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(ABSTRACT)

This thesis provides statistical analysis methods and a validation procedure for con-
ducting this statistical analysis, under the common random number (CRN)
correlation-induction strategy. The proposed statistical analysis provides estimates
for the unknown parameters that are needed for validating the model. While con-
ducting this statistical analysis, we make some key assumptions. Validation com-
prises of a three-stage statistical procedure. The first stage tests for the multivariate
normality , the second stage tests the structure of the covariance matrix between

responses, and the third stage tests for the adequacy of the proposed model.

The statistical analysis and validation procedures are illustrated with an example of

a hospital simulation study.
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CHAPTER | INTRODUCTION

In this thesis we consider a correlation induction strategy for performing simulation
experiments to reduce the variance of the estimator of the response of interest. The
aim of this thesis is two-fold : (a) present methods for conducting statistical analysis
under the prescribed correlation induction strategy, and (b) develop a procedure for

validating these statistical analysis methods.

Chapter 1 of Pritsker (1987) defines computer simulation as being ” the process of
designing a mathematical-logical model of a real system and experimenting with this
model on a computer. ” A system is a collection of items from a circumscribed sector
of reality that is the object of study or interest. Mode/s are descriptions of systems.
Throughout this thesis we will consider computer simulation models of stochastic
systems only. Such systems are characterized by having both probabilistic and
time-evolutionary behaviour. Often, real-world problems pertaining such systems are
too complex to be solved analytically. In such cases, the system is modeled using

simulation in order to provide relevant estimates of system performance.

Rather than describing the aggregate behaviour of a stochastic system, a
simulation model/ describes the operation of the system in terms of the
individual events of the individual components of the system. The system is divided

into elements whose behaviour can be predicted, at least probabilistically. The
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inter-relationships between the elements also are built into the model. After con-
structing the model, it is then activated (by generating input data) to simulate the ac-
tual operation of the system over time and record its aggregate behaviour. By
repeating this simulation for various alternative design configurations and comparing
their performances, much can be learned about the behaviour of the system with
comparatively little cost. This process of repetitive simulation for for various alterna-
tive design configurations is referred to as a statistical experiment or
sampling experiment. Simulation is alternatively defined (see Hillier and Lieberman,
1987) as the technique of performing sampling experiments on the model of the sys-
tem. These sampling experiments be can alternatively termed as
simulation experiments. Others have defined computer simulation in similar terms.
Naylor(1971) defines simulation as a numerical technique for conducting experiments
with certain types of mathematical models that describe the behaviour of a complex
system on a digital computer over extended periods of time. The principal difference
between a simulation experiment and a “real world” experiment is that, with simu-
lation, the experiment is conducted with a model of the real world instead of the ac-

tual system itself.

A statistical discrete event simulation is a time series experiment. Proper statistical
techniques must be applied to simulation output data if the results are to be useful.
Since many large-scale simulations require great amounts of computer time and
storage, proper statistical analyses can become extremely costly. This is because
we need more replications of the simulation to be performed to attain better point
estimates and confidence intervals around these estimat.es. Sometimes the cost of
making even a modest statistical analysis can be so high that the precision of the

resuits, perhaps measured by confidence-interval width, will be unacceptably poor.
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The simulation analyst should therefore try to increase the efficiency of the simu-
lation. In this document, we focus on statistical efficiency, as measured by the vari-
ances of the output random variables from a simulation. If we can somehow reduce
the variance of the estimator of an output random variable of interest (such as aver-
age delay in queue, or average cost per month in an inventory system) without dis-
turbing its mean (or the expected value), we can obtain greater precision, e.g.,
smaller confidence intervals, for the same amount of simulating or, alternatively,
achieve a prespecified precision with less simulating. Sometimes such a
variance reduction technique (VRT), properly applied, can make the difference be-

tween a prohibitively expensive simulation experiment and a useful one.

This thesis is organized as follows. In Chapter 2 the literature is reviewed. Chapter
3 develops statistical analysis methods under the common random number strategy
and also presents validation procedures for the same. The application of these
analysis methods and validation procedures is illustrated by means of a numerical
example in Chapter 4. Chapter 5 provides a brief conclusion, and future avenues

which should be explored as an extension to this work.
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CHAPTER Il LITERATURE REVIEW

In this chapter we review the literature relevant to the development of this thesis,
introduce notation, and define important concepts used throughout this thesis. This
chapter is divided into five topical sections : (a) simulation experiments, (b) corre-
lation induction strategies for simulation experiments, (c) statistical analysis of cor-
relation induction strategies, (d) validation of these analysis methods, and (e) a
general distribution theory for a class of likelihood criteria. In each section, we give
a concise overview of the specific topic. In Section 2.1 we provide the statistical
framework necessary to formally define a simulation experiment. In Section 2.2 we
focus our attention on two very important correlation induction strategies: (a) com-
mon random numbers and (b) the Schruben-Margolin correlation induction strategy.
In Section 2.3 we review the statistical analysis procedures devised by Nozari,
Arnold, and Pegden (1987) for conducting statistical analysis under the Schruben-
Margolin strategy. In Section 2.4 we present the validation procedure offered by Tew
and Wilson (1990) for the Nozari, Arnold, and Pegden statistical analysis, and in Sec-
tion 2.5 we discuss the general distribution theory for a class of likelihood ratio cri-
teria developed by Box (1949) which are critical to the development of our validation

procedure.

Throughout this thesis we use 1, to denote an r-dimensional column vector whose

elements are all 1, and I, to denote a (r x r) identity matrix. On occasion, in the de-

CHAPTER Il LITERATURE REVIEW 4



velopment of our statistical methodologies, we will make use of the following matrix
operation. For any (¢ x s) matrix A and {m x n) matrix B = (b;), the Kronecker prod-

uct of A and B is defined as the (mt x ns) matrix

[ Aby, Aby, Ab,, |

Abyy Aby - - - Aby,
A®B = c e

A‘bm1 Abm2 S Abpmp,

2.1 Simulation Experiment

Two purposes of simulation analysis could be : (1) The comparison of experimental
results under alternative operating conditions (factor settings), and (2) The detection
and estimation of the functional relationship that exists between the quantitative input
factors and the experimental results. A brief exposition of these topics is provided

next.

We define response to mean the output of a simulation experiment, and factors as the
non random inputs. We assume that the simulation analyst controls the values of the
factors without error, and that there are d such factors comprising the experiment.
The value of factor i is called its factor level, which is denoted by ¢,/ = 1,2, ..., d.
A particular design point in an experiment is identified by the specific levels of the d
experimental factors, denoted by ¢ = (¢4, ¢, ..., ¢s)’. We assume that there is a linear

relationship between the response and the selected setting of ¢, that is,
y = ulo)+e, (2.1)
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where u, the metamodel of the response variable is linear in the unknown parameters
that relate the response to the factor settings, ¢, and ¢ represents the error in u’s to
determine y. Often, at each design point the simulation experiment is performed
several times in order to acquire a good estimate of the error term variation. How-
ever, in simulation much work has been done on acquiring estimates of the error
term variation with exactly one run performed at each design point (see Section 5 of
Schruben and Margolin, 1978). Unlike all other forms of statistical experimentations,
simulation experiments offer the researcher a high level of control over the variation
in the output response. This control is attained by judicious choice of the random
number streams used to drive the random components of the simulation model. In
particular, the simulation analyst can induce correlation between the responses
sampled during the study (see p. 506 of Schruben and Margolin, 1978). The idea is

to choose variates for succesive replications in a clever way.

We now define the random number streams used to drive the simulation model. A
simulation model is usually driven by streams of random numbers. These streams
are sequences of real nhumbers scaled to the interval [0,1] and constructed to appear
random in nature. We assume that m random number streams are used to drive the
simulation model and we let R,, i = 1, 2, ..., m be the set of m such random number
streams such that R; is used at the ith design point. The jth component of ith exper-

iment is then

y{R) = ulo)+eyR), fori=1,2,..,mandj=12..,r (2.2)

where y; is the response at the ith design point and the jth replicate, ¢, is the setting
of the d factors at the ith design point, and ¢; is the error at the ith design point and

jth replicate. Typically u is unknown and one of the objectives of the simulation
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analysis is to estimate this function. The estimation process usually involves two
steps : (a) hypothesize a functional approximation of ¢ and (b) estimate any unknown
parameters in the hypothesized approximation (see p. 210 of Neter, Wasserman, and

Kutner, 1989).

For example, under the assumption that u is first-order and linear in the unknown

parameters, equation (2.2) can be written as

p-=1
yiR) = Bo + Z/}kxk(tp,») + gfR), fori=1,2,..,mand j=12..,n (2.3)
k=1

where B = (B, B1, ..., Bo—1) is the (p x 1) vector of unknown metamodel coefficients;
X (k=1,2, ....p — 1) represent known functions of these settings and y;, ¢, and ¢; are

as defined above.

Equation (2.3) can be written in matrix notation as :

y, = XB +¢g, forj=12.,r, (2.4)

where y = (y, ¥z, ---» Ym)'» IS the vector of responses at the jth replication, X is the
(m x p) design matrix whose first column is all ones and whose (i, j + 1)th element is
x{(¢), (=12 .,mandj=12..,p—1), p is defined above, and

g = (&), &, ..., £m;)’ is the vector of random errors.

We also assume that g (j = 1, 2, ..., r) has the following multivariate normal distrib-

ution :

g ~ N0, X), forj=1,2.,r, (2.5)
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where 0, is a (m x 1) vector of zeros and X is a (m x m) covariance matrix, such that
the distribution of & is nondegenerate. (Typically, in classical linear models

X = d4,, that is, the error terms are uncorrelated across design points.)

From (2.4) and (2.5) we get that

yi ~ Np(XB,X), forj=12..,r (2.6)

Under these assumptions, and for m > p (see p. 210 of Neter and Wasserman, and

Kutner, 1989), the least-squares estimate of f,
A —yy—
b= (x%7X7, (7)
has the following distribution :
B~ N, (XX XEXXX), (2.8)

where y = ijy,, Thus, knowing the distribution of [3 the least-squares estimator of
j=1

B, we can obtain 100(1 — a)% confidence intervals for p (see p. 114 of Myers and

Milton, 1991). Also, hypotheses tests can be performed on § (see p. 116 of Myers and

Milton, 1991), and we could check for any linear dependence in §/'s.

2.2 Correlation Induction Strategies For Simulation

Experiments

Variance reduction techniques (VRT) reduce the variance of the estimator by replac-
ing the original sampling procedure by a new procedure that yields the same ex-

pected value but with a smaller variance. Often, attention is restricted to the
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estimation of the mean value or the expected value. Hence VRTs can be regarded as
methods that reduce the variance of the estimate of the mean response. This re-
sponse can be the waiting time of a customer in the steady state, the total profit of a
firm over the planning period, etc. Some of the different VRTs used are stratified
sampling, control variates, importance sampling, antithetic variates, common random
numbers, and joint application of antithetic variates and common random humbers
(see pp. 110-200 of Kleijnen, 1974). (A detailed treatment on VRTs can be found in
Chapter 11 of Law and Kelton, 1991, chapters 2 and 8 of Bratley, Fox, and Schrage,
1983, and Chapter 3 of Kleijnen, 1974.) In the remainder of this thesis we will direct
our attention to the techniques of common random numbers and joint application of

the antithetic variates and common random numbers.

Simulation offers unusual opportunities for deliberately and advantageously inducing
correlation, positive or negative, among observations. When comparing policies, us-
ing random number streams common to all of these policies offers a fairer compar-
ison than would statistically independent streams since one source of variability has
been removed by testing all policies under the same conditions (see p. 42 of Bratley,
Fox, and Schrage, 1983). In a simulation experiment, usually more than one random
number stream is employed at one setting of the factors. This, in practice, tends to
amplify the magnitudes of the purposefully induced correlations between the obser-

vations at different factor settings (see p. 507 of Schruben, 1979).

When the same set of random number streams is used at two design points, the two
output responses tend to exhibit positive correlation (see p. 614 of Law and Kelton,
1991, p. 46 of Bratley, Fox and Schrage, 1983, or, p. 200 of Kliejnen, 1974). If the same

stream of random numbers were used in two different simulations (common random

CHAPTER H LITERATURE REVIEW 9



number strategy), one producing an univariate output y, and the other an univariate

output y., then we expect cov(y,, y.) = a?p, > 0. The variance of (y; — y.) is given by
var(y, —y,) = var(y,) + var(y,) — 2cov(y, y,).

Consequently, the statistic y, — y. has a smaller variance than would occur with in-
dependent streams because this leads to cov(y,, ¥;) = 0. Thus, the common random
number allows in detection of smaller differences between y, and y, than do inde-

pendent streams.

By contrast, the antithetic variates strategy induces negative correlations between
responses (see p. 628 of Law and Kelton, 1991, p. 54 of Bratley, Fox, and Schrage,
1983, or, p. 186 of Kleijnen, 1974). This technique is implemented by generating one
response from random number seed R, and the other response from its antithetic

random number seed (1 —R). If y, and y, are the corresponding univariate outputs,

(y1 + ¥2)

5 has a smaller variance than

then we expect cov(y, y.) = o%0_ < 0 so that

occurs when independent streams are used.

If independent streams are used, then there is no correlation between the responses.
(see p. 614 of Law and Kelton, 1991, or, p. 507 of Schruben and Margolin, 1978). This
is due to the fact that the output response variables obtained are independent of each

other.

Schruben and Margolin (1978) recommended a correlation induction strategy for a
special class of multipopulation experiments. This strategy partitions the design ma-
trix X (see equation (2.4)) into two blocks. A set of common random number streams
is applied to the first block, and a set of random number streams antithetic to the one

in the first block is applied to the second block. Their strategy, under certain re-
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strictions effectively combines common random numbers and antithetic variates’

strategies in the same experiment to reduce the variance of the response.

Next, we consider the concept of blocking. A block is a portion of the experimental
material that is expected to be more homogeneous than the aggregate. By confining
treatment comparisons within such blocks, greater precision can often be obtained
(see p. 102 of Box, Hunter, and Hunter, 1978. Blocking is also discussed in Chapter 6

of Cochran and Cox, 1966).

The idea of blocking applied to a simulation experiment is as follows. We consider
the sets of random number streams as producing random controliable block effects
that should be incorporated into the model (see p. 512 of Schruben and Margolin,

1978).

Let R (possibly with an index) denote a set of random number streams, and let R
denote its antithetic set, i.e. R = 1 —R. If v random block effects are denoted by the

components of
y = (‘Y‘I! ?2”--! yv)'v
and the (m x s) block incidence matrix w is defined as w = [w] where,

1 if observation i is in block k,
Wy =

0 otherwise
then the generalization of equation (2.3) to incorporate block effects is
y=Xp+ wy +s. (2.9)
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We now define orthogonal blocking.

Definition : An m-point experimental design whose corresponding X matrix is parti-
tioned as X = (1,,| T) with T'1,, = 0,_,, admits orthogonal blocking into s blocks if there
exists an (m x s) block incidence matrix @ , defined above, such that 1", is a vector

of positive integers and
Tw=0.

where 0 is a ((p — 1) x s) matrix of zeros.

This definition is clearly model-dependent and implies that a design admitting
orthogonal blocking into s blocks also admits orthogonal blocking into s’ blocks, for
s > s’ (see p. 513 of Schruben and Margolin, 1978). Under the assumption that X can

be partitioned as stated above,
_ -1 0
(X'X) 1 - [mo (T'T)'1]' (2.10)

For an experimental design that admits orthogonal blocking, Schruben and Margolin
(1978) formulated the Assighment Rule for préscribing how to assign random number

streams across design points. This rule is stated below.

Assignment Rule : For the linear model in (2.3) with p parameters, if the m-point
experimental design admits orthogonal blocking into two blocks of sizes m; and m,,

preferably chosen to be as nearly equal in size as possible, then for all m, design
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points in the first block, use a set of pseudorandom numbers R, chosen randomly,

and for all m, design points in the second block, use R.

They also showed that if an experimental design admits orthogonal blocking and the
earlier assumptions about induced dependence hold, then the Assignment Rule al-
ways vields Ordinary Least Squares (OLS) estimators with a smaller value of the
Dispersion matrix (D-value) than will (a) the assignment of one common set of ran-
dom number streams to all design points, or (b) the assignment of a different set of

random number streams to each design point, provided
{14 (m — Np, —2m™ " mymy(p, + p)}(1 = p, Y < 1
in the latter case.

They further showed that maximum benefit is obtained from the Assignment Rule if

the two block sizes are equal; i.e. if my=m,=m/2.

If g sets of seeds are used in a simulation experiment, then define,
Ri.s=R, (G = 1,2, ...,9). Let k(i) denote the index of the set of random number
streams chosen for the ith experimental point, i.e. Ry is chosen. They proposed a
model for the experimental error on the randomly chosen set of random number

streams which is given by,

8=b+8*.

where, b = {b(Ryuy), D(Ryey) » ---s D(Ruemy)} is the (m x 1) column vector of random block

effects across the whole design.
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That is, the error is decomposed into two random components, the block effect b, and

pure error, g*.

For the analysis of their assignment rule, Schruben and Margolin (1978) made the

following eight assumptions :

1.

5.

6.

7.

8.

When two observations are made with the same randomly selected streams, a
positive correlation of unknown magnitude, p,, is induced between the mean re-
sponses.

When two observations are made with the same selected sets of seeds, but with
antithetic streams, a negative correlation, p_, is induced between the mean re-
sponses.

When two observations are made with different randomly selected streams, the
output responses have zero correlation, i.e., corr(ys, ) = 0.

The positive correlation induced by using R;, (j = 1, 2, ..., g) at two design points
is a constant p,, which does not depend on the specific sets of seeds or the
specific pair of design points. Similarly, the negative correlation induced by using
R, and I_i,- at two design points is a constant — p_ with p,> —p_. (Note that
p->0).

¢* and b are uncorrelated, i.e., corr(e*, b) = 0, m)-

The components of ¢* are uncorrelated.

E[e*] = E[b] = On.

The component b(Ryp), (i = 1,2, ..., m), depends on the ith design point only

through the set of random number streams used here.

Assumptions 1-8 imply (see p. 513 of Schruben-Margolin, 1978)
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py if k(i) = k(j),
1. cov(b(Rymy): b(Rugy) = —p- it [k()—k(| = g,

0 otherwise.

2. cov(e*) = (1=p)m
which indicates that the variance of the error is reduced by an amount p,.

Using the above assumptions we can obtain the Schruben-Margolin covariance
structure. Now, X is assumed to be orthogonally blockable into two blocks. Let X,
denote the rows corresponding to the first block, and let X, denote the rows of the
second block. Without loss of generality suppose that observations in each replication
are arranged so that X = (X’y X’;)’. Then, the assumptions of Schruben and Margolin

yield E = L ® |, where X is given by,

i ]
1 Py Py —P. —P- - p_
S L Oy
P+ P+ . . . 4 —P_—P_: :—
=4 P- -
o —p_ —p_ o —P- A Py = = - p, (2.11)
—p_—p_ . . . TP P+ 1 p,
—p_ —p_ —p_. Py Py ) 1
| |
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Under these assumptions, all feasible correlation matrices can be permuted into
block diagonal form (see p. 513 of Schruben and Margolin, 1978). For

h = 1,2, ..., 2g, define the indicators

{1 if R, is used for experimental point i,
Wy =

0 otherwise

and define the (m x 2g) matrix W= [w.], where g is the number of sets of seeds

used. Similarly, define

B = {b(R,), b(Ry),.... b(Ryg)}".

Then the general linear model can be rewritten as :

y=Xp+WB+:s". (2.12)

The selection of m sets of random number streams for a simulation experiment is

now equivalent to specifying W consistently.

The Schruben-Margolin correlation induction strategy is an important and interesting
example of the use of a statistical approach in a stochastic simulation. But this strat-
egy is limited to an experimental design that admits orthogonal blocking into two
blocks. In general, this conditions may be neither satisfied nor desired (see p. 126 of

Myers, 1976).
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Under the eight assumptions listed earlier, for a wide class of problems, Schruben
and Margolin give a simulation experiment strategy that satisfies the D-optimality
criterion, that is, under the assignment rule, the determinant of the covariance matrix
of s, i= 0,1, ..., p, the unknown parameters in (2.4) for the ordinary least squares
and the weighted least squares is minimized. Also, under the assignment rule, the

trace of this covariance matrix is minimized, which is the A-optimality criterion.
2.3 Statistical Analysis under the Schruben-Margolin

Strategy
Nozari, Arnold, and Pegden (1987) presented methods for conducting statistical anal-
ysis for use with the above mentioned Schruben-Margolin correlation induction

strategy in the context of univariate responses.

Nozari, Arnold, and Pegden (1987) assume that the vector of responses across all

design points and replicates has the following multivariate normal distribution.

y=1|:|~Nnl| -|BE) (2.13)

where, X = (1,|T) is an (m x p) known design matrix of rank p <m, B = (B, Bi)’ is an
unknown p-dimensional vector, E is the (mr x mr) covariance matrix, and r is the

number of times the design is replicated.

Nozari, Arnold and Pegden (1987) presented four procedures for conducting statistical
analysis in conjunction with the Schruben-Margolin strategy. These procedures pro-

vide the following :
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¢  optimal (unifomly minimum variance unbiased) estimate of f,
¢ a confidence interval for f,,
. a confidence interval for §;, and

®¢ a joint confidence interval for 8, and f.

In a statistical framework, we use point estimates, hypothesis tests, and confidence
intervals to answer questions regarding the adequacy of the proposed model, or,
whether there exist a subset of variables that adequately explain the observed vari-
ation in response, or, whether there is a particular variable in the model useful in
helping to predict a response (see p. 144 of Milton and Myers, 1991).

We now investigate the four procedures presented by Nozari, Arnold, and Pegden.

Let ﬁ and a2 be the usual unbiased estimators for this model :

B= (8o By = (©'6)'GYy, (2.14)
& ={ly — GBI, (2.15)
where,
X
G=|:}
X

then we have

Result 1: J is the UMVU estimator of §
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Let y; denote the /th observation in the jth block of the ith replication for

i=12,..,r j=12and/ = 1,2, ..., m. Define

2
i i—m’— - % .= ZYT (2.16)
= 1=

j=1
and
roo= =32
A2 (YI - y)
= 2 _— e 2.17
2 m ; = (2.17)
then we have
2mr)ia g —_
Result 2 : K ) A(ﬁo £y)] ~ {,_4. This result can be used in the obvious way to
T1
construct 100(1 — a)% confidence intervals for f,. That is,
ﬁo € ﬁo tr/_21.

Let f be the usual test statistic for testing Hy,: HB; =0, vs H;: HB, # 0,, where H is a
known (h x (p — 1)) matrix of rank h < p, when E = ¢%,. That is,
'Ry TR Py
(r(HB,) (H(T'T)"H') (HB,))

f = (2.18
he? )

Let HW, denote the half-width of the 100(1 — a)% simultaneous confidence intervals

for the set of I'H,, for all | € R, when E = ¢%,. That is
A h o -1 12
HW, = o[ (Fp, - YH(T'T)HI)]
Define
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r 2
(n—p)62=m ). >~ 7.)
"2 _ i=1j=1 :

then we have

Result 3 : The optimal test for testing Hy: HB1 =0, vs H,: HB,# 0, where H is a

known (h x (p — 1)) matrix of rank h < p, rejects H, if

fo= il F 2.20
B 12 > hn—p—=2r+1: ( ) )
3

The 100(1 — )% simultaneous confidence interval for the set of I'Hp, for all 1e R*

when E=X®I, is

/\2Fa

T3 hn—p—2r+1
A2 ot 12
g hn—-p

IHB, € 'HB = HW,. (2.21)

One might be interested in inferences that involve both 8, and f, simultaneously. Let
y be the m-dimensional vector of sample means, and S be the (m x m) sample

covariance matrix of y;'s,

V= S = (G Lo - (222)

=1

then we have
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Result 4 : A size o procedure for testing Ho: KB =0, vs H,:Kf # 0,, where K is a
(k x p) known matrix of rank k < p, is to reject H, if

r(r — k)

/\, ' A n—1 y ]
k=) PK(KAK)KB] > Fe\_y,

L

where A = (X'X)-'X'SX(X'X)". A set of 100(1 — a)% simultaneous confidence inter-

vals is given by

_ R 1/2
VKB e I'KB+[ f—((:_—:)) Fir— ' KAK'T] (2.23)

for all I e R*.

The proofs of these results are given on pages 135 through 137 in Nozari, Arnold, and

Pegden (1987).

In order to derive results for drawing inferences about f, and B, separately, it is useful
to transform the model to one with with independent observations. |n other words the
aim is to get a block diagonal structure for the covariance matrix. This is done using

an (n x n) orthogonal transformation I''*¥), where

(em) ™1, 2m) TP e,
Ml ((zm)(—1/2)1rm _(zm)(-1/2)1rm)®|r , (2.24)
c'm®ml2r

where C, is a (m X (m — 1)) matrix such that (m‘-¥21,C,,) is orthogonal. Define
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C'ml

Y1
c,T
y* = |ys| = My, 1 = | 772 (2.25)
Y c,.T,
G¢* = Mg, gBY* - MMM (2.26)

where y¥ and y¥ are (r x 1). Let y; denote the (m x 1) vector of observations in the

Jth block of the ith replication for i

and

1,2,..,randj = 1, 2, then,

Thus, we have y ~ N, {(G*p, EISM*) with

and

CHAPTER Il LITERATURE REVIEW

(2m)! _1,2)(1'mY11 +1' my12)
; : (2.27)
_(Zm)( -1I2)(1’myr1 + 1'er2)J
Cm) TP vy = 1Y)
: : (2.28)
_(zm)(_1/2)(1'er1 — 1Y) i
C' mY11
cl
yi = | ™| (2.29)
clmyrz
. (zm)(1/2)|r 0
_ 0o °l (2.30)
0 T
22



Tfl, 20 g
o wl , : (2.31)

0 o0 Talprm—-1y

[l
1

where % = (1 +(m—1Np,—mp_), BB = o*(1+(m—1)p, +mp_) and
14 = o¥1— p,). Nozari, Arnold and Pegden (1987) further developed the following

theorems which are a consequence of the above transformation.

Theorem 1: y{, y¥, and y& are independent.

Theorem 2: yf ~ Nf((2m)"21,8,, ©il,).

Theorem 3: y5 ~ NJ(0, 3l,).

Theorem 4 : y&k ~ Nz,(m-”(T*ﬂh 7.'3'2,(,,-,_1)).

Thus, using the transformation I''*] on the response vector y, the transformed vector
of responses, y* is obtained, which has its covariance matrix in a desirable block di-
agonal form. Also, this transformation is invertible and does not involve any unknown
parameters, so that any procedure based on y* is also optimal among procedures
based on y = I''™I'y*, Clearly, from (2.17) and Theorems 1-4, we see that the model
involving y* is really three separate ordinary linear models, one involving (yi, B, %),

one involving (y#, t3), and one involving (y5, B, ©3).

Nozari, Arnold, and Pegden (1987), as a part of their conclusions state that the as-
sumption of constant correlation magnitudes is doubtful. ( However, see the results

of Tew and Wilson (1990) provided in the next section). They assert that the as-
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sumption that the magnitudes of the positive induced correlations are greater than

the magnitudes of the negative induced correlations seems reasonable.

2.4 Validation Of Simulation Analysis Methods

Tew and Wilson (1990) have presented a procedure for validating the simulation
analysis methods for the Schruben-Margolin correlation induction strategy. There are
certain assumptions made while conducting the statistical analysis, such as the
multivariate normality of the response vector y as given by (2.13), the Schruben-
Margolin covariance structure in (2.11), and the adequacy of the proposed linear
model in (2.4). This validation procedure determines the extent to which the under-
lying assumptions are satisfied and identifies modifications of the experimental pro-
tocol that might be required to correct significant violations of these assumptions.
The procedure is divided into three stages. Each stage of the validation procedure
tests a key assumption about the behaviour of the response across all points in the

experimental design. We now outline the validation procedure.

The Validation Procedure: The three-stage procedure for comprehensive diagnostic

testing follows :
1. Test for Multivariate Normality :

Ho © yi ~ Nu(u, ZB"), where "1 s positive definite but otherwise u and ¥
are unspecified,
versus,

H,: vy, has any non-singular m -dimensional distribution.
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2. Test for the induced covariance structure :

Ho: cov (y) = ZF™ with o?, p,, and p_ as in (2.13) so that Zf**! is positive definite,
p. > 0; otherwise a?, p,, and o_ are unspecified,
versus,

H, : cov(y,) is positive definite.

Test for Lack-of-Fit in the Linear Model :
Hy : E[y] = XB, versus, H, : E[y;] # XB.

The first stage of the validation procedure uses a multivariate extension of the
Shapiro-Wilk statistic to test the assumption of joint normality for the set of simulation
responses taken across all points in the experiment. The second stage uses a modi-
fied likelihood ratio statistic to test for the type of “ generalized repeated measures ”
covariance structure that is assumed to result from applying the Schruben-Margolin
strategy. Finally, the third stage uses a lack-of-fit test specialized for the Schruben-

Margolin covariance structure.

The results obtained by Tew and Wilson show that the diagnostic tools developed for
validation of the Schruben-Margolin assumptions enhance the capability of the prac-
titioner to analyze effectively simulation experiments performed with the Schruben-

Margolin strategy.

2.5 Distribution Theory For Likelihood Criteria

For the validation of certain key assumptions made while conducting statistical anal-
ysis, such as the multivariate normality of the response vector y as given by (2.12),

the Schruben-Margolin covariance structure in (2.13), and that of the adequacy of the

CHAPTER Il LITERATURE REVIEW 25



proposed linear model in (2.4), we need to perform some statistical tests similar to
the ones offered by Tew and Wilson (1990). Generalized tests were developed by

Box(1949), and we apply these to develop our validation procedure.

As observed by Box (1949), the likelihood ratio method of Neyman and Pearson (1928)
has been used frequently to derive criteria for testing a large number of hypotheses.
The problem lies not so much in deriving the criterion, but finding the exact distrib-
utions of the likelihood ratio when the hypotheses are true, and determining the best

critical region to adopt (see p. 317 of Box, 1949).

Let N denote the total sample size and L, denote the likelihood ratio statistic. Then,
the statistic M = — N In(L;) would be asymptotically ( for L, ) distributed as y* with N

degrees of freedom (see p. 317 of Box, 1949).

Box used the generalized expression for moments of the likelihood ratio statistic to
obtain a distribution for the logarthmic statistic M, a x? approximation, and an
asymptotic x? series. This was done to match the moments of the distribution of the
likelihood ratio statistic to the moments of a chi-squared distribution. He investigated

this method for two general criteria :

1. The test for constancy of variance and covariance of m sets of p- variate sam-
ples. This includes, as an important special case when p=1, the test for
constancy of variance in the samples.

2. Wilk’s test (see p.318 of Box, 1949) for the independence of m sets of residuals,
the /th set having p, variates. When m = 2 this corresponds to the test of signif-

icance used in multivariate regression, and analysis of variance and covariance,
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and when m = 2 and p, or p, is unity, it gives the corresponding univariate tests.

In the latter case, of course, the exact distributions are known.

Box refers to these criteria as generalized tests for homoscedasticity and independ-
ence, respectively. Box assumes normality or multinormality for the original obser-

vations.

Suppose s;; is the usual unbiased estimate of the variance or covariance ¥ between
the ith and jth variable in the /th sample based on sums of squares and products

having v, degrees of freedom, and suppose there are m such samples and s; is the

k
(2 visiy) "
average variance or covariance MT' where N= Y v, Box (1949, p. 320) then
=1
takes the criterion to test for homoscedasticity as the generalized form of Bartlett’s

criterion to be
k
M o= Ninlsl — > inlsyl = =Nin(L’y) (2.32)
=1
where

vi
K ()

[l
L, = n 7 (2.33)

1=1 Isijl

Box (1949, p. 321) obtained the moments of L'y when the null hypothesis, that of the
constancy of variance and covariance of m sets of p-variate samples, is true. If ¢;

are the sums of squares and products based on v, degrees of freedom corresponding
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to the s;;, we have ¢ = vs;y, €; = Y.y The joint probability density of the ¢, for the
!

/th sample is given by the Wishart distribution :

1
- v=—p=1) -1 —1
P(Cyap Crop -ess Cppl) = K(vl)lcijll 2 exp{ N Z(E cin} s (2.34)
ij

1 1 p=1 ; 1
Ke)™ = 2?‘”"’)n7"""1’ﬂr( (‘”2_ Dz (2.35)
j=0
Taking the gth moment of |c;| Box calculated the moments of M and then obtained

an expression for the characteristic function of pM, where p < 1 is a constant of our

choice. The expression for the characteristic function of pM is given by

m o P=) TL - (mu+ kB — 3]
o0 = [ [ [ =52
=1 j=0 I‘[—2—{m,u(1—2it)+mﬁ—j}]
] (2.36)
I'l'] r[?{#vm —2if) + B, —j} ]
=t T (w+p—i)]
where
W= pv, p=pv, v=p+p v,=p+p, (2.37)

Taking logarithms of (2.36), leads to the cumulant generating function in the form

¥ = 9(0—9(0), (2.38)

where
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p—1 m

g(t) = thu,pln(( ZZInF[ (w1 = 2it) + B — j} 1
I=1 j=0I=1 (2.39)

~In TL - {mu(1 - 20t) + mp — ],

and g(0) is a constant independent of ¢ obtained by putting t=0 in the above ex-

pression.

Further, Box showed that the cumulant generating function can be written in the form

W) = -rin(1—2i) + Z{ L(1=2it)" — 1} + Ry, (0

r=1

(2.40)
Rn + 1(#!0)'

where f = -;—(m——1)p(p—1), R,.+() is the remainder term in the generalized

Stirling’s theorem, and o, is given by

_ (_1)rm S r+2 S r+1-s
% = GEIPCTD) s;)[(S+ 1)2 D+, (2.41)
where
Dy = Ays (2.42)
B _
A, ~ BSH{--(——;’F'—)} - B ), (2.43)
- %Z ) o 13 , (2.44)
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and B/(x) is the Bernoulli polynomial (see Milne-Thomson, 1933). Using the properties
of the Bernoulli polynomials, for different values of r and s, we can obtain the values

of A; and «a,.

For p =1, Box (1949, equation (46) ) showed that the cumulant generating function

can be written as

1
() = Z iy Iy + Z(Hr )Zr 2. (2.45)

-
/=1 r=1 r vf

The jth cumulant of M is then given by

;o= 27— I A+ (': L py+ ., (2.46)
2ra’,
A = N (2.47)

and, in particular, for the generalized test for homoscedasticity,

(20, +3—1) ©, 1 1

A= Bm=Np L) Z N (2.48)
(p —1)(p—2)

b = oD Z( : 12 ). (2.49)

Now 2/-1(j — 1)If is the jth cumulant of the y? distribution with f degrees of freedom.
Thus, to order v, (2.39) is identical with the jth cumulant of Cx? where C is either

1+ Ayor (1 —A)". The idea here is to match the moments of the distribution of the
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likelihood ratio statistic to the moments of a chi-squared distribution in order to ac-
celerate the rate of convergence. Thus, for j = 1, we match the first moments, for

Jj = 2, we match upto the second moments, and so on.

For the univariate case it is clear that

C = 144 = 3(m—1) Z( ). (2.50)

Box (1949, p. 329) also showed that for the multivariate statistic, p > 1 and we take

M/C to be approximately y? with f = —;-(m — 1)p(p + 1) degrees of freedom and

1 (0% +3p—1)
= = (1-A) = ~ BT m—1) Z( v N) (2.51)

if the degrees of freedom are equal this becomes

4 (202 +3p — 1)(m + 1)

c B 6(p + 1)mv

(2.52)

Morrison (1976, p. 258) applied Box’s technique to address the problem considered
by Wilks(1935) for the generalized test for independence. Let S; be the unbiased es-
timate of X, based on v; degrees of freedom, where v, = N; — 1. Note that we are as-
suming m p-dimensional multinormal populations that are being tested for
independence, and X;,, (i = 1,..,, m) are their respective covariance matrices. Now,
if the ith of the m sets contains p; variates, so that the covariance matrix can be par-

titioned into submatrices X; of dimensions (p; x p;), the hypothesis is

HO:EU—:O
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for all i # j. Within the ith set the covariance matrix £; need only be positive definite.
To test the independence of these m populations, the Wilk’s test statistic is the de-

terminantal ratio (see p. 258 of Morrison, 1976)

||
[Sqel oo 1Sl

(2.53)

where

m
S = —=— s, (2.54)

and §; is partitioned into submatrices Sy, Sz, ..., Som.

Although the exact distribution of V is complicated, Wilks and other researchers have
obtained good approximations to it in terms of tabulated functions. In particular, Box

(1949) has shown that M/C is distributed as x? with f degrees of freedom, where

1 1
= 1 —m(ZQa +3Q,), and f = "2—92 (2.55)

o|=

where Q, = (p)* — X.(p)’. Box also considered the test of independence for test-
! !

ing m groups, each group having only one variate. The likelihood ratio criterion as

obtained by Wilks then becomes the determinant of the sample correlation matrix.

He showed that the Bartlett’s factor is

1 2m+5 1
c = 1— 5 , and f = 2,m(m—1). (2.56)
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MC-' will then be asymptotically distributed as y? with 1/2m(m — 1) degrees of free-

dom.

Thus, knowing the moments of the likelihood statistic, Box obtained an expression for
the distribution of the statistic M, a x? approximation and an asymptotic x? series.
The key idea is to match the moments of the distribution of the likelihood ratio sta-
tistic with those of a chi-squared distribution. In particular, we will match the first
moments. We apply the generalized tests for homoscedasticity and independence
developed by Box (1949) in the validation procedure which is discussed in the next

Chapter.

Concluding Remarks

In this Chapter we have reviewed the Schruben-Margolin correlation-induction strat-
egy which jointly employs the common random numbers and antithetic variates for
variance reduction. More importantly, we have reviewed the statistical analysis of
Nozari, Arnold, and Pegden (1987) and its validation under the Schruben-Margolin
correlation-induction strategy. We have also discussed methods to conduct the sta-
tistical tests used in the validation procedure. In the next Chapter we provide a
similar statistical analysis and validation procedure for the common random number

correlation-induction strategy.
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CHAPTER Ill Statistical Analysis and Validation

Procedure for the CRN Strategy

In this chapter we present methods for conducting statistical analysis under the
common random number (CRN) strategy for multipopulation simulation experiments

and offer a three-stage validation procedure.

3.1 Common Random Numbers

The basic idea of the CRN strategy is to compare alternative systems under similar
experimental conditions to improve confidence that observed differences in perform-
ance are due to the differences in the system design rather than to differences in the
experiment itself (see p. 61 of Law and Kelton, 1991). To see the rationale for CRN
more clearly, consider two alternative systems in which y,; and y, are the output re-
sponses for the first and second systems, respectively, on the ith independent repli-
cation. We want to estimate & = E[y,] — E[y.]. If we perform r independent
replications of each system and let z, = yu—y» (i = 1,2, ...,r), then E[z] = é and

- Tz, , . . , .
zZ =73 -r—' is an unbiased estimator of é. Since the z’s are independent random var-
i=1

var[z] = Va;(zi) _ (var(y,) + Va"(erf) — 2cov(yy;, ¥2:)) _
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If we could carry out the simulation so that yy; and y, are positively correlated, then
cov (yu, ¥2:) > 0, so that the variance of the estimator Z(r) would be reduced. CRN is
a technique through which we try to induce positive correlation so as to effect such

a reduction in var (2).

Under the CRN technique, the same set of random number streams
R; (i = 1,2,..,m) is applied to all m design points in the ith replication. We define
y, to be a mr-dimensional vector of observations which has the multivariate normal

distribution as stated in (2.12).

In addition, when the same set of random number streams is used at two design
points, we assume a positive correlation, p,, is induced between the two responses.
Further, p, is a constant, and does not depend on the specific set of seeds or the
specific pair of design points, i.e. corr (y,, y;) = p, (for all i,j, and i#j). Under these
assumptions, the covariance matrix between observations for the common random

number strategy, Z€™, is given by

=CRN) _ w(CRN) !,

where

[ 1 p+ . . . p+_
p+ 1 . . . p+

Z(CRN) =3¢ . . - - . i (3.2)
P P

Note that the covariance structure of XI?*" does not have the diagona! form, and

hence, simple linear model theory cannot be applied directly to this model. However,
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if we could transform this covariance structure to a diagonal form, then we could use
the theory of simple linear models to estimate the unknown parameters, form confi-
dence intervals, and also perform the usual statistical tests on these parameters with
the transformed responses. Once we know how these transformed responses can
be used to perform these tasks, we can rewrite the procedures in terms of the ori-
ginal (untransformed) responses by taking the inverse transformation on the trans-
formed responses; this can be done, of course, only if the transformation is invertible

(for obvious reasons we limit our discussion to such transformations).

Unfortunately, there is no general proof that CRN produces the desired variance re-
duction. When it does work, we will still not know beforehand how great a reduction
in variance we might experience. The efficacy of CRN depends on the random variate
generation algorithms used and also on the particular models being compared. Fur-
ther, its use presupposes the analyst’s belief that the different models will respond
“similarly” to large or small values of the réndom variates driving the models. For
example, we would expect that smaller interarrival times for several designs of a
queueing facility would result in longer delays and queues for each system (see p.

615 of Law and Kelton, 1991).

There are, however, some classes of models for which variance reduction using the
CRN technique is guaranteed. Heidelberger and Iglehart (1979) showed this for cer-
tain types of regenerative simulations, and Bratley, Fox, and Schrage (1978, Chapter
2) derive results indicating conditions under which CRN will work. Our own extensive
computational experience has also showed that substantial variance reductions are

realizable for a wide variety of simulation models.
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Two advantages of the CRN strategy are that it is easy to employ and that it can be
applied to any multiple-run simulation experiment. This latter property makes this
strategy extremely useful for fitting second-order and higher metamodels in simu-
lation experiments. Experimental designs for fitting a second-order response surface
must involve at least three levels of each variable so that the coefficients in the model
can be estimated (see p. 126 of Myers, 1976). The Schruben-Margolin correlation-
induction strategy requires that the design be blockable into two blocks. This re-
quirement is untenable for many second-order designs of interest (see p. 126 of
Myers, 1976), thus restricting the applicability of the Schruben-Margolin correlation-
induction strategy significantly. On the other hand, the CRN strategy, which yields the
same variance reduction for all parameter estimates, except f, as the Schruben-
Margolin strategy requires no such blocking restriction on the design. Thus, the CRN
strategy is a competitive alternative to the Schruben-Margolin correlation-induction

strategy for many metamodel estimation situations in simulation experiments.

3.2 The Statistical Analysis

In this section we outline four basic methods for conducting statistical analysis for
use with the common random number strategy for multipopulation experiments. The
results are parallel to those presented by Nozari, Arnold and Pegden (1987) and are

proved in Appendices | through IV. The results yield the following :

¢  optimal (UMVU) estimate of §,
® a confidence interval for S,
¢ confidence intervals for §,, and

¢ joint confidence intervals for f, and ..
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Let m be the number of design points of a simulation experiment. Now consider the

linear model
y = G + ¢ (3.3)

where y is as defined in (3.1), ¢ is the error term, and

is a (mr x p) design matrix. Here r is the number of replications and p is the number

of model parameters.

Suppose we average both sides of (3.3) over the number of replications, and denote

the left hand side average of y’s by y, and the average of ¢’s by &, then we get
y =X+¢

Solving the above as an unconstrained minimization problem to minimize ||z]|? gives
the least squares estimator for § which is also the UMVU estimator since ¢ is as-

sumed to have a normal distribution. This solution is found to be
A o,
g = (X'X) X'y.

This is the same estimator of f as in the general linear model, that is, in a linear
model which has uncorrelated responses. In the CRN case we in fact have correlated

responses, but still the UMVU estimator of # has the same form.
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By applying an orthogonal transformation to the correlated responses, we can trans-
form the problem to one with independent responses (as seen in Section 2.3 and also
will be seen later in this section). In doing so, the basic problem is unchanged and
therefore the properties of the estimators are not destroyed. Hence, fi has the same

form whether the responses are correlated or not.
Let ﬁ and o% be the usual unbiased estimators for this model, that is :
N N N , , —1 ,
B=(By,B1) =(G'G) Gy, (3.3)

and

a2 (ly = 6BI%)

0= n-—p (3-4)
Note that 4%, the unbiased estimator of ¢? is model dependent. Then we have :

Result 1: if is the optimal estimator of g.

Let Yy denote the Jth observation of the ith replication
(i=12..,r, and j = 1,2,..,q). Define y; as the mean of the observations across

each replication, and y_ the overall mean of the observations. Then,

=<I

i.

, (3.5)

)

m r
— Yij -
o= Y= 7=
j=1 i=1
Also define :1% is the variance between replicates. Then,
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foo =2
2 - mz i ry..) (2.6)

i=1

Then we have

Result 2 : R
[(mr)'2(Bo — Bo)]
b

~ t,_1.

This result can be used in the obvious way to construct 100(1 — a)% confidence in-

tervals for f,.

Let f be the usual test statistic for testing H,: HB1 =0, vs H,: HB,+# 0,, where H is a

known (h x (p — 1)) matrix of rank h < p, when E = ¢%l,. That is,

r(HB,Y (H(T'T) "W)™ (HB,)

A2
h0'1

Let HW, denote the half-width of the 100(1 — a)% simultaneous confidence intervals

for the set of I'HB,, for all | € R*, when E = ¢4, That is

12

FE . _ VH(TT)'HI
HW, = 31[/1 MR ] (3.7)
Define
.
(mr—m)s—m ) (7, ~ 7.
A3 = = ; (3.8)

r(m—1)
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where ,ii is the pure error of the fitted model, and a? is given by

Cmr =117 2> vy =¥,° (3.9)

i=1j=1

Note that o3 is another estimator of ¢?, and is model independent. Then we have

Result 3 : The optimal test for testing Ho: HBy =0, vs H,: HB,# 0,, where H is a
known (h x (p — 1)) matrix of rank h < p, rejects H, if

A2
fsig.
* 1
f > Fhnpr (3.10)
2
The 100(1 — «)% simultaneous confidence interval for the set of I'Hf, for all 1e R*
when E=X®I, is
A
2
(’12)Fg,n—p—r

ay
I'HB, € I'HB, + HW,. (3.11)
1 T ek,

Next we consider inferences that involve both f, and f, simultaneously. Let ¥ be the
m-dimensional vector of sample means, and S be the (m x m) sample covariance

matrix of the y/’s, that is,

7=-%2n 12 — - (3.12)

then we have
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Result 4 : A size o procedure for testing Hy: Kf =0, vs H,: Kf # 0,, where K is a
(k x p) known matrix of rank k < p, is to reject H, if

Hr—K) a A e

k=) BK(KAK' ) KB>Fy (3.13)
where A = (X' X)-"X'SX(X'X)-*. A set of 100(1 — a)% simultaneous confidence inter-
vals is given by

(r—1 A "2 |
I'Kg € |'Kﬂi[kWF:’r_kl'KAK'|:| (3.14)

for all l e R*.

In order to derive results for drawing inferences about f, and #, separately, it is useful
to transform the model to one with independent observations. The derivation of these
results are analogous to the ones presented in Section 4 of Nozari, Arnold and
Pegden (1987) and as discussed in Section 2.3. In other words, the aim is to get a
block diagonal structure for the covariance matrix between the responses. This is

done by by applying an (mr x mr) orthogonal transformation I'“*", where

—1/24,
e = [(m o 1@;)@’], (3.15)

where C, is a (m x (m — 1)) matrix such that (m~*1,,C,,) is orthogonal. Note that for
the Schruben-Margolin covariance structure, the transformation matrix I'" was

given by Nozari, Arnold, and Pegden (1987) on p.134 as,
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em™?1, em)"Ar el

c’m®l2r
Define
. C',T
c'.T
v = [ZL] = RNy 1* = m, . (3.17)
; .
C',T
/2y 0
G* = g, — |™ | ang, (3.18)
0o T
and
, 2 0
gCRN* _  pCRNZCRN)pCRNY [M’ 2 ] (3.19)
0 2(r(m—1))

where yf is (rx1), and y5 is (m—1rx1), i} = ¢(1+(m—1)p,), and
A3 = o¥(1— p,). Note that for the Schruben-Margolin covariance structure we had

% = o¥(14+(m—1)p,—mp.), 18 = 6¥1+(m—1)p,+ mp.) and 1% = ¢*(1 — p,).

For the Schruben-Margolin strategy, the transformed vector of observations, y*, had
three components. The second component, y¥, was the difference between the ob-
servations on a given replication across the two blocks. For the CRN case, no such
blocking is required, so this second component does not exist. Hence, for the CRN

case, we have only two components of y*.
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Also, A} is equal to 7 in the Schruben-Margolin case, but for the term, p_ This is due
to the fact that there are no negative correlations induced in the CRN strategy. y7, in
the CRN case, and y5, in the Schruben-Margolin case are identical in that both have
the vector of observations across the m design points y,, where / is the number of
replications, being pre-multiplied by the same matrix C,. Hence we expect y7, in the
CRN case, and y{, in the Schruben-Margolin case to behave in an identical manner.
Their variances 43, and 3, respectively, are also the same.

By the definition of y; given in equation (3.1}, we have,

m
' = [m“’%,zy,} (3.20)
i=1

and

C’mY1
cl
yi= | ™ (3.21)
C' myr
Thus, we have
y ~ Nmr(G*ﬂs E*) (3.22)

We notice that the term 1% is 0 for the CRN case.

We see that by applying the transformation I'®*" to the response vector y, the trans-
formed vector of responses, y*, is obtained. The covariance matrix of y* is block di-

agonal. Also, this transformation is invertible and does not involve any unknown
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parameters, so that any optimal procedure based on y* is also optimal among pro-
cedures based on y = I'®'y* [nspection of (3.19) clearly indicates that the model
involving y* is really two separate ordinary linear models, one involving (y¥, B, 43),

and one involving (y¥, B, 43).

As a consequence of the above transformation, we can establish the following prop-

erties.

® y¥ and y5 are independent.
o yF o~ N(m"1,B8, AI,).

g Y& o~ Ny o(T*B1, Alim—1y)-

We have thus developed statistical analysis methods under the CRN strategy for
multipopulation simulation experiments. That is, we have provided optimal estimation
of B, individual confidence intervals for f, and B, as well as joint confidence intervals
for B, and B,. Further, we have provided optimal tests of hypotheses to test for the

linear combinations in /s, i = 1,,2, ..., p.

While stating the above results, and also proving them, we have made certain basic
assumptions, such as the multivariate normality of y, the CRN covariance structure
as given by equation (3.2), and also that of the appropriateness of the proposed linear
model given by (3.3). We therefore need to develop a procedure to formally test
these assumptions in order to legitimately employ the above stated results. In the

next section we develop these required tests.
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3.3 The Validation Procedure

In the previous section we presented methods for conducting statistical analysis un-
der the CRN strategy. We now develop a three-stage procedure for validating the use
of the analysis. This validation procedure parallels that given by Tew and Wilson
(1990). It is mainly intended for use in a relatively small pilot study prior to the exe-
cution of a full-scale simulation experiment to determine the extent to which the
underlying assumptions are satisfied and to identify modifications of the experimental

protocol that might be required to correct significant violations of these assumptions.

Each stage of the procedure checks a key assumption across all points in the design.
The test in each stage depends upon validation of hypothesized properties of the
previous stages, and hence, these diagnostic checks on the experimental désign and
analysis must be performed in order. At each stage of the validation procedure, a
highly significant test statistic will generally indicate the need for some corrective

action by the user. The following three diagnostic checks need to be performed.

Test for Multivariate Normality :
Ho : y; ~ Np(n, E(CRN)), where TN s positive definite but

otherwise u and TCRN) are unspecified, (3.23)
versus
H, : y; has any non-singular m-dimensional distribution.
Test for the induced covariance structure :
Hy @ cov(y) = RN with o2, P4 as in (3.2)
(CRN) ”» . :
so that T is positive definite, p, > 0; (3.24)

otherwise 02, p,, are unspecified,
versus
H, : cov(y,) is positive definite.
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Test for Lack-Of-Fit in the Linear Model :

Ho : E[y] = X8,
versus
Hy @ E[y] # Xg.

(3.25)

Performing these tests would validate our key assumptions which are as follows :

1. The response variance is constant across all design points so that
o? = var[y(R)] = ot fori=12.,m,
where m is the number of design points.
2. There is a constant nonnegative correlation between all pair of responses y; and
y; i# j. That is,
corr(y, y;)) = p, for i#j, 1<i, j<g, where 0<p,<1.

3. (yi:i=12,...,r) ID ~ Nu(XB, TCr"M),

We use the test offered by Tew and Wilson (1990) as a diagnostic for testing the
multivariate normality of the response vector {y;}. This test is a general test for a
random observation sample of size r. The only restriction is that the sample size
should be in the range max{2m,16} < 32. We select the values of r and m such that

this restriction is satisfied.

If we reject the null hypothesis of (3.24), then the lack-of-fit test performed would be
the same as that developed by Tew and Wilson (1990). Otherwise we use the lack-

of-fit test presented in Section 3.5.

If the null hypotheses in (3.23) and (3.25) are validated, but we fail to accept the null
hypothesis in (3.24), we need alternative methods for follow-up analysis of the

metamodel. Of particular interest is the construction of a meaningful confidence re-
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gion for the full vector B of metamodel parameters. For this test also we use the same

test developed by Tew and Wilson (1990).

Test for the CRN covariance structure is discussed in Section 3.4, and a lack-of-fit test

assuming the CRN covariance structure is discussed in Section 3.5.

3.4 Test For The CRN Covariance Structure

This stage of diagnostic testing is based on a modified likelihood ratio test of the
composite null hypothesis for the second diagnostic check mentioned eariier in
(3.16). Some cautions about this test are required. First, these tests maybe sensitive
to the assumption that the responses {y:; (i = 1,,2,...,r)} have a multivariate
normal distribution. Second, although the simulation analysis method may not be
very sensitive to the normality assumption, these analysis methods are unjustified
when the experimenter has clear evidence of departures from the covariance struc-

ture as given by (3.2).

This test is performed as follows. The conventional likelihood ratio test statistic for

the composite null hypothesis H, in (3.23) has the form

> rf2
A (3.26)
A7
where
A= D -Dy-T). (3.27)

i=1
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If the responses {y;; (i = 1,2, ...,r)} are multinormal with the prescribed covariance
structure given in (3.2) then the test statistic M = —2 In(L) asymptotically has a chi-
squared distribution with 1/2m(m + 1) — 2 degrees of freedom as r = oo. However,
the rate of convergence to this limiting distribution can be slow. To achieve adequate
convergence to this limiting distribution of M with moderate values of r, we have de-

veloped the modified likelihood ratio statistic

N = —2yqIn(L), (3.28)
where
m(m + 1)
— 3
Yo = > : (3.29)
m®—3m+42 + 2m —1 + m-—2
2y 2 Vs
with
2m + 3
Wy = 1 — T (3.30)
U, = 1 — 3m® —1 (3.31)
2 6r(m—1) "’ :
= —m
Vs = 1+ =1’ (3.32)

The adjustment factor ¥, has been chosen such that r > m and the null hypothesis
of the tests for multivariate normality of {y;; (i = 1,2, ...,r)} as in (3.23) and for the
CRN covariance structure as in (3.24) hold. Then, to the terms of order (r — 1), the
expected value of N is identical to the expected value of y2[ 1/2m(m + 1) — 2], a chi-

squared variate with 1/2m(m + 1) — 2 degrees of freedom. In other words, the ad-
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justment factor Y, has been chosen so that for multivariate normal responses having

the covariance structure given by (3.2).

That is,
1 1
EIN]-E{(’ [z m(m+1)—2]} = EIN]——7 m(m+1)-2 530
= O[(r— 1)"3] asr — oo,
and
NS xz[%m(m+1)—2] as r — oco. (3.34)

(3.34) is proved in Appendix V. Performing the test on the CRN covariance structure

is equivalent to performing the following three independent tests on y%, and y3

H, : Components of y,—Z are mutually independent,
versus (3.35)
H, : Components of y,; are not independent.

Hy : The variates y,-f and y,; are mutually independent,
versus (3.36)

H, : The variates y,f and yz are not independent.

Hy : Components of y,; have equal variances,
versus (3.37)
H, : Components of y,; have unequal variances.

Let S; to be the unbiased estimate of the covariance matrix X" of component i,
having v; degrees of freedom, and the matrix $§ given by equation (2.54). Let

S* = [CRMSTCRY and let s¥, i = 1,2, ..., m denote the diagonal elements of S*.
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Note that $* is a diagonal matrix, the first diagonal element being ss, and the second

being the ((m — 1) x (m — 1)) matrix $7. Then, the likelihood ratios respectively cor-

responding to the null hypothesis in (3.35), (3.36) and (3.37) are

rf2

det(S;)

m ’

[ ]s
Sgg

g=2 -

. rf2
det(S™)
L = | ———=| -
511 det(S;)
- ~rf2
m
1_[ *
Sgg
=2

g
[(m-1)~" Z Sag]
L g=2

— |

(see p. 37 of Tew and Wilson, 1990). Define M,, for i = 1,2,3 as
MI = —2 ln(Li),
Then, the null hypotheses in (3.35), (3.36) and (3.37) imply

M, A xz[%(m2—3m+2)] as r — oo,

M, e x2[2m-—1] as r — oo,

and
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M, A x2[m —2] as r—- oo (3.44)

based on the same type of argument as presented in equation (3.28). Combining

(3.26), (3.38), (3.39) and (3.40), we see that
M = M1 + M2 + M3. (345)

From equations (2.55), (2.54) and (2.50), we see that, respectively,

o= 1202 SEym] = TP -am+ 2+ Ol — 1) (3.46)
bo = 1=l ey = Em- 4Ol (34D

and
ba = Mg =E[YaMy] = Tm-2+0[r- 11 (348)

Note that in each of the cases corresponding to equations (3.46) through (3.48), the

appropriate version of Box’s scale factor p or Bartlett’s factor 1/C is equal to (rr!/,ﬂ
for / = 1, 2, 3. Combining (3.46), (3.47) and (3.48), we obtain

m(m + 1

mm+1 4

2
Vo = T amt2  omot m2
= yEem=1 , m- (3.49)
2y, ¥, Y3

=E[YoM] = -5 m(m + 1)~ 2+ O[(r — 1)1,

From (3.46) through (3.49) we get
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limy, = 1 for/ =0,1,2, 3 (3.50)
r—o00

and thus (3.34) follows from (3.28) and (3.50), and Slutsky’s Theorem (Theorem 1.5.4

of Serfling, 1980).

3.5 Lack-Of -Fit Test

The last stage of the validation procedure is a test for lack-of-fit in the model given
by (2.4). At this point in the procedure, there are two possible situations to consider
: (@) we have established multivariate normality as well as the covariance structure
given by (3.2). (b) we have established multivariate normality without the covariance

structure given by (3.2). These two situations are discussed separately.

3.5.1 Lack Of Fit Test With the CRN Covariance Structure

We had defined the (mr x mr) orthogonal matrix in (3.15) as

peay _ [ TPrpe |
c'm®|r

so that under the null hypotheses for the three validation tests as given by equations

(3.23), (3.24) and (3.25), equations (3.1) and (3.25) are satisfied.

Testing the hypothesis for the lack-of-fit test in (3.25) is equivalent to performing the

following test :

Hy : E[ys] = T B, versus H, : E[y;] * T'B,. (3.51)
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To test (3.51), we begin by computing

Se

,
D llyi— X812, (3.52)
i=1

where ﬁ = (X'X)'X'y is the least squares estimate of f and y is the sample mean
of the original m-dimensional response vectors. Thus S; is the residual sum of
squares for the full regression model given by (2.4). With respect to the reduced re-
gression model E[y3] = T*B, for the (m — 1)-dimensional transformed responses
{y3}, we compute the corresponding error sum of squares SF with v§ degrees of
freedom as well as pure error sum of squares S with v3; degrees of freedom, where

all these quantities are expressed in terms of the original data :

i
S& = Sg—m) (7, —7) with v = mr—p+1 (3.53)

i=1
and
S:E = r(im-— 2)33 with v:E = m(r—1).

We reject H; in (3.45) if

(SE — Spe)l(VE — vpE)

* *
Spelvee

> Fy _o(vE — Vpe» Vee) » (3.54)

where F,_s(v¥ — vk, v%) is the quantile of order 1— & for the F distribution with
v¥ — v3: and v degrees of freedom. Equation (3.54) is a standard lack-of-fit test ap-

plied to the transformed responses {y3}.
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Concluding Remarks

This thesis was motivated by a desire to aid the simulation analyst with the commonly
required statistical tools for use with the CRN correlation strategy, and also provide
a validation procedure for the assumptions made while using these tools. In the next
Chapter we illustrate the application of the above procedures with a numerical ex-

ample.

One of our contributions to the existing literature was the development of the statis-
tical analysis for the common random number strategy for multipopulation simulation
experiments. The other contribution was the development of the test for the induced
covariance structure and the lack-of-fit test for the model assumed for the CRN strat-
egy. We use the same test for checking the multi-normality of the responses {y,;} as

used by Tew and Wilson (1990).
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Chapter IV Application Of Analysis Methods and

Validation Procedure

To illustrate the simulation analysis and validation methods presented in Chapter 3,
we apply these procedures to the hospital simulation study previously discussed by
Schruben and Margolin (1978), Hussey, Myers, and Houck (1987a), and by Tew and
Wilson (1990). The pilot study was originally intended to provide a preliminary indi-
cation of how many beds should be reépectively assigned to the intensive care unit
(ICU), the coronary care unit (CCU), and the intermediate care unit of a new hospital

facility.

The new hospital facility operates as follows. Patient arrivals at the facility constitute
a Poisson process with a mean arrival rate of 3.3 patients per day. Seventy-five per-
cent of the arriving patients attempt to enter the ICU and stay there for a period of
time that is lognormally distributed with mean u = 3.4 days and a standard deviation
o = 3.5 days. The remaining twenty-five percent of arriving patients try to enter the
CCU and stay there for a period of time that is lognormally distributed with mean
u = 3.8 days and a standard deviation of ¢ = 1.6 days. Twenty-seven percent of the
patients leaving the ICU will depart the facility, and the remaining seventy-three per-
cent of ICU patients attempt to enter the intermediate care unit. For ICU patients,

sojourn time in the intermediate care unit is loghormally distributed with mean
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u = 15 days and standard deviation of ¢ = 7 days. Twenty percent of the patients
leaving the CCU will depart the hospital facility, and the remaining eighty percent of
CCU patients try to enter the intermediate care unit. For CCU patients, sojourn time
in the intermediate care unit is lognormally distributed with mean 4 = 17 days and
standard deviation ¢ = 3 days. The overall flow of patients through this facility is
depicted in Figure 1 along with the path probabilities for each of the four possible

paths that the patients may attempt to follow.

The purpose of the pilot study was to estimate and validate the relationship between
the overall balking rate of patients in the hospital and the following controllable fac-
tors : (a) the number of ICU beds (xi); (b) the number of CCU beds (x,); and (c) the
number of intermediate care beds (x;). In this context, the balking rate is the long-run
average number of times per month that a patient is denied admission to a special-
ized care unit because that unit is operating at capacity. To investigate the depend-
ence of the balking rate on the specified factors and to validate the simulation

metamodel representing the dependence, we use the metamodel
Yg = Bo + Bixq + Boxy + Baxs + BuxaXy + PsxiXs + BeXoXs + &g (4.1)

where g = 1,2, ..., 8; y, is the sample average balking rate at the gth design point;
Bo is the long-run balking rate averaged across all design points; f, is the Ath com-
ponent of the vector of partial differences of the long-run balking rate with respect to
the number of ICU, CCU, and intermediate care beds; x; is the ith coded design vari-
able at one of the design points; and, ¢, is the experimental error at the gth design

point.
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Figure 1. Hospital Simulation Study Model
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The hospital simulation model was implemented in the SLAM Il simulation language
{Pritsker, 1986), and is given in Appendix VI. On the gth run of the simulation (
g = 1,2,...,8), sample statistics were cleared at the end of a 10-month start-up pe-
riod; then the average monthly balking rate y, was accumulated over 50 months of
simulated hospital operation. To ensure the desired sign pattern for the induced cor-
relations among the responses {y,}, we structured the hospital simulation so as to
maintain the following property across all eight runs representing alternative system
configurations : y, has the same type of monotonic dependence on the /th random
number sampled within a run when all the other random numbers are fixed

(=1,..)

Table 1 gives the design points used for the Hospital Simulation Model. Table 2
shows the random number streams that are used drive the different stochastic com-
ponents in the system. Table 3 gives the observations recorded from the simulation
experiment. Twenty independent replications were made across eight design points.

Thus, we have,r =20, m =8, n = 160, and p = 7.
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Table 1. Design Points used for Hospital Simulation Model

Design Point Number ICU beds CCU beds int. Care beds
1 13 4 15
2 13 4 17
3 13 B 15
4 13 6 17
5 15 4 15
6 15 4 17
7 15 6 15
8 15 6 17
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Table 2. Random Number Assignment for Hospital Simulation Model

Stream Number Stochastic Process Sampled
1 Arrival process of patients to hospital
2 Path selection upon entering the hospital
3 , Intensive care stay of patients
4 Coronary care stay of patients
5 Path selection for intensive care patients
6 Path selection for coronary care patients
7 Intermediate care stay for intensive care patients
8 Intermediate care stay for coronary care patients
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Table 3. Balking Rates at the Hospital ICU, CCU and Int. Care Units for 20 replications at 8 design

points
Design Point
Repl.
No. 1 2 3 4 5 6 7 8 y.
1 47.57 45.05 46.82 43.30 47.07 43.62 46.40 42.77| 45.20
2 46.80 43.15 4642 4272 46,57 43.00 46.37 42.72| 44.72
3 45,85 4222 4517 41.57 4557 4215 4465 41.17| 43.54
4 4990 46.40 4517 4542 4935 46,62 48.22 44.67| 47.32
5 49.07 4567 48.10 4455 4847 45.02 47.70 44.07| 46.58
6 49.82 46.07 48.92 4530 49.12 4550 4540 44.65| 47.23
7 47.15 43.47 4592 4220 46.40 4292 4540 41.85 44.41
8 48.71 4510 47.85 4437 47.92 4440 47.02 43.45 46.10
9 46.97 43.30 46.42 4297 46.42 46.62 4595 4220 44.60
10 |46.77 43.17 46.05 4247 46.32 42.82 4552 41.97] 44.31
11 146.45 4277 4580 42.30 46.12 4245 4547 4190, 44.15
12 |47.27 43.82 46.62 42.97 46.80 43.27 46.15 42.47( 44,92
13 |47.65 43.95 47.20 43.57 47.22 4360 46.70 43.02] 45.36
14 |50.37 46.72 4965 4587 49.85 46.25 49.02 43.35 47.88
15 |50.75 47.12 50.02 46.27 50.17 46.40 4950 4587 48.26
16 {46.87 43.40 46.12 4270 46.50 4295 4587 42.27] 44.60
17 |49.30 45.67 48.60 44.87 48.67 4502 47.90 4422 46.78
18 |47.72 43.80 46.97 43.20 47.22 43.47 46.50 42.70| 45.20
19 146.77 43.12 46.07 4255 4580 4227 4525 41.70, 44.19
20 |45.95 4262 4515 4165 4532 41.87 4457 41.05( 43.52
y;, |(47.88 4428 4714 43.54 47.34 43.76 46.63 43.01|y =4545
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The design matrix X is as follows

1 =1 —1 =1 +1 +1 +1
1 =1 =1 +1 41 —1 —1
1 =1 +1 =1 =1 +1 —1
1 =1 +1 +1 =1 =1 +1
+1 41 =1 =1 =1 =1 +1
+1 1 =1 +1 =1 +1 —1
+1 41 4+1 =1 +1 =1 —1
+1 41 +1 +1 +1 +1 +1

The sample covariance matrix of the responses, S€*" was computed to be

" T
2.2619 2.2403 2.1879 2.1133 2.1828 2.1057 2.0931 2.0384

2.2403 2.2368 2.1628 2.0948 2.1616 2.0933 2.0674 2.0197
2.1879 2.1628 2.1480 2.0736 2.1275 2.0446 2.0652 2.0070
2.1133 2.0948 2.0736 2.0117 2.0514 1.9718 1.9903 1.9365
2.1828 2.1616 2.1275 2.0514 2.1361 2.0584 2.0563 2.0031
2.1057 2.0933 2.0446 1.9718 2.0584 1.9944 1.9745 1.9270
2.0931 2.0674 2.0652 1.9903 2.0563 1.9745 2.0171 1.9566

2.0384 2.0197 2.0070 1.9365 2.0031 1.9270 1.9566 1.9046 |

sCRN) . (4.2)

and the sample correlation matrix of the responses, was computed to be
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'-1.0000 0.9960 0.9926 0.9907 0.9930 0.9914 0.9799 0.9821
0.9960 1.0000 0.9867 0.9875 0.9889 0.9911 0.9733 0.9785
0.9926 0.9867 1.0000 0.9975 0.9932 0.9878 0.9921 0.9923
0.9907 0.9875 0.9975 1.0000 0.9896 0.9844 0.9881 0.9893
corr(y) = . (4.3)
0.9930 0.9889 0.9932 0.9896 1.0000 0.9973 0.9907 0.9931
0.9914 0.9911 0.9878 0.9844 0.9973 1.0000 0.9844 0.9887
0.9799 0.9733 0.9921 0.9881 0.9907 0.9844 1.0000 0.9983

0.9821 0.9785 0.9923 0.9893 0.9931 0.9887 0.9983 1.0000
L .

Then, according to Result 1, the optimal estimator of § is computed as

[
Bo
Ay - -
B4 45.4822
fi —~0.2536
. 1 2 —0.3861
B = XXXy = [, | = |-18117
A 0.0017
Ba 0.0061
A
B | —0.0070
N
Bs
L

From equation (3.6), we obtain ﬁi = 156.6739. According to Result 2, a 100(1 — a)%

confidence interval for f; can be computed from

A

A
Bo € 2{0 s — 7

Jomry T

For this example, the 95% confidence interval for f; is

o € 45.4822 + 0.8657
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Now suppose we want to test the hypothesis

Ho: By =P = .0 =0
versus
Hy :notall g, =0;i=1,..B86.

We use Result 3, with the H métrix as lg; hence h = 6. ¢ and f can be obtained by
applying the ordinary linear model, i.e., observations are independent. We then ob-
tain the values of ;15 = 0.0230 and f* = 4052.1 using equations (3.8) and (3.10) re-
spectively. f* is compared to Fg3 which, for o« = 0.05, is 2.15. Hence we reject the

null hypothesis.

Looking at ii the optimal estimator of f, we observe that the interaction terms have
very low coefficient values. We thus test for f, = fs = fs = 0. In other words, we

test the hypothesis

Ho: By = Ps = Ps =10
versus
Hy : not all §; =0, i =4,56.

We use Result 3, with the H matrix as shown below

000000_
000000
ooo0o000
000100
000010
000001

We calculated f* to be 0.211, which was compared to F%1;, which for « = 0.05 is 2.67.

The test, as expected accepts H,, and hence, the interaction effects are negligible.
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Next we consider constructing simultaneous confidence intervals for elements of f,,
using the Bonferroni approach. We use Result 3 by using three different H’s : (1,0,0),
(0,1,0), and (0,0,1). Let / = 1. From equation (3.11), we note that setting / = 1, and

with H as specified, yield confidence intervals for /s,
A A 1 e 1/2
Bre b+ A T, Lo ]

where i = 1,2,3, [(T'T)-"], is the ith diagonal element of [(T'T)-"]. In Bonferroni
type intervals, a at each interval is set so that the lower bound of the overall cover-
age, 1 — 3a, is at the desired level. For at least 95% overall coverage we let a=.015.
For this example, the centers of the intervals are the estimates of the parameters
reported earlier, and the half-widths of the 95% Bonferroni type intervals are equal
to 0.003. Thus, we have,

~0.2566

IA

B —0.2506,

—-0.3891 < f, < —0.3831,

IA

—~1.8147 < B, < -—1.8087.

We have thus demonstrated the statistical analysis of the simulation experiment un-
der the common random number strategy. We now proceed with the validation pro-
cedure. The sample variances at the 8 design points are 2.2619, 2.2368, 2.1480, 2.0117,
2.1361, 1.9944, 2.0171, 1.9046. We perform the test for multivariate normality on the
responses using the same procedure suggested by Tew and Wilson (1990). We
compute the Shapiro-Wilk test-statistic W* to be 0.6306 and compare it with the esti-
mated lower critical value @X(m,r) of the multivariate Shapiro-Wilk Test for
m = 8, a« = 0.05 and r = 20. Interpolating the table given by Tew and Wilson, we
find ®3s(8,20) = 0.5983. Thus we see that W* > @fs(8,20), and hence we accept the

multivariate normal assumption of the responses.
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To check for the CRN covariance structure as given by equation (3.2), we evaluate
equations (3.6), (3.8), and (3.9). This yields &2 = 2.0836, 1, = 15.6739 i, = 0.0230.
Consequently, the modified likelihood ratio statistic in equation {3.28) is N = 9.8278;
and the corresponding 99% critical value for the chi-squared distribution with 34 de-
grees of freedom is x$4(34) = 56.01. Thus we conclude that the hypothesis in (3.24)

is reasonable for the hospital simulation.

For the Lack-Of-Fit test with the CRN covariance structure, we tested the null hy-
pothesis in equation (3.51). The left hand side of equation (3.54) is computed to be
0.0921 which is compared to F,_gs(1,133) = 3.9. Thus we conclude that the postu-
lated model in equation (4.1) provides an adequate description of the relationship

between the response and the factors of interest.

In the development of the statistical analysis for the hospital simulation study, we had
assumed the multivariate normality of the response vector, the CRN covariance
structure as given in (3.2), and also the adequacy of the proposed model in (4.1).
These three assumptions were validated in the subsequent validation procedure. The
interaction terms B, fs, and fs were shown to have negligible effect on the
behaviour of the model, and hence can be discarded. Thus, with the theoretical de-
velopment in Chapter 3, and with this illustration of the hospital simulation study, we
now have a tool to conduct statistical analysis, and a validation procedure, for simu-

lation experiments conducted under the common random number strategy.
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Chapter V Summary and Conclusions

This chapter summarizes the contributions of this research and reviews the conclu-
sions regarding the statistical analysis on the estimation of the parameters of interest
for a multipopulation model in a simulation experiment performed under the common
random number strategy, as well as the validation procedure for the necessary as-

sumptions made while conducting this statistical analysis.

As mentioned in the introduction, this research focussed on two goals : (a) Devel-
oping a statistical analysis procedure for multipopulation simulation experiments
performed under the CRN strategy, and (b) Developing a validation procedure for
testing the necessary assumptions made while conducting this statistical analysis.
Both procedures were developed in Chapter 3 and were illustrated by means of an
example in Chapter 4. A brief review and summary of this research is given in Section

5.1. Future research is discussed in Section 5.2.

5.1 Overview and Summary of Research

Common random number strategy is one of the simplest variance reduction tech-
nique that can be applied to aimost all classes of simulation experiments. In contrast,
the Schruben-Margolin strategy needs the design matrix to be blockable into two
orthogonal blocks. For second and higher order designs this technique is not appli-

cable. For the Schruben-Margolin strategy a statistical analysis and validation proce-
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dure was developed earlier. Thus, we found a need to do the same for the common

random number strategy.

Chapter 3 developed statistical analysis and validation procedures under the common
random number strategy for multipopulation simulation experiments. First, this sta-
tistical analysis procedure allows for optimal estimation of the unknown parameters
of a general linear model. It also gives confidence intervals about these optimal es-
timates, and also the joint confidence intervals. There are certain assumptions made
while conducting this statistical analysis, like the multivariate normality of the vector
of responses, the special covariance structure for the covariance matrix between the
responses, and also the adequacy of the proposed linear model. These assumptions,
if violated, would jeopardize the results obtained by the statistical analysis. Thus, the
importance of the validation procedure is the realization of the fallacy of statistical

analysis, if performed with violations of any of the above mentioned assumptions.

These methods were applied to the hospital simulation in Chapter 4 which illustrates
the use of these methods under the common random number strategy across an
eight-point simulation experiment. The results give the estimates of the unknown
parameters as well as the desired confidence intervals on these parameters. Per-
forming the validation tests for this example show that the assumptions made while
conducting the statistical analysis are true, and hence we can have more confidence
in the appropriateness of the results obtained from the applied statistical analysis

procedure.
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5.2 Future Research

The directions for future research stemming from the material studied in this thesis
pertain to simulation experiments in which there is more than one response of inter-

est in a single experiment.

In our thesis, we considered only one response of interest in a simulation exper-
iment. But in practice, there can be many situations where, in a single experiment,
there can be multiple responses of interest. For example, in the hospital simulation
model, some other responses of interest could have been the sojourn time of the
patients in the hospital, or, the number of patients who do not need the intermediate
care facility. For such a situation, the statistical analysis and validation procedures
would need to be at least modified, if not re-developed. Such a situation may involve
a multivariate statistical analysis, that is, the responses of interest may be correlated.

This would be an interesting avenue for further research.

A second avenue for research could be developing statistical validation procedures
for simulation experiments, conducted, not under the common random number
strategy, but under combined correlation induction strategies. For example, antithetic
and control variates could be used together to achieve variance reduction (see C.

Kwon, 1990).
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1.0 APPENDIX |

Result 1 in Chapter 3 of this thesis is proved here. This result yields an optimal esti-

mate of f. By optimal estimate, we mean the minimum variance, unbiased estimate.

Since y* is comprised of two separate ordinary linear models, one involving
(y¥, Bo, 4%), and the other involving (y#, Bi, 43), the optimal estimators for §, and g, are

just the obvious ones based on y{ and y7 ( see Graybill, 1976, pp. 173-175 ), namely
By = TPyt~ Ny, 2mn)T), (A1.1)

and,
B = (TN~ N8 BTETHTY (A1.2)

We now show that these estimators are the same as the ordinary least squares esti-

mators, [i’u and ﬁ,. Since I'® is orthogonal,

A A

b= %] = @ortey = @eety = |20 (A1.3)
2 3
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2.0 APPENDIX 1I

Result 2 in Chapter 3 of this thesis is proved here. This result yields the confidence

interval for f,.

Let ;15 be the usual unbiased estimator of i1 (see p. 173 of Graybill, 1976). on yf, i.e.,

2 A
llys — (m)""?1, 8l

22 A2.1
1 = r—1 ( . )
Then, by standard results for the linear model (see Graybill, 1976), we see that
G D)
A ~ t(r -1y (A2.2)

44

We can use this fact in an obvious way to find size a tests and a 100(1 — «)% confi-
dence interval for f,. The tests associated with this t-statistic are likelihood ratio tests,
UMP unbiased and UMP invariant for the problems based on y{ and have these
properties for the original problem. We now find a formula for ;Ii in terms of the ori-
ginal observations. From the definition of y¥, we see that it ith component is

(m)"2%,. Therefore B, = 7., and
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mim -7
_ i=1

h (A2.3)
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3.0 APPENDIX Il

Result 3 in Chapter 3 of this thesis is proved here. This result yields a confidence

interval for B,

Consider testing Ho: HB: = 0, vs. Hy: HB, # 0, where H is a (h x (p — 1)) matrix of
rank h<p. Let /Als be the usual unbiased estimator to A3 based on y¥ ( see p. 175 of

Graybill, 1976),

n _ (ys = T*BiD)
2T wm=n-p)

(A3.1)

Then the optimal test for the problem, based on y§ (see p. 190 of Graybill, 1976), is
to reject the null hypothesis if
Ay ' - A
+ _ (HBYHT*TH'(HB,)

When Z€™ = ¢?|,, the optimal test for H: HB, = 0, vs. Hi: HB, # 0, rejects H, if

B YH(T'T)™"(Hp
- wbpedy g (43.3)
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where @2, is as given in (3.4), that is,

w2 _ (y—GHId)
(n—p)

Since H(T*T*)"'H’ = (1/nH(T'T)"'H’, we have

A A A A
(n—p)3® = ly=GAIE = llyy — (M) "6 +lly; —TBJF.  (A3.4)
Therefore, we get,
! A
(n—p)s? = mY F.—7) +Iy; — T B (A3.5)
i=1

Thus, by equations (A3.1) and (A3.5), we have

(n—p)o® ~ m) 7~ 7.

A h
12 = (=1 . A3.6
: "—p-1) (438

Now, consider the simultaneous confidence intervals for 1’"Hf, for all 1eR*. Based on
y7, the Scheffe 100(1 — a)% simultaneous confidence intervals for 1’Hf, are given by

(see p. 198 of Graybill, 1976, Theorem 6.5.2) ,
, Tl A o , %'k =1y, 1/2 h
1HBy € VHB, = L[ hFly m_1yr— p’HT T W] for all 1eR".  (A3.7)
When E = 44, the Scheffe 100(1 — a)% simultaneous confidence intervals are
A A o -1 1/2
1'HB, e 1'Hp, £ 6[ (h/N)FG n_ pVHT'T)T'H] . (A3.8)
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Therefore, if we let HW, denote the half width of the Scheffe 100(1 — a)% simultaneous
confidence intervals for 1°Hpf; in the ordinary linear model, the 100(1 — a)% simul-

taneous confidence intervals for Z€/M = ICRMEI, are

Ao 1/2
o
('12F(n, n—p-— r))

A
1'Hﬂ1 € 1'Hﬂ1 + D o
o Firn—p)

HW,. (A3.9)
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4.0 APPENDIX IV

Result 4 in Chapter 3 of this thesis is proved here. This result yields a joint confidence

interval for f, and .

We derive the formulas for drawing inferences that involve both f, and f;. By re-

sorting to multivariate analysis, we can give exact but non-optimal procedures. Let

- 1
Y = 7.V (A4.1)

and

1
r—1

> - Di— - (A4.2)

i=1

where y and S are independent (see pp. 328-329 of Arnold, 1981, Theorem 18.2).

Also, the estimator of f can be written as

B = XXTXF ~ NyB,A), (A4.3)

APPENDIX IV 79



where A = (X'X)"'X'ZX(X'X)-". Because of the independence of ¥ and §, ﬂ and A
are independent. Also by Theorem 17.6 of Arnold (1981), A has a Wishart distribution,

i.e.
A ~ Wy(r—1,1/(r = 1)A). (A4.4)

For a (k x p) known matrix of rank k < p, we observe that Kii and KAK' are inde-

pendent and
KB ~ N(KB, 1/rKAK’), (A4.5)

KAK' ~ Wyr—1,——KAK’). (A4.6)

Therefore, by Hotelling’s T2 distribution (see p. 320 of Arnold, 1981, Theorem 17.11),

we have
—(r(r_k)) - ’ A "~ - o ’ "N
€= Gy KHKAKYKE ~ Fo, (KB (KAKY(KB)).  (A4.7)
Hence, a size a procedure for testing He: K = 0, vs. KB # 0, is to reject the null

hypothesis if # > Fi,_,.

Note that under the null hypothesis the non-centrality parameter is zero. The asso-

ciated 100(1 — a)% Scheffe-type simultaneous confidence intervals are

1
k(r—1 2
1'KB « 1'KB + [’_—((r—_—k;-F(";_,_k)rKﬁKw] for all 1eR*, (A4.8)
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Since it is required that r — k>0, which should hold for all K <p, we must have
r>p. That is, the number of replications must be greater than the number of pa-

rameters.
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5.0 APPENDIXV

Relation (3.34) in Chapter 3 is proved here.

First we define @, the parameter space corresponding to the alternative hypothesis
H, of equation (3.24). Let o, denote the (g,k) element of the covariance matrix X©/"
for the original response y;, and let 8 denote the [1/2m(m + 1)] x 1 vector of parame-
ters obtained by respectively stacking into a single column those entries in each

column of X’ that lie on or below the diagonal
CR
0 = vechZ™) = (041, 0450 s Tms G220 O3 s Ty O3z vees Ty

It follows that @ is the open subset of [1/2m(m + 1)]-dimensional Euclidean space

given by
0 = {0 = vech(Z(CRN)):E(CRN) is symmetric and positive definite}. (A5.1)

Next we define the subspace @, < @ corresponding to the null hypothesis H, of dis-
play (3.24). Let { = ({4, {2)’ = (0% p,)’ denote the vector of parameters describing
the induced covariance structure of the response y; under this hypothesis. In this

situation, there are at most two distinct eigenvalues {14, 4.} of cov(y)); and when these
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eigenvalues are expressed in terms of the components of {, we see that the null hy-

pothesis H, in (3.24) holds if and only if

* A 0
COV(y‘.‘) = l:o‘l /12Im_1:|, (A5.2)

where
o= GM+(@=-18) > 0
o= L(1-0) > 0
{ >0

0< < 1.

These above conditions are equivalent to requiring { to belong to the open subset

of 2-dimensional Euclidean space given by
Z={{=00L):H>00<l<1. (45.3)

We now define the topological transformation r:{ € Z — 1({) € ©, by the relation
() = vech[Q[%(.IG] + (1 _§2)|m] — vech(ZCRM),

where G = 1,1,/, and I* is obtained from equation (3.2) when all its elements are
expressed in terms of the components of {. Thus 0, is the image of Zeta. under the

mapping t.

To establish the desired asymptotic property of the likelihood ratio L in (3.26), we
observe that the mapping t possesses continuous first-order partiai derivatives; and

it is straightforward to verify that the [1/2m(m + 1)] x 3 Jacobian matrix
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St
IO = ||6—Z'-|| has rank 2 for every { e Z. (A5.4)
J

Combining (A5.3), and (A5.4), we apply Theorem 4.4.4 of Serfling (1980, p. 58) to con-

clude that the conventional likelihood ratio L in (3.26) has the asymptotic property

N = -2In(L) A xz[-;—m(m +1)—-2] as r = oo. (A5.5)
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6.0 Appendix VI

SLAM Il Code for Hospital Simulation Model

PROGRAM MAIN
COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,
*MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),
*SSL(100), TNEXT, TNOW,XX(100)
COMMON/UCOM1/FX(3),XVAL(3),NCUST(3)

COMMON QSET(5000)
DIMENSION NSET(5000)
EQUIVALENCE (NSET(1),QSET(1))
NNSET = 5000

NCRDR =5

NPRNT =6

NTAPE=7

WRITE(88,111)

111 FORMAT(2X,’IS DESIGN POINT 1',/,/)
CALL SLAM
STOP
END

SUBROUTINE EVENT(l)
INCLUDE (SLMSCOM1)
GO TO (1),l

1 WRITE(88,2) XX(1)

2 FORMAT(2X,F9.4)
RETURN
END

GEN,SSJ,THESIS 1991,3/21/1991,20,NO,NO,,NO,NO;

LIMITS,3,8,100;

NETWORK;

;  THIS IS THE SLAM Il NETWORK CODE FOR THE PATIENT PATHS

; IN HOSPITAL UNIT SIMULATION GIVEN BY SCHRUBEN AND MARGOLIN(1978)
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’

.
1

AND ALSO BY HUSSEY, MYERS, AND HOUCK (1987)
CREAT THE ARRIVING PATIENTS TO THE SYSTEM
CREATE,EXPON(.303,8),0.0,,,1;
ACT,0.;
ASSIGN ALL OF THE SEVICE TIMES TO THE ENTITY AS WELL AS THE
PATH PROBABILITIES
ASSIGN,ATRIB(1) = UNFRM(0.0,1.0,2),
ATRIB(2)=RLOGN(3.4,3.5,3),
ATRIB(3) =RLOGN(3.8,1.6,4),
ATRIB(4) =UNFRM(0.0,1.0,5),
ATRIB(5) = UNFRM(0.0,1.0,6);
ACT,0,;
ASSIGN,ATRIB(6) =RLOGN(15.0,7.0,7),
ATRIB(7)=RLOGN(17.0,3.0,1),
ATRIB(8)=0.0;
ACT,0.;

GO TO EITHER INTENSIVE CARE UNIT OR CORONARY UNIT

GOON,1;
ACT,0.0,ATRIB(1) .LE. .75,ICU;
ACT,0.0,,CCU;

INTENSIVE CARE UNIT

ICU QUEUE(1),0,0,BALK(FAIL);

ACT(13)/1,ATRIB(2);
GOON, 1;

ACT,0.0,ATRIB(4) .LE. .27, TERM;
ACT,0.0;

ASSIGN,ATRIB(8) = ATRIB(6);
ACT,0.0,,INTRC;

CORONARY CARE UNIT

CCU QUEUE(2),0,0,BALK(FAIL):

INT

ACT(4)/2,ATRIB(3);
GOON, 1;

ACT,0.0,ATRIB(5) .LE. .20, TERM;
ACT,0.0;

ASSIGN,ATRIB(8) = ATRIB(7);
ACT,0.0,,,INTRC;
INTERMEDIATE CARE UNIT

RC QUEUE(3),0,0,BALK(FAIL);

ACT(15)/3,ATRIB(8),,TERM;
TERMINATE PATIENTS WHO DID NOT BALK

TERM TERMINATE;
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7 COUNT THE NUMBER OF PATIENTS WHO FAILED TO GAIN ADMISSION
; IF NOT WITHIN THE FIRST 10 MONTHS OF OPERATION
FAIL GOON,1;
ACT,0.0,TNOW .LE. 300,TERM;
ACT,0.0;
ASSIGN, XX(1) = XX(1)+1.0;
ACT,0.0;
TERMINATE;
; WRITE THE DESIRED OUTPUT AT THE END OF THE SIMULATION RUN
CREATE,,1500,,1,1;
ACT,0.0;
ASSIGN,XX(1) = XX(1)/40.;
ACT,0.0;
EVENT,1,1;
TERMINATE;
ENDNETWORK;
SEEDS,14669(1),19827(2),10915(3),17639(4),18261(5),
19819(6),11671(7),12295(8);
INIT,0,1500;
SIMULATE;
FIN;
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