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(ABSTRACT)

Two prominent continuum mechanics based incremental nonlinear finite
element formulations are reviewed. An introduction to different material response
measures suitable for nonlinear analysis, in addition to an overview of the Total
and Updated Lagrangian reference frames, serve as the starting point for this

review.

The two nonlinear formulations are specialized for use with a geometrically
nonlinear plane truss finite element.  The truss formulations are then

implemented into separate geometrically nonlinear finite element codes.

Numerical comparisons of five test structures are carried out using
ABAQUS and both programs. ABAQUS serves as the bench-mark by which the

solution accuracy of the two programs is judged.
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Chapter 1
Introduction

1.1 Purpose and Scope

The primary purpose of this thesis is to give a presentation and comparison
of the two most prominent continuum mechanics based incremental nonlinear
finite element formulations. The first formulation, known as the B-notation, is
attributed to Zienkiewicz (1973) and is by far the most commonly used. This
formulation is compared to the formulation presented by Bathe et al. (1975). The
motivation for this study comes from a lack of discussion in the literature
concerning the formulation presented in the landmark paper by Bathe et al.
(1975). An investigation into the literature reveals that the paper has been cited
in 87 separate journal publications. Upon examining a large number of these
publications,listed in the bibliography, it became apparent that the application of
the formulation, and not its verification, was the thrust of most of the work.
Based on this fact it was viewed that work done in comparing the formulations of

Zienkiewicz and Bathe may be of some merit.

Both formulations are specialized for use with a geometrically nonlinear
plane truss finite element. These truss formulations are implemented into two

separate nonlinear finite element Fortran codes. A comparison of the two
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formulations is carried out in two parts:

(1) Formulations of incremental iterative equations

(2) Numerical solutions of truss problems

1.2 Overview

An introduction to nonlinear analysis in addition to discussions on common
material response measures and the Total and Updated Lagrangian are presented
in Chapter 2. The formulation of the nonlinear plane truss in the B-notation and
the notation of Bathe is given in chapter 3; in addition the formulation of the 2-D
nonlinear frame element is presented in Chapter 4. The programs used in this
study are discussed in Chapter 5 and the program listings themselves appear in
Appendix B. Results from the test problems are given in Chapter 6 and

conclusions and recommendations are contained in Chapter 7.
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Chapter 2
Nonlinear Finite Element Analysis

2.1 Overview

This chapter serves as an introduction to nonlinear finite element analysis.
A discussion of a simple one degree of freedom truss example will serve as a basis
from which the Newton/Raphson algorithm and the Lagrangian reference frames
may be introduced. Also included in this chapter is a brief discussion and
comparison of different stress and strain measures in addition to an introduction

to some common finite element notations.

2.2 Introduction to nonlinear finite element analysis

According to Bathe (1982, p.302) there are three types or sources of
nonlinearity: geometric, material and contact problems. Geometric nonlinearity is
caused by nonlinear strain-displacement relations and equilibrium being expressed

for the deformed state. It is this type of nonlinearity which is the focus of the

work presented in this thesis.

Nonlinear Finite Element Analysis 3



In nonlinear analysis the primary objective is to find the state of
equilibrium of a structure corresponding to a set of applied loads. This concept
may be best illustrated when applied to a simple problem. For this discussion,
closely following that of Crisfield (1991), the structure in Fig. 2-1 will be used.
The load P is applied to the structure which in turn causes the deformation W.

From Crisfield (1991, p.2), vertical equilibrium may be satisfied by

N(Z+W)  N(Z+W)

P = Nsind = I, LO

(2-1)

where N is the axial force in the bar and 6 is assumed small. From Pythagorean’s

theorem

(z+wp+ L2)% (22 + 12
e o)

(22)

- (4 (E A B

= (1+3(27P) (- 3(FF ) (24)
-0 +3(EF ~ B)&) +HE) e
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From equation 2-5, the internal force in the truss is

®) e

[ Lo

N =EAe = EA((ZZ_O)(ZW_;) ¥

where E is the modulus of elasticity of the material that the truss is made out of,

and A is the cross-sectional area of the truss. Substituting equation 2-6 into 2-1

yields

P = (_1%3 (z2W + 3zw? 4 %W:’) (2-7)

Using equation 2-7, the load versus deflection (or equilibrium) path of the

structure can be plotted as is done in Fig. 2-2.

In nonlinear analysis the tangent stiffness matrix is used as a means for
relating changes in load with changes in displacement. For the example being

discussed, Crisfield (1991, p.4) demonstrates how this matrix becomes a scalar

Z+wW
(Z4 )jN+Zfio (2-8)

Nonlinear Finite Element Analysis 6
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_ 2
- BA(Z) + 54 (2ZV(VL:)2W) + 4 (2-10)

The expression of the internal force in conjunction with the K, may be used to

plot the nonlinear equilibrium path of the structure.

2.3 The Newton-Raphson Method

There are several algorithms currently used in the incremental solution of
nonlinear problems. The method used throughout this thesis is the Newton-
Raphson method. This algorithm traces the response of the nonlinear structural
system by the use of piecewise linear stiffness increments. These linear stiffness
increments are the tangent stiffness matrices as given in the above discussion. It
is felt that the concept being presented can be explained through a simple
example. When considering the same simple one degree of freedom example as
discussed above, a very clear depiction of the Newton-Raphson algorithm is
possible. In figure 2-3, the equilibrium path for this one degree of freedom system
is given. It should be noted that for the purposes of this discussion all
superscripts refer the quantity in question to the configuration in which it occurs.
In the case of figure 2-3, the initial configuration is given by the number 0. The
configuration denoted by the letter N is some equilibrium state of the structure
corresponding to the load Q. The loads QP and Q¥ are referred to as load steps.

Nonlinear Finite Element Analysis 8
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They represent specific loads on the structure for which an equilibrium
configuration is desired. The numbered configurations occurring between the load
steps QY and Q¥ are referred to as the iterations between the load steps. These
iterations are where the actual mechanics of the nonlinear solution are occurring.
For the one degree of freedom example in figure 2-3, it is seen that the
configuration at time zero is known and thus is our first reference point. The
configuration of the structure at time N is desired. As can be seen from the
figure, the internal force at time 0, FO, falls considerably short of equilibrating an
applied load of QY. This difference in internal force and applied external load is
referred to as the residual. Thus the structure must deform in order to develop
the internal resistance necessary to equilibrate the externally applied load of QN .
The question then becomes how much deformation is required. This question can
only be answered by successive approximations. The first step in this
approximation procedure is the generation of the tangent stiffness matrix about
the first equilibrium point. In the case of figure 2-3, the matrix K%»is generated
using equation 2-10. This matrix is a linearized approximation of the equilibrium
path based on the internal forces occurring in the structure at the initial
configuration. The tangent stiffness matrix represents a line extending from the
initial equilibrium point both up and down the equilibrium path. Since the
structure is being loaded, the upward segment is of interest, specifically the region
that intersects the load level defined by the horizontal line corresponding to QN .
This load level is of interest since it defines the level of internal force that the
structure must achieve to be in equilibrium. If the line corresponding to the
tangent stiffness is followed up to this load level, then a corresponding structural

displacement can be measured on the abscissa. This procedure can be represented

Nonlinear Finite Element Analysis 10



by the simple linear equation

Rt = Kk A¢ (2-11)

where RF is the residual and is given by

RF = QN - F* (2-12)

In the Newton-Raphson algorithm, the Aqk term is the unknown being solved for.
This term represents the increment in displacement that the algorithm prescribes
for the structure at the next equilibrium point. The next structural configuration

can be determined from the simple addition

gftl = of + A¢F (2-13)

This new configuration defined by the displacement q""H is used to compute the
structural response at this configuration. The displacement q*t! is substituted
into the Green-Lagrange strain displacement relationship. In the case of linearly

elastic material response, the Second Piola-Kirchhoff stress is obtained by

Nonlinear Finite Element Analysis 11



multiplying the Green-Lagrange strain by the material’s modulus of elasticity.
Once the material response terms have been defined, the new internal force can be
computed and the residual found. This whole process is repeated until the uger
prescribed accuracy is achieved. The measure of accuracy used is the magnitude
of the residual. Iteration stops when the residual is sufficiently small, as defined
by the analyst. To be able to implement the Newton-Raphson algorithm in the
solution of nonlinear finite element analysis, a discussion of stress and strain

measures currently used in nonlinear finite element analysis is required.

2.4 Common Strain Measures

A discussion of common strain measures is a good starting point in the
consideration of the nonlinear finite element equations of motion. This discussion
will focus on the four most common measures; they are the engineering strain, the
rotated engineering strain, Green-Lagrange strain and the log strain. The
engineering strain is the most familiar strain measure to the engineer since all
elementary mechanics courses define strain in terms of this measure. The log
strain is the most correct of the strain measures since, according to Crisfield
(1991, p.59), it represents the true material response as referred to the current
material configuration. The Green-Lagrange strain, as will be seen, is the strain
measure of choice when operating within the framework of continuum mechanics
based incremental nonlinear finite element analysis. All four of the above

mentioned strain measures will be addressed, individually and in relation to each

other, in the following discussion.

Nonlinear Finite Element Analysis 12



2.4.1 Engineering Strain

Engineering strain is the most common measure of material deformation.
Since strain in general is a point-wise phenomenon, the meaning of engineering
strain will be presented in the context of a material fiber of the truss in
configuration 0 of Fig 2-1, whose length is reduced to zero through a limit. This
presentation follows from what was given by Stippes et al. (1961). On the basis of

Fig. 2-4, the normal strain at point P in the x-direction is

_  lim Azr-Az )
CE = Az—0 Ar (2 14)

From Fig. 2-4 it can be seen that

A = Az + u(z+Az)- w=) (2-15)

which leads to

Az - Az = u(z+Az)- wz) (2-16)

Nonlinear Finite Element Analysis 13
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So,

lim  wWz+Az)-wz) _ 4
E = Az Az =& (2-17)

This definition of engineering strain is purely extensional in nature and clearly

shows its linear dependence on displacement.

2.4.2 Rotated Engineering Strain

The presentation of the rotated engineering strain given by Crisfield (1991,
p.58) contains a figure similar to Fig 2-5. According to Crisfield, the rotated
engineering strain, commonly used in the Updated Lagrangian formulation, is

defined as

L-L,

e = 0 (2-18)

where L, is the length of the truss in the new configuration and L is the length of
the truss in the previous configuration. The rotated engineering strain can then
be described as the strain given by equation 2-18 directed along the local x-axis of

configuration 0 (see Fig 2-5). In general for rotated engineering strain, the strain

Nonlinear Finite Element Analysis 15
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for the new configuration is given in terms of the local axes of the previous

configuration.

2.4.3 Green-Lagrange Strain

The Green-Lagrange strain measure, commonly used in the Total
Lagrangian, can be related in terms of what has already been done with the
engineering strain. Equation 2-13 can be modified as follows from Crisfield (1991,

p.59):

Li-Ly _ (Iy- Lo Ly + L) 12-13

€ = = = 2-19
Ly Ly(Ly + Ly) L2 +¢) (219)
If we assume e is small relative to 2, we obtain
I - L
€ = 2-20
G ’_2170_ ( )

where ¢ is the Green-Lagrange strain (Crisfield 1991, p.59). The Green-Lagrange
strain in equation 2-20 can be related to the rotated engineering strain of equation

2-18 by

Nonlinear Finite Element Analysis 17



g =€ (1+%e) (2-21)

For small strains the rotated engineering strain of equation 2-18 is coincident with
the Green-Lagrange strain of equation 2-20. This can be shown to be true since in

the small strain case, L; ~ L; and equation 2-20 can be reduced to

_ (L1 + Lo)( L1 - Lg) N 2Ly(Ly - Ly)
G = 213 R

(2-22)

Thus it can be seen that the Green-Lagrange strain coincides with the rotated

engineering strain as shown below:

(2-23)

It is only in a state of large strain that differences between the measures become

apparent (Crisfield 1991, p.58).

Nonlinear Finite Element Analysis 18



244 Rotated Log-Strain

The final strain measure to be addressed is the log-strain. Log-strain is
commonly referred to as the true strain. This means that it represents the state
of strain in the deformed configuration as measured with respect to the local
reference frame of the deformed configuration. This measure is often used in
applications of large strains. The log-strain is defined in an incremental form as

follows (Crisfield 1991, p.59):

de = dtLl‘l (2-24)

where L, is the length of the truss in the deformed configuration. Equation 2-24

yields the log strain

e = / de=1n(7"j_;) (2-25)

which can be related to the rotated engineering and Green-Lagrange strains as

follows (Crisfield 1991, p.60). For the case of rotated engineering strain

Nonlinear Finite Element Analysis 19



L-L
e = In(l4+¢) = In (1 + lLO 0) (2-26)

L,-L L
( 0 Lo (227)
Considering the Green-Lagrange strain,
2 2
_ 1 _1 Li- Ly
eg= zln(1+2g) = 2111[1+2( 212 )} (2-28)
L+ Ly)(L;- L
1Bt Do) (B Lo) Ly
= 51n2[ 5T, = anB (2-29)

Now that some strain measures for nonlinear analysis have been
introduced, the topic of stress measures will be the focus of the following

discussion.

Nonlinear Finite Element Analysis' 20



2.5 Common Stress Measures

The four most common stress measures are engineering stress, rotated
engineering stress, Second Piola-Kirchhoff stress, and Cauchy stress. Each of
these stress measures has a complementary strain measure which will be
discussed. The issue of whether or not the two measures are energetically
conjugate must be addressed when choosing a suitable pairing of stress and strain
measures (Bathe 1982, p.327 ; Crisfield 1991, p.65). To be energetically conjugate
the scalar product of the stress and strain must produce a valid work term. For
the work term to be valid, both of the material response measures must be
evaluated in the same equilibrium configuration and have their respective
responses given in terms of the same reference frame (Bathe 1982, p.327). In the
case of geometric nonlinear finite element analysis, obtaining the stress measure
which is energetically conjugate to the strain measure used is straight-forward
(Bathe 1982, p.336). This is the case since the material response is in the elastic
range and thus Hooke’s law is valid. As such we can easily obtain the needed
stress measures in terms of the previously derived strain by simply multiplying
the strain by the appropriate modulus of elasticity (Bathe 1982, p.336). In the
case of the engineering strain we obtain the corresponding energetically conjugate

engineering stress from the expression

o= Ee (2-30)
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where E is the modulus of elasticity.

For the Green-Lagrange strain we can obtain the energetically conjugate Second

Piola-Kirchhoff stress from

S = F €c (2-31)

Similarly for the log-strain we obtain the true stress as

G'L = E EL (2-32)

~ Now that the four most common strain and stress measures have been
identified, they must be compared. This can be achieved by once again referring
to the truss example, based on Crisfield’s work (1991, p.61), given in Fig. 2-6.

The vertical forces can be given as

A W
P = —111—- (2-33)
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where o’ is the Cauchy or true stress. Since the true strain is the log strain, it

follows that the log stress is the true stress; thus

op =0 (2-34)

]
Q

When considering the rotated engineering stress, the vertical force from Fig. 2-6 is

given in Crisfield (1991, p.58) as

g Aow
1

P = (2-35)

From equations 2-19 and 2-21, the comparison between rotated engineering stress

and Cauchy stress can be stated as

¢ = (;‘:-;) (2-36)

A similar comparison for the Second Piola-Kirchhoff stress follows from the

resolution of the vertical forces of the truss as
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g Ao %4
P = —G-Lo— (2-37)

Using equations 2-33 and 2-37, a comparison between the Second Piola-Kirchhoff

stress and the Cauchy stress can be given as

s (A1 Lo
og = 0 (AO Ll) (2-38)

Similarly, a comparison between Second Piola-Kirchhoff stress and rotated

engineering stress can be given as

og =0 (%) (2-39)

Now that some common strain measures have been discussed, a suitable pairing of
strains and stresses for use in the nonlinear finite element equations of motion
must be arrived at. The single most important factor affecting the choice of the
appropriate material response pair is the reference frame used in the finite
element formulation. In the case of structural analysis, the Lagrangian or
material oriented reference frame is chosen. The Lagrangian reference frame is

chosen over the Eulerian reference frame because in most analyses of solids and
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structures the boundaries of the solids are not continuously changing and hence
new control volumes do not need to be continuously created as they would in a
fluids problem (Bathe 1982, p.315). The most suitable strain measure for use
within a Lagrangian reference frame is the Green-Lagrange strain (Bathe,
1975)(Martin 1973, p.166)(Oden, 1972)(Crisfield 1991, p.66). Since the Green-
Lagrange strain is chosen as the appropriate strain measure, the Second Piola-
Kirchhoff stress becomes the stress measure of choice. These two measures will
form the foundation on which the principle of virtual work can be applied to

obtain the nonlinear equilibrium equation.

2.6 Nonlinear Equilibrium Equation

The principle of virtual work can be given as follows (Holzer, 1985):

§W,-6U=0 =5 EQUILIBRIUM (2-40)

where 6W, is the virtual work produced by the external forces acting on the
structure, and 6U is the first variation of the strain energy. The first variation of

the strain energy may be stated more explicitly as

5U=///V seT o dV (2-41)
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where o is assumed to be an arbitrary stress measure and similarly € is assumed to
be an arbitrary strain measure. It is implied in equation 2-41 that the final
deformed configuration of the structure is used as the basis for computing the
magnitudes and directions of the corresponding stress and strain measures. In the
case of the nonlinear finite element analysis this assumption constitutes a problem
because the configuration of the structure in the deformed state is unknown.
Therefore material response measures used in equation 2-38 must be referred to a
previous configuration. It now becomes apparent why a Lagrangian reference
frame is chosen for the formulation of the nonlinear finite element equilibrium
equations. A Lagrangian reference frame is always referred to a previous
equilibrium configuration and as such is quite suitable for use in nonlinear finite
element problems. The most common choice for the material response pair of
equation 2-41 is the Green-Lagrange strain and the Second Piola-Kirchhoff stress.
This is the case since both measures represent the material response in the
deformed state referred back to a previously computed equilibrium conﬁguratlon
and both measures accommodate large rotations. Focussing on the referral to
previous equilibrium configurations, the Lagrangian reference frames are
discussed. In the case of nonhnea.r finite element formulatxons, there are two

fundamental Lagra.nglan reference frames, the Total and the Updated AM

S S -

discussion of the two reference frames and how they differ from each other follows.

In the literature there are a number of accounts which describe the
difference between the Total and Updated Lagrangian reference frames (Bathe,
1975 ; Wunderlich, 1977). These presentations an account of the two reference

frames in the most general terms possible. However, sometimes a better
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understanding of a concept can be gained by applying a general concept to a

simple example.

In this presentation, the Total and Updated Lagrangian reference frames
will be explained within the framework of the truss element. When a truss
element assumes a configuration under a set of externally applied loads it does not
do so instantaneously. It passes through many states along the way to the final
state of equilibrium. This passage between states is marked by differing
geometric configurations. In other words, the truss does not instantly change
from its unloaded state to its deformed loaded state. It passes through many
intermediate deformed states marked by differing degrees of deformation and

rotation (figure 2-5).

In an incremental nonlinear finite element analysis these interim states are

simulated through the process of iteration over the unbalanced loads. Each time a
new displacement increment is computed and added to the previous
displacements, a new configuration of the truss is defined. These configurations
mark changes in the response of the truss as it develops internal forces to

equilibrate the externally applied loads.

2.7 The Total Lagrangian

In the case of the Total Lagrangian reference frame, all material responses

in the current deformed state are referred back to the initial configuration. The

initial configuration of the truss is defined as the configuration prior to the first
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load step. In the case of the truss element in figure 2-7, the initial state is
defined as the configuration at time 0. At time 0 the truss has the length 0L, the
area OA, and the volume %V. The local coordinate system at time 0 serves as the
basis for evaluating the directional responses of the truss in subsequent
configurations. From this it is apparent that the Green-Lagrange strain and
Second Piola-Kirchhoff stress, given in equations 2-20 and 2-31 respectively, must
have the initial configuration as their reference state. When one begins speaking
in terms of referrals it is important to adopt a concise referral notation. For the
remainder of this thesis Bathe’s (1982, p.317) notation for referral will be used.
The case of the Green-Lagrange strain in the Total Lagrangian reference frame
would be given as 65. This would be read as the Green-Lagrange strain at time ¢
with respect to the configuration at time 0. The left superscript denotes the
configuration of interest, and the left subscript denotes the reference
configuration. Based on the described notation, equation 2-41 can be rewritten in

a form suitable for the Total Lagrangian as

/ / / Oy 05; Sfeij d - oW, = 0 (2-42)

The physical meaning of the referred material responses can be seen in Fig. 2-7.

Equation 2-42 can be written in matrix form as

[[[ o, 8be™ ts & - w, =0 (2-43)
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Note that 9V is the volume of the truss in its initial configuration. In a Total
Lagrangian reference frame, all integrations are performed with respect to the

initial configuration.

The generation of the tangent stiffness matrix in the Total Lagrangian
reference frame requires taking the partial derivative of the internal force vector

with respect to the displacements

Kp = %_f (2-44)

where F is the internal force vector and u is the vector of global displacements.

The characteristics of the Total Lagrangian reference frame which have
been thus far mentioned are only the details necessary to understand the processes
occurring in the nonlinear solution within this reference frame. To fully
undérsta,nd the referral process it must be implemented. In the discussion to
follow the example of a truss is used. For the case of the truss, the strain is a

scalar, so at time ¢+ At it can be stated that

bAte = b 4 e (2-45)

Nonlinear Finite Element Analysis 31



where ge is the increment in Green-Lagrange strain between time ¢ and time

t+At. Similarly, the Second Piola Kirchhoff stress at time ¢+At is given as
bratg = 1s + S (2-46)

where (S is the increment in the Second Piola-Kirchhoff stress between time t and
time t+At. The fact that the Green-Lagrange strain and Second Piola-Kirchhoff
stress, at time t, are referred to the configuration at time 0 is clear. What may
not be clear however is the fact that the increment in these material response
measures, between time t and time t+At, are also referred back to the initial
configuration. This means that the directions of the incremental material
responses coincide with those of the reference configuration hence the expressions

of equations 2-45 and 2-46 are possible.

2.8 The Updated Lagrangian Sl e /{ ol P \;.32“ . \
= ok &

When using the Updateci Lagrangian reference frame it is important to

realize that the material response of the truss in the current configuration is

(feferreiT back to the pre1;zous ethbnum conﬁguratlon,. Since this referral exists,

the use of the Green-Lagrange strain and Second Piola-Kirchhoff stress is again
warranted. An important characteristic of the Second Piola-Kirchhoff stress is

that when it is measured in the same configuration in which it is occurring, it

Nonlinear Finite Element Analysis 32



results in the true stress (Bathe 1982, p.341 ; Crisfield 1991, p.59). Referring once

again to the truss, this point is expressed by the following equation:

iS=40p (2-47)

where o is the true stress and the subscript t refers to the configuration of
interest, in this case time t. This is an important aspect of the Updated

Lagrangian reference frame.

In figure 2-8 the truss element is seen in three distinct configurations. The
first configuration, corresponding to time 0, is the configuration of the truss before
the first load step. The second configuration corresponds to time ¢ which is the
previous equilibrium configuration relative to time ¢+At. The configuration at
time t+At is the next equilibrium configuration of the structure and is designated
as the current configuration. The equilibrium configurations and material
responses of the truss at times 0 and ¢ have been previously calculated and are
known. The focus of this discussion is to determine the response of the truss in

the current configuration.

The starting point of this discussion lies in the determination of the state
of stress at time ¢. As mentioned earlier, in the Updated Lagrangian reference
frame, the previous equilibrium configuration of the truss is the reference state for
the new configuration. In the case of the truss at time ¢, the reference state was
the configuration at time 0. Since this is the case, the Second Piola-Kirchhoff

stress at time t is given in reference to the initial configuration. This referred
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stress must be converted into true stress in order that the configuration at time ¢
may serve as the reference state for the configuration at time ¢+At. To this end,

the following equation, given by Crisfield (1991, p.73) is employed for the truss:

04t
o= Tﬁﬁ% ts (2-48)

Equation 2-48 allows the Second Piola-Kirchhoff stress at time ¢ with respect to
time 0 to be converted to the Cauchy stress at time f. This fact allows the

following crucial equation to be formulated:
HAS = t0 + S (2-49)

where ;S is the increment in the Second Piola-Kirchhoff stress between the
configuration at time ¢ and the configuration at time t+At. Using the results

from above, the equilibrium equation for the Updated Lagrangian may be stated

as

[[ ], sitaeeT ttas av (2-50)
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It should be noted that all integrations take place over the volume of the previous
configuration. Furthermore, the local reference frame of the previous equilibrium
configuration serves as the reference frame used in computing the increments in

material response from the previous configuration to the new configuration.

2.9 Finite Element Formulation

The logical starting point for any discussion of continuum mechanics based
incremental nonlinear finite element not?.tion is the representation of the Green-
Lagrange strain tensor. The Green-Lagrange strain tensor can be decomposed into
two distinct components, one component being linear in displacements and the
other being quadratic in displacements. Wood and Schrefler (1976) express this

decomposition with the equation

€= 60 + €L (2‘51)

where ¢ is the component of the Green-Lagrange strain linearly dependent on
displacements, while ¢; is the component quadratically dependent on
displacements. Bathe (1975) has a similar decomposition given for the increment

as follows:
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0€ = o€ + o7 (2-52)

where (e is the component of the Green-Lagrange strain increment linearly
dependent on displacements, while 37 is the component quadratically dependent

on displacements.

Focussing on the B-notation of Zienkiewicz, the Green-Lagrange strain may

be re-expressed using an expanded form for the nonlinear strain component

e=e+5A0 (2-53)

where

0= Gu (2-54)

and G is a constant matrix composed of differentials of interpolation functions. It
should be mentioned that the matrix G of Zienkiewicz’s notation corresponds to
the matrix By in Bathe’s notation. The vector u appearing in equation 2-54 is
the vector of nodal elemental displacements. It should be further noted that both

A and 0 are displacement gradient vectors, where # contains all the differentials
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occurring in the nonlinear strain-displacement relationship and A is constructed
such that when post-multiplied by @ and scalar multiplied by %, the nonlinear
portion of the Green-Lagrange strain tensor is obtained. If we now give an
expanded form for the linear portion of the Green-Lagrange strain, we may write

the strain-displacement relation as

e=LTGu+%AGu (2-55)

In equation 2-55, certain submatricies may be defined as follows:

By=1"¢G (2-56)

L is a vector constructed such that when postmultiplied by G and u it yields the

linear portion of the strain-displacement matrix,

and
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Thus, the Green-Lagrange strain-displacement may be represented in the B-

notation as

= (Bo+38,) w (2-58)

The matrix Bo of Zlenkxewwz corresponds to the matrix B, of Bathe, and the

matrix B L of ernkxewxcz has no equlvalent in Bathe’s notatlon Now that the

PN

finite element form of the Green La.gra.nge stra.m tensor has been detenmned the

variation of this quantity can be given as follows:

be = (Bo + BL) bu (2-59)

This variational form of the Green-Lagrange strain tensor is important since it
occurs in the volume integration necessary for the computation of the internal

force vector.
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Chapter 3
The Geometrically Nonlinear Plane Truss

3.1 Introduction

A two-dimensional geometrically nonlinear truss element. Two
formulations of this element is formulated. One formulation will be carried out in
the B-notation of Zienkiewicz, as given by Wood and Schrefler (1978), while the
other will follow the method outlined by Bathe et al. (1975).

3.2 The B-notation

The B-notation will be used for the first formulation of the nonlinear plane
truss element. This formulation is accompanied by Fig. 3-1 in order that some of

the relevant parameters of the formulation may be displayed.
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3.2.1 The Strain-displacement Relationship

The root of the nonlinearity in this element lies in the Green-Lagrange

strain-displacement relationship given in the index notation as

eg = 1,z + 5 {(U1,2) H(¥,0)' ) (3-1)

The linear and quadratic dependence of the Green-Lagrange strain-displacement

relationship can be seen in equation 3-1.

3.2.2 Interpolation

The Lagrangian interpolation polynomials given as

Ny =1 (1-§) (3-2)

Ny =1 (1+¢) (3-3)
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are used for both coordinate and displacement interpolation stated as

2 .
=

and

2

'U,l = El Nl utl (3‘5)
=
2 i

U2 = E N: ‘U2 (3‘6)

where z’i and ui, ug are the nodal coordinates and nodal displacements
respectively. These quantities are given visually in Fig. 3-1. The displacement

field of the truss is given as
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1

where the vector of lower case u’s corresponds to the local displacement vector.
The right superscript identifies the node of interest while the right subscript
identifies the direction in the local reference frame being considered. The result of
the matrix operation in equation 3-7 is the vector composed of u; and u, which
are the horizontal and vertical displacements respectively, see Fig. 3-1. In order
to accommodate mapping between the parent element and the ﬁnite element, and
vice versa, it is necessary to evaluate the determinant of the Jacobian matrix. In

the case of the nonlinear plane truss element this determinant has the form

L
|7 ]= (3-8)
Thus,
dz) = E‘T" d¢ (3-9)

Nonlinear Plane Truss Formulation 44



Equation 3-9 may be verified as follows.

interpolation functions with respect to £ yields

1 _ 1
é = -

Taking the first derivative of the

(3-10)

(3-11)

Equations 3-10 and 3-11 can then be used in defining the first derivative of z with

respect to £ as

T - (Tie_“’l T
s0,

dzy _ 1 1, .2

7= 5 (e +d)
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(3-13)
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and since in the case of the truss element,
Ly = (:z% - :z:{) (3-14)

thus equation 3-9 is verified by the combination of equations 3-13 and 3-14:

dz L
= e (3-15)

3.2.3 The Strain-displacement Matrices

Having identified the form of the Green-Lagrange strain displacement
relationship, the strain-displacement matrices can now be constructed so that a
discretized form of the strain may be obtained. The first matrix to be constructed
is the matrix of Cartesian derivatives of interpolation functions known as the G

matrix. In the case of the plane truss, it has the following form:
-1 010
G = 3-16
Ly [ 0-101 } (3-16)
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The matrix of displacement gradients known as the A matrix has the form

0
A= |7 (3-17)

Similarly, the vector of displacement gradients known as the 6 matrix has the

form

0=1, , ) (3-18)

Based on what has been presented above, it is now possible to give the form of the

strain-displacement matrices.

The first strain-displacement matrix to be considered is the By matrix.
The B matrix is used to construct the first term of equation 3-1. This term is
known as the engineering strain and as such has only linear dependence on
displacements. Since this is the case the By matrix has no dependence on

displacements and is given as
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Bo=LL0[-1 01 0] (3-19)

The second strain-displacement matrix is responsible for constructing all other
terms present in equation 3-1. This matrix is known as the B; matrix and has a
linear dependence on displacements. The matrix can be constructed using the

previously defined matrices A and G:
By = AG (3-20)

The composition of the B matrix is further defined as

By = flg [ (u% - u%) (u% - ug) (uf - u{) (ug.- u%) ] (3-21)

The two strain-displacement matrices given in equations 3-19 and 3-21 can be
combined in the following manner to obtain the discretized form of the Green-

Lagrange strain tensor as
e = (Bo +1 BL) u (3-22)
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The variation of the Green-Lagrange strain tensor may be expressed as

beg = (Bo+ BL) bu (3-23)

3.2.4 The Internal Force Vector

The above matrices can be used in the finite element equilibrium equation

given in the B-notation as

6uT/// 0, BTo d% - suTF =0 (3-24)

where

B = (Bo+ BL) (3-25)

and the vector F' is the internal force vector. Equation 3-24 may be further

expanded to obtain the finite element equilibrium equation in the form of
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+1B,'D B, d%u - TR =0 (3-26)

The 1ntegrand of equa,tlon 3-26 produces the _unsymmetric form of the secant

AR VPSP —

—_— .

stiffness ma.tnx as given by Wood a.nd Schreﬂer (1978). This secant stiffness
g e e P \“___ﬂ

matrix, when multiplied by the nodal displacement vector, y1elds the element

r——

internal force vector. The internal force vector plays the key role in the solution

o —

et s i ey o

of the nonlmea.r fimte element equatlons Also figuring prominently in the the

nonlmea.r solution process are the ta.ngent stiffness matrices.

3.2.5 The Tangent Stiffness Matrix

In the case of the nonlinear plane truss finite element formulation given in
here, only the linear and the initial stress portion of the incremental stiffness
matrix are included. The linear portion of the tangent stiffness matrix, often
referred to as K|, is the stiffness matrix which is used in linear analysis. The

familiar form of the matrix can be seen below:
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(10 -1 0]
0 0 0O
K, = -
=710 1 0 (3-27)
0 0 0O
| .J
where
5= _4% (3-28)

A being the cross sectional area of the truss and E being the modulus of elasticity

of the material of which the truss is made. Similarly, the initial stress matrix K,

can be given as

10-10
P 1 0 -1
K. = 3-29
o Lyl-10 1 0 (3-29)
0 -1 01

P= (- o) 20
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3.3 Bathe’s Formulation

The fundamental basis for the continuum mechanics based incremental
nonlinear finite element formulation presented by Bathe et al. (1975) is the

incremental decomposition of the Green-Lagrange strain and the Second Piola-

Kirchhoff stress:
iT8% e = feg + oG (3-31)
brAts = k54 (S (3-32)

The notation used in equations 3-31, 3-32, and in the rest of this section is that
given by Bathe (1982). The left subscript on the quantity in question refers to
the configuration that the quantity was measured in while the left superscript
refers to the configuration the quantity is actually occurring in. For instance, the
quantity 6+AtS is read as the Second Piola-Kirchhoff stress occurring in the
element at the time t+At but coincident with the local axes of the element
configuration at time 0. For the case where only a left subscript appears in
conjunction with the quantity in question, the increment from time ¢ to time
t+At, measured in the configuration of the subscript, is being described. As an
example, consider the term S from equation 3-32; this can be read as the

increment in the Second Piola-Kirchhoff stress from time ¢ to time t+At
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measured with respect to the local axes of the initial configuration of the element.
This type of notation can be used to re-express the Green-Lagrange strain

displacement relationship as

A 1+A
fHate, = §HAh, + %[(6'“““1,1)2‘*(6+At“2,1)2] (3-33)
where
at+Atu
t+At, 1 3-34
0 1’1 aozl ( )

Based on the fact that the displacement at time t+At can be expressed as

(t)+Atu = bu+gu (3-35)

equation 3-33 can be re-written as

i 1 t 2 i 2
Aty = fuy,1 + oup, + 7[ (Gu1,1 + o¥1,1)° + (gua,1 + o¥2,1) ] (3-36)
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Equation 3-36 can be further expanded to obtain

t+At, _ 1 1 [ty )2 4 (ty )2
%= fuin+3 [(0“1,1) + (gug,1) ] +

v

e

t+At
0 €1

¢ t
ot toovny ot toven o¥ey

s

011

%[ (ou,)? + (ougp)? ]

Vs

7

(3-37)

0711

where e and 7 are the portions of the Green-Lagrange strain displacement

relationship linearly and quadratically dependent on displacement respectively.

3.3.1 Interpolation

In Bathe’s formulation of the nonlinear plane truss element the same linear

Lagrangian interpolation polynomials as used in the B-notation are implemented.
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Bathe uses a different choice of variables so the interpolation polynomials can be

restated as
Ny = 2(1-¢) (3-38)
Ny = 3(1+¢) (3-39)

The differentials of the interpolation polynomials are given as

dd—A? =-1 (3-40)

dd_]‘? -1 (3-41)
Based on the foregoing, the coordinate interpolation may be given as

0z, = :‘j‘l N, 0% (3-42)
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= 1 2y _ 1 -
2 =3(-%+%) =10 =11 (3-43)
and the displacement interpolation may be given as
2 k
u =3 Ny (3-44)
=1
and
¢ 2 ¢k
Ui = Z Nk u,- (3'45)
k=1

3.3.2 Strain-displacement matrices

Based on what has been given with regards to the interpolation
polynomials and the Green-Lagrange strain-displacement relationship, the
discretized form of the strain-displacement relation can be given in the following
matrix form. From the chain-rule of calculus it can be said that for the

displacement increment,
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which leads to

a—(E-': %(-u,l+ U?)

This can be expressed in matrix form as

3u1_1

a"xl'_f['l 0 1 ol
0 Bro

3u2_1

6)031_1;[0 10 1]

Nonlinear Plane Truss Formulation

(3-46)

(3-47)

(3-48)

(3-49)
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Now changing the focus from the incremental displacements to the accumulated

displacements from time 0 to time ¢, the following is obtained:

30:1:1

d'y 1/ 11,19
= $\-"uy1 4+ ‘u

aOzl L( 1 1)

dlug _ 1( 11,19
= - ‘'uy + ‘u

3031 ( 2 2)

(3-50)

(3-51)

(3-52)

Based on the geometry of the truss shown in Fig. 3-2, equations 3-51 and 3-52

may be re-written as

4
4 0“1 = %(L cost - L) = (cos'd-1)
a 21
and
i
202 = %(L sin'd) = sin'f

Nonlinear Plane Truss Formulation

(3-53)

(3-54)
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Figure (3-2) The Nonlinecr Plane Truss Element for
Bathe’s Notation
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the initial displacement portions of the incremental strain-displacement

relationship can be given in matrix form as

3tu1 aul t 1

50, 50z, = (cos®9-1) £[-1 0 1 o0 [{d} (3-55)
and

Ofug ug . 4y 1

50 130-1?1 = sin *6 I[ 0 -1 0 1 ]{d} (3-56)

Assembling these matrices according to the algebraic initial displacement

expression yields

3tu13u1 + atU2 3u2
0%, 0%, = 8%, 0%%,

[-cos {941 -sind costh-1 sin 9 ] {d} (3-57)

g

1
L

-

t
0B
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where {d} is the incremental displacement vector between the configurations at
time t and t+At. Combining what has been given above, the linear portion of the

Green-Lagrange strain in the increment may be given in matrix form as

¢ = (§Bro + §Bpy) {d} (3-58)
6By
where
5BL = —}: [ «cos 0 -sin cos¥ siné ] (3-59)

The angle 4 is the angle between the last known equilibrium configuration of the

truss and the initial configuration of the truss ( see Fig. 3-2).

3.3.3 Internal Force Vector

Using the the previously derived strain-displacement matrices, the internal

force vector may, according to Bathe (1982), be presented as
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tgpT t§
oF = / o, 0Bp §5u 4% (3-60)

In general, the stress term appearing in equation 3-60 is a vector composed of
components of the Second Piola-Kirchhoff stress tensor. For the case of the truss,

however, the stress vector is reduced to one entry given by

Brats, =S+ (oen + o) E (3-61)

where FE is the modulus of elasticity of the material from which the truss is

constructed.

The tangent stiffness matrices given earlier in this chapter, in the B-
notation formulation, are equally valid for use in Bathe’s notation; thus the

matrices are not represented here.

3.4 Differences between Zienkiewicz’s and Bathe’s Formulation

When addressing the fundamental differences between the continuum
mechanics based incremental nonlinear finite element formulations of Bathe and

Zienkiewicz, it soon becomes apparent that differences are more far-reaching than
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the dissimilar notation. It is these fundamental differences, and how they impact
the basic understanding of nonlinear finite element analysis, which makes them of

interest.

Both notations agree as to the starting point in the nonlinear finite element
formulation.  This starting point is the previously mentioned variational

statement of equilibrium

/ / / o, 875 d = §W, (3-62)

In equation 3-62 it is seen that the Total Lagrangian reference frame is being used.
Throughout this discussion the Total Lagrangian will be used since it is the

reference frame used in Ziekiewicz’s formulation.

In the B-notation, equation 3-62 forms the foundation of the formulation
with regards to the structural response. The internal force is arrived at by using

the following equation:

F= / / / 0, BTs a% (3-63)
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where

B = By+ By (3-64)

From this point, it can then be said that the tangent stiffness matrix is obtained

from Crisfield (1991, p.69) as

K = OF (3-65)

where F is the internal force vector and u is the vector of local nodal

displacements. Represented in matrix form, the tangent stiffness matrix of the B-

notation is

K,= Ko+ K, + K[ (3-66)

The individual terms appearing in equation 3-66 are further expanded in the

following:
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K, = / / / o, Bo"E By d% (3-67)

and E is the modulus of elasticity of the material. Ky is the familiar stiffness
matrix used in linear analysis. The next stiffness term to be expressed is often
referred to as the initial stress matrix. This is a fitting name since a stress term is

present in every entry of the matrix:

K, = / / / 0, ¢Ts e d (3-68)

The third component matrix to be presented is the initial displacement matrix.
This name is suitable due to the linear and quadratic dependence of this matrix

on displacements:
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Kp=[[[o, B EB %+ [ [ [o, BLTE By +

/ / / 0y B," E By d% (3-69)

The literature refers to the sum of Ky, Kg, and K as the tangent stiffness matrix.

Typically the K; matrix is neglected since its effects are negligible except for

cases of very large displacements. Thus

B

K = K+K, (3-70)

As will be seen in the following presentation, Bathe also uses the form-of-the—— ..

et o e 1

—
tangent stiffness matrix as given in equation 3-70.
st A A

As previously mentioned, Bathe uses the variational statement of

equilibrium, given in equation 3-62, as the starting point for his formulation (1982,
p-336). The notion of the incremental decomposition of the Second Piola-
Kirchhoff stress marks the second major step in Bathe’s formulation and is given

as follows:

bratg —tg 4 S (3-71)
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In conjunction with the incremental decomposition of the Second Piola-Kirchhoff
stress tensor is the similar decomposition of the Green-Lagrange strain tensor

stated as

§Ha%e = te + e (3-72)

Since f)e and 6‘5 represent the material response in the previous equilibrium

configuration, they are considered as known quantities. Thus it can be said that

6iHA = §e (3-73
0 0

Based on the above observations, the variational equilibrium equation can be

rendered as

/ / / oy £ ocij bocij & + / / / o, 05ij Som d

/ / / 0, 05ij Soeij AV = oW, (3-74)
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where e and 7 are respectively the components of the Green-Lagrange strain
increment linearly and quadratically dependent on the displacements. According

to Bathe (1982, p.336)

OS = E 06 ( 1:‘(/8’& ’Z/V(///“f.,(?l, ,/) ’ (3'75)

Using the approximation of Bathe (1982, p.336)

606 = 606 (3-76)

the variational equilibrium equation may be presented in its linearized form as

follows (Bathe 1982, p.336):
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[ 1] sy By 0+ ][ [ oyt 4 -

We - [ [ [ o, 88 doeij & (3-77)

L
The integrals on the ;2: hand side of equation 3-77 lead directly to the tangent
stiffness matrix of equation 3-70. The integral on the E&A{kband side of the
equation leads to the internal force vector. This last point is a crucial one since
the internal force vector in equation 3-77 differs from Zienkiewicz’s internal force
vector given in equation 3-63. The difference lies in the variational Green-
Lagrange strain term. In Bathe’s formulation, the variation of the linear portion
of the incremental strain plus an initial displacement effect is considered, while in
the B-notation the full strain is used. This difference may be more readily

apparent if the finite element form of the internal force vector is given in Bathe’s

notation

[ ][, §4BL7 {45 v, (3-78)
where

4By = §+%Byy + §74'Bn (3-79)

Nonlinear Plane Truss Formulation 69



By being the linear portion of the strain displacement matrix and By

representing the initial displacement matrix.

When comparing equation 3-78 to equation 3-63, the previously mentioned
difference in the internal force vector can be seen. This discrepancy in internal
force vector composition may prove important since "in an incremental procedure
with iteration over unbalanced loads only the accuracy of internal force evaluation
is of importance for the accuracy of the final solution (Osterrieder and Ramm,
1987).” Thus the effect of the varying internal force vector composition on the
accuracy of the solution obtained from the nonlinear finite element analysis must
be investigated. This difference is rooted in the fact that differing forms of the
variation in the Green-Lagrange strain are used. In the case of Zienkiewicz’s

formulation, the total variational term is given as

be = be + én /} B , . ' (3-80)

s Cntlaant & T T e ]

Sl P

~ It . 3 R -

/

In the case of Bathe’s formulation, the incremental variational term is of the form

/ 47[4?/ |(neowi2-€—

6e=6el/ (3-81
0 0

The variational term presented by Zienkiewicz is the the exact form. The form

—T
é ok | 4het

Nonlinear Plane Truss Formulation 70



given by Bathe is an approximation. In chapter 6 of this thesis this difference is

shown to be insignificant when we consider the small displacements that occur in

the increment.
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Chapter 4
The Geometrically Nonlinear Plane Frame Element

4.1 Introduction

Due to the complexity involved in performing the mathematical operations
necessary for the formulation of the geometrically nonlinear Bernoulli-Euler plane
frame element, the program MACSYMAV was used. MACSYMA is a symbolic
mathematics package which can perform many of the tedious mathematical

operations arising in a formulation of this type.

The formulation of this element, carried out in the B-notation, is given in

‘the following sections.

4.2 The Strain-displacement Relationship

The source of the nonlinearity in this element can be traced back to the
Green-Lagrange strain-displacement relationship given approximately in the index

notation as
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G = Uie  Y(Ves) * 3 (Yaa) (1)

The nonlinear dependence on displacements can be seen in equation 4-1. The

approximation mentioned earlier is due to the fact that the term % (1 ,)2 is
b

neglected. This is a valid approximation except in cases of very large axial

deformations.

4.3 Interpolation

A combination of linear Lagrangian and cubic Hermitian interpolation
polynomials (Holzer 1990) is used in the formulation of this element and is given

below as

Ny = 3(1-¢) (4-2)
Ny, = 12+9@-¢7 (4-3)
Ny = £1+6)@1-¢f (4-4)
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N, = %(1 3 (4-5)
Ny = §(2-91+¢F (+6)
Ng = §(6-1)(+¢f (+7)

The linear Lagrangian interpolation polynomials are used for coordinate

interpolation expressed as
2 = Y N-:z:i7 (4-8)

where 1, represents the nodal coordinates. For displacements, the linear
Lagrangian and cubic Hermitian interpolation polynomials are used for the axial
degrees of freedom while the cubic Hermitian interpolation polynomials are used
for the transverse degrees of freedom. Based on this, the displacements may be

expressed as
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u = z; N; u’f (4-10)
=
and
§ k

i=1

The previously mentioned quantities appearing in equations 4-8 to 4-11 may be
observed in Fig. 4-1. Focusing on displacements, the displacement field of the

plane frame can be given as

ON, 0N, ONy 8N .

-3V - Y “SE Y CFE Y ||
_ T3 ¢ o€ 3 3 (4-11)

Uy 0 N, Ng 0 N; Ng u?
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where the vector of u’s corresponds to the local element nodal displacement
vector. The result of the matrix operation in equation 4-11 is the vector
composed of the horizontal displacement u; and the vertical displacement u, (see
Fig. 4-1). In order to accommodate mapping between the parent element and the
finite element, and vice versa, it is necessary to evaluate the determinant of the
Jacobian matrix. In the case of the nonlinear Bernoulli-Euler plane frame element

this determinant has the form

= £ (4-12)
thus,
dz = £d¢ (4-13)

This was shown to be the case for the plane truss element in the previous chapter.

The same presentation is also valid in the case of the Bernoulli-Euler plane frame.
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4.4 The Strain-displacement Matrices

Based on the foregoing presentation, the Green-Lagrange strain-

displacement relationship may be presented in discretized matrix form suitable for

use with the nodal displacement vector. These strain-displacement matrices may

be given in terms of various other sub-matrices to be presented below. The first

of these sub-matrices to be presented is the matrix of Cartesian derivatives of

interpolation functions known as the G matrix. In the case of the nonlinear plane

frame element, this matrix has the form

%9% 0 0
G = o 29Ny 20N
Lot L o¢
0 4 N, 4 &N,
L2 8¢2  L[* 5¢?

Nonlinear Plane Frame

Z 3_1%4_ 0 0
0 g 0Ny 2 9Ng
Lot L 5¢
0 4 0*Ny 4 8*Ng
L% 92 L pe?
(4-14)
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The vector of displacement gradients @ is given as

i N N i
g 0Ny, | 20N,
) ;T30 W A T
ON ON ON ON
6=| Pgth+igthtigs 5+ —eds (4-15)
2 2 2
42 4 =, 4 £ 78
o2 2T 22 T2 ag ot 12 o8 °

The last of the sub-matrices to be presented is the H matrix. Its form is given by

Rajasekaran (1973) as

[0 0 o
H=|0 1 0 (4-16)
0 0 0

Based on the sub-matrices presented above, the strain-displacement matrices can

now be constructed.

The first strain-displacement matrix considered is the By matrix. This
matrix is used to construct the first term of the Green-Lagrange strain

displacement relationship given in equation 4-1. This term is known as the

Nonlinear Plane Frame 79



engineering strain and as such has only linear dependence on displacements and

can be given in terms of the interpolation polynomials as

0 Lag 120¢ 1252 LAt L23¢ 1o

(4-17)

The second strain-displacement matrix is responsible for constructing the portion
of the Green-Lagrange strain which is quadratically dependent on displacements.
This matrix may be constructed, according to Wood and Schrefler (1978), by
using equations 4-14 through 4-16 as

B,=0TH G (4-18)

This may be re-expressed as

_ 2 ON 9 ON3 2 2
Bo=| o 35%e 35Re o 15¢% 1‘3—5‘92]
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The two strain-displacement matrices given in equations 4-17 and 4-19 can be
combined in the following manner to obtain the discretized form of the Green-

Lagrange strain tensor as
¢ = (Bo+$ByL) u (4-20)
The variation of the Green-Lagrange strain tensor may be expressed as
S¢g = (By+ Bp) u (421)

4.5 The Internal Force Vector

The above matrices can be used in the finite element equilibrium equation

given in the B-notation as

6uT/// 0, BTo a% - TR =0 (4-22)
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where

B = (By+ Bp) (4-23)

and the vector R is a vector of equivalent nodal forces corresponding to externally
applied tractions and body forces. Equation 4-22 may be further expanded to

obtain the finite element equilibrium equation in the form of

T T T T
su” [[[o, BS"DBy + B,"DBy+ } B,"D By

+4B, DB &% w - &R =0 (4-24)

The 1ntegrand o£ gqua.txon 4-24 produces the unsymmetric form of the secant
stlffness ma,tnx as ngen by Wood and Schrefler (1978). This secant stlffness

matnx, when multlplled by the nodal displacement vector, yields the element
internal force vector. The internal force vector plays the key role in the solution
of the nonlinear finite element equations. Also figuring prominently in the

nonlinear solution process are the tangent stiffness matrices.
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4.6 The Tangent Stiffness Matrix

In the case of the nonlinear plane frame element formulation given here,
only the linear portion and the initial stress portion of the incremental stiffness
matrix are included in the tangent stiffness matrix. The linear portion of the
tangent stiffness matrix, often referred to as K, is the stiffness matrix which is
commonly used in linear analysis. The familiar form of the matrix can be seen

below:

0 12 6L 0 -12 6L
0 6L 4I2 o -6L 2I?
Ko - 8 (4-25)
0 -12 6L 0 12 -6L

0 6L 212 o0 -6L 4I?
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where

EI _
L

2
a=8 , p=4f

with E being the modulus of elasticity, A being the cross-sectional area, and I
being the moment of inertia of the section. Similar to K|, the initial stress

matrix K, can be given as

(=
(=]
(=4
(=}
(==
o

6 L 6 L

0 5 @ 0 -5 15

o L 22 o L L

P 0 15 0 "%

K, = 1 (4-26)

0 0 0 0 0 0

6 L 6 L

0 -5 79 9 35 -1

o L L2 o .L 21

10 30 10 15
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where P is the axial force in the frame element given by

Nonlinear Plane Frame

(4-27)
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Chapter 5
The Computer Programs

5.1 Introduction

The programs described in this chapter are the ones used for the
implementation and comparison of the two nonlinear plane truss formulations
presented in previous chapters. Both programs are written in the Fortran-77

programming language using double precision.

5.2 Program Development

The two programs given here are modifications to the programs given by
Sunku (1991) and Ahmed (1988). The tree charts of the program structure, given
in Fig. 5-1 and 5-2, denote the modified subroutines by cross-hatching. Similarly

N-S diagrams and verbal descriptions are also given for the affected subroutines.
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5.3 Subroutines

The subroutine INTERF computes the internal forces for the
unconstrained global degrees of freedom of each element in the new configuration.
This routine was modified in order that the comparison of the two truss
formulations could be made. The NS-diagrams of Figures 5-3 and 5-4 give an
overview of the differences in implementation while Appendices A and B present

the actual Fortran code.
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D0 FOR Il = 14

ZZzqi = 00

AMACLID = 020

DD FOR O = L4

J = MCODECILD

IF () NE O
THEN ELSE

Z22aD = XJ

2221 = 27X

2272 = 222>

2223 = 2224

2224 = 2228

AAM(D = CLSMIRZZZ1+CIXIZZ72

AANPR) = -C2SInZZZ1+CIS(IMZ228

AAMA(I) = CISKDMZZZI+C2S(INZZZ4

AM(L) = ~C2S)2223+CISAInTZZ4

AML = AL

AM2 = AANDY

AAAI = AAA(D)

AMAE = AAMO

FL1 = -50D-1s(2ODOMAAA3-2.0DORAAAL MAREA(DEL ENG
@run+(ANALnx2-2 ODOMAAAZ RAAA4 + 30DORAAA I RN
2-CODOBAAALKAAAI+AAAREND + 2.0IONAAAIREDN
AREACDMELENG(DC(AAAS~1.0D0SAAAL IAAA 4 3024
ZODOSAAAISAAAL -2 A DOSAAALEAAAD BAM 4 +AAAS
XX3-30DOSAAAIEAAA TN 4 CAAASK IR+ 3. 0DORAAAL

WA2)NAAAI-10DONAAAIRAAAZINR - LODORAAA] 13>
wAREA(DY¥EMIDA) /ELENGS)mn3

FL2 = ¢-S0D-1((2.0DORAAA3 -2 0DOSAAALAAA4 -2.0D0
NAAAZIAAA G +2 DDOSAAALEAAAL) XAREACHRELENGA)
+(AAAAREI- I, 0DORAASIAAA 4 X B2 +AAA IR X2 -2 0D
HAAAIRAAAD+D.ODORAAAR R E + AMIIEXNAAA 4 ~1,.0DO
RAAEEAM 3un2 +2.0D0RAAAI XAAAZX AAA 3-1.0D0w
AAANIG-10DORAAAL N RERAAAR M AREA(IDIEMIDD
ZELENGCI™®3)u-1.0D00

FL3 = S0D-1%(@.0D0NAAAI-2.0DONAAD SARE ADDXELENG
(D24 (AAAIRR =2 ODOSAAASRAAA 4 +2.0DORAAAS
nuP—6.0DONAAIZAA I +AAAZIR + 3 0D(mAAAL 2N L)
MAREACTIRELENGQ)+(CAAATS-1.000MAAA LSAA 4 N N2
+(20D0O%AAALSAAA2 -2.0DORAAAZHAAAI ) SAAALS
cwo- 3=-34DOAAAI S AAATIINR + CAAA2E224-3.0D0

AAATIKDNAAAT - 1. DOXAAAI SAAA2XI2-10DINAAAL
IIDINEAG))IENDD(I)/ELENRDIIJ

L4 = (s.cn-1-<«a.uno-ms-z.omnm1)naut-zm-
AAIAAAT +2.0D0RAAA I RAAAISARE ADMELENG(D
o(mmo-anmaz-m-zumane-anm
RAMISAA3+30DOmAAAR N2 vAAA IR )AAAL—-10DD
NAASRAAASIN2+ 2 S DORAAAINAAAR RAAAS-LODON
AAADIN 31, 0DORAAAZ R 31 ODONAAALREERAAAZIM
AREACI™ENOIXD/EL ENG(Dwas3 - L.0D0

DO FOR L = L4

X = MCODELD
F KN O

THEN ELSE |
IFL=

1] FOO = CIKIMFLI-C2S(DRFL24F(K)

2| Fuo = CESMNFLILCIKIMFLRY )

3| FAO = CISAINFLI-CZSMDEFLA+FAO

4| FOO = C2S(DMLISCISDIFLAFIO

Figure (5-3> NS-Diagram of INTERF Subroutine Using the B-notation
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GAM=DASIN <C2S(I*CI<D-C1SCIy*C2¢I)
DO FOR III = 14
ZZZ(III) = 0.D0
AAA(IID = 0.D0
DO FOR II = 14
J = MCODE(ILD
IF (U NE, ®

THEN ELSE
22ZA0 = KD

DDIXID> = DIXJ)

DD1 = CIS(I>%xDDDC1)+C2S(I>=DDD(2)

DD3 = C1SCDH*DDD(3)+C2SCD=DDD(4)
DD4 = -C2S(IHxDDIC+CIS(DHXDDDC4>
DD2 = -C2S(D»DDIX1)+C1SC)Y*DDD(2)

STRESCD> = (<~1.D0*DCOSCGAM)*DD1-DSIN(GAM>»*DD2+DCOS
(GAM)®DD3+DSIN(GAM>®DD4)/ELENGCI)+0.5D0x
((CDD3-DD1)/ELENGCD )%x2+(CDD4-DD2)/
ELENG(D)»x2)>%EMODCD

STRESS(ID = STRESS(+STRESCD

FL1 = -AREACD®STRESSCD%DCOS(GAM
FL2 = -AREACD®STRESS<D>*DSIN(GAM)
FL3 = AREACDXSTRESSCIDXDCOSCGAM)

FL4 = AREACDXSTRESSCD®DSIN(GAM)
DO FOR L = L4

K = MCODE(LD
IF <K .NE D

THEN ELSE
IFL=

1] F(K = CIS(DRFLI-C2SDI%FL2+FCKD

2] F&K = C2S(DEFLI+CISCHXFL2+FCK

3| F& = CISKDXFLI-C2SMMFLA+FUO

41 FUO = C2SCHMFLI+CISMOMFL4+FAO

Figure (5-4) | NS-Diagram of INTERF Subroutine using Bathe’s Notati
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Chapter 6
Test Problems and Results

6.1 Introduction

Five test cases were evaluated to compare the numerical solutions of the
two nonlinear plane truss formulations presented earlier. As a standard for
comparison, the test problems were also analyzed with ABAQUS. The
Newton/Raphson method was used by ABAQUS and the two programs as the
nonlinear solution algorithm. The same load steps and force tolerance were also
used for comparing each test case. For the first three test cases exact solutions
were obtained and plotted with the results from ABAQUS and the two programs.
The results of the exact solutions are plotted in two curves. One giving the

solution with the element cross-sectional area assumed constant,

Vw? + L2 ] Nw-v? + L2

‘l 2 2

and the other giving the solution when the element volume is held constant.

_ BAyawv) (Vo2 - Ywok + I7)
- w-v? + L2

P (6-2)
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where P is the load applied to the central node, E is 29500 ksi, A is the original
cross-sectional area, w is the height of the truss arch, v is the vertical downward

deflection of the central node, and L is the span of the truss arch.

6.2 Test Case 1

The first test structure evaluated is the truss arch given in Fig. 6-1. The
arch consists of two elements and three nodes. The base nodes are pinned. A
single load, designated as P, of 16 kips is incrementally applied to the central
node of the structure. The critical load for this structure was determined by
ABAQUS to be 16.78 kips. The height of the structure, as seen in Fig 6-1, is 8
inches and the span is 240 inches. Each member has a cross-sectional area of 5
square inches. The material used for each member is steel, thus a modulus of

elasticity of 29,500 ksi was used.

The test case was run on ABAQUS and both programs. Similarly, two
exact solutions are also given in this plot. One of these solutions assumes the
cross-sectional area to remain unchanged during the deformation while the other
solution assumes constant volume of the element but allows for the cross-sectional
area to change. The results of these runs are plotted in Fig. 6-2. Increasing load
increments are plotted against vertical downward displacement of the central node
in this figure. The results are that no significant difference can be seen in the

solution accuracy of the three runs of this test case.
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Truss Arch Test Problem

Test Case 1

height=8" span=240"
20 T T T T |

Load (kips)
o
I

ABAQUS
Zienkiewicz’s Formulation
Bathe’s Formulation

Exact solution with const. A
Exact solution with const. V
| | | |

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0O 4 q ¢ O

Deflection (in.)

Figure (6-2) Test Case 1 Equilibrium Paths
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6.3 Test Case 2

The same structure described in Test Case 1 is modified for this case. The
height was increased to 12 inches but the span remained unchanged (see Fig. 6-3).
The load P, incrementally imposed on the central node, is increased so as to
ultimately attain 55 kips. The critical load of this structure was determined by
ABAQUS to be 55.56 kips.

The test case was run on ABAQUS and both programs. The results of
these runs and the results of the exact solutions are plotted in Fig. 6-4. Increasing
load increments are plotted against vertical downward displacement of the central
node in this figure. The results are that no significant difference can be seen in

the solution accuracy of the three runs of this test case.
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Truss Arch Test Problem

Test Case 2
height=12" span=240"
60 T T 1 |
50 .
40 —
)
e
e
~ 30 } -
©
O
o
|
20 + —
o ABAQUS
¢ Zienkiewicz’'s Formulation
10 v Bathe’s Formulation m
v Exact solution with const. A
o Exact solution with const. v
O | i | 1
0 1 2 3 4 5

Deflection (in.)

Figure (6—4) Test Case 2 Equilibrium Paths
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6.4 Test Case 3

Once again the structure in Test Case 1 is modified. All parameters
remained unchanged from Test Case 1 except the height. This is increased to 20
inches (see Fig. 6-5). The incremental load P, applied to the central node, was
changed so as to attain a final 245 kip value. The critical load of this structure
was determined by ABAQUS to be 247 kips.

The test case was run on ABAQUS and both programs. The results of
these runs and the results of the exact solutions are plotted in Fig. 6-6. Increasing
load increments are plotted against vertical downward displacement of the central
node in this figure. The results are that minute differences between the results of
ABAQUS and the two programs can be seen. This discrepancy between
ABAQUS and the two programs seems to manifest itself more in the upper region
of the equilibrium paths near the limit point. In a structure this steep a large
amount of strain will be present in the equilibrium configurations of the structure
corresponding to this region in the plots. This point is significant since ABAQUS
uses the log strain while both programs use the Green-Lagrange strain. The two
strain measures agree in cases of small strain, but tend to disagree as the strains
become large this point was previously addressed in chapter 2. The results from

the two programs compare well with each other.
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Truss Arch Test Problem

Test Case 3
height=20" span=240"
300 T T T T T T
250 + -
200 —
)
o
4
~ 150 —
©
O
(@)
—
100 + —
o ABAQUS
e Zienkiewicz’s Formulation
S0 v Bathe's Formulation ]
v Exact solution with const. A
o Exact solution with const. V
O | i | | {

0 1 2 3 4 S 6 7

Deflection (in.)

Figure (6—6) Test Case 3 Equilibrium Paths

Test Problems 101



6.5 Test Case 4

The fourth test case evaluated is a plane circular lattice arch. It consists of
20 elements and 12 nodes. The two base nodes are pinned. Identical vertical
downward loads, P, of 200 kips are incrementally imposed at each unconstrained
top chord node. A critical load of 204 kips was given by ABAQUS for this load
distribution. The height of the structure, as given in Fig. 6-7, is 14 feet and it has
a span of 28 feet. Each element has a cross-sectional area of 5 square inches.
Each element is constructed out of steel, thus a modulus of elasticity of 29,500 ksi

is used.

The results of the evaluation of this test problem with ABAQUS and the
two programs are given in Fig. 6-8. This figure shows a plot of increasing load
increments versus vertical downward displacement of the central node. No

significant differences between the three curves can be discerned.

6.6 Test Case 5

The fifth test case evaluated is a shallow plane circular lattice arch. It
consists of 37 elements and 20 nodes. Identical vertical downward loads,P , of 230
kips are imposed at each unconstrained top chord node. A critical load of 232
kips was given by ABAQUS for this load distribution. The height of the
structure, as displayed in Fig. 6-9, is 4 feet and it has a span of 28 feet. Each
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250

Lattice Arch Test Problem

Test Case 4
height=14" span=28’

200 +

150 +

Load (kips)

100 +

30 +

P U U W W T T W S NN NS S G S
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e Zienkiewicz's Formulation
+ Bathe’s Formulation
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0.0

Figure (6-8)
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Test Case 4 Equilibrium Paths
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Lattice Arch Test Problem

Test Case 5
height=4’ span=28’
250
200 —+
_. 150 +
wn
RS i
=
©
O
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- 100 4+
o ABAQUS
e Zienkiewicz's Formulation
50 - » Bathe’s Formulation
0
0.0 0.1 0.2 0.3 0.4 0.5

Deflection (ft.)

Figure (6—10) Test Case 5 Equilibrium Paths
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structural member has a cross-sectional area of 5 square inches. The truss is

constructed out of steel, thus a modulus of elasticity of 29,500 ksi is used.

The results of the analysis of this test problem with ABAQUS and the two
programs are given in Fig. 6-10. This figure displays a plot of increasing load
increments versus vertical downward displacement of the central node. A
discrepancy between the results of ABAQUS and the two programs is noted in the

region of the equilibrium paths near the limit point.

6.7 Test Case 6

The following two test cases are not given to compare Zienkiewicz’s
formulation to that of Bathe’s. The purpose of these test cases is to compare the
results of a geometrically nonlinear finite element program using the formulation
of the nonlinear frame element given in chapter 4 with the B23 element of
ABAQUS. Test case 6 is a toggle frame of span 25.886” and height .320” (as
shown in Fig. 6-11). A concentrated load, P, of 80 pounds is applied
incrementally to the central node. The end nodes of the structure are clamped.
The dimensions of the elements are .753” by .243” thus the cross-sectional area is
.182979 in.2 and the moment of inertia is .0009003941 in4  The modulus of

elasticity is 10.3x108 p-s.d.

The results of the evaluation of this test problem with ABAQUS and the

program is given in Fig. 6-12. This figure shows a plot, based on the convergent
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Toggle Frame Test Problem

Test Case 6
height=.320" span=25.886"
100 | i 1 | | [

80 + —
© 60 F _
[

3
o
e
kS
S 40 + .
.
20 | -
o ABAQUS
e Zienkiewicz's Formulation
O | | 1 | 1 |

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Deflection (in.)

Figure (6—12) Test Case 6 Equilibrium Paths
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solutions of ABAQUS and the program, of increasing load increments versus

vertical downward displacement of the central node. The results compare well.

6.8 Test Case 7

Test case 7 is a continuous arch of span 40” and height 4” (as defined in
Fig. 6-13). A distributed load, P, of 700 pounds per inch is incrementally applied
to the structure. The end nodes are clamped. The dimensions of the element

cross sections are 1 by 1. The modulus of elasticity used is 1x107 p.s.i.

The results of the evaluation of this test problem with ABAQUS and the
program are given in Fig. 6-14. This figure shows a plot of increasing load
increments versus vertical downward displacement of the central node. The

results show a good comparison between the formulation of chapter 4 and

ABAQUS.
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Continuous Arch Test Problem

Test Case 7
height=4" span=40" radius=52"
800 T T T T T
600 | -
)
O
C
3
& 400 F .
©
@]
(o]
—
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¢ Zienkiewicz's Formulation
O | | | | |

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Deflection (in.)

Figure (6—14) Test Case 7 Equilibrium Paths
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Chapter 7
Conclusions and Recommendations

7.1 Conclusions

In this thesis the continuum mechanics based incremental nonlinear finite
element formulations of Zienkiewicz and Bathe were presented and applied to the
nonlinear plane truss formulation. The two subsequent formulations of this
element were implemented into two geometrically nonlinear finite element

programs.

Five test problems were then analyzed with the two programs and
ABAQUS. The outcome of these test cases was that no significant difference in
solution could be discerned between ABAQUS and the two programs except in
instances of very large strain. In such cases ABAQUS provided a stiffer response
due to its use of log strain as opposed to the Green-Lagrange strain which was

used in the programs.

Upon examining the formulations it was seen that Bathe’s formulation
contains an approximation in the internal force vector whereas Zienkiewicz’s
formulation does not. Bathe’s approximation is acceptable as long as the

displacement increments remain small. This conclusion is supported by the
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results obtained from the analysis of the test cases presented in chapter 6

7.2 Recommendations

For further study on this topic the following recommendations are

submitted.

1. Use the Riks/Wempner algorithm to trace the equilibrium paths of the test
structures beyond the first limit point to check solution agreement between the

two formulations and ABAQUS.

2. Use the B-notation and the notation of Bathe to formulate the Bernoulli-Euler
2-D beam element. Implement these two formulations into programs and
compare analysis results against similar tests done on ABAQUS using the B23

element.
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C NONLINEAR ANALYSIS Oi‘ SPACE TRUSSES *

C *

C NEWTON-RAPHSON METHOD AND RIKS-WEMPNER METHOD *
(O T L - % *

Cx INPUT DATA *

L0 e e T
LIST-DIRECTED INPUT:
INPUT UNITS: KIP, INCH, RADIAN, FAHRENHEIT

1. ENTER DATE IN THE FORM 01/14/91 (IN MAIN)
DATE

2. ENTER THE METHOD TO BE USED (IN MAIN)
NEWTON-RAPHSON: 1 RIKS-WEMPNER: 2
METHOD

3. ENTER NUMBER OF ELEMENTS AND NUMBER OF JOINTS (IN MAIN)
NE, NJ

4. ENTER MEMBER INCIDENCES (IN STRUCT)
MINC(1,I), MINC(2,]) 1=1,NE

5. ENTER FOR EACH JOINT CONSTRAINT (IN STRUCT)
JNUM, JDIR
AFTER LAST JOINT CONSTRAINT ENTER
0,0

6. ENTER JOINT COORDINATES FOR EACH JOINT(IN PROP)
X(1,9), X(2J), X(3J) I=1,NJ

7. ENTER MEMBER PROPERTIES CROSS SECTIONAL AREA
AND ELASTIC MODULUS FOR EACH MEMBER (IN PROP)
AREA(I), EMOD(I) 1=1,NE

8. IF THERE ARE JOINT LOADS ENTER (IN JLOAD)
JNUM, IDIR, FORCE
AFTER LAST JOINT LOAD ENTER
0,0,0
ELSE ENTER
0,0,0
END IF

9. ENTER THE MAXIMUM VALUE OF LAMBDA, INITIAL VALUE OF LAMBDA
AND THE INCREMENT IN LAMBDA (IN MAIN)
QIMAX, QI, DQI

10. ENTER THE NUMBER OF ITERATIONS FOR UPDATING STIFFNESS MATRIX,
MAXIMUM AND DESIRED NUMBER OF ITERATIONS (IN MAIN)
ITENUM, ITEMAX, ITEDES
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11. ENTER THE TOLERANCES IN DISPLACEMENT, AND FORCE (IN MAIN) )
TOLDIS, TOLFOR

BE PRINTED AFTER EACH LOAD INCREMENT (IN RESULT)

C
C
C
C
C 12. ENTER THE DOF FOR WHICH DISPLACEMENT AND LAMBDA VALUES ARE
T
C
C END WITH 0

Crxxxxx Fkkkkk o e ok ool ek o o ok ok ok o Rk ko k

Cs MAIN PROGRAM *

Crsrxexs T * wokdkk kR k Rk Rk *

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DOUBLE PRECISION TIMEA, TIMEB, DTIME

CHARACTER«(x) TITLE, UNITS, DATEx8, FNAME+12
PARAMETER (LIM = 100000, TITLE = 'PLANE TRUSS ANALYSIS’,
$ UNITS = 'UNITS: KIP, INCH, RADIAN, FAHRENHEIT")
DIMENSION A(LIM),IA(LIM)

RESERVE MEMORY; READ AND ECHO NE, NJ; SET POINTERS FOR DATA
ARRAYS; IF MEMORY IS ADEQUATE CALL STRUCT, ELSE SEND MESSAGE AND
STOP; SET POINTERS FOR SOLUTION ARRAYS; IF MEMORY IS ADEQUATE,
CALL LOAD. THEN CALL NEWRAP OR RIKWEM

OPEN DATA FILES: sxssxs2%+ FOR PC ONLY ##%#%#+
WRITE(6,+) INPUT DATA FILE:’
READ(*,’(A)’) FNAME

+«xx OPEN(5,FILE = FNAME)

+»+ OPEN(7,FILE = 'RW.OUT’, STATUS = "UNKNOWN?’)

olololoNoNoXoNoNoNoNoNoXoXo]

READ(5,(A)") DATE
WRITE(6,5) TITLE,’(EARLS, 1992)’,
$’DATE: ’,DATE,UNITS
5 FORMAT(1',T5,73(’+")/T5,'+",T32,A,T77,"’/T5,’+’,T35,A,T77,’’/
$ T5,73(’+")//T64,2(A)///T5,A)
READ(5,+)METHOD
READ(5,+) NE, NJ
WRITE(6,15) 'CONTROL VARIABLES?,
$ 'NUMBER OF ELEMENTS’,NE,'NUMBER OF JOINTS’,NJ
15 FORMAT(///T5,A/2(T5,A,T30,14/))
C

C— SET POINTERS FOR DATA ARRAYS (IN STRUCT):
C

NP=1

NAREA=NP+3+NJ

NEMOD=NAREA+NE

NELENG=NEMOD+NE

NC1=NELENG+NE
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NC2=NCI1+NE
NC3=NC2+NE
NMCODE=NC3+NE
NJCODE=NMCODE+6+NE
NMINC=NJCODE+3+NJ
NMAXA=NMINC+2¢NE
C TEMPORARILY LET NEQ=3+NJ TO SET POINTERS FOR NKHT AND MAX
NEQ=3+NJ
NKHT=NMAXA-+(NEQ+1)
MAX=NKHT+NEQ-1
C
C— IF MEMORY IS ADEQUATE CALL STRUCT, ELSE SEND MESSAGE AND STOP.
C
IF(MAX .LE. LIM) THEN
CALL STRUCT(A(NP),A(NAREA),A(NEMOD),A(NELENG),
$ A(NC1),A(NC2),A(NC3),JA(NMAXA),IA(NKHT),
$ IA(NMCODE),IA(NJCODE),IA(NMINC),NE,NJ,NEQ,LSS)
C
C— SET POINTERS FOR SOLUTION ARRAYS (IN LOAD AND NEWRAP OR RIKWEM)
C
C-—- TEMPORARILY SET LSS=NEQ
C LSS = NEQ
C
NF=NKHT+NEQ
NSS=NF+NEQ
NQ=NSS+LSS
NQT=NQ+NEQ
NR=NQT+NEQ
NFP=NR+NEQ
ND=NFP+NEQ
NDD=ND+NEQ
NDDO=NDD+NEQ
NDD01=NDDO+NEQ
NDD1=NDD01+NEQ
NDD2=NDD1+NEQ
NDDP=NDD2+NEQ
NFPI=NDDP+NEQ
NDEFLN=NFPI+NEQ
NELONG=NDEFLN+NE
NTT=NELONG+NE
MAX=NTT+NEQ-1
C
C— IF MEMORY IS ADEQUATE CALL FOR EACH LOAD CONDITION LOAD,
C NEWRAP OF RIKWEM.

C
IF(MAX .LE. LIM) THEN
CALL LOAD(A(NQ),JA(NJCODE),NEQ)
o
C— READ QIMAX, QI ,DQI
READ(5,+)QIMAX,QI,DQI
o
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WRITE(6,25) "QIMAX =, QIMAX," QI =’,QI,’ DQI = ’,DQI
25 FORMAT(/3(T10,A,F12.6/))
C
C— READ ITEUPD,ITEMAX,ITEDES

READ(5,x)ITENUM, ITEMAX, ITEDES

C
WRITE(6,+)’NUMBER OF ITERATIONS FOR UPDATING STIFFNESS’,
$ *MATRIX =’ JTEUPD
WRITE(6,+)’MAXIMUM NUMBER OF ITERATIONS IN EACH LOAD §’,
$ °TEP = 'ITEMAX
WRITE(6,+)’DESIRED NUMBER OF ITERATIONS IN EACH LOAD §’,
$ °TEP = 'ITEDES
C
C— READ TOLDIS,TOLFOR
READ(5,+)TOLDIS,TOLFOR
C
WRITE(6,35) "TOLERANCE IN DISPLACEMENT =, TOLDIS,
*TOLERANCE IN FORCE ="', TOLFOR
35 FORMAT(/2(T10,A,T45,F12.6/))
C
LSTEP = 1
C
C

C— INSERT CALL TO INITIALIZE SYSTEM TIMER HERE (FOR VM1)
CALL CPUTIME(TIMEA, IRCD_A)
C
IF(METHOD .EQ. 1)THEN
WRITE(6,40) ITERATIVE METHOD: NEWTON-RAPHSON *
40 FORMAT(T10,A)

CALL NEWRAP(A(ND),A(NDD),A(NQ),A(NQT),A(NTT),A(NSS),
A(NAREA),A(NEMOD),A(NELENG),A(NC1),
A(NC2),A(NC3),A(NELONG),A(NDEFLN),A(NF),
A(NFP),A(NR),A(NP),A(NDDO),A(NFPI),
IA(NMAXA),IA(NMCODE),IA(NJCODE),IA(NMINC),
INCONV,ITECNT,ITENUM,ITEUPD,ITEMAX,NE,NEQ,NJ,
LSS,QIMAX,QI,DQI, TOLDIS, TOLFOR,LSTEP,NFE)

R AR AR

ELSEIF(METHOD .EQ. 2)THEN
WRITE(6,50) ITERATIVE METHOD: MODIFIED RIKS/WEMPNER °
50 FORMAT(T10,A)

CALL RIKWEM(A(ND),A(NDD),A(NDDO),A(NDD01),A(NDD1),A(NDD2),
A(NDDP),A(NAREA),A(NEMOD),A(NELENG),
A(NC1),A(NC2),A(NC3),A(NQ),A(NQT),
A(NSS),A(NTT),A(NP),A(NELONG),A(NDEFLN),
A(NF),A(NFP),A(NFPI),A(NR),
IA(NJCODE),IA(NMAXA),IA(NMCODE),IA(NMINC),
IT,INCONV,ITECNT,ITENUM,ITEMAX,ITEUPD,ITEDES,
NE,NEQ,NJ,LSS,QIMAX,QIDQI,

TOLDIS, TOLFOR,LSTEP,NFE)

AR ANRANRANANAN
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ENDIF

ELSE
WRITE(6,’(T10,A/)’) "ERROR MESSAGE: INCREASE MEMORY’
END IF
ELSE
WRITE(6,(T10,A/)’) "ERROR MESSAGE: INCREASE MEMORY’
ENDIF

INSERT CALL TO RETURN EXECUTION TIME IN MICROSECONDS IN DTIME.

aaaa

CALL CPUTIME(TIMEB, IRCD_B)

IF(IRCD_A .NE. 8 .AND. IRCD_B .EQ. 0)THEN
DTIME = (TIMEB - TIMEA)

ENDIF

WRITE(7,+) * CPUTIME (MICROSECONDS) = *, DTIME
WRITE(7,+) * NFE =’ NFE
C
STOP
END
C******vv*v'vvv Kk * *% Aok ok a sk sk ok ok ke ok ok e o ok dk ok ko ok e sk sk ok sk ok
Cs STRUCT .
Crsxdrnrrrkkrnkkkkkhtk * SRR * okokk
SUBROUTINE STRUCT(X,AREA,EMOD,ELENG,C1,C2,C3,
$ MAXA,KHT,MCODE,JCODE,MINC,NE,NJ,NEQ,LSS)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION X(3,+),AREA(x),EMOD(+),ELENG(s),C1(),C2(+)
$ ,C3(+),MAXA(*),KHT(+), MCODE(6,+),JCODE(3,%), MINC(2,+)

READ AND ECHO THE MEMBER INCIDENCES, MINC(L,I); INITIALIZE THE
ELEMENTS OF THE JOINT CODE MATRIX, JCODE, TO UNITY, READ AND
ECHO FOR EACH JOINT CONSTRAINT THE JOINT NUMBER, JNUM, AND
JOINT DIRECTION, JDIR, AND STORE A ZERO IN THE CORRESPONDING
LOCATION OF JCODE (END OF DATA MARKER JNUM=0); CALL CODES,
SKYLIN, AND PROP.

oNoNoNoNoNoNeoKe!

WRITE(6,10) "MEMBER INCIDENCES’,’MEMBER’,’A-END’,’B-END’
10 FORMAT(///T10,A//T10,A,T17,A,T23,A/)
DO 30 I=1,NE
READ(5,+) MINC(1,I),MINC(2,1)
WRITE(6,20) I, MINC(1,1), MINC(2,I)
20 FORMAT(T11,13,T18,13,T24,13)
30 CONTINUE
C
DO 60 J=1,NJ
DO 50 L=1,2
JCODE(LJ)=1
50 CONTINUE
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60 CONTINUE
C
WRITE(6,70) *JOINT CONSTRAINTS’,"JOINT’,'DIRECTION’
70 FORMAT(///T10,A//T10,A,T17,A/)
READ(5,+) JNUM,JDIR
80 IF (JNUM.NE.0) THEN
WRITE(6,90) JNUM,JDIR
90 FORMAT(TS,13,T19,13)
JCODE(JDIR,JNUM)=0
READ(5,%) JNUM,JDIR
GO TO 80
END IF

CALL CODES(MCODE,JCODE,MINC,NE,NJ,NEQ)
CALL SKYLIN(KHT,MAXA,MCODE,NE,NEQ,LSS)

CALL PROP(X,AREA,EMOD,ELENG,C1,C2,C3,MINC,NE,NJ)

a a a @

RETURN
END
C********#***********#*t******************#*###***************#*********
Cs CODES .
C***#*****#* kxR kkkrrrkkkkEikgkkkkkkkkkkkE Fkakakakakokokokodkok ko kakkokokkokokkxk kg
SUBROUTINE CODES(MCODE JCODE,MINC,NE,NJ,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION MCODE(6,+),JCODE(3,+),MINC(2,+)

GENERATE JOINT CODE, JCODE, BY ASSIGNING INTEGERS IN SEQUENCE,

BY COLUMNS, TO ALL NONZERO ELEMENTS OF JCODE FROM 1 T0 NEQ;
GENERATE THE MEMBER CODE, MCODE, BY TRANSFERRING VIA MINC

COLUMNS

C OF JCODE INTO COLUMNS OF MCODE.

C

C GENERATE JCODE

C

aaaaa

NEQ=0
DO 20 J=1,NJ
DO 10 L=1,2
IF(JCODE(L,J).NE.0) THEN
NEQ=NEQ+1
JCODE(L,J)=NEQ
END IF
10 CONTINUE
20 CONTINUE
o
WRITE(6,+) 'NEQ = *, NEQ
C GENERATE MCODE
C
DO 40 I=1,NE
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I=MINC(1,])

K=MINC(2,I)

DO 30 L=1,2
MCODE(L,I)=JCODE(L,J)
MCODE(L+2,I)=JCODE(L,K)

30 CONTINUE
40 CONTINUE
C
C  WRITE(6,50)’MCODE(TRANSPOSED)’
C 50 FORMAT(/T10,A/)
C DO 60 I=1,NE
C  PRINTx,(MCODE(L,I),L=1,4)
C 60 CONTINUE

C
C
RETURN
END
va Rkkkkkkkkkkokkkkgkkkk *% ¥kkkkkkkkkikk *kkkkkkkk
Cs SKYLIN *
C***‘********** *¥k * *¥k ¥k Mok kokok ok dkok ok ok ko ok kK ok Rk ok ok o ok
C

C  SKYLIN DETERMINES KHT USING MCODE, AND DETERMINES MAXA FROM
KHT.
*
+ 1 HAVE MODIFIED SKYLIN SUCH THAT DOF IN EACH COLUMN OF MCODE
«+  NEED NOT BE ARRANGED IN INCREASING ORDER FROM TOP TO BOTTOM;
LE.,
* ELEMENTS NEED NOT BE DIRECTED FROM A LOWER TO A HIGHER
NUMBERED
+  JOINT(HOLZER 2/8/91).
C
SUBROUTINE SKYLIN(KHT,MAXA,MCODE,NE,NEQ,LSS)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION KHT(x),MAXA(+),MCODE(6,+)

C
p .
DO 10 I=1,NEQ
KHT(I)=0
10 CONTINUE
C
C GENERATE KHT
C
DO 30 I=1,NE
MIN=NEQ
DO 15 L=1,4
IF (MCODE(L,I) .GT. 0 .AND. MCODE(L,I) .LT. MIN) THEN
MIN=MCODE(L,I)
END IF
15 CONTINUE
C
DO 20 L=1,4

Appendix A 135



K=MCODE(L,I)
IF(K.NE.0) THEN
KHT(K)=MAXO0(KHT(K),(K-MIN))
ENDIF
20 CONTINUE
30 CONTINUE

* WRITE(6,100)

*= 100 FORMAT(//11X,I’,10X,’KHT(I)’,10X,"MAXA(I)’)

C

C GENERATE MAXA

C
MAXA(1)=1
DO 40 1=1,NEQ

* WRITE(6,200) LKHT(I), MAXA(I)

* 200 FORMAT(7X,15,9X,15,11X,I5)

MAXA(I+1)=MAXA(I)+KHT(I)+1
40 CONTINUE
LSS=MAXA(NEQ+1)-1
I=NEQ+1

* WRITE(6,300) I, MAXA(I),LSS

* 300 FORMAT(7X,15,25X,15//7X,’LSS = ,I5)

C

WRITE(6,*)’ LSS =, LSS

C
RETURN
END

Cartxsrs kdk ok kok Rk T

Cx PROP *

Crx» R kkkkkk * kkkkkkkkEk k¥
SUBROUTINE PROP(X,AREA,EMOD,ELENG,C1, C2 C3,MINC,NE,NJ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION X(3,+),AREA(*),EMOD(*),ELENG(*),C1(*),C2(*)
$ ,C3(*),MINC(2,)

READ AND ECHO JOINT COORDINATES, X(L,J); COMPUTE FOR EACH
ELEMENT BY THE LENGTH, ELENG(I), AND THE DIRECTION COSINES
C1(I), C2(I) & C3(I); READ FOR EACH ELEMENT THE CROSS SECTIONAL
AREA, AREA(I), THE MODULUS OF ELASTICITY, EMOD(I)

PRINT ELEMENT PROPERTIES.

ololoNoNoNoNoXo)

WRITE(6,10) *JOINT COORDINATES’,"JOINT’,'DIRECTION-1,
$ *DIRECTION-2’,"DIRECTION-3’
10 FORMAT(///T10,A//T10,A,T17,A,T30,A,T43,A)
DO 30 J=1,NJ
READ(5,+) X(1,3),X(2,3),X(3,9)
WRITE(6,20) J,X(1,3),X(2,3),X(3,9)
20 FORMAT(T9,I3,T18,F8.2,T31,F8.2,T44,F8.2)
30 CONTINUE
C
WRITE(6,40) 'ELEMENT PROPERTIES’,’ELASTIC’,
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$  ’ELEMENT’’AREA’’MODULUS’ ’LENGTH’
40 FORMAT(///T10,A//T39,A/T10,A,T19,A,T39,A,T62,A)
C

DO 60 I=1,NE
I=MINC(1,])
K=MINC(2,I)
EL1=X(1,K)-X(1,J)
EL2=X(2,K)-X(2J)
EL3=X(3,K)-X(3,J)
ELENG(I)=DSQRT(EL1++2+EL2++2+EL34+2)
C1(I)=EL1/ELENG(I)
C2(I)=EL2/ELENG(I)
C3(1)=EL3/ELENG(I)

READ(5,x) AREA(I),EMOD(I)
WRITE(6,50) I, AREA(I),EMOD(I),ELENG(I)
WRITE(7,+) 1, ELENG(I)
50 FORMAT(T12,13,T17,E9.3,T39,E9.3,T60,F8.3)
60 CONTINUE

C
RETURN
END
Crexskxsersk kkkEEEk wkkk kK kokk *% *%
Cx LOAD *
Cs Rk ok SRR RRREEEk EP— * **
SUBROUTINE LOAD(Q,JCODE,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION Q(#),JCODE(3,*)
C
C INITIALIZE TO ZERO THE JOINT LOAD VECTOR, Q.
C CALL JLOAD.
C
C
DO 20 K=1,NEQ
Q(K)=0.0
20 CONTINUE
C
CALL JLOAD(Q,JCODE)
C
RETURN
END
C---- kRkkkEkE ¥ *% * *
Cs JLOAD *
C-LA . - s e - - sl e

SUBROUTINE JLOAD(Q,JCODE)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION Q(+),JCODE(3,*)

READ THE JOINT NUMBER, JNUM, THE JOINT DIRECTION, JDIR, AND THE

C
C
C  APPLIED FORCE, FORCE; WHILE JNUM IS NOT EQUAL TO ZERO, PRINT JNUM,
C JDIR, FORCE,STORE FORCE IN Q, AND READ JNUM, JDIR, FORCE.
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C
READ(5,*) JNUM,JDIR,FORCE
IF(JNUM.NE.0) THEN
* WRITE(6,10) *JOINT LOADS’,’"GLOBAL’,’ JOINT’,’"DIRECTION’,’FORCE’
*+ 10 FORMAT(///T10,A/T10,11(>-")/T18,A/T10,A,T17,A,T35,A)
20 IF (JNUM.NE.0) THEN
* WRITE(6,30) INUM,JDIR,FORCE
* 30 FORMAT(T11,13,T21,11,T28,F15.8)
K=JCODE(JDIR,JNUM)
Q(K)=FORCE
READ(5,+¥) JINUM,JDIR,FORCE
GO TO 20
END IF
ELSE
WRITE(6,40) ’NO JOINT FORCES’
40 FORMAT(///T10,A)
ENDIF
C
RETURN
END
ey o S
Cx NEWRAP *
Carsrrarersekaress TR T TR A —
SUBROUTINE NEWRAP(D DD,Q,QT,TT,SS,AREA,EMOD,ELENG,C1,C2,C3,
ELONG,DEFLEN,F,FP,R,X,DDO,FPI,
MAXA,MCODE,JCODE,MINC,
INCONV,ITECNT,ITENUM,ITEUPD,ITEMAX,NE,NEQ,NJ,
LSS,QIMAX,QI,DQI, TOLDIS,TOLFOR,LSTEP,NFE)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION D(*),DD(*),Q(*),QT(*),TT(*),SS(*),AREA(x),EMOD(*),
$ ELENG(*),C1(#),C2(#),C3(*),ELONG(*),DEFLEN(x),F(*),
$ . FP(*),R(»),X(3,#),DDO(*),FPI(x),
$ MAXA(*),MCODE(6,*),JCODE(3,*),MINC(2,*),C15(40),C2S(40)
C

PN APHARASND

DO51=1,NE
C15(I)=C1(I)
C25(1)=C2(1)

5 CONTINUE
C

DO 101 = 1, NEQ
D(I) = 0.D0
DD(I) = 0.D0
F(I) = 0.D0
FP(I) = 0.D0
FPI(I) = 0.D0

10 CONTINUE
C
DO 151=1, NE
DEFLEN(I) = ELENG(I)
ELONG(I) = 0.D0
15 CONTINUE
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C

30 IF (QI .LE. QIMAX) THEN
C
DO 401 =1, NEQ
QT(I) = Q(I) » QI
40 CONTINUE
C
CALL NRITER(D,DD,Q,QT,TT,SS,AREA,EMOD,ELENG,C1,C2,C3,
$ ELONG,DEFLEN,F,FP,R,X,DDO,FP],
$ MAXA,MCODE,JCODE,MINC,
$ INCONV,ITECNT,ITENUM,ITEUPD,ITEMAX,NE,NEQ,NJ,
$ LSS,QIMAX,QI,DQI, TOLDIS, TOLFOR,NFE,C1S,C2S)
C
DO 601 =1, NEQ
FP(I) = F(l)
60  CONTINUE
C
IF (INCONV .NE. 0) THEN
WRITE(6,+)’s++++ERROR *s+++SOLUTION FAILS TO CONVERGE IN’,
$ * GIVEN NUMBER OF ITERATIONS’
STOP
ELSE
C CALL RESULT(D,MCODE,JCODE,MINC,NE,NJ,NEQ,LSTEP,QI)
WRITE(7,+) D(6),’,",Ql
C WRITE(+,+) D(4),",",QI
ENDIF
C
QI = QI + DQI
C
GO TO 30
ENDIF
C
RETURN
END
C*******#********i*‘ kkkkkk kkk¥k kR kk e kokkokkk
Cs NRITER .
C*******#** ******* * kkkkkkkkkkErkkkk ** *k¥
SUBROUTINE NRITER(D,DD,Q,QT,TT,SS,AREA,EMOD,ELENG,C1,C2,C3,
$ ELONG,DEFLEN,F,FP,R,X,DDO,FPI,
$ MAXA,MCODE,JCODE,MINC,
$ INCONV,ITECNT,ITENUM,ITEUPD,ITEMAX,NE,NEQ,NJ,
$ LSS,QIMAX,QI,DQI, TOLDIS, TOLFOR,NFE,C1S,C2S)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION D(s),DD(#),Q(+),QT(*),TT(+),SS(+), AREA(+), EMOD(s),
$ ELENG(),C1(*),C2(*),C3(*),ELONG(+), DEFLEN(#),F(+),
$ FP(+),R(+),X(3,+),DDO(),FPI(+),
$ MAXA(+),MCODE(6,*),JCODE(3,+),MINC(2,+),C15(40),C25(40)
o
C

CALL FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,MINC,
$ NE,NEQ,D,C1S5,C2S,DD)
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ITENUM = ITEUPD

ITECNT =1

INCONV =1
C
10 IF (INCONV .NE. 0 .AND. ITECNT .LE. ITEMAX) THEN
C

DO 151 = 1, NEQ
R(I) = QT(I) - F(I)
C  WRITE(+,+)'RES = ,R(l)
15 CONTINUE
C  WRITE(s) ’
C

IF (ITENUM .GE. ITEUPD) THEN
CALL STIFF(SS,AREA,EMOD,ELENG,C1,C2,C3,ELONG,DEFLEN,
$ MAXA,MCODE,NE,LSS)
ITENUM =0
ENDIF

DO 201 =1, NEQ
TT(1) = 0.D0
TT(I) = R(I)
0 CONTINUE

2
C

CALL SOLVE(SS,TT,MAXA,NEQ,1)
C  WRITE(#,+)'—",TT(1)
C

DO 401 = 1, NEQ
DD(I) = TT(I)
TT(I) = 0.D0
40 CONTINUE

IF (ITECNT .EQ. 1) THEN
DO 501 = 1, NEQ
DDO(I) = DD(I)
50  CONTINUE
ENDIF

DO 601 =1, NEQ
D(I) = D(I) + DD(I)
WRITE(#,*)’DISPLa##xx %%+’ ,D(I)
0 CONTINUE
WRITE(*,*)” °

QQaQ

CALL UPDATC(X,DD,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,JCODE,
$ NE,NJ,NEQ)

@]

CALL FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,MINC,
$ NE,NEQ,D,C1S,C2S,DD)

CALL TEST(D,DD,DDO,F,FP,FPL,QT,INCONV,NEQ,
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'8 TOLFOR,TOLDIS)

DO 801 = 1, NEQ
FPI(I) = F(I)
80  CONTINUE

ITECNT = ITECNT + 1
ITENUM = ITENUM + 1

GO TO 10

ENDIF
C

RETURN

END
O T e T T
Cx RIKWEM *
O P P T PP T T e T *

SUBROUTINE RIKWEM(D,DD,DDO,DD01,DD1,DD2,DDP,AREA,EMOD, ELENG
C1,C2,C3,Q,QT,SS, TT,X,ELONG,DEFLEN,F,FP,FPLR,
JCODE,MAXA,MCODE,MINC,
IT,INCONV,ITECNT,ITENUM,ITEMAX,ITEUPD,ITEDES,
NE,NEQ,NJ,LSS,QIMAX,QI,DQ]I,
TOLDIS,TOLFOR,LSTEP,NFE)

(-3 - - -

C
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C
DIMENSION D(#),DD(*),DDO(»),DD01(*),DD1(#),DD2(*),DDP(*),AREA(%),
$ EMOD(#),ELENG(*),C1(#),C2(*),C3(*),Q(*),QT(#),
$ SS(*),TT(*),X(3,#),ELONG(#),DEFLEN(%),
$ F(#),FP(%),FPI(*),R(*),
$ JCODE(3,*),MAXA(*),MCODE(6,+),MINC(2,+)
C :
C—- INITIALIZE THE VARIABLES D,DD,F,FP,FPI TO ZERO
C
DO 101 =1, NEQ
D(I) = 0.D0
DD(I) = 0.D0
F(I) = 0.D0
FP(I) = 0.DO
FPI(I) = 0.D0
10 CONTINUE
C
C-— INITIALIZE THE VARIABLES DEFLEN, ELONG
C
DO151=1,NE
DEFLEN(I) = ELENG(I)
ELONG(I) = 0.D0
15 CONTINUE
C
NFE=0
ITECNT =1
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C
20 IF (QI .LE. QIMAX .AND. ITECNT .LE. 50)THEN
C  WRITE(6,(T10,A,3X,F16.10)") 'QI = *,QI

C
C— COMPUTE THE TANGENT STIFFNESS MATRIX
C
CALL STIFF(SS,AREA,EMOD,ELENG,C1,C2,C3,ELONG,DEFLEN,
$ MAXA,MCODE,NE,LSS)
C
C--— COMPUTE THE FIRST TRIAL SOLUTION
C
DO 401 = 1, NEQ
TT(I) = 0.D0
TT(D) = Q(I)
40  CONTINUE
C
CALL SOLVE(SS,TT,MAXA,NEQ,1)
C
DO 501 =1, NEQ
DDOI(I) = TT(I)
TT(I) = 0.D0
50 CONTINUE
C

C-— COMPUTE THE ARC LENGTH FOR THE FIRST ITERATION
C FOR SUBSEQUENT ITERATIONS COMPUTE THE LOAD INCREMENT
C
IF(ITECNT .EQ. 1)THEN
DS=DQI+DSQRT(DOTPRD(DD01,DD01,NEQ)+1.D0)
DSMAX=DS+1.0D0
ELSE
DQI=DS/DSQRT(DOTPRD(DD01,DD01,NEQ)+1.D0)
TEMP=DQI+(DOTPRD(DD01,DDP,NEQ)+DQII)
IF(TEMP .GT. 0)THEN
SGN=1
ELSE
SGN=-1
ENDIF
DQI = SGN+«DQI
ENDIF

DQII = 0.0
DQI1 = DQI
DQII = DQII + DQI
c
C— COMPUTE THE INCREMENT IN DISPLACEMENT AND TOTAL DISPLACEMENT
C
DO 601 =1, NEQ
DDO(I) = DQI+DDO1(T)
D(I) = D(I) + DDO(I)
DDP(I) = DDO(I)
60 CONTINUE
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C
C-— INCREMENT THE LOAD PARAMETER
C
QI = QI + DQI
C  WRITE(6,+)’ QI QI
C-— UPDATE THE COORDINATES
CALL UPDATC(X,DDO,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,JCODE,
$ NE,NJ,NEQ)

@]

CALL FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,MINC,
$ NE,NEQ)

CALL SUBROUTINE TRLVCT

OTOO

CALL TRLVCT(D,DD,DDO,DD1,DD2,DDP,AREA,EMOD,ELENG,
C1,C2,C3,Q,QT,SS, TT,X,ELONG,DEFLEN,F,FP,FPLR,
JCODE,MAXA,MCODE,MINC,
IT,INCONV,ITECNT,ITENUM,ITEMAX,ITEUPD,NE,NEQ,
NJ,LSS,QIMAX,QI,DQI,TOLDIS, TOLFOR,DQI1,DQII,NFE)

- -3

Qa

DO 801 =1, NEQ
FP(I) = F(I)
CONTINUE

QO
(]

IF(INCONV .NE. 0)THEN
WRITE(6,#) *++++ ERROR *#x+ SOLUTION FAILS TO CONVERGE’,
$ * IN GIVEN NUMBER OF ITERATIONS’

STOP
ELSE
CALL RESULT(D,MCODE,JCODE,MINC,NE,NJ,NEQ,LSTEP,QI)
C
ENDIF
C
ITECNT = ITECNT + 1
o
C—COMPUTE THE SCALED ARC LENGTH
C
DS=DS+DSQRT((1.DO+ITEDES)/(1.D0+IT))
IF(DABS(DS) .GT. DSMAX)THEN
IF(DS .LT. 0)THEN
DS = -DSMAX
ELSE
DS = DSMAX
ENDIF
ENDIF
C
GO TO 20

ENDIF
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RETURN

END
Crrsrnrx *kkk T T T Tl it T
Cx TRLVCT *
Crrrssssrrehrhksbress * * SEREEERRE I

SUBROUTINE TRLVCT(D,DD,DDO,DD1,DD2,DDP,AREA,EMOD,ELENG,

$ C1,C2,C3,Q,QT,SS,TT,X,ELONG,DEFLEN,F,FP,FPLR,
$ JCODE,MAXA,MCODE,MINC,
$ IT,INCONV,ITECNT,JTENUM,ITEMAX,ITEUPD,NE,NEQ,
$ N3J,LSS,QIMAX,QI,DQIL TOLDIS, TOLFOR,
$ DQI1,DQIINFE)

C
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C
DIMENSION D(#),DD(#),DDO(),DD1(x),DD2(%),DDP(+),AREA(*),
$ EMOD(+),ELENG(#),C1(*),C2(*),C3(+),Q(+),QT(#),
$ SS(+),TT(*),X(3,%),ELONG(x),DEFLEN(x),
$ F(+),FP(),FPI(+),R(),
$ JCODE(3,+),MAXA(*),MCODE(6,*),MINC(2,%)

o

C
ITENUM = ITEUPD
IT =1
INCONV = 1

C

10 IF(INCONV .NE. 0 .AND. IT .LE. ITEMAX)THEN

C

C . WRITE(6,(T8,A,3X,13)") ITERATION °, IT

C

DO 151 = 1, NEQ
FPI(I) = F(I)
15 CONTINUE
C-— UPDATE THE LOAD VECTOR
DO 201 = 1, NEQ
QT(I) = Q(I) » QI
20 CONTINUE
C
C— COMPUTE UNBALANCED FORCES
C
DO 251 = 1, NEQ
R(I) = QT(I) - F(I)
25  CONTINUE
C
C— COMPUTE THE TANGENT STIFFNESS MATRIX
IF (ITENUM .GE. ITEUPD) THEN
CALL STIFF(SS,AREA,EMOD,ELENG,C1,C2,C3,ELONG,DEFLEN,
$ MAXA,MCODE,NE,LSS)
ITENUM = 0
ENDIF
C
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C---- SOLVE FOR DD1
DO 301=1, NEQ

TT(I) = 0.D0
TT(I) = Q(I)
30 CONTINUE
C
CALL SOLVE(SS,TT,MAXA,NEQ,1)
C
DO 401 = 1, NEQ
DDI(I) = TT(I)
TT(I) = 0.D0
40 CONTINUE
C

C— SOLVE FOR DD2
DO 501 =1, NEQ

TT(I) = 0.D0
© TT(I) = R(I)
50 CONTINUE
C
CALL SOLVE(SS, TT,MAXA,NEQ,2)
C
DO 601 =1, NEQ
DD2(I) = TT(I)
TT(I) = 0.D0
60 CONTINUE
C

C— COMPUTE THE INCREMENT IN LOAD PARAMETER
DQI = -(DOTPRD(DDO,DD2,NEQ))/(DOTPRD(DDO,DD1,NEQ)+DQI1)
DQII = DQII + DQI
QI = QI + DQI

DO 701 = 1, NEQ
DD(I) = DQI+DDI(I) + DD2(I)
D(I) = D(I) + DD(I)
DDP(I) = DDP(I) + DD(I)
70  CONTINUE
C
C WRITE(6,(T10,A,3X,F20.15)") *QI = *,QI
C WRITE(6,%(T10,A,2(5X,F20.15))’) °D1, D2*, D(1), D(2)
C
C— UPDATE THE JOINT COORDINATES
CALL UPDATC(X,DD,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,JCODE,
$ NE,NJ,NEQ)
C
C— COMPUTE THE INTERNAL FORCES
CALL FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,MINC,
$ NE,NEQ)
C
DO 80 I = 1, NEQ
C WRITE(6,+) 'FORCE = °, F(I)
80  CONTINUE
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C
C-— CHECK FOR CONVERGENCE
CALL TEST(D,DD,DDO,F,FP,FPL,QT,INCONV,NEQ,
$ TOLFOR, TOLDIS)
C
IT=IT +1
ITENUM = ITENUM + 1

GO TO 10
ENDIF
NFE = NFE+(IT-1)
WRITE(6,+) * NFE =, NFE
C
RETURN
END -
Crrasrkrssrtkirrsrkirkkikkhtiakkkkirkbkikrkkkkikkkk kb kkkk ks
Cx DOTPRD *
C P *kk *% Rk Rk kK ranen.
FUNCTION DOTPRD(DOT1,DOTZ2,N)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION DOT1(#*),DOT2(x)

C
C-- DOTPRD COMPUTES THE DOT PRODUCT OF DOT1 AND DOT2.
C
DOTPRD=0.D00
DO 10 I=1,N
DOTPRD=DOTPRD+DOTI1(1)+DOT2(I)
10 CONTINUE
C
RETURN
END
Crrsrnsrx *kk Rk dkokkk * *%
Cs STIFF *
O T L D pan e P Y R T T Rk k kR
SUBROUTINE STIFF(SS,AREA,EMOD,ELENG,C1,C2,C3,ELONG,DEFLEN,
3 MAXA,MCODE,NE,LSS)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION SS(*),AREA(*),EMOD(*),ELENG(*),C1(*),C2(+),C3(*),
$ ELONG(*),DEFLEN(#),G(6),H(6),MAXA(*),MCODE(6,*)
C
C INITIALIZE THE SYSTEM STIFFNESS MATRIX, SS, TO ZERO; FOR
C EACH ELEMENT CALL ELEMS AND ASSEMS.

DO 10 L = 1,LSS

SS(L) = 0.D0
10 CONTINUE
C
DO 20 N = 1,NE

CALL ELEMS(AREA,EMOD,ELENG,C1,C2,C3,G,N)

C  CALL NELEMS(AREA,EMOD,ELENG,C1,C2,C3,H,ELONG,DEFLEN,N)
CALL ASSEMS(SS,G,H,MCODE,MAXA,N,LSS)
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20 CONTINUE
C
DO 301 =1, LSS
C  WRITE(6,%) ’SS = *,SS(I)
30 CONTINUE

C

RETURN

END
Cressrrtrssrrrrrkrrees P RRERREERRRRAKE kR RRRR Rk
Cx ELEMS *

C**************************t**##***#t*#*******#****#******##************
SUBROUTINE ELEMS(AREA,EMOD,ELENG,C1,C2,C3,G,N)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION AREA(*),EMOD(x),ELENG(x),C1(#),C2(%),C3(+),G(6)

FOR ELEMENT N, COMPUTE THE GLOBAL STIFFNESS COEFFICIENTS, G(6),
DEFINED IN EQS. 5.15 (HOLZER)

GAMMA = AREA(N)+EMOD(N)/ELENG(N)

Q aoaoaq

G(1) = (GAMMA)5(C1(N)*2)
G(2) = (GAMMA)*(C2(N)++2)
G(3) = GAMMA+CI(N)*C2(N)

RETURN
END

C*********#**##**#*******#*#**#t#***********##***********#*****##*******

Cs NELEMS x

C#**##**********#*** *kkkkk * kR kkkkkkkk
SUBROUTINE NELEMS(AREA,EMOD,ELENG,C1,C2,C3,H,ELONG,DEFLEN,N)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION AREA(*),EMOD(),ELENG(#),C1(#),C2(+),C3(+),H(6),
$ ELONG(+),DEFLEN(#)

C

C FOR ELEMENT N, COMPUTE THE NON-LINEAR GLOBAL STIFFNESS

COEFFICIENTS,

C  H(6)

C

C

GAMMA = AREA(N)+*EMOD(N)/ELENG(N)
P = ELONG(N)/DEFLEN(N)

H(1) = GAMMA=«Px(1-(C1(N)xC1(N)))

H(2) = GAMMA+Px(1-(C2(N)+C2(N)))

H(3) = -GAMMA=«C1(N)*C2(N)+P
C

RETURN

END
(O T T T T T T T T T * * *
Cx ASSEMS *

(@ T R ok kkkk kkkgkkkkkkkkkRRgrk b2 L2} 2 2
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SUBROUTINE ASSEMS(SS,G,H,MCODE,MAXA,N,LSS)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION SS(s),G(+),H(x), MCODE(6,+), MAXA(),INDEX(4,4)
DATA INDEX/1,3,-1,-3, 3,2,-3,-2, -1,-3,1,3, -3,-2,3,2/

MODIFIED TO ALLOW DOF IN ANY COLUMN OF MCODE TO BE IN
ANY ORDER; SEE SKYLIN

INITIALIZE INDEX. ; ASSIGN STIFFNESS COEFFICIENTS, G(L),
OF ELEMENT N TO THE SYSTEM STIFFNESS MATRIX, SS, BY INDEX, MCODE,
AND MAXA.

QaQaQa* *» » OO0

DO20JE=1,4
J = MCODE(JE,N)
IF (J .NE. 0) THEN
DO10IE = 1, JE
I = MCODE(IE,N)
IF (I .NE. 0) THEN
IF (1 .GT. J) THEN
K = MAXA(I) +1-1J
ELSE
K = MAXAQJ) +3 -1
END IF
L = INDEX(IE,JE)
IF (L .GT. 0) THEN
SS(K) = SS(K) + G(L) + H(L)
ELSE
SS(K) = SS(K) - G(-L) - H(-L)
END IF
END IF
10  CONTINUE
END IF
20 CONTINUE
C
RETURN
END
C*****#*******#****wi dek kg xk¥ xk
Cx SOLVE .
C************************#****##* kkkkkkkkkkgkkkkkkkkkbkkkkkik
SUBROUTINE SOLVE(SS,Q,MAXA,NEQ,LC)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION SS(),Q(+),MAXA(+)

SOLVE DETERMINES THE SOLUTION TO THE SYSTEM EQUATIONS BY
OMPACT
GAUSSIAN ELIMINATION (HOLZER, PP. 290, 296, 307) BASED ON THE
SUBROUTINE COLSOL (BATHE P. 721) AND THE MODIFICATION BY MICHAEL
BUTLER (MS 1984): IF LC = 1, CALL FACTOR,FORSUB,AND BACSUB
IF LC > 1, CALL FORSUB AND BACSUB.

oXoNoNoNoNoNoXe]

>
<
%
-]
[<%
7]
>
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C
IF (LC.EQ.1) THEN
CALL FACTOR(SS,MAXA,NEQ)
END IF
CALL FORSUB(SS,Q,MAXA,NEQ)
CALL BACSUB(SS,Q,MAXA,NEQ)

C
RETURN
END
Crexsrrrsrihrssrskhrs RRkhRkkkERkk *kkkk *kkkkE -
Cx FACTOR *
Crxsrnnk *k *RER L T T T P p e,

C FACTOR PERFORMS THE LDU FACTORIZATION OF THE STIFFNESS MATRIX.
o

SUBROUTINE FACTOR(SS,MAXA,NEQ)

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION SS(*),MAXA(*)

DO 80 N=1,NEQ
KN=MAXA(N)
KL=KN+1
KU=MAXA(N+1)-1
KH=KU-KL
IF(KH) 70,50,10

10 K=N-KH
IC=0
KLT=KU
DO 40 J=1,KH
IC=IC+1
KLT=KLT-1
KI=MAXA(K)
ND=MAXA(K+1)-KI-1
IF(ND) 40,40,20
20 KK=MINO(IC,ND)
C=0.00
DO 30 L=1,KK
30 C=C+SS(KI+L)*SS(KLT+L)
SS(KLT)=SS(KLT)-C
40 K=K+1
50 K=N
B=0.00
DO 60 KK=KL,KU
K=K-1
KI=MAXA(K)
C=SS(KK)/SS(KI)
B=B+CsSS(KK)
60 SS(KK)=C
SS(KN)=SS(KN)-B

C STOP EXECUTION IF A ZERO PIVOT IS DETECTED
C
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70 IF(SS(KN).EQ.0.00) THEN
PRINT 75,N,SS(KN)
75 FORMAT(-STIFFNESS MATRIX IS NOT POSITIVE DEFINITE’/’0PIVOT IS
$ ZERO FOR D.O.F. *4/°0PIVOT = *,E15.8)

STOP
END IF
C
80 CONTINUE
C
RETURN
END
Cx kR RRE * * - *
Cx FORSUB *
C****##*#**#***‘ kK * kK% kkkkkk %% k%%
C
C FORSUB PERFORMS THE FORWARD SUBSTITUTION.
C
SUBROUTINE FORSUB(SS,Q,MAXA,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION SS(»),Q(*),MAXA(»)
C

DO 20 N=1,NEQ
KL=MAXA(N)+1
KU=MAXA(N+1)-1
KH=KU-KL
IF(KH.GE.0) THEN

K=N
C=0.00
DO 10 KK=KL,KU
K=K-1
C=C+SS(KK)*Q(K)
10 CONTINUE
Q(N)=Q(N)-C
END IF
20 CONTINUE
C
RETURN
END

C!‘v*vvv'vvv'v * kkkkkkkokkkkkkkkkkkkkE * x k¥ *xkkk

Cs BACSUB *

C * *kERk =% x&%

C
C BACSUB PERFORMS BACK-SUBSTITUTION TO OBTAIN THE SOLUTION.

C

SUBROUTINE BACSUB(SS,Q,MAXA,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION SS(*),Q(+),MAXA(s)

DO 10 N=1,NEQ
K=MAXA(N)
Q(N)=Q(N)/SS(K)
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10 CONTINUE
IF(NEQ.EQ.1) RETURN
N=NEQ
DO 30 L=2,NEQ
KL=MAXA(N)+1
KU=MAXA(N+1)-1
KH=KU-KL
IF(KH.GE.0)THEN
K=N
DO 20 KK=KL,KU
K=K-1
Q(K)=Q(K)-SS(KK)+Q(N)
20 CONTINUE
END IF
N=N-1
30 CONTINUE
C
RETURN
END
C*************#*******iT*** kkd gk kkkkg *% ¥k kkk
Cx UPDATC *
C****###*****‘#**#*#*******t kkkkkkkkk kkkkkkkkk *k¥k
SUBROUTINE UPDATC(X,DD,C1,C2,C3,ELONG,ELENG,DEFLEN, MINC WJCODE,
$ NE,NJ,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION X(3,+),DD(+),C1(+),C2(+),C3(+), ELONG (%), ELENG(s),
$ DEFLEN(»),MINC(2,+),JCODE(3,+)
C

DO30J =1,NJ
DO20L=1,2
K = JCODE(L,J)
IF(K .NE. 0) THEN
X(LJ) = X(L,J) + DD(K)
ENDIF
20 CONTINUE
30 CONTINUE
C
CALL LENGTH (X,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,NE)
C
RETURN
END
C*****####*#*##***#** * *
Cs LENGTH .
C******tt**#*##*** *%
SUBROUTINE LENGTH (X,Cl, C2 C3,ELONG,ELENG,DEFLEN,MINC,NE)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION X(3,+),C1(x),C2(+),C3(*),ELONG(*),ELENG(s),DEFLEN(s),
$ MINC(2,+)
C

DO10I=1,NE
C
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J = MINC(1,1)
K = MINC(2,])

ELI = X(1,K) - X(1,3)

EL2 = X(2.,K) - X(2,J)

EL3 = X(3.K) - X(3,J)

DEFLEN(I) = DSQRT((EL1#%2)+(EL2#%#2)+(EL3#+2))
ELONG(I) = DEFLEN(I) - ELENG(I)

C1(I) = EL1/DEFLEN(I)

C2(1) = EL2/DEFLEN(I)

C3(1) = EL3/DEFLEN(I)

WRITE(%,%) * °’

WRITE(x,*) C1(I)

WRITE(*,*) C2(I)

WRITE(#,*) C3(1)
0 CONTINUE

Q.0 Q0

RETURN
END
C***#*************##*****************#*****#*******************#********
Cx FORCES *
C*********#****************‘***************************- *¥ *%
SUBROUTINE FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,
$ MINC,NE,NEQ,D,C1S,C2S,DD)
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
DIMENSION F(*),QT(+),AREA(*),EMOD(*),ELENG(#),C1(*),
$ C2(#),C3(*),ELONG(#),R(*),MCODE(6,+),MINC(2,%),D(%),
$ C15(40),C25(40),DD(*)
C
C  INITIALIZE THE FORCE VECTOR TO ZERO.
C CALL INTERF.

DO 10 I = 1,NEQ
F(I) = 0.D0
10 CONTINUE
C
DO 201 =1, NE
CALL INTERF(F,AREA,EMOD,ELENG,C1,C2,C3,ELONG,MCODE,],D,C1S,C2S
$,DD)
20 CONTINUE
C DO30I=1NEQ
C  WRITE(s,+)F(I)
C 30 CONTINUE

C

RETURN

END
[ T T T T e T ko
Cx INTERF *

C*#*#*#*#**####**##******#***#*****#*******#######*#***#***#####**#**###

SUBROUTINE INTERF(F,AREA,EMOD,ELENG,C1,C2,C3,ELONG,MCODE,],D,C1S,
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C

26

C

$ C2S,DD)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION F(+),AREA (x),EMOD(),ELENG(x),C1(),C2(+),C3(+),

$ ELONG(),MCODE(6,*),AAA(4),2ZZ(4),ELNG(60),D(+),C1S(40),
$ C25(40),DD(*),DDD(40),STRESS(40),STRES(40),DDEFLEN(40)

Cl1=C1(I)
Cl2=C2(I)
CI3=C3(I)
ELNG(1)=ELENG(I)

GAM = DASIN(C2S(I)+C1(I)-C1S(I)+C2(I))

DO 10 II=1,4
ZZZ(111) = 0.0D0
AAA(III) = 0.D0

CONTINUE

DO 26 Ii=1,4
J = MCODE(IL])
IF (J .NE. 0) THEN

2ZZ(11) = D(J)
DDD(II) = DD(J)
END IF
CONTINUE

DD1=C1S(I)+DDD(1)+C2S(I)*DDD(2)

DD2=-C25(I)«xDDD(1)+C1S(I)»DDD(2)
DD3=C1S(I)*DDD(3)+C2S(I)*»DDD(4)

DD4=-C2S(I)«DDD(3)+C1S(I)«DDD(4)
2Z21=277(1)

2222=227(2)

2223=227(3)

2724=777(4)

AAA(1) = CIS(1)+ZZZ1+C2S(I)+ZZZ2
AAA(2) = -C25(1)+Z2Z1+C1S(I)+2ZZ2
AAA(3) = CIS(1)+ZZZ3+C2S(I)+ZZZ4
AAA(4) = -C25(1)+Z2Z3+C1S(1)+2224

AAA1=AAA(1)
AAA2=AAA(2)
AAA3=AAA(3)
AAA4=AAA(4)

STRES(I)=((DD3-DD1)/ELENG(I)+((DD1-DD3)+DD1+(DD2-DD4)+DD2+(DD3-DD1
$)«DD3+(DD4-DD2)+«DD4)/(ELENG(I)#+2)40.5D0+(((DD3-DD2)/ELENG(I))#+2

$-+((DD4-DD2)/ELENG(I))++2))+EMOD(I)
STRESS(I)=STRESS(I)+STRES(I)
FL1 =AREA(I)sSTRESS(I)«DCOS(GAM)«(-1.D0)
FL2 =AREA(I)sSTRESS(I)sDSIN(GAM)
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FL3 = -1.D0+FL1
FL4 = -1.D0xFL2

C
DO2L=1,4
K = MCODE(L,])
IF (K .NE. 0) THEN
IF (L .EQ. 1) THEN
F(K) = (C1S(I)sFL1-C2S(I)+FL2) + F(K)
ELSEIF (L .EQ. 2) THEN
F(K) = (C2S(I)+FL1+C1S(I)+FL2) + F(K)
ELSEIF (L .EQ. 3) THEN
F(K) = (C1S(I)+FL3-C2S(I)+FL4) + F(K)
ELSEIF (L .EQ. 4) THEN
F(K) = (C2S(I)sFL3+C1S(I)sFL4) + F(K)
ENDIF
ENDIF
20 CONTINUE
C
RETURN
END
C********##************##*****#****#**#*###*#**#*********Tii* *
Cs TEST .
C####**** k¥ ok ok of ok 2 o e ke e ok ok afe ok o afe a2 ok e e ko o dde ik ke o o e ok ok ok ok ok ko o ok ok
C PERFORM CONVERGENCE TESTS, ASSUME THAT CONVERGENCE IS
REACHED,

C (SETTING INCONV=0 ) UNTIL IT IS PROVED THE CONTRARY. CALL
C DISPL, UNBALF
C

SUBROUTINE TEST(D,DD,DDO,F,FP,FPL,QT,INCONV,NEQ,

$ TOLFOR,TOLDIS)

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION D(#),DD(),DDO(#),F(*),FP(x),FPI(+),QT(+)

INCONV = 0.D0
DIVER = 0.D0

IF (TOLDIS .LT. 1.D0) THEN
CALL DISPL(D,DD,INCONV,NEQ,TOLDIS)
END IF

IF (TOLFOR .LT. 1.D0) THEN
CALL UNBALF (F,FP,QT,INCONV,NEQ,TOLFOR)
END IF

WRITE(6,+) 'INCONV = ", INCONV

aaQa

RETURN
END
Crrxsaxsssrrdrrnssbhhhhrs *x *xxE

Cs DISPL *

C#*#***##*#####*#*

b33 33
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C PERFORM THE DISPLACEMENT CONVERGENCE TEST USING THE EUCLIDEAN
C VECTOR NORM OF DISPLACEMENTS.

SUBROUTINE DISPL(D,DD,INCONV,NEQ,TOLDIS)

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION D(+),DD(+)

DELTAD = 0.D0
TOTALD = 0.D0

(oNo)]

EUCLIDIAN VECTOR NORM OF DISPLACEMENTS .......ocoueeemmrrennn.
DO 10 I=1,NEQ
DELTAD = DELTAD + (DD(I))*2
TOTALD = TOTALD + (D(I))**2
10 CONTINUE
C
C  CHECK WITH TOLERANCES .......ooevveummrereesssnessnsscsnsssanne
IF ( TOTALD.NE.0 ) THEN
C = ( DSQRT(DELTAD) ) / ( DSQRT(TOTALD) )
IF ( C.GT.TOLDIS ) THEN
INCONV = INCONV + 10
END IF
ELSE
WRITE(6,%)’ ERROR: DISPLACEMENTS ARE ZERO’
STOP
END IF

C

RETURN

END
Coxnsx PRI ** *hkk SRAREEREEES *hx
Cx UNBALF *
O T PP T T e e ** FEREREERREE
C PERFORM A CONVERGENCE TEST FOR THE UNBALANCED FORCE.
C

SUBROUTINE UNBALF(F,FP,QT,INCONV,NEQ,TOLFOR)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION F(s),FP(+),QT(+)

Q

UNBFI = 0.D0
UNBFP = 0.D0

COMPUTE THE UNBALANCED FORCE .......cuueevurrrunnen.

C
C
C
DO 10 I=1,NEQ
C WRITE(#,s)’ °
C WRITE(*,%) 'QT(I) =*,QT(I),’F(I) =,F(I)
UNBFI = UNBFI + (QT(I)-F(I))**2
C WRITE(*,*) UNBFI
UNBFP = UNBFP + (QT(I)-FP(I))*+2
10 CONTINUE
C
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C  CHECK WITH TOLERANGES ..ou.ooeuneeeremmeemssenssensseseseens
C
IF ( UNBFP.NE.0.D0 ) THEN
C = ( DSQRT(UNBFI) ) / ( DSQRT(UNBFP) )
IF ( C.GT.TOLFOR ) THEN
INCONV = INCONV + 100
END IF
ELSE
INCONV = INCONV + 100
END IF

RETURN
END
C#*****‘ xx% Wk ok kR ok Rk koo kkkok kR kR Rk * * *kkkk
Cs RESULT .
C**#*******#**#*********#**********************#*#*#******#**‘**#*******
SUBROUTINE RESULT(D,MCODE,JCODE,MINC,NE,NJ,NEQ,LSTEP,QI)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION D(*),MCODE(6,+),JCODE(3,+),MINC(2,+)

REWIND 3

IF(LSTEP .EQ. 0)THEN
NNN = NEQ + NJ + NE
DO 51 =1, NNN
J=0
WRITE (3) J
5 CONTINUE
LSTEP = LSTEP + 1
REWIND 3
ENDIF
C
IF(LSTEP .EQ. 1) THEN
WRITE(7,10)'RESULTS
10 FORMAT(////T33,A/T33,13,(>-))
ENDIF

WRITE(7,30) 'LOADSTEP’,LSTEP,QI
30 FORMATY(///T5,A,T14,",T39,14/
$  T5’LOADING PARAMETER:" T25,F20.4/)
WRITE(7,35) 'DOF’,'DISPL’,’LAMBDA’
35 FORMAT(T11,A,T28,A,T42,A/)
C
C— READ THE DEGREES OF FREEDOM FOR WHICH THE DISPLACEMENTS ARE TO
BE
C GIVEN AND TABULATE THE DISPLACEMENTS FOR THE GIVEN EQUILIBRIUM
C  POINT. (TOTAL DISPLACEMENTS)
C
IF(LSTEP .EQ. 1)THEN
READ(5,+) J
WRITE (3) J
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ELSE
READ (3)J
ENDIF
C
C
40 IF(J .NE. 0) THEN
WRITE(7,50) J, D(3), QI
50 FORMAT(T10,13,T20,F15.8,T35,F15.8)
IF(LSTEP .EQ. 1) THEN
READ(5,%) J
WRITE (3) J
ELSE
READ (3)J
ENDIF
GO TO 40
ENDIF

LSTEP = LSTEP + 1

Qo

RETURN
END
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Appendix B

Geometrically Nonlinear Plane Truss Finite Element
Fortran Program Using the B-notation
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C*#********#*#**********#*********#*****##*#**********#*#*************#*

C NONLINEAR ANALYSIS OF SPACE TRUSSES *

C *

C NEWTON-RAPHSON METHOD AND RIKS-WEMPNER METHOD *
02 T B e L T T

Cx INPUT DATA *

@ T T L T T T gy RRRREAR AR

LIST-DIRECTED INPUT:
INPUT UNITS: KIP, INCH, RADIAN, FAHRENHEIT

1. ENTER DATE IN THE FORM 01/14/91 (IN MAIN)
DATE

2. ENTER THE METHOD TO BE USED (IN MAIN)
NEWTON-RAPHSON: 1 RIKS-WEMPNER: 2
METHOD

3. ENTER NUMBER OF ELEMENTS AND NUMBER OF JOINTS (IN MAIN)
NE, NJ

4. ENTER MEMBER INCIDENCES (IN STRUCT)
MINC(1,I), MINC(2,]) I=1,NE

5. ENTER FOR EACH JOINT CONSTRAINT (IN STRUCT)
JNUM, JDIR
AFTER LAST JOINT CONSTRAINT ENTER
0,0

6. ENTER JOINT COORDINATES FOR EACH JOINT(IN PROP)
X(1,9), X(2J), X(3,J) I=1,NJ

7. ENTER MEMBER PROPERTIES CROSS SECTIONAL AREA
AND ELASTIC MODULUS FOR EACH MEMBER (IN PROP)
AREA(I), EMOD(I) I=1,NE

8. IF THERE ARE JOINT LOADS ENTER (IN JLOAD)
JNUM, JDIR, FORCE
AFTER LAST JOINT LOAD ENTER
0,0,0
ELSE ENTER
0,00
END IF

9. ENTER THE MAXIMUM VALUE OF LAMBDA, INITIAL VALUE OF LAMBDA
AND THE INCREMENT IN LAMBDA (IN MAIN)
QIMAX, QI, DQI

10. ENTER THE NUMBER OF ITERATIONS FOR UPDATING STIFFNESS MATRIX,
MAXIMUM AND DESIRED NUMBER OF ITERATIONS (IN MAIN)
ITENUM, ITEMAX, ITEDES

oleolololoRololoNeloNoRo oo RoNoNoYoNoXo oo XoXo ko XoXo ko XoXoXe o XoRoRo o Yo Xo Yo Yo Yo No Xo X o
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11. ENTER THE TOLERANCES IN DISPLACEMENT, AND FORCE (IN MAIN) )
TOLDIS, TOLFOR

12. ENTER THE DOF FOR WHICH DISPLACEMENT AND LAMBDA VALUES ARE
0
BE PRINTED AFTER EACH LOAD INCREMENT (IN RESULT)
END WITH 0

oloNoN. NoXoNoXoXo)

C**********#****t***##*****#**##**********#--‘ e o s ok ok o ok ofe o ok e ook
Cx MAIN PROGRAM *
Crersxiex k% Rkokk & *% EERkRREREE *% *

C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION TIMEA, TIMEB, DTIME

CHARACTERx(x) TITLE, UNITS, DATE+8, FNAMEs12
PARAMETER (LIM = 100000, TITLE = 'PLANE TRUSS ANALYSIS’,
$ UNITS = "UNITS: KIP, INCH, RADIAN, FAHRENHEIT’)
DIMENSION A(LIM),IA(LIM)

RESERVE MEMORY; READ AND ECHO NE, NJ; SET POINTERS FOR DATA
ARRAYS; IF MEMORY IS ADEQUATE CALL STRUCT, ELSE SEND MESSAGE AND
STOP; SET POINTERS FOR SOLUTION ARRAYS; IF MEMORY IS ADEQUATE,
CALL LOAD. THEN CALL NEWRAP OR RIKWEM

oloNoNoNoNo!

OPEN DATA FILES: #t***x%%+ FOR PC ONLY #*%%#%x
WRITE(6,*) INPUT DATA FILE:’
READ(s,’(A)’) FNAME

+++ OPEN(5,FILE = FNAME)

+++ OPEN(7,FILE = 'RW.OUT’, STATUS = 'UNKNOWN?’)

oNoNoNoReoNoNo o)

READ(5,'(A)") DATE
WRITE(6,5) TITLE,(EARLS, 1992)",
$’DATE: *,DATE,UNITS
5 FORMAT(I’,T5,73(+’)/T5, %", T32,A,T77,’+/T5, ", T35,A,T77,’+’/
$ T5,73('")//T64,2(A)///T5,A)
READ(5,+)METHOD
READ(5,+) NE, NJ
WRITE(6,15) "CONTROL VARIABLES?,
$ 'NUMBER OF ELEMENTS’,NE,'"NUMBER OF JOINTS’,NJ
15 FORMAT(///T5,A/2(T5,A,T30,14/))
C

C— SET POINTERS FOR DATA ARRAYS (IN STRUCT):
C

NP=1

NAREA=NP+3sNJ

NEMOD=NAREA+NE

NELENG=NEMOD+NE

NC1=NELENG+NE
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NC2=NC1+NE
NC3=NC2+NE
NMCODE=NC3+NE
NJCODE=NMCODE+6«NE
NMINC=NJCODE+3*NJ
NMAXA=NMINC+2+«NE
C TEMPORARILY LET NEQ=3*NJ TO SET POINTERS FOR NKHT AND MAX
NEQ=3+NJ
NKHT=NMAXA+(NEQ+1)
MAX=NKHT+NEQ-1
C
C—- IF MEMORY IS ADEQUATE CALL STRUCT, ELSE SEND MESSAGE AND STOP.
C
IF(MAX .LE. LIM) THEN
CALL STRUCT(A(NP),A(NAREA),A(NEMOD),A(NELENG),
$ A(NC1),A(NC2),A(NC3),IA(NMAXA),IA(NKHT),
$ IA(NMCODE),IA(NJCODE),IA(NMINC),NE,NJ,NEQ,LSS)
C
C-— SET POINTERS FOR SOLUTION ARRAYS (IN LOAD AND NEWRAP OR RIKWEM)
C
C-— TEMPORARILY SET LSS=NEQ
C LSS = NEQ
C
NF=NKHT+NEQ
NSS=NF+NEQ
NQ=NSS+LSS
NQT=NQ+NEQ
NR=NQT+NEQ
NFP=NR+NEQ
ND=NFP+NEQ
NDD=ND+NEQ
NDDO=NDD+NEQ
NDD01=NDDO+NEQ
NDD1=NDD01+NEQ
NDD2=NDD1+NEQ
NDDP=NDD2+NEQ
NFPI=NDDP+NEQ
NDEFLN=NFPI+NEQ
NELONG=NDEFLN+NE
NTT=NELONG+NE
MAX=NTT+NEQ-1
C
C—- IF MEMORY IS ADEQUATE CALL FOR EACH LOAD CONDITION LOAD,
C NEWRAP OF RIKWEM.

C
IF(MAX .LE. LIM) THEN
CALL LOAD(A(NQ),IA(NJCODE),NEQ)
C
C— READ QIMAX, QI ,DQI
READ(5,+)QIMAX,QI,DQI
C
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WRITE(6,25) "QIMAX =, QIMAX," QI =’,Ql,’ DQI = ,DQI
25 FORMAT(/3(T10,A,F12.6/))
C
C— READ ITEUPD,ITEMAX,ITEDES
READ(5,+)ITENUM, ITEMAX, ITEDES
C
WRITE(6,+)’NUMBER OF ITERATIONS FOR UPDATING STIFFNESS’,
$ *MATRIX = *ITEUPD
WRITE(6,*)’MAXIMUM NUMBER OF ITERATIONS IN EACH LOAD §’,
$ °TEP = 'ITEMAX
WRITE(6,+)’'DESIRED NUMBER OF ITERATIONS IN EACH LOAD §’,
$ °'TEP = 'ITEDES
C
C— READ TOLDIS,TOLFOR
READ(5,+)TOLDIS, TOLFOR

C
WRITE(6,35) "TOLERANCE IN DISPLACEMENT =, TOLDIS,
$ *TOLERANCE IN FORCE =", TOLFOR
35 FORMAT(/2(T10,A,T45,F12.6/))
C
LSTEP = 1
C
C

C— INSERT CALL TO INITIALIZE SYSTEM TIMER HERE (FOR VM1)
CALL CPUTIME(TIMEA, IRCD_A)
C
IF(METHOD .EQ. 1)THEN
WRITE(6,40) ITERATIVE METHOD: NEWTON-RAPHSON °’
40 FORMAT(T10,A)

CALL NEWRAP(A(ND),A(NDD),A(NQ),A(NQT),A(NTT),A(NSS),
A(NAREA),A(NEMOD),A(NELENG),A(NC1),
A(NC2),A(NC3),A(NELONG),A(NDEFLN),A(NF),
A(NFP),A(NR),A(NP),A(NDDO),A(NFPI),
IA(NMAXA),JA(NMCODE),IA(NJCODE),IA(NMINC),
INCONV,ITECNT,ITENUM,ITEUPD,ITEMAX,NE,NEQ,NJ,
LSS,QIMAX,QI,DQI, TOLDIS,TOLFOR,LSTEP,NFE)

ANAAANAAN

ELSEIF(METHOD .EQ. 2)THEN
WRITE(6,50) ITERATIVE METHOD: MODIFIED RIKS/WEMPNER °
50 FORMAT(T10,A)

CALL RIKWEM(A(ND),A(NDD),A(NDDO),A(NDDO01),A(NDD1),A(NDD2),
A(NDDP),A(NAREA),A(NEMOD),A(NELENG),
A(NC1),A(NC2),A(NC3),A(NQ),A(NQT),
A(NSS),A(NTT),A(NP),A(NELONG),A(NDEFLN),
A(NF),A(NFP),A(NFPI),A(NR),
IA(NJCODE),JA(NMAXA),JA(NMCODE),IA(NMINC),
IT,INCONV,ITECNT,ITENUM,ITEMAX,ITEUPD,ITEDES,
NE,NEQ,NJ,LSS,QIMAX,QI,DQI,

TOLDIS,TOLFOR,LSTEP,NFE)

ANADAANAANASLSN
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ENDIF

ELSE
WRITE(6,’(T10,A/)’) 'ERROR MESSAGE: INCREASE MEMORY’
END IF
ELSE
WRITE(6,’(T10,A/)’) "ERROR MESSAGE: INCREASE MEMORY’
ENDIF
C
C
C INSERT CALL TO RETURN EXECUTION TIME IN MICROSECONDS IN DTIME.
C
CALL CPUTIME(TIMEB, IRCD_B)
IF(IRCD_A .NE. 8 .AND. IRCD_B .EQ. 0)THEN
DTIME = (TIMEB - TIMEA)
ENDIF

WRITE(7,+) * CPUTIME (MICROSECONDS) = ’, DTIME
WRITE(7,+) ’ NFE =’ NFE
C
STOP
END
C*#***************#**#*#*##*****************#t**#*iv *

Cx STRUCT *

Crtrkskkhhnhks *% *Rk¥ PP

SUBROUTINE STRUCT(X,AREA,EMOD,ELENG,C1,C2,C3,
$ MAXA,KHT,MCODE,JCODE,MINC,NE,NJ,NEQ,LSS)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION X(3,+),AREA(+),EMOD(+),ELENG(),C1(*),C2(+)

$ ,C3(+),MAXA(+),KHT(+), MCODE(6,%),JCODE(3,%), MINC(2,*)

READ AND ECHO THE MEMBER INCIDENCES, MINC(L,I); INITIALIZE THE
ELEMENTS OF THE JOINT CODE MATRIX, JCODE, TO UNITY, READ AND
ECHO FOR EACH JOINT CONSTRAINT THE JOINT NUMBER, JNUM, AND
JOINT DIRECTION, JDIR, AND STORE A ZERO IN THE CORRESPONDING
LOCATION OF JCODE (END OF DATA MARKER JNUM=0); CALL CODES,
SKYLIN, AND PROP.

oNoXoNoNoNoNo X0

WRITE(6,10) "MEMBER INCIDENCES’,MEMBER’,’A-END’,’B-END’
10 FORMAT(///T10,A//T10,A,T17,A,T23,A/)
DO 30 I=1,NE
READ(5,+) MINC(1,I),MINC(2,1)
WRITE(6,20) I, MINC(1,I), MINC(2,I)
20 FORMAT(T11,13,T18,13,T24,13)
30 CONTINUE
C
DO 60 J=1,NJ
DO 50 L=1,2
JCODE(LJ)=1
50 CONTINUE
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60 CONTINUE
C
WRITE(6,70) *JOINT CONSTRAINTS’,"JOINT’,'DIRECTION’
70 FORMATY(///T10,A//T10,A,T17,A/)
READ(5,+) INUM,JDIR
80 IF (JNUM.NE.0) THEN
WRITE(6,90) INUM,IDIR
90 FORMAT(T9,I3,T19,13)
JCODE(IDIR,JNUM)=0
READ(5,+) JNUM,JDIR
GO TO 80
END IF

CALL CODES(MCODE,JCODE,MINC,NE,NJ,NEQ)
CALL SKYLIN(KHT,MAXA ,MCODE,NE,NEQ,LSS)

CALL PROP(X,AREA,EMOD,ELENG,C1,C2,C3,MINC,NE,NJ)

QO Q a a

RETURN

END
C****###****************#*******##****#***#*******#*********************
Cs CODES .
C*******#*******#** sk kR kokk k¥ deok ok ok ok ook ok ook sk ok dk ke ok ke sk ok ok o ok ak sk ok e ake sk ko

SUBROUTINE CODES(MCODE JCODE,MINC,NE,NJ,NEQ)

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION MCODE(6,+),JCODE(3,+),MINC(2,+)

C GENERATE JOINT CODE, JCODE, BY ASSIGNING INTEGERS IN SEQUENCE,
C BY COLUMNS, TO ALL NONZERO ELEMENTS OF JCODE FROM 1 T0 NEQ;
C GENERATE THE MEMBER CODE, MCODE, BY TRANSFERRING VIA MINC
COLUMNS
C OF JCODE INTO COLUMNS OF MCODE.
C
C GENERATE JCODE
C
NEQ=0
DO 20 J=1,N]
DO 10 L=1,2
IF(JCODE(L,J).NE.0) THEN
NEQ=NEQ+1
JCODE(L,J)=NEQ
END IF
10 CONTINUE
20 CONTINUE
C
WRITE(6,+) 'NEQ =", NEQ
C GENERATE MCODE
C
DO 40 I=1,NE
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J=MINC(1,])

K=MINC(2,I)

DO 30 L=1,2
MCODE(L,I)=JCODE(L,J)
MCODE(L+2,I)=JCODE(L,K)

30 CONTINUE
40 CONTINUE
C .
C  WRITE(6,50’MCODE(TRANSPOSED)’
C 50 FORMAT(/T10,A/)
C DO 60I=1,NE
C PRINT»,(MCODE(L,I),L=1,4)
C 60 CONTINUE

C
C

RETURN

END
L TP
Cx SKYLIN *
O T T e AR,
C

C  SKYLIN DETERMINES KHT USING MCODE, AND DETERMINES MAXA FROM
KHT.
*
« 1 HAVE MODIFIED SKYLIN SUCH THAT DOF IN EACH COLUMN OF MCODE
«  NEED NOT BE ARRANGED IN INCREASING ORDER FROM TOP TO BOTTOM;
LE.,
* ELEMENTS NEED NOT BE DIRECTED FROM A LOWER TO A HIGHER
NUMBERED
«  JOINT(HOLZER 2/8/91).
C
SUBROUTINE SKYLIN(KHT,MAXA,MCODE,NE,NEQ,LSS)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION KHT(+),MAXA(*),MCODE(6,+)

C
C
DO 10 I=1,NEQ
KHT(I)=0
10 CONTINUE
C
C GENERATE KHT
C
DO 30 I=1,NE
MIN=NEQ
DO 15 L=1,4
IF (MCODE(L,I) .GT. 0 .AND. MCODE(L,I) .LT. MIN) THEN
MIN=MCODE(L,])
END IF
15 CONTINUE
C
DO 20 L=1,4
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K=MCODE(L,I)
IF(K.NE.0) THEN
KHT(K)=MAXO0(KHT(K),(K-MIN))
ENDIF
20 CONTINUE
30 CONTINUE
+  WRITE(6,100)
+ 100 FORMAT(//11X,’P’,10X,’KHT(I)",10X,"MAXA(I)’)
C

C GENERATE MAXA

C
MAXA(1)=1
DO 40 I=1,NEQ
. WRITE(6,200) I, KHT(I), MAXA(T)

= 200 FORMAT(7X,I5,9X,15,11X,I5)
MAXA(I4+1)=MAXA(D)+KHT(I)+1
40 CONTINUE
LSS=MAXA(NEQ+1)-1
I=NEQ+1
* WRITE(6,300) ,MAXA(I),LSS
* 300 FORMAT(7X,15,25X,15//7X,’LSS = ’,I5)

C

WRITE(6,%)’ LSS = *, LSS

RETURN

END
Cressrn *k % sk *k kk *
Cx PROP *
C**************‘*A‘** * *

SUBROUTINE PROP(X,AREA,EMOD,ELENG,C1,C2,C3,MINC,NE,NJ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION X(3,+),AREA(*),EMOD(s),ELENG(),C1(*),C2(*)

$ ,C3(+),MINC(2,#)

READ AND ECHO JOINT COORDINATES, X(L,J); COMPUTE FOR EACH
ELEMENT BY THE LENGTH, ELENG(I), AND THE DIRECTION COSINES
C1(I), C2(I) & C3(I); READ FOR EACH ELEMENT THE CROSS SECTIONAL
AREA, AREA(I), THE MODULUS OF ELASTICITY, EMOD(I)

PRINT ELEMENT PROPERTIES.

oXoNoNoXoNoNoNo)

WRITE(6,10) *JOINT COORDINATES’, JOINT’,'DIRECTION-1’,
$ "DIRECTION-2’,’'DIRECTION-3’
10 FORMAT(///T10,A//T10,A,T17,A,T30,A,T43,A)
DO 30 J=1,NJ
READ(5,+) X(1,3),X(2,3),X(3,J)
WRITE(6,20) J,X(1,3),X(2,3),X(3.9)
20 FORMAT(T9,I3,T18,F8.2,T31,F8.2,T44,F8.2)
30 CONTINUE
C
WRITE(6,40) "ELEMENT PROPERTIES’,'ELASTIC’,
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$ ’ELEMENT’’AREA’’MODULUS’,LENGTH’
40 FORMAT(///T10,A//T39,A/T10,A,T19,A,T39,A,T62,A)
C

DO 60 I=1,NE
I=MINC(1,I)
K=MINC(2,])
EL1=X(1,K)-X(1,J)
EL2=X(2,K)-X(2,J)
EL3=X(3,K)-X(3,J)
ELENG(I)=DSQRT(EL1++2+EL2+¢+2+EL3+2)
C1(I)=EL1/ELENG(I)
C2(I)=EL2/ELENG(I)
C3(I)=EL3/ELENG(I)

READ(5,+) AREA(I),EMOD(I)
WRITE(6,50) ,AREA(I),EMOD(I),ELENG(I)
WRITE(7,+) 1, ELENG(I)
50 FORMAT(T12,13,T17,E9.3,T39,E9.3,T60,F8.3)
60 CONTINUE

C
RETURN
END
L@ T P R ** kR
Cx LOAD *
Cretsrta s sd st 220 a ke EAREEEREREXEERRREES EEEE HHRAk

SUBROUTINE LOAD(Q,JCODE,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION Q(+),JCODE(3,+)

C

C INITIALIZE TO ZERO THE JOINT LOAD VECTOR, Q.
C CALL JLOAD.
C
C

DO 20 K=1,NEQ

Q(K)=0.0
20 CONTINUE
C
CALL JLOAD(Q,JCODE)
C
RETURN
END
C *kkkkk RRkRREREREE *% i *
Cx JLOAD *

"
»*

3% 3 133

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION Q(s),JCODE(3,%)

C
C READ THE JOINT NUMBER, JNUM, THE JOINT DIRECTION, JDIR, AND THE

C  APPLIED FORCE, FORCE; WHILE JNUM IS NOT EQUAL TO ZERO, PRINT JNUM,
C JDIR, FORCE,STORE FORCE IN Q, AND READ JNUM, JDIR, FORCE.
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C
READ(5,+) INUM,JDIR,FORCE
IF(JNUM.NE.0) THEN
. WRITE(6,10) "JOINT LOADS’,'GLOBAL’,’JOINT’,'DIRECTION’,’FORCE’
+ 10 FORMAT(///T10,A/T10,11(>")/T18,A/T10,A,T17,A,T35,A)
20 IF (JNUM.NE.0O) THEN
. WRITE(6,30) JNUM,JDIR,FORCE
« 30  FORMAT(T11,13,T21,11,T28,F15.8)
K=JCODE(JDIR,JNUM)
Q(K)=FORCE
READ(5,x) INUM,JDIR,FORCE
GO TO 20
END IF
ELSE
WRITE(6,40) °NO JOINT FORCES’
40 FORMAT(///T10,A)
END IF
C
RETURN
END
Carrsrkhrksksmhk kokkkkkkkkkkkk dokokokk *k *hkk
Cx NEWRAP .
C******************************#**##**************##**#****#************
SUBROUTINE NEWRAP(D,DD,Q,QT,TT,SS,AREA,EMOD,ELENG,C1,C2,C3,
ELONG,DEFLEN,F,FP,R,X,DDO,FPI,
MAXA,MCODE,JCODE,MINC,
INCONV,ITECNT,ITENUM,ITEUPD,ITEMAX,NE,NEQ,NJ,
LSS,QIMAX,QI,DQI, TOLDIS, TOLFOR,LSTEP,NFE)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION D(+),DD(#),Q(*),QT(*), TT(*),5S(*),AREA(s),EMOD(#),
$ ELENG(#),C1(#),C2(*),C3(+),ELONG(s),DEFLEN(),F(+),
$ FP(x),R(+),X(3,%),DDO(x),FPI(s),
$ MAXA(*),MCODE(6,*),JCODE(3,%), MINC(2,*),C15(40),C25(40)

[ - -

C
DO 51 =1,NE
C1S(I)=C1(I)
C25(I)=C2(I)
5 CONTINUE
C
DO 101 = 1, NEQ
D(I) = 0.D0
DD(I) = 0.D0
F(I) = 0.D0
FP(I) = 0.D0
FPI(I) = 0.D0
10 CONTINUE
C
DO 151 =1, NE
DEFLEN(I) = ELENG(I)
ELONG(I) = 0.D0
15 CONTINUE
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C

30 IF (QI .LE. QIMAX) THEN
C
DO 401 = 1, NEQ
QT(D) = Q() + QI
40 CONTINUE
C
CALL NRITER(D,DD,Q,QT,TT,SS,AREA,EMOD,ELENG,C1,C2,C3,
$ ELONG,DEFLEN,F,FP,R,X,DDO,FPI,
$ MAXA,MCODE,JCODE,MINC,
$ INCONV,ITECNT,ITENUM,ITEUPD,ITEMAX,NE,NEQ,NJ,
$ LSS,QIMAX,QI,DQI,TOLDIS,TOLFOR,NFE,C1S,C2S)
C
DO 601 =1, NEQ
FP(I) = F(I)
60 CONTINUE
C
IF (INCONV .NE. 0) THEN
WRITE(6,%)’##+++ERROR #+++xSOLUTION FAILS TO CONVERGE IN’,
$ ' GIVEN NUMBER OF ITERATIONS’
STOP
ELSE
C CALL RESULT(D,MCODE,JCODE,MINC,NE,NJ,NEQ,LSTEP,QI)
WRITE(7,%) D(6),",",Ql
C WRITE(+,+) D(4),’,",QI
ENDIF
C
QI = QI + DQI
C
GO TO 30
ENDIF
C .
RETURN
END
C******#*t****#*#***#**#*****#****#*t******###**#**##t*#****t##****#****
Cx NRITER *
C*##*#***#*#****** xkk¥ kkkggkk R gkk kkgkk

C
C

SUBROUTINE NRITER(D,DD,Q,QT,TT,SS,AREA,EMOD,ELENG,C1,C2,C3,
ELONG,DEFLEN,F,FP,R,X,DDO,FP],
MAXA,MCODE,JCODE,MINC,
INCONV,ITECNT,ITENUM,ITEUPD,ITEMAX,NE,NEQ,NJ,
LSS,QIMAX,QIL,DQI, TOLDIS, TOLFOR,NFE,C1S,C25)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION D(s),DD(*),Q(*),QT(*),TT(+),5S(+), AREA(+), EMOD(),

AAARLR

$ ELENG(x),C1(x),C2(%),C3(x),ELONG(x), DEFLEN(s),F(+),
$ FP(+),R(*),X(3,+),DDO(#),FPI(+),
$ MAXA(%),MCODE(6,*),JCODE(3,+),MINC(2,+),C15(40),C25(40)

CALL FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,MINC,
$ NE,NEQ,D,C1S,C2S)
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ITENUM = ITEUPD

ITECNT =1

INCONV =1
C
10 IF (INCONV .NE. 0 .AND. ITECNT .LE. ITEMAX) THEN
C

DO 151 =1, NEQ
R(I) = QT(I) - F(I)
C WRITE(*,*)’RES = *,R(I)
15 CONTINUE
C WRITE(%,*)’ °
C
IF (ITENUM .GE. ITEUPD) THEN
CALL STIFF(SS,AREA,EMOD,ELENG,C1,C2,C3,ELONG,DEFLEN,
$ MAXA,MCODE,NE,LSS)
ITENUM = 0
ENDIF

DO 201 = 1, NEQ
TT(I) = 0.D0
TT(I) = R(I)
0 CONTINUE

2
C
CALL SOLVE(SS,TT,MAXA,NEQ,1)
C WRITE(#,%)’-—--%’, TT(1)
C

DO 401 = 1, NEQ
DD(I) = TT(I)
TT(1) = 0.D0
40 CONTINUE

IF (ITECNT .EQ. 1) THEN
DO 501 = 1, NEQ
DDO(I) = DD(I)
50  CONTINUE
ENDIF

DO 601 =1, NEQ

D(I) = D(I) + DD(I)
WRITE(*,*)’DISPLa##xs+x++’,D(I)
CONTINUE
WRITE(*,*)’ °

QQaQ
S

CALL UPDATC(X,DD,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,JCODE,
$ NE,NJ,NEQ)

CALL FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,MINC,
$ NE,NEQ,D,C1S,C2S)

CALL TEST(D,DD,DDO,F,FP,FP1,QT,INCONV,NEQ,
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$ TOLFOR,TOLDIS)

DO 801 = 1, NEQ
FPI(I) = F(I)
80  CONTINUE

ITECNT = ITECNT 4 1
ITENUM = ITENUM + 1

GO TO 10

ENDIF
C

RETURN

END
Csxrsnrns *kkk Fjkokkkkk *
Cs RIKWEM *
C#*#**##****#***t**######t##*****t********t#*#****#t********************

SUBROUTINE RIKWEM(D,DD,DDO,DD01,DD1,DD2,DDP,AREA,EMOD,ELENG,

$ C1,C2,C3,Q,QT,SS,TT,X,ELONG,DEFLEN, F,FP,FPLR,
$ JCODE,MAXA,MCODE,MINC,
$ IT,INCONV,ITECNT,ITENUM,ITEMAX,ITEUPD,ITEDES,
$ NE,NEQ,NJ,LSS,QIMAX,QI,DQ],
$ TOLDIS, TOLFOR,LSTEP,NFE)
C
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C
DIMENSION D(*),DD(*),DDO(*),DD01(%),DD1(*),DD2(%),DDP(+),AREA(s),
$ EMOD(),ELENG(#),C1(+),C2(+),C3(+),Q(%),QT(+),
$ SS(*),TT(x),X(3,%),ELONG(+),DEFLEN(%),
$ F(+),FP(+),FPI(+),R(s),
$ JCODE(3,%), MAXA(+), MCODE(6,+),MINC(2,+)
C
C— INITIALIZE THE VARIABLES D,DD,F,FP,FPI TO ZERO
C
DO 101 = 1, NEQ
D(I) = 0.D0
DD(I) = 0.D0
F(I) = 0.D0
FP(I) = 0.D0
FPI(I) = 0.D0
10 CONTINUE
C
C— INITIALIZE THE VARIABLES DEFLEN, ELONG
C
DO151=1,NE

DEFLEN(I) = ELENG(I)
ELONG(I) = 0.D0
15 CONTINUE
C
NFE = 0
ITECNT = 1

Appendix B

171



C
20 IF (QI .LE. QIMAX .AND. ITECNT .LE. 50)THEN
C  WRITE(6,"(T10,A,3X,F16.10)") "QI = *,QI

C
C— COMPUTE THE TANGENT STIFFNESS MATRIX
C
CALL STIFF(SS,AREA,EMOD,ELENG,C1,C2,C3,ELONG,DEFLEN,
$ MAXA,MCODE,NE,LSS)
C
C— COMPUTE THE FIRST TRIAL SOLUTION
C
DO 401 = 1, NEQ
TT(I) = 0.D0
TT(I) = Q(D)
40 CONTINUE
C
CALL SOLVE(SS,TT,MAXA,NEQ,1)
C
DO 501 =1, NEQ
DDO1(I) = TT(I)
TT(I) = 0.D0
50 CONTINUE
C

C— COMPUTE THE ARC LENGTH FOR THE FIRST ITERATION
C FOR SUBSEQUENT ITERATIONS COMPUTE THE LOAD INCREMENT
C
IF(ITECNT .EQ. 1)THEN
DS=DQI«DSQRT(DOTPRD(DD01,DD01,NEQ)+1.D0)
DSMAX=DS+1.0D0
ELSE
DQI=DS/DSQRT(DOTPRD(DD01,DD01,NEQ)+1.D0)
TEMP=DQI«(DOTPRD(DD01,DDP,NEQ)-+DQII)
IF(TEMP .GT. 0)THEN
SGN=1
ELSE
SGN=-1
ENDIF
DQI = SGN=DQI
ENDIF

DQII = 0.0
DQI1 = DQI
DQII = DQII + DQI
C
C— COMPUTE THE INCREMENT IN DISPLACEMENT AND TOTAL DISPLACEMENT
C
DO 601 =1, NEQ
DDO(I) = DQI+DDO1(I)
D(I) = D(I) + DDO(I)
DDP(I) = DDO(I)
60 CONTINUE
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C

C-— INCREMENT THE LOAD PARAMETER

c
QI = QI + DQI

C WRITE(6,%) * QI *,QI

C-— UPDATE THE COORDINATES

CALL UPDATC(X,DDO,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,JCODE,
NE,NJ,NEQ)

CALL FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,MINC,
NE,NEQ)

CALL SUBROUTINE TRLVCT

CALL TRLVCT(D,DD,DDO,DD1,DD2,DDP,AREA,EMOD,ELENG,
C1,C2,C3,Q,QT,SS, TT,X,ELONG,DEFLEN,F,FP,FPLR,
JCODE,MAXA,MCODE,MINC,
IT,INCONV,ITECNT,ITENUM,ITEMAX,ITEUPD,NE,NEQ,
NJ,LSS,QIMAX,QLDQI, TOLDIS, TOLFOR,DQI1,DQII,NFE)

oN@] OTOO Q
HHAR ) »

DO 801 =1, NEQ
FP(I) = F(I)
CONTINUE

QQ
[—]

IF(INCONV .NE. 0)THEN
WRITE(6,+) *¢+++ ERROR s+++ SOLUTION FAILS TO CONVERGE,
$  *IN GIVEN NUMBER OF ITERATIONS’
STOP
ELSE
CALL RESULT(D,MCODE,JCODE,MINC,NE,NJ,NEQ,LSTEP,QI)
C
ENDIF
C
ITECNT = ITECNT + 1
C
C—COMPUTE THE SCALED ARC LENGTH
C
DS=DS+DSQRT((1.DO+ITEDES)/(1.D0+IT))
IF(DABS(DS) .GT. DSMAX)THEN
IF(DS .LT. 0)THEN
DS = -DSMAX
ELSE
DS = DSMAX
ENDIF
ENDIF

GO TO 20
ENDIF
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RETURN
END

Crkns ik Rk Rk ok kR ** kb okRkk Rk Rk Rk

Cx TRLVCT *

o %k k% *kk ERkkk Rk kA kkdkk

kK *%

SUBROUTINE TRLVCT(D,DD,DDO,DD1,DD2,DDP,AREA,EMOD,ELENG,

$ C1,C2,C3,Q,QT,SS, TT,X,ELONG,DEFLEN,F,FP,FPLR,
$ JCODE,MAXA,MCODE,MINC,
$ IT,INCONV,ITECNT,ITENUM,ITEMAX,ITEUPD,NE,NEQ,
$ NJ,LSS,QIMAX,QI,DQI, TOLDIS,TOLFOR,
$ DQI1,DQIINFE)

C
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C
DIMENSION D(#),DD(*),DDO(#),DD1(*),DD2(#),DDP(*),AREA(%),
$ EMOD(»),ELENG(*),C1(#),C2(*),C3(*),Q(*),QT(*),
$ SS(*),TT(*),X(3,+),ELONG(*),DEFLEN(%),
$ F(»),FP(x),FPI(*),R(*),
$ JCODE(3,x),MAXA(*),MCODE(6,*),MINC(2,*)

C

C
ITENUM = ITEUPD
IT=1
INCONV =1

C

10 IF(INCONV .NE. 0 .AND. IT .LE. ITEMAX)THEN

C

C WRITE(6,’(T8,A,3X,13)’) ITERATION °, IT

C

DO 151 = 1, NEQ
FPI(I) = F()
15 CONTINUE
C— UPDATE THE LOAD VECTOR
DO 201 =1, NEQ
QT(1) = Q(I) » QI
20 CONTINUE
C
C— COMPUTE UNBALANCED FORCES
C
DO 251 = 1, NEQ
R(I) = QT(I) - F(I)
25  CONTINUE
C
C— COMPUTE THE TANGENT STIFFNESS MATRIX
IF (ITENUM .GE. ITEUPD) THEN
CALL STIFF(SS,AREA,EMOD,ELENG,C1,C2,C3,ELONG,DEFLEN,
$ MAXA,MCODE,NE,LSS)
ITENUM = 0
ENDIF
o
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C— SOLVE FOR DD1
DO 301 =1, NEQ

TT(I) = 0.D0
TT(I) = Q(I)
30 CONTINUE
C
CALL SOLVE(SS,TT,MAXA,NEQ,1)
C
DO 401 =1, NEQ
DD1(I) = TT(I)
TT(I) = 0.D0
40 CONTINUE
C

C— SOLVE FOR DD2
DO 501 =1, NEQ

TT(I) = 0.D0
TT(I) = R(I)
50 CONTINUE
C
CALL SOLVE(SS,TT,MAXA,NEQ,2)
C
DO 601 = 1, NEQ
DD2(I) = TT(I)
TT(I) = 0.D0
60 CONTINUE
C

C--— COMPUTE THE INCREMENT IN LOAD PARAMETER
DQI = -(DOTPRD(DDO,DD2,NEQ))/(DOTPRD(DDO,DD1,NEQ)+DQI1)
DQII = DQII + DQI
QI = QI + DQI

DO 701 = 1, NEQ
DD(I) = DQI+DD1(I) + DD2(I)
D(I) = D(I) + DD(I)
DDP(I) = DDP(I) + DD(l)
70  CONTINUE
C
C WRITE(6,%(T10,A,3X,F20.15)) *QI = *,QI
C WRITE(6,'(T10,A,2(5X,F20.15))’) 'D1, D2’, D(1), D(2)
C
C— UPDATE THE JOINT COORDINATES
CALL UPDATC(X,DD,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,JCODE,
$ NE,NJ,NEQ)
C
C-— COMPUTE THE INTERNAL FORCES
CALL FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,MINC,
$ NE,NEQ) |
C
DO 801 =1, NEQ
C WRITE(6,%) 'FORCE = ’, F(l)
80 CONTINUE
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C
C— CHECK FOR CONVERGENCE
CALL TEST(D,DD,DDO,F,FP,FP1,QT INCONV,NEQ,

$ TOLFOR,TOLDIS)
c
IT=IT +1
ITENUM = ITENUM + 1
C
GO TO 10
ENDIF
NFE = NFE+(IT-1)
WRITE(6,+) * NFE = *, NFE
c
RETURN
END
Ly T * *kkkkRkRkER * ok
Cs DOTPRD .

C#*************#****#*#*#***#*#*****t***** *% * kkkk
FUNCTION DOTPRD(DOT1,DOT2,N)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION DOT1(*),DOT2(x)
C
C— DOTPRD COMPUTES THE DOT PRODUCT OF DOT1 AND DOT2.
C
DOTPRD=0.D00
DO 10 I=1,N
DOTPRD=DOTPRD+DOT1(I)«xDOT2(I)
10 CONTINUE
C
RETURN
END
Crsnrrnrrsrrrrrirss FRkmkkkkkk kR Rk R R Rk ERRRRK
Cs STIFF .
C*****#**t**##**********t***********#**#*#************#**#**#**#********
SUBROUTINE STIFF(SS,AREA,EMOD,ELENG,C1,C2,C3,ELONG,DEFLEN,
$ MAXA,MCODE,NE,LSS)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION SS(+),AREA (+),EMOD(+),ELENG(#),C1(#),C2(*),C3(*),
$ ELONG(+),DEFLEN(x),G(6),H(6), MAXA(%), MCODE(6,*)

INITIALIZE THE SYSTEM STIFFNESS MATRIX, SS, TO ZERO; FOR
EACH ELEMENT CALL ELEMS AND ASSEMS.

oloNoXo

DO 10L = 1,LSS

SS(L) = 0.D0
10 CONTINUE
C

DO 20 N = 1,NE
CALL ELEMS(AREA,EMOD,ELENG,C1,C2,C3,G,N)
CALL NELEMS(AREA,EMOD,ELENG,C1,C2,C3,H,ELONG,DEFLEN,N)
CALL ASSEMS(SS,G,H,MCODE,MAXA,N,LSS)
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20 CONTINUE

C
DO30I=1,LSS

C WRITE(6,*) ’SS = °,SS(I)

30 CONTINUE

C
RETURN
END

Crexrrrrsrhkrsehis *# SxkkhkRRRkkkE % *

Cs ELEMS *

O L T T A AR, kR Rkkkkk R
SUBROUTINE ELEMS(AREA, EMOD ELENG,C1,C2,C3,G,N)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION AREA(*),EMOD(*),ELENG(#),C1(*),C2(#),C3(*),G(6)

FOR ELEMENT N, COMPUTE THE GLOBAL STIFFNESS COEFFICIENTS, G(6),
DEFINED IN EQS. 5.15 (HOLZER)

GAMMA = AREA(N)«EMOD(N)/ELENG(N)

aQ Qaaa

G(1) = (GAMMA)*(C1(N)*s2)
G(2) = (GAMMA)#(C2(N)++2)
G(3) = GAMMA+C1(N)+C2(N)

RETURN
END

C¥-¥=*TT £ 33 ko kR kkk t 3 33

Cs NELEMS *

Cresrsrkensktirns * *kk Rkkkkkkkkkkkkkkkkkkkk
SUBROUTINE NELEMS(AREA, EMOD ELENG,C1,C2,C3,H, ELONG,DEFLEN,N)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION AREA(+),EMOD(+),ELENG(),C1(*),C2(+),C3(+),H(6),
$ ELONG(+),DEFLEN(+)

C

C FOR ELEMENT N, COMPUTE THE NON-LINEAR GLOBAL STIFFNESS

COEFFICIENTS,

C H(6)

C

C

GAMMA = AREA(N)«EMOD(N)/ELENG(N)
P = ELONG(N)/DEFLEN(N)

H(1) = GAMMA#+P«(1-(C1(N)*C1(N)))
H(2) = GAMMA#+P+(1-(C2(N)+C2(N)))
H(3) = -GAMMA=+C1(N)*C2(N)P

RETURN
END

C» I T T T T e PR T R s 2
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SUBROUTINE ASSEMS(SS,G,H,MCODE,MAXA,N,LSS)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION SS(),G(*),H(x), MCODE(6,+),MAXA(+),INDEX(4,4)
DATA INDEX/1,3,-1,-3, 3,2,-3,-2, -1,-3,1,3, -3,-2,3,2/

MODIFIED TO ALLOW DOF IN ANY COLUMN OF MCODE TO BE IN
ANY ORDER; SEE SKYLIN

INITIALIZE INDEX. ; ASSIGN STIFFNESS COEFFICIENTS, G(L),
OF ELEMENT N TO THE SYSTEM STIFFNESS MATRIX, SS, BY INDEX, MCODE,
AND MAXA.

Qaaa***» 0

DO20JE=1,4
J = MCODE(JE,N)
IF (J .NE. 0) THEN
DO 10 IE = 1, JE
1 = MCODE(IE,N)
IF (I .NE. 0) THEN
IF (I .GT. J) THEN
K = MAXA(I) +1-1J
ELSE
K = MAXA(J) + J - 1
END IF
L = INDEX(IE,JE)
IF (L .GT. 0) THEN
SS(K) = SS(K) + G(L) + H(L)
ELSE
SS(K) = SS(K) - G(-L) - H(-L)
END IF
END IF
10  CONTINUE
END IF
20 CONTINUE
C
RETURN
END
vav * Fokk L3 2 2 33 Fedkokkokkokkkkkkkkkkkkk kK
Cs SOLVE .
C*****************#****************i**!ﬂvv*v--- *
SUBROUTINE SOLVE(SS,Q,MAXA,NEQ,LC)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DIMENSION SS(+),Q(+),MAXA(s)

SOLVE DETERMINES THE SOLUTION TO THE SYSTEM EQUATIONS BY
OMPACT
GAUSSIAN ELIMINATION (HOLZER, PP. 290, 296, 307) BASED ON THE
SUBROUTINE COLSOL (BATHE P. 721) AND THE MODIFICATION BY MICHAEL
BUTLER (MS 1984): IF LC = 1, CALL FACTOR,FORSUB,AND BACSUB
IF LC > 1, CALL FORSUB AND BACSUB.

oloNoXoNoNoNoXe!
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IF (LC.EQ.1) THEN
CALL FACTOR(SS,MAXA,NEQ)
END IF
CALL FORSUB(SS,Q,MAXA,NEQ)
CALL BACSUB(SS,Q,MAXA,NEQ)

RETURN
END

oNoNoNoNe!

10

20
30

40
50

60

C
C
C

kkkdRgkkkkikkkkkkkkkkkg oy

FACTOR PERFORMS THE LDU FACTORIZATION OF THVE*STIFFNESVS MATRIX.

SUBROUTINE FACTOR(SS,MAXA,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION SS(x),MAXA(+)

DO 80 N=1,NEQ
KN=MAXA(N)
KL=KN+1
KU=MAXA(N+1)-1
KH=KU-KL
IF(KH) 70,50,10
K=N-KH
IC=0
KLT=KU
DO 40 J=1,KH

IC=IC+1
KLT=KLT-1
KI=MAXA(K)
ND=MAXA(K+1)-KI-1
IF(ND) 40,40,20
KK=MINO(IC,ND)
C=0.00
DO 30 L=1,KK
C=C+SS(KI+L)*SS(KLT+L)
SS(KLT)=SS(KLT)-C
K=K+1
K=N
B=0.00
DO 60 KK=KL,KU
K=K-1
KI=MAXA(K)
C=8S(KK)/SS(KI)
B=B+C#*SS(KK)
SS(KK)=C
SS(KN)=SS(KN)-B

STOP EXECUTION IF A ZERO PIVOT IS DETECTED
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70 IF(SS(KN).EQ.0.00) THEN
PRINT 75,N,SS(KN)
75 FORMAT(>-STIFFNESS MATRIX IS NOT POSITIVE DEFINITE’/’0PIVOT IS
$ ZERO FOR D.O.F. ’,14/°0PIVOT = *,E15.8)
STOP
END IF
C
80 CONTINUE
C
RETURN
END
Chanshbnsnsnnn - rn—— - hk
Cx FORSUB *
O L Trparng, * - kR R Rk kR *
C
C FORSUB PERFORMS THE FORWARD SUBSTITUTION.
C

SUBROUTINE FORSUB(SS,Q,MAXA,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION SS(+),Q(+),MAXA(+)

DO 20 N=1,NEQ
KL=MAXA(N)+1
KU=MAXA(N+1)-1
KH=KU-KL
IF(KH.GE.0) THEN

K=N
C=0.00
DO 10 KK=KL,KU
K=K-1
C=C+SS(KK)*Q(K)
10 CONTINUE

Q(N)=Q(N)-C
END IF
20 CONTINUE

C

RETURN

END
C vvvvv sk kg kkkk ke kkRRkkkREEkEk * 3k ko ok ok o ko o a ko ok ok ok ok ok ok
Cx BACSUB *
C koo kokk sk ok ook o o ol ok o o ok o o ko *
C

C BACSUB PERFORMS BACK-SUBSTITUTION TO OBTAIN THE SOLUTION.

SUBROUTINE BACSUB(SS,Q,MAXA,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION SS(+),Q(+),MAXA(#)

DO 10 N=1,NEQ
K=MAXA(N)
Q(N)=Q(N)/SS(K)
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10 CONTINUE
IF(NEQ.EQ.1) RETURN
N=NEQ
DO 30 L=2,NEQ
KL=MAXA(N)+1
KU=MAXA(N+1)-1
KH=KU-KL
IF(KH.GE.0)THEN
K=N
DO 20 KK=KL,KU
K=K-1
Q(K)=Q(K)-S5(KK)*+Q(N)
20 CONTINUE
END IF
N=N-1
30 CONTINUE
C
RETURN
END
C**************vv kkkkkkkpkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Cx UPDATC *

@ T T T P

SUBROUTINE UPDATC(X,DD,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,JCODE,

$ NE,NJ,NEQ)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION X(3,%),DD(x),C1(*),C2(),C3(x),ELONG(#), ELENG(x),
$ DEFLEN(),MINC(2,*),JCODE(3,%)
C
DO 30J =1,NJ
DO2L=1,2
K = JCODE(L,J)
IF(K .NE. 0) THEN
X(LJ) = X(L,J) + DD(K)
ENDIF
20 CONTINUE
30 CONTINUE

C
CALL LENGTH (X,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,NE)

C
RETURN
END

Cress NN R . -

Cs LENGTH .

(o —— .
SUBROUTINE LENGTH (X,C1,C2,C3,ELONG,ELENG,DEFLEN,MINC,NE)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION X(3,+),C1(+),C2(%),C3(+),ELONG(+),ELENG(+),DEFLEN(),
$ MINC(2,+)

C
DO10I=1,NE

C
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J = MINC(1,])
K = MINC(2,])

EL1 = X(1,K) - X(1,3)

EL2 = X(2,K) - X(2,J)

EL3 = X(3.K) - X(3,3)

DEFLEN(I) = DSQRT((EL1%#2)+(EL2#+2)+(EL3++2))
ELONG(I) = DEFLEN(I) - ELENG(I)

C1(I) = EL1/DEFLEN(I)

C2(1) = EL2/DEFLEN(I)

C3(1) = EL3/DEFLEN(I)

WRITE(+,+) * *

WRITE(s,+) C1(I)

WRITE(#,+) C2(I)

WRITE(,+) C3(I)
0 CONTINUE

o NeoNoNoNoXe!

RETURN
END
C*****#**v kkkkik Fkkggkkk * * *¥
C» FORCES *
Crsxex wokkokkkokkkkkkkg Rk akkkok ok koo koo ok Rk sk
SUBROUTINE FORCES(F,QT,AREA,EMOD,ELENG,C1,C2,C3,ELONG,R,MCODE,
$ MINC,NE,NEQ,D,C1S5,C2S)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION F(s),QT(+),AREA(+),EMOD(s),ELENG(),C1(s),
$ C2(+),C3(*),ELONG(#),R(*), MCODE(6,+),MINC(2,+),D(+),
$ C15(40),C25(40)

INITIALIZE THE FORCE VECTOR TO ZERO.
CALL INTERF.

aoQa

DO 101 = 1,NEQ
F(I) = 0.D0
10 CONTINUE
C
DO20I=1, NE
CALL INTERF(F,AREA,EMOD,ELENG,C1,C2,C3,ELONG,MCODE,I,D,C1S,C2S)
20 CONTINUE
C DO30I1=1,NEQ
C  WRITE(#,#)F(I)
C 30 CONTINUE
C
RETURN
END
C vvvvv * kR EkEkk * * kg
Cx INTERF *
Cx Rk Rk AR ** PP
SUBROUTINE INTERF(F,AREA,EMOD,ELENG,C1,C2,C3,ELONG,MCODE,I,D,C1S,
$ C2S)
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IMPLICIT DOUBLE PRECISION (A-H, 0-2)

DIMENSION F(+),AREA(%),EMOD(),ELENG(x),C1(s),C2(+),C3(+),

$ ELONG(*),MCODE(6,+),AA A(4),ZZZ(4), ELNG(60),D(+),C15(40),

$ C25(40)
C

CI1=C15(I)

CI2=C2S(I)

CI3=C3(I)

GAMMA = AREA(I)*EMOD(I)/ELENG(I)

ELNG(I)=ELENG(I)

DO 10 IlI=1,4
2ZZ(111) = 0.0D0
AAA(III) = 0.D0

10 CONTINUE

DO 26 =14
J = MCODE(IL])
IF (J .NE. 0) THEN
2ZZ(1l) = D(J)
END IF
26 CONTINUE
22Z21=72Z(1)
2222=22Z(2)
2723=227(3)
2Z24=22Z(4)

AAA(1) = CIS(I)+ZZZ1+C2S(1)+ZZZ2
AAA(2) = -C2S(1)+ZZZ1+C1S(1)+Z222
AAA(3) = CIS(1)+ZZZ3+C2S(1)+2Z74
AAA(4) = -C2S(1)+ZZZ3+C1S(1)+ZZZ4

AAA1=AAA(1)
AAA2=AAA(2)
AAA3=AAA(3)
AAA4=AAA(4)

FL1 = -5.0D-1#((2.0D0*AAA3-2.0D0«AAA1)*AREA(I)«+ELNG(I)*»2+
(AAA4%%2-2.0D0+AAA24+AAA4+3.0D0xAAA3#+2-6.0D0+AAAI*AAAI+AAA2++2+
3.0D0*AAA1%+2)*AREA(I)+ELNG(I)+((AAA3-1.0D0+AAA1)xAAA4%+2+(2.0D
0xAAA1xAAA2-2.0D0+AAA2¢AAA3)*AAA4+AAA3%+3-3.0D0xAAALIxAAA3«+2+(A
AA24x2+3.0D0+AAAL##2)*AAAI-1.0D0+sAAAT+*AAA2+%2-1.0D0xAAA1++3)+AR
EA(I))*EMOD(I)/ELNG(I)%+3

F2 = -5.0D-1%(((2.0D0+AAA3-2.0D0+xAAA1)xAAA4-2.0D0«AAA2+AA
A3+2.0D0*AAA1+AAA2)*AREA(I}+ELNG(I)+(AAA4%%3-3.0D0*AAA2+AA Ad%s2
+(AAA3%#2-2.0D0+AAA1+AAA3+3.0D0+AAA2+424+AAAL1+22)+AAA4-1.0D0+AAA
2xAAA3++24+2.0D0*AAA1xAAA2¢AAA3-1.0D0OxAAA2443-1.0D0+xAAAL1#+24AAA2
)*AREA(I))*EMOD(I)/ELNG(I)#*3

FL2=1.D0+F2

FL3 = 5.0D-1+((2.0D0xAAA3-2.0D0+AAA1)+*AREA(I)+*ELNG(I)##24(

1 AAA4%2-2.0D0xAAA2¢+AAA44+3.0D0+AAA3*#2-6.0D0+AAA1+AAA3+AAA24+243

Ot b O N =

N =
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0D0+AAA1*+2)«AREA(I)+ELNG(I)+((AAA3-1.0D0xAAA1)xAAA4+2+(2.0D0
*AAA1*AAA2-2.0DO*AAA2*AAA3)tAAA4+AAA3n3—3.0D0*AAAltAAA3**2+(AA
A2+x2+3.0D0+*AAA1+52)+AAA3-1.0D0«AAA1+AAA2++2-1.0D0+AAA1+43)+ARE
A(I))*EMOD(I)/ELNG(I)+*3

F4 = 5.0D-1#(((2.0D0+AAA3-2.0D0*AAA1)+*AAA4-2.0D0«AAA2+AAA
3+2.0D0+*AAA1+AAA2)+AREA(I)+ELNG(I)+(AAA4++3-3.0D0«AAA2+sAA Ade22+
(AAA3+%2-2.0D0+AAA1+AAA3+3.0D0+AAA25524+-AAA142)«AAA4-1.0D0+AAA2
*AAA34x2+2.0D0+sAAA1+AAA2+AAA3-1.0D0xAAA2+23-1.0D0+AAA 1452+ AAA2)
*AREA(I))*EMOD(I)/ELNG(I)#*3

FL4=1.D0+F4

Qv QO N

(-SR-S

C
DO20L=1,14
K = MCODE(L,I)
IF (K .NE. 0) THEN
IF (L .EQ. 1) THEN
F(K) = (C1S(I)*FL1-C2S(I)*FL2) + F(K)
ELSEIF (L .EQ. 2) THEN
F(K) = (C25(I)*FL1+C1S(1)+FL2) + F(K)
ELSEIF (L .EQ. 3) THEN
F(K) = (C1S(I)*FL3-C2S(I)*FL4) + F(K)
ELSEIF (L .EQ. 4) THEN
F(K) = (+C2S(I)«FL3+C1S(I)+FL4) + F(K)
C WRITE(#,+)’F4=",F(K)
ENDIF
ENDIF
20 CONTINUE
C
RETURN
END
Crrrsrrnsssrness NP P—— D~
Cs TEST *
O T L. % * R AR RR ARk
C PERFORM CONVERGENCE TESTS, ASSUME THAT CONVERGENCE
REACHED,
C ( SETTING INCONV=0 ) UNTIL IT IS PROVED THE CONTRARY. CALL
C DISPL, UNBALF .
C

SUBROUTINE TEST(D,DD,DDO,F,FP,FPI,QT,INCONV,NEQ,
$ TOLFOR,TOLDIS)

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION D(+),DD(#),DDO(x),F(*),FP(*),FPI(+),QT(+)

INCONV = 0.D0
DIVER = 0.D0

IF (TOLDIS .LT. 1.D0) THEN
CALL DISPL(D,DD,INCONV,NEQ,TOLDIS)
END IF

IF (TOLFOR .LT. 1.D0) THEN
CALL UNBALF (F,FP,QT,INCONV,NEQ,TOLFOR)
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END IF

C
C WRITE(6,+) ’INCONV = " INCONV
C
RETURN
END
C* Kk dkkkkk *kk *kkkkkkk *kk ¥k
Cs DISPL .
Crrkxrikksrarrshkk *kk¥ khkkkEkEEd %ok *kkk

C PERFORM THE DISPLACEMENT CONVERGENCE TEST USING THE EUCLIDEAN
C VECTOR NORM OF DISPLACEMENTS.
C

SUBROUTINE DISPL(D,DD,INCONV,NEQ,TOLDIS)

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION D(),DD(s)

DELTAD = 0.D0
TOTALD = 0.D0

C EUCLIDIAN VECTOR NORM OF DISPLACEMENTS .....conrvverrrrrsrnen.
DO 10 I=1,NEQ
DELTAD = DELTAD + (DD(I))+2
TOTALD = TOTALD + (D(I))#+2
10 CONTINUE
C
C  CHECK WITH TOLERANCES .......cosveernrremncrrnnssensesenns
IF ( TOTALD.NE.0 ) THEN
C = ( DSQRT(DELTAD) ) / ( DSQRT(TOTALD) )
IF ( C.GT.TOLDIS ) THEN
INCONV = INCONV + 10
END IF
ELSE
WRITE(6,+)’ ERROR: DISPLACEMENTS ARE ZERO’
STOP
END IF

C
RETURN
END
C****************#**##* *¥ xk% *
Cs UNBALF *
Cresassss - T NAA—

C PERFORM A CONVERGENCE TEST FOR THE UNBALANCED FORCE.
c

SUBROUTINE UNBALF(F,FP,QT,INCONV,NEQ, TOLFOR)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION F(+),FP(+),QT(s)

UNBFI = 0.D0
UNBFP = 0.D0

C
C COMPUTE THE UNBALANCED FORCE
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C
DO 10 I=1,NEQ
C  WRITE(ss)’ °
C  WRITE(x,*) 'QT(I) =",QT(1),’F(I) =*,F(I)
UNBFI = UNBFI + (QT(I)-F(I))++2
C  WRITE(s,+) UNBFI
UNBFP = UNBFP + (QT(I)-FP(I))++2
10 CONTINUE
C
C CHECK WITH TOLERANCES
C

IF ( UNBFP.NE.0.D0 ) THEN
C = ( DSQRT(UNBFI) ) / ( DSQRT(UNBFP) )
IF ( C.GT.TOLFOR ) THEN
INCONV = INCONV + 100
END IF
ELSE
INCONV = INCONV + 100
END IF

RETURN
END

Cxx *%x *xkkk **

C» RESULT *

C*************‘*v *kk Fhkkkkkkkkkk ¥k ek *kkk
SUBROUTINE RESULT(D,MCODE,JCODE,MINC,NE,NJ ,NEQ,LSTEP,QI)
IMPLICIT DOUBLE PRECISION (A-H, O-2)

DIMENSION D(+),MCODE(6,+),JCODE(3,+),MINC(2,)

»
*
»
"
*
¢
"
"
"
"
"
"
"
"
"
"
*

REWIND 3

IF(LSTEP .EQ. 0)THEN
NNN = NEQ + NJ + NE
DO 51 =1, NNN
J=0
WRITE (3) J
5 CONTINUE
LSTEP = LSTEP + 1
REWIND 3
ENDIF
C
IF(LSTEP .EQ. 1) THEN
WRITE(7,10) 'RESULTS®
10 FORMAT(////T33,A/T33,13,(*-"))
ENDIF

WRITE(7,30) "LOADSTEP’,LSTEP,QI
30 FORMAT(///T5,A,T14,,T39,14/
$  T5’LOADING PARAMETER:’,T25,F20.4/)
WRITE(7,35) *DOF’,’DISPL’"LAMBDA’
35  FORMAT(T11,A,T28,A,T42,A/)
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C

C— READ THE DEGREES OF FREEDOM FOR WHICH THE DISPLACEMENTS ARE TO

BE

C GIVEN AND TABULATE THE DISPLACEMENTS FOR THE GIVEN EQUILIBRIUM

C  POINT. (TOTAL DISPLACEMENTS)
C
IF(LSTEP .EQ. 1)THEN
READ(5,%) J
WRITE (3) J
ELSE
READ (3)J
ENDIF
C
C
40 IF(J .NE. 0) THEN
WRITE(7,50) J, D(J), QI
50  FORMAT(T10,13,T20,F15.8,T35,F15.8)
IF(LSTEP .EQ. 1) THEN
READ(5,%) J
WRITE (3) J
ELSE
READ (3) J
ENDIF
GO TO 40
ENDIF

LSTEP = LSTEP + 1

aaq

RETURN
END
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