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Abstract

In drug-testing experiments the primary responses of interest are efficacy
and toxicity. These can be modeled as a bivariate quantal response using the
Gumbel model for bivariate logistic regression. D-optimal and Q-optimal experi-
mental designs are developed for this model. The Q-optimal design minimizes
the average asymptotic prediction variance of p(1,0;d), the probability of efficacy
without toxicity at dose d, over a desired range of doses. In addition, a new
optimality criterion, T-optimality, is developed which minimizes the asymptotic
variance of the estimate of the therapeutic index.

Most experimenters will be less familiar with the Gumbel bivariate
logistic regression model than with the univariate logistic regression models
which comprise its marginals. Therefore, the optimal designs based on the
Gumbel model are evaluated based on univariate logistic regression
D-efficiencies; conversely, designs derived from the univariate logistic regression
model are evaluated with respect to the Gumbel optimality criteria.

Further practical considerations motivate an exploration of designs
providing a maximin compromise between the three Gumbel-based criteria D, Q)
and T. Finally, 5-point designs which can be generated by fitted equations are

proposed as a practical option for experimental use.
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Chapter 1
Introduction and Literature Review

§1.1 Introduction

Experimental design, the primary focus of this paper, has its roots in the
agricultural experiments of Fisher and has since flourished as an integral part of
statistical research and practice. In the 1950’s the concept of an optimal
experimental design began to receive considerable attention. Since that time the
idea of an optimal design has been expanded, with numerous optimality criteria
and their application to various models introduced by statistical researchers
(Atkinson 1982).

Much of the design work has focused on the linear model due to its sim-
plicity and practicality. However, as the amount of statistical analysis using non-
linear models increased in fields such as the chemical, biological and clinical
sciences, the motivation for optimal designs for these models was provided. In
particular, optimal designs for fitting binary data to a logistic regression have
been the subject of numerous papers in the past fifteen years. This paper seeks
to expand this work to include optimal designs for fitting bivariate binary data
to a bivariate logistic model. This is a natural model for use in dose-ranging
experiments in which the researcher would like to use logistic regressions to

model drug efficacy and toxicity (Murtaugh and Fisher 1990).



It is important to note that the bivariate logistic model allows for
correlation between efficacy and toxicity. It is preferable to include this
correlation rather than to analyze efficacy and toxicity independently: it might
be expected that the same biological mechanisms would affect each, resulting in
positive correlation between the two. For example, Rowland and Tozer (1980)
discuss how cigarette smoking simultaneously reduces the efficacy and toxicity of
several therapeutic agents.

This dissertation develops traditional D-optimal designs for the bivariate
logistic regression model. In addition, two other design optimality criteria are
introduced which are wuniquely applicable to the drug-testing situation.
Q-optimality addresses prediction of the probability of drug efficacy without
toxicity, while T-optimality addresses estimation of the therapeutic index of a

drug.

§1.2 The Linear Model and Design Optimality

The early focus of mathematical statistics was upon analysis, with the
questions of experimental design left largely up to the intuition of the researcher.
As experimental situations became more complex, and thus more expensive, this
approach was found to be unsatisfactory. Statistical researchers began actively
seeking ways to maximize the information gained from a finite-sized experiment.

As previously mentioned, the vast majority of design optimality work

has focused on the situation in which the standard linear model

y=XB+e



is used. In this model

_ - _ _ _ . - _
Y1 Iz, ... zik Bo €
Y2 1 =z . 2y B €
y= 3 X = ’ .B = , €= )
Yn ] 1 Lnr - Tk ﬂk €n ]

where n equals the number of experimental runs and k + 1 equals the number of
parameters in the model. A common assumption is that of independent error

terms with common variance o2?. Under this assumption the ordinary least

-~ -~

squares estimator of 8, B = (X'X)'X'y, has Var(8) = o*(X'X)'. The
prediction variance is Var(f,) = olz)(X'X) !z, where z)=(1, 24, ... , Tor)
represents a particular location in the model space. These two variance
quantities play key roles in the optimality criteria which are discussed below.
Note that though both these quantities are model- and design-dependent, neither
depends on the unknown parameters.

Kiefer and Wolfowitz (1959) laid a foundation upon which subsequent
design optimality research has been built. Representing the design by a
probability measure on the design space, they developed several design
optimality criteria, including D-optimality, which is described below. In
addition, persuasive arguments were presented showing the advantages of using
optimal designs rather than designs which were in common use at the time.

The most well-known and commonly used of the design optimality criteria
is D-optimality. The D-optimal design is defined as the one which maximizes
|X’X|. In addition to its convenience as a norm for the variance-covariance
matrix of B, the determinant of (X'X) is also inversely proportional to the

3



square of the volume of the confidence ellipsoid of 8. Thus, maximizing |X'X]
provides the smallest possible confidence region for B, which the experimenter
wishes to estimate.

A second common criterion is A-optimality. This criterion achieves
reduction of the variance-covariance matrix of B by summing the diagonal
elements of (X'X), i.e. the A-optimal design is the one in which trace(X'X)™! is

~

minimized. This gives the design in which the sum of the variances of the 3,
7=0,1,2,.,k, is as small as possible. The A-optimality criterion does not use as
much information as does D-optimality since it ignores the values of the
covariance elements, which are the off-diagonal elements of (X'X)™.

E-optimal designs are those which minimize the maximum eigenvalue of
(X'X)™!. This is desirable since large prediction variances are associated with
large eigenvalues of (X'X)™. It can be shown that this criterion is equivalent to
minimizing the maximum prediction variance on all spheres in the model space,
i.e.

min [ | mex 'o(XX) 1z
where D is the design space, zj is any point in the model space and r > 0.

The criterion known as Q-optimality also directly addresses prediction

variance. A Q-optimal design is defined to be one which minimizes the

prediction variance integrated over the design region. Symbolically this is

written as
. n o
min [—Kaz /, Veslot@) dz] ,

where D again is the design region, n is the total sample size and K = / dz =
R
4



the volume of the region in which the researcher wishes to predict well.
Q-optimal designs tend to give prediction variances which are fairly uniform
throughout the design region.

G-optimality results in a choice of design which minimizes the maximum
prediction variance over a given region, and is thus a minimax criterion. In the
standard linear model it can be shown that the smallest possible value for
mﬁ.x[nVaI(f])/a?] is p=k+1, the number of parameters in the model. This
provides a ready benchmark for comparing any design to the G-optimal design.

A final class of optimality criteria are known as partial optimality criteria.
These are used when a particular subset, or function of this subset, of the
parameters is of particular interest. These criteria are also sometimes called
singular optimality criteria since their application may result in singular designs.
An example of this type of criterion is the partial D-optimality criterion where
the optimal design is the one which minimizes the determinant of the
appropriate submatrix of (X'X)™!. The submatrix of interest includes only those
elements corresponding to the parameters of interest (Pdzman 1986).

A small amount of work has been done regarding design optimality in the
situation where linear models are used for each of several responses. This
situation is more complicated than the single response case due to multiple
unknown variance and covariance parameters to consider. Fedorov (1972)
presented an algorithm for the construction of D-optimal designs for the multiple
response situation, but his methodology requires that the variance-covariance
matrix of the responses be known. Cooray-Wijesinha and Khuri (1987) expanded
Fedorov’s work to develop a sequential procedure for the construction of designs
when the variance-covariance structure of the responses is unknown.

5



§1.3 Nonlinear Models and Design Optimality

Nonlinear models have a much more general form than do linear models

and can be written as

y=f(z:0)+e¢,
where y and € are n-dimensional vectors and @ is a p-dimensional vector of para-
meters. If the maximum likelihood estimates of 6 are used, the variance-
covariance matrix of these estimates 8 is asymptotically the inverse of the Fisher
Information Matrix. The elements of the information matrix can be

calculated as
I,(0)= [ InL(6) - 0 lnL(G)jI |: 0 lnL(O)} (1.3.1)
AT 08, 09 06,00, e

where L(0) is the likelihood function, assuming that all partial derivatives exist
(Lehmann 1983). In the case of the linear model as previously considered, this is
equal to ¢*(X’X): a function of the design and the constant unknown

2 is a single constant, it can be factored out when con-

parameter o2 only. Since o
structing optimal designs. However, in the nonlinear case, the information
matrix is also a function of the parameters § which one wishes to estimate. Thus
the task of finding an optimal design is complicated by the fact that variances of
parameter estimates and other functions of interest are dependent upon the
unknown parameters.

One of the early articles dealing with optimal design in a nonlinear setting

is by Box and Lucas (1959). In this paper they derive a D-optimal design and



show that the values of the derivatives in the information matrix depend on the
parameter values themselves. Therefore one must assume that something is
known about the parameters in advance of the experiment. They suggested that
this knowledge might be achieved through experimentation in stages.

In a trio of articles, Draper and Hunter (1966, 1967a, 1967b) built on the
foundation laid by Box and Lucas and address the question of design for multi-
response situations in which the models are nonlinear. They addressed the need
for knowledge about the parameters by incorporating both the idea of prior

experimentation and the idea of Bayesian priors on the distribution.

§1.4 Logistic Regression and Design Optimality

One of the more popular nonlinear regression models is the logistic regres-
sion model for situations in which the response is dichotomous. Examples of
cases in which this model may be appropriate include drug-testing, in which the
response is either a cure or lack thereof; a test of an insecticide, where the
response may be death or survival of the insect; and a test of the breaking point
of a cable, in which the cable either breaks or does not. The logistic regression is
commonly used in the fields of engineering and the biological and health sciences.

In its most general form, the probability p; of a “success” at

vector z; of the independent variables is modeled as

(1.4.1)

pi= L
‘T ltexp(-zif)’

Due to the complexity of the design issue in this situation, however, the research

to this point has dealt almost exclusively with the simplest situation in which



AN

z.=(1 z;)and ' =( By, B; ). This simple model is commonly used in bio-
assay, where it leads to the concept of tolerance. Each subject is assumed to
have a given tolerance level below which there is no response to the treatment
and above which there is a response. The tolerance distribution has the
properties of a cumulative distribution function (cdf) and is modeled by the cdf.
For the logistic probability density function this results in the probabilities given
by (1.4.1). The logistic function corresponding to the logistic probability density

function for the simple model above is written as

_ exp(-Bo - 17 )
fle) = (1 + exp(-Bo— Bz ))*

Using this model, the observed information matrix is given by
F m m i

.Zln.‘Pi(l - Pi) .Zlnipi(l - P)T;
I(8) = ’
Z:lnip.'(l - DT .glnipi(l - p)z?

where n; = number of subjects at the i** treatment level, p; = the probability of
a success at the i'" treatment level and m = the total number of treatment
levels. Clearly in this case the information matrix is a function not only of the
design through the treatment levels, but is also a function of the parameters B
through the probabilities p,.

Finney (1978), in his well-known volume on bioassay, presented a
discussion of experimental design for the logistic regression in the context of
estimating the relative potency of two preparations. Tables giving values of key
quantities in the fiducial interval for relative potency were presented. Since
these tables assume prior knowledge of the logistic regression curves, Finney also

8



discussed the effect of missed parameter estimates and how one might choose
designs which are more robust to missed parameters.

One of the early works on optimal design for the 2-parameter logistic
regression was by Kalish and Rosenberger (1978), who derived two point sym-
metric D-optimal and G-optimal designs. These designs are designated in terms
of the LD,go, = (logit(p) - Bo) / By, where logit(p) = In (ﬁ—p-) is a useful
transformation of p. LDjq, stands for “lethal dose” at which proportion p of
subjects given this dose will die, where death is the response being modeled. It is
easily obtained by solving for the dose z; in equation (1.4.1). It is sometimes
known as ED,q, for “effective dose”, and in this paper the notation will be
ED;g0p and TD o, for “effective dose” and “toxic dose”, respectively.

Abdelbasit and Plackett (1983) further pursued D-optimal designs with a
discussion of robustness to parameter misspecification for 3-point versus 2-point
designs. Sequential methods involving a small number of stages were also
covered.

A more efficient 2-stage procedure was proposed by Minkin (1987), who
allowed for unequal allocation of subjects among the treatment levels in the
second stage to maximize the total log-likelihood. Kalish (1990) derived a
method for finding compromise designs which estimate well the LDy, without
placing design points too close to the center and thus sacrificing overall curve
estimation.

Bayesian analogs to D-optimal and A-optimal designs were given by
Chaloner and Larntz (1989). The experimenter may indicate the level of uncer-
tainty through the specification of the prior distribution. It was shown that
using this approach, the number of design points in the most efficient design may

9



be quite large when there is a high level of uncertainty in the location of the
logistic curve.

Myers (1991) derived Q-optimal and G-optimal designs where the
quantity of interest is Var(logit(p)). He also examined cross-efficiencies (e.g.
D-efficiency of Q-optimal designs) of D-, G-, and Q-optimal designs and their
robustness to parameter misspecification. He proposed a 2-stage “D-Q” design,
where the first stage is a 3-point D-optimal design and the second is a 2-point
conditionally Q-optimal design in which both the levels and the allocation may
be asymmetric. For additional information regarding optimal designs and useful

compromise designs see Myers et al. (1994).

10



Chapter 2
Bivariate Logistic Model

§2.1 Gumbel Model

In a drug-testing situation, two natural responses are efficacy and toxicity.
If binary responses are used, the efficacy response is 1 if the drug has the desired
effect; the toxicity response is 1 if the drug causes undesirable side-effects such as
nausea or headaches. These responses are often modeled separately (Perucca and
Pisani 1989) with the assumption that they are uncorrelated. However, since the
two responses each come from the same subject it seems prudent to allow for
correlation in the responses, i.e. model them as a bivariate response. Murtaugh
and Fisher (1990) present the (second) “Gumbel model” for this purpose, based
on the bivariate logistic cdf given by Gumbel (1961).

The Gumbel model is an attractive choice for several reasons. First, it
includes a correlation parameter, a; when a = 0 the model is equivalent to two
independent logistic models. Second, the marginal densities of both toxicity and
efficacy are logistic. This gives a natural link to previous optimal design work
cited in §1.4.

There are other bivariate response models based on the logistic regression.
Qu et al. (1987) present a generalized model of logistic regression which can
accommodate multiple responses. However, it makes the restrictive requirement

in the bivariate situation that the responses are symmetric. In the drug-testing

11



application this would imply that the probability of efficacy without toxicity
equals the probability of toxicity without efficacy, a restriction which does not fit
the application.  Bonney (1987) presents a logistic regression model for
dependent binary observations. This model is unattractive in the drug-testing
application because the conditional probabilities, rather than the marginal
probabilities, are logistic.

Lee et al. (1993) give a general form for a bivariate model in which the
marginal responses follow a logistic regression model. The Gumbel model is a
special case of this more general model in which the parameterization lends itself
to easy interpretation in the context of drug-testing.

It was noted in §1.4 that in the univariate case the probability of a
response at a given dose is expressed as the logistic cdf at that dose. A natural
extension in the bivariate case is to express each of the four cell probabilities
((Y=0, Z=0), (Y=1, Z=0), (Y=0, Z=1) and (Y=1, Z=1); Y=1 & drug efficacy;
Z=1 & drug toxicity) as the integral over the corresponding region of the
bivariate logistic density. The proper regions are indicated in (2.1.2) below.

The standard Gumbel cdf is given by

-1 .1 ae Y - .
FU,V(u,v)_1+e-u oo™ [1+(1+e'“)(1+e'”)J’ l<a<l, oo<u,v<o(o. |
2.1.1

Thus, if the dose d is transformed by the location parameter u (p, = EDy,

d -
g, = TDy) and scale parameter o to the “standard doses” d; = alﬂ L for

efficacy (Y) and d, = d-— for toxicity (Z), the following relationships can be

used to find the individual cell probabilities:

12



_ 1 . 1 . ae;dl-d2 .
l4eh 146% (1+e'd1) (1+e"‘2)

p(1,0;d)= P(Y=1, Z=0 | D=d) = F(d,,00) — F(d,,dy)

—_1 1 1 N ae 1% )
1+ 14eh 14e% (1+e"11)2(1+e"12)2,

p(0,1:d)= P(Y=0, Z=1 | D=d) = F(co,dy) — F(d;,d5)

__ 1 __1 1 ae 12

Tl4eR 14eT 14e% (1 +e’“’1)2 (1 +e‘d2)2 |

p(0,0;d) = P(Y=0, Z=0 | D=d) = 1 — F(d;,00) — F(0c,dy) + F(dy,dy)

ae 1 2 . 2.1.2
rea T (1reay (212

When the Gumbel model is used as a cdf, @ must satisfy -l<a<l.
However, for modeling bivariate binary data this requirement can be relaxed to
permit any value a for which cell probabilities are in the interval [0,1] for all
doses d. Using this criterion the minimum value for a is always -1 as derived in
Appendix A.

The upper bound for a, though, is dependent on the parameters p,, oy, y,
and o, and ranges from 1 to 4. Table 2.1 displays upper limits for « for different

13



combinations of u, and o,, given g, =0 and o, =1. (In §3.1 a transformation is
given which transforms any parameterization to a standard parameterization
where p; = 0 and o, =1 without affecting relative cell probabilities.) This table
was derived by starting with cell probabilities as in Appendix A and finding the
dose which minimizes the bound on a through the Nelder-Mead iterative search
algorithm (Nelder and Mead 1965).

A quick look at the cell probabilities in (2.1.2) reveals that o <0 cor-
responds to negative correlation between efficacy and toxicity, o = 0 to indepen-
dence and a > 0 to positive correlation. Murtaugh and Fisher (1990) give the

correlation at dose d as

Corr(Y,Z | D=d) = a .
(ed1/2 n e—dl/z) (ed2/2 + e-dz/z)

Cell probabilities are affected most by a # 0 when y; ~ p,. Figure 2.1 shows the
individual logistic probability curves for a specific parameter combination.

Figures 2.2 and 2.3 illustrate the effect of setting a=-1 and
a = maximum allowable value for the specific parameter combination given in
Figure 2.1. Figure 2.2 shows p(1,0;d), the probability of efficacy without
toxicity, as a function of dose. Note that the general shape is what one would
expect. At low doses the drug is ineffective, resulting in low values for p(1,0;d).
As the dose increases, so does the efficacy, and with it the value of p(1,0;d).
When the dose reaches high levels, the probability of toxicity becomes high,
causing the probability of efficacy without toxicity to decrease. Figures 2.2 and
2.3 both illustrate that different values of a affect the cell probabilities most for

the central doses.
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§2.2 Information Structure of the Gumbel Model

The importance  of the information matrix in the design optimality

problem was demonstrated in §1.4. The introduction of the correlation para-

meter in the Gumbel model creates a considerably more complex information

matrix than in the univariate logistic model. Begin by writing the likelihood as

k m
= H H (1,1;d,,)¥* p(1,0;d ) y(1-2) (0,1;dm)(1-y)z p(0,0;dm)(l"’)(l‘z),

where k = number of dosage levels, n,, = number of subjects at the m'® dose,

d,, = m'? dose and y,z € {0,1}. The log-likelihood is then

k. "m
In L(6) = Zl IZ {yz~ln p(1,1;d,,) + y(1 — 2)-In p(1,0;d,,) +
m= =1

(1—y)z-In p(0,1;d,y) + (1 —y)(1 —2)-In p(0,0:d,,) } -

If the parameter vector is represented by & = (y; o

the elements of the information matrix can be written as
PInLO)| & )
I,/0)= -E, [W = mZ—.:l I,;0;d,) - nn,,

where n,, = the number of subjects at the m** dose. Thus

k 9% In p(1,1;d,,
It](o) = Z L™ {(_ nag‘(agj )> : p(1711dm) +

m=1

15

Ho

O,

a),



2 In p(1,0:d,,)
~ 96,09, )P“]d

0% In p(0,1;d,,)

(-
(' 96,08, ) P(0,Lid,m)
(-5 )

p(0,0:d,,) } (2.2.1)

since Elyz] = p(Lldy), Ely(15)] = p(10:d,), El(19)s] = p(0,1id,,) and
E[(1-y)(1-z)] = p(0,0;d,,). The task of finding the elements of the information
matrix is simplified by noting that

Olnpy 1 Opg
36, = Pab 59, ° a,b=0,1 (2.2.2)

and that
82 In Pab —__ 1 ’ apab apab + _1_ . 62pab
98,06, — "\ Pav ) \ 08, J\ 38, ) Pab 36,00

Py (OPab \[OPab
" 96,08, ~ \ a6, )\ 08,

pab

, a,b=0,1 (2.2.3)

where p,, =p(a,b;d,,) is used for brevity. Further note that all the

Pa» = P(a,b;d,,) can be expressed as sums of the following;:

E,= —1 _ |
! 1+ed1
E,= —1 |
2 l+e
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EE,= — - —1 |
TP 14eh 146

A= ae 1T .
(4] (1ee)

Thus by finding the first and second partial derivatives of E,, E,, E,E, and A
with respect to 8, = u,, 8, = 0y, 63 = u,, 0, = 0, and 65 = o one can express the

elements of the information matrix as

’EE, | 8% OE\E;, oA\ (9E.E2 | oA
pll(aoiaoj+aeiaaj ‘( a9, +aT,.) a0, to8,

k
I;’j(o) =3 N 2 P11 t+
m=1

p[,(a2E1 OE,E, 621-\) (3[’51 Ok, E, 0A)<6E1 OF,E, 8ﬂ>
1 - oaa

9,06, 90,00, 36,00, ) \9, " 09, 6,)\ 98, 6, 00
2 Piot
P10
0’E, O%EE, s2a OE, OE.E, an)\(0E, OEE, A
Po1\ 56,00, ~ 90,00, ~ 96,06, )\ 6, - 96, ~06,)\ 30, ~06, 99,
2 Po1 +
Po1
. O’E, O, +62E1E2+ 82n
06,06, 99,90, ' 96,00, " 06,00,
Pdo
OE, OE, OEE, sn)\( OE, OE, OE.E, on
(‘a—e,.‘a—e,.*—ao,. +aT,.) P9, 99, " o6, o9,
- XPgo | - (2.2.4)

2
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The required partial derivatives of E,, E,, E,E, and A are derived in Appendix B.
Calculation of the information matrix has been accomplished with a computer
program written in SAS PROC IML. The computer code is shown in

Appendix E.

§2.3 Properties of the Information Matrix

Several properties of the information matrix are of interest in the
examination of design optimality for this model. First it would be helpful to
show that by parameterizing using ¢ and o rather than 8, and 3, as presented in
Chapter 1 optimal designs are not changed. Lehmann (1983) presented the

relationship between information matrices under reparameterization as

06,
I*(B) = JI(0)J', Jij = gﬁj_a

where 6 and B represent the original parameterization and the reparameter-
ization, respectively, of the model. In this case & =(y; o; p, o0, «) and
B = (B0 B B B )

For D-optimal designs the determinant |I*(8)| = |JI(68)J’| is of interest.
Note that |JI(8)J'| = |J|x|I(8)|x|J'|. Thus the determinants differ by a con-
stant factor, implying that minimizing |I(8)| will also minimize |I*(8)|.

For the other optimality criteria under consideration in Chapter 3, the
quantity v'I''(8)v, where v is a vector of partial derivatives, is important. This
is the expression which will be used to approximate the variance of estimated

functions of the parameters. So it is desired that v*'I*"!(8)v* = v'I"'(8)v, where
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v* is the vector of partial derivatives under the reparameterization. This

equality is proven in Appendix C.
If =0, that is if the models for efficacy and toxicity are independent,
the structure of the information matrix is simplified. Appendix D proves that

the information matrix in this case has the following block diagonal form:

It is easily seen that under location shifts the information matrix remains
invariant. This can be seen by noting that location shifts do not affect o,, o, or
o and that y,, g, and the doses enterkonly through the adjusted doses d, and d,
(see Appendix B).

One final property of the information matrix which shall be of interest is
how it changes under a scale change, e.g. if different units are used. If items

d*—py _ rd—rp

of T

= d;ﬂl = d, and likewise d; = d,. It has already been noted that the
1

marked with * have been rescaled by some factor r, then d} =

doses and the location parameters u enter the information matrix only through
the adjusted doses d, and d,.

By examination of the individual partial derivatives of E,, E,, E,E, and A
in Appendix B note that all first partial derivatives with respect to 8,, 1 =1,2,3 .4,
have a single o in the denominator; first partial derivatives with respect to 65 =
a are functions of o; and o, only through d; and d,. Likewise, second partial
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derivatives with respect to 6; and 6, 7,5 =1,2,3,4, have two o parameters in the
denominator; second partial derivatives with respect to 8; and 6; = a, 1 =1,2,3,4
have a single o parameter in the denominator; and second partial derivatives
with respect to §; = a have no o parameters. In all these cases the o parameters
enter otherwise only through d; and d,. Thus by replacement in (2.2.4), I*(6*),

the information matrix under rescaling, can be written as

- -
r2l,, ri, ri,, ri, rig
R PYRNE S PYRR U P A9 PR B P

r 2, r 2], r 21,3 7"2I44 r'1]45

-1 -1 -1 -1
e P e P r I, rIg, I

where r is the rescaling factor. This makes intuitive sense: since a is a
correlation parameter, it is thus scale-free and should not be affected by a change

in scale.
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Table 2.1 Maximum Allowable Values for «

(b =0,07=1)

13
0.0 0.5 1.0 1.5 2.0
3.61 2.73 2.17 1.80 1.55
4.00 3.21 2.58 2.20 1.87
3.85 3.20 2.72 2.35 2.06
3.61 3.12 2.73 2.42 2.17
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Figure 2.1 Individual Logistic Probability Curves (g, =0, 0y =1; py =0, 0, =2)
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Figure 2.2 P(Y=1,2=0) when p, =0, 0, =1, =0, 6,=2
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Figure 2.3 Correlation of Y and Z when y; =0, 0y =1, p3=0, 5, =2
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Chapter 3
Optimal Designs for the Gumbel Model

§3.1 Design Considerations

Even in the case of symmetric 2-point designs for the simplest univariate
models, as in Kalish and Rosenberger (1978), iterative methods were required to
solve for the optimal design points. Thus it is clear that in the bivariate case,
with its complex form for the information matrix, an iterative method will be
necessary. The Nelder-Mead algorithm (Nelder and Mead 1965) as implemented
using SAS PROC IML in Myers (1991) has been used. The Nelder-Mead
algorithm requires that the number of points in the design be specified. Any
restrictions on allocation of subjects to points in the design must also be
specified.

Several types of designs are considered for the Gumbel model with
varying numbers of design points and restrictions. It is desirable to be able to
make numerical comparisons between different types of designs for any given
design optimality criterion. This is accomplished by means of relative efficiency
definitions which are given for each criterion.

There are a number of differences between the bivariate and univariate
cases which shall become clear as they are discussed. Typically, the designs in
the univariate case are symmetric about the ED;, and are expressed in terms of

EDs4, In the bivariate case there is a clear central dose only in the cases
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where y, = p, or o, = 0,. In addition, since there are two responses it is no
longer as helpful to express designs in terms of the EDqg,,.

Due to these differences there will be no requirement for designs to be
symmetric in any sense. Some sort of standard parameterization is desired so
that tabulation of designs does not require five dimensions (one for each
parameter). This can be achieved by transforming the doses and parameters as

shown below:
d* = (d—lll)/au
My = (ﬂl‘#l)/‘ﬁ =0,

o1 =0,/0, =1,

3 = (= m)/ oy,

0y = 03/0y,

ot = a. (3.1.1)

In earlier work for the univariate case 2- and 3-point designs with equal
weighting for all design points were considered. Because of this and their
simplicity, these designs were the first ones explored for the bivariate case in this
research. The 2- and 3-point designs are discussed more fully and are tabled in
the 1992 technical report which represents the early stages of this research (Heise
and Myers 1992). Since equal sample sizes are required at each design point, the
actual dosages completely specify the design. Thus these designs require the
iterative search algorithm to search in 2 or 3 dimensions, respectively.

The next general type of design considered was a 3-point design with

complete freedom in the proportion of subjects allocated to each design point.
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This design is a generalization of the 2- and 3-point designs with equal weighting
described in the previous paragraph since allocation of 0.0% of the subjects to
one of the three dosages gives a two point design. These designs require the
Nelder-Mead algorithm to search in five dimensions: one for each of the three
design points and one for two of the three weightings. (The three weightings
must sum to unity, so the third weighting is determined by the first two.) These
designs are generally the best calculable given the constraints of the Nelder-Mead
algorithm. For this reason, efficiencies for the various design optimality criteria
will be calculated with respect to this class of designs.

A fourth type of design considered is a 5-point design with restrictions of
equal weighting among the design points and equal spacing between the design
points. These 5-point designs have been considered since most practitioners are
unwilling to consider a 2- or 3-point design. By restricting the 5-point designs to
those with equal weighting and equal spacing, a search in only two dimensions is
permitted: if the value of any one of the five ordered doses and the spacing
between the five doses are known then the design is completely specified.

Due to the restriction of equal spacing, this design is more stable than the
others. In other words, 5-point designs can be expressed very closely as a simple
function of the Gumbel parameters. This gives the advantage to the user that
close approximations to these designs can be found without the use of the
Nelder-Mead algorithm. In addition, the 5-point designs generally have high

efficiencies. They will be discussed further in Chapter 4.
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§3.2 D-optimal Designs

Previous work in which D-optimal designs were obtained for the
univariate logistic model was described in §1.4. Recall that the D-optimal design
is the one in which the determinant of the information matrix is maximized. It
was observed in §2.3 that the information matrix is invariant to location shifts
and (2.3.1) shows how its elements are affected by a change of scale.

It can be shown that the determinant under rescaling as in (3.1.1) is
proportional to the determinant under original scaling; as a result dimensionality
of the optimal design table can be reduced to three. Recall the definition

of a determinant

|Mnxn| = Z im1j1m2j2"' mnjn ’
S

where (7, Jj, --- ,Jn) IS a permutation of the set {1, 2, ..., n} and § = set of all
n! permutations of {1, 2, ..., n}. If this is applied to (2.3.1) it is seen that,

since in this case r = o7 = rescaling factor,
[1(6°)| = o1 1(6)],

where I*(6") is the information matrix using the rescaled doses and parameters.
Further reduction of the size of the table can be achieved by noting that
with respect to D-optimality, the roles of the efficacy and toxicity parameters are
interchangeable. Thus designs can be tabulated for only p; > 0 if, by convention,
transformation is by the parameter set which has the smaller value of u. The
optimal design tables contain D-optimal designs for all possible combinations of

the following sets. The set a € {-1, 0, 1, 2} begins at the lowest possible value of
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o and goes up to a value for which correlation is quite high. The set
o; € {0.5, 1, 1.5, 2} was used since it allows for a factor 2 ratio between the two
scale parameters. Finally, the set uj € {0, 0.5, 1, 1.5, 2} was chosen since it
allows for a wide range of separation between the location parameters pu.
D-optimal designs with three points (unequal weighting) and five points
(equal weighting, equal spacing) are displayed in Tables 3.1 and 3.2. Relative
D-efficiencies of the 5-point designs with respect to the 3-point designs are

given in Table 3.3. Relative D-efficiency is defined as

1/5
D-efficiency(B|A) = (‘ffgz;:) ;

where Ig(f) is the information matrix of some design B and I,(@) is the
information matrix of design A (see Minkin 1987). D-efficiency defined in this
way satisfies the practical description given in Kiefer and Wolfowitz (1959) that
if D-efficiency(B|A) = ¢, then design A requires ¢ times the number of subjects
that design B does to achieve the same value for |I(8)|. Note that the 5-point
designs do quite well, with only a few D-efficiencies falling below 0.90.

To use these tables one needs to have initial guesses of the parameter
values. In practice, the experimenter would probably feel more comfortable
giving initial estimates of quantiles of the individual logistic curves than
estimating the parameters, which is permissible since any two quantiles uniquely
determine each marginal curve. As an example of how these tables might be

used, the experimenter may be able to give initial estimates as follows:

EDyy=3.2, EDg,=6.0, TD,;=5.2 and TD;,=8.0. Here, EDyy; = y; =6.0 and

from (1.4.1), using dI:d;lﬂl instead of z'B, one can solve to obtain
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o, = —}?D—?);IE—DITJzzwzQ.O. (In (1.4.1) with the specified replacement,
ni. -

p;=0.20, d =ED,;=3.2 and p; =EDg,=6.0.) Likewise, TDgy, = p, =8.0 and
0, =2.02 = 2.0. Using (3.1.1) gives the standard parameterization
#3=(py—py)/0,=1.0 and o0; =0,/0,=1.0. Perhaps it is felt that moderate
positive correlation is present between efficacy and toxicity, so that one guesses
that a =1. Then from Table 3.2 the standardized 5-point D-optimal design is
(-1.367, -0.433, 0.501, 1.435, 2.369). (The first of the five design points is -1.367
and the spacing is 0.934, giving each of the successive design points.) The
inverse transformation d=d*o,+pu, gives the desired D-optimal design as
(3.266, 5.134, 7.002, 8.870, 10.738).

Note that all the tabled designs where o} = o3 = 1.0 are symmetric about
(u7 + p3)/2 as one might expect. In addition, all the tabled designs except two
where p5 = 0 are symmetric about u} = u3 = 0. There are two 3-point unequal
weighting designs where p; = 0 which are anomalous: the designs for which
o3 = 0.5, a =2 and 0} = 2.0, @« = 2. A natural question is whether there are
symmetric designs which nearly match the performance of these optimal designs.
With the restriction of symmetry the design (-1.018, 0, 1.018) with weighting
(0.325, 0.350, 0.325) has D-efficiency of .9997 in the former case and the design
(-2.035, 0, 2.035) with weighting (0.325, 0.350, 0.325) has D-efficiency of .9997 in
the latter. These examples illustrate one way in which the inclusion of the
correlation parameter ¢« in the model leads to optimal designs which might not
be otherwise expected.

The researcher may be interested in how the D-optimal design for the
Gumbel model compares to the D-optimal design for the univariate logistic
model when y; = g, =0, 0, = 0, =1 and a = 0. Here it is consistent to
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express the design in terms of the ED,qy, since the parameters for the efficacy
and toxicity models are identical. The 2-point D-optimal design for the Gumbel
model is (ED,, 7, ED7;5) = (-1.223, 1.223) while the comparable design for the
univariate model is (ED,; 4, EDg,,) = (-1.543, 1.543). If optimization is carried
out for the Gumbel model utilizing only the determinant of the 4 x4 submatrix
of the information matrix excluding the a row and column, the univariate
D-optimal design is achieved. The need to estimate « efficiently has drawn the
design points toward the center.

Although direct comparison with univariate designs makes sense only
when p;, = p,, 0, = 0, and @ = 0, one can compare designs obtained by using
the 4x4 submatrix as mentioned above to those obtained using the full 5x5
information matrix when o = 0. The relationship between the two methods for
2-point equally weighted designs, based on a small number of trials, appears to
be that the spread of the two points in the Dy, s-optimal design is approximately
.8 times the spread of the points in the D, ,-optimal design. This is consistent
with the example given in the previous paragraph. Intuitively one feels from
looking at Figures 2.2 and 2.3 that since the presence of non-zero a has the
greatest effect in the “center” of the range of doses, the design points need to
move toward the center to efficiently estimate this parameter.

In the univariate case, the 2-point D-optimal design with equal sample
sizes at each design point has the highest D-efficiency of all possible designs.
The D-efficiency of the 3-point symmetric design (ED,34, EDy, EDgg,) with
respect to the 2-point design is .930 (Abdelbasit and Plackett 1983, using
D-efficiency definition from Minkin 1987). In Table 3.1 it can be seen that some
of the optimal 3-point designs with unequal weighting simplify to 2-point designs
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since the weighting for one of the points is 0.000; in other cases the optimal
designs truly do have 3 points. Thus the number of points in the D-optimal

design depends on the values of the Gumbel parameters.

§3.2.1 Robustness to Parameter Misspecification

The issue of robustness of designs to parameter misspecification is
complex for the Gumbel model. For the univariate case a 2-dimensional plot or
table of design efficiencies under parameter misspecification is obtained relatively
easily. For the Gumbel model a 5-dimensional table is necessary for each
parameter combination among the 3-dimensional space of standard designs.
Generation of such a table is computationally intensive since it requires finding
an optimal design at each misspecification of interest so that the specified design
may be compared to it.

Due to the unwieldy nature of these robustness tables and because of the
impossibility of completeness, none are included here. However, an attempt will
be made to generalize some observations made from both 5-dimensional and
2-dimensional robustness tables which were generated for several assumed
parameter combinations. This robustness work was done only with 2- and
3-point equally weighted designs due to computing limitations.

The D-optimal designs seem to be fairly robust to mild misspecification of
parameters, that is (—ﬂl%w) € [-0.5, 0.5], ;'—1‘0 € [0.80, 1.25], %
€ [-0.5, 0.5], g—;}e [0.80, 1.25] and o ranging over the tabled values, where a
subscript of 0 indicates the initial guess at the parameter value. In most cases

the D-efficiencies are greater than .90.
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There is definite “interaction” when certain parameters are misspecified
simultaneously, and this makes it difficult to generalize results to five dim-
ensions. An example will illustrate what is meant by “interaction”. If one of the
o parameters is underestimated, the design used will have its points too close
together and its efficiency will be less than unity. But if both o parameters are
simultaneously underestimated initially, the resulting efficiency will be less than
what would be obtained by multiplying the efficiencies of misspecifying the o
parameters singly. Similarly, if one ¢ parameter is overestimated and the other
underestimated, it is possible to have compensation and thus achieve efficiency
of near unity. One may note from Tables 3.1 and 3.2 in Heise and Myers (1992)
that in general the designs for larger values of a have design points which are
pulled closer together. Thus there is also interaction if a and o, or o, are
misspecified together. Simultaneous misspecification of the location parameters
p bring about interaction in an obvious way.

A final point worth noting in regard to robustness is that 3-point designs
in general are more robust to serious departures from the initial parameter
estimates than are 2-point designs. This is consistent with robustness in the

univariate case as noted by Abdelbasit and Plackett (1983).

§3.3 Q-optimal Designs

Myers (1991) developed Q-optimal designs for the univariate logistic
model. The objective was to minimize the integrated variance of the estimate of
the logit (lrn(%) ), where the range of integration is over the doses of interest.

In the bivariate case the logit is no longer of primary interest. Rather, a
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quantity is sought involving both efficacy and toxicity which the researcher may
wish to estimate with minimum variance over some range of interest. One such
quantity is p(1,0;d), the probability of a subject responding in the desired
manner to the drug without the presence of toxic side effects.

Since p(1,0;d) is a nonlinear function of parameters in a nonlinear model
it is clear that asymptotic methods need to be used to approximate the variance
of its estimate. Using the delta method for asymptotic variance of a

function of multiple parameters gives
Var (5(1,0:)) ~ (G p(1,0:0) ) 7(6) (& p(1,0:0) ) (3:3.1)

where %p(l,o;d) 1s the 5x 1 vector of partial derivatives evaluated at the true
value of 8. The appropriate partial derivatives of p(1,0;d) = E, —E,E, -~ A may
be obtained from Appendix B.

Now for Q-optimality the objective is to minimize, through proper design
selection, this variance averaged over the region of interest.  This is

equivalent to minimizing the following integrated prediction variance:
V= [ (ﬁ p(1 0_$))’I-1(9) (Q p(1 O'x)) dz
dl 60 s 60 b

= /dh trace l: (6% p(l,O;:v))II'l(ﬂ) (% p(l,O;:v))T dz

= /Z: trace [(% p(l,O;x)) (% P(1,0§-T)),I-1(0) dx

= trace { / 5 (% p(1,o;x)) (% P(l,O;:c))ld:c () } : (3.3.2)



where d; and d;, are the extreme doses in the range of interest. The optimal
design must be found iteratively; however, by rearranging the order of matrix
multiplication the integration needs to be performed only once since the
integrated terms are a function of the parameters only. The design enters only
through the information matrix.

To minimize this integrated variance requires evaluation of the integral
and an iterative method for finding the Q-optimal design. The integral is
evaluated numerically using 24-point Gaussian quadrature. Gaussian quadrature
appears to be quite adequate here, giving accuracy to five significant digits as
compared to evaluation using a fine grid. The optimal design is found by means
of the Nelder-Mead algorithm.

One issue in tabulating designs is how the region of interest should be
chosen. In an actual experiment the researcher would simply indicate the dosage
region of interest. For the tables of Q-optimal designs which were generated the
endpoints were defined to be the lower and upper values at which p(1,0;d) = 0.01.
The designs appear to change very little with the choice of end-points as long as
the range is not drawn in too tightly.

For Q-optimal designs the same standard parameterization can be used as
for D-optimal designs. The one difference is that the roles of the efficacy and
toxicity parameters are distinct with respect to the Q-optimality criterion;
therefore the value for uj must be extended below zero. The lower value chosen
for the tables in this work is -1 since it is not thought that a drug which has
TDg, much lower than the ED,, would be of interest to a researcher.

It is easy to show that the asymptotic variance is invariant to trans-
formation to the standard parameterization. If v is used to denote the vector of
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Also, from (2.3.1), since the rescaling factor r = o7’,
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Tables 3.4 and 3.5 display 3-point unequal weighting and 5-point equal

weighting, equal spacing Q-optimal designs.

designs, if o3 # 1, the designs for uj =0 are not symmetric. This is because of

Note that unlike the D-optimal

the asymmetry of p(1,0;d) when o, # o, (see Figure 2.2). The Q-optimal designs

are symmetric when o, = 0, (63 = 1): both the designs and the probability curve

p(1,0;d) are symmetric about (4} + p3)/2. As in the D-optimal designs, in some

cases the optimal designs as shown in Table 3.4 are 2-point designs and in other

cases they are 3-point designs.
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Relative Q-efficiencies are calculated as

Q-efficiency(B|A) = % ,

where Q-efficiency(B|A) is the efficiency of design B with respect to design A.
Table 3.6 displays the relative Q-efficiencies of 5-point designs with respect to

3-point designs. Most of the 5-point design Q-efficiencies are greater than 0.90.

§3.3.1 Robustness to Parameter Misspecification

Q-optimal designs, like D-optimal designs, seem to be fairly robust to
mild misspecification of parameters. However there are some significant
differences in behavior under parameter misspecification which deserve
discussion.

First, the “interaction” when multiple parameters are simultaneously
misspecified, though certainly an issue with Q-optimal designs, is not as uniform
as it is with D-optimal designs. So, for example, although the interaction of «
and o is similar for Q-optimal and D-optimal designs, the results are less
consistent in ()-optimality.

Second, for o; and o, both overspecified there is negative interaction, as
for the D-optimal designs. However, for Q-optimal designs with o, and o, both
underspecified, there is no longer negative interaction. In the latter case there
are still design points near the peak of p(1,0;d) where there is more variability;
thus these designs do not do as poorly as one might expect.

Third, overspecification of p; gives significantly worse results than

underspecification of x,. Similarly, underspecification of u, gives significantly
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worse results than overspecification of y,. Even if y; is underspecified and g, is
overspecified simultaneously the Q-efficiencies are quite good, provided only
these two parameters are misspecified. When other parameters are misspecified

as well, the situation is no longer as consistent.

§3.4 T-optimal Designs

A common way to characterize a drug is by its therapeutic index, which is
defined as the ratio of the dose at which a specified level of toxicity is reached to
the dose at which a specified level of efficacy is attained (Pessina et al. 1992).
Large values for the therapeutic index are desirable since they indicate that
toxicity is reached at far higher doses than is efficacy. Using the notation of this
paper, the therapeutic index is written as T = g—]l))izz_? , Where p, is the specified
quantile of toxicity and p, is the specified quantile of e:fficacy.

The researcher would thus like to estimate T with minimum variance.
The design criterion which achieves this is called the T-optimality criterion. An
alternate approach is to minimize the width of the fiducial interval for T as
obtained using the method presented by Fieller (1944). The design criterion
achieving this shall be referred to as the T g-optimality criterion.

An important decision about the tabulated designs is what values of p,
and p, tousein T = %Zz: . A quick perusal of the bioassay literature reveals

that the ED,, and TD,, receive the predominance of attention. Thus it was

decided to use p, = p, =.50; in the subsequent discussion it is assumed that

TDs;,

T = ED,,
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§3.4.1 Asymptotic Variance and Fiducial Interval Approaches

Both T-optimality and T g-optimality are partial optimality criteria since
T is a function of only the two parameters g, and p, (more generally, the four
parameters y,, 0y, #, and 0,). The asymptotic variance of T, like the asymptotic
variance of p(1,0;d), is calculated using the delta method. The therapeutic index

is written as

TD
T=Eﬁ§=%§ (3.4.1.1)

The vector of partial derivatives, v, has elements as follows:

1 6”1 ﬂ]z’
_ 0T _
vz—aal—ﬂ,
b 9T _ 1
3 6[‘2 [y
0T _
v4—ao.2_03
zg=%%=0. (3.4.1.2)

The Nelder-Mead algorithm was used to find T-optimal designs based on

minimization of the asymptotic variance function of T,

VT = v'I''(0)v. (3.4.1.3)
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Alternatively, one can base the optimality criterion on the fiducial
interval for T (Tg-optimality). Following Fieller’s method as presented in
Finney (1978) the interval can be derived in the following fashion.

The estimator for T is T:% where [, and f, are the maximum
1

likelihood estimates of y; and p,. Consider the quantity f, — i, T. Since fi; and

fi, are m.l.e.’s, asymptotically
E( i, - 1, T)=0.
In addition,
Var( i1, — inT) = Var(ft,) —2TCov(jiy,fiy) + T*Var(iyy).

Exploiting the asymptotic normality of f; and f, and letting V,,=Var(j,),

V,2=Cov(jiy,ft;) and Vy,=Var(j,) it is possible to write
Pr[z¢/2(V22-2TV12+T2Vn)'5 < jip- T L 2¢/2(V22'2TV12 + T2V11)'5]
=1- ¢a

where z,,, is the upper ¢/2 percent point of the standard normal distribution.
(The notation ¢ is used here rather than the usual a to avoid confusion with

the Gumbel parameter a.) Equivalently,
Pr[(fi; - inT)? < 255(Var 2TV, + T?Vy) = 1 - ¢.

Solving the expression within the probability operator for T will give

(1-¢)x100% fiducial bounds on T:
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3= 2Ty fiy + pT? = 243V 22 = 2253 TV12 + 25, TV

=> 0= (235/2\/11 — ) T?+2(fnfy — zi/zvlz)T + (21/2\/22 )

-2(fiyflg ~ Z<2z5/2vl2) + \/4(171%‘235/2\/12)2 - 4(%/2"11'!“%)(zi/zvzz'ﬁg)

= T= =
2(21/2\/11‘/‘%)
. T— ~(fafta - 235/2\/12) * \/(p’ll&'fzi/2vl2)2 - (Zi/zvu'ﬂ%)(zinvn‘ﬂg)
~ii(1-g) ’
- Vv b4 A - V2
~ T= 11 My 11 ’
(1-9)
22,V
é/2V11 TR . o . .
where g = —"——. For Tp-optimality it is desired to minimize the width of this
H1

interval. However, in the design stage of the experiment, f,, fi, and T are of
course not available. Thus, for this criterion, the design is specified to minimize

the expression

Z4/2 Vi
m Vi = 2TV + T2V - 9(Vap - ﬁ)a (3.4.1.4)
zi/an .
where ¢ has also been redefined as g = 7 and the V;; are the appropriate
asymptotic variance quantities. Note that since ¢ includes zz /2 and

Vi=Var(g,), the placement of g in the minimized expression implies that the
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Tr-optimal designs depend upon ¢ and the sample size n as well as the

parameter values.
It 1s straightforward to show the asymptotic equivalence of the

T-optimality and T -optimality criteria. Begin with the expansion of (3.4.1.3):
VT = v'I'(0)v = 31" — 20,051 4 03133,

where I'/ = the 5** element of I''(#). Thus, I* =V,,, I'*=V,, and I**=V,,.

VT = vy -2 &V +(l)v
( ) 11 (/1:13) 12 ﬂ% 22

:% (T?V,1 =2TV,g + V). (3.4.1.5)
1

Therefore,

A
— [¥]

Now, T p-optimal designs can be found by minimizing (3.4.1.4) squared, i.e.

2
Z¢ 2 V2

But lim V;;=0 = lim ¢=0. Thus, asymptotically, minimizing (3.4.1.6) is

equivalent to minimizing

22
Zer2 (v, _9TV,, + TV
¥, ( 22 12 11),

which is equivalent to minimizing (3.4.1.5).

One could also give an interpretation which parallels the usual bioassay
interpretation: (3.4.1.5) is approximately equal to (3.4.1.6) if g~ 0. Here gis an
“index of the significance of the difference of the denominator from 0.” The
resulting interpretation is that the methods are approximately equivalent if the

denominator of T (ji; = EDyy) is enough larger than 0.
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In addition to the asymptotic result derived above, exploratory work has
indicated that there are no significant differences between T-optimal and
T -optimal designs except in cases where there is high probability of either an
effective response or a toxic response at dose d=0 (P(Y=1|d=0)>.20 or
P(Z=1|d =0) >.20). This situation seems unlikely unless there is an unusually
large placebo effect.

To compare the two criteria it is necessary to define T-efficiency and

T p-efficiency. Relative T-efficiency is defined as

T-efficiency(B|A) = %—%%—; ,

where T-efficiency(B|A) is the efficiency of design B with respect to design A.

Relative T g-efficiency is defined as

2
T p-efficiency(B|A) = % ’

where WFI?(A) is the squared width of the fiducial interval based on design A.

Take as an illustration the parameter estimates given in the Murtaugh
and Fisher (1990) example: ji, = 1.08, &, = 1.45, implying P(Y=1|d = 0) = .32;
fi,=2.31, 6,=0.81, implying P(Z=1|d =0)=.05. This seems to be a fairly
extreme case (the model implies that the probability of drug effectiveness at dose
d =0 is .32), yet the T-efficiency of the Tg-optimal design and the T g-efficiency
of the T-optimal design both exceeded .970.

Due to the similarity of the T-optimal and T p-optimal designs, it would
seem redundant to table both. Therefore, due to the relative simplicity of the

T-optimality concept and since the Tp-optimal designs are not invariant to ¢
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and sample size n, the remainder of this research considers only T-optimal
designs.

Unlike the D- and Q-optimality criteria, the T-optimality criterion is not
invariant to location shifts, as can be seen by looking at (3.4.1.2). This presents
no problem, however, since in a drug-testing experiment the zero dose is absolute
and there should be no need for a location shift. The criterion is invariant to
changes in scale, though, which is important since one would not want the
optimal design to change just because different measurement units are being
used. The proof of invariance to changes in scale is identical to the one offered
in §3.3 for Q-optimality.

Since T-optimality is not invariant to location shifts, a choice needed to
be made regarding the location parameters for tabled optimal designs. It was
decided to use a standard of uj = 6 since for larger values the optimal designs are
essentially equivalent after adjustment for the location shift. The same values
for the scale parameters o* as in the other tables were used, as well as the
standardized differences between p, and p,. Here the doses and parameters

are scaled slightly differently than in (3.1.1):
d*=d/o,,
Hi = m/oy (= 6),

’—— pra—
o = 0y/0, = 1,

* —
He = I'L2/Ul’
* —
o3 = 0y/0y,
a® = a.
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This allows for comparison of designs obtained using the different optimality
criteria (see §3.5).

When using the delta method for approximate variance of a ratio, the
denominator must be several sigma units away from zero. A program was
written and run to check what sample size is required for the denominator to be
three standard deviations away from zero for the tabled parameter combinations
(¢ = 6) and the D-optimal, Q-optimal and T-optimal designs. Most of the cases
only required sample size of 2 or 3 and the maximum required was 8. This is a
far smaller sample than would be used in an experiment of this nature; thus this
approximation appears to be adequate.

Tables 3.7 and 3.8 display 3-point unequal weighting and 5-point equal
weighting, equal spacing T-optimal designs. Note that designs for u; =y, =6
are essentially 1-point designs at dose d = 6. Here a strict 1-point design is not
generated because it would lead to singularity of the information matrix. The
relative T-efficiencies of the 5-point designs with respect to the 3-point designs
are displayed in Table 3.9.

In the initial work on the T-optimal designs, the criterion was defined in
terms of In (T) instead of T. It is interesting to note that the optimal designs
produced under the two criteria were identical, as were the relative efficiencies of

the 3- and 2-point T-optimal designs.

§3.4.2 Robustness to Parameter Misspecification

Exploratory work has shown that T-optimal designs appear to be less

robust to parameter misspecification than are D- or Q-optimal designs. This is
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not surprising when one considers the 1-point nature of the T-optimal designs
when p, = p, =6.

One interesting feature of the robustness properties of T-optimal designs
is that the designs are more robust if o, and/or o, are underestimated than if
they are overestimated. In terms of the design, it is better to have the design
points pulled in too closely than to have them spread too far apart.

A second feature of the T-optimal designs is that they are more robust to
misspecification of the scale parameters o, and o, than to the location
parameters g, and g, This might be expected since the therapeutic index has

been defined in terms of u; and p, only.

§3.5 Comparisons of Optimal Designs Under Various Criteria

Given the three optimality criteria presented here, D-; Q- and
T-optimality, one naturally wonders how efficient each type of optimal design is
with respect to the other criteria. Tables 3.10 - 3.12 attempt to address that
question by presenting cross-efficiencies of the optimal 2- and 3-point designs.

The D-efficiencies of the Q-optimal designs are in general quite high, with
many above .90. All the 3-point unequally weighted Q-optimal designs have
D-efficiencies greater than 0.79. The Q-efficiencies of the corresponding
D-optimal designs are fairly good as well, but in general are not as high. These
Q-efficiencies are above .80 for all tabled cases where o3 =1 or o3 =1.5.
However, when o, and o, differ by a factor of 2.0 (63 = 0.5 or o3 =2.0), the
Q-efficiencies of the tabled 3-point unequally weighted designs are frequently
between 0.70 and 0.80.

46



In general, the D-optimal and Q-optimal designs are much more similar to
one another than they are to the T-optimal designs. The cross-efficiencies of
both D- and Q-optimal designs with T-optimal designs are generally lower than
the cross-efficiencies of the Q-optimal designs with the D-optimal designs. Note
the near-zero D- and Q-efficiencies of the T-optimal designs when y, = pu, =6.
This is due, of course, to the near-singularity of these T-optimal designs.
Though this is the extreme case, cross-efficiencies displayed in these tables are
not infrequently quite low, particularly for the comparison of T- and Q-optimal

designs.
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Table 3.2 5-point D-optimal Designs with Equal Weighting, Equal Spacing

(p;:ﬂ, o1=1)

K2
a o 0.0 0.5 1.0 1.5 2.0
-1 0.5 PT1 -1.317 -0.997 -0.734 -0.539 -0.424
SPACE 0.659 0.670 0.704 0.763 0.846
-1 1.0 PT1 -1.991 -1.757 -1.553 -1.384 -1.246
SPACE 0.995 1.003 1.027 1.067 1.123
-1 1.5 PT1 -2.381 -2.204 -2.051 -1.919 -1.808
SPACE 1.190 1.198 1.217 1.251 1.297
-1 2.0 PT1 -2.636 -2.491 -2.366 -2.258 -2.166
SPACE 1.318 1.323 1.340 1.368 1.408
0 0.5 PT1 -1.245 -0.945 -0.690 -0.498 -0.382
SPACE 0.623 0.632 0.661 0.712 0.788
0 1.0 PT1 -1.847 -1.612 -1.409 -1.238 -1.097
SPACE 0.923 0.931 0.954 0.994 1.049
0 1.5 PT1 -2.225 -2.028 -1.853 -1.698 -1.565
SPACE 1.113 1.119 1.137 1.167 1.211
0 2.0 PT1 -2.490 -2.320 -2.165 -2.029 -1.906
SPACE  1.245 1.251 1.264 1.288 1.322
1 0.5 PT1 -1.219 -0.923 -0.670 -0.472 -0.347
SPACE 0.610 0.619 0.648 0.698 0.773
1 ‘1.0 PT1 -1.808 -1.573 -1.367 -1.196 -1.055
SPACE 0.904 0.911 0.934 0.973 1.028
1 1.5 PT1 -2.179 -1.979 -1.803 -1.647 -1.511
SPACE 1.089 1.095 1.113 1.143 1.186
1 2.0 PT1 -2.440 -2.269 -2.109 -1.972 -1.845
SPACE 1.220 1.225 1.238 1.262 1.295
2 0.5 PT1 -1.165 -0.860 -0.878 * *
SPACE 0.582 0.588 0.663 * *
2 1.0 PT1 -1.731 -1.492 -1.285 -1.172 *
SPACE 0.865 0.871 0.892 0.961 *
2 1.5 PT1 -2.083 -1.879 -1.685 -1.475 -1.456
SPACE 1.042 1.047 1.061 1.097 1.281
2 2.0 PT1 -2.328 -2.151 -1.980 -1.796 -1.548

SPACE 1.164 1.167 1.176 1.190 1.325

* o exceeds maximum allowable value at this parameter combination
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Table 3.3 Relative D-Efficiency of 5-pt. vs. 3-pt. D-optimal Designs

(b1 =0,01=1)

I

a o3 0.0 0.5 1.0 1.5 2.0
-1 0.5 0.961  0.964  0.972  0.943  0.910
-1 1.0  0.941  0.944  0.951  0.963  0.981
-1 1.5  0.949  0.950 0.954  0.961  0.971
-1 2.0 0.961  0.962 0.963  0.966  0.971
0 0.5 0.990  0.993  0.976  0.947  0.909
0 1.0 0.976  0.978  0.984  0.993  0.991
0 1.5 0.981  0.983  0.986  0.993  0.987
0 2.0  0.990  0.991  0.993  0.985  0.976
1 0.5 0.998  0.989  0.965 0.926  0.882
1 1.0 0.992  0.993  0.992  0.985  0.970
1 1.5  0.994  0.994  0.992  0.986  0.974
1 2.0 0.998  0.995  0.989  0.979  0.965
2 0.5  1.000  0.971  0.892 x «
2 1.0 0.993  0.990  0.974  0.924 x
2 1.5 0.996 0.991  0.976  0.946  0.880
2 2.0 1.000  0.989  0.971  0.942  0.892

* «a exceeds maximum allowable value at this parameter combination
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Table 3.5 5-point Q-optimal Designs with Equal Weighting, Equal Spacing

a o,

-1 0.

-1 1

5

.0

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

(] =0,07=1)
1

1.0  -0.5 0.0 0.5 1.0 1.5 2.0
-2.699 -2.407 -2.164 -1.962 -1.794 -1.662 -1.573
0.740 0.772 0.818 0.875 0.941 1.015 1.097
-2.483 -2.305 -2.144 -2.002 -1.875 -1.764 -1.671
0.992 1.028 1.073 1.126 1.187 1.257 1.336
-2.377 -2.268 -2.163 -2.064 -1.972 -1.888 -1.808
1.262 1.301 1.348 1.401 1.462 1.528 1.601
-2.361 -2.286 -2.214 -2.144 -2.077 -2.008 -1.940
1.544 1.587 1.635 1.690 1.749 1.813 1.882
-2.652 -2.383 -2.144 -1.939 -1.772 -1.643 -1.557
0.692 0.728 0.777 0.837 0.908 0.989 1.078
-2.297 -2.136 -1.996 -1.873 -1.769 -1.680 -1.606
0.808 0.943 0.998 1.062 1.134 1.215 1.303
-2.135 -2.026 -1.934 -1.853 -1.781 -1.719 -1.663
1.166 1.212 1.265 1.326 1.394 1.468 1.550
-2.059 -1.987 -1.924 -1.869 -1.816 -1.768 -1.720
1.457 1.502 1.553 1.611 1.674 1.742 1.816
-2.778 -2.470 -2.196 -1.962 -1.779 -1.645 -1.560
0.687 0.714 0.757 0.816 0.890 0.975 1.069
-2.196 -2.042 -1.908 -1.796 -1.705 -1.629 -1.567
0.848 0.896 0.954 1.023 1.103 1.190 1.284
-1.923 -1.820 -1.742 -1.682 -1.637 -1.600 -1.569
1.123  1.167 1.220 1.283 1.354 1.434 1.520
-1.770 -1.710 -1.665 -1.631 -1.604 -1.583 -1.561
1.428 1.466 1.514 1.569 1.633 1.703 1.780
-3.519 -2.668 -2.275 -1.988 -1.735 * *
0.766 0.713 0.742 0.794 0.866 * N
-2.196 -1.974 -1.821 -1.704 -1.612 -1.531 *
0.848 0.862 0.910 0.977 1.056 1.141 *
-1.733 -1.597 -1.522 -1.481 -1.461 -1.447 -1.405
1.135 1.145 1.182 1.237 1.307 1.388 1.471
-1.368 -1.401 -1.389 -1.379 -1.378 -1.395 -1.460
1.426 1.450 1.485 1.531 1.588 1.655 1.733

* a exceeds maximum allowable value at this parameter combination
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Table 3.6 Relative Q-Efficiency of 5-pt. vs. 3-pt. Q-optimal Designs

(U1 =0,07=1)

I

a oy -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1 0.5 0.978 0.955 0.934 0.920 0.921 0.930 0.930
-1 1.0 0.990 0.963 0.938 0.916 0.900 0.892 0.893
-1 1.5 0.968 0.950 0.935 0.919 0.910 0.902 0.901
-1 2.0 0.955 0.944 0.934 0.925 0.920 0.918 0.922
0 0.5 0.993 0.970 0.954 0.946 0.954 0.950 0.941
0 1.0 0.996 0.985 0.967 0.951 0.938 0.930 0.931
0 1.5 0.981 0.973 0.960 0.948 0.940 0.935 0.936
0 2.0 0.961 0.961 0.954 0.949 0.946 0.947 0.952
1 0.5 0.873 0.958 0.958 0.964 0.966 0.958 0.945
1 1.0 0.980 0.993 0.988 0.977 0.965 0.958 0.961
1 1.5 0.961 0.971 0.965 0.963 0.959 0.960 0.965
1 2.0 0.941 0.955 0.958 0.960 0.964 0.967 0.966
2 0.5 0.816 0.936 0.957 0.974 0.970 * x
2 1.0 0.937 0.976 0.990 0.986 0.984 0.982 x
2 1.5 0.917 0.950 0.961 0.967 0.975 0.973 0.972
2 2.0 0.936 0.947 0.957 0.969 0.974 0.973  0.970

* « exceeds maximum allowable value at this parameter combination
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Table 3.8 5-point T-optimal Designs with Equal Weighting, Equal Spacing

*
¢ %2

-1 0.5

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

(/‘; =6, U; 1)
1y

5.0 5.5 6.0 6.5 7.0 7.5 8.0

4.545 5.093 5.9990 5.354 5.112 4.927 4.776
0.572 0.386 0.0005 0.380 0.560 0.720 0.871
4.108 4.800 5.9992 5.302 5.115 4.990 4.891
0.665 0.467 0.0004 0.466 0.666 0.830 0.977
3.853 4.644 5.9987 5.293 5.140 5.048 4.978
0.718 0.505 0.0007 0.512 0.734 0.913 1.070
3.709 4.555 5.9991 5.291 5.160 5.088 5.037
0.747 0.527 0.0005 0.538 0.776 0.970 1.142
4.508 5.064 5.9983 5.277 5.000 4.809 4.672
0.611 0.414 0.0008 0.405 0.594 0.757 0.904
3.992 4.722 5.9993 5.223 5.001 4.859 4.759
0.717 0.504 0.0004 0.504 0.718 0.888 1.037
3.704 4.547 5.9992 5.234 5.058 4.949 4.867
0.768 0.542 0.0004 0.551 0.791 0.981 1.145
3.560 4.461 5.9993 5.245 5.099 5.016 4.955
0.794 0.561 0.0004 0.574 0.832 1.040 1.222
4.489 5.055 5.9996 5.196 4.881 4.686 4.564
0.649 0.438 0.0002 0.426 0.625 0.790 0.934
3.872 4.646 5.9996 5.148 4.883 4.722 4.624
0.766 0.538 0.0002 0.538 0.768 0.945 1.094
3.544 4.447 5.9992 5.193 4.997 4.867 4.773
0.814 0.574 0.0004 0.586 0.845 1.048 1.218
3.408 4.368 5.9978 5.224 5.074 4.980 4.906
0.832 0.587 0.0011 0.605 0.883 1.107 1.301
4.483 5.063 5.9995 5.103 4.743 * *
0.691 0.462 0.0002 0.445 0.657 * *
3.727 4.560 5.9991 5.062 4.743 4.570 *
0.820 0.574 0.0004 0.574 0.822 1.006 *
3.349 4,331 5.9993 5.174 4.957 4.798 4.693
0.858 0.603 0.0003 0.621 0.904 1.123 1.297
3.239 4.259 5.9984 5.223 5.083 4.975 4.879
0.867 0.613 0.0008 0.635 0.934 1.182 1.391

* a exceeds maximum allowable value at this parameter combination
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Table 3.9 Relative T-Efficiency of 5-pt. vs. 3-pt. T-optimal Designs

(=6, 07 =1)
[
e o 5.0 55 6.0 65 1.0 1.5 8.0

-1 0.5 0.954 0.981 1.000 0.988 0.967 0.930 0.884
-1 1.0 0.980 0.995 1.000 0.995 0.980 0.958 0.925
-1 1.5 0.987 0.994 1.000 0.992 0.979 0.964 0.941
-1 2.0 0.989 0.993 1.000 0.990 0.979 0.965 0.947
0 0.5 0.943 0.973 1.000 0.981 0.962 0.925 0.878

0 1.0 0.981 0.995 1.000 0.995 0.980 0.954 0.921

0 1.5 0.984 0.990 1.000 0.986 0.973 0.960 0.937

0 2.0 0.987 0.988 1.000 0.983 0.969 0.953 0.934

1 0.5 0.927 0.958 1.000 0.971 0.954 0.918 0.871

1 1.0 0.984 0.998 1.000 0.998 0.985 0.957 0.920

1 1.5 0.977 0.979 1.000 0.975 0.959 0.943  0.920

1 2.0 0.977 0.979 1.000 0.974 0.952 0.935 0.915

2 0.5 0.904 0.938 1.000 0.959 0.941 * x

2 1.0 0.995 0.989 1.000 0.989 0.995 0.969 *

2 1.5 0.959 0.956 1.000 0.943 0.930 0.920 0.904

2 2.0 0.968 0.973 1.000 0.957 0.928 0.906 0.886

* o exceeds maximum allowable value at this parameter combination
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*

Table 3.10 Cross-efficiencies of 3-pt. D-optimal and Q-optimal Designs

Relative D-Efficiency of 3-pt. Q-optimal Designs (] =0, 0] = 1)

*

H2
a 0o} -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1 0.5 0.909 0.904 0.900 0.899 0.897 0.895 0.900
-1 1.0 0.992 0.999 1.000 0.997 0.993 0.987 0.982
-1 1.5 0.960 0.962 0.969 0.960 0.955 0.954 0.951
-1 2.0 0.904 0.902 0.901 0.900 0.899 0.898 0.902
0 0.5 0.948 0.892 0.906 0.912 0.889 0.896 0.894
0O 1.0 0.985 0.999 0.999 0.994 0.984 0.970 0.940
0 1.5 0.959 0.955 0.959 0.960 0.958 0.954 0.934
0 2.0 0.920 0.900 0.906 0.910 0.912 0.901 0.886
1 0.5 0.939 0.874 0.899 0.894 0.897 0.890 0.884
1 1.0 0.991 0.998 1.000 0.990 0.969 0.931 0.878
1 1.5 0.961 0.951 0.954 0.959 0.947 0.926 0.892
1 2.0 0.914 0.902 0.899 0.901 0.894 0.899 0.897
2 0.5 0.803 0.828 0.870 0.870 0.843 * *
2 1.0 0.998 0.999 0.999 0.987 0.901 0.739 *
2 1.5 0.944 0.940 0.932 0.927 0.893 0.882 0.794
2 2.0 0.828 0.8%4 0.870 0.861 0.870 0.865 0.843
Relative Q-Efficiency of 3-pt. D-optimal Designs (u] =0, 07 = 1)
M

a o3 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1 0.5 0.904 0.878 0.846 0.799 0.738 0.778 0.785
-1 1.0 0.988 0.998 1.000 0.995 0.986 0.974 0.960
-1 1.5 0.963 0.959 0.950 0.933 0.916 0.888  0.874
-1 2.0 0.890 0.867 0.845 0.827 0.794 0.762 0.736
0 0.5 0.926 0.838 0.798 0.774 0.791 0.789 0.790
0 1.0 0.982 0.999 0.999 0.988 0.969 0.929 0.889
0O 1.5 0.942 0.940 0.928 0.913 0.895 0.887 0.855
0O 2.0 0.832 0.819 0.798 0.781 0.770 0.786 0.790
1 0.5 0.906 0.880 0.802 0.786 0.787 0.788 0.787
1 1.0 0.982 0.996 0.999 0.985 0.953 0.917 0.889
1 1.5 0.944 0.934 0.916 0.901 0.883 0.868 0.857
1 2.0 0.864 0.833 0.802 0.788 0.786 0.787 0.788
2 0.5 0.719 0.830 0.761 0.762 0.764 * *
2 1.0 0.998 0.999 0.998 0.977 0.943 0.902 *
2 1.5 0.913 0.915 0.899 0.878 0.865 0.844 0.823
2 2.0 0.83 0.800 0.765 0.758 0.762 0.763 0.764

« exceeds maximum allowable value at this parameter combination
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Table 3.11 Cross-efficiencies of 3-pt. D-optimal and T-optimal Designs

NNNON R R OO0

[ T B |
e i 1)

NNNON HEHE-m, 0000

Relative D-Efficiency of 3-pt. T-optimal Designs (4] =6, 0] = 1)

K2

73 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 0.906 0.828 0.003 0.832 0.879 0.828 0.737
1.0 0.895 0.746 0.003 0.746 0.897 0.953 0.978
1.5 0.842 0.706 0.004 0.709 0.850 0.932 0.949
2.0 0.823 0.690 0.004 0.694 0.828 0.882 0.908
0.5 0.931 0.896 0.002 0.892 0.919 0.836 0.733
1.0 0.964 0.840 0.003 0.839 0.961 0.989 0.970
1.5 0.915 0.788 0.003 0.791 0.922 0.980 0.975
2.0 0.895 0.761 0.004 0.765 0.895 0.931 0.930
0.5 0.903 0.904 0.003 0.901 0.894 0.784 0.660
1.0 0.970 0.88 0.003 0.886 0.971 0.958 0.902
1.5 0.932 0.823 0.002 0.832 0.936 0.954 0.927
2.0 0.896 0.789 0.003 0.812 0.902 0.920 0.902
0.5 0.724 0.881 0.003 0.882 0.723 * *
1.0 0.968 0.899 0.003 0.899 0.970 0.766 *
1.5 0.914 0.845 0.001 0.843 0.910 0.856 0.640
2.0 0.878 0.814 0.003 0.818 0.878 0.838 0.723

Relative T-Efficiency of 3-pt. D-optimal Designs (u] =6, o] = 1)
K

) 5.0 2.5 6.0 6.5 .0 7.5 8.0

0.5 0.809 0.837 0.767 0.844 0.783 0.642 0.550
1.0 0.867 0.788 0.683 0.788 0.868 0.927 0.960
1.5 0.838 0.792 0.715 0.783 0.832 0.864 0.883
2.0 0.831 0.820 0.767 0.807 0.821 0.810 0.786
0.5 0.817 0.870 0.779 0.872 0.776 0.660 0.563
1.0 0.945 0.852 0.703 0.852 0.945 0.957 0.896
1.5 0.891 0.835 0.732 0.828 0.893 0.937 0.901
2.0 0.869 0.847 0.779 0.836 0.866 0.848 0.827
0.5 0.790 0.832 0.750 0.829 0.748 0.640 0.554
1.0 0.943 0.860 0.663 0.860 0.945 0.930 0.858
1.5 0.867 0.819 0.696 0.816 0.880 0.892 0.867
2.0 0.826 0.821 0.750 0.814 0.832 0.824 0.801
0.5 0.748 0.802 0.743 0.800 0.716 * *
1.0 0.976 0.884 0.617 0.884 0.978 0.930 *
1.5 0.840 0.802 0.665 0.798 0.864 0.864 0.828
2.0 0.796 0.808 0.743 0.796 0.803 0.784 0.754

o exceeds maximum allowable value at this parameter combination
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Table 3.12 Cross-efficiencies of 3-pt. Q-optimal and T-optimal Designs

NNV NN - OO0

IR
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Relative Q-Efficiency of 3-pt. T-optimal Designs (] =6, 07 = 1)

*

Ko

2 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 0.756 0.546 0.000 0.509 0.711 0.815 0.813
1.0 0.903 0.618 0.000 0.499 0.711 0.792 0.853
1.5 0.684 0.451 0.000 0.413 0.624 0.772 0.837
2.0 0.490 0.314 0.000 0.324 0.536 0.674 0.761
0.5 0.759 0.614 0.000 0.608 0.840 0.877 0.839
1.0 0.970 0.733 0.000 0.605 0.809 0.888 0.923
1.5 0.763 0.527 0.000 0.495 0.724 0.880 0.920
2.0 0.536 0.361 0.000 0.388 0.629 0.771 0.856
0.5 0.742 0.635 0.000 0.678 0.890 0.899 0.832
1.0 0.950 0.814 0.000 0.699 0.880 0.945 0.960
1.5 0.783 0.567 0.000 0.552 0.790 0.890 0.932
2.0 0.556 0.381 0.000 0.423 0.697 0.831 0.887
0.5 0.579 0.600 0.000 0.727 0.904 * *
1.0 0.928 0.785 0.000 0.693 0.942 0.978 *
1.5 0.743 0.568 0.000 0.595 0.820 0.884 0.910
2.0 0.517 0.362 0.000 0.476 0.745 0.848 0.859

Relative T-Efficiency of 3-pt. Q-optimal Designs (u; =6, 07 = 1)
My

93 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 0.468 0.581 0.606 0.746 0.832 0.844 0.812
1.0 0.922 0.812 0.677 0.752 0.805 0.844 0.870
1.5 0.711 0.706 0.658 0.717 0.761 0.807 0.836
2.0 0.574 0.610 0.606 0.673 0.726 0.767 0.803
0.5 0.616 0.533 0.584 0.774 0.875 0.869 0.822
1.0 0.941 0.867 0.687 0.801 0.869 0.909 0.930
1.5 0.713 0.695 0.647 0.744 0.819 0.874 0.907
2.0 0.582 0.573 0.584 0.682 0.761 0.821 0.862
0.5 0.595 0.470 0.538 0.784 0.884 0.872 0.823
1.0 0.942 0.869 0.652 0.828 0.913 0.951 0.965
1.5 0.685 0.655 0.600 0.761 0.846 0.908 0.941
2.0 0.543 0.542 0.538 0.669 0.775 0.840 0.870
0.5 0.466 0.391 0.476 0.792 0.904 * *
1.0 0.965 0.876 0.596 0.829 0.950 0.985 *
1.5 0.624 0.604 0.543 0.735 0.865 0.909 0.935
2.0 0.364 0.433 0.476 0.639 0.780 0.850 0.880

a exceeds maximum allowable value at this parameter combination
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Chapter 4
Practical Designs for the Gumbel Model

§4.1 Designs Based on Univariate Optimality

Since the Gumbel model has been proposed only recently as a model for
drug efficacy and toxicity, researchers may wish to consider the univariate
logistic regression models for efficacy and toxicity as well. This section will
address some of the design considerations raised by this approach.

Table 4.1 shows the univariate D-efficiencies (indicated by Dy, -efficiency
for the D-efficiency based on the univariate marginal logistic regression model for
efficacy and Dy,-efficiency for the D-efficiency based on the univariate marginal
toxicity model) of the Gumbel D-optimal designs (Dg-optimal). Note that the
Dy -efficiency and Dy,-efficiency vary depending on the particular parameter
combination. In situations where the two marginal curves are very close to one
another, the efficiencies tend to be fairly good. This is not surprising, since if a
design has a good Dy -efficiency it should also have a good Dy,-efficiency if the
two marginal curves are similar. However, when the locations are spread or the
scale parameters have a sizable difference, the efficiencies suffer. These results
are also expected since when the marginal curves differ, the Dg-optimal design
serves as a compromise between the Dy,-optimal and the Dy,-optimal designs.
Thus neither the Dy -efficiency nor the Dy,-efficiency is as high as one would

achieve with a design specifically for estimation of just one marginal curve.
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Qc-optimal designs and their resulting Q- and Qg,-efficiencies were also
considered. However, these efficiencies tended to be quite low. This is an
expected result, since the goals of the QQg-optimal and Q-optimal design criteria
are completely different. The Qg-optimal designs focus on p(1,0;d) while the
Qu-optimal designs focus on logit(p).

Someone wishing to utilize the two univariate models may want to
incorporate the univariate D-optimal designs. An obvious way to accomplish
this would be to essentially construct two separate designs: the first would be
the D-optimal design based on the parameters for the efficacy model, the second
would be the D-optimal design based on the parameters for the toxicity model.
Of course, both designs would be used to obtain data on both efficacy and
toxicity. Thus, if one uses 2-point D-optimal designs (giving a 2x2-point
Dy-optimal design), the resulting design would have 4 doses. One could also use
3-point D-optimal designs giving a 2 x 3-point Dj-optimal design with 6 doses.

These two approaches are shown in Tables 4.2 and 4.3. For the 2x2-
point Dy-optimal design and the 2 x 3-point Dy-optimal design, the Dy,-, Dyo-,
D¢, Qg-, and T-efficiencies are given. Note that for the Dy-efficiencies, the
value of the correlation parameter o does not need to be specified since neither
the designs nor the models include consideration of a. The 2x2-point designs
tend to do better with respect to Dy-efficiencies than do the 2 x3-point designs;
however, the opposite is true with respect to Dg-, Qg-, and T-efficiencies. Thus,
a person who had greater interest in using the univariate marginal models might
opt for the 2x2-point design, while one who had greater interest in using the

Gumbel model might wish to use the 2 x 3-point design.
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Notice that even though these designs are directly based upon the
univariate D-optimality criterion, the Dy-efficiencies exhibit the same general
pattern as do the Dy-efficiencies of the Dg-optimal designs. Comparing the
Dy-efficiencies in Table 4.1 with those in Tables 4.2 and 4.3, one cannot say that
either the Dy-based designs or the Dg-optimal designs present a clear advantage
with respect to Dy-efficiencies. The univariate based designs do have the
advantage, though, that they are easily found without the use of the iterative
search routine required for the Gumbel based designs.

Based on the above discussion, the 2 x2-point and 2 x 3-point D-optimal
designs appear to be reasonable approaches to the design problem for the
Gumbel model, with or without specific consideration of the univariate models.
If the researcher wishes to have at least 5 points in the experimental design,
however, one needs to note that the 2x3-point design may have fewer than 6
actual doses. For example, if y; =y, and o, = 0,, then the Dy,-optimal and
Dy,-optimal designs will be identical, resulting in an overall design with only
three doses. If the number of points in the design is a concern, the researcher
may want to consider a 5-point design as discussed in Chapter 3, a 5-point
compromise design to be presented in §4.2 or a 5-point fitted design to be

presented in §4.3.

§4.2 Compromise Designs

The discussion of the three Gumbel optimality criteria (D, Q and T) in
Chapter 3 assumes that the researcher is primarily interested in either parameter

estimation, estimation of p(1,0;d) or estimation of the therapeutic index. More
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commonly, however, there may be interest in estimation of all three of the above
quantities. In this case the experimental design should present a reasonable
compromise and allow for good estimation of all the quantities of interest.

One approach to this problem is to use a maximin criterion. Using this
compromise criterion, the design chosen would be the one which maximizes the
minimum efficiency across the three criteria of interest.

An example, along with contour plots of design efficiencies in Figures 4.1-
4.3, will help to illustrate the merits of such an approach. Consider the situation
where 4, =6.0, 0, =1.0, yu, =7.5, 0, =0.5 and o = 1. Recall that 5-point designs
with equal weighting and equal spacing can be characterized by the value of any
of the five design points along with the spacing between those points. Thus, in
Figures 4.1-4.3, the efficiencies of designs can be displayed as functions of the
midpoint of the design and the spacing between design points. In these figures,
all efficiencies are with respect to the “optimal” 3-point designs with unequal
weighting. The “D” on each figure indicates the location of the best 5-point
design based on the D-optimality criterion. The D-efficiency of this design is
.926. Similarly, the “Q” indicates the location of the design based on the
Q-optimality criterion with Q-efficiency =.958, and the “T” indicates the
location of the design based on the T-optimality criterion with
T-efficiency = .918. Note that if the D-optimal design were used in this situation,
the resulting Q-efficiency would be .735 and the resulting T-efficiency would be
.677. However, using the maximin compromise design indicated on the plots by
a “C” yields D-efficiency = T-efficiency = 0.896 and Q-efficiency =0.909. Thus,
the compromise gives up a little in each of the three criteria, yet still does well in
each. An overall good design results.

66



Five-point equally weighted, equally spaced compromise designs are
presented in Table 4.4. The 5-point designs were chosen because they are more
appealing to many users than are 2- or 3-point designs. In addition, the resulting
efficiencies are quite good. Table 4.5 displays the efficiencies corresponding to
the compromise designs of Table 4.4. The minimum efficiencies are mainly in
the upper .80’s. The exception is when pu]=p3;=6: in these cases, the
efficiencies are lower due to the 1-point nature of the T-optimal designs. One
could also include the Dy-efficiencies in the maximin criterion. Doing this
reduces the minimum efficiencies so that they lie primarily between 0.80 and
0.90.

In using these compromise designs one needs to be aware that they are
based on T-efficiencies evaluated for uj=6.0. One could shift them to
accommodate other values of uj, but this requires the assumption that the
designs are relatively insensitive to the location. Observation indicates that in
many cases this is a reasonable assumption. One needs to be most careful in

situations where p7 is close to 0 (u] < 2, or equivalently p, < 20,).

§4.3 Five-Point Fitted Designs

Some advantages of 5-point designs were mentioned in §3.1. One attrac-
tive feature of these designs is that they change fairly consistently as the Gumbel
parameters change. If one compares the 5-point design tables with the 2- or
3-point design tables, particularly those with unequal weighting, one easily
notices that the 5-point designs are much more regular than the others. This

regularity suggests that it may be possible to approximate these designs using
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functions of the Gumbel parameters. This was done by fitting a quadratic
regression model (including second order interaction terms) to the designs in
Tables 3.2, 3.5 and 4.4. (T-optimal designs were not fit in this way since it
would not be advisable to design an experiment based solely on the T-optimality
criterion, particularly when p; =p,.) The two dependent variables which are
modeled are 1) the smallest of the five design points and 2) the spacing between
the design points. The independent variables are the Gumbel parameters as
standardized using (3.1.1).

Table 4.6 gives the coefficients of the fitted equations for the D-optimal,
Q-optimal and Compromise based designs. The efficiencies of the fitted designs
come within 0.01 of the tabled D-optimal and Q-optimal 5-point designs. The
one exception to this is for uj =-1, 03 =.5, a =2, where the Q-efficiency of the
fitted design is 0.049 less than the optimized 5-point design.

The compromise designs are not approximated as closely by the fitted
designs. This might be expected, since the fitted compromise designs are trying
to capture the characteristics of all three efficiency contours. With two
exceptions, all the minimum efficiencies of the fitted compromise designs are
within .05 of the minimum of the compromise designs as shown in Table 4.5.
Both the exceptions occur when yu, = u, = 6 and are driven by the behavior of the
T-efficiency contour. It is worth noting, however, that although the T-efficiency
of the fitted design drops, the D-efficiency and Q-efficiency are both higher than
for the best compromise design. Although it is not always true, due to the
nature of the compromise designs if the efficiency in one criterion decreases, the

efficiency of another usually will increase. For an example of this, look at
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Figures 4.1-4.3. If the compromise design is moved in any direction on the plot
but straight down, at least one efficiency will decrease while another increases.
Two words of warning are in order. First, the fitted designs have not
been tested outside the region represented by the optimal design tables
(e €[, 2], 03€[0.5, 2], ps€[-1, 2] for D- and Q-based designs; o € [-1, 2],
o3 € (0.5, 2], p; €[5, 8] for compromise designs). Extreme caution should be
taken if one desires to use these designs for parameter combinations outside the
range of this table. Second, the compromise designs are based on T-efficiencies

evaluated for p] = 6.0 and the comments at the end of §4.2 apply.

§4.3.1 Robustness Case Study

One important consideration regarding the 5-point designs in general and
the 5-point fitted designs in particular is how robust they are to parameter
misspecification in comparison to the “optimal” 3-point designs with unequal
weighting. As discussed in §3.2.1, the robustness question is difficult to address
exhaustively. In order to attempt to gain some insight, however, a brief case
study was performed.

Consider the situation where the initial parameter guesses are given as

tio=0,00=1, oo =1, 099 = 1.5 and a5 = 1. In this case study, two degrees

of misspecification were considered: mild misspecification, where
(41 = 10) 0, (12 = pa0) 0y
—0 = +0.5, 0= 0.80, 1.25, —0, = +0.5, 20 = 0.80, 1.25 and

a = ay+1; and severe misspecification, where 9‘1;—1”10) = +1.0, 5_110 =0.50, 2.00,
(llz_;ﬂ:z_o_)_ = +1.0, ,‘,’—2= 0.50, 2.00 and a=qy+t1. Table 4.7a gives the
2 20

D-optimal based designs which are compared. Table 4.7b shows the D-efficiency
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of this design for selected situations in which different combinations of the
parameters are misspecified simultaneously to a mild degree. The first line
represents a perfect guess, i.e. no parameters misspecified. @ Thus, the
D-efficiency of the 3-point design is 1.00. The second block of five lines are
situations where one of the five parameters are misspecified. Similarly, there are
blocks where two, three and four parameters are missed, and the final line is
when all five parameters were misspecified.

For this particular set of mild misspecifications, the D-efficiencies of the
3-point and both 5-point designs are quite good--all greater than 0.90. In
addition, although the 3-point design has higher D-efficiency than the 5-point
designs in most of the cases, there is not a large discrepancy in any.

Table 4.7c presents parameter misspecifications of the same combinations
and directions as Table 4.7b, but the misses are of a larger magnitude. Again,
many of the D-efficiencies are fairly good; however, in several instances they are
between 0.60 and 0.80. As with the mild misspecification, none of the designs
presents itself as a clear winner. Each of the three designs appears to perform
reasonably well with respect to the others.

The comparable cases for the Q-optimality criterion are examined in
Tables 4.8a-c. Note that the 3-point unequal weighting design is actually a
2-point design in this case since the weighting for the first design point is 0.00.
For mild misspecifications the Q-efficiencies are all reasonably good, and there
are no major differences between the three designs. For severe misspecifications
some of the Q-efficiencies do quite poorly. Perhaps the most striking
characteristic of Table 4.8c, though, is that while there are no cases where the
3-point design performs much better than the 5-point designs, there are some
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situations where the 5-point designs have much higher Q-efficiencies than does
the 3-point design. For example, when y; = 0, 0, = 0.5, p, = 1, 0, = 1.5 and
a = 1 (the third line from the top), the Q-efficiency of the 3-point design is only
0.691, compared to Q-efficiencies of 0.905 and 0.911 for the best 5-point design
and the fitted 5-point design, respectively.

Thus, although these results are not conclusive by any means, there is

some evidence that 5-point designs may offer better protection against parameter

misspecification. Intuitively, one might suspect that designs with more design
points might withstand incorrect parameter guesses better because the design
points are more spread out and are thus more likely to obtain information at
critical (but unknown prior to the experiment) locations in the design space. It
1s not clear from this limited case study whether the differences in results
between D- and Q-optimal designs are due to differences in the criteria, due to
the particular parameter combination examined, due to the Q-optimal design
having only two design points in this particular case, or due to some combination

of the above reasons.
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Table 4.1 Dy-Efficiencies of 3-pt. Dg-optimal Designs

Dy;,-Efficiency of 3-pt. D;-optimal Designs (u; =0, 07 = 1)

*

a 0y

-1 0.5
-1 1.0
-1 1.5
-1 2.0
0 0.5
0 1.0
0 1.5
0 2.0
1 0.5
1 1.0
1 1.5
1 2.0
2 0.5
2 1.0
2 1.5
2 2.0

Dy, ,-Efficiency of 3-pt.

IR
Q
[ & 3

N == NMHEHO NP PO N~ O
QOO QUL CUro Ut QuUurTo W

NNONNN =R OO0

*

K2

0.0 0.5 1.0 1.5 2.0

0.816 0.800 0.757 0.797 0.777
0.993 0.984 0.958 0.917 0.863
0.996 0.991 0.975 0.958 0.925
0.984 0.979 0.967 0.950 0.925
0.757 0.756 0.794 0.798 0.786
0.960 0.951 0.926 0.882 0.840
0.997 0.991 0.973 0.934 0.866
1.000 0.992 0.970 0.895 0.860
0.768 0.778 0.790 0.793 0.784
0.928 0.917 0.890 0.857 0.826
0.950 0.939 0.913 0.879 0.848
0.931 0.918 0.893 0.866 0.843
0.746 0.764 0.772 * *
0.901 0.891 0.868 0.841 *
0.920 0.914 0.895 0.872 0.852
0.919 0.901 0.883 0.868 0.856

Ds-optimal Designs (u; =0, o7 = 1)
+a

0.0 0.5 1.0 1.5 2.0

0.984 0.969 0.927 0.844 0.817
0.993 0.984 0.958 0.917 0.863
0.920 0.915 0.897 0.862 0.827
0.816 0.816 0.804 0.785 0.762
1.000 0.969 0.860 0.813 0.785
0.960 0.951 0.926 0.882 0.840
0.862 0.860 0.848 0.837 0.829
0.757 0.756 0.755 0.786 0.794
0.931 0.893 0.843 0.806 0.781
0.928 0.917 0.890 0.857 0.826
0.848 0.845 0.838 0.829 0.818
0.768 0.771 0.778 0.784 0.790
0.919 0.883 0.856 * *
0.901 0.891 0.868 0.841 *
0.832 0.827 0.818 0.809 0.797
0.746 0.757 0.764 0.769 0.772

* « exceeds maximum allowable value at this parameter combination
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Table 4.2 Efficiencies of 2 x 2-point Dy-optimal Designs

Dy;,-Efficiency (py =6, 0] =1)

M2
o3 2.0 5.5 6.0 6.5 7.0 7.5 8.0
0.5 0.898 0.917 0.924 0.917 0.898 0.876 0.853
1.0 0.937 0.982 1.000 0.982 0.937 0.882 0.835
1.5 0.902 0.932 0.942 0.932 0.902 0.857 0.808
2.0 0.823 0.830 0.832 0.830 0.823 0.807 0.781
Dy,-Efficiency (py =6, o7 = 1)
2
o, 3.0 5.5 6.0 6.5 7.0 7.5 8.0
0.5 0.781 0.823 0.832 0.823 0.781 0.724 0.715
1.0 0.937 0.982 1.000 0.982 0.937 0.882 0.835
1.5 0.942 0.959 0.965 0.959 0.942 0.918 0.893
2.0 0.917 0.922 0.924 0.922 0.917 0.908 0.898
Relative D-Efficiency (u; =6, 0y = 1)
M2
a o, 5.0 9.5 6.0 6.5 .0 7.5 8.0
-1 0.5 0.982 0.953 0.936 0.953 0.982 0.965 0.959
-1 1.0 0.971 0.987 0.993 0.987 0.971 0.957 0.960
-1 1.5 0.969 0.971 0.972 0.971 0.969 0.966 0.966
-1 2.0 0.952 0.940 0.936 0.940 0.952 0.967 0.981
0 0.5 0.954 0.932 0.913 0.932 0.954 0.970 0.981
0 1.0 0.964 0.959 0.957 0.959 0.964 0.971 0.977
0 1.5 0.952 0.942 0.939 0.942 0.952 0.965 0.970
0 2.0 0.932 0.918 0.913 0.918 0.932 0.942 0.954
1 0.5 0.927 0.907 0.897 0.907 0.927 0.948 0.980
1 1.0 0.946 0.935 0.930 0.935 0.946 0.957 0.969
1 1.5 0.929 0.920 0.916 0.920 0.929 0.940 0.950
1 2.0 0.907 0.899 0.897 0.899 0.907 0.917 0.927
2 0.5 0.872 0.867 0.868 0.867 0.872 * *
2 1.0 0.874 0.879 0.878 0.879 0.874 0.826 *
2 1.5 0.874 0.873 0.873 0.873 0.874 0.867 0.805
2 2.0 0.867 0.865 0.868 0.865 0.867 0.872 0.872

* a exceeds maximum allowable value at this parameter combination
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Efficiencies of 2 x 2-point Dy-optimal Designs (continued)

*

a 0y
-1 0.5
-1 1.0
-1 1.5
-1 2.0

0 0.5

0 1.0

0 1.5

0 2.0

1 0.5

1 1.0

1 1.5

1 2.0

2 0.5

2 1.0

2 1.5

2 2.0
a 03
-1 0.5
-1 1.0
-1 1.5
-1 2.0
0 0.5
0 1.0
0 1.5
0 2.0

1 0.5

1 1.0

1 1.5

1 2.0
2 0.5
2 1.0
2 1.5
2 2.0

* « exceeds maximum allowable value at this parameter combination

Relative Qg-Efficiency (u] =6, 0] = 1)

2

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.933 0.898 0.885 0.884 0.881 0.863 0.840
0.967 0.977 0.992 0.990 0.957 0.900 0.846
0.935 0.938 0.945 0.943 0.935 0.910 0.879
0.898 0.889 0.885 0.884 0.884 0.883 0.882
0.872 0.873 0.854 0.867 0.891 0.882 0.862
0.907 0.918 0.943 0.971 0.972 0.937 0.892
0.893 0.893 0.901 0.915 0.926 0.924 0.909
0.864 0.858 0.84 0.858 0.867 0.878 0.889
0.831 0.824 0.812 0.846 0.879 0.883 0.870
0.817 0.830 0.875 0.938 0.975 0.963 0.927
0.815 0.819 0.838 0.874 0.908 0.928 0.929
0.809 0.808 0.812 0.826 0.846 0.866 0.879
0.841 0.789 0.768 0.821 0.859 * *
0.668 0.691 0.770 0.880 0.966 0.983 *
0.717 0.722 0.759 0.821 0.885 0.918 0.925
0.789 0.764 0.768 0.793 0.821 0.844 0.859

Relative T-Efficiency (u; =6, 07 = 1)
#a

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.767 0.719 0.645 0.731 0.752 0.714 0.634
0.816 0.735 0.634 0.735 0.817 0.859 0.830
0.765 0.711 0.636 0.700 0.757 0.809 0.841
0.734 0.700 0.645 0.683 0.714 0.741 0.768
0.768 0.704 0.609 0.717 0.751 0.713 0.632
0.825 0.716 0.580 0.716 0.825 0.876 0.844
0.759 0.685 0.589 0.672 0.749 0.819 0.859
0.724 0.676 0.609 0.656 0.698 0.735 0.769
0.761 0.679 0.565 0.695 0.742 0.704 0.625
0.832 0.688 0.509 0.688 0.834 0.898 0.858
0.742 0.646 0.528 0.632 0.731 0.816 0.865
0.702 0.645 0.565 0.622 0.672 0.720 0.763
0.752 0.645 0.514 0.666 0.734 * *
0.843 0.635 0.409 0.636 0.844 0.930 *
0.710 0.584 0.447 0.563 0.695 0.810 0.871
0.676 0.604 0.514 0.571 0.634 0.697 0.752
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Table 4.3 Efficiencies of 2 x 3-point Dy-optimal Designs

Dy, -Efficiency (pu7 =6, o7 = 1)

H3
o, 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.5 0.845 0.851 0.853 0.851 0.845 0.837 0.825
1.0 0.898 0.922 0.929 0.922 0.898 0.860 0.819
1.5 0.883 0.883 0.881 0.883 0.883 0.867 0.832
2.0 0.820 0.801 0.792 0.801 0.820 0.833 0.828
Dy;o-Efficiency (47 =6, o] = 1)
)
o2 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.5 0.828 0.820 0.792 0.820 0.828 0.757 0.677
1.0 0.898 0.922 0.929 0.922 0.898 0.860 0.819
1.5 0.882 0.892 0.896 0.892 0.882 0.868 0.852
2.0 0.851 0.853 0.853 0.853 0.851 0.848 0.845
Relative D-Efficiency {u; =6, o] = 1)
H3
a o5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
-1 0.5 0.978 0.938 0.914 0.938 0.978 0.957 0.923
-1 1.0 0.944 0.944 0.943 0.944 0.944 0.944 0.950
-1 1.5 0.944 0.935 0.930 0.935 0.944 0.954 0.962
-1 2.0 0.938 0.921 0.914 0.921 0.938 0.958 0.977
0 0.5 0.969 0.967 0.951 0.967 0.969 0.952 0.932
0 1.0 0.970 0.969 0.969 0.969 0.970 0.969 0.962
0 1.5 0.970 0.963 0.961 0.963 0.970 0.977 0.970
0 2.0 0.967 0.956 0.951 0.956 0.967 0.969 0.969
1 0.5 0.953 0.967 0.964 0.967 0.953 0.918 0.897
1 1.0 0.974 0.984 0.986 0.984 0.974 0.955 0.936
1 1.5 0.975 0.977 0.976 0.977 0.975 0.966 0.949
1 2.0 0.967 0.965 0.964 0.965 0.967 0.964 0.953
2 0.5 0.862 0.952 0.964 0.952 0.862 * *
2 1.0 0.945 0.979 0.985 0.979 0.945 0.822 *
2 1.5 0.938 0.972 0.975 0.972 0.958 0.909 0.733
2 2.0 0.952 0.959 0.964 0.959 0.952 0.929 0.862

* « exceeds maximum allowable value at this parameter combination
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Efficiencies of 2 x 3-point Dy-optimal Designs (continued)

*

Relative Qg-Efficiency (u] =6, 0] = 1)

H2
a o) 5.0 5.5 6.0 6.5 7.0 7.5 8.0
-1 0.5 0.961 0.915 0.853 0.822 0.830 0.845 0.840
-1 1.0 0.978 0.965 0.945 0.921 0.893 0.860 0.831
-1 1.5 0.951 0.928 0.905 0.883 0.869 0.855 0.845
-1 2.0 0.915 0.883 0.853 0.831 0.822 0.822 0.831
0 0.5 0.891 0.925 0.876 (0.847 0.857 0.862 0.855
0 1.0 0.962 0.972 0.968 0.955 0.934 0.904 0.875
0 1.5 0.952 0.945 0.928 0.911 0.808 0.888 0.880
0 2.0 0.916 0.901 0.876 0.857 0.847 0.847 0.855
1 0.5 0.844 0.905 0.873 0.858 0.860 0.863 0.857
1 1.0 0.926 0.972 0.986 0.979 0.961 0.934 0.908
1 1.5 0.925 0.938 0.930 0.921 0.913 0.908 0.905
1 2.0 0.889 0.887 0.873 0.862 0.858 0.858 0.860
2 0.5 0.744 0.870 0.859 0.858 0.859 * *
2 1.0 0.873 0.960 0.985 0.982 0.978 0.965 *
2 1.5 0.884 0.918 0.920 0.918 0.921 0.917 0.911
2 2.0 0.870 0.85 0.859 0.858 0.858 0.858 0.859
Relative T-Efficiency (4] =6, o] = 1)
K3

a 03 5.0 5.5 6.0 6.5 7.0 7.5 8.0
-1 0.5 0.796 0.786 0.719 0.790 0.779 0.730 0.670
-1 1.0 0.849 0.784 0.684 0.784 0.849 0.876 0.854
-1 1.5 0.810 0.769 0.696 0.764 0.810 0.840 0.853
-1 2.0 0.789 0.769 0.719 0.761 0.784 0.794 0.799
0O 0.5 0.796¢ 0.782 0.697 0.786 0.776 0.724 0.662
0 1.0 0.865 0.783 0.647 0.783 0.865 0.890 0.861
0 1.5 0.813 0.760 0.665 0.754 0.814 0.853 0.867
0 2.0 0.787 0.759 0.697 0.750 0.780 0.793 0.799
1 0.5 0.787 0.772 0.673 0.776 0.765 0.711 0.650
1 1.0 0.884 0.78¢ 0.600 0.784 0.886 0.908 0.867
1 1.5 0.810 0.745 0.628 0.740 0.813 0.853 0.866
1 2.0 0.777 0.747 0.673 0.737 0.769 0.784 0.791
2 0.5 0.772 0.756 0.652 0.761 0.753 * *
2 1.0 0.915 0.784 0.538 0.785 0.917 0.934 *
2 1.5 0.797 0.722 0.583 0.714 0.803 0.849 0.862
2 2.0 0.762 0.732 0.652 0.717 0.752 0.766 0.772

* « exceeds maximum allowable value at this parameter combination
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Table 4.4 5-point Compromise Designs with Equal Weighting, Equal Spacing

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

PT1
SPACE

(W} =6,07=1)
Ha

5.0 5.5 6.0 6.5 7.0 7.5 8.0

4.040 4.367 4.709 4.596 4.564 4.718 4.857
0.717 0.660 0.594 0.697 0.798 0.855 0.912
3.701 4.162 4.554 4.467 4.417 4.422 4.524
0.881 0.788 0.723 0.887 1.032 1.150 1.211
3.362 3.794 4.230 4.320 4.375 4.405 4.475
1.071 1.012 0.937 1.071 1.199 1.322 1.406
2.888 3.361 3.833 4.069 4.234 4.351 4.459
1.347 1.269 1.187 1.275 1.374 1.472 1.551
4.093 4.413 4.780 4.644 4.615 4.793 4.800
0.711 0.646 0.560 0.661 0.757 0.817 0.908
3.820 4.256 4.699 4.578 4.509 4.522 4.613
0.811 0.739 0.650 0.830 0.981 1.091 1.142
3.390 3.878 4.375 4.477 4.522 4.545 4.608
1.043 0.958 0.861 1.002 1.138 1.262 1.340
2.901 3.423 3.962 4.239 4.421 4.541 4.642
1.334 1.226 1.120 1.205 1.304 1.399 1.471
3.815 4.385 4.803 4.656 4.689 4.882 4.830
0.755 0.659 0.544 0.636 0.740 0.791 0.916
3.800 4.285 4.813 4.640 4.543 4.562 4.623
0.823 0.722 0.593 0.797 0.959 1.056 1.094
3.375 3.899 4.475 4.605 4.651 4.682 4.748
1.064 0.943 0.815 0.958 1.093 1.196 1.240
2.862 3.422 4.041 4.378 4.589 4.705 4.786
1.367 1.229 1.088 1.166 1.253 1.342 1.411
3.424 4.324 4.801 4.643 4.950 * *
1.030 0.692 0.536 0.616 0.697 * *
3.804 4.266 4.921 4.691 4.614 4.827 *
0.848 0.727 0.539 0.767 0.943 0.962 *
3.321 3.886 4.575 4.766 4.816 4.798 4.543
1.121 0.946 0.773 0.904 1.023 1.123 1.281
2.709 3.386 4.111 4.545 4.777 4.883 4.671
1.425 1.250 1.072 1.123 1.205 1.278 1.374

* « exceeds maximum allowable value at this parameter combination
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*

Table 4.5 Relative Efficiencies of 5-pt. Compromise Designs
Minimum of D-, Q- and T-Efficiency (4 =6, 07 = 1)

*

o Tq
-1 0.5
-1 1.0
-1 1.5
-1 2.0

0 0.5

0 1.0

0 1.5

o 2.0

1 0.5

1 1.0

1 1.5

1 2.0

2 0.5

2 1.0

2 1.5

2 2.0
a 0,
-1 0.5
-1 1.0
-1 1.5
-1 2.0
0 0.5
0 1.0
0 1.5
0 2.0

1 0.5

1 1.0

1 1.5

1 2.0
2 0.5
2 1.0

2 1.5

2 2.0

o exceeds maximum allowable value at this parameter combination

pa
0.887 0.864 0.807 0.870 0.896 0.900 0.866
0.939 0.913 0.828 0.873 0.884 0.885 0.883
0.910 0.877 0.819 0.858 0.876 0.883 0.885
0.864 0.843 0.807 0.841 0.863 0.877 0.886
0.893 0.866 0.801 0.888 0.923 0.911 0.869
0.971 0.939 0.830 0.902 0.919 0.919 0.911
0.923 0.889 0.817 0.875 0.902 0.914 0.914
0.863 0.843 0.801 0.848 0.880 0.898 0.907
0.809 0.844 0.781 0.896 0.929 0.896 0.850
0.979 0.956 0.819 0.925 0.947 0.944 0.920
0.907 0.881 0.799 0.880 0.916 0.927 0.920
0.838 0.824 0.781 0.845 0.886 0.907 0.909
0.731 0.809 0.760 0.901 0.886 * *
0.937 0.955 0.792 0.939 0.973 0.924 *
0.865 0.853 0.771 0.873 0.918 0.920 0.880
0.813 0.799 0.760 0.837 0.886 0.901 0.878
Relative D-Efficiency (u; = 6, oy =1)
p3

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.968 0.963 0.954 0.941 0.929 0.900 0.866
0.939 0.917 0.895 0.936 0.951 0.960 0.978
0.945 0.937 0.922 0.938 0.944 0.948 0.956
0.963 0.961 0.954 0.950 0.942 0.937 0.937
0.971 0.993 0.983 0.968 0.934 0.911 0.869
0.971 0.954 0.922 0.972 0.984 0.988 0.986
0.982 0.971 0.951 0.970 0.976 0.980 0.974
0.991 0.990 0.983 0.978 0.971 0.956 0.945
0.954 0.988 0.989 0.959 0.929 0.896 0.850
0.984 0.968 0.919 0.984 0.991 0.982 0.965
0.991 0.984 0.957 0.977 0.979 0.974 0.965
0.985 0.995 0.989 0.978 0.962 0.947 0.933
0.826 0.961 0.993 0.932 0.886 * *
0.973 0.977 0.908 0.983 0.973 0.924 *
0.975 0.987 0.959 0.970 0.961 0.936 0.880
0.957 0.987 0.993 0.967 0.936 0.906 0.878
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*

Relative Efficiencies of 5-pt. Compromise Designs (continued)

*

a 79
-1 0.5
-1 1.0
-1 1.5
-1 2.0
0 0.5
0 1.0
0 1.5
0 2.0
1 0.5
1 1.0
1 1.5
1 2.0
2 0.5
2 1.0
2 1.5
2 2.0
a o3
-1 0.5
-1 1.0
-1 1.5
-1 2.0
0 0.5
0 1.0
0 1.5
0 2.0
1 0.5
1 1.0
1 1.5
1 2.0
2 0.5
2 1.0
2 1.5
2 2.0

a exceeds maximum allowable value at this parameter combination

Relative Q-Efficiency (pu] =6, 07 = 1)

*

K2
0.887 0.864 0.807 0.870 0.896 0.900 0.888
0.980 0.913 0.828 0.873 0.884 0.885 0.883
0.910 0.877 0.819 0.858 0.876 0.883 0.885
0.864 0.843 0.807 0.841 0.863 0.877 0.886
0.893 0.866 0.801 0.888 0.923 0.911 0.902
0.988 0.939 0.830 0.902 0.919 0.919 0.911
0.923 0.889 0.817 0.875 0.902 0.914 0.914
0.863 0.843 0.801 0.848 0.880 0.898 0.907
0.809 0.844 0.781 0.896 0.929 0.909 0.916
0.979 0.956 0.819 0.925 0.947 0.944 0.927
0.907 0.881 0.799 0.880 0.916 0.927 0.920
0.838 0.824 0.781 0.845 0.886 0.907 0.909
0.731 0.809 0.760 0.901 0.886 * *
0.937 0.955 0.792 0.939 0.973 0.956 *
0.865 0.853 0.771 0.873 0.918 0.926 0.934
0.813 0.799 0.760 0.837 0.886 0.901 0.893
Relative T-Efficiency (u] =6, 07 = 1)
H3

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.887 0.864 0.807 0.870 0.896 0.900 0.866
0.939 0.913 0.828 0.873 0.884 0.885 0.883
0.910 0.877 0.819 0.858 0.876 0.883 0.885
0.864 0.843 0.807 0.841 0.863 0.877 0.886
0.893 0.866 0.801 0.888 0.923 0.911 0.869
0.971 0.939 0.830 0.902 0.919 0.919 0.911
0.923 0.889 0.817 0.875 0.902 0.914 0.914
0.863 0.843 0.801 0.848 0.880 0.898 0.907
0.809 0.844 0.781 0.896 0.929 0.896 0.850
0.979 0.956 0.819 0.925 0.947 0.944 0.920
0.907 0.881 0.799 0.880 0.916 0.927 0.920
0.838 0.824 0.781 0.845 0.886 0.907 0.909
0.751 0.809 0.760 0.901 0.886 * *
0.988 0.955 0.792 0.939 0.976 0.959 *
0.865 0.853 0.771 0.873 0.918 0.920 0.899
0.813 0.799 0.760 0.837 0.886 0.901 0.878
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Table 4.6 Fitted 5-point Designs (in Standardized Metric)

Coefficients for Calculating Lowest (Standardized) Dose

D-optimality §-optimality Compromise
Regressor Criterion Criterion Criterion
Intercept -0.375 -2.486 -1.224
7 0.570 0.565 0.269
o -1.857 0.649 -0.182
a 0.000 -0.119 -0.021
3l -0.053 -0.052 -0.223
052 0.392 -0.171 -0.124
o? -0.017 -0.018 -0.019
U307 -0.090 -0.231 0.238
wa 0.012 -0.009 0.037
oy 0.073 0.205 0.064

Coefficients for Calculating Spacing Between Doses

D-optimality (-optimality Compromise
Regressor Criterion Criterion Criterion
Intercept 0.246 0.599 0.477
75 0.017 0.109 0.017
o3 0.843 0.328 0.222
a -0.036 -0.025 0.001
us? 0.040 0.021 0.097
o3’ -0.169 0.076 0.066
o? 0.011 0.009 0.011
U130 -0.026 -0.006 -0.012
JTete 0.008 0.000 -0.021
lopts -0.016 -0.019 -0.024

Note: 43 = (s~ i)/ and 03 = 0y/0,.

Transform design to original metric by using d = d*o, + y;, where d* is a dose in
the transformed metric.
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Table 4.7a D-optimality Robustness Case Study

Guessed Parameter Values
H1 %1 Ha 72 o

0 1 1 1.5 1

D-optimal Based Designs

3-pt Uneq. Wt. 5-pt. 5-pt fitted
Dose  Weight Dose Dose
-1.465 0.369 -1.803 -1.792
0.687 0.379 -0.690 -0.685
2.668 0.252 0.423 0.422
1.536 1.529
2.649 2.636
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Table 4.7b D-optimality Robustness Case Study--Mild Misspecification

D-efficiencies
Parms Actual Parameters 5-pt
Missed p, oy 7 o, 3-pt  5-pt fitted

R

|

0 0.00 1.00 1.00 1.50 1.000 0.992 0.992

[wy

1 -0.50 1.00 1.00 1.50 1 0.989 0.979 0.979
1 0.00 0.80 1.00 1.50 1 0.990 0.979 0.980
1 0.00 1.00 0.25 1.50 1 0.990 0.987 0.987
1 0.00 1.00 1.00 1.20 1 0.995 0.988 0.988
1 0.00 1.00 1.00 1.50 O 0.991 0.986 0.986
2 0.63 1.25 1.00 1.50 1 0.982 0.978 0.978
2 0.00 1.00 0.40 1.20 1 0.983 0.982 0.983
2 0.50 1.00 1.75 1.50 1 0.967 0.964 0.964
2 0.00 1.25 1.00 1.88 1 0.981 0.973 0.972
2 0.00 1.25 1.00 1.50 2 0.994 0.982 0.981
3 -0.40 0.80 1.00 1.50 O 0.986 0.976 0.976
3 0.50 1.00 1.75 1.50 2 0.936 0.940 0.940
3 -0.50 1.00 0.25 1.50 2 0.962 0.960 0.960
3 0.00 0.80 1.00 1.20 O 0.973 0.971 0.972
3 0.40 0.80 1.75 1.50 1 0.958 0.953 0.953
4 0.00 1.25 0.06 1.88 0 0.957 0.949 0.948
4 -0.40 0.80 1.94 1.88 1 0.941 0.919 0.919
4 0.63 1.25 1.00 1.20 O 0.964 0.966 0.966
4 0.40 0.80 1.75 1.50 O 0.961 0.962 0.962
4 0.40 0.80 0.06 1.88 1 0.987 0.991 0.992
5 -0.63 1.25 1.94 1.88 O 0.956 0.943 0.942
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Table 4.7c D-optimality Robustness Case Study--Severe Misspecification

D-efficiencies

Parms Actual Parameters 5-pt

Missed g oy Ho 0y « 3-pt 5-pt fitted
0 0.00 1.00 1.00 1.50 1 1.000 0.992 0.992
1 -1.00 1.00 1.00 1.50 1 0.953 0.947 0.947
1 0.00 0.50 1.00 1.50 1 0.871 0.869 0.871
1 0.00 1.00 -0.50 1.50 1 0.965 0.967 0.967
1 0.00 1.00 1.00 0.75 1 0.950 0.942 0.944
1 0.00 1.00 1.00 1.50 O 0.991 0.986 0.986
2 2.00 2.00 1.00 1.50 1 0.900 0.892 0.891
2 0.00 1.00 0.25 0.75 1 0.922 0.932 0.934
2 1.00 1.00 2.50 1.50 1 0.880 0.888 0.887
2 0.00 2.00 1.00 3.00 1 0.840 0.828 0.826
2 0.00 2.00 1.00 1.50 2 0.958 0.951 0.950
3 -0.50 0.50 1.00 1.50 O 0.834 0.857 0.858
3 1.00 1.00 2.50 1.50 2 0.820 0.857 0.857
3 -1.00 1.00 -0.50 1.50 2 0.899 0.895 0.894
3 0.00 0.50 1.00 0.75 O 0.811 0.819 0.822
3 0.50 0.50 2.50 1.50 1 0.766 0.768 0.769
4 0.00 2.00 -2.00 3.00 O 0.776 0.766 0.763
4 -0.50 0.50 4.00 3.00 1 0.645 0.638 0.638
4 2.00 2.00 1.00 0.75 0 0.909 0.922 0.922
4 0.50 0.50 2.50 1.50 O 0.780 0.786 0.787
4 0.50 0.50 -2.00 3.00 1 0.675 0.708 0.708
5 -2.00 2.00 4.00 3.00 O 0.716 0.704 0.702
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Table 4.8a Q-optimality Robustness Case Study

Guessed Parameter Values
M ! B2 72 o

0 1 1 1.5 1

Q-optimal Based Designs

3-pt Uneq. Wt. 5-pt. 5-pt fitted
Dose Weight Dose Dose
— 0.000 -1.637 -1.539
-0.570 0.474 -0.283 -0.231
2.875 0.526 1.072 1.108
2.426 2.447
3.781 3.786
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Table 4.8b Q-optimality Robustness Case Study--Mild Misspecification

Q-efficiencies
Parms Actual Parameters 5-pt
Missed By o, Yo o, a 3-pt 5-pt fitted

a

0 0.00 1.00 1.00 1.50 1.000 0.959 0.959

1 -0.50 1.00 1.00 1.50 1 0.946 0.945 0.940
1 0.00 0.80 1.00 1.50 1 0.983 0.956 0.958
1 0.00 1.00 0.25 1.50 1 0.996 0.953 0.953
1 0.00 1.00 1.00 1.20 1 0.970 0.942 0.941
1 0.00 1.00 1.00 1.50 O 0.992 0.939 0.937
2 0.63 1.25 1.00 1.50 1 0.993 0.974 0.974
2 0.00 1.00 0.40 1.20 1 0.953 0.919 0.918
2 0.50 1.00 1.75 1.50 1 0.957 0.927 0.929
2 0.00 1.25 1.00 1.88 1 0.952 0.928 0.925
2 0.00 1.25 1.00 1.50 2 0.993 0.974 0.971
3 -0.40 0.80 1.00 1.50 O 0.957 0.943 0.941
3 0.50 1.00 1.75 1.50 2 0.943 0.942 0.945
3 -0.50 1.00 0.25 1.50 2 0.947 0.948 0.945
3 0.00 0.80 1.00 1.20 O 0.965 0.913 0.915
3 0.40 0.80 1.75 1.50 1 0.915 0.916 0.920
4 0.00 1.25 0.06 1.88 O 0.943 0.931 0.925
4 -0.40 0.80 1.94 1.88 1 0.871 0.881 0.880
4 0.63 1.25 1.00 1.20 O 0.974 0.946 0.945
4 0.40 0.80 1.75 1.50 O 0.944 0.903 0.906
4 0.40 0.80 0.06 1.88 1 0.924 0.923 0.926
5 -0.63 1.25 1.94 1.88 0 0.803 0.822 0.814
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Table 4.8c Q-optimality Robustness Case Study--Severe Misspecification

Q-efficiencies

Parms Actual Parameters 5-pt
Missed o, Mo o, « 3-pt 5-pt fitted
0 0.00 1.00 1.00 1.50 1 1.000 0.959 0.959
1 -1.00 1.00 1.00 1.50 1 0.764 0.891 0.878
1 0.00 0.50 1.00 1.50 1 0.691 0.905 0.911
1 0.00 1.00 -0.50 1.50 1 0.986 0.939 0.938
1 0.00 1.00 1.00 0.75 1 0.762 0.835 0.834
1 0.00 1.00 1.00 1.50 O 0.992 0.939 0.937
2 2.00 2.00 1.00 1.50 1 0.936 0.962 0.959
2 0.00 1.00 0.25 0.75 1 0.743 0.766 0.765
2 1.00 1.00 2.50 1.50 1 0.851 0.829 0.833
2 0.00 2.00 1.00 3.00 1 0.704 0.737 0.731
2 0.00 2.00 1.00 1.50 2 0.828 0.869 0.858
3 -0.50 0.50 1.00 1.50 O 0.660 0.926 0.928
3 1.00 1.00 2.50 1.50 2 0.844 0.840 0.844
3 -1.00 1.00 -0.50 1.50 2 0.733 0.869 0.859
3 0.00 0.50 1.00 0.75 O 0.533 0.727 0.733
3 0.50 0.50 2.50 1.50 1 0.569 0.765 0.770
4 0.00 2.00 -2.00 3.00 O 0.735 0.792 0.782
4 -0.50 0.50 4.00 3.00 1 0.340 0.439 0.438
4 2.00 2.00 1.00 0.75 O 0.762 0.875 0.869
4 0.50 0.50 2.50 1.50 O 0.619 0.768 0.773
4 0.50 0.50 -2.00 3.00 1 0.640 0.729 0.730
5 -2.00 2.00 4.00 3.00 O 0.390 0.457 0.449
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Chapter 5
Summary and Future Work

§5.1 Summary and Future Work

In this dissertation we seek to examine some of the design considerations
associated with the use of the Gumbel bivariate logistic regression model in a
drug-testing setting. Design optimality criteria were developed for each of three
different experimental goals and associated optimal design tables were produced.
Emphasis has been placed on finding designs which would be suitable for
practical use.

A practical suggestion would be to use the 5-point design corresponding to
the goals of the experiment. If parameter estimation is of primary interest, the
D-optimal design should be used. Similarly, if the researcher is most interested
in prediction of p(1,0;d), the probability of efficacy without toxicity, the
Q-optimal design is most appropriate. If estimation of the therapeutic index is
the most important goal, one should use the T-optimal design, provided this
design has more than one design point. Finally, if all three of these goals are of
interest to the researcher, the 5-point compromise design is the recommended
design.

Several major areas for future research based upon this work present
themselves. A major assumption throughout this dissertation is that the

researcher can offer reasonable parameter guesses a priori. Either of two
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alternate approaches would probably be more effective. One approach would be
to use Bayesian priors on the parameters, thus including in the design
considerations some measure of the uncertainty associated with the parameter
guesses (see Chaloner and Larntz 1989). Another approach would be to develop
2-stage designs following the work of Myers (1991). In the 2-stage experiment,
the initial stage would be a 3-point design based on one of the optimality criteria
presented in Chapter 3. Based on this initial experiment estimates of the
parameters would be obtained. Two additional design points could then be
chosen in such a way as to maximize any given criterion based on the total log-
likelihood, which equals the sum of the log-likelihood of the first stage and the
log-likelihood of the second stage given the first. This approach has the appeal
to the practitioner of giving a 5-point design in which poor initial parameter est-
imates may be compensated for in the second stage.

A related area of research concerns the robustness of these designs. Some
robustness properties were examined through case studies, but a more thorough
examination of this problem might reveal with more certainty a particular type
of experimental design which has good robustness properties for the Gumbel
model.

Finally, since there are bivariate logistic regression models other than the
Gumbel model, one might explore the robustness of these designs to the
particular model which is chosen. Similarly, if one is not restricted to logistic
regression, it would be of interest to find how well these designs perform if one

uses a bivariate probit or other bivariate model.
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Appendices

Appendix A Proof of Minimum Value for a

It can be seen by examining p(0,0;d) that the minimum value for « is

always -1. It is required that p(0,0;d) > 0 vd. This implies that

172
1 - 1_ _ 1_ + 1_ . 1_ 2 — Qe
1+ed1 14692 l+ed1 1+ed2 (1+e-d1)2(1+e-d2)2

4, ~da) _ cd1) ¢ %2 2
® 1+ (14e%) - (14e%) - (14 )+1>(1+e"'1)(1+5d2)

-a<(14e%)(14%).
However,

lim (1+e'd1)(1 +e-d2) =1,

d—oo

implying that a > -1.
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Appendix B Partial Derivatives of E,, E,, E;E, and A

It is necessary to find first and second partial derivatives of E,, E,, E,E,

and A with respect to 8, = y,, 6, = 0,, 0; = u,, 0, = 0, and 65 = a, where

E,= —,
! 1+

E,= —L
2 l+ed2’

. e 742 _. o4 o792 |
(1+e-a’1)2<1+e-d?)2 ( (1+e-d1)2)( (l+e-d2)2)

Begin by noting that many of the partial derivatives in question evaluate to zero:

Ok, _ O'Z[El _ _
59_.. - 69,69J =0, 6:’ = Wy 09y
OFE, O, _ )
m? h 69‘691 =0, 6; = Hy, Oy @
OE,E, _ 32|E1|E2 _9A 0
00 - 09;0a o aaz -
Also note that
OE,E OE
310.2:[E2a—9?’ b; = m, oy,
OE,E OE
alg.zz[Ela_g?’ b; = pg, 09,
OE\E, _ OF, O, ~ . B
89,'60]- B 60' ) 601 ’ 91' = H1 01 9_7' = Ko, O
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0°E,E O’E
_aﬁz[g2a_02la 9:':/1'1’0'17
0°E,E O’E

6?61? 2=E13—022a b; = py, 0.

Finally, observe that a number of the partial derivatives may be obtained from
others simply by reversing the roles of the efficacy and toxicity quantities. With
these facts in mind, those partial derivatives necessary to calculate the entire

information matrix are now found.

OE, _eh

T T a Y
' (1+ed1)"1
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Appendix C Proof of Equality of Asymptotic Variances under Reparameterization

Let 8 and B represent the original parameterization and the reparameter-

ization, respectively, of the model. In this case & = (g, o, p, o0, «a) and

B= (Bro Bu B Bu a)

v*'I*Y(f)v* = v'I''(@)v, where v and v* are the vectors of partial derivatives

In this Appendix it is proven that

under the original parameterization and the reparameterization, respectively.

The vector v is expressed as

_|0f 0f Of 9f 9f
06, 06, 06, 06, 06|’

where f is the function of the parameters which the researcher desires to

estimate with minimum variance. Now by the chain rule for derivatives of a

function of several variables,

Faf/aﬁl— I jélaf/aa,..aoj/aﬂl |
of / a8, jzz:laf/aaj.aoj/aﬂz
v'=| 05 /0Bs jz=:10f/66’j-60j/8ﬂ3 = Jv.
af /8B, jglaf/aoj.aaj/am
of / 9Bs | j;laf/aej.aa,./aﬂs
Therefore, ) T

oM I B)v* = v (JI(0)J) vt = v J'(JI ()T ) Jv = v I (),

which 1s the desired result.
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Appendix D Proof of Information Matrix Structure when « =0

This Appendix proves that the information matrix assumes a special
block diagonal structure when o =0. First examine the block containing
elements I,3=13,, I,, =14, I33=15, and I,,=1,,. Referring to (2.2.4) and
Appendix B it can be seen that o =0 implies that A and all its

pertinent derivatives disappear. Also note that if : = 1,2 and 7 = 3,4 then

OLE, _ ¢ OE,
58, ~ 258,

OLE, ¢ OE,
a6, ~— 199"

OEE, OF, OF,
90,09, ~ 96, ~ 9, ’

o, OE, &%, O°,

= = = = O .
30, ~ 6, ~ 36,09, 96,08,

Therefore the numerators in (2.2.4) reduce to zero as follows:
pll(W'T%)_(E23_9,- [Elgo—j

B OE, \ ( OE, OE,\ (0E,\ _
- (5 (&) - ==(5)(5) -0

| _OE, 0E;)\_(9E, . OE\( _p 9K
A AT 1 38,
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O, OE,\_( 0K, +E 9k, \( Ok, +E OE,
Poo {56, 98, )\ ~ 8, " 298, )\ ~78, "1 76,
Ok, \(OE OE. \/JE
1-E,-E+EE 1) Ea) (14E)(-1+E ( 1)(.1):0.
( 2t )( (69]) ( + 2)( + ) 90 391

Thus this block evaluates to a null matrix when a = 0.
Next examine the block of the information matrix which contains
elements I,; = I5; and I,5 = I;,. Note that since neither E,; nor E, contain «, for

i=12

OF, _OE, OEE, O%E, _ 0%, _OEE,_pA_p_,
50, ~ 06, 08, _ 00,00, 00,08, 00,00, 08,

Also note the following relationships from Appendix B:

(’)2“\ _ 2 6|E1 -d,-d
2000, — BBz 55, ( 2oe 2)’
g—g“s- = E2E2 (e9%),

FEE, _p OF,

0, = E2 g,
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Using these relationships in (2.4.4) it is seen by the following that the terms
associated with p,, and p,, negate each other as do the terms associated

with pg; and pg.
oA (BB sA
P g6, — P11\ a6, )\ 90,

O, ( -a, -a;- O .-
= —E,E} aT: (e d_eh dz)_ (EIEZ)-I(EZ 6_01) (E%E% 41 d2)

oE, .
= —~E E2 69 €d2

. _ 0 1 (0E GEE)( sn
Pio° ~ 5996, ~ P10\ 98, ~ a0, 0,

OE, (-4, -q.- _4f OE d.-
= E,E} aT: (e d_ 4 d2)+ (E, -E,E,) ’(67?(1{2)) (E%E% e 1 dz)

oE, .
- E E2 60' € d2

. _0A _BEIEZ _0A
Porr ~Fg34, ~ Pon 50, 29,
OE, d.- OE ;
= E,Ef 55" ( 2_¢ N "2)— (EZ——EIEz)'l(EZ a_al) (E2E2 4174y )

OE, [ -a, -a- cdy -d- d.-
= (1-E,)'E,E} 5t l:(e _eh “2)_51<e 2_eh “2)_51 el “’2}

OE ddy o -
= (1-E) B8] gt [ - gy ]
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. oA -1 oF, OEE,\( oA
Poor 86,00, ~ Poo("aT,i"" 96, 0,
=-E,E} % (e"‘z- e'dl'd:a) (1-E,-E, +E,E,)” (aE (1-E )) ([Eﬁgg e“‘l'dz)

oE, [( - d. -do- .-
(1-E,)E,E2 50 l:(—ed2+ed1d)+El<e d_eh d2)+|E1edl “2}

oE ded, o -
= -(1-E) e 6] gt [ 2o g, ).

Likewise, the elements I35 = I3 and I,5 = I, can be seen to reduce to zero by
reversing the roles of E, and E, and the roles of d; and d,. The term associated
with p,; negates the py, term and the p,, term negates the py, term. Thus,
when o =0, the information matrix takes on the following block diagonal

structure:

1(6)

I
o
o
~
w
W
~
w
S
o
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Appendix E Computer Programs

k¥ ok ok ok o ok ok ok ok o oK ok ok ok ok ok ok sk ok ok ok ok ok ok o ok sk ok ok ok ok ok ok sk ok ok ok ok ok ke ke sk ok s ok ke ok ok ok sk sk ok ok ok sk ok ok ok ok

* PROGRAM NAME: INFMAT
PURPOSE: CALCULATES THE INFORMATION MATRIX FOR THE GUMBEL MODEL

»*

THIS PROGRAM IS WRITTEN IN SAS PROC IML AND IS DESIGNED TO BE
CALLED FROM ANOTHER SAS PROC IML PROGRAM.

INPUT VARIABLES:
K=NUMBER OF DOSES IN THE DESIGN
MU1, SIGi, MU2, SIG2, ALPHA=GUMBEL PARAMETERS
DOSE=1 BY K DIMENSIONAL VECTOR CONTAINING THE DOSES IN DESIGN
SUBJ=1 BY K DIMENSIONAL VECTOR CONTAINING ALLOCATION OF
SUBJECTS IN THE DESIGN

¥ oK K K K K K K K K K K K K X

OUTPUT VARIABLES:
INF=5 BY 5 INFORMATION MATRIX CORRESPONDING TO INPUT VARTABLES«

3 ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Sk ok ok ok ok 3k 3k 3k ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok sk sk ok ok ok sk sk koK ok
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PROC IML;

START INFMAT;

+ INITIALIZE MATRICES TO ZERO (MANY ARRAY ELEMENTS REMAIN ZERO);
D1E1=J(1,5,0); D2E1=J(5,5,0); D1E1E2=J(1,5,0); D2E1E2=J(5,5,0);
D1E2=J(1,5,0); D2E2=J(5,5,0); D1A12=J(1,5,0); D2412=J(5,5,0);
INF=J(5,5,0); + INFORMATION MATRIX ;

« LOOP THROUGH ONCE FOR EACH DESIGN POINT;

DO D=1 TO K;

D1 = (DOSE[D]-MU1)/SIG1; + DOSE STANDARDIZED BY 1ST LOGISTIC MODEL;
D2 = EDUSE D] - M02)/SIG2; + DOSE STANDARDIZED BY SECOND LOGISTIC;
El = 1/(1+EXP(-D1));

E2 = 1/(1+EXP(-D2));

P11 = E1+E2 + ALPHA+EXP(-D1-D2)x(E1+E2)#*2;

P10 = E1 - E1xE2 - ALPHA*EXP(-D1-D2)x E1*E2g**2;

P01 = E2 - E1«#E2 - ALPHA*EXP(-D1-D2)*(E1xE2)%x2;

P00 = 1 - P11 - P10 - PO1;

* DEFINE VALUES FOR THE FOLLOWING, WHICH ARE PARTIAL DERIVATIVES
* AS INDICATED. SUBSCRIPTS REPRESENT DERIVATIVES WITH RESPECT T0
* 1: MU1  2: SIG2 3: MU2 4: SIG2 5: ALPHA.

x DIE1[I]: FIRST PARTIALS OF E1 W.R.T. I

* DIE2(I]: FIRST PARTIALS OF E2 W.R.T. 1

* D2E1[I,J]: SECOND PARTIALS OF E1 W.R.T. I,J

107



*

D2E2[I,J]: SECOND PARTIALS OF E2 W.R.T. I,J
D1E1E2[I|: FIRST PARTIALS OF EixE2 W.R.T. I
D2E1E2[I,J]: SECOND PARTIALS OF E1+E2 W.R.T. I,J

* *

* DlAlQ[I]: FIRST PARTIALS OF A12 = ALPHA+EXP(-D1-D2)x(E1xE2)**2

* D2A12[1,J]: SECOND PARTIALS OF A12 W.R.T. I,J ;

D1E1{1] = -EXP(-D1)*E1%x2/SIG1; D1E1[2 =D1*D1E1£1 ;

D1E2[3]| = -EXP(-D2)*E2x%2/SI1G2; D1E2[ 4 |=D2xD1E2| 3 |;

DIE1E2[1] = E2+DIEi[1]; DIE1E2[ 2]=E2+D1E1[ 2];

DIE1E2[3] = E1+D1E2[3]: DIE1E2[4=E1+D1E2[4]:

D1A12[1] = ALPHA«EXP(-D2-D1)*E2#x2*E1%*3x(1-EXP(-D1))/SIG1;

D1A12[3] = ALPHA*EXP%—Dl-DQ *E1xx2xE2+x3%(1-EXP(-D2) ) /SIG2;

D1A12[2] = D1xD1A12[1]; D1A12[4] = D2+D1A12[3]:

D1A12[5] = EXP(-D1-D2)*(E1+E2)*2;

D2E1[1,1] = -EXP(-D1)*E1%*3x(1-EXP(-D1))/(SIG1%2);

D2E2[3,3] = -EXP(-D2)*E2xx3x(1-EXP(-D2))/(SIG2**2);

D2E1{1,2] = -EXP(-D1)*E1xx3%(D1-D1*EXP(-D1)-1-EXP(-D1))/ SIGl**Z;;

D2E2[3,4] = -EXP(-D2)*E2+*3x(D2-D2+EXP(-D2)-1-EXP(-D2))/(SIG2%%2);

D2E1[2,2] = -D1+EXP(-D1)*E1%+3+(D1-D1«xEXP(-D1)-2-2«EXP(-D1))
/(SIG1%%2);

D2E2[4,4] = -Dz*?XP(—D2)*E2**3*(D2-D2*EXP(—D2)—2—2*EXP(—D2))

S1G2%%2);

D2E1E2[1,1] = E2*62E1 1,1]; D2E1E2[1,2]=E2«D2E1[1,2];

D2E1E2[2,2] = E2xD2E1[2,2];

D2E1E2[3,3] = E1+D2E2[3,3]; D2E1E2[3,4] = E1+D2E2[3,4];

D2E1E2[4.4] = E1xD2E2[4.4]:

D2E1E2{1,3| = D1E1[1]«D1E2[3]; D2E1E2[1,4] = D1E1 1]*D1E2[4};

D2E1E2[2.3] = DiE1[2]+D1E2[3]: D2E1E2[2,4] = DIE1[2]+DiE2[4]:

D2A12[1,1] = ALPHA*EXP(-D2-D1)*E2**2xE1**4x(1-4+EXP(-D1)

+EXP(-2%D1))/(SIG1%%2);
D2A12[3,3] = ALPHA*EXP(-D1-D2)*E1%x2xE2%*4*(1-4+EXP(-D2)
+EXP(-2%D2))/(SIG2%x%2);
D2A12[1,2] = ALPHA«EXP(-D2-D1)*E2xx2xElxx4x(-1+D1-4xD1+EXP(-D1)
+EXP(-2+D1)+D1+EXP(-2+D1))/(SIG1%%2);
D2A12[3,4] = ALPHAxEXP(-D1-D2)+E1%x2xE2%x4x(-1+D2-4xD2*EXP(-D2)
+EXP(-2xD2)+D2EXP(-2+D2) )/ (SI62+2)
D2A12[2,2] = ALPHA+EXP(-D2-D1)*E2%+2+E1*x4D1%(-2+D1+2+«EXP(-2+D1)
-4xD1+EXP(-D1)+D1xEXP(-2%D1))/(SIG1%%2);
D2A12[4,4] = ALPHA«EXP(-D1-D2)*E1x#2xE2#4%D2x(-2+D2+2+EXP(-2+D2)
-4xD2+EXP(-D2)+D2+EXP(-2+D2))/(SIG2%%2);
D2412[1,3] = ALPHA+EXP(-D1-D2)+E1++3+E2%x3x(1-EXP(-D1))
*(1-EXP(-D2))/(SIG1xSIG2);
D2A12[1,4] = ALPHA+EXP(-D1i-D2)*E1++3+E2#%3+D1%(1-EXP(-D1))
*(1-EXP(-D2))/(SIG1+SIG2);
D2412[2,3] = ALPHA+EXP(-D1i-D2)*El++3+E2#+3+D2+(1-EXP(-D1))
*(1-EXP(-D2))/(SIG1xSIG2);

D2A12[2,4] = ALPHAEXP(-D1-D2)*E1#*3%E2%x3xD1xD2x(1-EXP(-D1))
*(1-EXP(-D2))/(SIG1xSIG2);

D2A12[1,5] = EXP(-D2-D1)*(1-EXP(-D1))*E2%%2+E1%%3/SIG1;

D2A12[3,5] = EXP(-D1-D2)*(1-EXP *E1#x2xE2%x3 /SIG2;

-D2
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D2A12[2,5
D2A12(4,5

D1xD2A12[1,5];
D2xD2A12(3,5];
D0 I=1 TO 5;
DO J=I TO 5;
INF[I,J]=INF[I,J]-SUBJ[D]*(P11x(D2E1E2[I,J]+D2A12[I,J])
- D1EﬁE2[I +D1A12[1])*(D1E1E2[ J]+D1A12[J]))/P11;
I,J]=INF[I,J]-
SUBJ[D]*(P10x(D2E1[I,J]-D2E1E2[I,J]-D2A12[1,J])
-(D1E1[{ I |-D1E1E2[I]-D1A12[I
*x(D1E1[ J|-D1E1E2{J]-D1A12[J}))/P10;
INF[I,J]=INF[I,J]-SUBJ[D]*(P01x(D2E2[I,J]-D2E1E2[I,J]
-D2A12[I,J])-(D1E2[I]-D1E1E2[1]-D1A12[I])
*(D1E2[ J]-D1E1E2[ J]-D1A12[J]))/P01;
INF[I,J]=INF[I,J]-SUBJ[D]*(P0Ox(-D2E1[I,J]-D2E2[I,J]+D2E1E2[I,J]
+D2A12[I,J]) - (-D1E1[I]-D1E2[I]+D1E1E2[I]+D1A12[I])
*(-D1E1[J]-D1E2[ J]+D1E1E2[ J]+D1A12[J]))/P00;

INF

—

END;
END;
D0 I=2 TO 5;
D0 J=1 TO I-1;
INF[I,J]=INF[J,I];
ND;

)

END;
FINISH;

RESET STORAGE=KEEP.IT;
STORE;
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* PROGRAM NAME: NUMINT
*
PURPOSE: CALCULATES INTEGRAL BY MEANS OF GAUSSIAN (QUADRATURE

THIS PROGRAM IS WRITTEN IN SAS PROC IML AND IS DESIGNED TO BE
CALLED FROM ANOTHER SAS PROC IML PROGRAM.

INPUT VARIABLES:
MU1, SIG1, MU2, SIG2, ALPHA=GUMBEL PARAMETERS
L0_D=LOW DOSE IN RANGE OF INTEGRATION
HI_D=HIGH DOSE IN RANGE OF INTEGRATION

OUTPUT VARIABLES:
INTDXDP=5 BY 5 MATRIX CONTAINING INTEGRAL OF
(DP(1,0)/DTHETA X DP(1,0)/DTHETA’) FROM EQN. (3.3.2)
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PROC IML;
START NUMINT;

* HGR=GAUSSIAN QUADRATURE POINTS;

HGR = { -0.9951872199970214 ,-0.9747285559713095 ,
-0.9382745520027328 ,-0.8864155270044010 ,
-0.8200019859739029 ,-0.7401241915785544 ,
-0.6480936519369756 ,-0.5454214713888395 ,
-0.4337935076260451 ,-0.3150426796961634 ,
-0.1911188674736163 ,-0.0640568928626056 };

* HGW=GAUSSIAN WEIGHTS;

HGV = { 0.0123412297999872 , 0.0285313886289337
0.0442774388174198 , 0.0592985849154368 ,
0.0733464814440803 , 0.0861901615319533 ,
0.0976186521041139 , 0.1074442701159655 |,
0.1155056680537256 , 0.1216704729278034
0.1258374563468283 , 0.1279381953467522 } ;

GR = J(24,1,0); GW = J(24,1,0); INTDXDP = J(5,5,0);
D0 _F_=1T0 12;

_G_ = 25-_F_;
GR[_F_] = HGR[ F_]+1)*(HI_D - L0_D)/2 + LO_D;
GR[_G_] = (-HGR[_F_]+1)*(HI_D - L0_D)/2 + LO_D;
GW[_F_] = HGW[_F_]*(HI_D - L0_D)/2;
GW[_G_] = HGW[_F_]*(HI_D - L0O_D /2;

END;

J(1,5,0); DIE2 = J(1,5 ) D1A12 = J(1,5,0);
1,5,0); DIE1E2 = J(1,5,0);

DD _F_ =1 T0 24;
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_DOSE_ = GR[_F_];
D1 = (_DOSE. - HU1)/SIG1; + DOSE STANDARDIZED BY 1ST LOG. MODEL;

D2 = (_DOSE_ - MU2)/SIG2; * DOSE STANDARDIZED BY SECOND LOGISTIC;
El =1/ 1+EXP -Dlg ;
E2 = 1/(1+EXP(-D2));
DiE1[1] = -EXP —D1§*E1**2/SIG1; D1E1[2]=D1xD1E1[1];
D1E2[3]| = -EXP(-D2)*E2x*2/SIG2; D1E2[{ 4 |=D2+D1E2[ 3 |;
D1E1E2 1} = E2xD1E1[1]; D1E1E2| 2 ]=E2xD1E1[ 2];
DIE1E2[3] = E1xD1E2[3]: DIE1E2[4]=E1+D1E2[4];
D1A12[1] = ALPHA«EXP(-D2-D1)*E2+x2xE1%*3*(1-EXP(-D1))/SIG1;
D1A12{3| = ALPHA+EXP(-D1-D2)*E1#x2%E2%x3+(1-EXP(- /SIG2;
D1A12[2] = D1xD1A12[1]; D1A12[4] = D2+«D1A12[3];
D1A12[5] = EXP(-D1-D2)#(E1+E2)#+2;
D0 _G_ =1 TO 5;
DP10[_G_] = D1E1[_G_] - D1E1E2[_G_] - D1A12[_G_];
END;
D0 _G_ =1 TO 5;
DO _H_ = _G_ TO 5;
INTDXDP[ _G_, H_] = INTDXDP[_G_,_H_] + GW[_F_]+DP10[_G_ ]*DPIO[_H_]
END;
END;
END
D0 _F_ = 2 TO 5;
D0 _G_=1T0 _F_-1;
INTDXDP[_F_,_G_] = INTDXDP[_G_,_F_];
END;
END;
FINISH
RESET STURAGEzKEEP.IT;
STORE;
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« PROGRAM NAME: DOPT .
* *
+ PURPOSE: CALCULATES 2 OR 3 POINT EQUALLY WID D-OPTIMAL DESIGN  «
* *
+ THIS PROGRAM IS WRITTEN IN SAS PROC IML AND IS DESIGNED TO BE =
+ CALLED FROM ANOTHER SAS PROC IMI PROGRAM. .
* *
+ INPUT VARIABLES: .
«  MUL, SIG1, MU2, SIG2, ALPHA=GUMBEL PARAMETERS .
+  K=NOMBER OF DOSES IN DESIEN .
+  SUBJ=1 BY K DIMENSIONAL VECTOR CONTAINING ALLOCATION OF .
. SUBJECTS IN THE DESIGN .
* *
+ OUTPUT VARTABLES: .
+  DPT=1 BY K VECTOR CONTAINING DOSES IN D-OPTIMAL DESIGN .
+  FN_VALUE-=-DET(INFORMATION MATRIX) (SIMPLEX IS A MINIMIZATION =+
. ALGORTTHY) .
oK SR KKK KA KKK KK KK oKk ok Kok oK ok Kok KR ok Kok oK ok Aok KK kKR K oK
PROC TML;
START DOPT;
START DFUNC;
INDICS = 0;
DOT=1T0 K-1;
IF (PARMS[I]5PARMS[I+1]) THEN INDICS=1; + RESTRICTS DESIGNS TO
THOSE WITH ORDERED DOSES;
END;
TF (INDIC8=1) THEN FN_VALUE = 100000;
ELSE DO
DOSE = PARMSS;  + DOSAGE LEVELS;
CALL INFMAT;
EN_VALUE = -DET(INF);
END;
PARMSP = PARMS®;

FINISH DFUNC;
_P_ = J(K,K+1,0); % _P_ IS AN INPUT TO STRTSIMP;
CALL STRTSIMP; =« STRTSIMP GENERATES THE STARTING SIMPLEX FOR
THE NELDER-MEAD ALGORITHM BASED ON FUNCTION
EVALUATIONS ON A GRID;
RUN SIMPLEX2; * NELDER-MEAD ALGORITHM;
DPT = PARMS; * PARMS IS 1 BY K VECTOR IN SIMPLEX2 WHICH
GIVES THE OPTIMAL DESIGN;
FINISH DOPT; RESET STORAGE=KEEP.IT;
STORE;
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* PROGRAM NAME: (OPT
*

* PURPOSE: CALCULATES 2 OR 3 POINT EQUALLY WID (-OPTIMAL DESIGN

*
THIS PROGRAM IS WRITTEN IN SAS PROC IML AND IS DESIGNED T0 BE
CALLED FROM ANOTHER SAS PROC IML PROGRAM.

*
+ INPUT VARTABLES:

x+  MU1, SIGI, MU2, SIG2, ALPHA=GUMBEL PARAMETERS

x  K=NUMBER OF DOSES IN DESIGN

+  LO_D=LOW DOSE IN RANGE OF INTEGRATION (PASSED TO NUMINT)
«  HI_D=HIGH DOSE IN RANGE OF INTEGRATION (PASSED TO NUMINT)
x+  SUBJ=1 BY K DIMENSIONAL VECTOR CONTAINING ALLOCATION OF

*

X

*

*

*

*

*

* *

SUBJECTS IN THE DESIGN

OUTPUT VARIABLES:
(PT=1 BY K VECTOR CONTAINING DOSES IN T-OPTIMAL DESIGN
FN_VALUE=INTEGRATED VARIANCE OF ESTIMATE OF P(1,0) FOR
(-0PTIMAL DESIGN
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PROC IML;
START QOPT;

START (FUNC;
INDIC8 = 0;
DO I=1T0K-1;
IF (PARMS[I]>PARMS[I+1]) THEN INDIC8=1; x RESTRICTS TO DESIGNS
WVITH ORDERED DOSES;
END;

IF (INDIC8=1) THEN FN_VALUE = 100000;
ELSE DO;
DOSE = PARMS‘;  * DOSAGE LEVELS;
CALL INFMAT;
IF (DET(INF)=0) THEN FN_VALUE=1000000; =* ELIMINATES SINGULAR
DESIGNS;
ELSE FN_VALUE = TRACE(INTDXDP*INV(INF));
END;
PARMSP = PARMS‘;
FINISH (FUNC;
CALL NUMINT; =NUM. INTEGRATION TO GET INTDXDP =
INT(DP(1,0)*DP(1,0)¢);
_P_ = J(K,K+1,0);
CALL STRTSIMP;
RUN SIMPLEX2;

QPT = PARMS';
FINISH QOPT; RESET STORAGE=KEEP.IT;
STORE;
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PROGRAM NAME: TOPT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

PURPOSE: CALCULATES 2 OR 3 POINT EQUALLY WTD Q-OPTIMAL DESIGN
THIS PROGRAM IS WRITTEN IN SAS PROC IML AND IS DESIGNED T0 BE
CALLED FROM ANOTHER SAS PROC IML PROGRAM.
INPUT VARIABLES:
MU1, SIG1, MU2, SIG2, ALPHA=GUMBEL PARAMETERS
K=NUMBER OF DOSES IN DESIGN
PX=QUANTILE OF ED=.5 FOR TABLED DESIGNS
PY=QUANTILE OF TD=.5 FOR TABLED DESIGNS
SUBJ=1 BY K DIMENSIONAL VECTOR CONTAINING ALLOCATION OF
SUBJECTS IN THE DESIGN
OUTPUT VARIABLES:
TPT=1 BY K VECTOR CONTAINING DOSES IN T-OPTIMAL DESIGN
FN_VALUE=ASYMPTOTIC VARIANCE OF THERAPEUTIC INDEX
FOR T-O0PTIMAL DESIGN
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ROC IML;
TART TOPT;
START TFUNC;
INDIC8 = 0;
DOTI=1T0K-1;

)

IF (PARMS[1]<0) THEN INDICS=1;

IF (INDICS=1) THEN FN_VALUE = 10000000;
ELSE DO;

DOSE = PARMS‘;  + DOSAGE LEVELS;

CALL INFMAT;
IF (DET(INF)=0) THEN FN_VALUE=1000000; * CHECKS FOR
SINGULAR DESIGN;
ELSE FN_VALUE = DLOGT‘+INV(INF)+DLOGT;

END;
PARMSP = PARMS®;

FINISH TFUNC;
DLOGT = J(5,1,0); * VECTOR OF PARTIAL DERIVATIVES

OF THERAPEUTIC INDEX;
DLOGT[1] = - (MU2-SIG2+LOG(1/PY-1))/(MUL-SIG1+LOG(1/PX-1))#42;
114

IF (PARMS[I]>PARMS[I+1]) THEN INDIC8=1; *ORDERED DOSES IN DESIGN;
ND;



_LOG(1/PX-1)+DLOGT[1];

DLOGT[2] =
DLOGT[3] = 1/(MU1-SIG1xL0G(1/PX"1));
DLOGT[4] = -LOG(1/PY-1)*DLOGT[3];

_P_ = J(K,K+1,0);
ALL STRTSIMP;
RUN SIMPLEX2;

TPT = PARMS®;
FINISH TOPT;

RESET STORAGE=KEEP.IT;
STORE;
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