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The global dynamics of gene regulatory networks are known to show robustness to perturbations in

the form of intrinsic and extrinsic noise, as well as mutations of individual genes. One molecular

mechanism underlying this robustness has been identified as the action of so-called microRNAs that

operate via feedforward loops. We present results of a computational study, using the modeling

framework of stochastic Boolean networks, which explores the role that such network motifs play in

stabilizing global dynamics. The paper introduces a new measure for the stability of stochastic

networks. The results show that certain types of feedforward loops do indeed buffer the network

against stochastic effects. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4808248]

The term canalization was coined by the geneticist C.

Waddington to describe the theory that embryonal devel-

opment is buffered against genetic and environmental

perturbations. It is only recently that a molecular basis

for this phenomenon has been suggested. Recent research

has highlighted how the intrinsic stochasticity of gene

expression can drive changes in phenotypes. Short seg-

ments of single-stranded RNA, so-called microRNAs

(miRNA), represent an entirely novel agent of gene regu-

lation discovered relatively recently and have been pro-

posed to function as canalizing agents that buffer the

effects of such stochasticity in gene expression. According

to this theory, when miRNA expression is perturbed, sto-

chasticity in gene expression can result in transitions to

distinct cellular phenotypes. As miRNAs bind to gene tar-

gets, they downregulate translation of target mRNA into

protein. Embedded in several different types of so-called

feedforward loops, miRNAs help smooth out noise and

generate canalizing effects in gene regulation by overrid-

ing the effect of certain genes on others. Much experi-

mental work remains to be done in elucidating this

concept, and recent years have seen an explosive growth

of publications in this area. There have also been a num-

ber of computational studies focused on canalization. In

this paper, we carry out a computational study of the

ability of the feedforward loop motif to buffer a gene reg-

ulatory network against intrinsic noise. This is done using

stochastic Boolean network models as a computational

instantiation of gene regulatory networks. We introduce

a measure on networks that captures its “distance-to-

deterministic” characteristics in terms of the stability of

their attractors. For a given network, we successively

introduce feedforward loops and track the resulting

change in dynamics. The results show clearly that the

feedforward loop motif buffers the network phenotype,

in terms of stability of attractors, against perturbations

from intrinsic noise.

I. INTRODUCTION

The term canalizaton was coined by the geneticist C.

Waddington1 to describe the theory that embryonal develop-

ment is buffered against genetic and environmental perturba-

tions. It is only recently that a molecular basis for this

phenomenon has been suggested. Recent research has high-

lighted how the intrinsic stochasticity of gene expression can

drive changes in phenotypes.2 Short segments of single-

stranded RNA, so-called microRNAs (miRNA), represent an

entirely novel agent of gene regulation discovered relatively

recently3,4 and have been proposed to function as canalizing

agents that buffer the effects of such stochasticity in gene

expression.5,6 According to this theory, when miRNA

expression is perturbed, stochasticity in gene expression can

result in transitions to distinct cellular phenotypes. As

miRNAs bind to gene targets they downregulate translation

of target mRNA into protein. Embedded in several different

types of so-called feedforward loops (FFLs), miRNAs help

smooth out noise and generate canalizing effects in gene reg-

ulation by overriding the effect of certain genes on others.7

Complex networks (viewed as graphs) ranging from the tran-

scriptional networks in yeast and Escherichia coli to engi-

neered systems are enriched for certain graph-theoretic

motifs that include feedforward loops.8

An understanding of canalization in evolutionary biol-

ogy is important as a cornerstone of natural selection and the

emergence of new phenotypes,9 as well as for the under-

standing of diseases such as cancer. Transitions to new phe-

notypes have been implicated as one of the driving forces of

tumorigenesis;10–14 and, interestingly, significantly altered

expression of miRNAs is a feature of several cancers. Much

experimental work remains to be done in elucidating this

concept, and recent years have seen an explosive growth of

publications in this area. There have also been a number of

computational studies focused on canalization. Several

papers have studied computational models that capture the

evolution of canalization in networks and their ability to sup-

port significant mutation without change in the pheno-

type,15,16 while others have studied models of stochastic
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gene expression as the internal source of noise in regulatory

networks.17 A detailed stochastic model of the ability of

miRNAs to buffer gene expression noise in a feedforward

loop has been proposed,18 providing evidence that this type

of network motif can in fact play a canalizing role. There is

evidence that miRNAs do not regulate their target genes

directly; rather they act as post-transcriptional regulators by

reducing the amount of mRNA and by repressing mRNA

translation,19 e.g., by binding to the 30-UTR of a mRNA,

which prevents this mRNA from being translated.

In this paper, we carry out a computational study of the

ability of the feedforward loop motif to buffer a gene regula-

tory network against intrinsic noise. This is done using sto-

chastic Boolean network models as a computational

instantiation of gene regulatory networks. We introduce a

measure on networks that captures their “distance-to-

deterministic” characteristics in terms of the stability of their

attractors. For a given network, we successively introduce

feedforward loops and track the resulting change in dynam-

ics. The results show clearly that the feedforward loop motif

buffers the network phenotype, in terms of stability of attrac-

tors, against perturbations from intrinsic noise.

II. MODELING FRAMEWORK

A. Stochastic discrete dynamical systems

In this study, the recently developed framework of sto-

chastic discrete dynamical systems (SDDS)20 is used to

model gene regulatory networks. This framework is an

appropriate set-up to model the effect of intrinsic noise on

network dynamics. A stochastic discrete dynamical system

in the variables x1;…; xn, which in this paper represent

genes, is defined as a collection of n triplets

F ¼ ðfi; p"i ; p
#
i Þ

n
i¼1; (1)

where

• fi : f0; 1gn ! f0; 1g; is the update function for xi for all

i¼ 1, …, n,
• p"i 2 ð0; 1� is the activation propensity,
• p#i 2 ð0; 1� is the degradation propensity.

The stochasticity originates from the propensity parame-

ters p"i and p#i , which should be interpreted as follows: If

there would be an activation of xi at the next time step, i.e.,

xiðtÞ ¼ 0, and fiðx1ðtÞ;…; xnðtÞÞ ¼ 1, then xiðtþ 1Þ ¼ 1 with

probability p"i . The degradation probability p#i is defined

similarly.

All variables are synchronously updated and one time

step can be interpreted as the average time needed for

transcription and translation of the fastest of the genes con-

sidered. The propensity parameters for this fastest gene

will be set to 1, and the propensity parameters of genes

with slower transcription and translation take proportion-

ately lower values. Thus, this framework can be interpreted

as introducing a very general stochastic sequential update

scheme, which also allows for a variable not to be updated

at all at a given step, a generalization of the usual

approach in, e.g., Ref. 21.

B. Quantifying stochasticity

In a deterministic discrete dynamical system, each

initial configuration lies in exactly one basin of attraction.

This changes when stochasticity is introduced. Now, from

one initial configuration, different attractors may be

reached. To measure the degree of stochasticity in particu-

lar dynamics, we look at every initial configuration and

regard its transition probabilities to the different attractors.

If each initial configuration only transitions to one attrac-

tor, the dynamics are deterministic, whereas lower maximal

transition probabilities to attractors lead to proportionately

more stochastic dynamics. In our context, the different

attractors may be interpreted as different cellular pheno-

types, which make the connection to phenotypic stability

discussed in the Introduction.14 Thus, this computational

project focuses on the stability of attractors under intrinsic

noise, as it is affected by the introduction of feedforward

loops.

Based on this idea, we can define the degree of stochas-

ticity in the dynamics of an SDDS F ¼ ðfi; p"i ; p
#
i Þ

n
i¼1. Let

AðFÞ be the set of all attractors of F. Then, we can calculate

the average maximal transition probability to an attractor,

where all 2n state space configurations are considered and

weighted equally, as follows:

lðFÞ ¼ 1

2n

X
x2f0;1gn

max
A2AðFÞ

Pðx�!F � � � �!F AÞ
� �

2 ½0; 1�: (2)

When F is a deterministic system, lðFÞ � 1 always

holds true. In comparison, for a stochastic system with a
attractors, values as low as 1/a may be obtained; for stochas-

tic systems with a single attractor, lðFÞ � 1 because the sin-

gle attractor is eventually approached from any initial

configuration.

Most limit cycles that are attractors in a deterministic

system are no longer attractors in an SDDS, because a cycle

can be exited with a certain probability. Nevertheless, one

particular kind of limit cycle, which consists of 2k elements

and in which all but k bits are fixed, remains an attractor

even in an SDDS. One such example is a 2-cycle, in which

just one bit switches states, e.g., 000$ 001. Table I shows

that such limit cycles occur very rarely by chance, and for

computational reasons, we decided to include only steady

states and limit cycles of length 25 or less in this study. This

restriction does not influence the study since longer limit

cycles that remain attractors in the SDDS practically do not

occur.

The basic procedure underlying the computational study

is, for a given SDDS, referred to as the “basic” network, to

construct several “extended” networks by successively add-

ing nodes, which we shall refer to as miRNAs, together with

one or more feedforward loops involving the new miRNAs

in a specific way. We then measure the change in the sto-

chasticity measure described above. Let F ¼ ðfi; p
"
i ; p
#
i Þ

n1

i¼1 be

the basic network, and let F� ¼ ðf �i ; q
"
i ; q
#
i Þ

n2

i¼1 be the

extended network, n1 � n2. We hypothesize that the dynam-

ics in the feedforward loop enriched network are less sto-

chastic. To compare the dynamics of two systems with
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respect to their degree of determinism, we consider their dif-

ference m in l-values

mðF;F�Þ ¼
0 if lðF�Þ; lðFÞ ¼ 1

lðF�Þ � lðFÞ
1�minðlðFÞ; lðF�ÞÞ otherwise:

8<
:

(3)

The denominator scales this difference into the range [�1, 1].

Here, m¼ 0 means that both networks have equally stochastic

dynamics. If m is positive, the extended network F� is dynam-

ically less stochastic than the basic network F, and a negative

value of m suggests the opposite. The magnitude describes the

difference in degree of stochasticity. A magnitude of 1 means

that one of the networks has the dynamics of a deterministic

system, whereas a magnitude of 0.5 suggests that one system

is 50% less stochastic than the other.

III. METHODS

For each set of input nodes we generated a certain num-

ber N of basic Boolean SDDS F, introduced miRNAs, in a

way that will be specified later in this section, to obtain the

extended network F�, and then compared their degree of

determinism via mðF;F�Þ. We considered 4 network sizes n:

5, 15, 30, 50 nodes. The corresponding number N is 20000,

7000, 5500, 5500, respectively. The networks generated are

random, subject to the following restrictions.

Large-scale studies of Bacillus subtilis, E. coli, and sac-
charomyces cerevisiae strongly suggest that the in-degrees

of nodes in a transcriptional regulatory network are Poisson

distributed with a mean of about two.22 Thus, we chose a

Poisson distribution with parameter c ¼ 2 for the basic net-

work. The only other restriction is that each gene is regulated

by at least one other gene, which raises the average in-

degree to approximately 2.2. The regulators of each gene are

randomly chosen from the set of all n genes in the network,

allowing self-regulation.

All propensity parameters for transcription factors and

miRNAs are also randomly chosen from [0.2, 1]. For compu-

tational reasons, the full interval [0, 1] is not used since a

propensity parameter close to 0 might strongly decelerate

convergence to attractors, slowing the performance of the

simulation. However, 0.2 as the lower limit for the propen-

sity parameters still allows one process to happen up to five

times more frequently than another. Each gene is regulated

by a certain number of genes, depending on its in-degree,

and random Boolean functions that actually depend on all

input variables are used as update functions.

After creating the basic network, we generate an extended

network in a way reminiscent of post-transcriptional regula-

tion by miRNAs. (Since we do not include a corresponding

protein node for each gene node, the analogy is limited).

Starting with the basic SDDS, miRNAs are iteratively added

to this system by randomly choosing one gene as a transcrip-

tion factor (TF) that induces transcription of the introduced

miRNA. This miRNA, in turn, reduces the mRNA level of its

own transcription factor; one example for such coregulation is

the interplay between miR-133b and Pitx3 in midbrain dopa-

mine neurons.23 A lower TF mRNA level leads to a lower TF

protein level, which then affects the regulation of all TF target

genes. In the Boolean framework, a gene-specific threshold is

used to distinguish between low (0) and high concentration

(1). For some target genes, even after the TF mRNA reduc-

tion, there might still be enough transcription factor so that the

target concentration is on the same side of the threshold as if

no reduction had taken place; for other target genes, the target

concentration might change significantly because of the TF

mRNA reduction. Since this reduction is caused by the

miRNA presence, the miRNA becomes a new regulator of the

target genes in the latter case. One input variable in this study,

called miRNA strength, describes the probability that tran-

scription factor-target gene pairs fall into this latter case, i.e.,

that the TF mRNA level is significantly reduced, so that the

Booleanized target concentration is the same as if no tran-

scription factor had been present at all. If, for instance, the

miRNA strength is 0.5, any miRNA regulates on average half

of its transcription factor’s target genes. However, we require

each miRNA to regulate at least one target gene. This restric-

tion ensures that each miRNA is part of at least one feedfor-

ward loop, consisting of transcription factor, miRNA, and

target gene. Table II depicts an example of how the update

TABLE I. This table shows the average number of steady states and limit

cycles that remain attractors in the SDDS framework for different network

sizes. We found fewer than thirty such 8-cycles among more than 250,000

networks of different sizes, and no 16-cycles at all. This shows that includ-

ing only limit cycles of length 16 and less is not restricting the study.

Network size

Cycle length 5 15 30 50

1 2.8351 3.6577 4.3492 4.8709

2 0.1529 0.1522 0.1540 0.1486

4 0.0244 0.0378 0.0415 0.0415

8 0.0002 0 <0.0001 <0.0001

16 0 0 0 0

Sample size 120 000 42 000 40 000 62 500

TABLE II. Example of how an additional miRNA is embedded as an input

variable in a target gene’s update function. The first four rows display the

original random update function, in which a1;…; a4 2 f0; 1g can be any

Boolean values, with the sole restriction that the update function must

depend on both inputs. Unless both miRNA and transcription factor are pres-

ent, the miRNA has no influence since there is no TF mRNA that can be

degraded or there is no miRNA that can catalyze this degradation. Only if

both are present (last two rows), can the miRNA reduce the TF mRNA level

to an extent that the target concentration changes because of the miRNA.

miRNA(t) TF(t) Other input(t) Target(tþ 1)

0 0 0 a1

0 0 1 a2

0 1 0 a3

0 1 1 a4

1 0 0 a1

1 0 1 a2

1 1 0 a1

1 1 1 a2
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function of target genes regulated by a miRNA is expanded,

taking into consideration the mode of action of miRNAs.

Only if miRNA is present and TF mRNA is transcribed, the

mRNA reduction takes place. In this case, we see the same

output as if no TF mRNA were present.

Because all networks with exactly one attractor already

have totally deterministic dynamics, in the sense defined ear-

lier, i.e., l � 1 for those networks, only basic networks with

multiple attractors are considered in this study. Those are the

interesting networks, in which actual stabilization of the dy-

namics might be observed. Particularly interesting dynamics

occur if at least two attractors possess a relatively large basin

of attraction. The network selection process therefore favors

networks with multiple large basins of attraction by picking

a network only if at least two attractors are found more than

once starting from twenty random initial configurations.

If the extended network F� does not possess multiple

attractors, mðF;F�Þ ¼ 1 by definition. One could argue that

the loss of attractors in the extended network is one feature of

stabilization through feedforward loops. On the other hand,

however, this could be seen as an experimental bias. To con-

sider both views, we use m to define two output measures, m1

and m2, one regarding any extended network and the other

considering only those network pairs in which the extended

network also possesses multiple attractors with at least two

large basins of attraction. For a given set of input variables,

we generate N basic and extended networks, and measure

m1 ¼
1

N

XN

i¼1

fmðF;F�Þj basic network F and extended network

F� have multiple attractorsg; ð4Þ

m2 ¼
1

N

XN

i¼1

fmðF;F�Þj only the basic network F is required to

have multiple attractorsg: ð5Þ

For any set of input variables, we expect m2 � m1 since all

network pairs with less than two attractors in the extended

network, which are omitted in m1, have l � 1 and thus a

mean value closer to 1. However, we do not want to prefer

one or the other measure and thus we report results for both,

which have been obtained independently, i.e., a network pair

that was used for m1 is not used for m2.

A full analysis of the state space of a SDDS is only possi-

ble for small networks, so we used random sampling of initial

configurations and an estimate of transition probabilities to

attractors to approximate mðF;F�Þ. We created a set of 100

random initial configurations, which were used in both net-

works to find the transition probabilities to attractors by updat-

ing each configuration 50 times, until an attractor was reached.

In a small preliminary study, we found that these two values

yield a good trade-off between accuracy and efficiency.

IV. RESULTS

Overall, we created over 300 000 pairs of basic and

feedforward loop enriched networks. The results for net-

works with sizes ranging from 5 to 50 genes can be seen in

Figure 1. None of these networks were required to be

strongly connected, and in all of them the introduced

miRNAs had full strength, meaning that each miRNA regu-

lates all of its transcription factor’s target genes in a feedfor-

ward loop structure. The main result is that both measures,

m1 and m2, are indeed positive for all network sizes and num-

bers of introduced miRNAs, indicating that miRNA-

mediated FFLs can actually stabilize networks. It can also be

seen that the impact of a single miRNA/FFL decreases when

the network becomes larger. This means that larger networks

require more miRNAs/FFLs for the same degree of

stabilization.

Table III shows the results for networks of size 50. We

see that more miRNAs and thus more FFLs stabilize the dy-

namics. Whereas one miRNA of full strength with m1 	 4%

only has a small impact, five such miRNAs already lead to

m1 	 12%, and the introduction of thirty miRNAs of full

strength stabilizes the stochastic system quite a lot

(m1 	 0:37%). As expected, m2 yields higher values and

thirty miRNAs already reduce the stochasticity in the dy-

namics by more than 50% (m2 	 0:57%). In the case that

each miRNA regulates on average only half its transcription

factor’s target genes (but at least one), all values are consid-

erably lower; the general behavior does not change,

however.

These results raise the question whether a given network

can be fully stabilized by introducing a sufficient number of

FIG. 1. m1 and m2 are plotted against the number of introduced miRNAs.

Networks are not necessarily strongly connected, and the miRNA has full

strength. The size of the considered networks varies from 5 (solid line) to 50

(dotted line). The impact of a single FFL on the dynamics is larger in smaller

networks, which suggests that larger networks require more FFLs for the

same amount of stabilization.
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miRNAs. Indeed, under certain conditions, this is possible

by ensuring the existence of a unique steady state. If an n-

gene network contains no self-regulating genes, then n
miRNAs with full strength, each regulated by another gene,

suffice to have fully deterministic network dynamics. Since

the miRNA has full strength, it will downregulate any pres-

ent mRNA, which ensures that only the value a1 2 f0; 1g
(compare Table IV) can be taken by the target gene at a

steady state. Each gene is regulated by at least one other

gene. Hence, each gene and its regulated miRNA can only

take the value a1 in its truth table and the existence of a

unique steady state is guaranteed. Thus, l � 1 for such net-

works, which is equivalent to fully deterministic dynamics in

the sense defined in Sec. II.

A. Derrida values

In this study, we introduce a new measure for the robust-

ness of stochastic networks by quantifying the degree of

determinism of network dynamics. Another measure that can

be used in the Boolean context was suggested by Derrida in

1986.24 Pairs of initial configurations of fixed Hamming dis-

tance are sampled from the entire state space, and their mean

normalized Hamming distance, after being updated using

update functions and propensity parameters, is defined as the

Derrida value for a given initial Hamming distance. Lower

Derrida values reflect more stable dynamics. To take time

dependencies into account, we also considered the mean

Hamming distance after two and three time steps as has been

done earlier.25 Table V displays the percent change in

Derrida values starting with a basic 50-gene network and

introducing 30 miRNAs. In all cases, the change is negative,

i.e., the Derrida values decreased, indicating that the

extended network exhibits more stable dynamics than the ba-

sic network, which we observed for different network sizes

as well. Thus, another commonly used robustness measure

also agrees with our hypothesis, which suggests that our find-

ings are independent of the choice of robustness measure.

V. DISCUSSION

We have examined the effect of feedforward loop motifs

in stochastic Boolean network models of transcriptional net-

works, in analogy to the regulatory effects of miRNAs. Our

goal was to test the hypothesis that these regulatory motifs

have the effect of buffering the network against stochastic

effects in the sense that they stabilize the basins of attraction.

To this end, we conducted a computational experiment on a

large number of randomly generated networks. The networks

were modified by introducing additional nodes and feedfor-

ward motifs in a way that suggests regulation by miRNAs.

TABLE III. Comparison of the degree of stochasticity via m1 and m2 for not necessarily strongly connected networks of 50 genes, in which various numbers of

miRNAs with full strength (Part a) and with strength 0.5 (Part b) are introduced. Overall, the more miRNA-mediated FFLs are introduced, the less stochastic

the network dynamics become.

Number of miRNAs 1 3 5 8 10 15 30

(a) With full strength

Average number of FFLs 2.401 7.298 12.36 19.79 24.77 37.27 74.50

m1 0.0374 0.0700 0.1083 0.1548 0.1756 0.2609 0.4042

m2 0.0687 0.1444 0.2178 0.2832 0.3203 0.4297 0.5967

(b) With strength 0.5

Average number of FFLs 1.51 4.56 7.65 12.32 15.45 23.21 46.48

m1 0.0186 0.0523 0.0920 0.1064 0.1356 0.1653 0.2949

m2 0.0441 0.1138 0.1653 0.2052 0.2536 0.3111 0.4682

TABLE IV. If each of a target gene’s transcription factor regulates a

miRNA that degrades the transcription factor mRNA, then only the fixed

value a1 2 f0; 1g can be taken on at a steady state because each transcription

factor and its regulated miRNA have to take on the same value, 0 or 1, at a

steady state (rows 1, 6, 11, 16). Here, the first four rows show the original

update function, and a1;…; a4 are any Boolean values such that the update

function depends on both inputs.

miRNA1(t) miRNA2(t) TF1(t) TF2(t) target(tþ 1)

0 0 0 0 a1

0 0 0 1 a2

0 0 1 0 a3

0 0 1 1 a4

0 1 0 0 a1

0 1 0 1 a1

0 1 1 0 a3

0 1 1 1 a3

1 0 0 0 a1

1 0 0 1 a2

1 0 1 0 a1

1 0 1 1 a2

1 1 0 0 a1

1 1 0 1 a1

1 1 1 0 a1

1 1 1 1 a1

TABLE V. Derrida values for initial small disturbances of a Hamming dis-

tance up to 5 were simulated for a basic 50-gene network and an extended

network with an additional 30 miRNAs of full strength. Multiple time steps

were taken into account to consider time dependencies. The table shows that

the percent change of the Derrida values from the basic to the extended net-

work is always negative, indicating that our findings do not depend on the

choice of the robustness measure.

Hamming distance

Time steps 1 2 3 4 5

1 �2.834 �5.558 �7.770 �9.642 �11.194

2 �3.670 �5.062 �6.331 �7.376 �8.359

3 �6.492 �7.478 �8.354 �9.079 �9.810
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To capture the effect on network stability we introduced a

new measure of stochasticity of a network suitable for this

purpose. Using this measure, as well as the classical measure

of Derrida values, we showed that indeed the introduction of

miRNAs has the hypothesized buffering effect.

The number of miRNAs that are introduced strongly

influences the magnitude of the stabilizing effect, so that one

might wonder how many feedforward loops can be expected

to be found in actual gene regulatory networks. In a data set

from E. coli, among 424 nodes with 519 edges, 40 FFLs

have been found.26 In S. cerevisiae, among 685 genes with

1052 interactions, there are at least 70 FFLs.27 However,

restricting the data to subnetworks, we find other occurrence

frequencies of FFLs. A subnetwork of E. coli of 67 nodes

with 102 edges containing 42 FFLs was identified (some

new FFLs had been found by then), and in Drosophila mela-
nogaster, a subnetwork of 54 nodes and 167 edges contained

as many as 157 FFLs.28 These numbers indicate that the

question of how many FFLs are reasonable in a gene net-

work of a certain size seems to depend strongly on the aver-

age in-degree of the nodes; whereas even large networks

with average in-degree of less than 2 have few FFLs, this

number can rise quickly when the network becomes more

highly connected, as indicated by the considered network of

D. melanogaster, with an average in-degree of approxi-

mately 3.

Additionally, we looked at the correlations between the

number of attractors in both networks and the number of

common attractors, where we defined a configuration in both

networks to equal if the states of all genes, i.e., the first n
bits, coincide. Figure 2 shows the observed correlations, and

we notice expected decreasing correlations between all three

variables when more miRNAs are introduced. Surprisingly,

the number of attractors of the extended network is much

more strongly correlated with the number of common attrac-

tors than the respective number for the basic network, the

cause of which remains to be explored.

This study can be extended in several ways, which we

are planning to pursue. To make the study design more real-

istic, it is useful to introduce additional nodes for proteins, in

order to be able to implement more mechanistic details of

miRNA regulation. Also, here we do not restrict the regula-

tory rules to those that correspond to activation and

inhibition only, which does not allow the classification of

feedforward loops into coherent and incoherent, an important

distinction. Also, a more careful study remains to be done on

the effect of miRNAs relative to their position in the network

and the local network topology into which they are embed-

ded. Finally, another limitation of this work is that only

intrinsic noise is being considered as a perturbation. It is im-

portant, however, to also take extrinsic noise into account,

which requires an extension of the SDDS framework.

VI. CONCLUSIONS

This study provides computational evidence that

miRNA-mediated feedforward loops have the effect of buf-

fering the network against phenotypic variation due to sto-

chastic effects. Introducing a feedforward loop motif has a

local effect on network dynamics that propagates to a gener-

ally much smaller global effect on attractor stability. Thus,

as the number of feedforward loop motifs increases, the

overall stabilizing effect increases as well. In our study, the

number of miRNAs introduced is of a relative order of mag-

nitude that might be expected in an actual transcriptional net-

work. Thus, our computational experimental setup can be

used in conjunction with an appropriate experimental system

to investigate the effects of individual miRNA actions.
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