A
m + Cs +

∑
∀j∈H∪N

⌈
x

Tj

⌉
Cj

= WA
m(x)

Hence, by (5.11), we have wA
m ≤ wB

m.

Case 2. Cl ≥ B̃B
m.

In this case, it can only be that B̃A
m = Cl. Also, B̃B

m ≥ Cs. The waiting time functions

satisfy the following equation

∀x > 0, WB
m(x) = B̃B

m +

⌈
x

Tl

⌉
Cl +

∑
∀j∈H∪N

⌈
x

Tj

⌉
Cj

≥ Cs + B̃A
m +

∑
∀j∈H∪N

⌈
x

Tj

⌉
Cj

= WA
m(x)

Again, by (5.11), wA
m ≤ wB

m.
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Merging the above two cases, the second condition in (5.7) is also satisfied, which concludes

the proof of the theorem.

5.4 Minimizing Weighted Average WCRT

The optimality of WCET Monotonic strategy no longer holds if tasks have different weights

in problem (5.6). Consider the swapping in Figure 5.1 but the weight βl of τl is significantly

higher than other tasks. Then scheduling τl at a lower priority incurs substantial cost

that may outweigh the collective benefit from τs and tasks in M, and Theorem 25 is not

valid anymore. In this section, we propose a heuristic solution to the problem that is near

optimal as demonstrated in the experiments. It consists of two ideas. The first is a Scaled-

WCET Monotonic strategy, which mimics the WCET Monotonic strategy but divides the

task WCET by the weight and use this scaled WCET to order tasks. The second is a

refinement scheme to search for better solutions in the neighborhood.

Similar to the non-weighted case, the weighted problem can be interpreted as finding an

evaluation order for use in Line 9 of Algorithm 7, which specifies the preferred order within

the unassigned tasks to be checked for the current priority level. We introduce the concept

of scaled WCET: for each task τi, its scaled WCET C̃i is defined as

C̃i =
Ci

βi

(5.20)

We use the non-increasing scaled WCET as the evaluation order, as it intuitively puts a task

with smaller weight or longer WCET to a lower priority.

However, the Scaled-WCET Monotonic strategy is not guaranteed to be optimal. In the rare

cases where non-trivial suboptimality occurs, we introduce a sifting adjustment scheme that
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can further improve, based on the following observations. First, typically only the priority

order of a very small portion of tasks is suboptimal, while the rest is still optimal. Second,

suboptimality is usually caused by (a) a high weight task is assigned with a priority that is

too low; (b) a low weight task is assigned with a priority that is too high.

Thus our idea is to systematically adjust upward (downward) the priority level of potentially

misplaced high (low) weight task to avoid local suboptimal solutions. For this, we define

the following two operations SiftUp(τi,P) and SiftDown(τi,P). Specifically, SiftUp(τi,P)

finds the lowest possible priority task τj in hp(i) such that τj can be inserted after τi (i.e.,

with a priority immediately lower than τi) while maintaining system schedulability. τj is

then inserted after τi. Similarly, SiftDown(τi,P) finds the highest possible priority task τj

in lp(i) that can be put ahead of τi while maintaining system schedulability.

Algorithm 8 Tuning up priority levels
1: function TuneUp(Task set Γ, P)
2: Popt = P
3: for each τi ∈ Γ do
4: P = Popt

5: while SiftUp(τi,P) succeeds do
6: if P is better than Popt then
7: Popt = P
8: end if
9: end while

10: end for
11: P = Popt

12: end function

Based on the two operations, we design two greedy adjustment algorithms TuneUp and

TuneDown, which are performed after Algorithm 7. Consider TuneUp as an example. The

procedure is detailed in Algorithm 8. Specifically, for each task τi in the system, it repetitively

applies the SiftUp(τi,P) operation as often as possible (i.e., until there is no task in hp(i)

that can be inserted after τi while maintaining schedulability). Each time SiftUp(τi,P)
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succeeds, the new priority order P is compared with the current best order Popt. If P has

a smaller cost than Popt, then Popt is updated as P. At the end of the procedure, the best

order Popt is returned. TuneDown is the same as TuneUp except that SiftUp(τi,P) is replaced

with SiftDown(τi,P) in Line 5.

5.5 The Concept of MUDA

We now consider the full version of the problem in (5.5), where there are additional linear

constraints on task WCRT besides schedulability of individual tasks. Algorithm 7 is generally

inapplicable here due to the additional constraints. A straightforward solution is to formulate

it in standard mathematical programming framework such as Integer Linear Programming

(ILP). However, this approach does not scale up to medium- or large-sized systems.

In the following, we present an efficient algorithm that runs several magnitudes faster than

ILP. It is based on the following observations. First, the major difficulty of using ILP for

solving (5.5) lies in the formulation of WCRT, which requires many integer variables [155].

However, as detailed in the previous two sections, the subproblem of finding a schedulable

priority assignment that minimizes the (weighted) average WCRT can be efficiently solved.

Thus, our main idea is to free ILP solver from the burden of computing task WCRT. The

proposed optimization framework is an iterative procedure that judiciously combines the

power of ILP solver and the algorithms in the previous two sections, Sections 5.3–5.4.

In this section, we introduce the concept of Maximal Unschedulable Deadline Assignment

(MUDA), which is used to interact between the ILP solver and the algorithms in Sections 5.3–

5.4. In the next section, we detail the MUDA guided optimization framework. Throughout

the two sections, we use the small example system in Table 5.1 with preemptive scheduling

to illustrate. The objective is to minimize the average WCRT for all tasks (i.e., all βi = 1).
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Table 5.1: An Example Task System Γe

τi Ti Di Ci βi

τ1 10 10 2 1
τ2 20 20 3 1
τ3 40 40 10 1
τ4 100 100 3 1

Definition 13. A virtual deadline (VD) is a tuple ⟨τi, d⟩ where d is an integer no larger than

the deadline Di of task τi. It represents a stricter deadline requirement for τi, i.e., Ri ≤ d.

Although the concept of virtual deadline is proposed in, e.g., [14], it is used for scheduling,

i.e., to be enforced at runtime under certain scenarios. Differently, we use it purely for design

optimization, which does not affect the scheduling.

Definition 14. A weighted average deadline (WAD) is a tuple ⟨Ω, d⟩ where Ω ⊆ Γ is the

set of concerned tasks in the objective of problem (5.5), and d is an integer no larger than∑
i∈Ω βi · Di. A WAD ⟨Ω, d⟩ denotes a constraint upper bounding the objective of the

optimization problem (5.5), i.e., ∑
i∈Ω

βi ·Ri ≤ d (5.21)

Definition 15. A deadline assignment set R is a collection of one VD for each task τi

and one WAD, i.e., R = {⟨τ1, d1⟩ , ..., ⟨τn, dn⟩ , ⟨Ω, dΩ⟩}, which represents the conjunction

(logic-AND, denoted by either the “{” or the “∧” symbol) of constraints as follows


Ri ≤ di, ∀ ⟨τi, di⟩ ∈ R∑
j∈Ω

βj ·Rj ≤ dΩ, ⟨Ω, dΩ⟩ ∈ R
(5.22)
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Example 5.1. Consider a deadline assignment set

R = {⟨τ1, 10⟩ , ⟨τ2, 20⟩ , ⟨τ3, 20⟩ , ⟨τ4, 100⟩ , ⟨Ω, 35⟩} (5.23)

It represents the conjuncted set of constraints

(R1 ≤ 10) ∧ (R2 ≤ 20) ∧ (R3 ≤ 20) ∧ (R4 ≤ 100)

∧(R1 +R2 +R3 +R4 ≤ 35)

Definition 16. R1 is said to dominateR2, denoted asR1 ⪰ R2, if and only if the constraints

represented by R1 are looser than or the same as those of R2. More specifically, the VD and

WAD in R1 are component wise no smaller than in R2. R1 is said to strictly dominate R2,

denoted as R1 ≻ R2, if R1 ⪰ R2 and at least one component in R1 is larger than R2.

Example 5.2. Consider the following deadline assignment sets

R1 = {⟨τ1, 10⟩ , ⟨τ2, 20⟩ , ⟨τ3, 20⟩ , ⟨τ4, 100⟩ , ⟨Ω, 35⟩}

R2 = {⟨τ1, 10⟩ , ⟨τ2, 20⟩ , ⟨τ3, 20⟩ , ⟨τ4, 100⟩ , ⟨Ω, 40⟩}

R3 = {⟨τ1, 10⟩ , ⟨τ2, 20⟩ , ⟨τ3, 40⟩ , ⟨τ4, 100⟩ , ⟨Ω, 35⟩}

R4 = {⟨τ1, 10⟩ , ⟨τ2, 16⟩ , ⟨τ3, 20⟩ , ⟨τ4, 100⟩ , ⟨Ω, 170⟩}

(5.24)

We have R2 ⪰ R1 and R3 ⪰ R1, since R1 denotes stricter requirements than both R2 and

R3. However, neither R4 nor R1 dominates each other, since R1 is more relaxed on the VD

of τ2, but is stricter on the WAD.

Definition 17. A system Γ is R-schedulable (or informally, R is schedulable) if there exists

a priority assignment P such that the task WCRTs satisfy the constraints represented by R.
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Example 5.3. Consider two deadline assignment sets as follows

R1 = {⟨τ1, 10⟩ , ⟨τ2, 20⟩ , ⟨τ3, 20⟩ , ⟨τ4, 100⟩ , ⟨Ω, 35⟩}

R2 = {⟨τ1, 10⟩ , ⟨τ2, 3⟩ , ⟨τ3, 40⟩ , ⟨τ4, 100⟩ , ⟨Ω, 35⟩}
(5.25)

Γe is R-schedulable since in the WCET monotonic priority order τ1 > τ2 > τ4 > τ3, the task

WCRTs are R1 = 2, R2 = 5, R3 = 20, and R4 = 8, which satisfy the constraints represented

by R1. However, Γe is not R2-schedulable. This is because to satisfy R2 ≤ 3, τ2 must have

the highest priority. Also τ1 must have higher priority than τ3 (due to C3 > D1). With these

priority orders in place, the priority assignment τ2 > τ1 > τ4 > τ3 minimizes the sum (= 36)

of WCRTs, where the task WCRTs are R1 = 5, R2 = 3, R3 = 20 and R4 = 8. However, they

still violate the WAD in R2.

Obviously the following holds for deadline assignment sets with dominance relationship.

Theorem 32. If Γ is R-schedulable, it is schedulable for any R′ ⪰ R. If Γ is not R-

schedulable, it is not schedulable for any R′ ⪯ R.

Proof. This follows directly from the monotonicity of schedulability w.r.t. deadline

assignments. If the system is R-schedulable, then it is still schedulable with increased task

deadlines (i.e., with a dominating R′ ⪰ R).

Definition 18. A deadline assignment set U is a Maximal Unschedulable Deadline Assign-

ment (MUDA) if and only if

• Γ is not U -schedulable; and

• Γ is R-schedulable for any strictly dominating R ≻ U .

By Theorem 32, to verify the second condition of MUDA, it suffices to test only those Rs

that increment (i.e., increase by one) any WAD or VD in U .
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Example 5.4. R2 in Example 5.3 is not a MUDA, since for the following deadline assign-

ment,

U = {⟨τ1, 10⟩ , ⟨τ2, 4⟩ , ⟨τ3, 40⟩ , ⟨τ4, 100⟩ , ⟨Ω, 35⟩} (5.26)

which dominates R2, Γe is not schedulable. However, U is a MUDA. It suffices to verify that

Γe is schedulable for both of the following deadline assignment sets

U1 = {⟨τ1, 10⟩ , ⟨τ2, 5⟩ , ⟨τ3, 40⟩ , ⟨τ4, 100⟩ , ⟨Ω, 35⟩}

U2 = {⟨τ1, 10⟩ , ⟨τ2, 4⟩ , ⟨τ3, 40⟩ , ⟨τ4, 100⟩ , ⟨Ω, 36⟩}
(5.27)

(We note that ⟨τ1, 10⟩, ⟨τ3, 40⟩, or ⟨τ4, 100⟩ cannot be increased, since they already equal the

respective task deadlines.)

Algorithm 7 can efficiently check whether Γ is R-schedulable for any given R. For every

VD element ⟨τi, d⟩ in R, set the deadline of τi to be d. Compute the minimum weighted

sum of WCRTs of tasks in Ω using Algorithm 7. If the minimized weighted sum is smaller

than dΩ, then Γ is R-schedulable. A MUDA can be computed from an unschedulable dead-

line assignment set R using Algorithm 9. It uses binary search to find the maximal value

that each deadline component d in R can be increased to while maintaining unschedu-

lability. The algorithm requires O(n · log dmax) number of R-schedulability tests where

dmax = max{d1, ..., dn, dΩ}. Note that the algorithm utilizes the fact that the schedulability

analysis (as summarized in Section 5.2) is sustainable with respect to the deadline [16], i.e.,

the system schedulability only becomes better with larger deadlines.
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Algorithm 9 Algorithm for Computing MUDA
1: function MUDA(System Γ, deadline assignment set R)
2: for each ⟨τi, d⟩ or ⟨Ω, d⟩ ∈ R do
3: Use binary search to find out the largest value that d can be increased to while

keeping Γ unschedulable
4: end for
5: return R
6: end function

5.6 MUDA Guided Optimization

We now present the optimization framework based on the concept of MUDA for solving

the problem (5.5). We first observe that (5.5) can be equivalently formulated as a problem

of finding the set of deadline assignment variables d = [d1, ..., dn, dΩ], such that (a) dΩ is

minimized; (b) Γ is schedulable with the deadline assignment set

R = {⟨τ1, d1⟩ , ... ⟨τn, dn⟩ , ⟨Ω, dΩ⟩} (5.28)

and (c) G(X) ≤ 0 is satisfied assuming Ri = di. Formally, we re-formulate the problem as

follows
min dΩ

s.t. Ci ≤ di ≤ Di,∀τi ∈ Γ

dΩ ≥
∑
i∈Ω

βi · Ci

Ri = di,∀τi ∈ Γ

G(X) ≤ 0

Γ is R-schedulable

(5.29)

Intuitively, any unschedulable deadline assignment set R (and in particular any MUDA)

denotes a combination of deadline assignments that cannot be simultaneously satisfied by
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any feasible priority assignment. Hence, R = {⟨τ1, d∗1⟩ , · · · , ⟨τn, d∗n⟩ , ⟨Ω, d∗Ω⟩} denotes the

disjunction (logic-OR, denoted with either the “∥” or the “∨” symbol) of constraints that

any feasible deadline assignment {⟨τ1, d1⟩ , · · · , ⟨τn, dn⟩ , ⟨Ω, dΩ⟩} must satisfy

∥∥∥∥∥∥∥
di > d∗i ∀ ⟨τi, d∗i ⟩ ∈ R

dΩ > d∗Ω ⟨Ω, d∗Ω⟩ ∈ R
(5.30)

In this sense, any unschedulable deadline assignment set R partially shapes the feasibility

region of the problem. We call (5.30) the induced schedulability constraints by R.

The feasibility region of d = [d1, d2, ...dn, dΩ] can be defined by the set of all MUDAs of

Γ. However computing all of them is obviously impractical as the number of MUDAs is

exponential to the number of tasks. We note that in many cases, the objective is sensitive

to only a small set of MUDAs. Thus, we devise a MUDA guided optimization framework

which judiciously and gradually adds MUDAs into the problem until its optimal solution is

found. The algorithm is illustrated in Figure 5.2. The calculation of WCRT is never explicit

in the ILP formulation. Instead, it is abstracted into the form of MUDAs as an alternative

representation of the feasibility region.

Step 1–Priority Assignment Evaluation Order. In this step, we find an evaluation

order in Line 9 of Algorithm 7, which will later be used as R-schedulability test in MUDA

computation (Step 5). For the case of average WCRT, the optimal evaluation order is

WCET monotonic, i.e., in non-increasing order of task WCET. For the case of weighted

average WCRT, the algorithm in Section 5.4 is used. Specifically, we first ignore extra

design constraints and consider only schedulability. Then use the initial order by scaled-

WCET in Algorithm 7 to obtain a first solution P. Apply sifting adjustment to improve P

into P′. P′ is then used as the evaluation order in all subsequent MUDA calculations. If it

fails to find any schedulable order, the procedure terminates since the problem is infeasible.
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 Step 3: 
Solve ILP formulation    with CPLEX

Step 5: 

Schedulable?
No

Yes

Compute MUDAs with 
Algorithm 2 and add their 
induced constraints to  

 Step 4: 
Solve ILP formulation     with CPLEX

 Step 2: 
Start with ILP   without any  

schedulability constraints

Step 1:
Obtain an evaluation order for priority 

assignment

Schedulable?

Yes

Report unschedulability

Deadline 
assignment

Adjusted deadline 
assignment

No

Feasible?

Yes

Report infeasibility

No

Report optimal solution

Figure 5.2: The MUDA guided iterative optimization framework.

Step 2–Initial ILP. The initial ILP Π contains only the constraints G(X) ≤ 0, but not



5.6. MUDA Guided Optimization 201

that Γ is R-schedulable.
min dΩ

s.t. Ci ≤ di ≤ Di,∀τi ∈ Γ

dΩ ≥
∑
i∈Ω

βi · Ci

Ri = di,∀τi ∈ Γ

G(X) ≤ 0

(5.31)

Step 3–Solving Π. Solve the ILP problem Π. Let d∗Ω denote the objective value. If Π

is infeasible, it implies that the original system Γ is unschedulable under the extra design

constraints G(X) ≤ 0, and the procedure terminates.

Step 4–di Relaxation. Solve another ILP problem Π′ constructed from Π as follows.

max
∑
∀τi∈Γ

di

s.t. the constraints in Π are satisfied

dΩ = d∗Ω

(5.32)

The main purpose of this step is to relax the deadline assignment of individual tasks that

are not involved in the constraints while maintaining the same objective value.

Step 5–MUDA Computation. Let the solution from Π′ be d∗ = [d∗1, ..., d
∗
n, d

∗
Ω]. Con-

struct a deadline assignment set R from d∗ as follows.

R = {⟨τ1, d∗1⟩ , ..., ⟨τn, d∗n⟩ , ⟨C, d∗Ω⟩} (5.33)

If Γ is R-schedulable, then the returned solution is optimal (see the remark below). Oth-

erwise, compute a set of MUDAs from R, add the induced schedulability constraints as in
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(5.30) to Π, and go to Step 3.

Remark 5.5. In Step 5, given any unschedulable deadline assignment, it is generalized to

MUDA to rule out similar mistakes. This reduces the number of iterations, each of which

needs to solve costly ILP problems. Also, the framework keeps in Π a subset of all constraints,

i.e., it maintains an over-approximation of the feasibility region. Hence, if the solution from

solving Π (which is optimal for Π) is indeed feasible, then it must be optimal for the original

problem as well.

Example 5.6. We now illustrate the procedure on the system Γe in Table 5.1. Besides

task schedulability, an additional constraint shall be satisfied R2 + R3 ≤ 20. Since all tasks

have the same weight, the evaluation order is WCET monotonic. The problem is then

reformulated as the following ILP Π.

min dΩ

s.t. Ci ≤ di ≤ Di, ∀i = 1, ..., 4

dΩ ≥
4∑

i=1

βi · Ci = 18

Ri = di,∀i = 1, ..., 4

R2 +R3 ≤ 20

(5.34)

The algorithm then iterates between Step 3 and Step 5.

Iteration 1. Solving the ILP Π in (5.34), and the solution is

d∗ = [d∗1, d
∗
2, d

∗
3, d

∗
4, d

∗
Ω] = [2, 3, 10, 3, 18]

Now note that d1 and d4 are not involved in the objective function or any design constraint,

but they are assigned the lowest possible value. Also for d2 and d3, the solution gives
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d2 + d3 = 13 while the maximum allowed bound for their sum is 20. Thus the deadline

assignments can be further relaxed by solving the following problem Π′ as described in

Step 4.
max d1 + d2 + d3 + d4

s.t. Ci ≤ di ≤ Di,∀i = 1, ..., 4

dΩ ≥
4∑

i=1

βi · Ci = 18

Ri = di,∀i = 1, ..., 4

R2 +R3 ≤ 20

dΩ = 18

(5.35)

Solving Problem (5.35) returns following adjusted solution.

d∗ = [d∗1, d
∗
2, d

∗
3, d

∗
4, d

∗
Ω] = [10, 10, 10, 100, 18]

This new deadline assignment has the same d∗Ω while satisfying all the constraints in Π,

but is more relaxed in deadline assignments of individual tasks (i.e., d1–d4). Construct the

corresponding deadline assignment set R1 as

R1 = {⟨τ1, 10⟩ , ⟨τ2, 10⟩ , ⟨τ3, 10⟩ , ⟨τ4, 100⟩ , ⟨Ω, 18⟩

Since Γe is not R1-schedulable, the following two MUDAs are computed. They both are still

unschedulable, but they dominate R1 thus inducing more relaxed constraints than R1.

U1,1 = {⟨τ1, 10⟩ , ⟨τ2, 20⟩ , ⟨τ3, 40⟩ , ⟨τ4, 100⟩ , ⟨Ω, 34⟩}

U1,2 = {⟨τ1, 10⟩ , ⟨τ2, 20⟩ , ⟨τ3, 19⟩ , ⟨τ4, 100⟩ , ⟨Ω, 43⟩}
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The induced schedulability constraints of the above two MUDAs are shown as follows, which

are added to Π. 
(d1 ≥ 11) ∨ (d2 ≥ 21) ∨ (d3 ≥ 41) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 35)

(d1 ≥ 11) ∨ (d2 ≥ 21) ∨ (d3 ≥ 20) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 44)

Iteration 2. Solving the augmented ILP Π and Π′ returns the following solution

d∗ = [d∗1, d
∗
2, d

∗
3, d

∗
4, d

∗
Ω] = [10, 10, 10, 100, 44]

Construct the corresponding deadline assignment set R2 as

R2 = {⟨τ1, 10⟩ , ⟨τ2, 10⟩ , ⟨τ3, 10⟩ , ⟨τ4, 100⟩ , ⟨Ω, 44⟩}

Γe is not R2-schedulable. Thus we compute two MUDAs as below.

U2,1 = {⟨τ1, 10⟩ , ⟨τ2, 20⟩ , ⟨τ3, 13⟩ , ⟨τ4, 100⟩ , ⟨Ω, 170⟩}

U2,2 = {⟨τ1, 10⟩ , ⟨τ2, 20⟩ , ⟨τ3, 16⟩ , ⟨τ4, 100⟩ , ⟨Ω, 52⟩}

The following induced constraints are updated to the ILP Π.
(d1 ≥ 11) ∨ (d2 ≥ 21) ∨ (d3 ≥ 14) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 171)

(d1 ≥ 11) ∨ (d2 ≥ 21) ∨ (d3 ≥ 17) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 53)

Iteration 3. Solving the ILP Π returns the following solution

d∗ = [d∗1, d
∗
2, d

∗
3, d

∗
4, d

∗
Ω] = [10, 3, 17, 100, 44]

Construct the corresponding deadline assignment set R3 as

R3 = {⟨τ1, 10⟩ , ⟨τ2, 3⟩ , ⟨τ3, 17⟩ , ⟨τ4, 100⟩ , ⟨Ω, 44⟩}
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Γe is not R3-schedulable, and the MUDA below is computed

U3,1 = {⟨τ1, 10⟩ , ⟨τ2, 4⟩ , ⟨τ3, 19⟩ , ⟨τ4, 100⟩ , ⟨Ω, 44⟩}

The following induced constraints are added to the ILP Π.

(d1 ≥ 11) ∨ (d2 ≥ 5) ∨ (d3 ≥ 20) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 45)

Iteration 4. Solving the updated ILP Π and Π′ returns the following solution

d∗ = [d∗1, d
∗
2, d

∗
3, d

∗
4, d

∗
Ω] = [10, 3, 17, 100, 45]

Construct the corresponding deadline assignment set R4 as

R4 = {⟨τ1, 10⟩ , ⟨τ2, 3⟩ , ⟨τ3, 17⟩ , ⟨τ4, 100⟩ , ⟨Ω, 45⟩}

Γe is now R4-schedulable. The returned priority assignment τ2 > τ1 > τ3 > τ4 is the optimal

solution, and the minimized sum of WCRTs is 45.

5.7 Experimental Results

In this section, we present the results of experimental study. We first evaluate the quality of

the heuristics on minimizing weighted average WCRT with only schedulability constraints

(Section 5.4). Two industrial case studies are then used for evaluating the MUDA guided

optimization technique in minimizing weighted average WCRT with extra design constraints.

The first is an experimental vehicle system with advanced active safety features, and the
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second is a simplified version of fuel injection system.

5.7.1 Quality of Heuristics for Min Weighted Average WCRT

In this experiment, we focus on measuring the average suboptimality by the proposed heuris-

tics in Section 5.4. We note the one in Section 5.3 is proven optimal. The following three

methods are compared.

• Scaled-WCET Monotonic: Algorithm 7, with non-increasing scaled-WCET as the

evaluation order in Line 9.

• Scaled-WCET Monotonic + Sifting: Scaled-WCET Monotonic with both Tune-down

and Tune-up adjustments applied afterwards.

• ILP: Formulating the problem as an integer linear program and solving it with CPLEX.

ILP guarantees to return global optimal solutions upon termination, which can then be used

to calculate the suboptimality of the other methods, defined as sub−opt
opt

× 100%, where sub

is the solution from Scaled-WCET Monotonic or Scaled-WCET Monotonic + Sifting, and

opt is the optimal solution from ILP. We use randomly generated periodic systems with

varying number of tasks and system utilization. Each task is assigned a period following

the log-uniform distribution in the range [10, 1000], and a utilization using the UUnifast-

Discard algorithm [50]. The weight for each task is a random number between 1 and 10000.

This is the typical range for coefficients of control cost [103]. We consider both preemptive

scheduling (denoted as P in the figures) and non-preemptive scheduling (denoted as NP in

the figures). Each point in the figures is the average result of 1000 randomly generated task

sets.

We first fix the number of tasks to 20 and vary the total utilization. The results are plotted
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Figure 5.3: Suboptimality for minimizing weighted average WCRT vs. Utilization

in Figure 5.3, where the suboptimality of the heuristics generally increases with utilization.

This is because task WCRTs are more sensitive to priority assignment in systems with higher

utilization. However, the suboptimality is kept to be very small. For example, for both

preemptive scheduling and non-preemptive scheduling, Scaled-WCET Monotonic is about

1% worse than ILP at 90% utilization. Sifting adjustment further improves the solution

quality, as the average suboptimality is below 0.1% for both P and NP.

We then fix the system total utilization at 90% and vary the number of tasks. As in Fig-

ure 5.4, the Scaled-WCET Monotonic heuristic and its sifting adjustment are again able to

provide close-to-optimal solutions.
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Figure 5.4: Suboptimality for minimizing weighted average WCRT vs. Number of Tasks

We now re-draw the above results using Tukey type box plots to illustrate the distribution

of the suboptimaltiy. Each box plot displays the distribution of suboptimality based on the

five number summary: first quartile (Q1), median (Q2), third quartile (Q3), and maximum

and minimum values that are still within the range [Q1− 1.5× (Q3−Q1), Q3+1.5× (Q3−

Q1)]. Figures 5.5 and 5.6 show the results for Scaled-WCET Monotonic. However, since

Scaled-WCET Monotonic + Sifting achieves optimality for more than 75% of the test

cases in both Figures 5.3 and 5.4 (i.e., Q1 and Q3 are both 0), its box plots appear empty

and we omit them. Instead, we only give its maximum sub-optimality. For Figure 5.3, the

maximum sub-optimality is 7% for preemptive, and 10% non-preemptive scheduling. For
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Figure 5.5: Box plots for Scaled-WCET Monotonic (P)

Figure 5.4, the maximum sub-optimality is 25% for preemptive, and 14% non-preemptive

scheduling. Note that since most of the cases Scaled-WCET Monotonic + Sifting gives the

optimal solution, its average suboptimality is always lower than 0.2%.

We also compare the proposed techniques with a default priority assignment as follows. For

preemptive scheduling, we use deadline monotonic priority assignment, which is optimal for

finding a schedulable priority assignment. For non-preemptive scheduling, we use Audsley’s

algorithm with the following revision: at each priority level, instead of randomly picking any

schedulable task, it always selects the task with the longest deadline among all schedulable

ones. Intuitively, this revised Audsley’s algorithm follows the deadline monotonic policy as

much as the system schedulability allows.
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Figure 5.6: Box plots for Scaled-WCET Monotonic (NP)

The default priority assignment has substantial suboptimality. For the systems in Figure 5.3,

the default priority assignment is 57%-67% and 15%-46% worse than the optimal solution

for preemptive scheduling and non-preemptive scheduling respectively. For the systems in

Figure 5.4, the suboptimality is 30%-63% and 7%-40% for preemptive scheduling and non-

preemptive scheduling respectively. This highlights the necessity to develop a problem-

specific approach, as the default solution may be of low quality.
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Table 5.2: Result on Min Average WCRT for the Experimental Vehicle (“N/A” denotes no
solution found)

Method Objective Time Status
MUDA-Guided 305828 234.9s Terminate

ILP N/A ≥ 24h Timeout

5.7.2 Experimental Vehicle System with Active Safety Features

The first industrial case study is an experimental vehicle system with advanced active safety

features. It consists of 29 Electronic Control Units (ECUs) connected through 4 CAN buses,

92 tasks, and 192 CAN messages [41]. Tasks are preemptive and CAN messages are scheduled

non-preemptively. End-to-end delay deadlines are imposed on 12 pairs of source-sink tasks,

which contain a total of 222 unique paths. The allocation of tasks and messages onto

corresponding execution platforms are given. The problem is to find a priority assignment

that minimizes the average WCRT of all tasks and messages, subject to the end-to-end

deadline constraints and the schedulability of individual tasks/messages. As discussed in [41],

the end-to-end delay of a path is the sum of the WCRTs and periods for all tasks and messages

in the path.

We compare the proposed MUDA-based technique (denoted as MUDA-Guided) with a straight-

forward ILP formulation (denoted as ILP). The results are summarized in Table 5.2. The

proposed algorithm MUDA-Guided finds the optimal solution within just 235 seconds while

the ILP solver fails to find any feasible solution within 24 hours.

We now modify the problem to get a weighted version. Each task is assigned a weight of one

plus the number of critical paths the task is involved. This metric has the benefit of being

more aware of the critical tasks. The results are summarized in Table 5.3. Both the proposed

approach (MUDA-Guided) and ILP return the same optimal solution, however, MUDA-Guided

is 10, 000× faster.
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Table 5.3: Result on Min Weighted Average WCRT for the Experimental Vehicle

Method Objective Time Status
MUDA-Guided 7995881 3.36s Terminate

ILP 7995881 51616.65s Terminate

Table 5.4: Result on Min Average WCRT for the Fuel Injection System (“N/A” denotes no
solution found)

Memory MUDA-Guided ILP
Objective Time Status Objective Time Status

8900 Infeasible 138.21s Terminate N/A ≥ 24h Timeout
8950 14090418 183.68s Terminate N/A ≥ 24h Timeout
9000 13392124 5.11s Terminate 16862700 ≥ 24h Timeout
9100 13384171 1.20s Terminate 13487800 ≥ 24h Timeout

Table 5.5: Result on Min Weighted Average WCRT for the Fuel Injection System (“N/A”
denotes no solution found)

Memory MUDA-Guided ILP
Objective Time Status Objective Time Status

8900 Infeasible 483.87s Terminate N/A ≥ 24h Timeout
8950 4.67e+10 352.34s Terminate N/A ≥ 24h Timeout
9000 4.13e+10 22.62s Terminate N/A ≥ 24h Timeout
9100 4.12e+10 0.95s Terminate N/A ≥ 24h Timeout

5.7.3 Fuel Injection System

The second industrial case study is the task system implementing a Simulink model of fuel

injection system [58]. It contains 90 tasks with preemptive scheduling, and 106 communica-

tion links. The communication link carries data between two tasks with harmonic periods,

as required by Simulink. The total system utilization is 94.1%. To protect the share resource

and preserve the same behavior as in the Simulink model, a wait-free buffer is introduced

whenever the executions of the writer task and the reader task may overlap. Hence, the total

memory cost incurred by the wait-free buffers is positively dependent on the task WCRTs:

the wait-free buffer is avoided if there is no preemption between the writer and reader by

ensuring the reader’s WCRT is no larger than the writer’s period [58].
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We consider the problem of minimizing the average and weighted average WCRT of all tasks

subject to the constraint of available memory for wait-free buffers. The weight of each task is

randomly generated between 1 and 10000. We compare the proposed approach MUDA-Guided

with an ILP formulation (denoted as ILP). To test the efficiency of the techniques under

different tightness of design constraints, we give four settings on memory constraints. The

result are summarized in Table 5.4 and Table 5.5. ILP is unable to find any feasible solution

in 24 hours except for two most relaxed memory constraint settings. On the other hand,

MUDA-Guided solves all problem settings within a few minutes, either finding a much better

solution than ILP or detecting infeasibility.

5.8 Related Work

There has been a large body of work for priority assignment in real-time systems scheduled

with fixed priority. The seminal work from Liu and Layland [99] shows that for periodic

task system where task deadline equals period, rate-monotonic (RM) priority assignment

is optimal for schedulability in the sense that there is no system that can be scheduled by

some priority assignment but not by RM. When tasks have constrained deadline (i.e., no

larger than period), deadline monotonic (DM) policy is shown to be optimal for schedula-

bility [6]. For tasks with arbitrary deadline, Audsley’s algorithm [8] guarantees to give a

feasible priority assignment if one exists. It only needs to explore a quadratic O(n2) number

of priority assignments (among the total of n!) where n is the number of tasks. Audsley’s

algorithm is optimal in terms of schedulability to a variety of task models and scheduling

policies, as summarized in the authoritative survey by Davis et al. [48]. The three necessary

and sufficient conditions for its optimality are presented in [50]. Besides schedulability, Aud-

sley’s algorithm can be revised to optimize several other objectives, including the number
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of priority levels [8], lexicographical distance (the perturbation needed to make the system

schedulable from an initial order) [40, 48], and robustness (ability to tolerate additional

interferences) [44].

For complex problems on priority assignment optimization where Audsley’s algorithm do

not apply, the current approaches include (a) meta heuristics such as simulated annealing

(e.g., [22, 142]) and genetic algorithm (e.g., [75]); (b) problem specific heuristics (e.g., [127,

146, 156]); and (c) directly applying existing optimization frameworks such as branch-and-

bound (BnB) (e.g., [147]) and ILP (e.g., [58, 169]). These approaches either do not have

any guarantee on solution quality, or suffer from scalability issues and may have difficulty to

handle large industrial designs. Differently, a framework based on the concept of unschedu-

lability core, i.e., the irreducible set of priority orders that cause the system unschedulable,

is proposed in [160]. However, it does not apply to problems studied in this chapter, i.e.,

those involving the task WCRTs in the objective or additional constraints.

With respect to design optimization problems which are sensitive to task response times,

a branch-and-bound algorithm is developed to optimize both priority and period assign-

ments [103]. In the paper, a linear lower bound is adopted as an approximation to response

time. The problem of optimizing period assignment for distributed systems is formulated

in geometric programming framework, where the task WCRT is approximated with a linear

function on task rates [41]. Lukasiewycz et al. [102] study the problem of ID (i.e., priority)

obfuscation for CAN messages. The optimization procedure contains a first stage of mini-

mizing the average task WCRT by formulating the problem as a Quadratically Constrained

Integer Quadratic Program. In [134], a genetic algorithm is used for the problem of priority

and period assignment that minimize the sum of end-to-end delays in networked control sys-

tems. Zhu et al. [169] consider the problem of finding task allocation and priority assignment

that maximize the minimum end-to-end laxity in distributed systems. The approach is to
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divide the problem into two stages, each of which is then formulated as an ILP program. Our

approach differs from all the above in that it designs a customized optimization procedure

specialized for the minimization of (weighted) average WCRT.

5.9 Conclusion

In this chapter, we propose an optimization framework that efficiently finds a schedulable

priority assignment while minimizing the weighted average WCRT for tasks with constrained

deadlines and preemptive/non-preemptive scheduling. It significantly reduces the runtime

while the optimality is only influenced minimally or not at all as indicated in the case studies.

We plan to further investigate optimization techniques for other types of real-time systems

with different task models and scheduling policies.



Chapter 6

A Unified Framework for Period and

Priority Optimization in Distributed

Hard Real-Time Systems

6.1 Introduction

Modern embedded systems in application domains such as avionics, automotive, and smart

buildings contain complex functional contents deployed on a distributed platform. For ex-

ample, new active safety and autonomous driving features are integrated in today’s vehicles,

which collect data from 360◦ sensors (e.g., camera, radar, and LIDAR) to understand the

position of surrounding objects and detect hazardous conditions. Once a hazard is detected,

they inform the driver and/or provide control overlays to reduce the risk. Two examples

are adaptive cruise control and lane keeping systems. These embedded systems have the

following characteristics:

• Functional dependencies are modeled by a complex graph rather than a set of linear

transactions. At the user level, timing constraints and performance metrics are expressed

on end-to-end paths from sensors to actuators. In addition, sensor, control, and actuator

functions operate with their own periodic tasks, with constraints on periods imposed by the

216
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need for stability and accuracy.

• The system is inherently multi-rate, because of technological constraints (e.g. off-the-

shelf sensors operate at different rates), but also because the same inputs and outputs are

shared by multiple control functions, characterized by different control laws with their period

constraints. Merging flows with different rates and communication with oversampling/un-

dersampling are common.

In this chapter, we consider the optimization of period and priority assignment, a problem

common in the system-level design stage of such embedded systems. Specifically, given an

allocation of tasks and messages, our approach automatically determines the periods and

priorities to assign to all tasks and messages, such that hard real-time constraints including

end-to-end deadline requirements are satisfied. Clearly, the solution quality depends on both

and, ideally, the two decision variables should be optimized at once. However, in the past

this optimization problem is considered to be too large, such that an integrated problem

formulation cannot be solved in feasible time [42]. Thus, existing approaches are to optimize

periods and priorities separately and possibly iteratively.

On the contrary, we develop a unified framework capable of co-optimizing both periods and

priorities for large industrial designs. Our observation is that existing approaches try to

directly leverage standard mathematical programming frameworks such as geometric pro-

gramming (GP), but they face substantial difficulty due to the complexity of response time

analysis. Instead, we establish an abstraction layer which hides the details of response time

analysis but still faithfully respects its accuracy. This allows us to prudently combine the

power of commercial integer linear programming (ILP) solver for generic branch-and-bound

based search and customized algorithms to explore problem-specific optimization structures.

The contributions and chapter organization are as follows. Section 6.2 discusses the re-
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lated work. Section 6.3 presents the system model including a summary on the analysis of

the timing metrics, and defines the optimization problem. Section 6.4 introduces a set of

concepts including Maximal Unschedulable Period and Deadline Assignment (MUPDA), to

accurately capture the real-time schedulability conditions. Section 6.5 presents an optimiza-

tion framework based on these concepts, to judiciously combine the efficient algorithm for

calculating MUPDA and ILP solver for generic branch-and-bound. Section 6.6 applies the

framework to two industrial case studies. Compared to an existing GP-based approach that

only optimizes the periods, our approach runs up to 100× faster while providing much better

solutions. Finally, the chapter is concluded in Section 6.7.

6.2 Related Work

The problem of priority assignment in hard real-time systems scheduled with fixed priority

has been studied extensively. See an authoritative survey by Davis et al. [53]. Among them,

Audsley’s algorithm [9] is optimal for finding a schedulable priority assignment for a variety of

task models and scheduling policies, as summarized in Davis et al. [53]. The three necessary

and sufficient conditions for its optimality are presented in [50]. Besides schedulability,

Audsley’s algorithm can be revised to optimize several other objectives, including the number

of priority levels [9], lexicographical distance (the perturbation needed to make the system

schedulable from an initial priority order) [40, 53], robustness (ability to tolerate additional

interferences) [44], and as a subproblem of this chapter, the average worst case response

time [161].

For complex problems on priority assignment optimization where Audsley’s algorithm do

not apply, the current approaches include (a) meta heuristics such as simulated annealing

(e.g., [22, 142, 154]) and genetic algorithm (e.g., [75, 150]); (b) problem specific heuristics
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(e.g., [127, 146, 156]); and (c) directly applying existing optimization frameworks such as

branch-and-bound (BnB) (e.g., [147]) and ILP (e.g., [58, 153, 155]). These approaches either

have no guarantee on solution quality, or suffer from scalability issues and may have difficulty

to handle large industrial designs.

The approaches are used for period optimization or the co-optimization of period and pri-

ority. On single-core platforms, examples include [26, 28, 104, 132]. [132] approximates

the schedulability condition with a utilization bound, hence the solution may be arbitrarily

suboptimal. Bini et al. [28] develop a branch-and-bound (BnB) based algorithm and a fast

suboptimal heuristic. In another work, Bini et al. [26] derive analytical solutions that are

specific for period assignment to optimize a particular form of control performance, and the

method relies on an approximate response time analysis. A BnB algorithm is built on top

of [26] to additionally find the best priority assignment [104]. Davare et al. [42] consider

a simpler problem than this chapter, the period optimization in distributed hard real-time

systems. They formulate it in mixed integer GP (MIGP) framework, and also propose an

iterative procedure that relies on an approximate, direct formulation in GP. This procedure

is also leveraged in several recent works on period optimization, such as [56].

Like our approach, Zhao et al. develop customized optimization procedures that are exact

and efficient [160, 161, 162]. However, these works [160, 161, 162] consider the problem of

priority assignment and assume periods are fixed. Different from all the above, we are the

first to simultaneously optimize periods and priorities in distributed hard real-time systems

with end-to-end deadline constraints. Although we also build a customized procedure, the

concepts and algorithms from [160, 161, 162] are not directly applicable.



220
Chapter 6. A Unified Framework for Period and Priority Optimization in Distributed

Hard Real-Time Systems

6.3 System Model and Notation

We consider a distributed real-time system represented by a directed acyclic graph Γ =

{V ,L}. V = {τ1, · · · , τn} denotes the set of objects, each representing a scheduling entity

(i.e., task or message). L is the set of directed edges representing the communication flow

between the objects. Also, R = {r1, · · · , rc} is the set of (possibly heterogeneous) resources

supporting the execution of the objects, i.e., ri is a microcontroller for task execution or a

bus for message transmission. In this work, we assume that mapping of objects to resources

is fixed, and is not part of the decision variables.

An object τi is characterized by a worst-case execution time (WCET) Ci, an activation

period Ti, a deadline Di, and a scheduling priority πi. We assume that Ci, Di and Ti take

only integer values. We do not assume any particular type of resources as long as they are

scheduled with partitioned fixed priority, and the objects can be either preemptive or non-

preemptive. Such scheduling policies are widely adopted in different real-time applications

and standards, such as automotive AUTOSAR/OSEK real-time operating systems (RTOS)

standard, the modern RTOSes including LynxOS and QNX, and the Controller Area Network

(CAN) protocol and its extension CAN-FD (CAN with Flexible Data-rate). τi is schedulable

if its worst-case response time (WCRT) or simply response time, denoted as Ri, is no larger

than its deadline Di.

A directed edge ⟨τi, τj⟩ exists in L if τi writes to τj. At the start of execution, τj samples

the input of τi, which are then processed during its execution. Upon completion, the result

is delivered to its output for its successors to sample. An end-to-end path p in the system

consists of a set of directed edges connecting from a source to a sink, which represents a chain

of communicating objects. One semantics of the end-to-end latency of path p is the total

amount of time from the instant when the input data is first sampled by the source object
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to the instant when the output is produced by the sink object. For periodic activation, the

worst case end-to-end latency is the summation of the processing latency of each object τj,

i.e.,
∑

j lj where lj = Rj + Tj [42].

Intuitively, this can be understood as a scenario where τj just misses the output of τi produced

at the start of its current execution and thus has to wait until the next activation to sample

it. This introduces a sampling latency equal to the period of τj. Correspondingly, the

end-to-end latency of path pi is then [42]

Lp =
∑
∀j∈p

li =
∑
∀j∈p

(Ri + Ti) (6.1)

When communicating tasks have harmonic periods and are allocated on the same micro-

controller, the analysis can be improved assuming that the designer can select the relative

activation phase of all tasks [60]. In addition, other semantics on end-to-end latency may

exist, and we refer the readers to [64].

Each path p is characterized by an end-to-end deadline Dp requiring that Lp ≤ Dp. A correct

design of the system should satisfy not only the schedulability of each object, but also the

end-to-end deadline constraints for all paths.

We now provide a summary on the response time analysis. For fixed priority preemptive

scheduling with constrained (i.e., Di ≤ Ti) or implicit (i.e., Di = Ti) deadline, the WCRT

Ri of an object τi is the least fixed-point of the following equation

Ri = Ci +
∑

∀τj∈hp(i)

⌈
Ri

Tj

⌉
Cj (6.2)

where hp(i) represents the set of higher priority objects allocated on the same execution

platform as τi.
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For arbitrary deadline, Ri may not occur in the first instance in the busy period, and it is

necessary to check all instances in the busy period. Specifically, Ri is computed as follows

Ri(q) = (q + 1)Ci +
∑

∀τj∈hp(i)

⌈
Ri(q)

Ti

⌉
Cj

Ri = max
q
{Ri(q)− qTi}

where q = 0...q∗ until Ri(q
∗) ≤ (q∗ + 1)Ti

(6.3)

For non-preemptive scheduling, we summarize the accurate analysis and a safe approximation

proposed in [45]. Specifically, it is necessary to check all instances in the busy period even if

the object has constrained deadline. τi now suffers a worst case blocking time equal to the

maximum WCET from the lower priority objects

Bi = max
∀τj∈lp(i)

{Cj} (6.4)

where lp(i) is the set of lower priority objects allocated on the same platform as τi. The

longest busy period tbi at the priority level of τi is the fixed point of the following equation

tbi = Bi +

⌈
tbi
Ti

⌉
Ci +

∑
∀τj∈hp(i)

⌈
tbi
Tj

⌉
Cj (6.5)

The WCRT of τi is then computed as follows

wi(q) = qCi +Bi +
∑

∀τj∈hp(i)

⌈
wi(q)

Tj

⌉
Cj

Ri = max
q=0...q∗

{wi(q)− qTi + Ci} where q∗ =

⌈
tbi
Ti

⌉
− 1

(6.6)

For constrained deadline, τi can either suffer the blocking of a lower priority object or the
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push through interference from the previous instance of the same object, but not both [45].

Hence, it is sufficient to only check the first instance in the busy period

Ri = Ci + B̂i +
∑

∀τj∈hp(i)

⌈
Ri − Ci

Tj

⌉
Cj (6.7)

where B̂i is defined as B̂i = max{Ci, Bi}.

6.3.1 Problem Definition

In this chapter, we consider the design optimization problem where the decision variables

include the set of periods T and priority assignments P for all tasks/messages. The feasibil-

ity constraints include the schedulability of each task/message and the end-to-end deadline

requirements for all critical paths. Moreover, the period assignments must maintain har-

monicity for the specified pairs of objects. This can be enforced by the following constraint

Ti = hi,j · Tj, ∀ harmonicity pair τi, τj (6.8)

where hi,j represents the harmonicity factor and is integral. When hi,j is a given constant,

(6.8) is simply a linear constraint. When hi,j is also a decision variable (i.e,. the designer

is allowed to choose the harmonicity factor), (6.8) becomes a quadratic integer constraint.

Such harmonicity constraints may be motivated by the possibility to reduce the end-to-end

latency [60], but also may be imposed by development tools such as Simulink (which requires

any pair of communicating functions have harmonic periods [105]).

Also, period bounds may be specified, especially for feedback control applications

T lb
i ≤ Ti ≤ T ub

i , ∀τi (6.9)
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Finally, the total utilization of an execution platform rk may not exceed a specified threshold

Umax
k for future extensibility. ∑

τi∈rk

Ci

Ti

≤ Umax
k , ∀rk (6.10)

Formally, the problem can be expressed as follows.

min
∀X

F (X)

s.t. Schedulability: Ri ≤ Di, ∀τi

Lp ≤ Dp, ∀p

(6.8)− (6.10)

(6.11)

where X represents the set of decision variables including the periods T and priorities P of

the tasks and messages. F (X) represents an optional objective function. In this chapter, we

consider the objective of minimizing the average WCRT over a selected set of tasks/messages

Ω, as adopted in several previous works [42, 161]

F (X) =
∑
∀τi∈Ω

Ri (6.12)

This metric is a quantification of the responsiveness of the selected tasks/messages. Although

our framework may be extended to other objectives, we leave it to future work.

6.4 The Concept of MUPDA

Before presenting our approach, we first discuss the challenges and the possible drawbacks

from existing exact algorithms on period optimization for distributed hard real-time sys-

tems [42]. Specifically, [42] (like many other works on design optimization of hard real-time
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systems, as discussed in Section 6.2) tries to leverage standard mathematical programming

framework, including a direct formulation of the response time analysis. This suffers from

the following issues.

• Response time analysis is notoriously inefficient to formulate in standard mathematical

programming framework. Consider the analysis in (6.2) and the simplified problem of op-

timizing period (as addressed in [42]). It has been shown that a mixed integer geometric

programming (MIGP) formulation of the analysis requires O(n2) number of integer variables,

each for calculating the number of interferences
⌈
Ri

Tj

⌉
[42]. This makes the formulation diffi-

cult to solve even for small and medium size problems. To avoid this difficulty, [42] introduces

an iterative procedure but still relies on a direct formulation in GP. Specifically, it introduces

an additional set of parameters αi,j and approximates the WCRT analysis as follows

R′
i = Ci +

∑
∀τj∈hp(i)

(
R′

i

Tj

+ αi,j)Cj (6.13)

The analysis is then formulated as a geometric program integrated into an iterative procedure

to adjust αi,j. The cost of these approximations however, is a possible loss of optimality and

sometimes the procedure may not even converge.

• The applicability of these approaches is typically limited to the schedulability analysis

such as (6.2) and (6.7), which only needs to evaluate the first instance in the busy period

for estimating WCRT. For more sophisticated scenario (e.g., arbitrary deadline setting) that

requires analysis like (6.3) and (6.6), the major difficulty is that the number of instances

q∗ in the busy period cannot be determined in advance, as the length of the busy period is

unknown a priori when periods are variables. This essentially makes it impractical for any

possible formulation in standard mathematical programming.

• When priority assignment is also part of the decision variables, the problem becomes even
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Table 6.1: An Example Task System Γe

τi T lb
i T ub

i Ci τi T lb
i T ub

i Ci

τ1 0 10 2 τ2 0 20 3
τ3 0 40 10 τ4 0 100 3

more challenging. MIGP is no longer able to handle it due to the additional constraints from

priority assignment. For example, the asymmetric constraints require that if τi has a higher

priority than τj (pi,j = 1), then τj must have a lower priority than τi (pj,i = 0) [160]. Such

constraints have the form of pi,j + pj,i = 1, which is incompatible with MIGP [107]. This

hinders the possibility of achieving significant improvement of optimization quality brought

by co-optimizing both period and priority assignment.

Instead, we propose a technique that avoids the above pitfalls in existing approaches. The

main idea is to use a set of compact constraints for schedulability that hides the details

of the underlying schedulability analysis from the mathematical programming solver. Our

approach is applicable to two scenarios. The first assumes that priority assignment is given

and periods are the decision variables. The second considers the more general problem where

both periods and priority assignments are decision variables. Both variants of the problem

can be solved by the proposed framework. For the first, the proposed technique is optimal

w.r.t. the objective function for any schedulability analysis that is sustainable w.r.t. periods

and deadlines (e.g., all the analyses summarized in Section 6.3). For the second version, the

proposed technique preserves optimality with the WCRT analysis in (6.2) and (6.7), and is

close to optimal for others.

In this section, we introduce a set of concepts for abstracting the schedulability conditions,

including Maximal Unschedulable Period-Deadline Assignment (MUPDA). MUPDA is an

extension of the concept of MUDA (maximal unschedulable deadline assignment) proposed

in [161], by adding period assignment information.
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For clarity, we use an illustrative example system in Table 6.1 in this section and Section 6.5.

All the four tasks are allocated on the same execution platform. They are preemptive with

implicit deadline, hence the WCRT analysis in (6.2) is accurate. There is one end-to-end

path τ2 → τ3 with a deadline requirement of 63. There is no harmonicity constraint or

utilization bound. Both periods T and priorities P are decision variables, thus the design

optimization of the example system is

min
∀T,P

R1 +R2 +R3 +R4

s.t. Schedulability : Ri ≤ Ti,∀τi

R2 + T2 +R3 + T3 ≤ 63

T lb
i ≤ Ti ≤ T ub

i , ∀τi

(6.14)

Definition 19. [161] A Virtual Deadline (VD) is a tuple ⟨τi, di⟩D where di is a positive

integer, which represents an over-estimated WCRT Ri ≤ di. A WCRT summation bound is

a tuple ⟨Ω, d⟩W where d is a positive integer. It represents the following constraint

∑
∀τi∈Ω

Ri ≤ d (6.15)

Intuitively, in ⟨τi, di⟩D, di is an estimated value on the WCRT Ri that shall be pessimistic

(such that we will not give false positive on the schedulability of τi). Similarly, d in ⟨Ω, d⟩W

is an over-estimation on the objective (the summation of WCRTs).

Definition 20. A period assignment is a tuple ⟨τi, ti⟩T where ti ≤ T ub
i is a positive integer.

It represents that the period of τi is assigned to be ti, namely Ti = ti.

Definition 21. A period-deadline assignment, or shortly a T-D assignment R is a collection

of (i) a virtual deadline ⟨τi, di⟩D for each τi, (ii) a period assignment ⟨τi, ti⟩T for each τi, and
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(iii) a WCRT summation bound ⟨Ω, dΩ⟩W . Namely, R can be expressed as

R = { ⟨τ1, d1⟩D .. ⟨τn, dn⟩D , ⟨τ1, t1⟩T .. ⟨τn, tn⟩T , ⟨Ω, dΩ⟩W}

The following definition gives a partial order relationship among period-deadline assignments.

Definition 22. R1 is said to dominate R2, denoted as R1 ⪰ R2, if the following conditions

hold.
di ≥ d′i, ∀ ⟨τi, di⟩

D ∈ R1, ⟨τi, d′i⟩
D ∈ R2

ti ≥ t′i, ∀ ⟨τi, ti⟩
T ∈ R1, ⟨τi, t′i⟩

T ∈ R2

dΩ ≥ d′Ω, ⟨Ω, dΩ⟩
W ∈ R1, ⟨Ω, d′Ω⟩

W ∈ R2

(6.16)

Equivalently, R1 ⪰ R2, if and only if R1 is component-wise no smaller than R2. R1 is said

to strictly dominate R2, denoted as R1 ≻ R2, if R1 ⪰ R2 and R1 ̸= R2.

Example 6.1. Consider the following T-D assignments for Γe

R1 ={⟨τ1, 10⟩D , ⟨τ2, 20⟩D , ⟨τ3, 40⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}

R2 ={⟨τ1, 10⟩D , ⟨τ2, 15⟩D , ⟨τ3, 40⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}

R3 ={⟨τ1, 10⟩D , ⟨τ2, 20⟩D , ⟨τ3, 30⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}

R1 ⪰ R2 and R1 ⪰ R3, as the virtual deadlines, period assignments and WCRT summation

bound in R1 is component wise no smaller than those of R2 and R3. Also, neither R2 ⪰ R3

nor R3 ⪰ R2: compared to R2, R3 has a larger virtual deadline on τ2 but a smaller virtual

deadline on τ3. Thus, Definition 22 defines a partial order among all T-D assignments.
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Definition 23. Let R = {⟨τ1, d1⟩D , ... ⟨τn, dn⟩D, ⟨τ1, t1⟩T ,...⟨τn, tn⟩T , ⟨Ω, dΩ⟩W} be a T-D as-

signment. The system Γ is R-schedulable, or informally R is schedulable, if and only if there

exists a priority assignment such that (i) Ti = ti,∀ ⟨τi, ti⟩T ∈ R; (ii) Ri ≤ di,∀ ⟨τi, di⟩D ∈ R;

and (iii)
∑

τi∈ΩRi ≤ dΩ. That is, R is schedulable if and only if there exists a priority assign-

ment that respects all the assignments on periods, virtual deadlines, and WCRT summation

bound in R.

Example 6.2. Consider the following T-D assignments

R1 ={⟨τ1, 10⟩D , ⟨τ2, 20⟩D , ⟨τ3, 40⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}

R2 ={⟨τ1, 10⟩D , ⟨τ2, 15⟩D , ⟨τ3, 2⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}

R3 ={⟨τ1, 10⟩D , ⟨τ2, 15⟩D , ⟨τ3, 2⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 18⟩W}

R1 assigns the most relaxed period, virtual deadlines and WCRT summation bound and is

schedulable by rate-monotonic priority assignment. R2 is obviously unschedulable as the

virtual deadline on τ3 cannot even accommodate its worst-case execution time. R3 differs

from R1 in the WCRT summation bound. Though individual virtual deadlines can be

satisfied for R3 by rate-monotonic priority assignment, its WCRT summation bound, which

equals the summation of WCETs of all objects, obviously cannot be satisfied for any priority

assignment. Thus R3 is also unschedulable.

We now reformulate the original problem (6.11) into the following form with the concept of
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R-schedulability.
min
∀R

dΩ

s.t. Γ is R-schedulable

L′
p ≤ Dp, ∀p

(6.8)′ − (6.10)′

(6.17)

L′
p is calculated in the same way as Lp, but instead Ri is replaced with di where ⟨τi, di⟩D ∈ R

and Ti is replaced with ti where ⟨τi, ti⟩T ∈ R. Similarly, (6.8)’-(6.10)’ are derived from (6.8)-

(6.10) by replacing Ti with ti.

Informally, the reformulated problem (6.17) is to find a schedulable R with minimum value

on dΩ that satisfies all the end-to-end latency deadline constraints and (6.8)-(6.10). The

equivalence between (6.17) and (6.11) is straightforward. Consider a feasible solution of

(6.11). Construct a period-deadline assignment R by setting di = Ri for all virtual deadlines

⟨τi, di⟩D, ti = Ti for all period assignments ⟨τi, ti⟩T and dΩ =
∑

∀τi∈Ω Ri. R is also a feasible

solution of problem (6.17). Similarly, consider a feasible solution R of problem (6.17). Since

R-schedulability guarantees that Γ is feasible with Ri ≤ di for all objects and
∑

τi∈R Ri ≤ dΩ

under period assignment Ti = ti for all τi, R also implies the existence of a feasible solution

for (6.11).

We now introduce an abstraction scheme that efficiently models the feasibility region of

R-schedulability for (6.17).

Theorem 33. Let R be an unschedulable period-deadline assignment. Any R′ such that

R ⪰ R′ is also unschedulable.

Proof. The schedulability analyses in (6.2)–(6.7) are all sustainable w.r.t. deadlines and

periods of the objects [16], i.e., increasing the deadline or period of any object can only

make the system more schedulable. The sustainability property also trivially extends to the
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WCRT summation bound dΩ in R, hence the proof.

Theorem 33 implies that each unschedulable period-deadline assignment R captures also the

unschedulability of other period-deadline assignments R′ dominated by it. The usefulness

of the theorem is that it generalizes from one unschedulable period-deadline assignment to

a potentially large set of unschedulable ones. The following definition introduces a special

type of period-deadline assignment that is “most general” in capturing unschedulability.

Definition 24. U is a maximal unschedulable period-deadline assignment (MUPDA) if it

satisfies the following condition

• Γ is not U -schedulable;

• For all R such that R ≻ U , Γ is R-schedulable.

Example 6.3. Consider the following T-D assignments

R1 ={⟨τ1, 10⟩D , ⟨τ2, 20⟩D , ⟨τ3, 10⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 10⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}

R2 ={⟨τ1, 10⟩D , ⟨τ2, 20⟩D , ⟨τ3, 40⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 16⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}

R1 is unschedulable for the following reason. τ1 must have higher priority than τ3 as

C3 ≥ T ub
1 . Under this constraint, the virtual deadline and period assignment for τ3 can-

not accommodate its schedulability. R2 is also unschedulable. Consider the rate-monotonic

priority assignment, known to be optimal for schedulability of individual tasks. τ2 suffers

the interference of at least two instances of τ1 and one instances of τ3. Thus R2 is at least

17. When T3 = 16, τ2 suffers one more instance of interference from τ3, which violates its

schedulability. However, If T3 is increased by one (i.e., T3 = 17), τ2 will be schedulable.
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With the above result, R1 is not a MUPDA since R2 ⪰ R1 and R2 is unschedulable. R2 is

a MUPDA however, as all R ⪰ R2 (which only consist of Rs with larger period assignment

on τ3, as all other virtual deadlines, periods assignment and WCRT summation bound are

at their upper bounds) are schedulable.

Remark 6.4. A MUPDA is a maximal generalization of unschedulable period-deadline

assignment in the sense that there is no other unschedulable R that strictly dominates

U . MUPDAs are not unique: it is possible that a system Γ has multiple MUPDAs by

Definition 24.

We now show how MUPDAs can be used to derive an abstract form of schedulability con-

straint for use in problem (6.17). A MUPDA

U = {⟨τ1, d′1⟩
D
, ... ⟨τn, d′n⟩

D
, ⟨τ1, t′1⟩

T
, ... ⟨τn, t′n⟩

T
, ⟨Ω, d′Ω⟩

W} (6.18)

suggests that all period-deadline assignments

R = {⟨τ1, d1⟩D .. ⟨τn, dn⟩D , ⟨τ1, t1⟩T .. ⟨τn, tn⟩T , ⟨Ω, dΩ⟩W}

satisfying the following constraints are unschedulable


di ≤ d′i, ∀τi

ti ≤ t′i, ∀τi

dΩ ≤ d′Ω,

(6.19)

Contra-positively, the following constraints are necessary to be satisfied for any schedulable
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Algorithm 10 Algorithm for Computing MUPDA
1: function MUPDA(System Γ, Unschedulable R)
2: for each element ζ ∈ R (ζ may be ⟨τi, v⟩D or ⟨τi, v⟩T or ⟨Ω, v⟩W ) do
3: Use binary search to find out the largest value u that v can be increased to while

keeping R unschedulable
4: Update the value of v to be u
5: end for
6: return R
7: end function

period-deadline assignment R.

R ⪯̸ U ⇔ ¬


di ≤ d′i, ∀τi

ti ≤ t′i, ∀τi

dΩ ≤ d′Ω,

⇔

∥∥∥∥∥∥∥∥∥∥∥
di > d′i, ∀τi

ti > t′i, ∀τi

dΩ > d′Ω,

(6.20)

where ∥ represents the logical OR (disjunction) operation.

We call (6.20) MUPDA implied constraints by U . Our general idea is to use (6.20) as the

form of constraints for shaping the feasibility region of R-schedulability in problem (6.17).

The disjunction can be formulated as integer linear constraint [160].

We now discuss how MUPDAs can be obtained given an unschedulable R. This is detailed

in Algorithm 10. Specifically, Algorithm 10 is based on the property that the schedulability

analysis is sustainable w.r.t. deadline, period, and WCRT summation. When performing

the binary search for determining the largest value u (Line 2-3) on a particular element

(virtual deadline, period assignment, or WCRT summation bound) in R, the other elements

are kept unchanged. If the system is still unschedulable even by setting v to the upper

bound, then v is updated to the upper bound. The order of visit in Line 2 may affect

the returned MUPDA in the sense that different orders may return different MUPDAs. To

compute multiple MUPDAs from a single R, it suffices to perturb R into R′ such that any
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previously computed MUPDA U does not dominate R′, i.e., U ⪰̸ R′. This guarantees that

the MUPDA computed from R′ is different from all previous ones.

Example 6.5. We now illustrate Algorithm 10 by applying it toR1 in Example 6.3. Suppose

the algorithm iterates through each element in R1 according to the order shown in the

example. ⟨τ1, 10⟩D and ⟨τ2, 20⟩D are explored in the first two iterations, but they already at

their upper bound, thus nothing is performed. In the third iteration, the algorithm considers

⟨τ3, v⟩D where v = 10. It uses binary search to find out the maximum value v can be increased

to while maintaining unschedulability, assuming all other elements in R1 remain unchanged.

By the reasoning in Example 6.3, even if v is increased to the upper bound 40, τ2 is still

unschedulable due to ⟨τ3, 10⟩T . Thus ⟨τ3, 10⟩D is updated to ⟨τ3, 40⟩D. Similarly, when the

algorithm iterates on ⟨τ3, 10⟩T , it discovers that the system becomes schedulable after T3

is increased to 17. Thus it updates ⟨τ3, 10⟩T to ⟨τ3, 16⟩T , the largest value that maintains

unschedulability. In the end, given R1 as input, Algorithm 10 finds the MUPDA R2 shown

in Example 6.3.

Next we consider computing a second MUPDA from R1. The key is to perturb R1 into R′
1

such that R′
1 ⪯̸ R2. This can be done, for example, by setting ⟨τ3, 10⟩T in R1 to ⟨τ3, 17⟩T ,

which gives
R′

1 ={⟨τ1, 10⟩
D , ⟨τ2, 20⟩D , ⟨τ3, 10⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 17⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}

R′
1 is still unschedulable as the deadline assignment ⟨τ3, 10⟩D, which equals C3, is too small.

Applying Algorithm 10 gives the following MUPDA.

R′
2 ={⟨τ1, 10⟩

D , ⟨τ2, 20⟩D , ⟨τ3, 11⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 17⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}
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Algorithm 11 R-schedulability test with priority assignment
1: function R-schedulability(System Γ, T-D Assignment R)
2: Set Ti = ti for all ⟨τi, ti⟩T ∈ R
3: Compute WCRT Ri for each object τi
4: if Ri ≤ di, ∀ ⟨τi, di⟩D ∈ R then
5: if

∑
∀τi∈Ω Ri ≤ dΩ, where ⟨Ω, dΩ⟩W ∈ R then

6: return true
7: end if
8: end if
9: return false

10: end function

Algorithm 10 requires an efficient procedure to check the schedulability of R (Line 3). As

mentioned earlier in this section, we consider two scenarios. The first assumes that priority

assignment is given. In this case, R-schedulability is straightforward to test, by (i) setting

the period of each object according to the period assignment in R; (ii) computing the WCRT

Ri of each object τi as well as the summation
∑

∀τi∈Ω Ri; and (iii) verifying if all constraints

on schedulability and WCRT summation are satisfied by R. The procedure is summarized

in Algorithm 11. In this scenario, the algorithm is exact w.r.t. to any given response time

analysis.

The second scenario assumes the priority assignments are also variables. This is harder as

an exact R-schedulability test requires to solve an optimization problem as below

min
∀P

∑
∀τi∈Ω

Ri

s.t. System Γ is schedulable
(6.21)

The optimal objective is then compared to the WCRT summation bound dΩ specified in R,

which determines whether R is schedulable. Though the problem is generally difficult, [161]

shows that for systems with constrained deadlines using response time analyses in (6.2) and

(6.7), a variant of Audsley’s algorithm that always consider tasks with larger WCET first
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Algorithm 12 R-schedulability test without priority assignment
1: function R-schedulability(System Γ, T-D Assignment R)
2: Set Ti = ti for all ⟨τi, ti⟩T ∈ R.
3: Set Di = di for all ⟨τi, di⟩D ∈ R.
4: Assign priorities according to [161, Algorithm 1]
5: Compute WCRT Ri for each object τi
6: if Ri ≤ di, ∀ ⟨τi, di⟩D ∈ R then
7: if

∑
∀τi∈Ω Ri ≤ dΩ, where ⟨Ω, dΩ⟩W ∈ R then

8: return true
9: end if

10: end if
11: return false
12: end function

at each priority level is optimal for the above problem. For arbitrary deadline setting or

response time analyses in (6.3) and (6.6), this algorithm does not guarantee optimality but

is typically very close to optimal[161].

Algorithm 12 summarizes our proposed procedure for testing R-schedulability in the second

scenario. It differs from Algorithm 11 in Lines 3–4: in Line 3 Algorithm 12 updates the

deadline of each object to be the virtual deadline in R, which is necessary for performing

priority assignment in Line 4.

Another issue is that the total number of MUPDAs for a system may be exponential to the

number of tasks. It is obviously impractical to compute all of them and add the implied

constraint to problem (6.17). However, we observe that in most cases, not all MUPDAs are

related to the objective and end-to-end latency constraints. In fact, the optimal solution

of (6.17) can usually be defined by a small number of MUPDA implied constraints. In the

next section, we propose an iterative procedure that prudently explores only a subset of all

MUPDAs that are sufficient to establish the optimal solution.
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6.5 MUPDA Guided Optimization

We now present the complete optimization framework, an iterative procedure as summarized

in Figure 6.1. The basic idea is to leverage ILP solvers for generic branch-and-bound based

search and the efficient algorithms for calculating MUPDAs. Specifically, at any point of

the procedure execution where a subset U of all MUPDAs are calculated, we partition the

problem into two parts: (i) a relaxation Π of the problem (6.17) that includes MUPDA

implied constraints from U (and implicitly part of the schedulability conditions), the end-to-

end deadline constraints, and (6.8)’–(6.9)’, which will be handled by the ILP solver; and (ii)

those constraints not included in Π, which will be handled by the algorithms in Section 6.4.

To make Π compatible with ILP, the MUPDA implied constraints, as in the form of (6.20),

can be formulated as integer linear constraints by adding a set of auxiliary binary vari-

ables [160]. Also, linearization techniques [116] can convert (6.8)’ to integer linear con-

straints.

Finally, we enforce (6.10)’ by modifying Algorithms 11 and 12. Specifically, before verifying

schedulability, the total utilization of each execution platform is checked. If any utilization

bound is violated, the system is considered to be R-unschedulable. In this sense, we extend

the definition of R-schedulability to include also the utilization bound constraints in addi-

tion to the system schedulability. We note this is consistent since (6.10)’, like the system

schedulability constraints, is also sustainable to the periods and deadlines: increasing the

periods and deadlines can only make (6.10)’ more satisfiable. In the rest of the section, we

slightly abuse the term “schedulability” to also include the utilization bound constraints.

We now detail the procedure in a step-wise manner.

Step 1-Initial Problem. The algorithm first starts with the following optimization problem
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Π,
min
∀R

dΩ

s.t. R ⪯̸ U , ∀U ∈ U (as formulated in (6.20))

L′
p ≤ Dp, ∀p

(6.8)′ − (6.9)′

(6.22)

where U = ∅ initially (i.e., no MUPDA implied constraints).

Step 2-Solve Problem Π. The second step solves the optimization problem Π. If the Π is

infeasible, then the algorithm terminates reporting the infeasibility. This is possible when,

for example, the end-to-end deadlines are too tight such that no schedulable solution can

satisfy them. Otherwise solving Π returns a solution R∗ that is optimal w.r.t. the current

known set of MUPDAs U.

Step 3-R∗ Relaxation. Problem Π only concerns minimizing dΩ. The values assigned to

other virtual deadlines ⟨τi, di⟩D and periods ⟨τi, ti⟩D for all τi /∈ Ω, though feasible w.r.t. the

constraints of Π, may still be arbitrary and unnecessarily small. The consequence is that

the resulting solution R is less likely to be schedulable.

Let the solution obtained from Step 2 be

R∗ = {⟨τ1, d∗1⟩
D .. ⟨τn, d∗n⟩

D , ⟨τ1, t∗1⟩
T .. ⟨τn, t∗n⟩

T , ⟨Ω, d∗Ω⟩
W}
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This step tries to relax R∗ by solving the following problem

max
∀R

∑
∀ti,di∈R

ti + di

s.t. L′
p ≤ Dp, ∀p

(6.8)′ − (6.9)′

R ⪰ R∗

dΩ = d∗Ω

(6.23)

Intuitively, (6.23) aims to increase each entry of ti and di inR while maintaining the objective

value dΩ. Constraint R ⪰ R∗ guarantees that the new solution R is a relaxation of the

original one R∗, hence R is also an optimal solution to (6.22). The purpose of the relaxation

is to increase the likelihood of termination at Step 2. Generally, the larger ti and di are, the

more likely the period and deadline assignment is schedulable.

Step 4. MUPDA Computation. Let R be the adjusted solution obtained from Step

3. If R is schedulable, then R is the optimal solution to the full problem (6.17) and the

algorithm terminates. Otherwise, the algorithm computes several MUPDAs and add them

to U (consequently their implied constraints in the form (6.20) to problem Π). Then it

returns to Step 2.

In the following, we demonstrate the proposed optimization algorithm using on the example

system problem in Table 6.1. The original problem is described in (6.14). The algorithm
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first starts with the following initial problem Π

min
∀R

dΩ

s.t. d2 + t2 + d3 + t3 ≤ 63

Ci ≤ di ≤ ti ≤ T ub
i , ∀τi

(6.24)

which contains only the objective, end-to-end latency constraint, and the bounds on the

variables. The R-schedulability constraints are ignored. The algorithm then enters the

iteration in Steps 2–4.

Iteration 1. Solving the initial problem Π, we get

R∗
1 = { ⟨τ1, 10⟩

D , ⟨τ2, 3⟩D , ⟨τ3, 10⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 3⟩T , ⟨τ3, 10⟩T , ⟨τ4, 100⟩T , ⟨Ω, 18⟩W}

The estimated end-to-end latency by the returned solution is

d2 + t2 + d3 + t3 = 26 (6.25)

which is unnecessarily smaller than the required end-to-end latency deadline. Thus the fol-

lowing relaxation is performed on R∗ to increase the period and virtual deadline assignment.

max
∑
∀τi

di + ti

s.t. d2 + t2 + d3 + t3 ≤ 63

di ≤ ti ≤ T ub
i , ∀τi

d2 ≥ 3, t2 ≥ 3, d3 ≥ 10, t3 ≥ 10

dΩ = d∗Ω

(6.26)
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Solving the above problem returns the following adjusted period-deadline assignment.

R′∗
1 = { ⟨τ1, 10⟩D , ⟨τ2, 3⟩D , ⟨τ3, 10⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 10⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 18⟩W}

While also satisfying the end-to-end deadline constraint,R′∗
1 is more relaxed than the original

R∗
1 and is more likely to be schedulable. For the rest of the example, we omit the details of

relaxation and only show the adjusted solution after relaxation.

R′∗
1 is not schedulable. The following two MUPDAs are computed using Algorithm 10.

U1 ={⟨τ1, 10⟩D , ⟨τ2, 20⟩D , ⟨τ3, 40⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 34⟩W}

U2 ={⟨τ1, 10⟩D , ⟨τ2, 20⟩D , ⟨τ3, 19⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 43⟩W}

U1 implies the following constraint in the form of (6.20)

(d1 > 10) ∨ (d2 > 20) ∨ (d3 > 40) ∨ (d4 > 100)∨

(t1 > 10) ∨ (t2 > 20) ∨ (t3 > 40) ∨ (t4 > 100) ∨ (dΩ > 34)

where ∨ is another way to represent logical OR operations.

Taking into consideration the bounds and integrality of variables, The above constraint can

be simplified as

dΩ ≥ 35 (6.27)
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Similarly, U2 implies the following constraint

(d3 ≥ 20) ∨ (dΩ ≥ 44) (6.28)

The above two constraints are added to problem Π.

Iteration 2. The updated problem Π has the following solution.

R∗
2 ={⟨τ1, 10⟩

D , ⟨τ2, 3⟩D , ⟨τ3, 20⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 3⟩T , ⟨τ3, 37⟩T , ⟨τ4, 100⟩T , ⟨Ω, 170⟩W}

R∗
2 is not schedulable. The following two MUPDAs are computed.

U3 ={⟨τ1, 10⟩D , ⟨τ2, 20⟩D , ⟨τ3, 40⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 19⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 39⟩W}

U4 ={⟨τ1, 10⟩D , ⟨τ2, 4⟩D , ⟨τ3, 40⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 40⟩T , ⟨τ4, 100⟩T , ⟨Ω, 35⟩W}

The following MUPDA implied constraints are added to Π.

((t2 ≥ 20) ∨ (dΩ ≥ 40)) ∧ ((d2 ≥ 5) ∨ (dΩ ≥ 36))

where ∧ represents the logical AND operation.

Iteration 3. The updated problem Π allows the solution below.

R∗
3 ={⟨τ1, 10⟩

D , ⟨τ2, 3⟩D , ⟨τ3, 20⟩D , ⟨τ4, 100⟩D

⟨τ1, 10⟩T , ⟨τ2, 20⟩T , ⟨τ3, 20⟩T , ⟨τ4, 100⟩T , ⟨Ω, 36⟩W}
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R∗
3 is now schedulable, which gives the optimal period assignment. The corresponding

schedulable priority assignment, which is returned from Algorithm 12 with R∗
3 as the input,

is τ2 ≻ τ1 ≻ τ4 ≻ τ3. The optimal objective is dΩ = 36.

Remark 6.6. Each MUPDA implied constraint introduces additional binary variables for

modeling disjunction. For example, consider (d3 ≥ 20) ∨ (dΩ ≥ 44). It can be formulated in

ILP as
(d3 ≥ 20b1) ∧ (dΩ ≥ 44b2)

b1 + b2 ≥ 1

(6.29)

where b1 and b2 are binary variables. A MUPDA U may introduce |U| number of variables in

the worst case. Thus, given a set of MUPDAs U, the number of additional binary variables

for the ILP problem is O(
∑

∀U∈U |U|).

As the total number of MUPDAs for a system is bounded, the proposed procedure in Fig-

ure 6.1 is guaranteed to terminate. Upon termination, the procedure either returns an

optimal solution if the problem is feasible, otherwise it reports infeasibility. This is because

in each iteration, only a subset of the MUPDA implied constraints is added into the problem

Π, hence Π maintains to be a relaxation of the original problem. An optimal and schedulable

solution to Π must also be an optimal solution of the original problem.

6.6 Experimental Results

In this section, we present the experimental results on two industrial case studies. We com-

pare our approach with the state-of-the-art method for period optimization that is based on

a MIGP formulation or a GP-based iterative procedure [42]. All runtimes are the wall-clock

time on a dedicated machine with a 2.5GHz eight-core processor and 8GB memory. Since

the previous approaches only handle the period optimization problem where the priority
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assignment is given, we consider this version for a direct comparison. Then we us problem

where priority assignment is also part of the decision variables to show the benefit of our

unified framework.

6.6.1 Vehicle with Active Safety Features

Our first case study consists of an industrial experimental vehicle system with active safety

features [42]. The system contains 29 Electronic Control Units (ECUs) connected through

4 CAN buses. A total of 92 tasks are deployed on the ECUs and 192 CAN messages are

exchanged on the CAN buses. Tasks are scheduled preemptively and messages are non-

preemptive. End-to-end deadlines are imposed on 12 pairs of source-sink tasks, between

which a total of 222 unique end-to-end paths exist. 9 pairs of communicating tasks on the

same ECU are imposed with period harmonicity requirements. The total utilization of each

execution platform must not exceed 70% for future extensibility.

The allocation of tasks to ECUs and messages to CAN buses is given. Worst case execution

time of each object is also measured. An initial assignment of periods and priorities is

given by the designer, which fails to satisfy any of the end-to-end deadline constraints. The

problem is then to find a new feasible assignment that meets schedulability and end-to-end

deadline constraints. Different from [42], the initial period assignments are used as the upper

bound T ub
i of the period variable Ti.

Optimization of Period Assignment. To give a direct comparison with the approaches

in [42], we first consider the optimization of period assignment with given priorities, and the

objective is to optimize the WCRT summation over all objects. Since [42] can only handle the

response time analyses in (6.2) and (6.7), we assume tasks/messages have implicit deadline

and adopt the same analyses. We first fix the harmonicity factors to the value initially given



6.6. Experimental Results 245

Table 6.2: Optimization results for the experimental vehicle with given priority assignment

Method Objective Time Status
MUPDA-guided 541708 24.35s Terminate

IterGP 541767 185.68s Iteration Limit Reached
GA-105 N/A 6.3h Abort
GA-106 N/A ≥ 48h Timeout

by the designer.

We try to solve the MIGP formulation proposed in [42] by the BnB solver in YALMIP [101]

which leverages gpposy [107] to solve geometric programming problems. However, YALMIP

always reports “out of memory” before finding any feasible solution.

We now compare our approach (called MUPDA-guided later) with the iterative geometric

programming based algorithm (IterGP) proposed in [42], as well as genetic algorithm (GA).

The main idea of IterGP is to approximate the response time analysis, i.e., (6.2) as that of

(6.13), which allows to formulate the problem as a geometric program. When the approx-

imated response time R′
i is different from the actual one Ri, the parameter αi,j is updated

to try to reduce the approximation error, after which the optimization is performed again.

The algorithm terminates when the maximum approximation error is within an acceptable

bound or the iteration limit is reached. As in [42], we set the maximum iteration limit to be

15 (which is sufficient as IterGP usually gets stuck at local minimum before that). The algo-

rithm is implemented in YALMIP framework [101] using the gpposy geometric programming

solver [107].

We implement the GA-based approach leveraging the MATLAB optimization toolbox. The

objective is set as the fitness function, and system schedulability and end-to-end deadline

requirement are provided as nonlinear constraints. We use two initial population sizes 105

and 106, denoted as GA-105 and GA-106 respectively. All other parameter settings are the

default values in MATLAB.
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The results are summarized in Table 6.2. MUPDA-guided terminates with the optimal solu-

tion after around 24 seconds. IterGP terminates with a slightly sub-optimal solution after

exceeding the limit of 15 iterations. GA-105 aborts after failing to find any feasible solution

for three generations. GA-106 on the other hand, is unable to complete the first genera-

tion within 48 hours. Figure 6.2 plots the objective value during the optimization process

of IterGP. Each data point in the plot corresponds to the objective value of a particular

iteration. The curve “Approximated GP Objective” corresponds to the objective value of

the geometric optimization, which is given by the approximated response time (6.13). The

“Actual Objective” corresponds to the objective value by the actual response time (6.2). If

the period assignment is actually infeasible (w.r.t. schedulability and end-to-end deadline

constraints), the corresponding data point is omitted in the figure, which is why for some

data points on the “Approximated GP Objective” curve, there is no corresponding one on

the “Actual Objective” curve. As shown in the figure, the solution summarized in Table 6.2

is found by IterGP after the third iteration at time 39s. However, after that IterGP oscil-

lates between a feasible and an infeasible period assignments, and cannot find any better

solution. This highlights a major drawback of IterGP: unlike MUPDA-guided, IterGP cannot

guarantee convergency.

Next, we relax the harmonicity factor hi,j from a fixed constant to an integer decision vari-

able. We omit GA for this setting since the ga function provided in MATLAB is not capable

of handling equality constraints with integer variables. The corresponding results are sum-

marized in Table 6.3. MUPDA-guided finds optimal solution after only around 6 seconds.

IterGP again starts oscillating between a feasible and infeasible solution after a few itera-

tions. The best solution it finds is at the first iteration after 52 seconds.

Optimization of Both Period and Priority. One advantage of MUPDA-guided is its

ability to optimize both periods and priority assignments. In this experiment, we ignore
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Table 6.3: Optimization results for the experimental vehicle with given priority assignment,
relaxed harmonicity factor

Method Objective Time Status
MUPDA-guided 532938 6.43s Terminate

IterGP 533770 999.54s Iteration Limit Reached

Table 6.4: Optimization results for the experimental vehicle without given priority assign-
ment

Harmonicity Factor Objective Time Status
Fixed 300156 14.09s Terminate

Relaxed 298492 9.80s Terminate

the given priority assignment and consider it to be also part of the decision variables. All

other experimental settings remains the same as the previous one. Since the approaches

in [42] (IterGP and MIGP) are no longer applicable, we evaluate only the proposed technique

MUPDA-guided.

Table 6.4 summarizes the optimization results with fixed and relaxed harmonicity factor

settings. Comparing with the results in Table 6.2 and Table 6.3, the inclusion of priority

assignment into the decision space significantly improves the optimization results: for fixed

harmonicity factor the improvement is about 44.6%, and for relaxed harmonicity factor the

objective is about 44.0% smaller. This is expected as the design becomes much more flexible.

In summary, the results in Tables 6.2–6.4 demonstrate the three advantages of MUPDA-guided

compared to IterGP: (i) it guarantees convergency; (ii) it may run magnitudes faster (e.g.,

9.80s vs. 999.54s for the setting of relaxed harmonicity factor); (iii) it can handle the co-

optimization of both periods and priority assignments, hence has the potential to provide

substantially better solutions.

Optimization with Arbitrary Deadline Setting. Another advantage of the proposed

algorithm is its capability of accommodating schedulability analysis that may be difficult or
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even impossible to use in standard mathematical programming framework, such as those in

(6.3) and (6.6) for arbitrary deadline setting. In this experiment, we seek to evaluate the

benefit brought by this feature. Intuitively, larger deadline allows more flexibility in system

design in the sense that more priority assignments would be considered schedulable compared

to constrained or implicit deadline settings. This would be beneficial, for example, when the

design objective only involves a subset of objects and other objects may be scheduled at

lower priority levels when given longer deadlines. In the following, we optimize a variant of

the original problem as follows.

• Instead of the sum of WCRTs over all objects, we now optimize the sum over only those

objects in the end-to-end paths (i.e., Ω is the set of objects in the end-to-end paths).

• The set of objects in Ω still uses implicit deadline setting. Other objects use the more

relaxed arbitrary deadline setting with response time analysis in (6.3) and (6.6). The deadline

of an object τi not in Ω is set to ρT init
i , where T init

i is the initial period assignment for τi

from the designer, and ρ is a scaling factor. The higher the ρ, the more relaxed the deadline

constraint is.

Other settings remain the same with the previous experiment on optimizing both period and

priority. For simplicity, only fixed harmonicity factor setting is considered.

Table 6.5 summarizes the results of MUPDA-guided for the baseline case that all tasks/mes-

sages have implicit deadline, as well as the setting with relaxed deadlines for tasks/messages

not in the end-to-end paths. Intuitively, the modified problem places more emphasis on the

set of objects in Ω: the higher the priority that can be assigned to objects in Ω, the smaller

the objective value.

As shown in the table, the use of relaxed deadline setting does bring improvement of opti-

mization results. The larger the ρ value, the smaller the objective value. Intuitively, when
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Table 6.5: Optimization results for relaxed deadline settings

Implicit Deadline
Objective Time Status

134502 6.12s Terminate
Relaxed Deadline

ρ Objective Time Status
1 134502 6.06s Terminate
2 128972 9.49s Terminate
3 120832 7.36s Terminate

objects not in Ω are given relaxed deadlines, they are able to tolerate lower priorities, which

makes it possible to schedule objects in Ω at higher priorities. This reduces the sum of

WCRTs over Ω. However, this requires to use sophisticated analyses in (6.3) and (6.6) that

is very difficult in standard mathematical programming framework.

6.6.2 Distributed System with Redundancy based Fault-Tolerance

Our second case study is an example system used in [142]. The system is designed in a

fault-tolerant manner by replicating tasks in the original design onto different ECUs, which

results in a total of 43 tasks and 36 messages deployed onto an architecture with 8 ECUs.

However, for merely the purpose of period optimization, we do not distinguish between

original and replicated tasks and simply treat all of them as different periodic tasks in a

normal periodic task system. Initial allocation, period assignments for tasks are given, and

the initial period of each message is assumed to be the same as its source task. Tasks are

preemptive and messages are non-preemptive, with an initial priority assignment that follows

the rate-monotonic policy. End-to-end deadlines are imposed on 6 paths, which are assumed

to be the initial end-to-end latency on the path. There is no harmonicity constraint. The

utilization bound of each ECU and bus is set to 70%.

This case study is noticeably smaller than the previous one on the experimental vehicle,
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Table 6.6: Optimization results for the fault-tolerant system with given priority assignment

Method Objective Time Status
MUPDA-guided 50656 0.29s Terminate

IterGP 51600 9.3s Iteration Limit Reached
MIGP 50656 13.27s Terminate

which allows the MIGP formulation for optimizing period to be solved by YALMIP. Ta-

ble 6.6 summarizes the results on the three methods (MUPDA-guided, IterGP, and MIGP) for

optimizing the period under the given rate-monotonic priority assignment. Again, IterGP

oscillates and has to settle for a suboptimal solution after 15 iterations. MUPDA-guided and

MIGP both find the optimal solution but MUPDA-guided is evidently faster. If we also include

the priority assignment as the decision variable, MUPDA-guided is the only one capable of

solving this problem. It finds a much better solution with an objective of 42740 in 0.51

second, due to the additional design space of priority assignment.

6.7 Conclusion

This chapter considers the problem of automating the period and priority assignment stage

in the design of distributed hard real-time systems. Such problems are common in a wide

variety of embedded systems application domains such as automotive and avionics. Our

approach is to develop a customized optimization procedure, that leverages the strength

of ILP solver and problem-specific algorithms. Compared to the state-of-the-art work for

solving a subproblem of optimizing period assignment only, the proposed algorithm runs

much faster while providing substantially better solutions.
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Figure 6.1: The MUPDA guided optimization framework.



252
Chapter 6. A Unified Framework for Period and Priority Optimization in Distributed

Hard Real-Time Systems

0 50 100 150 200 250 300

Time(s)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

O
b
je

c
ti
v
e
 V

a
lu

e

10
5

Approximated GP Objective

Actual Objective

Figure 6.2: Optimized objective of IterGP.



Chapter 7

A Unified Framework for Optimizing

Design of Real-Time Systems with

Sustainable Schedulability Analysis

7.1 Introduction

In Chapter 5, we introduce an optimization framework based on the concept of MUDA. This

has allowed us to efficiently optimize priority assignment w.r.t minimizing weighted average

response time. In Chapter 6, we blend in the parameter of period and generalize the concept

into MUPDA. This allows us to efficiently solve the more challenging problem of period

and priority assignment co-optimization w.r.t minimizing average response times. Though

effective in their targeted problem settings, the iterative optimization framework they used

suffers two major issues.

Firstly, the framework works well only when the objective function is sensitive to few vari-

ables. In particular, Chapter 5 and Chapter 6 have only considered objective functions that

contains one single decision variable. We will show later that, when the objective function is

sensitive to more variables, the number of MDUA (or MUPDA) constraints needed to defined

the optimal solution, and thus the number of iterations to terminate, grows exponentially,
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which significantly impact the scalability of the techniques.

Secondly, the framework relies on mixed-integer-linear-programming (MILP) for solving the

sub problem consisting of MUDA (or MUPDA) implied constraints in each iteration. This

not only restricts the applicability only to problems with linear objective functions, but also

significantly slows down the technique when the number of iterations grows high.

In this chapter, we discuss an optimization framework that improves upon the one used in

Chapter 5 and Chapter 6 and address the above issues. Specifically, we first follow the same

idea behind MUDA and MUPDA based framework, and then generalize the concept to more

parameters other than deadlines and periods. We then improve the optimization framework

by integrating the following techniques.

• A dedicated algorithm to replace MILP for solving the sub-problem in each iteration.

• An improved algorithm for computing maximal generalizations of a unschedulable so-

lution (i.e. MUDA, MUPDA in previous chapters) that provides faster convergence.

• Heuristic algorithms that explore good quality feasible solutions during optimization.

The rest of the chapter is organized as follows. Section 7.2 introduces the system model

we used for presentation and the optimization problem the chapter concerns. Section 7.3

summarizes existing approaches for solving the optimization problems and analyzes their

limitation in terms of applicability and scalability. Section 7.4 formalizes the optimization

problem and the concept of Maximal-Schedulable-Assignment (MUA) and discusses the a

general iterative optimization framework based on the concept. Section 7.5 discusses a

dedicated algorithm for solving the sub-problem consisting of MUA-implied constraints.

Section 7.6 discusses an algorithm for computing MUAs that gives faster convergence rate.

Section 7.7 discusses two heuristic algorithms for exploring good quality and schedulable
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solutions. Section 7.8 discusses the applicability and expected efficiency of the proposed

techniques for different optimization problems, system models, and schedulability analysis.

Section 7.9 presents the results of experimental evaluation. Finally Section 7.10 concludes

the chapter.

7.2 System Model

The proposed technique in this chapter is applicable to a variety of system models and

scheduling policies. This will be discussed in more detail in Section 7.8. For the purpose of

presentation, we mainly focus on the simple periodic real-time task system model. Specif-

ically, we consider a system Γ consisting of a set of periodic or sporadic tasks {τ1, τ2, τ3}.

Each task τi is characterized by a worst case execution time (WCET) Ci, period or min-

imal inter-arrival time Ti and a constrained deadline Di (Di ≤ Ti). Tasks are scheduled

preemptively by fixed priority assignment on uniprocessor or multiprocessor platform with

partitioned scheduling.

In fixed-priority preemptive scheduling, the worst-case response time (WCRT) of a task τi,

denoted by Ri, is given by the smallest fixed-point of the following recurrent relation.

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
Cj (7.1)

where hp(i) represents the set of tasks of a higher priority than τi. (7.1) is commonly known

as the response time analysis.

A system is said to be schedulable if Ri ≤ Di for all tasks τi. The design optimization of

a real-time system is to determine a set of concerned design parameters such that 1) they

optimize a given objective function and 2) system schedulability is satisfied. The problem
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can be mathematically expressed as follow.

min F (X)

s.t. system schedulability
(7.2)

X = [x1, ...xm] is the vector of decision variables that represents the decision parameters.

They may contain some or a mixture of the parameters involved in (7.1). The following

briefly summarizes these parameters and the typical optimization problems they are related

to.

• WCRT Ri. The performance of a real-time system is usually measured by the respon-

siveness of tasks. For example, control cost of real-time control applications depends

on WCRT of control tasks [104]. The end-to-end latency in distributed system depends

on WCRT of tasks involved in the end-to-end path [167].

• Period Ti. Similar as WCRT, period also affects control costs. In distributed system

with periodic activation [167], end-to-end latency additionally depends on periods of

tasks on the end-to-end path.

• WCET Ci. Platforms with dynamic voltage and frequency scaling (DVFS) allow to

adjust the execution time of tasks by adjusting the CPU clock rate. Higher clock

rate gives smaller execution time but results in of higher energy consumption. For

energy constrained devices, it is important to optimize the CPU clock rate w.r.t energy

efficiency.

• Priority Assignment. Priority assignment determines the set of hp(i) in (7.1). In the

design of Simulink Synchronous Reactive systems [109], priority assignment determines

the use of rate-transition/unit-delay blocks. The use of unit-delay blocks introduces

control cost. Therefore, it is necessary to optimize priority assignment w.r.t minimizing
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the use of unit-delay blocks. It has also been shown that that co-optimizing parameters

Ti, Di with priority assignment yields significantly better solution than optimizing the

parameters alone [166].

7.3 Existing Formulation

Solving problem (7.2) requires an efficient algorithm for exploring the decision space defined

by schedulability constraint. Existing studies on this aspect can be largely divided into

two categories. The first aims to develop ad-hoc approaches that only target at specific

problems. The second aims to formulate the problem into a general optimization framework

(i.e. mathematical programming), which provides certain level of applicability to different

problems. The focus of this chapter is in the second category. Most of the existing work in

this category however, considers only a subset of the decision variables and certain forms of

objective functions. The following gives a summary of the main results in this category and

their limitations in terms of applicability and scalability.

7.3.1 MILP Formulation Based on Response Time Analysis

When period Ti and WCET Ci of each task are given and priority assignment is the only

decision variable, response time analysis (7.1) can be represented by a set of mixed-integer

linear programming (MILP) constraints.

The ceiling term
⌈
Ri

Tj

⌉
can be computed by introducing an integer variable Ii,j subject to the

following constraint

Ii,j ≥
Ri

Tj

(7.3)
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Priority assignment can be represented by introducing a binary variable pi,j, which represents

the partial priority order between a pair of tasks τi and τj. Specifically

pi,j =


1, τj has higher priority

0, otherwise
(7.4)

With pi,j, response time analysis (7.1) can then be re-written as

Ri = Ci +
∑
∀j

pi,jIi,jCj (7.5)

The non-linear term pi,jIi,j can be linearized by introducing an additional variable Πi,j subject

to the following constraint

Πi,j ≥ Ii,j − (1− pi,j)M (7.6)

The response time analysis can then be expressed as the following linear form

Ri = Ci +
∑
∀j

Πi,jCj (7.7)

The above formulation is subject to the following limitations

• The formulation introduces large number of integer variables (up to O(n2) for Ii,j and

pi,j) and is difficult to scale to large systems.

• The formulation relies on given period Ti and WCET Ci and thus cannot be used to

optimize these parameters.
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7.3.2 MILP Based on Request Bound Function Analysis

Request bound function rbfi(t) represents the cumulative execution request by tasks of higher

priority than τi. It is evaluated as

rbfi(t) = Ci +
∑

∀j∈hp(i)

⌈
t

Tj

⌉
Cj (7.8)

[95] shows that the the condition of schedulability for a task τi can be expressed in terms of

the request bound function as follows

∃t ∈ Si s.t. rbfi(t) ≤ t (7.9)

where Si is a finite set of time points for evaluating the condition rbfi(t) ≤ t. A sufficient

set of Si can be computed by the technique proposed in [155].

When period Ti is given, (7.8) becomes a linear expression on priority partial orders pi,j and

WCET Cj, i.e.

rbfi(t) = Ci +
∑
∀j

pi,j

⌈
t

Tj

⌉
Cj (7.10)

The ∃ quantifier in (7.9) can be formulated as disjunctive constraints in integer programming.

For example

∃t ∈ {t1, t2} s.t. rbfi(t) ≤ t⇔

∥∥∥∥∥∥∥
rbfi(t1) ≤ t1

rbfi(t2) ≤ t2

(7.11)

The above formulation has much less formulation complexity comparing with the formulation

of response time analysis. It has been shown to provide significant improvement in scalability

for optimizing priority assignment [109]. The approach however, is subject to the following

limitations.
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• Due to the use with MILP, the approach can only be used to optimize linear objective

functions. This makes it impossible to apply it to problems with non-linear objectives.

For example, energy consumption is typically expressed in the following form [117]

P =
∑
∀i

β(C−1
i )α (7.12)

Although it is theoretically possible to formulate the problem as a mixed-integer con-

vex programming (MICP), the problem is generally not well supported by available

commercial solvers.

• The formulation relies on given period Ti and does not maintains the information on

WCRT Ri. Thus it cannot be used to optimized objective functions that depend on

these parameters.

7.3.3 MIGP Based on Response Time Analysis

To address the challenge of period optimization Ti, [41] proposed a mixed-integer geometric

programming (MIGP) formulation of the response time analysis, assuming that priority

assignment is given. Specifically, the non-linear ceiling term
⌈
Ri

Tj

⌉
is computed by introducing

an additional integer variable Ii,j subject to the following monomial constraint

RiT
−1
j I−1

i,j ≤ 1 (7.13)

The response time analysis can then be expressed as the following posynomial form.

Ri = Ci +
∑

∀j∈hp(i)

Ii,jCj (7.14)
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In addition to the capability of optimizing all of parameter Ri, Ti and Ci, the use of geometric

programming makes it possible to optimize a much wider range of objective functions that

can be expressed in posynomial forms. These include both linear expressions and those such

as (7.12).

The approach is subject to the following limitations

• MIGP is generally difficult to solve and scale to large design. In the original paper, [41]

proposed to solve instead the continuous relaxation of the problem and use an iterative

refinement procedure on top of it to reduce relaxation error. The issue however, is that

the algorithm does not guarantee progress or termination.

• The formulation assumes given priority assignment and therefore cannot be used to

optimize problems where priority assignment is part of the decision space.

7.3.4 Schedulability Abstraction based on Maximal Unschedula-

ble Period-Deadline Assignment

To address the challenge of co-optimizing period, WCRT and priority assignment, [166]

proposed a technique that abstracts and separates schedulability analysis from optimization.

The key observation is that response time analysis (7.1) is sustainable w.r.t to deadline Di

and period Ti. Specifically, increasing Di and Ti of tasks cannot make the system from

being schedulable to unschedulable. This property remains true regardless of whether or not

priority assignment is given. The property gives a very useful implication for characterizing

feasibility region. For example, suppose it is found that an assignment of period T1 = 10,

and deadline D2 = 20 for τ1 and τ2 respectively is unschedulable for the system. It can be

inferred that all other assignments of smaller values will be unschedulable as well. This leads
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to the following invariant.

¬


T1 ≤ 10

D2 ≤ 20

⇔

∥∥∥∥∥∥∥
T1 > 10

D2 > 20

(7.15)

where symbol ∥ represents disjunction (the logical-OR relation).

Instead of directly formulating (7.1) into standard mathematical programming, [166] pro-

posed to use (7.15) as the schedulability constraint in mathematical programming. This

abstracts away the detail of schedulability analysis and thus overcomes the limitations suf-

fered by previous approaches. Similar to (7.11), (7.15) can be formulated as a disjunctive

constraint in integer programming. The higher the values on the right-hand-side, the stronger

the invariant. [166] proposes a two-step iterative procedure for optimization. Specifically,

• Step 1. Solve problem (7.2) without any schedulability constraint.

• Step 2. If the solution is schedulable, it is optimal and the algorithm terminates.

Otherwise, maximally increase the values in the solution while maintaining its un-

schedulability then add the corresponding constraint (7.15) back to problem (7.2) and

go back to Step 1.

Although originally proposed to co-optimize Di, Ti and priority assignment, the approach

can theoretically be extended to WCET Ci as well. In addition, it also provides a unique ben-

efit of accommodating different schedulability analysis given that they are sustainable w.r.t

decision variables. Experiment result reported in the chapter shows significant improvement

in both run-time and quality of solution by the proposed framework.

The approach however, is subject to the following limitations.

• The approach relies on MILP for solving the sub-problem consisting of the invariant

constraints (7.15). As a result, it is inapplicable to optimizing non-linear objectives
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such as (7.12).

• As will be shown in the experiment, the approach is extremely inefficient when the

objective function is sensitive to many decision variables.

• Unlike many commercial mathematical programming solvers, the approach does not

give any feasible solution until it finds the optimal one. This can be undesired when

used in a time-restricted setting where termination is not likely.

In this chapter, we propose an optimization framework for solving (7.2) that aims to address

the limitations suffered by the above approaches. Specifically, at the cost of small sub-

optimality, we propose a solution that aims to achieve the following benefits.

• Capable of co-optimizing across different parameters including period Ti, WCET Ci,

WCRT Ri and priority assignment.

• Capable of optimizing a wide range of different linear and non-linear objectives.

• Capable of applying to a wide range of different schedulability analysis in addition to

(7.1).

• Provides better scalability for larger design.

The proposed approach is based on the framework developed in [166] and improved with the

following three novel techniques.

• We propose a new algorithm in place of MILP for solving the sub-problem consisting

of invariant constraint (7.15).

• We propose an improved algorithm for computing stronger invariant (7.15) from un-

schedulable solution, which gives faster convergence.
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• We enhance the framework with two heuristics that explore good-quality and schedu-

lable solutions.

In the next section, we first generalize on the core concept and optimization framework

discussed in [166]. We then discuss the design of each new technique we integrate.

7.4 The Concept of Maximal Unschedulable Assign-

ment

We first re-write problem (7.2) into the following canonical form

min F (X)

s.t. G(X) ≤ 0
(7.16)

Specifically, we represent schedulability constraint as an inequality over a conceptual function

G(X). G(X) can be interpreted, for example, as

G(X) =


1, system is not schedulable

0, otherwise
(7.17)

We make the following assumptions about function F (X), G(X), and variables X.

1. F (X) is non-decreasing w.r.t to the increasing of each variable xi in X.

2. G(X) is non-increasing w.r.t to the increasing of each variable xi in X.

3. Each variable xi in X takes integer values within a bounded range [lbi, ubi] (i.e, the

design parameters have finite resolution).
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Table 7.1: An Example Task System Γe

τi Ti Ci

τ1 8 2
τ3 8 3

Colloquially, the higher the value of each variable xi, the worse the objective, but more

likely G(X) ≤ 0 can be satisfied. The second assumption is equivalent to saying that the

schedulability analysis is sustainable w.r.t the decision variables. Note that some parameters,

such as WCET Ci may be opposite to the above assumptions (smaller Ci corresponds to larger

value of F (X) and easier schedulability). In this case, we can simply perform a variable

conversion (i.e. introduce C ′
i = −Ci) to make the variable conforms to the assumptions.

Definition 25. An assignment

X = [v1, ...vm] (7.18)

is a valuation of each variable xi = vi in X. An assignment X is said to dominate another

assignment X ′, denoted as X ⪰ X ′, if X is component-wise no smaller than X .

Definition 26. An assignment X is said to be unschedulable if G(X ) > 0. X is a maximal

unschedulable assignment (MUA) if 1) X is unschedulable and 2) there are no other

unschedulable assignment that dominates X

Example 7.1. We use an example system configured in Table 7.1 to illustrate the above

concepts. The system consists of two periodic tasks. Consider the space of deadline assign-

ment, namely, the space of decision variables X = [D1, D2] that are schedulable. The two

tasks have the same period and a cumulative execution time of 5. Therefore, at least one of

D1 and D2 needs to be greater than or equal to 5. The corresponding feasibility region is

plotted in Figure 7.1.

The four points A, B, C, and D marked in the figure are all unschedulable assignments. A is
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Figure 7.1: Feasibility region of deadline assignment

not an MUA since D dominates A. B, C and D are MUAs since they are all unschedulable

assignment and there exist no other unschedulable assignments that dominate them.

By the assumption on G(X), it is not difficult to see that any assignment dominated by

an unschedulable assignment is also unschedulable. Therefore, an unschedulable assignment

X = [v1, ...vn] implies the following constraint on feasibility region

¬


x1 ≤ v1

...

xn ≤ vn

⇔

∥∥∥∥∥∥∥∥∥∥∥
x1 > v1

...

xn > vn

⇔

∥∥∥∥∥∥∥∥∥∥∥
x1 ≥ v1 + 1

...

xn ≥ vn + 1

(7.19)
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We call (7.19) the implied constraint by X . The higher the values in X , the stronger the

implied constraint. In this sense, constraints implied by MUAs are the ”strongest” type of

constraints for feasibility. In Example 7.1, the implied constraints by MUA B, C, D alone

are sufficient to represent the exact feasibility region.

An MUA-implied constraint is transparent to the underlying schedulability analysis. The

main idea is to use MUA-implied constraints for representing the feasibility region of schedu-

lability for optimization algorithms. In many cases, not all MUA-implied constraints are

necessary to define the optimal solution. [166] proposed an iterative counter-example-guided

procedure to explore only necessary MUAs. We generalize the procedure to the problem

setting in this chapter and summarize it in Figure 7.2.

 Step 1: 
Solve the optimization problem

Assignment X Add MUA implied constraint

No

Yes

Convert X to an 
MUA

Start optimization without any 
schedulability constraint

Solution

Step 2:

    

Figure 7.2: MUA-guided Iterative Optimization

The algorithm initially ignores schedulability constraint G(X) ≤ 0 and solves the optimiza-
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tion problem. If the returned assignment X is not schedulable, the algorithm converts it to

an MUA and adds the implied constraint back to the optimization problem. If the solution

found in Step 1 is schedulable, the algorithm terminates.

Example 7.2. Consider applying the above procedure to optimizing the example system in

Table 7.1 for the following objective function

F (X) = D1 +D2 (7.20)
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Figure 7.3: Iteration 1
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Figure 7.4: Iteration 2

0 1 2 3 4 5 6 7 8

D1

0

1

2

3

4

5

6

7

8

D
2

D(4, 4)

B(1, 8)

C(8, 2)

X(2, 3)

Figure 7.5: Iteration 3
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Figure 7.6: Iteration 4

Iteration 1. The algorithm initially ignores all constraints. The feasibility region is shown
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in Figure 7.3. Optimizing F (X) gives assignment X = [D1, D2] = [0, 0]. Since X is clearly

unschedulable, the algorithm proceeds to convert X into an MUA. Depending on the strategy

for MUA computation ( which will be discussed in detailed later), the algorithm may obtain

any one of point B, C and D in Figure 7.1. Suppose B is returned as the converted MUA.

Iteration 2. The feasibility region is updated to Figure 7.4, where the region colored in

yellow represents the region cut away by the constraint implied by MUA B. Optimizing

F (X) gives assignment X = [2, 0]. Since X is not schedulable, the algorithm proceeds to

convert X into a MUA. Suppose point C in Figure 7.1 is obtained after conversion.

Iteration 3. The feasibility region is updated to Figure 7.5. Optimizing F (X) returns

assignment X = [2, 3]. The only MUA that can be obtained from the assignment is point D

in Figure 7.1.

Iteration 4. The feasibility region is updated to Figure 7.6. Optimizing F (X) gives assign-

ment X = [2, 5]. The assignment is schedulable and the algorithm terminates.

The following theorem discusses the property of optimality and termination for the above

procedure.

Theorem 34. Algorithm in Figure 7.2 guarantees to terminate. If Step 1 in each iteration is

solved optimally w.r.t the added constraints, the algorithm guarantees to return an optimal

solution upon termination.

Proof. Let [xl
i, x

u
i ] be the range of values that decision variable xi can take. The total

number of MUAs that can be added is clearly finite and bounded by Ω(Π∀i(x
u
i − xl

i + 1)).

Therefore, the algorithm guarantees to terminate.

The implied constraint (7.19) only cuts away infeasible decision space. Thus, at any point

during the optimization, the feasibility region defined by the added implied constraints
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maintains to be an over-approximation of the exact feasibility region. If the optimization

problem in Step 1 is solved optimally in each iteration, the objective value is no larger

than that of the globally optimal solution. This implies that upon termination, where the

algorithm finds a schedulable solution (i.e. G(X) ≤ 0), the solution is globally optimal.

The following sections focus on two major components of the framework: 1) the algorithm

for solving the sub-optimization-problem in Step 1, and 2) the algorithm for computing an

MUA from an unschedulable assignment.

7.5 Optimizing with MUA-Implied Constraints

Step 1 in Figure 7.2 requires to solve the following optimization problem

min F (X)

s.t. constraints of form (7.19)
(7.21)

[166] proposed to solve the sub-problem as an MILP. As discussed previously, this limits the

approach only to linear objective functions and suffers scalability issues when the number of

MUA-implied constraints in the problem is large. In this section, we discuss a more generic

algorithm that handles different forms of F (X) and provides much better scalability.

We first take a closer look at the form of the implied constraint (7.19).

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x1 ≥ v1 + 1

x2 ≥ v2 + 1

...

xn ≥ vn + 1

(7.22)
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Each inequality in the disjunction imposes a lower-bound on the corresponding variable. For

the constraint to be satisfied, at least one of these inequalities must be enforced. Given

multiple implied constraints, there exist different combinations of inequalities to enforce.

Remark 7.3. It’s possible to have vi = ubi some variables on the right hand side of the

implied constraint. In this case, xi ≥ vi + 1 represents an redundant inequality as it can

never be satisfied.

Consider the following 3 MUAs defined over three variables X = [x1, x2, x3]. All of x1, x2, x3

take integer values in range [0, 1000].

U1 = [699, 1000, 799]

U2 = [1000, 249, 799]

U3 = [499, 199, 1000]

(7.23)

The three MUAs correspond to the following implied constraints

∥∥∥∥∥∥∥∥∥∥∥
x1 ≥ 700

x2 ≥ 1001

x3 ≥ 800

,

∥∥∥∥∥∥∥∥∥∥∥
x1 ≥ 1001

x2 ≥ 250

x3 ≥ 800

,

∥∥∥∥∥∥∥∥∥∥∥
x1 ≥ 500

x2 ≥ 200

x3 ≥ 1001

(7.24)

Since a variable xi cannot take values greater than ubi, the above constraints can be simplified

into ∥∥∥∥∥∥∥
x1 ≥ 700

x3 ≥ 800

,

∥∥∥∥∥∥∥
x2 ≥ 250

x3 ≥ 800

,

∥∥∥∥∥∥∥
x1 ≥ 500

x2 ≥ 200

(7.25)

The combinations of inequalities can be represented in a tree structure shown in Figure 7.7.

Each layer of non-leaf nodes corresponds to one constraint and each out-going edge corre-

sponds to one inequality of the constraint. Each leaf node corresponds to a combination
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of inequalities along the path from root. The combination defines a tight assignment that

satisfies all the constraints. For example, consider the left most leaf node in Figure 7.7,

which corresponds to the combination of inequalities x1 ≥ 700 ∧ x2 ≥ 250 ∧ x1 ≥ 500. The

combination defines a unique assignment X = [x1, x2, x3] = [700, 250, 0] that is minimal

w.r.t the inequalities. The assignment is sufficient to satisfy the 3 constraints. We call X

the tight assignment defined by the leaf node. Note that x1 = 750, x2 = 300, x3 = 0 is

also an assignment that satisfies the combination of inequalities. It’s not a tight assignment

however, as x1, x2 can be further decreased without violating these inequalities.

ብ
𝑥1 ≥ 700
𝑥3 ≥ 800

ብ
𝑥2 ≥ 250
𝑥3 ≥ 800

ብ
𝑥1 ≥ 500
𝑥2 ≥ 200

𝑥1 ≥ 700 𝑥3 ≥ 800

𝑥2 ≥ 250 𝑥3 ≥ 800 𝑥2 ≥ 250 𝑥3 ≥ 800

𝑥2 ≥ 200 𝑥1 ≥ 500𝑥2 ≥ 200 𝑥1 ≥ 500𝑥1 ≥ 500 𝑥2 ≥ 200 𝑥1 ≥ 500 𝑥2 ≥ 200

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 7.7: Tree representation of implied constraints

Some nodes in the tree are redundant, in the sense that the corresponding implied constraint

may have already been satisfied by some inequality along the path from root. For example

node 4 and 5 are redundant as inequality x1 ≥ 700 along their paths from root already

implies that the constraint is satisfied. The same goes for node 3. In this case, we can prune

away the nodes to simplify the tree to reduce the number of leaves. Figure 7.8 shows the
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tree where redundant nodes are pruned away, which has much smaller number of leaves.

ብ
𝑥1 ≥ 700
𝑥3 ≥ 800

ብ
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𝑥3 ≥ 800

ብ
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𝑥2 ≥ 250 𝑥3 ≥ 800

𝑥1 ≥ 500 𝑥2 ≥ 200

1

2

4 5

3

6 7

Figure 7.8: After pruning redundant nodes

Theorem 35. Given a set of MUA-implied constraints L = {L1, ...Lq} and its tree repre-

sentation, there exists a tight assignment defined by some leaf node that minimizes F (X).

Proof. Consider any assignment X that satisfies the constraints in L and that also

minimizes F (X). Since X satisfies each Li ∈ L, at least one of the inequalities in Li is

satisfied by X . Take any one of such satisfied inequality from each Li ∈ L. The combination

of these inequalities corresponds to a root to leaf path in the tree representation. Consider

the tight assignment X ′ defined by the path. It’s not difficult to see that X ⪰ X ′. Since by

assumption F (X) is non-decreasing w.r.t the increasing of each variable, there is F (X ) ≥

F (X ′). This implies that F (X ′) = F (X ) and thus X ′ minimizes F (X) as well.

Theorem 35 implies that the optimal solution of problem (7.21) can be found examining all

the tight assignments defined by the leaves. In the algorithm in Figure 7.2, new implied con-
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Algorithm 13 Incremental Breadth-First-Search (BFS)
1: function IncrementalBFS(Tight Assignments by Leaves M = {X1, ...Xm}, New MUA
U = [u1, ...un])

2: M′ = ∅
3: for each assignment X = [v1, ...vn] ∈M do
4: if U dominates X then
5: for each ui ∈ U do
6: if ui < ubi then
7: set X ′ = [v1, ...vi−1, ui + 1, vi+1, ...v

′
n]

8: M′ =M′ ∪ {X ′}
9: end if

10: end for
11: else
12: M′ =M′ ∪ {X}
13: end if
14: end for
15: return M′

16: end function

straints are continuously discovered and added to the problem. Each time a new constraint is

added, a new layer of leaf nodes is expanded from the original leaves. Observing this nature,

we uses an breadth-first-search (BFS) traversal to find the optimal solution incrementally in

each iteration.

The algorithm is summarized Algorithm 13. It takes as input 1) the set of tight assignments

M defined by the current leaves in the tree and 2) a newly computed MUA U (i.e, from

step 2 in Figure 7.2). The goal is compute the set of tight assignments M′ corresponding

to the new leaves created by the implied constraint by U . The algorithm first traverses

all the tight assignments X defined by the current leaves. If U does not dominate the tight

assignment (which implies that X satisfies the implied constraint by U), the tight assignment

is directly added to M′ as it remains to be a leaf node. This corresponds to the pruning

of redundant nodes. Otherwise, new leaves need to be created with their tight assignments

added to M′. This is performed from Line 5 to Line 10. The algorithm traverses each ui in
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U . Each ui corresponds to an inequality xi ≥ ui +1 in the implied constraint. Line 6 checks

and skips redundant inequalities as discussed in Remark 7.3. For non-redundant inequality,

the algorithm creates a new assignment X ′ from X by setting the value assigned to the ith

variable to ui + 1. X ′ is then added to M′.

Figure 7.2 gives the updated procedure that uses Algorithm 13 for solving the sub-problem.

 Step 1: 
Find assignment X in M with 

minimum F(X)

Assignment X
Invoke

M = IncrementalBFS(M, U)

No

Yes

Convert X to an 
MUA U

Solution

Step 2:

    

             

Figure 7.9: Iterative optimization using BFS

The algorithm maintains a set of tight assignments M defined by the current leaves in

the tree representation of all implied constraints. M is initialized with a single assignment

X = [lb1, ...lbn] where all variables are assigned their lower bounds. Solving the optimization

problem (7.21) is equivalent to finding the tight assignment X in M with the smallest

objective value F (X ). In Step 2, after an unschedulable assignment is converted into an

MUA, Algorithm 13 is invoked to update M.
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Example 7.4. Consider the example of (7.23) and the problem of minimizing F (X) = x1+

x2 + x3. Specifically, G(X) ≤ 0 represents the 3 constraints in (7.23). We now demonstrate

a run of the Algorithm, where U1, U2 and U3 are added sequentially in 3 iterations.

The algorithm starts with M = {[0, 0, 0]}.

Iteration 1. Step 1 returns assignments X = [0, 0, 0]. X does not satisfied G(X ) ≤ 0 and

the algorithm coverts it into an MUA U1. After invoking Algorithm 13, M is updated to

the following

M =


[700, 0, 0]

[0, 0, 800]

 (7.26)

Iteration 2. Step 1 returns assignment X = [700, 0, 0] which has the smallest objective

value. X does not satisfied G(X ) ≤ 0 and the algorithm coverts it into an MUA U2.

Invoking Algorithm 13 updates M to the following

M =


[700, 250, 0]

[700, 0, 800]

[0, 0, 800]


(7.27)

Iteration 3. Step 1 returns assignment X = [0, 0, 800]. X does not satisfied G(X ) ≤ 0

and the algorithm coverts it into an MUA U3. Invoking Algorithm 13 updates M to the

following

M =



[700, 250, 0]

[700, 0, 800]

[500, 0, 800]

[0, 200, 800]


(7.28)
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Iteration 4. Step 1 returns assignment X = [700, 250, 0] which has the smallest objective

value. X now satisfies G(X ) ≤ 0 and the algorithm terminates with the assignment.

The number of MUA-implied constraints necessary for defining the optimal solution depends

on various factors. These may include the shape of feasibility region and the number deci-

sion variables. In general, the set of necessary MUAs grows exponentially with larger size

problems and more complex feasibility region. This may lead to the following issues for

scalability.

• The total number of iterations grows exponentially.

• The size of problem (7.21) in each iteration (i.e., the size of M) may eventually grow

to an exponential size.

To alleviate the problem, we modify the algorithm into a heuristic by setting a size limit K

for M. After Algorithm 13 is invoked, we sort the assignments in M′ in ascending order

according to their objective values F (X ) and only keep the first K assignments. Problem

(7.21) in each iteration is now only solved sub-optimally due to the limit on the size of M.

However, in return, the algorithm gains better scalability. In most cases, a larger value on

K gives better solution. But extremely large K does not necessarily brings more benefit

comparing to smaller one. The best setting of K depends on the nature of the problem and

requires intuition from designer. These issues will be studied in Section 7.9.

7.6 Converting an Unschedulable Assignment to MUA

In this section, we discuss algorithms for converting an unschedulable assignment X into an

MUA U . One strategy proposed in [166] is to maximally increase each entry in X sequentially

while maintaining its unschedulability. The procedure is summarized in Algorithm 14.
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Algorithm 14 Naive Conversion to MUA
1: function ConvertToMUA(Assignments X )
2: U = [u1, ...un] = X
3: for each entry ui in U do
4: Use bisection method to maximally increase ui while keeping G(U) > 0
5: end for
6: return U
7: end function

Although simple and straightforward, an issue with the algorithm is that the procedure tends

to give relatively large increase on entries that are visited earlier and smaller increase on later

ones. This may result in slow convergence as optimization in Step 1 may tend to increase

values of variables that are later visited. To demonstrate such a scenario, consider two

variables X = [x1, x2] that take integer values in range [0, 9], and the following optimization

problem
min F (X) = x1 + x2

s.t.

∥∥∥∥∥∥∥
x1 + 6x2 ≥ 36

5x1 + 3x2 ≥ 45

(7.29)

G(X) ≤ 0 defines a non-convex region shown in Figure 7.10.

Now apply the algorithm in Figure 7.2 to the above problem, where MUAs are converted us-

ing Algorithm 14. The feasibility region, returned assignment from Step 1 and the converted

MUA of each iteration are plotted in Figure 7.16. In iteration 1, Step 1 returns assignment

X = [0, 0]. Since Algorithm 14 always tries to maximally increase x1 first, the MUA it

computes is U = [8, 1]. The implied constraint leads the algorithm to return only a slightly

converged solution X = [0, 2] in the next iteration. Similarly, after first maximally increasing

x1, the MUA computed in the second iteration is U = [7, 2], which leads the algorithm to

return X = [0, 4] in the next iteration. After 5 iterations, the algorithm finds the optimal

solution X = [0, 6].
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Figure 7.10: Feasibility region of problem (7.29)

We now discuss a smarter strategy of MUA conversion demonstrated in Figure 7.20. In

the first iteration, instead of first increasing x1, we simultaneously increase both x1 and

x2 while keeping the assignment in the infeasible region. This obtains MUA U = [5, 5].

The corresponding implied constraint leads the algorithm to return X = [6, 0] in the next

iteration. Similarly, in the second iteration, we simultaneously increase x1, x2 and obtain

MUA U = [8, 1]. After 3 iterations, the algorithm finds the optimal solution

The above example shows that different strategies of computing MUAs affect the rate at

which the objective value converges. Intuitively, we hope to compute MUAs whose implied

constraint give large increase on objective value. The amount of increase brought by one
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Figure 7.11: Iteration 1
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Figure 7.12: Iteration 2
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Figure 7.13: Iteration 3

G(8, 1)

G(7, 3)

G(6, 4)

X(0, 5)

G(5, 5)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x
2

Figure 7.14: Iteration 4
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Figure 7.15: Iteration 5

Figure 7.16: First 4 iterations of optimizing problem (7.29) using Algorithm 14 for MUA
conversion

constraint however, not only depends on itself, but also on other existing implied constraints.

This may not be known exactly until problem (7.21) is solved with the new constraint. In

this chapter, we adopt a simple strategy: we score each MUA U by the objective value it

defines alone, specifically
min F (X)

s.t. implied constraint of U :∥∥∥∥∥∥∥∥∥∥∥
x1 ≥ u1 + 1

...

xn ≥ un + 1

(7.30)

Example 7.5. Consider the first iteration shown in Figure 7.11 and Figure 7.17. MUA
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Figure 7.17: Iteration 1
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Figure 7.18: Iteration 2

G(5, 5)

G(8, 1)

X(0, 6)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x
2

Figure 7.19: Iteration 3

Figure 7.20: Iterations of optimizing problem (7.29) using an improved algorithm for MUA
conversion

U1 = [8, 1] has a score of 2 as the following problem has an objective value of 2.

min F (X)

s.t.

∥∥∥∥∥∥∥
x1 ≥ 9

x2 ≥ 2

(7.31)

Similarly, MUA U2 = [5, 5] has a score of 6. Thus we favor U2 over U1.

The goal is to compute an MUA of high score from an unschedulable assignment. Let us

first consider objective function F (X) of the following form

F (X) =
n∑

i=1

xi (7.32)

Namely, F (X) is a summation of all decision variables.

Algorithm 15 gives an improved procedure for MUA conversion w.r.t the above form of

objective. The main difference with Algorithm 14 lies in Line 3, where the algorithm first

maximally increases all entries of U simultaneously by the same amount d while keeping U

unschedulable. Since the resulting U after Line 3 may not necessarily be an MUA, we apply
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Algorithm 15 Improved MUA conversion for objective function (7.32)
1: function ConvertToMUA(Unschedulable assignments X )
2: U = [u1, ...un] = X
3: Use bisection method to find out the maximum scalar d such that G(U ′) > 0, where
U ′ = [min{ub1, u1 + d}, ...min{ubn, un + d}]

4: for each entry ui in U ′ do
5: Use bisection method to maximally increase ui while keeping G(U ′) > 0
6: end for
7: return U ′

8: end function

the same procedure of Algorithm 14 from Line 4 to 6.

Theorem 36. Let X = [v1, ...vn] be an unschedulable assignment as input to Algorithm 15.

Among all MUAs U that dominate X (i.e. the implied constraint of U removes X ), Algo-

rithm 15 finds the one with the highest score defined by (7.30).

Proof. For objective of form (7.32), the score of an MUA U that dominates X can be

computed as follows

Q = F (X ) + min
∀i:ui ̸=ubi

ui − vi (7.33)

Note that entries ui that satisfy ui = ubi are ignored in the min operator as they correspond

to redundant inequality xi ≥ ubi + 1 as discussed in Remark 7.3.

For U computed by Algorithm 15, the following holds

Q = F (X ) + min
∀i:ui ̸=ubi

ui − vi = F (X ) + d (7.34)

where d is the maximum scalar found in Line 3.

By contradiction, suppose there exists a different MUA U ′ = [u′
1, ...u

′
n] ⪰ X with higher
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score. This implies that

Q = F (X ) + min
∀i:u′

i ̸=ubi
u′
i − vi > F (X ) + d

=⇒ min
∀i:u′

i ̸=ubi
u′
i − vi > d

(7.35)

The above indicates that d found by Line 3 can be further increased, which contradicts with

the assumption that d is maximum.

When the objective function is not a linear sum of the decision variables, finding the MUA

with the highest score is generally difficult. However, in the following, we show that if the

objective function is separable in each decision variable, (namely, can be written in (7.36)),

the result of Theorem 36 can still apply.

F (X) =
∑
∀i

fi(xi) (7.36)

We assume that fi is an invertible function, The idea is to perform variable conversion.

Specifically, for each xi, we introduce another variable yi with the following relationship

yi = fi(xi) (7.37)

Since F(X) is non-decreasing w.r.t the increasing of each variable, fi(xi) and thus yi, is non-

decreasing w.r.t the increasing of xi and vice versa. Let Y = [y1, ...yn]. Introduce another

conceptual function G′(Y) defined as

G′(Y) = G([f−1
1 (y1), ...f

−1
n (yn)]) (7.38)

It’s not difficult to see that G′(Y) is non-increasing w.r.t the increasing of yi as well. There-
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fore the original problem in (7.16) can be formulated as a problem over variable Y. Specifi-

cally,

min
n∑

i=1

yi

s.t. G′(Y) ≤ 0

(7.39)

The objective function now conforms to (7.32) and thus the result of Theorem 36 applies.

(7.36) is a suitable representation for various optimization objectives including control per-

formance [103], end-to-end latency [41], energy consumption (7.12) etc. For other objectives

not conforming to (7.36), Algorithm 15 does not guarantee obtaining the MUA with highest

score, but may still be good in average as all variables are treated equally.

7.7 Exploring Sub-optimal Solution

Modern mathematical programming solvers such as CPLEX, YALMIP etc typically have the

capability to explore feasible solutions of good-quality. This allows them to return useful

result for designers to work with even when they fail to find globally optimal solution due to

time limit. The framework in Figure 7.2 however, does not give any schedulable assignment

during the optimization process until it is solved to termination. This can be undesired

when termination is not likely due to strict time limit imposed by designer. In this section,

we discuss a technique that enables the framework to explore schedulable and good-quality

solutions during the optimization process.

Our main idea is to make use of the assignment returned in Step 1 and convert it heuristically

into a good-quality schedulable assignment. The conversion can be performed concurrently

with the optimization process. Specifically, in Step 2, if X is not found to be schedulable

(G(X) > 0), we add X into a candidate set C. We introduce an procedure that runs along
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side with the iterative optimization procedure for converting each assignment in C into a

schedulable one.

 Step 1: 
Solve the optimization problem

Assignment X Add MUA implied constraint

No

Yes
Convert X to an MUA

Start optimization without any 
schedulability constraint

Solution

Step 2:

    

Start

C is empty ?
Optimization 
Terminated?

Add X to set C

No

Yes

Yes

Retrieve an assignment 
X from C

Make assignment X 
schedulable

No

Assign P=X if F(P) > F(X)

P

Figure 7.21: Optimization workflow with exploration of sub-optimal solutions

The overall work-flow is summarized in Figure 7.21. The iterative optimization procedure

is modified such that, before an unschedulable assignment X is converted to an MUA, it

add the assignment to a candidate set C. The separate procedure on the right repetitively

retrieves an assignment from C and convert it into a schedulable assignment. The schedulable

assignment with the smallest objective value processed up to the moment is stored in variable

P . When candidate set C is empty and the iterative optimization procedure terminates, the

exploration procedure terminates as well. Since the processing of each assignment in C is

independent, it is possible to use multiple instances of the exploration procedure to speed

up the process.

We now discuss the algorithm for converting an unschedulable assignment X into a schedu-

lable one. The algorithm needs to be efficient as well as aware of the objective function.
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In this chapter, we propose two algorithms for the conversion. The first is simply to scale

each variable xi by a factor α according to the following rule until the assignment becomes

schedulable.

xi = vi + (ubi − vi)α (7.40)

vi is the value currently assigned to xi. When α = 1, xi takes the upper-bound value. The

goal is to find the minimum α such that the assignment becomes schedulable after scaling.

The second algorithm is to reuse the iterative optimization procedure depicted in Figure 7.9

but with size limit K = 1 for the BFS procedure. Intuitively, this makes Figure 7.9 into a

greedy-like algorithm. Specifically, the algorithm only maintains one assignment X in M.

When X returned from Step 1 is unschedulable and an MUA U is computed from it in

Step 2, the algorithm greedily chooses one entry of X to increase such that the resulting

assignment satisfies the implied constraint of U and the corresponding objective value F (X )

is the smallest.

7.8 Applicability and Efficiency

In this section, we discuss the applicability and expected efficiency of the proposed techniques

for different system models and schedulability analysis.

The framework is applicable as long as the schedulability analysis meets the assumption

discussed in Section 7.4. In addition to (7.1), various other analysis also have such property.

These include, for example, response time analysis for sporadic tasks with arbitrary deadlines

or offsets, non-preemptive scheduling[46] etc. Sustainability for mixed-criticality scheduling

are studied in [73] and it can be shown that various analysis meet the assumptions required

by the framework.
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However, the computation complexity of these schedulability analysis can have a significant

impact on the efficiency of the technique. This is because Algorithm 15 requires to perform

schedulability analysis (for evaluating G(X) ≤ 0) for many times in order to compute an

MUA. Therefore, it is desired for the schedulability analysis to be efficient and easy to per-

form. Some schedulability analysis, although sustainable w.r.t to the design parameters, may

be computationally difficult to perform. We discuss two typical scenarios in the following.

Firstly, some schedulability analysis are inherently difficult to perform. For example, in

digragh real-time task [138] and finite state machine task model [152], each task in the system

may have different states during run time with different workload characteristics. Exact

schedulability analysis for these system requires to examine all state transition sequences

of higher priority tasks to identify the worst-case interference, which can be prohibitively

expensive when the analysis needs to be performed repetitively.

Secondly, some schedulability analysis becomes difficult under particular problem settings.

Consider analysis (7.1) in two optimization settings: 1) priority assignment is given, and 2)

priority assignment is not given and needs to co-optimized with the design parameters.

In the first setting, given an assignment on parameters Ti, Di and Ci, A schedulability anal-

ysis simply needs to compute the response time for each task and checks with the deadline.

This requires a total of O(n) number of response time calculations.

In the second setting however, schedulability analysis will need to apply Audsley’s algorithm

[8] to find if there exists a priority assignment where the system is schedulable according to

the given parameters. In the worst case, this may requires O(n2) number of response time

calculations.

While the complexity of Audsley’s algorithm is mostly acceptable in practice, issues arise

for scenarios where there does not exist an efficient algorithm like Audsley’s algorithm for
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use. Consider Data-Driven Activation model [167], where tasks executions are triggered by

arrival of data produced by other tasks. The response time analysis needs to consider the

activation jitter. Specifically

wi = Ci +
∑

j∈hp(i)

⌈
wi + JA

j

Tj

⌉
Cj

Ri = JA
i + wi

(7.41)

where wi represents the queuing delay and JA
i represents the activation jitter of task τi.

Typically, JA
i is determined by the response time of tasks that produce the data or activation

signal for τi. This leads to the dependency of τi’s response time on the those of other tasks,

which violates the prerequisite of Audsley’s algorithm. As a result, even though analysis

(7.41) is still sustainable w.r.t parameters such as Ci, Ti and Di, evaluating whether a given

assignment of these parameters is schedulable, in a setting where priority assignment is not

given and needs to co-optimized, is particularly difficult. For these cases, the proposed

framework is not likely going to provide much benefit. When priority assignment is given for

(7.41), schedulability analysis is much easier as it simply requires to evaluate the response

time of each task.

Therefore, the proposed technique is most suitable for problems that have the following

characteristics

• F (X) and G(X) meet the assumption discussed in Section 7.4.

• G(X) is efficient to evaluate.

• F (X) and G(X) are difficult to formulate in standard mathematical programming

frameworks.
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7.9 Experiment Result

In this section, we present results of our experiment evaluation. We mainly consider the ap-

proach depicted in Figure 7.21, where the iterative optimization procedure uses the algorithm

in Figure 7.9 with a given size limit K on M.

7.9.1 Control Performance

In this experiment, we consider the problem of optimizing control performance for a set of

periodic tasks scheduled on uniprocessor. The problem was originally introduced in [103].

System model and schedulability analysis follow that of (7.1). Decision variables include

periods and deadlines. We consider two settings, one with priority assignment may and the

other not. The objective function, which represents the control performance, are linearly

approximated as follows

F (X) =
n∑

i=1

αiTi + βiDi (7.42)

[103] proposed to relax the response time analysis (7.1) by removing the ceiling operator.

In this way, when priority assignment is given, the problem can be formulated as a convex

optimization problem. [103] then uses an branch-and-bound algorithm on top of it to find

the optimal priority assignment. Although the relaxation was claimed to be a closer ap-

proximation to the actual response time in practice, it is possible that the relaxed analysis

may give unsafe solution. Thus, in this evaluation, we use the exact and safe analysis (7.1)

without any relaxation.

We evaluate on randomly generated synthetic task sets. Parameter generation uses a similar

setting as [103]. Specifically αi is randomly generated in range [1, 1000]. βi is randomly

generated in range [1, 10000]. The WCET of of each task Ci is randomly generated in range



290
Chapter 7. A Unified Framework for Optimizing Design of Real-Time Systems with

Sustainable Schedulability Analysis

[1, 100]. The upper-bound for period variable Ti is set to be 5 times the sum of WCET of

all tasks, namely

T u
i = 5

n∑
j=1

Cj (7.43)

Intuitively, this set the lower bound on system utilization to be 20%.

We first consider the problem setting where priority assignment is randomly given and pe-

riods and deadlines are the only decision variables. The following methods are compared.

• MIGP: MIGP formulation proposed in [41]. We use geometric programming solver

gpposy [107] with the BnB (bmi) solver in YALMIP [101] for solving mixed-integer

geometric programming problems.

• MUA-guided-MILP: The proposed optimization framework, where the sub-problem

with MUA-implied constraint is solved using MILP. It is largely the same as the tech-

nique proposed in [166]. The time limit is set to 600 seconds.

• MUA-guided-BFS: The proposed optimization framework in Figure 7.21, where sub-

problem is solved using the algorithm in Figure 7.9 and K is set to 10000. The time

limit is set to 600 seconds.

The BnB (bmi) solver in YALMIP does not have a time limit setting and only allows to set

an limit on the the number of iterations. Therefore, we set a maximum iteration limit of

2000. This gives roughly a similarly amount of timeout as that of MUA-guided methods in

comparison.

When solved to optimality, MILP returns a globally optimal solution. We use it as a compar-

ison for evaluating the sub-optimality of the proposed optimization framework. Specifically,

let p1, p2 denote the objective value by MUA-guided-MILP and MUA-guided-BFS re-

spectively. The sub-optimality by MUA-guided-BFS w.r.t MUA-guided-MILP is com-
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puted as s = max{p2−p1,0}
p1

. Since we are only interested in the worst-case sub-optimality, we

use an max operator in the denominator to rule out cases where MIGP fails to find the

optimal solution within the time limit, in which case the solution may be inferior to that by

MUA-guided-BFS.

Figure 7.22 shows the whisker-box-plot of the distribution of s w.r.t different number of

tasks. For each number of tasks, we generate 1000 random systems. It can be seen that

in most cases, MUA-guided-BFS obtain solutions with same quality as MUA-guided-

MILP, as all sub-optimal cases are identified as outliers. The values of average, median,

25th and 75th percentile are all 0. The maximum amount of sub-optimality observed in the

random experiment is around 0.08%.
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Figure 7.22: Sub-optimality by MUA-guided-BFS method

We next consider the problem settings where priority assignment is not given and is part
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of the decision space. We evaluate how this additional flexibility improves the optimiza-

tion result. We adapt MUA-guided-BFS for solving the new problem and denote it as

MUA-guided-PA. Since MUA-guided-MILP and MUA-guided-BFS have very simi-

lar quality of solution. We compare between MUA-guided-BFS and MUA-guided-PA

directly. Specifically, let p3 denote the objective obtained by MUA-guided-PA. We quan-

tify the improvement in solution as

d =
p2 − p3

p2
(7.44)

Figure 7.23 shows the whisker-box-plot of the distribution of d . It can be seen that the

treating priority assignment as decision variable significantly improves the quality of the

solution. The average amount of improvement ranges from 30% to 40% and sometimes as

large as more than 100%.

Figure 7.24 plots the run-time of all the optimization methods MIGP, MUA-guided-

MILP, MUA-guided-BFS and MUA-guided-PA. MUA-guided-MILP has the worst

scalability. This shows its inefficiency in solving problems with objective that are sensitive

to many decision variables. Both MUA-guided and MUA-guided-PA run significantly

faster than MIGP. MUA-guided-PA is slightly slower than MUA-guided due to its need

to co-optimize priority assignment. Specifically, in MUA-guided-BFS, evaluating G(X) is

simply a process of computing the response time of each task. But for MUA-guided-PA,

evaluating G(X) requires to use Audsley’s algorithm.

We next study the effect of K on MUA-guided-BFS methods in terms of their efficiency

and quality of solution. We try three other different values K = 1, 10, 100, 1000. The

corresponding configurations are denoted as MUA-K1, MUA-K10, MUA-K100 and

MUA-K1000. Figure 7.25 shows the average run-time by different configurations on K.



7.9. Experiment Result 293

 5  6  7  8  9 10 11 12 13 14 15 16 17 18 19

Number of Tasks

0

10

20

30

40

50

60

70

80

90

100

Im
p
ro

v
e
m

e
n
t 
(%

)

Figure 7.23: Improvement on objective value by MUA-guided-PA method

Increasing the value of K increases the run-time. The increase mainly comes from two

factors. Firstly, Algorithm 13 requires more computation. Secondly, the sub-problem of each

iteration is solved closer-to-optimal with larger K. Therefore, the objective value converges

slower and leads to an increase in total number of iterations to terminate.

Figure 7.26 to 7.29 shows the amount of sub-optimality according to metric (7.43) by differ-

ent configurations. Generally, the higher the K, the smaller the amount of sub-optimality.

From K = 1 to K = 10000, the maximum amount of sub-optimality observed in all random

cases reduced from close to 7% down to around 0.085%.
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Figure 7.24: Run-time

7.9.2 Optimizing Energy Consumption with DVFS

Platforms with dynamic voltage and frequency scaling allow to adjust the CPU clock rate

to adjust the execution time of tasks. Higher clock rate gives smaller execution time, which

generally helps schedulability. But it increases energy consumption. In this experiment, we

consider the problem of optimizing energy consumption subject to schedulability constraint.

System model and schedulability analysis follows (7.1). The goal is to determine the clock

rate fi for executing each task τi. fi determines the execution time Ci of τi. Specifically,

suppose τi has an execution time Cb
i measured at a base clock ratef b, then its execution time
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Figure 7.25: Run-time by different K

at another clock rate fi can be estimated as Ci = Cb
i
fb

fi
. Thus fi can be expressed in terms

of Ci, namely fi = f b C
b
i

Ci
. We normalize f b to be 1 and consider Cb

i given, which makes Ci

the decision variable in the optimization.

We adopt the energy consumption objective formulated in [80], which is given as

F (X) =
∑
∀τi

Cb
i f

b

Ti

· β · (fi)α−1

=
∑
∀τi

1

Ti

· β · (Cb
i )

α

(Ci)α−1

(7.45)
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Figure 7.26: K = 1

 5  6  7  8  9 10 11 12 13

Number of Tasks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s
u
b
-o

p
ti
m

a
lit

y
 (

%
)

K = 10

Figure 7.27: K = 10
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Figure 7.28: K = 100
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Figure 7.29: K = 1000

where β is a circuit dependent constant which can be omitted from the optimization. A

common assumption for α is 3 [117][112]. F (X) clearly satisfies the assumption discussed in

Section 7.4 and is separable in each decision variable Ci.

Random Systems

We evaluate on randomly generated synthetic task sets. For each task set, we first randomly

generate a system utilization in range [0.5, 0.9]. We then generate a period Ti for each task
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according to log-uniform distribution from range [100, 100000], and a utilization ui for each

task using UUnifast algorithm [50]. The corresponding WCET Cb
i = Ti · ui is treated as the

execution time at the base clock rate. The range of decision variable Ci is taken as [Cb
i , 2C

b
i ].

Specifically, the clock rate can be decreased as low as half the base clock rate. The deadline

Di of each task is generated randomly in range [Cb
i , Ti]. Priorities are assigned according to

deadline monotonic assignment, which is optimal w.r.t response time analysis (7.1).

We compare between the following techniques

• MIGP: The same mixed-integer geometric programming formulation used in previous

experiment, except that decision variables becomes task execution time and objective

becomes (7.45).

• MUA-guided: The proposed technique depicted in Figure 7.21.

• MUA-guided-O: The same algorithm as MUA-guided except that MUA conver-

sion uses Algorithm 14 instead of Algorithm 15.

For each random system, we define the relative gap of method A w.r.t method B as the

relative difference in the objective value. Specifically

s =
pA − pB

pB
(7.46)

where pA, pB represent the objective value by method A and B respectively.

Figure 7.30 shows the whisker-box-plot of the distribution of the relative gap of MUA-

guided w.r.t MIGP for different number of tasks. It can be seen that MUA-guided finds

averagely 3% to 30% better solution than MIGP within the time limit. Figure 7.31 shows the

distribution of the relative gap of MUA-guided-O w.r.t MUA-guided. MUA-guided is

slightly better than MUA-guided-O but mostly within 5% of difference.
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Figure 7.30: Relative gap between MIGP and MUA-guided

Figure 7.32 gives the average run time by each method. It can be seen that MUA-guided

is noticeably faster than MIGP. The capping of MIGP that occurs at 14 and 15 num-

ber of tasks is mainly due to large number of cases terminated due to exceeding iteration

limit. MIA-guided-O has the worst scalability among all methods. This demonstrates the

importance of Algorithm 15.
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Figure 7.31: Relative difference between MUA-guided-O and MUA-guided

Flight Management System

We next evaluate the technique on an avionic use case consisting of a subset of Flight

Management System application [79]. The system is mixed-criticality and contains a total

of 11 tasks that implement functions such as localization, flightplan etc. Each task has been

abstracted into an implicit deadline sporadic task characterized by a minimum inter-arrival

interval, a typical range of execution time in practice, and a criticality level. 7 tasks are of

HI-criticality and 4 are of LO-criticality.
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Figure 7.32: Run-time

We consider fixed-priority uniprocessor scheduling according to Adaptive-Mixed-Criticality

(AMC) for these tasks. For schedulability analysis, we adopt AMC-rtb and AMC-max

response time analysis proposed in [19], both of which are sufficient analysis . The two

analysis mainly differ in the estimation of higher priority tasks interference during the time

of criticality change.
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AMC-rtb analysis is formulated as follows

Ri(HI) = Ci(HI) +
∑

∀j∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI)+

∑
∀j∈hpL(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO)

(7.47)

Ci(HI) represents the WCET of τi in HI criticality mode. Ri(LO) represents the response

time of τi in LO criticality mode given by (7.1). hpH(i) and hpL(i) represents the set of HI-

and LO-criticality task of higher priority than τi.

Intuitively, AMC-rtb assumes that a HI-criticality task always execute in HI-criticality mode

and LO-criticality task may execute up to Ri(LO). AMC-max improves upon AMC-rtb by

considering different specific time instants of criticality change and divides the workload of

higher priority HI-criticality tasks into LO-mode and HI-mode. Specifically, given a time

instant s, AMC-max compute the WCRT of τi as follows

Ri(HI, s) = Ci(HI) +
∑

∀j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO)+

∑
∀j∈hpH(i)

M(j, s, Ri(HI, s))Cj(HI)+

∑
∀j∈hpH(i)

(⌈
t

Tj

⌉
−M(j, s, Ri(HI, s))

)
Cj(LO)

(7.48)

where term M(j, s, t) is expressed as

M(j, s, t) = min
{⌈

t− s− (Tj −Dj)

Tj

⌉
+ 1,

⌈
t

Tj

⌉}
(7.49)

Term M(j, s, t) gives the maximum number of instances of τj that are released as HI-

criticality instances during time interval [s, t]. The WCRT of τi can be computed by ex-
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Table 7.2: Flight Management System case study

τ τ1 τ2 τ3 τ4 τ5 τ6
T 5000 200 1000 1600 100 1000

C(LO) [5, 40] [5, 40] [5, 40] [5, 40] [5, 40] [5, 40]
HI/LO HI HI HI HI HI HI

τ τ7 τ8 τ9 τ10 τ11
T 1000 1000 1000 1000 1000

C(LO) [5, 40] [50, 400] [50, 400] [50, 400] [50, 400]
HI/LO HI LO LO LO LO

amining all possible time of criticality change s, namely

Ri(HI) = max
∀s

Ri(HI, s) (7.50)

[19] shows that it suffices to consider only those s in interval [0, Ri(LO)) when a higher

priority LO-criticality task releases.

AMC-max has much higher computation complexity comparing to AMC-rtb. But its higher

accuracy may help find better quality solution when used in optimization. In the following,

we consider the problem of minimizing LO-mode energy consumption given by (7.45). The

decision variables are LO-mode WCET Ci(LO) of each task. The range of values for Ci(LO)

is determined as follows. We first take the upper-bound Cub
i of the execution time range given

in the case study. Then we consider Ci(LO) to be freely adjustable in interval [C
ub
i

4
, 2Cub

i ] by

CPU clock rate adjustment. For HI-criticality task, Ci(HI) is obtained by scaling Ci(LO)

by a fixed criticality factor γ, i.e. Ci(HI) = γCi(LO). The optimization problem is to find a

Ci(LO) for each task that minimizes (7.45). The parameter configuration of the case study

is summarized in Table 7.2.

We first consider the setting where priority assignment is given according by rate mono-

tonic assignment (tiers are broken by criticality level). We compare between the following

techniques
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Table 7.3: Results on Flight Management System. Rate-monotonic priority assignment.

Method γ = 3 γ = 4 γ = 5
Time Objective Time Objective Time Objective

MIGP ≥ 48h 6.216e+007 ≥ 48h 8.379e+007 ≥ 48h 1.076e+008
MUA-rtb-K5 0.05s 4.691e+007 0.04s 6.220e+007 0.03s 8.459e+007
MUA-max-K5 0.04s 4.691e+007 0.05s 6.220e+007 0.03s 8.459e+007
MUA-rtb-K500 2.40s 4.129e+007 2.04s 5.840e+007 1.76s 7.732e+007
MUA-max-K500 3.18s 4.129e+007 2.64s 5.840e+007 2.14s 7.732e+007
MUA-rtb-K50000 873.91s 4.108e+007 582.06s 5.803e+007 409.76s 7.723e+007
MUA-max-K50000 903.10s 4.108e+007 619.86s 5.803e+007 406.59s 7.723e+007

• MIGP-AMCrtb: We use the same idea and formulate AMC-rtb analysis as mixed-

integer geometric programming.

• MUA-AMCrtb-Km: The proposed technique where schedulability analysis uses

AMC-rtb analysis and the size limit parameter K is set to m.

• MUA-AMCmax-Km: Same as MUA-AMCrtb-Km but where schedulability

analysis uses the AMC-max analysis.

Note that we do not consider using AMC-max for MIGP as the analysis is too complicated

to use in MIGP.

We run each method up to 48h. The results are summarized in Table 7.3. MIGP gets

stuck in a fairly sub-optimal solution early and cannot find better solutions even after 48

hours. Setting a higher value on K in most cases helps find better solution but at the cost

of increased runtime. Extremely high K does not necessarily bring significant improvement.

This can be seen from the results corresponding to K = 500 and K = 50000. The use of

the more accurate AMC-max analysis did not improve the quality of the solution. This is

mainly due to the rate-monotonic priority assignment. For this case, LO-criticality tasks

are mostly lower in priorities than HI-criticality tasks (except τ1, τ4 which have quite loose

deadlines). As a result, most HI-criticality tasks only suffer interference from other HI-
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Table 7.4: Results on Flight Management System. Co-optimizing priority assignment.

Method γ = 3 γ = 4 γ = 5
Time Objective Time Objective Time Objective

MUA-rtb-Audsley-K5 0.14s 2.666e+007 0.09s 3.056e+007 0.09s 3.762e+007
MUA-max-Audsley-K5 0.16s 2.666e+007 0.16s 2.666e+007 0.15s 2.666e+007
MUA-rtb-Audsley-K500 12.16s 2.629e+007 10.20s 2.835e+007 6.55s 3.439e+007
MUA-max-Audsley-K500 16.71s 2.630e+007 15.85s 2.629e+007 14.13s 2.629e+007
MUA-rtb-Audsley-K50000 2356.61s 2.626e+007 1204.74s 2.832e+007 517.68s 3.415e+007
MUA-max-Audsley-K50000 2734.41s 2.626e+007 2260.71s 2.626e+007 2569.84s 2.626e+007

criticality tasks. Therefore, the worst-case scenario for timing occurs when the system is

entirely in HI-criticality mode, where AMC-max and AMC-rtb aren’t much different in

accuracy.

We next consider the setting where priority assignment is not given and need to be co-

optimized with WCET. MIGP is no longer applicable and therefore we only consider meth-

ods based on the proposed optimization framework. The only modification from previous

setting is that schedulability analysis uses Audsley’s algorithm in the framework (specifically,

implementation of G(X)).

The results are summarized in Table 7.4. A number of observations can be made. First,

much better solutions are found when priority assignment is treated as a decision. The overall

objective values reduce by as much as more than half comparing to the results in Table 7.3.

This shows that co-optimizing different variables can bring significant improvement in the

solution. This is a benefit that the proposed optimization framework can provide as opposed

to traditional mathematical programmings. Secondly, the difference between AMC-rtb and

AMC-max analysis is now more noticeable. When criticality factor γ = 5, the use of AMC-

max gives more than 23% improvement over AMC-rtb. This demonstrates the benefit of

using a more accurate analysis for optimization especially in resource-stringent scenarios.

The benefit can only be achieved however, when the optimization algorithm is capable of

accommodating the analysis. This is difficult for MIGP as AMC-max is too complicated
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to formulate. Thirdly, the runtime noticeably increases comparing to Table 7.3. This is

mainly because schedulability analysis now uses Audsley’s algorithm which have much higher

computation complexity.

7.10 Conclusion

In this chapter, we propose an framework for optimizing the design of real-time system with

sustainable schedulability analysis and monotonic objective functions. We study the concept

of Maximal-Unschedulable-Assignment (MUA) and show how it can be used to abstract, it-

eratively approximate and refine the feasibility region. Based on the concept, we develop an

iterative optimization procedure guided by MUAs. We discuss the design of three important

components of the optimization procedure: 1) An algorithm for solving the optimization

problem consisting of MUA-implied constraints, 2) An algorithm for computing MUAs that

gives faster convergence and 3) An algorithm for exploring good-quality schedulable solu-

tions. We perform experiments on different optimization problems with different settings and

demonstrate that the technique is capable of finding close-to-optimal solutions and providing

benefit in applicability and scalability comparing to traditional mathematical programming

based approaches.



Chapter 8

The Concept of Response Time

Estimation Range for Optimizing

Systems Scheduled with Fixed

Priority

8.1 Introduction

In real-time systems with fixed priority scheduling, appropriate priority assignment is es-

sential for judicious utilization of hardware resources [53]. This problem has attracted a

large body of research efforts. Classical results include rate-monotonic (RM) [100], deadline-

monotonic (DM) [97], and Audsley’s algorithm [9], all of which are tractable in that they only

need to check a number of priority orders polynomial in the number of tasks. In particular,

Audsley’s algorithm is shown to be optimal for finding a schedulable priority assignment for

a variety of scenarios, as long as they satisfy the conditions identified by Davis et al. [50].

The applicability of Audsley’s algorithm subsumes those of RM and DM.

However, when Audsley’s algorithm is inapplicable, there is no efficient algorithm to find the

optimal priority assignment. This may rise for two reasons. One is that the system model

306
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and associated schedulability analysis violate the conditions of Audsley’s algorithm. The

other is that the problem may contain constraints or an objective related to other metrics

(e.g., memory, power). The current mindset is to either invent problem specific heuristics

that may be substantially suboptimal, or directly use standard search frameworks such as

Branch-and-Bound (BnB) and Mixed Integer Linear Programming (MILP).

In this chapter, we consider a class of real-time systems where the schedulability of a task

depends not only on the set of higher/lower priority tasks but also on the response times of

other tasks. We call them systems with Response Time (RT) dependency. RT dependency

disrespects the applicable conditions of Audsley’s algorithm. We provide two examples of

such systems. The first is the real-time wormhole communication in a Network-on-Chip

(NoC) [133]. A traffic flow may suffer indirect inferences from higher priority flows that do

not directly share any communication link with it. The indirect interferences and conse-

quently the response time of the flow depend on the response times of higher priority flows.

The second is distributed systems with data-driven activation, which is broadly adopted in

application domains such as automotive [167]. A task is activated by the availability of input

data and consequently the completion of its immediate predecessor. Hence, the task has an

activation jitter that equals the response time of the immediate predecessor.

Our approach breaks through the mindset of current methods. It is suitable for design

optimization problems of systems with RT dependency that involve priority assignment as

a design variable, e.g., to find a schedulable priority assignment. Specifically, we propose

several concepts including the response time estimation range, which is used in place of the

actual response time of each task for evaluating the system schedulability. These concepts

allow to leverage Audsley’s algorithm to generalize from an unschedulable solution to many

similar ones. We then develop an optimization procedure that is guided by the proposed

concepts. The procedure is shown to provide significantly better solutions than existing
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heuristics. Compared to other exact algorithms based on BnB or MILP, it typically runs

many times faster.

The rest of the chapter is organized as follows. Section 8.2 discusses the related work.

Section 8.3 presents the system model. Section 8.4 introduces the concepts and discusses their

properties. Section 8.5 develops an optimization framework that leverages these concepts.

Section 8.7 presents the experimental results comparing our approach with existing methods,

before concluding the chapter in Section 8.8.

8.2 Related Work

The problem of priority assignment in real-time systems scheduled with fixed priority has

been studied extensively. See an authoritative survey by Davis et al. [53]. In particular, for

periodic tasks with implicit deadline (i.e., task deadline equals the period), RM is shown

to be optimal for schedulability in that there is no system that can be scheduled by some

priority assignment but not by RM. When tasks have constrained deadline (i.e., no larger

than period), DM is optimal for schedulability [97]. Audsley’s algorithm [9] is optimal for

finding a schedulable priority assignment for a variety of task models and scheduling policies,

as summarized in Davis et al. [53]. The three necessary and sufficient conditions for its

optimality are presented in [50]. Besides schedulability, Audsley’s algorithm can be revised to

optimize several other objectives, including the number of priority levels [9], lexicographical

distance (the perturbation needed to make the system schedulable from an initial priority

order) [40, 53], and robustness (ability to tolerate additional interferences) [44].

When Audsley’s algorithm is not directly applicable, the current approaches can be classi-

fied into three categories. The first is based on meta heuristics such as simulated annealing

(e.g., [22, 142]) and genetic algorithm (e.g., [75]). The second is to develop problem spe-
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cific heuristics (e.g., [127, 146, 156]). These two categories do not have any guarantee on

optimality. The third category is to search for the exact optimum, often applying standard

optimization frameworks such as BnB (e.g., [147], [51]), or MILP (e.g., [169]). However,

this approach typically suffers from scalability issues and may have difficulty to handle large

industrial designs.

Such approaches are also followed for the particular class of systems we consider, i.e., sys-

tems with RT-dependency. For the real-time wormhole communication in NoC, Shi and

Burns develop a BnB algorithm that is enhanced with some problem specific pruning tech-

niques [133]. Later Nikolić and Pinho propose a unified MILP formulation for optimizing

priority assignment and routing of traffic flows [114]. The mixed-criticality extension relies

on heuristics including DM [33]. The current work on systems with data-driven activation

either uses BnB [110] or formulates the problem in MILP [167].

Alternatively, we present efficient and exact optimization procedures that leverage Audsley’s

algorithm [160, 161]. However, these works [160, 161] are for problems where Audsley’s

algorithm is still optimal for finding a schedulable priority assignment. In this chapter, we

consider systems with RT dependency where the response time of a task also depends on

those of other tasks. This makes Audsley’s algorithm even inapplicable for schedulability.

Thus, in this work we cannot use the concepts and algorithms from [160, 161].

Our approach differs from other exact algorithms, such as [133], [114] for real-time wormhole

communication in NoC, in two significant ways. First, we transform the problem to a

search in the space of response time estimation, instead of directly searching for an optimal

priority assignment. Second, we use Audsley’s algorithm to generalize from an unschedulable

response time estimation to a maximal range. However, the approaches based on standard

optimization frameworks [133], [114] lack this problem-specific “learning” capability.
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8.3 System Model

We consider a real-time system Γ consisting of a set of tasks Γ = {τ1, τ2, ...τn} scheduled

under fixed-priority. Each task τi is characterized by a tuple ⟨Ci, Ti, Di⟩, where Ci is its

Worst Case Execution Time (WCET), Ti is the period, and Di is the deadline. Without loss

of generality, we assume these parameters are all positive integers. τi is also associated with

an activation jitter JA
i and a unique priority level πi. πi > πj if τi has a higher priority than

τj. hpi = {τj|πj > πi} (resp. lpi = {τj|πj < πi}) denotes the set of tasks with priority higher

(resp. lower) than τi.

In the optimization problem, we assume the task WCET, period, and deadline are given

parameters. The decision variables include task priority assignment P. Consequently, hpi,

lpi, and the task worst case response time (or in short, response time) Ri of each task τi are

also unknown variables. The activation jitter JA
i , however, may be a known parameter as

in the wormhole communication (Section 8.3.2), or an unknown variable as for the case of

data-driven activation (Section 8.3.3). The system schedulability, i.e., each task shall meet

its deadline, can be checked with an analysis that satisfies the property of RT dependency as

defined in Section 8.3.1. Besides, the optimization problem may also involve other constraints

and objective.

Formally, the optimization problem O can be written as

O : min g(X)

s.t. system schedulability

h(X) ≤ 0

(8.1)

Here X is the set of decision variables that includes the vectors of task priority assignments P

and response times R = [R1, R2, ...Rn]. h(·) is the set of constraints in addition to the system
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schedulability constraints, and g(·) is the objective function (the function to be optimized

by assigning appropriate values to the variables that also satisfy all the constraints).

For example, one may be interested in maximizing the minimum laxity, the difference be-

tween the deadline and response time, among all tasks. This can be formulated as

O : max L

s.t. system schedulability

L ≤ Di −Ri,∀i

(8.2)

8.3.1 Response Time Dependency

We now formalize the property that the analysis for checking system schedulability shall

satisfy, which we term as response time dependency (RT dependency). Specifically, we assume

the response time Ri of task τi can be computed as the least fixed point of the following

equation, where the function fi(·) takes hpi and R as inputs

Ri = fi (hpi,R) , ∀τi (8.3)

Note that if hpi is given, lpi is also fixed since lpi
∪
hpi = Γ\{τi}. Thus, for simplicity we

omit it in the definition of fi.

The condition that the response time analysis can be written in the form of Eq. (8.3) implies

the following two assumptions

• A1: the response time Ri of τi, if the response times of other tasks are known, depends

on the set of higher priority tasks hpi, but not on their relative order.

• A2: the response time Ri of τi, if the response times of other tasks are known, depends
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on the set of lower priority tasks lpi, but not on their relative order.

We suppose (8.3) further satisfies two additional assumptions.

• A3: the response time Ri of τi is monotonically non-decreasing with the set of higher

priority tasks hpi. Specifically, given two sets of tasks hpi and hp′i such that hpi ⊆ hp′i,

the response time Ri with hp′i as the higher priority tasks is no smaller than that with

hpi.

• A4: the response time Ri of τi is monotonically non-decreasing with the increase of the

response time Rj of any other task τj.

We now give the formal definition of RT dependency.

Definition 27. The response time analysis of a real-time system Γ is said to be response

time dependent (RT dependent) if it satisfies the above four assumptions A1-A4.

Remark 8.1. Assumptions A1-A4 are desired properties for calculating Ri, i.e., the least

fixed point solution to Eq. (8.3) where the input is the sets of higher/lower priority tasks

and their response times, and the output is Ri.

As a more compact representation, let hp be the vector of higher priority task sets, and

f(hp,R) be a vector of functions over hp and R. The response times of all tasks in the

system are computed as the least fixed point of the following equation

R = f(hp,R) (8.4)

We note that a response time analysis with RT dependency in general violates the applica-

bility of Audsley’s algorithm. Specifically, Audsley’s algorithm requires that, in addition to

A3 above, the following two conditions are satisfied [50]
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• A1’: the response time Ri of τi depends on the set of higher priority tasks hpi, but not

on their relative order.

• A2’: the response time Ri of τi depends on the set of lower priority tasks lpi, but not

on their relative order.

To calculate Ri for τi by Eq. (8.3) in an RT dependent system, it requires the knowledge of

Rj of some other task τj. But Rj is highly dependent on the relative priority of τj, which

violates A1’-A2’. Despite this, we can still develop an efficient algorithm to optimize priority

assignment in such systems.

We provide two examples that fit this model. One is the real-time wormhole communication

in NoC [133] and its mixed-criticality extension [33] (detailed in Section 8.3.2), the other is

distributed systems with data-driven activation (Section 8.3.3).

8.3.2 Real-Time Wormhole Communication in NoC

Wormhole switching with fixed priority preemptive scheduling is a viable solution for real-

time communication in an NoC [133]. A wormhole-based NoC consists of multiple IP blocks

and routers (i.e., the nodes in the network) connected through physical links to form a grid.

Each traffic flow is transmitted through a specified path of links [133]. Here, the traffic flows

are the scheduling entity, and the physical links are the hardware resource accessed by the

traffic flows. Since a flow may access several physical links shared with other flows, priority-

based arbitration at the routers is used to provide hard real-time service guarantees [133]. In

the end, a flow suffers direct interferences, i.e., from those higher priority flows that directly

share at least one link. In addition, it may also be delayed by indirect inferences, i.e., from

those higher priority flows with no shared links. The indirect interferences are captured by

the interference jitter introduced below.
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The response time of traffic flow τi with constrained deadline is calculated as [133]

Ri = Ci +
∑

∀τj∈shpi

⌈
Ri + JA

j + J I
j

Tj

⌉
Cj (8.5)

Here shpi is the set of higher priority traffic flows that share at least one link with τi. JA
j is

the activation jitter inherited from its sending software task, which can be considered as a

parameter as it is independent from the priority assignment of the traffic flows. J I
j represents

the interference jitter of τj. J I
j occurs when flows with higher priority than τj share a link

with τj and thus indirectly interfere with τi. It is computed as

J I
j = Rj − Cj (8.6)

Substitute (8.6) into (8.5), there is

Ri = Ci +
∑

∀τj∈shpi

⌈
Ri + JA

j +Rj − Cj

Tj

⌉
Cj (8.7)

We now show that the response time analysis in Eq. (8.7) satisfies the four assumptions

A1-A4. Note that the set shpi is solely dependent on the set of higher priority flows hpi, as

it is the intersection of hpi and the fixed set of flows sharing a link with τi. For A1 and A2,

if the response time Rj of all other tasks τj are known, the fixed point solution of Eq. (8.7)

depends only on the set shpi but not on other design variables. For A3, since only the

response times of tasks in shpi contribute positively to the right hand side of (8.7), a larger

hpi (and consequently a larger shpi) will only make Ri larger. Likewise, in the right hand

side of (8.7), the response time Rj of any other task τj has an coefficient that is either zero

(in case it is not in shpi) or positive (in case it belongs to shpi), A4 is also satisfied.
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Hence, the analysis in Eq. (8.7) is RT dependent. However, Audsley’s algorithm is not

applicable even for finding a schedulable priority order [133]. Similarly, the NoC system

with mixed-criticality traffic flows also relies on a response time analysis that violates the

conditions for Audsley’s algorithm but satisfies A1-A4 [33].

8.3.3 Data-Driven Activation

Data-driven activation is an activation model in distributed systems such as automotive

applications [167]. In this model, task executions and message transmissions are triggered

by the arrival of input data. Hence, each task/message τi is characterized by a period Ti,

an activation jitter JA
i , and a deadline that is relative to the arrival time (i.e., the expected

activation time). In a communication chain, the activation jitter inherits the worst case

response time of the immediate predecessor: if τj is triggered by the arrival of data sent

by τk, then JA
j = Rk. This dependency is often referred to as jitter propagation. Note

that the direct communication happens only between a task and another task/message,

but not between two messages. However, indirect communication, and consequently jitter

propagation dependency, may still exist between two messages.

With respect to the scheduling policy, tasks and messages are both assigned with a fixed

priority. However, tasks are preemptive while messages are non-preemptive (like in the

Controller Area Network bus). For a task/message τi, the queuing delay wi is defined as

the worst case delay from τi’s activation to its completion. The response time Ri of τi with

preemptive scheduling and constrained deadline is

wi = Ci +
∑

j∈hp(i)

⌈
wi + JA

j

Tj

⌉
Cj

Ri = JA
i + wi

(8.8)
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When there is direct or indirect communication from τj to τi sharing the same resource (CPU

or bus), JA
i and consequently Ri rely on the exact value of Rj. The response time for non-

preemptive scheduling or tasks with arbitrary deadlines requires to evaluate all instances in

the busy period [167]. Still, they satisfy the properties of RT dependency.

The end-to-end latency Lp of a path p is the sum of the queuing delays of all tasks/messages

on p

Lp =
∑

∀τj on path p

wi (8.9)

Lp shall be no larger than the end-to-end deadline Dp of p.

8.3.4 Fixed Priority Multiprocessor Scheduling

Multiprocessor platforms are becoming increasingly popular in the design of real-time sys-

tem. Here we consider systems that contains a set of periodic (or sporadic) task. Each task is

characterized by a period Ti, deadline Di and worst-case execution time Ci. Tasks are sched-

uled on a multiprocessor platform consisting of M processors by fixed priority assignment.

Specifically, at any time instant, the waiting task with the highest priority is scheduled on

an idle processor. A number of studies have been performed for its schedulability analysis.

We consider the well known GSYY analysis introduced in [72] for its good trade-off between

computation complexity and accuracy. The analysis is summarized in the following.

Ri = Ci +
∑

∀j∈hp(i)

INC
i (τj, Ri) +

∑
∀j∈M(i)

ICI
i (τj, Ri)− INC

i (τj, Ri) (8.10)

hp(i) represents the set of tasks of higher priority than τi. INC
i (τj, Ri) represents the amount

of non-carry-in interference by τj and ICI
i represents the amount of carry-in interference by

τi. M(i) is a set of at most M − 1 higher priority tasks that have the highest value of
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ICI
i (τj, Ri) − INC

i (τj, Ri). Specifically, a higher priority task can either introduce carry-in

or non-carry-in interference. There can be at most M − 1 higher priority tasks that have

carry-in interference. Therefore,the worst-case scenario occurs when these M − 1 tasks are

those with the greatest difference between carry-in and non-carry-in interference.

We mainly concern term ICI
i (τj, t) in (8.10), which‘is formulated as follows

ICI
i (τj, t) =

[[
WCI

k (τj, t)
]]t−Cj+1

0

WCI
i (τj, t) =

⌊
[[t− Cj]]0

Tj

⌋
Cj + Cj + α

α = [[[[t− Cj]] mod Tj − (Tj −Rj)]]
Cj

0

(8.11)

From the expression of α, it can be seen that the amount of carry-in interference introduced

by task τj depends on its worst-case response time Rj. The larger the Ri, the higher the

interference. Therefore, the worst-case response time of the lower priority task τi depends

on those of the higher priority tasks.

8.4 Response Time Estimation Range

The response time analysis in Eq. (8.3) does not satisfies the conditions of Audsley’s algo-

rithm. However, it has a useful property as in the assumptions A1-A2: if the response times

of other tasks are appropriately estimated, then Ri only requires the knowledge on the set of

higher/lower priority tasks, but not on the relative order in them. This, combined with A3,

allows to leverage Audsley’s algorithm assuming we can appropriately estimate the response

times.

Hence, the main idea of our optimization framework is to use a separate procedure to search

for an appropriate response time estimation. Before presenting the details of the optimization
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Table 8.1: An Example Wormhole NoC System Γe (all flows share the same link)

τi Ti Ci Di JA
i

τ1 10 4 10 0
τ2 35 9 35 0
τ3 120 5 120 0
τ4 180 35 180 0

Table 8.2: Concepts Related to Response Time

Notation Concept Definition
Ri Actual response time of τi
R Vector of actual task response times
E Response time estimation (RTE) Defn. 28
RE

i Estimation-inferred response time of τi Defn. 29
RE Vector of estimation-inferred Defn. 29

response times
Ei Use of response time estimation Eqn. (8.14)

for computing RE
i

G Response time estimation range Defn. 31
RG

i Estimation range-inferred response time Defn. 34
of τi

RG Vector of estimation range-inferred Defn. 34
response times

Gi Use of response time estimation range Eqn. (8.23)
for computing RG

i

U Maximal unschedulable Defn. 36
response time estimation range (MUTER)

framework in the next section, in this section we first define a few concepts and study their

useful properties. We illustrate with an example NoC system in Table 8.1, which has four

tasks (traffic flows) sharing the same link. We also summarize the response time related

concepts in Table 8.2.

Definition 28. A response time estimation (RTE) is a collection of tuple elements

⟨τi, ri⟩ for all tasks, i.e., E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩}, where each tuple ⟨τi, ri⟩ with ri ∈ [Ci, Di]
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represents that the response time of τi is estimated to be ri.

The following concept defines the way how a response time estimation is used during opti-

mization. Essentially, given an RTE E , we define the estimation-inferred response time of

task τi as the least fixed point to Eq. (8.3) assuming the response times of other tasks follow

the estimated value in E .

Definition 29. Given a priority assignment P and a response time estimation as follows,

E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩} (8.12)

the estimation-inferred response time of task τi, denoted as RE
i , is the least fixed point

solution of the following equation

RE
i = fi(hpi,Ei) (8.13)

Here Ei is a vector constructed as follows: the i-th entry of Ei is the variable RE
i , and the

j-th entry for any j ̸= i takes the corresponding given value rj in E , i.e.,

Ei = [r1, ..., R
E
i , ..., rn] (8.14)

The vector of estimation-inferred response times is denoted as RE.

Remark 8.2. With a given RTE E , the calculation of estimation-inferred response time RE
i

for task τi only depends on the set of higher priority tasks, but not on their relative order.

Also, given a priority assignment, the actual response time is generally different from the

estimation-inferred response time. This is illustrated in the following example.

Example 8.3. Assume the priority order is π1 > π2 > π3 > π4 for the system in Table 8.1.
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The actual task response times are the least fixed point solution for the following equations



R1 = 4

R2 = 9 +
⌈
R2+R1−4

10

⌉
· 4

R3 = 5 +
⌈
R3+R1−4

10

⌉
· 4 +

⌈
R3+R2−9

35

⌉
· 9

R4 = 35 +
⌈
R4+R1−4

10

⌉
· 4 +

⌈
R4+R2−9

35

⌉
· 9

+
⌈
R4+R3−5

120

⌉
· 5

(8.15)

Hence, the vector of actual response times is R = [4, 17, 26, 150]. However, the estimation-

inferred response times, given an RTE E = {⟨τ1, 4⟩ , ⟨τ2, 9⟩ , ⟨τ3, 5⟩ , ⟨τ4, 35⟩}, are the least

fixed point of the equations below



RE
1 = 4

RE
2 = 9 +

⌈
RE

2 +4−4

10

⌉
· 4

RE
3 = 5 +

⌈
RE

3 +4−4

10

⌉
· 4 +

⌈
RE

3 +9−9

35

⌉
· 9

RE
4 = 35 +

⌈
RE

4 +4−4

10

⌉
· 4 +

⌈
RE

4 +9−9

35

⌉
· 9

+
⌈
RE

4 +5−5

120

⌉
· 5

(8.16)

Hence, the vector of estimation-inferred response times is RE = [4, 17, 26, 137]. We note that

RE
4 ̸= R4.

We now define a desired property of an RTE such that it allows a schedulable priority

assignment (Definition 30). We prove that there must exist an RTE with this property if

and only if the system is schedulable (Theorem 37).

Definition 30. A response time estimation E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩}} is defined as schedu-

lable if and only if there exists a priority assignment P such that the estimation-inferred
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response times are component-wise no larger than E . That is, E is schedulable if and only if

∃P s.t. ∀i = 1..n, RE
i = fi(hpi,Ei) ≤ ri (8.17)

Theorem 37. A system Γ has a schedulable priority assignment if and only if there exists

a schedulable RTE E .

Proof. “Only If” part. Let P be a schedulable priority assignment of Γ and R =

[R1, ...Rn] be the actual response time under P. Take ri = Ri for each ⟨τi, ri⟩ in E . Then E

and P satisfy Eq. (8.17), where the estimation-inferred response time for any τi is RE
i = ri.

Hence, E is schedulable.

“If” part. Let E and P be the response time estimation and priority assignment that

satisfy the condition (8.17). By (8.17), RE is component-wise no larger than E , or RE ≤ E .

Hence, for any τi, RE is component-wise no larger than Ei, i.e., RE ≤ Ei. Combine the

monotonicity of fi with respect to the task response times (assumption A4) and Eq. (8.17),

there is

∀i, fi(hpi,RE) ≤ fi(hpi,Ei) = RE
i ≤ ri (8.18)

Now consider the vector function f(hp,R), there is

f(hp,RE) ≤ RE ≤ E (8.19)

This implies that the least fixed point of (8.4), i.e., the actual response times R, must be

component-wise no larger than RE and consequently E . Hence, Γ is schedulable with P.

Remark 8.4. This chapter focuses on developing optimization algorithms while assuming

a given schedulability analysis (that satisfies A1-A4). Hence, the notions of “schedulability”

(e.g., Definition 30 and Theorem 37) and “optimality” (e.g., Figure 8.1 and Theorem 40)
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throughout the chapter are defined w.r.t. the given schedulability analysis. When the

given schedulability analysis is sufficient only, it is possible that our optimization algorithm

deems the system to be unschedulable but there actually exists a truly schedulable priority

assignment.

Theorem 37 suggests that instead of directly searching for a feasible priority assignment,

an alternative is to search for a response time estimation E that satisfies condition (8.17).

Checking E against (8.17) can be easily verified using Audsley’s algorithm, as the estimation-

inferred response time depends only on the set of higher priority tasks but not on their relative

order. With this observation, a straightforward algorithm would be to examine all possible

response time estimations to find a schedulable one. However, this is obviously impractical,

as the total number of response time estimations is Ω(
∏

i Di).

We now introduce a search space reduction technique that drastically improves the algorithm

efficiency. The intuition is a large number of unschedulable response time estimations share

common reasons that cause the unschedulability. Thus, it is possible to generalize from one

unschedulable response time estimation to a range of them, all of which can be removed

from the search space together. We first discuss two motivating examples before giving the

formal definition.

Example 8.5. For the system in Table 8.1, consider the following RTE.

E = {⟨τ1, 4⟩ , ⟨τ2, 9⟩ , ⟨τ3, 30⟩ , ⟨τ4, 180⟩} (8.20)

E is unschedulable, as τ1 must have a higher priority than τ2, and the response time of τ2 must

be no smaller than C1 + C2 = 13. In fact, any RTE E = {⟨τ2, 3⟩ , ⟨τ2, r2⟩ , ⟨τ3, 30⟩ , ⟨τ4, 180⟩}

where r2 ≤ 12 is unschedulable.

Example 8.6. Consider another RTE E = {⟨τ1, 10⟩ , ⟨τ2, 17⟩ , ⟨τ3, 30⟩ , ⟨τ4, 180⟩}. E is un-
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schedulable for the following reasons. τ2 cannot be assigned a higher priority than τ1. Hence,

in the best case, it is assigned the second highest priority after τ1. The estimation-inferred

response time RE
2 w.r.t. to E is the least fixed point of

RE
2 = 9 +

⌈
RE

2 + 10− 4

10

⌉
· 4 (8.21)

This gives RE
2 = 21, which exceeds r2 = 17 in E . In fact, unless the response time estimation

for τ1 is no larger than 7, RE
2 will be at least 21. Thus, it can be inferred that any RTE

E = {⟨τ1, r1⟩ , ⟨τ2, 17⟩ , ⟨τ3, 30⟩ , ⟨τ4, 180⟩} where r1 ∈ [8, 10] should be unschedulable.

The above two examples illustrate the two conflicting requirements of an RTE. Consider any

element ⟨τi, ri⟩ in an RTE E . ri is used in two distinct places in condition (8.17): (a) at the

right hand side of the i-th inequality in (8.17), where it acts like a virtual deadline that the

estimation-inferred response time RE
i of τi shall not violate; (b) as a constant entry in vector

Ej for any other j ̸= i, where the estimation-inferred response time RE
j is non-decreasing

with a larger ri. Obviously, it is desirable to have a larger ri for (a) but a smaller ri for

(b). These examples also suggest that an unschedulable RTE can be generalized to a range

of response time estimations such that any of them is unschedulable too.

Hence, we consider splitting the estimation ri into an optimistic estimation rli and a pes-

simistic one rui , where rli ≤ rui . Instead of using ri, we now use rui for (a) and rli for (b). This

results in a weaker condition than (8.17), as detailed in Eq. (8.25). Suppose that this weaker

condition does not even allow a schedulable priority assignment, then it can be implied that

any ri in the range [rli, r
u
i ] would be unschedulable for the original condition (8.17).

We now formalize the idea in the following definitions.

Definition 31. A response time estimation range G is a collection of tuple elements⟨
τi, [r

l
i, r

u
i ]
⟩

for each task τi, i.e., G = {
⟨
τ1, [r

l
1, r

u
1 ]
⟩
, ..
⟨
τn, [r

l
n, r

u
n]
⟩
}, where Ci ≤ rli ≤ rui ≤ Di.
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It represents a range of possible estimation values for the actual response time Ri of each

task τi.

Note that in the definition, we restrict [rli, r
u
i ] of each task τi to be within [Ci, Di], as the

response time Ri of τi for any schedulable system shall be in that range.

Definition 32. A response time estimation E is said to be contained in a response time

estimation range G, denoted as E ∈ G, if and only if for each ⟨τi, ri⟩ in E , the corresponding

range
⟨
τi, [r

l
i, r

u
i ]
⟩

in G satisfies ri ∈ [rli, r
u
i ].

Example 8.7. Consider the following response time estimations and response time estima-

tion range.
E1 = {⟨τ1, 4⟩ , ⟨τ2, 13⟩ , ⟨τ3, 30⟩ , ⟨τ4, 180⟩}

E2 = {⟨τ1, 4⟩ , ⟨τ2, 17⟩ , ⟨τ3, 30⟩ , ⟨τ4, 180⟩}

G = {⟨τ1, [4, 9]⟩ , ⟨τ2, [9, 16]⟩ , ⟨τ3, [5, 120]⟩ , ⟨τ4, [35, 180]⟩}

E1 ∈ G, as each response time estimated in E1 is contained in the corresponding range in G.

E2 /∈ G, as the response time estimation of τ2 is 17, outside the corresponding range in G.

Definition 33. G1 is a subset of G2, or equivalently G2 is a superset of G1, denoted as

G1 ⊆ G2, if and only if for each
⟨
τi, [r

l
i1, r

u
i1]
⟩

in G1, the corresponding
⟨
τi, [r

l
i2, r

u
i2]
⟩

in G2

satisfies rli2 ≤ rli1 and rui2 ≥ rui1. G1 is a strict subset of G2, denoted as G1 ⊂ G2, if and only

if G1 ⊆ G2 and G1 ̸= G2.

Example 8.8. For the response time estimation ranges below

G1 = {⟨τ1, [4, 10]⟩ , ⟨τ2, [13, 17]⟩ , ⟨τ3, [5, 30]⟩ , ⟨τ4, [35, 180]⟩}

G2 = {⟨τ1, [4, 10]⟩ , ⟨τ2, [9, 17]⟩ , ⟨τ3, [5, 30]⟩ , ⟨τ4, [35, 180]⟩}

obviously G1 ⊆ G2 since each element in G2 is a superset of the corresponding one in G1.
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Definition 34. Given a response time estimation range G = {
⟨
τ1, [r

l
1, r

u
1 ], ..[r

l
n, r

u
n]
⟩
}, and a

priority assignment P, the estimation range-inferred response time of τi, denoted as

RG
i , is the least fixed point of the following equation

RG
i = fi(hpi,Gi) (8.22)

where Gi is a vector constructed by taking the i-th entry as variable RG
i and any other j-th

entry as the value rlj from G

Gi = [rl1, ..., R
G
i , ..., r

l
n] (8.23)

The vector of estimation range-inferred response times is denoted as RG.

Intuitively, due to property A4, the estimation range-inferred response time is essentially the

smallest estimation inferred response time that can possibly be obtained for E ∈ G, as shown

in the following equation.

∀E ∈ G, ∀i, ∀j ̸= i, rj ≥ rlj

⇒ ∀E ∈ G, ∀i, RE
i ≥ RG

i (by property A4)
(8.24)

Also, given an estimation range, the analysis of estimation range-inferred response times

depends only on the set of higher priority tasks but not on their relative order, hence it is

compliant with Audsley’s algorithm.

We now define the schedulability of a response time estimation range as follows.

Definition 35. A response time estimation range G = {
⟨
τ1, [r

l
1, r

u
1 ]
⟩
, ...
⟨
τn, [r

l
n, r

u
n]
⟩
} is said

to be schedulable if

∃P s.t. ∀i = 1, RG
i = fi(hpi,Gi) ≤ rui (8.25)



326
Chapter 8. The Concept of Response Time Estimation Range for Optimizing Systems

Scheduled with Fixed Priority

Condition (8.25) is weaker than (8.17): it allows rli to be smaller than rui , hence easier to be

satisfied than (8.17). Like (8.17), (8.25) can be verified efficiently using Audsley’s algorithm.

The usefulness of the concept is shown in the following theorem, which demonstrates that

an unschedulable response time estimation range implies all its contained response time

estimations are unschedulable.

Theorem 38. Given an unschedulable response time estimation range

G = {
⟨
τ1, [r

l
1, r

u
1 ]
⟩
, ...
⟨
τn, [r

l
n, r

u
n]
⟩
} (8.26)

any response time estimation E ∈ G is unschedulable.

Proof. Let E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩} be any response time estimation contained in G. If G

is unschedulable, then for any priority assignment P, there exists a task τi such that

RG
i ≥ rui ⇒ RE

i ≥ rui [by Eq. (8.24)]

⇒ RE
i ≥ ri (since E ∈ G)

(8.27)

Hence, E is also unschedulable.

Unlike the case of unschedulable response time estimation range, its schedulable version is

less useful in the sense that the contained RTE may or may not be schedulable. We illustrate

in the following example.

Example 8.9. Consider the following two response time estimation ranges

G1 = {⟨τ1, [4, 10]⟩ , ⟨τ2, [9, 16]⟩ , ⟨τ3, [5, 120]⟩ , ⟨τ4, [35, 180]⟩}

G2 = {⟨τ1, [4, 10]⟩ , ⟨τ2, [9, 35]⟩ , ⟨τ3, [5, 120]⟩ , ⟨τ4, [35, 180]⟩}

G1 is unschedulable by reasons similar to those in Example 8.6. Specifically, τ1 has to have
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a higher priority than τ2. Hence, the response time of τ2 is at least 17, since it will suffer

interferences from at least two instances of τ1 even we estimate the response time of τ1 with

the lower bound 4. This deems that RG
2 ≤ 16 cannot be satisfied, and G1 is unschedulable.

On the other hand, G2 is schedulable as there exists a priority assignment π1 > π2 > π3 > π4

which makes Eq. (8.25) true. The corresponding estimation range-inferred response times

are RG = [4, 17, 26, 137]. However G2 cannot infer if an RTE contained in it is schedulable or

not. For example, the RTE E2 = {⟨τ1, 10⟩ , ⟨τ2, 17⟩ , ⟨τ3, 30⟩ , ⟨τ4, 180⟩} is unschedulable (as

discussed in Example 8.6). However, E ′2 = {⟨τ1, 4⟩ , ⟨τ2, 17⟩ , ⟨τ3, 26⟩ , ⟨τ4, 150⟩} is schedulable

since it allows a schedulable priority assignment π1 > π2 > π3 > π4 (as inferred from

Example 8.3). Note that both E2 and E ′2 are contained in G2 which is schedulable.

We now define a class of unschedulable response time estimation ranges which are not a

strict subset of any other unschedulable ones. This can maximize its contained unschedulable

RTEs.

Definition 36. A response time estimation range U is a Maximal Unschedulable re-

sponse Time Estimation Range (MUTER) if and only if it satisfies the following

conditions

• U is unschedulable by Definition 35;

• For all G such that U ⊂ G, G is schedulable.

Remark 8.10. The term “maximal” here is consistent with the typical terminology in order

theory1. Specifically, consider a subset S of some partially ordered set. A maximal element

m of S is an element of S that is no smaller than any other element s in S, i.e., s ≤ m,∀s ∈ S.

There are a couple of notable properties for this definition. First, if m ∈ S is a maximal
1http://en.wikipedia.org/wiki/Maximal_and_minimal_elements
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element of S, then for all s ∈ S such that m ≤ s, it must be m = s. Second, it is possible

that there are many maximal elements of S, since S does not impose a total order.

For the concept of response time estimation range, we shall treat the subset relationship in

Definition 33 as a partial order, i.e., G1 is no larger than G2 if G1 ⊆ G2. Let S be the set of all

unschedulable response time estimation ranges. A MUTER U by Definition 36 is essentially

a “maximal” element of S. Since the partial order in Definition 33 does not form a total

order among response time estimation ranges, there may be multiple maximal elements of

S, i.e., multiple MUTERs.

Example 8.11. Consider the response time estimation ranges

G3 = {⟨τ1, [4, 10]⟩ , ⟨τ2, [9, 13]⟩ , ⟨τ3, [5, 120]⟩ , ⟨τ4, [35, 180]⟩}

and G1, the latter is defined in Example 8.9. Though both G1 and G3 are unschedulable, G3

is not a MUTER since G3 ⊂ G1. G1 is a MUTER since increasing ru2 from 16 to 17 will make

it schedulable, and the other bounds in G1 cannot be expanded either: the lower bound rli is

equal to the smallest value Ci, and the upper bound rui is the same as the largest value Di.

Intuitively, consider two unschedulable response time estimation ranges G1 and G2 such that

G1 ⊆ G2. G1 is redundant in the presence of G2, since the latter contains all unschedulable

RTEs contained in G1. In this sense, a MUTER U is more useful than any of its subset

G (i.e., G ⊆ U), since it is more efficient than G in capturing unschedulable RTEs. In the

optimization algorithm design, this allows to rule out the most unschedulable RTEs with

the fewest number of unschedulable response time estimation ranges.

An unschedulable RTE E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩} can be generalized into a MUTER by

Algorithm 16. We assume that the initial input E satisfies ri ∈ [Ci, Di] for each task τi. We

will later show in Section 8.5 how it can be guaranteed. The algorithm first converts the
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Algorithm 16 Algorithm for Computing MUTER
1: function MUTER(unschedulable RTE E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩})
2: G = {⟨τ1, [r1, r1]⟩ , ... ⟨τn, [rn, rn]⟩}
3: for each

⟨
τi, [r

l
i, r

u
i ]
⟩
∈ G do

4: Use binary search to find out the smallest value that rli can be decreased to while
keeping G unschedulable.

5: Use binary search to find out the largest value that rui can be increased to while
keeping G unschedulable.

6: end for
7: return G
8: end function

RTE to a response time estimation range G = {⟨τ1, [r1, r1]⟩ , ... ⟨τn, [rn, rn]⟩} containing only

E itself (Line 2). Then it leverages the property that condition (8.25) is monotonic w.r.t.

each rli and rui : increasing rui or decreasing rli can only make (8.25) easier to satisfy. It uses

binary search to find out the minimum value that rli can be decreased to (or the maximum

value rui can be increased to) while maintaining the unschedulability of G (Lines 3–6).

Specifically, at Line 4, the algorithm preserves the values of rui and all other response time

estimation ranges
⟨
τj, [r

l
j, r

u
j ]
⟩
, i ̸= j, and uses binary search to decrease rli as much as G

is unschedulable. By Definition 29, rli must be no smaller than Ci. Also, rli has an initial

value ri which is known to be unschedulable. Thus, the initial lower and upper bounds for

the binary search of rli are Ci and ri respectively. The binary search stops when the lower

and upper bounds converge (i.e., their difference is less than 1, which is sufficient since all

response time estimations are integers). Line 5 is similar except that (a) it increases rui ,

while keeping rli at the value determined by Line 4; (b) the initial lower and upper bounds

for rui are ri and Di respectively.

At Lines 4 and 5, whether or not the resulting G is schedulable is checked using Audsley’s

algorithm, i.e., to see if it permits a priority assignment that satisfies (8.25). Note that

Algorithm 16 will always terminate since rli is bounded below by Ci and rui is bounded above
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by Di.

We now formally prove that Algorithm 16 always returns a correct MUTER according to

Definition 36.

Theorem 39. Given an unschedulable response time estimation E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩},

Algorithm 16 correctly computes a MUTER G.

Proof. We show that the returned response time range G satisfies the two conditions in

Definition 36. First, G is initially unschedulable, and Algorithm 16 updates G only if G is

maintained to be unschedulable. Thus, the returned G is guaranteed to be unschedulable.

We prove the second condition by contradiction. Let G ′ be an unschedulable response

time estimation range such that G ′ is a strict superset of the returned G, i.e., G ⊂ G ′.

Hence, there must exist a task τi such that the corresponding response time range element⟨
τi, [r

l
i(G ′), rui (G ′)]

⟩
in G ′ strictly contains the one

⟨
τi, [r

l
i(G), rui (G)]

⟩
in G. That is, at least

one of the two conditions rli(G ′) < rli(G) and rui (G) < rui (G ′) is satisfied. Now consider the

resulting response time estimation range Gi after
⟨
τi, [r

l
i, r

u
i ]
⟩

is processed by Algorithm 16.

Since the algorithm only expands G during each iteration, it must be Gi ⊆ G ⊂ G ′. We con-

struct another response time estimation range G ′i such that (a) for each j ̸= i, rlj(G ′i) = rlj(Gi)

and ruj (G ′i) = ruj (Gi); (b) rli(G ′i) = rli(G ′) and rui (G ′i) = rui (G ′). Obviously Gi ⊂ G ′i ⊆ G ′. This

contradicts with the fact that Gi is the result after
⟨
τi, [r

l
i, r

u
i ]
⟩

is maximally expanded.

In Algorithm 16, Audsley’s algorithm is called each time we try to check if G is schedulable.

It is known that Audsley’s algorithm only needs to explore O(n2) priority orders out of the

n! possible ones, where n is the number of tasks [53]. For each task τi, the binary searches at

Lines 4–5 make O(logDi) function calls to Audsley’s algorithm, since there are at most Di

possible integer values for both rli and rui . Hence, Algorithm 16 checks a total of O(n2 logD)

priority orders to calculate a MUTER, where D =
∏

iDi.
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8.5 MUTER-Guided Optimization Algorithm

We now present an optimization algorithm that leverages the concepts of RTE and MUTER.

We observe that in many optimization problems for systems with an RT-dependent response

time analysis, finding a schedulable priority assignment is a major difficulty since there

is no known tractable procedure like Audsley’s algorithm. As in Theorem 37, finding a

schedulable priority assignment is equivalent to finding a schedulable RTE. The latter has

the promise to be more scalable for the following unique capability from Algorithm 16:

given an unschedulable RTE it can efficiently generalize to a set of MUTERs, each of which

contains a maximal range of unschedulable RTEs.

Hence, we design the optimization algorithm that leverages the power of Algorithm 16.

Specifically, instead of solving the original problem O directly, we start with a relaxed prob-

lem X that leaves out all the system schedulability constraints. Solving this relaxed problem

will return an RTE that is driven by other constraints and the objective. If the RTE is

unschedulable, we use Algorithm 16 to generalize to a set of MUTERs. We then add the

corresponding constraints to X to rule out similar unschedulable RTEs, and solve it again.

The iterative procedure will end if the returned RTE is schedulable, which is guaranteed to

be an optimal solution of the original problem, or the problem is deemed to be infeasible

(see Theorem 40 below).

The procedure is illustrated in Figure 8.1. It contains an initial Step 1 that checks if the

most relaxed response time estimation range is schedulable. If yes, it enters the iterations

between Step 2 (solving the relaxed problem X) and Step 3 (computing MUTERs). We

explain each step in details below.

Step 1. Let RL
i and RU

i denote the smallest and largest values for the response time of

each task τi in any schedulable priority assignment. In this chapter we take RL
i = Ci and
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Solve relaxed problem X 

Step 3: 

Schedulable?
No

Yes

Compute k MUTERs with 
Algorithm 1 and add implied 

constraints to problem X 

Determine smallest and largest 
values for each Ri. Construct G M .

G M Schedulable?

Yes

Report unschedulability

Returned 
RTE

No

Feasible?

Yes

Report infeasibility

No

Report optimal solution

 Step 2: 

 Step 1: 

Figure 8.1: Optimal Priority Assignment Algorithm Procedure
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RU
i = Di. The first step simply evaluates whether the response time estimation range

GM = {⟨τ1, [C1, D1]⟩ , ... ⟨τn, [Cn, Dn]⟩} is schedulable. Any schedulable RTE E must satisfy

E ∈ GM . If GM is not schedulable, then the system must be unschedulable by any priority

assignment, as proven in Theorem 38.

Step 2. The second step searches for a response time estimation that has not been deemed

unschedulable by the currently computed MUTERs. This is done by solving a relaxed

problem X consisting of no schedulability conditions but the implied constraints by the

computed MUTERs. Specifically, for each MUTER U = {
⟨
τ1, [r

l
1, r

u
1 ]
⟩
, ...
⟨
τn, [r

l
n, r

u
n]
⟩
}, by

Theorem 38 any schedulable RTE E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩} cannot be contained in U . This

implies the following constraint

E /∈ U ⇔ ¬


rl1 ≤ r1 ≤ ru1

...

rln ≤ rn ≤ run

⇔

∥∥∥∥∥∥∥∥∥∥∥
r1 < rl1∥r1 > ru1

...

rn < rln∥rn > run

(8.28)

where ¬, {, and ∥ represent the logic-NOT, logic-AND, and logic-OR operations, respectively.

Thus, X is essentially a mathematical programming problem consisting of the objective and

the design constraints h(·) in O, while replacing the system schedulability constraints with

those of (8.28) implied by all currently computed MUTERs. X also includes the response

time estimations of all tasks [r1, ...rn] as the additional design variables, as well as their

initial bounding constraints Ci ≤ ri ≤ Di, ∀i. Formally, problem X can be expressed as

X : min g(X)

s.t. Implied constraints (8.28), ∀ U ∈ U

Ci ≤ ri ≤ Di,∀i

h(X) ≤ 0

(8.29)
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where U is the set of currently known MUTERs.

In this chapter, we assume g(·) and h(·) are both linear functions of X, hence X can be solved

using MILP solvers such as CPLEX. Note that the logical disjunction constraint in (8.28)

can be formulated in MILP using “big-M” method. For example,

∥∥∥∥∥∥∥
r1 < rl1

r1 > ru1

⇔


r1 < rl1 +M · b1

r1 > ru1 −M · (1− b1)

(8.30)

Here b1 is an auxiliary binary variable, defined as 0 if r1 < rl1, 1 if r1 > ru1 . M is a sufficiently

large constant such as D1.

If X is infeasible (i.e., no solution satisfies all constraints in X), then the system cannot be

schedulable by any RTE (see Theorem 40 below). Otherwise, solving X will return an RTE

(composed of the solution values assigned to the decision variables [r1, ...rn]) that respects

all the implied constraints by the known MUTERs.

Step 3. This step evaluates the schedulability of the RTE E returned in Step 2, i.e., whether

it satisfies Eq. (8.25). If yes, then E is optimal, and the associated priority assignment P

is an optimal priority assignment (proven in Theorem 40). Here P can be obtained as a

byproduct of applying Audsley’s algorithm in checking E against the condition (8.25).

If E is unschedulable, it is generalized into at most k MUTERs using Algorithm 16, where

k is a predefined parameter. The implied constraints from these newly discovered MUTERs

are then added to the problem X, and we enter the next iteration. In our experiments, we

find that k = 5 is a good setting in most cases. Since problem X contains the constraints

Ci ≤ ri ≤ Di,∀i, the RTE E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩} from Step 2, which is the input to

Algorithm 16 for computing MUTERs, must satisfy the prerequisite ri ∈ [Ci, Di],∀i.

The following theorem formally proves the correctness of the proposed algorithm in Fig-
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ure 8.1.

Theorem 40. The algorithm in Figure 8.1 guarantees to terminate. Upon termination, it

reports infeasibility/unschedulability if the original problem O is infeasible, otherwise it

returns an optimal priority assignment.

Proof. Termination. The number of MUTERs is bounded by O(
∏

i D
2
i ). Also, since at

each iteration the algorithm in Figure 8.1 computes an RTE that respects the constraints

imposed by all the previously found MUTERs, the newly computed MUTERs must be

different. Hence, the algorithm shall always terminate as the number of iterations is finite.

We now prove that each of the three possible terminating conditions for the algorithm is

correct.

Unschedulability. If at Step 1 it is deemed that GM = {⟨τ1, [C1, D1]⟩ , ... ⟨τn, [Cn, Dn]⟩} is

unschedulable, there does not exist any schedulable priority assignment. This is because any

RTE in GM is unschedulable (by Theorem 38), there cannot exist any schedulable RTE. By

Theorem 37 the system is unschedulable with any priority assignment.

Infeasibility. If at Step 2 it is deemed that problem X is infeasible, the original problem O

must be infeasible too. This is because we can replace the system schedulability constraints

O with the implied constraints of all MUTERs (Theorem 37), and X only contains those of

a subset of all MUTERs. Hence X must be a relaxation of O (i.e., X’s feasibility region is

a superset of that of O). In other words, an empty feasibility region for X means that O is

also infeasible.

Optimality. If at Step 3 the RTE is deemed schedulable, then by Theorem 37, the corre-

sponding returned priority assignment is guaranteed to be schedulable. As X is a relaxation

of O, the optimal solution of X that is schedulable must be optimal for O with a smaller

feasibility region than X.
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Although the algorithm in Figure 8.1 is guaranteed to terminate, in the worst case it may

require to compute all MUTERs. Consequently it needs O(
∏

i D
2
i ) number of iterations

between Steps 2 and 3, as each iteration computes a constant number of distinct MUTERs.

Also, in each iteration it needs to solve an MILP problem X. In the end, the algorithm still

has an exponential worst case complexity, like those of the other exact algorithms based on

BnB and a single MILP formulation.

We now demonstrate the algorithm by applying it to the problem of finding a schedulable

priority assignment for the example system in Table 8.1. The parameter k is set to 3.

Example 8.12. As the first step, we construct GM as

GM = {⟨τ1, [4, 10]⟩ , ⟨τ2, [9, 35]⟩ , ⟨τ3, [5, 120]⟩ , ⟨τ4, [35, 180]⟩}

GM is schedulable as it satisfies Eq. (8.25). The algorithm then enters an iterative procedure

between Step 2 and Step 3.

Iteration 1. The relaxed problem X is constructed by leaving out all schedulability con-

straints. Hence, X only contains the constraints that the response time estimation is in the

range defined by GM

X : min 0

s.t. 4 ≤ r1 ≤ 10

9 ≤ r2 ≤ 35

5 ≤ r3 ≤ 120

35 ≤ r4 ≤ 180

(8.31)

Solving X returns the following response time estimation

E = {⟨τ1, 4⟩ , ⟨τ2, 9⟩ , ⟨τ3, 5⟩ , ⟨τ4, 35⟩}
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which is obviously unschedulable since the response time is estimated to be the WCET for

each task. The following 3 MUTERs are computed

U1 = {⟨τ1, [4, 10]⟩ , ⟨τ2, [9, 35]⟩ , ⟨τ3, [5, 120]⟩ , ⟨τ4, [35, 136]⟩}

U2 = {⟨τ1, [4, 10]⟩ , ⟨τ2, [9, 25]⟩ , ⟨τ3, [5, 25]⟩ , ⟨τ4, [35, 180]⟩}

U3 = {⟨τ1, [4, 8]⟩ , ⟨τ2, [9, 35]⟩ , ⟨τ3, [5, 8]⟩ , ⟨τ4, [35, 180]⟩}

By (8.28), U1 implies the following constraints

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

r1 < 4 ∥ r1 > 10

r2 < 9 ∥ r2 > 35

r3 < 5 ∥ r3 > 120

r4 < 35 ∥ r4 > 136

which can be simplified as follows considering that (8.31) shall be satisfied as well

r4 ≥ 137

Similarly, we can find the implied constraints for all three MUTERs. Below we give their

simplified version, which is then added to X


U1 : r4 ≥ 137

U2 : r2 ≥ 26 ∥ r3 ≥ 26

U3 : r1 ≥ 8 ∥ r3 ≥ 8
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Iteration 2. Solving the updated problem X returns the solution below

E = {⟨τ1, 4⟩ , ⟨τ2, 9⟩ , ⟨τ3, 26⟩ , ⟨τ4, 137⟩}

E is unschedulable, and the MUTER below is computed

U4 = {⟨τ1, [4, 10]⟩ , ⟨τ2, [9, 16]⟩ , ⟨τ3, [5, 120]⟩ , ⟨τ4, [35, 180]⟩}

The following implied constraint is added to problem X

r2 ≥ 17

Iteration 3. Solving X returns the following solution

E = {⟨τ1, 4⟩ , ⟨τ2, 26⟩ , ⟨τ3, 26⟩ , ⟨τ4, 137⟩}

E is still unschedulable. We compute the following MUTER

U5 = {⟨τ1, [4, 10]⟩ , ⟨τ2, [13, 35]⟩ , ⟨τ3, [5, 120]⟩ , ⟨τ4, [35, 149]⟩}

which implies the constraint below to be added to X

r2 ≤ 12 ∥ r4 ≥ 150

Iteration 4. Solving X now returns the following solution

E = {⟨τ1, 4⟩ , ⟨τ2, 26⟩ , ⟨τ3, 26⟩ , ⟨τ4, 150⟩}
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At this point, E becomes schedulable w.r.t. condition (8.25), and the associated schedulable

priority assignment is

π1 > π3 > π2 > π4

8.6 Exploring Potentially Feasible Solution

Modern mathematical programming solvers such as CPLEX often come with various tech-

niques for exploring good-quality feasible solutions. Even though the solver may not be able

to find the globally optimal solution within the time limit, it may still returned feasible so-

lutions during the process which can be useful to the designers. In this section, we enhance

the proposed framework with a similar capability. Specifically, we integrate an algorithm

for exploring solutions that are potentially feasible with good quality.

Our main intuition is that as more and more MUTER implied constraint are added to the

problem, the resulting RTE obtained in Step 2 becomes closer to the one that is schedulable

and optimal. Therefore, our main idea is to relax the RTE obtained from step 2 into a

number of response time estimation ranges Gs that are schedulable by Definition 35. If the

corresponding priority assignment in condition (8.25) is truly schedulable for the original

system, we keep the priority assignment as a feasible solution. If the optimization algorithm

terminates due to timing out, the feasible solutions with the best objective value is returned.

One way to obtain relaxed and schedulable response time estimation ranges is through

MUTER computations. Specifically, consider Line 4 and 5 in Algorithm 16, which use

binary search to find the minimum/maximum unschedulable lower-bound/upper-bound. In

the typical process of binary update, it is possible that G becomes schedulable at some point,

in which case it can be taken as one schedulable and relaxed response time estimation ranges.

The corresponding priority assignment derived from condition (8.25) can then be checked
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Algorithm 17 Find minimum unschedulable rli

1: function DecreaseLowerBound(index i, unschedulable RTE E = {⟨τ1, r1⟩ , ... ⟨τn, rn⟩})
2: G = {⟨τ1, [r1, r1]⟩ , ... ⟨τn, [rn, rn]⟩}
3: lb = lower bound of WCRT Ri for τi
4: ub = rli
5: while lb < ub− 1 do
6: mid = lb+ub

2

7: G ′ = {⟨τ1, [r1, r1]⟩ , ...{⟨τi, [mid, ri]⟩ , ... ⟨τn, [rn, rn]⟩}
8: if G ′ is schedulable then
9: lb = mid

10: C = C ∪ {G ′}
11: else
12: ub = mid
13: end if
14: end while
15: return G
16: end function

for schedulability.

In terms of implementation, we maintain a set C of relaxed and schedulable RTEs and

their corresponding priority assignments. C is continuously updated during the invoke of

Algorithm 16. Algorithm 17 elaborates the binary search algorithm used in Line 3 of Algo-

rithm 16, Set C is updated at Line 10 when the binary update makes the RTE schedulable.

For each schedulable G ′ ∈ C, we check whether the corresponding priority assignment is

schedulable, evaluate their objective values and update the best feasible solution. Note that

this can be done in an independent procedure in parallel with the main optimization frame-

work in Figure 8.1. The overall procedure and integration into the optimization framework

is summarized in Figure 8.2
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Figure 8.2: Optimization framework with feasible solution Exploration

8.7 Experimental Evaluation

In this section, we present the experimental results using industrial case studies and synthetic

systems. All MILP problems are solved using CPLEX 12.6.1.

8.7.1 Mixed-criticality NoC

Our first experiment considers NoC system with mixed-criticality traffic flows. We refer

to [33] for the details of the system model and schedulability analysis. We compare three

methods, all of which are optimal.
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Table 8.3: Results on autonomous vehicle applications (“N/A” denotes no solution found;
Time limit = 24 hours)

U(LO)
Enhanced-BnB MUTER-guided MILP

Objective Time Status Objective Time Status Objective Time Status
1.357 40713 ≥ 24h Timeout 51309 1.7s Terminate 51309 51743.02s Terminate
1.404 40835 ≥ 24h Timeout 50318 2.21s Terminate 50318 21789.89s Terminate
1.451 5765 ≥ 24h Timeout 49328 35.54s Terminate 49328 ≥ 24h Timeout
1.497 N/A ≥ 24h Timeout 47204 49569.68s Terminate 47204 6835.83s Terminate
1.544 N/A ≥ 24h Timeout Infeasible 141.85s Terminate Infeasible 28.12s Terminate

• Enhanced-BnB: An enhanced branch-and-bound procedure proposed in [133]. The

branching order is optimized such that the likely schedulable priority assignments are

explored first.

• MILP: A unified MILP formulation solved by CPLEX, as detailed in [163].

• MUTER-guided: The proposed method in Section 8.5.

We first evaluate them on a case study of autonomous vehicle applications [33]. The case

study consists of 38 flows deployed on a 4×4 NoC, 6 of which are of HI-criticality. Each flow

is characterized by the data size, the source and destination processors, and the criticality

factor (Ci(HI)/Ci(LO)) if it is of HI-criticality. Since the utilization and WCET of the flows

are not given, we generate a set of systems where we set U(LO), the total system utilization

at LO-criticality mode, to be a particular value. The utilization of each flow is then assigned

proportional to the product of its data size and route length. Besides system schedulability,

we consider the objective of maximizing the minimum laxity among all flows, as defined in

Eq. (8.2). The time limit is set to 24 hours.

The results are summarized in Table 8.3. As in the table, when the system utilization is

relatively low such that the system is easily schedulable, MUTER-guided is over 1000×

faster than both Enhanced-BnB and MILP. However, when the system utilization is

around the borderline of being schedulable (as in the last two rows of the table), MUTER-

guided requires many iterations to refine the schedulability region. It becomes about 10×
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slower than MILP (but still faster than Enhanced-BnB).

This motivates us to do a more systematic evaluation using randomly generated synthetic

systems with different utilization levels and number of flows. We first try to identify the

typical borderline utilization around which the problem is difficult to solve, using the

following settings. In this experiment, we are only concerned to find a schedulable priority

assignment. The system uses a 4×4 NoC platform. The periods of flows are selected from

the interval [1, 1000] following the log-uniform distribution. The criticality factor of HI-

criticality flows are set to be 2. We generate 1000 random systems for each value on the

system utilization in LO-criticality mode U(LO). The LO-criticality utilizations of individual

flows are generated using the UUnifast algorithm. Each system contains 40 flows, 20 of which

are of HI-criticality. The source, destination, and routing of each flow are generated following

the stress test scheme in [81]. The time limit is set to 10 minutes to avoid excessive waiting.

As in Table 8.3, the methods typically require a much longer time if they cannot finish in

10 minutes.

Figure 8.3 shows the portion of systems that incur a timeout for each method, for systems

with utilization within 50%-130%. For the purpose of finding the borderline utilization, this

range is sufficient, since the systems with utilization at 50% are always easily schedulable,

and those at 130% are mostly easily unschedulable. As indicated from the figure, the timeout

ratio is different at different utilization, but the utilization around 80%–95% has the highest

timeout ratio for all three methods. For systems with other numbers of flows the “borderline

utilization” is similarly around 80%–95%. Note that in this case study, there are totally 32

physical links shared by 38 traffic flows, and each flow may require multiple physical links

to transmit. This means that unlike the case of software tasks running on a uniprocessor,

the system may still be schedulable with a utilization higher than 100%. The difficulty of

this borderline utilization can be intuitively explained as follows. The priority assignment
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Figure 8.3: Timeout ratio vs. LO-criticality Utilization (Time limit = 10 minutes).

problem is usually easy when the system utilization is either relatively low (e.g., around 50%

in Figure 8.3) or relatively high (e.g., about 130% in Figure 8.3). In the former case, the

system can easily be schedulable by a large number of priority assignments. In the latter,

there are usually tasks that are obviously unschedulable however the priorities are assigned.

In contrast, when the system utilization is around the borderline (i.e., away from the two

extreme cases), the problem becomes relatively more difficult.

In the following, we perform another experiment where the system utilization in LO-criticality

mode is chosen randomly from 0.80 to 0.95. The number of flows now varies between 26

and 46. We add the objective back to maximize the minimum laxity, and the other settings
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Figure 8.4: Normalized objective vs. Number of flows (Time limit = 10 minutes).

follow that of Figure 8.3. We normalize the objective by dividing it by

Lu
i = min

i
(Di − Ci(HI)) (8.32)

Intuitively, Lu
i is an upper bound on the optimal solution. There are two scenarios that

need special treatment. If the method times out without finding any feasible solution, we

consider the corresponding normalized objective to be 0 as a penalty. Similarly, if the method

is capable of proving infeasibility within the time limit, we set the normalized objective to

1. The time limit is 10 minutes.

Figure 8.4 and Figure 8.5 illustrate the average normalized objective value and average run-
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Figure 8.5: Average runtime vs. Number of flows (Time limit = 10 minutes).

time of each method, respectively. MUTER-guided demonstrates much better optimiza-

tion quality than both Enhanced-BnB and MILP, especially for large systems. In general,

this is because Enhanced-BnB and MILP have higher timeout ratios and are often only

able to find suboptimal solutions within the time limit. Hence, on average MUTER-guided

has the promise to be more scalable than Enhanced-BnB and MILP.

8.7.2 Data Driven Activation in Distributed Systems

In this experiment, we evaluate the proposed method on an industrial experimental vehicle

system with advanced active safety features [42]. The system consists of 29 Electronic

Control Units (ECUs) connected through 4 CAN buses, 92 tasks, and 192 CAN messages.
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End-to-end deadlines are imposed on 12 pairs of source-sink tasks, which contain a total

of 222 unique paths. The allocation of tasks and messages onto corresponding execution

resources are given.

We compare the following three methods

• MILP-Approx: Formulating the problem as a single MILP and solving it with

CPLEX, where the response time analysis is approximate [167].

• MUTER-Accurate: The proposed technique using the accurate response time anal-

ysis.

• MUTER-Approx: Same as MUTER-Accurate but using the approximation anal-

ysis.

The accurate analysis is too complex to be formulated in MILP, since it needs to check all

the instances in the busy period, the length of which is unknown a priori. Hence, for tasks

with preemptive scheduling, an approximate analysis is proposed [167] which enforces the

deadline to be no larger than the period. This makes it safe to only ensure the first instance

in the busy period is schedulable. For messages with non-preemptive scheduling, we enforces

constrained deadline to allow to adopt a similar analysis from [45].

We first consider the objective of maximizing the minimum laxity among all paths. The

laxity of an end-to-end path is computed as the difference between the end-to-end latency

deadline and the actual end-to-end latency. Formally, the objective is max minp(Dp − Lp),

where p represents a path and Lp is defined in (8.9).

The results of the experiment are summarized in Table 8.4. As in the table, all three

methods are capable of finding the optimal solution (which happens to be the same with

either the accurate analysis or the approximate analysis). However, the proposed MUTER
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Table 8.4: Maximizing min laxity for the vehicle system

Method MILP-Approx MUTER-Approx MUTER-Accurate
Objective 90466 90466 90466

Runtime (s) 596.72 4.68 9.00

based technique runs much faster than a single MILP formulation.

Next we study the problem of finding the breakdown utilization of each resource (ECU or

bus), which is defined as the maximum value the utilization of the resource can be scaled to

such that the system is still feasible (in terms of both schedulability of individual tasks/mes-

sages and end-to-end path deadlines) assuming the utilization of other resources remains

the same. For MUTER-Approx and MUTER-Accurate, the breakdown utilization is

computed by a binary search on top of them. The binary search stops when the upper-bound

and lower-bound are within 3%. A time limit of 2 hours is set for each ECU/Bus to prevent

excessive waiting.

We summarize the runtime and breakdown utilization in Table 8.5. MUTER-Accurate

and MUTER-Approx both can finish within the time limit for each ECU/Bus. For MILP-

Approx, it occasionally fails to finish in two hours. As highlighted in red bold fonts in the

table, MUTER-Accurate is capable of tolerating noticeably higher utilization than the

other two techniques for a number of resources, due to the accurate response time analysis.

This demonstrates that the approximate analysis may lead to substantially suboptimal so-

lutions. The MUTER-guided framework is mostly about two magnitudes faster than MILP.

Furthermore, unlike MILP, it is more flexible in terms of the adopted schedulability analysis,

as it uses a generic procedure to check the system schedulability.
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Table 8.5: Breakdown utilization for the vehicle system (“N/A” denotes no solution found;
Time limit = 2 hours)

ECU Breakdown utilization Runtime (seconds)
MILP MUTER MUTER MILP MUTER MUTER

/Bus -Approx -Approx -Accurate -Approx -Approx -Accurate
Bus1 0.032 0.922±0.015 0.999±0.015 Timeout 260 55
Bus2 0.598 0.938±0.015 1.000±0.015 Timeout 24 55
Bus3 0.024 0.035±0.015 0.035±0.015 521 5.1 11
Bus4 N/A 0.074±0.015 0.074±0.015 Timeout 9.2 21
ECU1 1.000 1.000 1.000 372 4.6 9.0
ECU2 0.055 0.058±0.015 0.656±0.015 679 0.1 13
ECU3 1.000 1.000±0.015 1.000±0.015 360 4.6 9.0
ECU4 0.094 0.108±0.015 0.108±0.015 343 0.003 0.003
ECU5 1.000 1.000±0.015 1.000±0.015 415 4.6 9.0
ECU6 N/A 0.780±0.015 0.780±0.015 Timeout 9.4 18
ECU7 0.769 0.771±0.015 0.786±0.015 403 12 28
ECU8 1.000 1.000±0.015 1.000±0.015 375 4.6 9.0
ECU9 0.289 0.287±0.015 0.901±0.015 2047 0.6 2745
ECU10 1.000 1.000±0.015 1.000±0.015 378 4.6 9.0
ECU11 1.000 1.000±0.015 1.000±0.015 645 6.8 9.2
ECU12 1.000 1.000±0.015 1.000±0.015 485 4.6 9.0
ECU13 0.044 0.049±0.015 0.789±0.015 385 0.3 5089
ECU14 N/A 1.000±0.015 1.000±0.015 Timeout 28 9.0
ECU15 1.000 1.000±0.015 1.000±0.015 480 4.6 9.0
ECU16 N/A 0.524±0.015 1.000±0.015 Timeout 4.8 51
ECU17 1.000 1.000±0.015 1.000±0.015 484 4.6 9.0
ECU18 N/A 0.798 0.798 Timeout 25 36
ECU19 1.000 1.000±0.015 1.000±0.015 480 4.6 9.0
ECU20 0.425 0.427±0.015 0.427±0.015 622 5.4 10
ECU21 0.910 0.924±0.015 0.939±0.015 715 19 45
ECU22 1.000 1.000±0.015 1.000±0.015 377 4.6 9.0
ECU23 1.000 1.000±0.015 1.000±0.015 368 4.6 9.0
ECU24 1.000 1.000±0.015 1.000±0.015 375 4.6 9.0
ECU25 0.128 0.139±0.015 0.139±0.015 402 0.2 0.1
ECU26 1.000 1.000±0.015 1.000±0.015 374 4.6 9.0
ECU27 1.000 1.000±0.015 1.000±0.015 382 4.7 9.0
ECU28 1.000 1.000±0.015 1.000±0.015 377 4.6 9.0
ECU29 1.000 1.000±0.015 1.000±0.015 373 4.6 9.0
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8.7.3 Fixed Priority Multiprocessor Scheduling

In this experiment, we apply the proposed technique to the problem of finding a feasible

priority assignment for fixed priority multiprocessor scheduling using response time analysis

(8.10). We evaluate the performance on randomly generated synthetic task systems with

different number of tasks, processors and system utilization. The period of each task in a

system is generated randomly from interval [100, 100000] according to log-uniform distribu-

tion. Utilization of each task is generated using UUnifast-Discard algorithm. We compare

between the following methods

• MUTER-guided: The proposed optimization framework in Figure 8.2

• DA: Deadline analysis proposed in [24] plus Audsley’s algorithm for priority assign-

ment

• DkC: A heuristic priority assignment algorithm proposed in [52] using (8.10) as

schedulability analysis.

Intuitively, DA uses a less accurate analysis but which has can be used with the optimal

Audsley’s algorithm for priority assignment. DkC uses a more accurate analysis but can

only be used with a heuristic priority assignment which is generally not optimal. MUTER-

guided on the other hands, uses both the more accurate analysis and is optimal in finding

a schedulable priority assignment if one exists.

The above methods are compared in terms of acceptance ratio, which is defined as the

number of systems deemed schedulable by the method over the total number of systems.

Figures 8.6 to 8.9 show the results by different methods for systems with different number of

cores, number of tasks and utilization. Each data points in the system is the average based

on 1000 randomly generated systems. It can be seen that MUTER-guided is noticeably
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higher in acceptance ratio comparing to the other two technique, with an improvement as

large as up to 40%.
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Figure 8.6: 4 processors, 20 tasks
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Figure 8.7: 8 processors, 40 tasks
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Figure 8.8: 12 processors, 60 tasks
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Figure 8.9: 16 processors, 80 tasks

Figure 8.10: Acceptance ratio for constrained deadline system by different methods

We then consider constrained deadline systems. The deadline Di of each task τi is generated

randomly in interval [Ci, Ti] where Ci and Ti are WCET and period of τi. The results are

shown in Figure 8.11 to Figure 8.14

MUTER-guided is still noticeably better comparing with other methods although with a
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relatively smaller amount comparing with implicit deadline setting. This is mainly because

the overall schedulability is worse for constrained deadline setting. The two experiments

demonstrate the importance of combining both accurate schedulability analysis and priority

assignment algorithm that can accommodate the analysis

To evaluate the benefit of feasible solution exploration technique used in Figure 8.2, we com-

pare with another method MUTER-NoHeu, that uses only the framework in Figure 8.1.

Figure 8.20 shows the average run-time by MUTER and MUTER-NoHeu.

8.8 Conclusion

In this chapter, we study the optimization of real-time systems where the response time of a

task not only depends on the set of higher/lower priority tasks but also on the response times

of other tasks. We introduce a set of concepts, including the response time estimation range

that replaces the actual response time of each task for checking the system schedulability. We

develop an optimization framework which builds upon such concepts and leverages Audsley’s

algorithm to generalize from an unschedulable solution to many similar ones. Experimental

results on two example systems show that the proposed technique is potentially much faster

than exhaustive search algorithms based on BnB or MILP.
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Figure 8.11: 4 processors, 20 tasks
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Figure 8.12: 8 processors, 40 tasks
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Figure 8.13: 12 processors, 60 tasks
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Figure 8.14: 16 processors, 80 tasks

Figure 8.15: Acceptance ratio for implicit deadline system by different methods
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Figure 8.16: 4 processors, 20 tasks
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Figure 8.17: 8 processors, 40 tasks
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Figure 8.18: 12 processors, 60 tasks
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Figure 8.19: 16 processors, 80 tasks

Figure 8.20: Average Runtime by MUTER and MUTER-NoHeu



Chapter 9

Conclusion

9.1 Summary

In this dissertation, we propose and discuss two paradigm-shifting directions for developing

optimization algorithms for the design of time-critical Cyber Physical Systems. We present

a number of studies to demonstrate and explain the use of these two directions, thoughts and

principles for algorithm development in different problem settings and the potential benefit

it can bring.

Specifically, the first direction is to develop optimization-oriented schedulability analysis

that have an efficient formulation in existing mathematical programming framework. We

present a study in Chapter 2 that considers the problem of efficiently formulating the fea-

sibility region of schedulability for adaptive mixed-criticality systems. We develop a new

schedulability analysis based on request bound function. The new analysis is much more

efficient to be formulated as mixed-integer linear programming in the sense that the number

of binary and integer variables needed is much smaller. The new formulation shows signifi-

cant improvement in optimizing implementation of Simulink SR model and task allocation

for multiprocessor platforms.

We then use the remaining chapters to discuss the second approach: developing domain-

specific optimization framework. The overall idea is to abstract the feasibility region of

355
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schedulability into a simple and uniform mathematical form that can be formulated effi-

ciently in mathematical programming framework, which separates optimization and schedu-

lability analysis. We first present a study in Chapter 3 that discusses the concept of

unschedulability-core and how it can be used as an alternative and much simpler repre-

sentation of the schedulability region. We then develop an iterative optimization framework

guided by unschedulability-core. The technique gives significant improvement in runtime

and scalability comparing to mathematical programming approach. In Chapter 4, We apply

the technique to optimizing Finite State Machine systems, which has a much more difficult

schedulability analysis. We show that the proposed optimization framework is flexible for

integrating different techniques to improve efficiency. Specifically, We show how schedulabil-

ity memoization and hierarchical relaxation can be seamlessly integrated into the framework

to significantly improve efficiency.

In Chapter 5 and Chapter 6, we extend the concept of unschedulability core to MUDA

and MUPDA and correspondingly generalize the iterative optimization framework. This

allows the framework to solve challenging optimization problems that involve response time,

period and priority assignment co-optimization. Evaluation on several industrial case studies

demonstrates that the technique provides significant benefits in runtime, applicability and

solution quality.

We further generalize the framework in Chapter 7 such that it is applicable to all problems

where decision variables are sustainable w.r.t. the schedulability analysis and objective

functions are monotonic w.r.t decision variables. This allows the framework to solve problems

that involve much more complicated objective functions. Evaluation on synthetic system and

industrial case studies demonstrate significant improvement in terms of runtime, applicability

to different schedulability analysis and solution quality.

Finally, in Chapter 8, we consider a type of schedulability analyses characterized by re-
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sponse time dependency. For these analyses, the well known Audsley’s algorithm cannot be

applied to find feasible priority assignment, which undermines the applicability of the pro-

posed iterative optimization framework. We take a different perspective and reformulate the

problem into finding a schedulable response time estimation. We introduce a new concept

called maximal unschedulable response time estimation range, which largely follows the same

underlying principle as MUDA, and develop a similar iterative optimization framework for

solving the optimization problems that use such type of schedulability analysis. Evaluation

on random system and industrial case study demonstrate noticeable improvement in terms

of acceptance ratio, scalability, solution quality and runtime.

9.2 Remaining Challenges and Future Work

The studies presented in this dissertation demonstrate the relevance and effectiveness of the

new directions for developing algorithms for design optimization of CPS. However, challenges

and issues still exist and the need for more research into the realm of CPS design optimization

continues to be vital. In this section, we summarize the main issues regarding the two

proposed directions that can be addressed in future work.

9.2.1 Developing optimization-oriented schedulability analysis

The major limitation of this direction is that it is not always possible to find an alternative

schedulability analysis that is optimization friendly. This is because some system models

and scheduling policies are inherently difficult to formulate. Consider the task graph and

finite state machine system mentioned in Chapter 4. These system models are developed in

a way that inherently requires to exhaustively examine all state transition paths to identify
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the worst-case workload. Such a characteristic eventually leads to the extreme difficulty

in developing schedulability analyses that are efficient for optimization without introducing

significant pessimism. This again refers back to the major issue suffered by design optimiza-

tion of CPS discussed in Chapter 1: System model and schedulability analysis have long

been developed in a way without any consideration of the need for optimization. Therefore,

a possible direction in CPS design is to integrate the need of optimization early into the

development of system model and formulation of schedulability analysis.

9.2.2 Developing new domain-specific optimization framework

Developing domain-specific optimization framework alleviates the issue suffered by the first

direction to some extent by abstracting and separating schedulability analysis away from

optimization algorithms. The key to achieving scalability in this approach is that schedula-

bility analysis, which is extensively used in computing domain specific abstraction, needs to

be highly efficient. This however, can be difficult to achieve for some problem settings. A no-

table example here is task allocation in partitioned scheduling on multiprocessor platforms.

Consider the experimental vehicle system case study discussed in Chapter 5. In the case

study, task allocation is assumed to be given and fixed. This makes schedulability analysis

a lot easier as it is essentially the same as uni-processor scheduling with multiple indepen-

dent processors. However, if task allocation is not given, schedulability analysis becomes

extremely difficult, as it is first necessary to find a proper allocation, which is generally

an NP-hard problem for most task models. As a result, the second direction is typically

inapplicable to problems that involves task allocation. The use of multi-processor platform

is becoming wide-spread in CPS. A framework/approach that can efficiently integrate task-

allocation and schedulability analysis into optimization is critical to the design of CPS in

the future.
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