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Abstract

With the increasinguse of lightweight frame-typestructures thatspan long
distances, there is a need for a method to detertim@p@obability hat a structurdaving
randominitial geometric imperfectionsilvbecome unstable at a load less thapexcified
fraction of the perfectritical load. The overall objective of this dissertation is to present
such a method for frame-tyructures thabecome unstable &init points. Theoverall
objectivemay bebroken into three parts. THist part concerns the development of a
three-dimensionatotal Lagrangian beam finite element thatused to determine the
critical loadfor the structure. The secommhrt deals with a least squares method for
modelingthe randominitial imperfections usinghe mode shapdsom a linear buckling
analysis,and a specifiednaximum allowable magnitudeor the imperfection at any
imperfectnode in the structure. The thipdrtdeals with the calculation of the probability
of failure using a combinedesponse surface/first-order second-moment method.
Numerical resultare presented fdwo example problems, and indicate thia proposed
method is reasonablccurate. Severaroblems withthe proposed method were noted

during the course of this work and are discussed in the final chapter.
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CHAPTER 1
INTRODUCTION

Over the years, a lot of researchs centered arourgkterminingthe effects of
initial imperfections orthe stability of astructure. Interest ithis area began tgrow
when investigators found large discrepancies between theoretical buckling loads and actual
experimental results. Koitgd945) hypothesized thall structureshave some form of
small initial imperfections, in spite of hoearefully theywere manufactured, and that it is
thesesmall unavoidable imperfections that cauke largedifferences between theoretical
and experimental results. Koit¢t945) went on toidentify two specific types of
instability thatcause structures to lsensitive to geometric imperfections. The first is
bifurcation at an unstable symmetric bifurcatmmint, and the second lsfurcation at an
unstable asymmetric bifurcatiggoint. The most common form ofstability occurs at a
limit point and isnot assensitive to geometric imperfections (EI Naschie 1980}, a
significant variation in the critical load can still occur for realistic imperfections.

Sincethe work of Koiter (1945), thenperfection sensitivity of variougypes of
structureshas been analyzedAnalysis ofthe imperfection sensitivity of cylindricaghells
and stiffenedcylindrical shellshas beerthe focus of most othis work. An extensive
review of work petaining to perfect and imperfeanalysis of cylindrical shellsan be
found in thereview paper by Siitses (1986). Various types ofnalyses have been
proposed forexaminingthe distribution of thecritical load for cylindrical shells with

random geometric imperfections. dst of theseanalyses determinte mean values and



variances ofthe imperfections using imperfectiodata from previously manufactured
shells of a similatype. Very few results have been preseritgdstructures where the
shape and magnitude thfe initial imperfections inot known. These types of structures
include one-of-a-kindtructures where there is no prior experience with the different types
of possible geometric imperfections.

Some of the more interesting types stfuctures are lattice domes shallow
reticulated caps that span long distances. Tseaeturedunction as space frames, and
are often used iplace of continuous shell-tygructures. The mostbommon mode of
failure for these structures imstability, which occurs at dimit point. Thecomplex
geometry used in thdesign of reticulatedstructuresusually prevents a closefbrm
solution for thecritical load. Large deformations before thimit point require a
geometrically nonlinear finite element analysis to determine the critical load.

Most reticulated structures are one-of-a-kind type structures wiieeif any
knowledge is known about thieitial geometric imperfections. Sinaaost of these
structures become unstable at a limit point, the imperfect critical load will not be extremely
sensitive to geometric imperfectionsHowever, from aprobabilistic standpoint, the
variation in thecritical load is important when calculating the reliability of the structure. If
a maximumtolerance for thenitial imperfection at anyoint on the structure specified,
the resulting distribution ofthe critical load may beapproximated using probabilistic

methods.

1.1 OBJECTIVES
The objective of thisvork is toinvestigatethe distribution of theritical load, due
to randominitial imperfections, for frame-typstructures thabecome unstable at limit

points. The distribution of theritical load is found by determining the probability that the



critical load Wil be lessthan specified fractions dghe perfectcritical load. The above
objectivemay bebroken into three parts. THiest part concerns the development of a
three-dimensiondbotal Lagrangian beam finite elemetiat wll be used to determine the
critical loadfor the structure. The secomhrt deals with a least squares method for
applying initialimperfections to atructureusingthe mode shapdsom a linear buckling
analysis,and a specifiedolerance for thenaximumallowable imperfection at arnsingle

point on the structure. The thindart addresses th@roblem of approximating the
probability that the structure will become unstable at a load less than a specified fraction of
the perfect critical load.

Chapter 2 contains short review of the referenceshat were mostelpful in
carrying out the above objective. Thigst section deals with existing nonlinegaree-
dimensional beam finite element formulatioagad the secondeals withthe solution of
nonlinear systems aquations. The third section contains the references that were most
useful for reliability and response surface methods. The fourth section conthimsf a
review of some of the more interestingrk dealing with stability ofstructureshaving
initial geometric imperfections.

The third chapter describes in dethié development of thequilibrium equations
for a totalLagrangian formulation of a three-dimensional nonlinear beam finite element
that allows large cross-sectiomatations. Theesulting finite element is2quired for the
calculation ofthe critical loadfor the structure. Chapteradso includes all of the matrices
required for programming of the proposed element.

The fourth chapter deals with solution tbie nonlinear system of equatiotisat
result fromthe finite element formulatiorpresented in Chapter 3. The figsrt of the
chapter contains the incremental form of the equilibrium equations and the second presents

three numerical solution techniques to solve nonlinear systenexja@dtions. The third



part of Chapter £ontains some example problemstést the proposefinite element
formulation and the solution technique for the nonlinear system of equations.

Chapter 5 coverseliability methods and response surface methods. fif$te
portion of Chapter 5 covers the first-order second-moment metidazh is used to
approximate therobability of failurefor a system. The secopart of the chaptedeals
with response surface methods. These methods are used to approximate the performance
or output of asystem using simple polynomial relationshiphe lastpart of Chapter 5
covers thecombineduse of the first-order second-moment method and the response
surface method. The response surface method is used to generate an approximate
expression for the performance ofystem which ighen used by the first-order second-
moment method to calculate the probability of failure.

Chapter 6 describeshe proposedtechnique formodeling initial geometric
imperfections and then demonstratesv the technique is used to calculate the probability
of failure for two different structures. Thefirst part of the chapter presents an
imperfection modeling scheme which is based on a leqsares distribution of the
geometric imperfections using lineduckling modes as imperfection shapes. The
resulting imperfectionsare then used tonodify the nodal coordinates of the perfect
structure. The secongart of the chapter covers thspecific use of the response
surfacef/first-order second-moment methoddalculatingthe probability of failure. The
final part of Chapter 6 demonstrates the propdsetinique ortwo example problems:
Williams' toggle frame and a 24-member star-shaped shallow reticulated cap.

The seventh chapter discusses somthefresults and trendsom the examples
presented in Chapter 6. Also, Chapter 7 discusses sorige @iroblems with the
proposed method and some recommendations for futork in the area oprobabilistic

stability analysis of structures with random initial geometric imperfections.



CHAPTER 2
LITERATURE REVIEW

Investigation of thestability of an imperfect geometrically nonlinear frame-type
structure requires knowledge mdnlinear finite element analyssglution of large systems
of nonlinear equations, reliability methods, and techniques for netdg initial
imperfections. Using each diese tools, it ipossible to examinthe distribution of the

critical load for a structure having random initial geometric imperfections.

2.1 THREE-DIMENSIONAL BEAM FINITE ELEMENTS

Over the years, various researchér@ve propsed different finite element
formulations forthe analysis ofspace-framestructures. Oran (1973, 1976) pointed out
that a large rotation in three-dimensional space cannot be treated as a vector. Oran (1973)
alsonotedsome of thgroblems with formulations from earlierorks andmentionedhat
these formulations wouldnly be good for small displacements because tbke way that
rotations were treatedluring the analysis. Oran (1973) presented a corotational
formulation in whichthe rotations and translations of floents were large, but thbasic
force-displacement relationships for each rmenwere based on conventionbéam-
column theory. This type of method assumes that deformatitein a given load
increment are small.

Significantprogress in the analysis of space-frame structures came when Bathe and

Bolourchi (1979) and Bathe (1982) introduced an updatagrangian and dotal



Lagrangian formulation for a large deformation, larg@tionbeam finite element. Once
again, Bathe and Bolourci{il979) note thedifficulty of the problem due to large
rotations. In both the updated and the total Lagrangian formulations, Bathe and Bolourchi
(1979) use Euleangles to definéhe rotations of theeam and concludéat the updated
formulation is computationally morefficient because less effort is required to calculate
the strain-displacement transformation matrix.

More recent research the formulation of finite elements for the analysis of space-
frames has focused othe use of totalLagrangian formulations with alternative
parametrizations for the large rotations. Huygilibriumequations for large deformation
and largerotation analysis of a three-dimensional bearare presented biovozhilov
(1953). Inthiswork, Novozhilov notes that the cross-sectional rotations are equivalent to
the large rotations of @gid body andsuggests that Eul@nglesmay beused to solve the
problem. As mentioned above, Bathe and Bolourd#79) found that theotal
Lagrangian formulation was vemefficient when combinediith the use of Euleangles.

As an alternativef-ellipaandCirivelli (1991) andCrivelli (1991) introduced &rmulation

that allowedthe use of alternative rotational parameters such as the rotatemtal or

Euler parameters. The results presented by Crivelli (1991) are based on a formulation that
uses Euler parameters, mecific mention is made of a formulatitrat wouldinclude

the rotational vector.Crivelli (1991) concludes thdtis constant curvaturéormulation

using Euler parameters is superior ttee formulation usingthe rotational vector but
provides no numericaksults to suppottis conclusion. Theavork presented bgrivelli

(1991) was later duplicated ligrahimbegovic et a1995)which presented thewersion

of a totalLagrangian formulation usinidpe rotational vectorOne interesting addition is a
rescalingfactor for themagnitude ofthe total rotation. The proposedscalingfactor

cures the problem of non-uniqueness near the total rotation magnitude



2.2 SOLUTION OF NONLINEAR SYSTEMS OF EQUATIONS
Large deformationanalysis of space-framestructures requires solution of a
nonlinear system afquations. Nonlinear systems of equations are most commonly solved
using iterative incremental techniques where small incremental changes in displacement are
found by imposingsmall incremental changes in load dne structure. Theesulting
solutions are used to plot a curve in spadech isreferred to as thequilibrium path for
the structure. Arexcellent review of solution techniquésr nonlinear finite element
analysis is given by Crisfieldnd Shi(1991). Explanation and details of implementation,
for the most popular solution techniques, green by Crisfield(1991). The most
common technique fasolving nonlinear finite elememtguations is the Newton-Raphson
method. The Newton-Raphson method is famous for its rapid convergeiniseknown
to fail at points (limit points) on the equilibrium path where the Jacobian (tangent stiffness)
is singular or nearly singulaBathe and Ciment@1980) talk abousome of thegroblems
with the Newton-Raphson method and present vafiauss ofthe method thainvolve
accelerations or line searches to maintain convergence during the solution process.
More recently, ardength methods have been used to overctmeroblem of
tracing theequilibrium path in the neighborhood bifnit points. The artength methods
are very similar tothe Newton-Raphson method except thatapplied load increment
becomes an additional unknown. A comparative studyaroflength methods was
presented by Clarke and Hancdqd®90). Theoriginal idea behindhe arcength method
was introduced by Riks1072, 1979) andNempner(1971). Theoriginal method
proposed by Riks and Wempngestroyed thesymmetry ofthe finite elementequations
and madethe numerical solutioninefficient. The Riks-Wempner method was later
modified by Crisfield(1981) andRamm (1981) to retain thesymmetry ofthe finite

element equationsBoth researchers proposedo methods formodifying the original



procedure oRiks and Wempner. The first constrairtbé iterative process tiee on a

plane normal to gangent to the equilibrium path. The second, constrained iteration to the
surface of a sphere whose radius is a tangent teghiébrium path. In both cases the
length of the tangent ispecified bythe user. Both methods are usedensively in
current finite elementwork. Iteration on anormal plane isthe easiest solution to
implement,but iteration on a sphere has proven to converge in more cases. A study of the
convergence of iteration on a sphere was presented by Watson and Holzer (1983). The
method was found to have quadratic convergence $orge degree-of-freedom system,

and aslightly lower averageate ofconvergence for 81-dimensional numerical example.

The major problem with iteration on a sphere Imtt the technique gives two
approximations to the unknown loamcrement and in some casdgses notgive a real
solution atall. Crisfield 981, 1991a) proposes a method for choosingctireect
solution fromthe two given approximations. Meek and Tan (1984) and Meek and
Loganathan (1989a,l®xaminedthe problem of imaginansolutions and foundhat this
problem onlyoccurred for certain types of structures amade recommendations on how

to correct thgroblem. Meek and Taf1984) and Meek and Loganathan (1989albd
looked into theproblem of determininghe correctsign of the loadincrement in the
neighborhood oflimit points. The authorsnade some recommendations lbow to
choose the propeaign based on numerical results presented in the above papers. Crisfield
(1991a)has also prapsed aversion ofthe sphericalarclength methodvhich isknown as

the cylindrical arc length method. Many of the same problem&ncountered with the

spherical arc length method also occur when using the cylindrical arc length method.



2.3 RELIABILITY AND RESPONSE SURFACE METHODS

In recent years, the popularity pfobabilistic methods in engineering rggewn.

As a result, booksdve been written that contain information that \wesviously only
available in individual journal publications @onference proceedings. The books by
Thoft-Christensen and Baker (1981) aAdg and Tang (19751984) containdetailed
introductions toreliability theory and demonstrate the useaiability theory forsolving
common engineering problems. The book by Madsen et18986) presents a more
advanced discussion dfliability theory aswvell assome new extensionkdtonly became
availableafter publication otthe booksmentioned above. All three of the text books
listed above contain a historicalccount of currentprobabilistic methods and the
individual references that were most significant in developing these methods.

As with probabilisticmethods,engineeringuse of response surface methods has
increasedsignificantly in recent years. However, the thedsghind response surface
methods ionly available intextbooks on statistics angry few exampleshiat relate to
common engineering problenase available. Some of the more popular referentleat
deal exclusivelwith response methods are th@oks byMyers(1971),Khuri and Cornell
(1987), andvlyers and Montgomery1995). Response surface methods depeadily
on designed experiments. Thene manyreferences that deapecificallywith designed
experimentsput two of the more recent references thiak designed experiments to
response surface methods are Montgomery (1991) and Myers and Montgomery (1995).

Until recently, response surface methods were used alneastusively by
statisticians and system enginedéos process optimization. Over theast decade,
researchers in different branches of engineering have expl@eage of responseirface
methods in conjunction with probabilisticethods. Currengrobabilistic methods require

the gradient of the performance o$fystem to assessliability. Therefore, if arexplicit



expression for the performance ot known the gradient must be approximated
numerically. Numerical approximation tfhe gradient is alifficult task thatrelies on
evaluating system performance at various points ydygical experiments or numerical
simulation. If values of system performanaee difficult to obtain, then thecost of
calculatingthe requiredderivatives Wl be high. In some casdbe cost ofapproximating
the derivativesmay be so high thasolution of theproblem may beimpractical. To
overcome this problem, researchers have used response surface methods to approximate
the performance of aystem in a specificegion of interest. Sincthe responssurface
methodrelies heavily ordesigned experimentt)e error in theapproximate performance
is minimizedand theresulting approximation can be used to calculaggeliability of the
system.

The book by Casciati arfgaravelli(1991)gives a complete historicaccount of
how response surface methods/én been combined with probabilistic methods to assess
the reliability of structural systems. Detailexkampledor the combineduse of response
surface methods and probabilistic methads given by Faravell(1989) andFaravelli
(1992). Separate work @anajreh (1992) and Janajreh et al. (1994) demonstrated the use
of response surface methods to predict stwragelife of rocket motors undevarious
conditions. Thevork byBucher and Borgund (1990) and Brenner and Bucher (1995) has
also played sasignificant part in introducing the use of response surface methods for

calculating system reliability.

2.4 BUCKLING WITH RANDOM INITIAL IMPERFECTIONS
Very early on investigatoraoticed large discrepancies between theoretical and
experimental bucklingpads. These discrepancigerelargely unexplained untthe work

of Koiter (1945). Koiter showed thahavoidablesmallimperfections in actuatructures
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were toblamefor the largedifferences in theoretical and experimem@dults. In his
theory Koiter recognized thredifferent forms of branching: stable symmetric, unstable
symmetric, and asymmetric. By introducing an imperfecparameter, Koiter (1945)
found that the perfect anthperfect systemsere related by a two-thirds powiaw for

the unstable symmetricase and by a parabolic relationship foe asymmetriccase.
Koiter (1945) alsaealized that fothe stablesymmetriccase there was nmperfection
sensitivity. For the case of d&mit point, which was not examined byKoiter, the
imperfection reducethe critical loadlinearly (EI-Naschie 1991). The unstaldgmmetric
and asymmetric caseare often referred to asmperfection sensitive sincemall
imperfections can cause a drastic decreatieeipredictectritical load. Researchelsmave
also discovered that thaitical pointsfor the unstable symmetric and asymmetric cases
degenerate to limit points when imperfections are introduced.

Upon recognizinghe significance of initial mperfections, research turnemvard
developing models of characteristic imperfectidos specific structures and theusing
these imperfections tgain a letter estimate of thecritical load. Researcherguickly
realized that very detailed modelstbg initial imperfectionswere necessary imorder to
duplicate experimental resultsThere have beemany analyticaland numerical studies
(e.g.,Bolotin 1958;Roorda 1972Amazigo 1976;Elishakoff 1979; Brendel andRamm
1980)which assumesimplified forms of actual imperfections. These studissallyuse a
single mode representation of tingperfections in whictihe amplitude is allowed toary
or in some cases iseated as aandom variable. Results from this type of work are useful
in obtainingthe imperfection sensitivity of atructure butsually donot give anaccurate
prediction of the actudbuckling load. Also, over thgrearsmany experimental studies
have beeronducted. In most of the recent studiesinit&al geometric imperfections are

measured venycarefully and are therstored, along with experimental resulter the
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buckling load, in a datdase for future use (Arbocz and Hol 1991his database is
structured so thainformation for shells of similartype and manufacturingrocess are
grouped together.Since experimental methodse costly andime consuming, imecent
years alot of emphasis has been placed on predicting buckling loads osimegrical
methods. Thdinite elementmethod in conjunction with characteristic imperfections
determined from actual measurements has provenetd results comparable to those
from experimental investigations. Alsaitempts have beemade toproducerandom
imperfections thayield lower bounds on thbucklingload or to just solve fathe worst-
case imperfection directly. Numerical studies hprk@ven to be the mosiffective and
least costly technique for predictifckling loads if araccurate representation of the

initial imperfections is included in the analysis.

2.4.1 Imperfection Modeling

In the design ofstructures, mosspecifications indicate maximumamplitude of
initial geometric imperfectiorbut not thecorresponding imperfectiopattern. Two
methods of modeling imperfectioasewidely used. The first isleterministic modeling of
imperfections andhe second treats thmperfections as randoffiields. Using different
variations of these methods, researchers have d@ento numericallypredict buckling
loads that are in good agreement with experimental values.

Deterministic modeling of imperfections is widelysed in conjunctionwith
commercialstructuralanalysiscodes to predidbucklingloads. The most commdarm
of deterministic modelingises imperfectiorata takerfrom actualtest specimens of a
type similar tothe structure being analyzed. As mentioned earlier, measured imperfections
of structures are now stored in mmperfectiondatabank andare grouped according to

structure typeand manufacturingrocess. The measurgdperfectionsare usually made
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ready foranalysis or design using a modalFaurier series representati(fishakoff and
Arbocz 1982;Elishakoff et al.1987; Ben-Haim andlishakoff 1990; Arbocz and Hol
1991; Chryssanthopoulos et al. 1991a,b; lkeda et al. 1996). mbdal amplitudes or
coefficients ofthe Fourierseriesare then chosen so as to match the measiatdof a
similar structure. Ingeneral this technigugelds goodresults as long as the shape and
manufacturingprocess of the structuteeing analyze@re similar tothose used tobtain
the imperfection data (Arbocz and Hol 1991).

Deterministic imperfectionare alsaapplied to astructure in thdorm of a typical
shape which is based qmevious experienceFor example, imperfections of spherical
shellsare oftermodeled as a dimple @lat spot of varying magnitude at the crown. Good
agreement with experimental results has been obtained (Blachut aletlyGL990;
Galletly and Blachut 1991), but fageneralstructures where goodunderstanding of the
initial imperfections does not exist, this technigue may or may not produce good results.

Another form of deterministic molieg yields imperfections ithe form of the
buckling modes of atructure (Morris 1991).Often thefirst bucklingmode is chosen as
the imperfectionpattern and results are obtained for variaoglitudes. This method is
useful in determininghe imperfection sensitivity of atructure butmay or may not
produce results that agreath experimentadata. Workhas been done ithe area of
directly predictingthe mostcritical imperfection moddor a structure(Nushino and
Hartono 1989; IkedandMurota 1990a,b;Hartonoand Nishinol991; Murotaand lkeda
1991). This technique searchés the mode shape ofgivenstructure which reduces the
critical load mostrapidly. Results from analyses thade a critical imperfection mode
yield a lower bound on the buckling loads obtained from other types of analyses.

Bolotin (1958) was thdirst to recognize thathe geometriamperfectionsfor a

structure could be represented as ranfields by usingandom amplitudemultiplied by
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deterministic spatial functions. Wittihe values ofthe imperfections given as random
variables, a probability density function or cumulative distribution funcfamn the
bucklingload can be obtained and used to asses®libbility of the structure. In recent
studies, measured imperfections frgastexperimentsare onceagainrepresented by a
Fourier series whose coefficierdse now randomariables (Elishakoff anfrbocz 1982;
Elishakoff et al1987; Arbocz and Hol 1991; Chryssanthopoulos et al. 1991a,b; Ikeda and
Murota 1991; lkedaand Murota 1993; lkeda eal. 196). Some studies hawso
producedexcellent results by generatitige necessary statistical momentstoé Fourier
coefficients using a nearly white noise approximation the imperfections (Lindberg
1988). The strong point dhis technique is that knowledge thfe exactimperfection
shape is not necessary.

In most of the literature to date, researchmscludethat in order toachieve
reasonable estimates for the actbatkling loads ofstructures theanalyst must use
accurate representations afitial geometric imperfections (Arbocz and Hol 1991;
Elishakoff et al.1987; Chryssanthopoulos et al. 1991a). Most studiesatedhat use of
experimentally measured imperfections frpast tests osimilar structures must be used
in order toobtain accurat@nperfection models. Attempts tiypasshe use of measured
imperfections haveroducedreasonable results. Techniquéstt usewhite noise, or
attempt tosolve for acritical imperfectionpatterndirectly deserve &t of attentionsince
it is oftenimpractical or impossible to find agenerate measured imperfectidata for

most structures.

2.4.2 Use of Imperfections

Once an appropriatenperfection model has been determirtée,critical buckling

load for agivenstructure isusuallycalculated by some form of numericaéthod. Some
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of the more popular methods are the finite element method, the boundary element method,
or thefinite differencemethod. From a survey of recent literat(eqy., Elishakoff et al.

1987; lkeda and/iurota 1990a; Arbocand Hol 1991; Gketly and Blachut 1991k iaw

and Yang 1991a,b) tHenite elementmethod appears to be the most popular of the three
previously mentioned methods. Tite elementtodes used in most studies rarfigen
specialtycodes withonly oneelement type to more gene@mmercialcodes withmany
element types. Ashort review of two common methods of introducing geometric
imperfections into a numerical analysis is given below.

One suggested method wicluding geometric imperfections ithrough the use
imperfect strain displacement relationships (Liaw and Ya@§la,b). The imperfect
strain displacement relationshipee used talerive stiffness matricesat directly include
theinitial geometric imperfections. In developitige stiffness matricegheimperfections
are interpolated in theame way as displacements &attnitial imperfectionsover an
elementmay beexpressed in terms of nodal values. This is very convesiig@most of
the availableimperfection data is obtained by taking measurements at discrete points. This
method also allowsfficient use of themean centered second-moment perturbation
technique (Liaw and Yang 1991a,b)Jsing this technique a random variable can be
expressed as theum of its mean value and a random variable wélo mean and a
standard deviation equal to thattb€ original random variableThe expansion foeach
random variable ishen substituted into thinite element formulatiorand the various
order terms are collected and the resulting equations are solved.

Another proposedechnique suggestaovingthe nodal coordinates of the perfect
structure by ammount equal to the specified imperfection and then analyzing the structure
(Morris 1991). Analysis usinghis method is very simple when doing deterministork,

but without theexplicit appearance of themperfections inthe governing equations
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probabilistic analyses can bwmore difficult. However, when using commercidinite
element programs this technigomy beunavoidable since accesstte actual computer
code is ofterlimited. When using commercial finite elem@nbgrams, successiwvalues
of imperfectionsmay have to begenerated by an external subroutwvlich in turn
modifiesthe coordinates and resumes dmalysis. The same external subroutine may also
create dink between thdinite elementcodeand areliability analysiscodewhich would
constantly update thiaitial imperfections by either Bonte Carlo technique or tHist-
order second-moment method.

Much of the current researttas beemevoted tocoupling finite elemenanalysis
with either Monte Carlo simulation methods ofirst-order second-momentliability
methods. The geometric imperfections as well as the material properties and cross-section
properties are treated emndom variables. The result of these type of analyses is usually a
probability density function or cumulative distribution functiontioé bucklingload. The
techniques mentioned aboaee bothuseful in representing imperfections in a probabilistic
analysis. The use of imperfect strain displacement relationshipsnaovng of nodal

coordinates are directly applicable to finite element based reliability methods.
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CHAPTER 3
EQUILIBRIUM EQUATIONS

Nonlinear analysis of solidsnd structures igsually carriedout byusing either a
total Lagrangian approach or ampdatedLagrangian approach. Intatal Lagrangian
formulation, all quantities such as displacements, stresses, strains, cross-sectional
properties, andnaterialproperties are referred to thtial configuration of thestructure.

In an updatedLagrangian formulationall of the above quantities are referred to a
deformed intermediate configuration of theucture. A third approachvhich is rarely
used in structurabnalysis, is an Eulerian formulation. In an Eulerian formulation, all
guantities are referred to the current deformed configuration of the structure.

Largedisplacement analysis gpace-framestructures requires the cross-sectional
rotation of each meber to be modeled as a langgationwhich isnot a vectoquantity.
Early formulations(Oran 1973; Oran anBassimali1l976; Bathe and Bolourchi 1979)
used either corotational or updatedgrangian formulations. Ilboth formulations, a
coordinatesystem isattached to eacklement and allowed to move withe element
during deformation. The orientation of tisplacedcoordinatesystemfor eachelement
is given byEuler angles, andll of the quantities in thenalysisare referred to the
displacedcoordinate systemMore recenformulations (Crivellil991;FellipaandCrivelli
1991; Ibrahimbegovic et al995)make use othe totalLagrangian approach which all
guantities in theanalysisare referred to thmitial configuration of thestructure. In these

formulations, various forms dahe largerotation matrix are used tamodel the cross-
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sectionalrotation for eachelement. Two of the more commonlyused forms for the

analysis of large rotations are Euler parameters and the Euler axis/angle parametrization.

3.1 PRELIMINARIES

In Fig. 3.1, a general body is shown iniaitial reference configuration O and in a
final deformed configuration 2. Thamitial position of a point,P , igiven by the
coordinates X; and the final position of the same point is given by the coordinates

QXi = UXZ' + QUZ' (31)

The left superscripts atfie above coordinates indicate the configuration where point  is
located. The termsw; represent tdésplacement of pointP  fronthe initial
configuration to thefinal configuration. For the remainder of thiswork, the left
superscripts orany displacementjuantities represent displacement fromthe initial
configuration to the configuration given by the left superscript.

If the displacementsu; iEq. 3.1 are written iterms of theoriginal coordinates
’X; then thestrain-displacement relationships for a body undergoing Bisggacements

are

o 1 [5(2%') 0Cuy) | OCux) 5(2%)] 32)

0 = 5 GUX] * 8UXZ' * 8UXZ' GUX]

The quantitiege;; are known as the Green-Lagratrgén-displacement relationships. In
short-hand notation the above expression reduces to

1
i = 5 {5%7 + i Uk 5%.1] (3.3

The left subscript on the displacement gradients indicate that the derivatives are taken with

respect to theriginal coordinates of poinP . Thieft superscript orfe;; indicates the
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Figure 3.1 Large deformation of a body from the initial configuration, 0, to the final

configuration, 2.
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configuration of the strained body and tb# subscript indicatethe configuration where
the strains are measured. Therefore, the Green-Lagrange strains are the strains in the
body at configuration but measured in theriginal configuration 0. A very important
feature of the Green-Lagrang#rain-displacement relationshipstisat thecomponents
remain zero under rigid body motion (Bathe 1982).

If the displacements;; in Eq. 3.1 are written in terms of the deformed coordinates
’X; then theresulting strain-displacement relationships for a body undergdaing

displacements are

1
2 —_— —_ 2 . . 2 o . 2 . 2 .
2Eij = 9 Wi j T JUji + YUk YUk j (3.4

The quantitieSE;; are known &sllerian orAlmansistrains (Fung 1965). Th&mansi
strains are the strains in the body at configuration 2 that are measured with respect to the
deformed coordinateSX; . In cases whereléftesuperscripts and subscripts match, the
left subscript isusuallydropped andE;; iabbreviated a¥%;; . The Almansi strain tensor
is rarely used irthe analysis of solidand structures because the componentgiges in
terms of the instantaneous or deformed position of the body.

If the displacement gradientre assumed to be smabpth the Green-Lagrange
and Almansi strains reduce to theame familiar form which is known asCauchy's
infinitesimal strain tensor. Ararbitrary functionf(*X;) is requireDym and Shames
1973) to show that

O(uwi)  I(u;)

Using the chain rule results in
af_afasz_af 9 T, )
0°X,  9°X;0°X;  0°X,;0°X, R (38
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The above expression reduces to

of [5.. 8(%«)] of

0°X; 0°X; | 0°X; (37

where¢;; is the Kronecker delta whosglue equal®ne ifi equalg andero if is not
equal to 5. Sincethe displacement gradientsre small compared to one, the

termd(*u;) /0 "X; may be neglected leaving

of of
aUX' = aQX" (38)
or
0 0

This result indicates thahere is no longeany distinguishable differendeetween the
undeformed and deformed coordinates dorall displacement gradients. The resulting
expression for the components of Cauchy's infinitesimal strain tensor is

1
‘e = 2 |:2Ui,j + 2Uj¢] (3.10

Note that thdeft subscripts have beahopped because there is diference inthe °X;
and’X; coordinate systems.

The stresses in the deformed body, measured in the deformed configuration, are
known as Cauchy or Euleriaa’nressesgnj (Fung 1965Ysingthe notatiorfrom above,
’1;; is abbreviated a%;; . As the body deforms, its volume, surface area, density, stresses,
and strains change continuously (Reddy 1988). The 2nd Piola-Kirchhoff stresses are often
used in nonlinear analysis of solids and structures and are dendt¢d by . As indicated by
the left superscript and subscrighe 2ndPiola-Kirchhoff stresses are stresses in the

deformed body measured in the undeformed reference configuration. The Cauchy stresses
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are related to the 2nd Piola-Kirchhoff stresses by the expression (Bathe 1982)

2
27’2-]' = Ug in,m gSmn iX]’n (311)
Since the mass of the body is conserved,

/VQp d’X.d*Xod X3 :/ 0 d°X1d"X5d " X3 (3.12
2 [)V

wherep is the mssper unitvolume ofthe body in the configuratiogiven bythe left
superscript. The relationship between the differential change in coordinates is

d’X1d°Xod X5 = det(3J)d "X1d "Xod "X; (3.13

where

X1 X X
det(ij) = 5X211 3X212 §X273 (314
X51 X3 X33

Therefore, the change in mass density can be calculated by
"o ="p det((J]), (3.15

and therelationship forthe Cauchy stresses in termstbe 2ndPiola-Kirchhoff stresses

becomes

1
2
Tij

17 de(3)

2Xim oSmn :Xjn (3.16

Thelinear portions of thé&imansistrains,’E;; , ar@nergetically conjugate to the

ij s
Cauchystresses;r;; , and the Green-Lagrange straips, enargetically conjugate to
the 2ndPiola-Kirchhoffstresses;S;; (Bathe 1982). Therefore, the sen@rgy for the

deformed body in Fig. 3.1 in terms of the Cauchy stresses and Almansi strains is
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2Uv = QXVQTU QEZ']' d2V (317)

The strain energy for the deformed body in terms of Rida-Kirchhoff stresses and

Green-Lagrange strains is

gU:;Aj%kwwv (3.18

The equations oéquilibriumfor the deformed body iRig. 3.1 can be developed
usingthe principle of virtualwork. Virtual work is defined aghe work done byctual
forces indisplacingthe body througtvirtual displacementshat are consistenwith the
geometric constraints imposed thre body (Reddy 1988). Thginciple of virtualwork
states that &ody is inequilibrium if andonly if the virtual work of all forces is zero for
any virtual displacemeriHolzer 1985). For the deformed body in Fig. 3.1 the principle of
virtual work is

§U +6Wg =0 (3.19

whereéU is the virtual work due to internal forces, which is the first variation of the strain
energy, anddWy is theirtual work due to theexternal forces. Using Eq. 3.17 the

equilibrium equation in terms of the Cauchy stresses and Almansi strains is
/ 1, O(CEy) d°V — / 2f; 6(2u;) d°V
QV QV
—/ %; 6(%u;) d*S =0 (3.20
29

wheref; are body forces arid are forces acting on the surface of the body. The
equilibrium equation in terms of the 2n@iola-Kirchhoff stresses and Green-Lagrange

strains is
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/ iSij 6(56”) dUV —/ in 6(21@) d2V
oy 2y

—/ %, 6(%u;) d°S = 0 (3.21)
’S

Solutions to botHorms of the equilibrium equations is, in general, vedyfficult.
To solvethefirst form of the equilibriumequation, thdinal deformed configuration must
be known in order tperform the required integration. The second form of the equilibrium
equation is a nonlinear function thfe displacement gradients and requires special solution

techniques.

3.2 DISPLACEMENT FUNCTIONS

A three-dimensional beam is shown in Fig. 3.Phe coordinatesystemfor the
member shown ithe °X; system which is assumed to be aligned with the principal axes of
the member. The orientation dfie °X; system is given bthe unit vectorsn; that are
parallel withthe °X; axes.Assuming that a typicatross-sectional plane remains planar
during bending assures thaty point P in theplane remainshe same distance from the
centroid of theplane, pointO , during bendinglhis means that each cross-sectional plane
along thelength ofthe beam moves as a rigid body during bending. No assumption as to
whether or not each plane remains normal the centroidalaxis during bending
automatically allows shear deformation to be included in the analysis.

Figure 3.3 shows dypical cross-sectional planecated at some poii@ along the
centroidal axis ofthemember. Aset ofright-handed Cartesian axas is attachetthigd
plane and is allowed to move with the plane during deformation. Also shown in Fig. 3.3 is

the pointP whose location within the plane is given by the vector
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Figure 3.2 Coordinate systems for a three-dimensional beam.
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Figure 3.3 Typical cross-sectional plane for a three-dimensional beam.
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0,
Ny

UrP/() - [O OxQ Ox3] On2 - UXZ:/O (h (322)
0,

n3

Before deformation the position of poiRt giwen by

UrP - Uro + t P/O (323)

The vector’r, is equal to

0)(1
ro=10 (3.24
0
where °X; is the location of poif® along the centroidek ofthe member. After
deformation theplane translates andtates as agid body to a new position. Thesctor
X, , rotates along with the plane to its new location given by the vector
zb1
Moo =10 %o %x3]|Dy| = “XFT,/O b (3.25
zb3
where?b; are the unit vectors thdeéfine the orientation of theotatedcross-section.
Note that the components of the vector, , inghstemattached to thelane,remain
the same before andfter deformation due to the fact that fhlanerotates as aigid
body. The new position of poil® is equal to the translated position of @@his the
projection of the vectofr,, along theoriginal °X; axes. The projection of the vector
’r 0 1S found by taking into account the difference in the orientation of the unit végtors
and the unit vector$;.  The relationship betwéen °and is
b =*R% (3.26

The 3x 3 matrix’R containghe directioncosines betweethe original axes and the
rotatedaxes. The matrixR is often referred tothe rotationmatrix or the direction

cosine matrix. Using this relationship, the vector, can be written as
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Too =% R (3.27)

P/O

The projection ofr,,, along theX; axegjigen bythe components of the above vector

as

pL, = UXIT,/OQR, (3.28
or

Pro ="RT X, (3.29
The final position of poinf is

=%+ U, +RT %, (3.30

The vector’r, wagjiven byEqg. 3.24and the vectofu, contains the components of the
translation of pointD which areonly a function ofthe °X; coordinate. Thdisplacement
of point P is found by subtracting theitial position of P fromthe final position of P

which results in

u="u,+ (*RT - I)%(P/O (3.31)
In expanded form, the displacement functions are:

up = o, ("X1) + %29 Ro1 (°X1) + %23°R31 (X)) (3.32

Uy = "o, ("X1) + 2o PR (°X1) — 1) + %23°R30("Xy) (3.33

2uz = *u,, (°X1) + %29 Rz ("X1) + %r3(PRa3("Xy) — 1) (3.39

3.3 ROTATION MATRICES
In the previous section, it was shown that fotheee-dimensional beam the

displacement of a poinf® can be describedheytranslation andgid bodyrotation of
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the cross-sectiongllane containinghe pointP . Asmentioned abovethe rigid body
rotation of the cross-sectional plane is defined by the rotation matrix.
The rotationmatrix, or direction cosine matrix, has several important properties
(Junkins and Turner 1986):
1.) Theinverse equals transposproperty

QR—l — QRT

which is characteristic of orthogonal matrices. An orthogonal
matrix has the important property that the dot product between a
column/row and itself is equal to 1, while the dot product between a
column/row and another column/row is equal to zero.

2.) TheDet[’R] = £1,and more specificallpet[’R] = + 1 if right-
handed coordinate systems are used.

3.) The rotation matrixR has only one real eigenvallle , and the one
eigenvalue is equal te- 1 if right-handed coordinate systems are
used.

4.) Successive rotations

2bZRQC
c=Ryd
d:Roon

from the initial to the final configuration can be written as one
composite rotation

Zb — 2R On

where the matrixR is
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R = RyR1Ry

and the matrice® ¢ d ,afd contain the unit vedlorss d ,
and’n; that orient the body at the various configurations. Spce
R1, andR, are orthogonal, the matfiR  is also orthogonal, and if
Ry, Ry, andR, follow (1.) and (2.) théR will also follow

(1.) and (2.).

One of the most popular methods for characterizingategtion of arigid body
involvesthe use of three sequet rotations. Theaesulting angles ofotation arecalled
Euler angles anthe corresponding rotatiomatrix takes ondifferent forms depending
upon how theanglesaredefined and in whiclsequence the rotations are performed. The
major disadvantage in using Euler angles itotal Lagrangian formulation of a three-
dimensional beam finite element is tihab of the anglesare notreferenced to theriginal
axes of the body ostructurebeing analyzed. The lasttwo anglesrepresent rotations
aboutaxes that aralreadyrotatedfrom the original axes.Therefore, it isvery difficult to
compute thevirtual work of momentsabout theoriginal axes othe body acting through
these anglesOr, in other words, thenoments have no physical meanbegause they are
referred to intermediate axes that amg aligned withthe original principal axes of the
cross-section of the member.

The generalrotation of arigid body can be described using Euler's Principal
Rotation Theorem.This theorem states that the rotation db@ly about a pointan be
accomplished by a singleotation through gorincipal angle®s about aprincipal axis
located by the unit vectda  (Junkins and Turner 1986). The resulting rotation matrix is

R = cos(’p) | + (1 — cos(®p)) *a’al — sin(*¢) *a (3.35

The matrix’a is often referred to &se spin ofthe vector’a which in expanded form is
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given by

0 - 2@3 2@2
2& = 2@3 0 — 2@1 (336)
— 2ay aq 0

The matrix’a has the property that

q = & (3.37)

Another interesting parametrization @ involvesthe introduction of a rotation
vector which is equal to
‘61
‘0 ="0'a=|"¢ (3.39
“¢3
One important point that must be emphasized is tfhatrotation vector is not a true
vector in thesense that the components of tlwation vectorfrom two or more
successiveotations cannot be added form one compositeotation( Hughes 1986).
However, the rotation vector dodsllow one important property; if a rotatiot»  is
multiplied by scalar to giva’¢ then the vectof¢ becomes<’¢ (Hughes 168 The

resultingrotationmatrix for the three variable form of the Euler axis/angle parametrization

is
R =1+ + b3’} ¢ (3.39
where
%y = — *¢| 'sin|*¢], (3.40
2
%y = 2 |2¢|‘23m2|2¢|, (3.41)

and thematrix 2¢ isthe spin ofthe rotation vectot¢ This parametrization only requires
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three quantities to descriltiee rotationwhile the previousdefinition required four. The
major disadvantages tfie three parameter characterization are giggt ambiguities arise
once the bodyasrotated past 36@egrees and thaumerical difficulties mayrise when
trying to evaluate|2q§|_1 for small values of’¢ . Problems with sign ambiguities or
singularitiesare common toall three parameteiorms ofthe rotationmatrix. In practice
the problem with sign ambiguities isot aproblem wherfR is used ime analysis of a
three-dimensional beamf-or thefinite element formulation sign ambiguitiggould arise
only when an individual elememtates moreéhan 360 degreedNumerical difficulties for
small values of’¢ are alsonot aproblem sincg’¢| can beompared to themallest
numberthe computer W recognize to prevent overfloerrorswhen computing terms
involving || .

There are otheuseful forms othe rotation matrix. The rotation matrices for some
of the more important parametrizations, such as Euler parameters, Euler-Rodriquez
parameters, and the directioosines themselveare given by Hughe$1986). A couple
of the more exotidorms of the rotationmatrix, such agayley-Klein parameters and
guarternions, are outlined Bynkins and Tirner (1986). In spite of theroblems with
sign ambiguitythe three parameter Eulexiglangle parametrizationilwbe used in the
development of the three-dimensional beam finite element.

Whenused in rotationatlynamicsthe time behavior othe rotationmatrix *R is
usuallyrequired. For use in thdevelopment of a three-dimensional beam finite element,
the behavior of’R alonghe length of each element is neede@herefore, the rotation
matrix used irthe finite element formulation W be afunction ofthe coordinate along the
length of the membetX; , rather than time.

As in dynamicsthe first derivative ofthe rotationmatrix is required. For the

three-dimensional bearthe derivative vill be taken with respect tbX; rather thame.
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In dynamicsthe derivative is computed by introducing an angular veloeigtor, *w ,
whose components are angwatocitiesabout the three coordinate axes. For the three-
dimensional beanthe vector’w contains the curvatuasout the three coordinadxes
(Crivelli 1991). The expression for the first derivative of the rotation matrix is

R = — %R (3.42

where’® is thespin ofthe vector’w . The prime in the above equation represents the first
derivative with respect to the coordinadfé;

For the three paramettarm of the Euler ais/anglerepresentation of the rotation
matrix the angular velocityector is related to therst derivative ofthe rotationangles,

’¢;, about the three coordinate axes by the expression

2&):(I+2622$+QC32$2$)3¢/:2D3¢/ (3_43)
where

ey = —2 |2¢|_2sin2|2¢| (3.44)

Pey = 6| (|*¢| — sin|*9)) (3.45

Once’w is known, thevalues can besubstituted into the expression ffR’”  and the

resulting matrix will then be a function of orfly;  ajad

3.4 STRAIN-DISPLACEMENT RELATIONSHIPS
From Section 3.1, thegeneral expressions fothe Green-Lagrange strain-

displacement relationships are

1
ofij = 9 oWij t Wi t Uk gUk,j (3-46)
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For athree-dimensional bearthe *u; represent thdisplacement of poin? . Substituting
the assumed displacement functiofsys. 3.32-3.34, into thexpression for the Green-
Lagrange strains giveshe following strain-displacement relationshigsr a three-

dimensional beam:

]_ 2 2 2
2 . 2 1 2 1 2 1
oc11 = oum +5 92 (o Ug, T (Uo, + 0U03)

0 2/ 2 /2 !/ ! 21/
+ L2 (1+0 01) R21 0 020 22+0 030" v23

+0$3 (1+2 / )2R31+2 / 2R32+2 / QRéS

0 01 0 020 0 030

+ "2 3 {QRZM 31+ R R'y + iR'3: }

0,.2

0 2
Ty 2 3 2 2 2
+2{§R’21 R, QR’] : {§R§1+§R§2+§R§3] (3.47

%egg = (2322 - 1) + ; 2R3 4 (2322 - 1)2 Ry (3.48
eg = (2333 . 1) + ; CR2 4R 4 (2333 _ 1)2_ (3.49

5712 = 25612 = (1 + 2! )2R2 + 2! R22+ u! QRzg

0701 0702 0703

+ "y | *Ro1 )Ry 4+ *Ryy o Riy + Rz R

+ "3 | *Ryy JR31 + "Ryt Ry + "Ry Ris (3.50
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2 2 2/ 2 2.1 2 2.1 2
i3 = 22213 = (1+ 2w, )* Ryt + tul), *Rp + ‘i, “Rag

0

0 2 2/ 2 2/ 2 2/
+ T9 R310R21+ R320R22+ R330R23

+ '3 23313351 + QRsziRéz + 2333535)3 (3.5)

y23 = 2223 = “Ra1"Ra1+ *R27’ Ry + *Ros”Rag (3.52

Assuming that eacbross-sectional plane moves as a rigid bogpliesthat 3622 ,
’e33, and’v,3 should be equal rero. Thestrain component&,, arfd;;  deal with the
change in height antthe change in width of the cross-sectiaile 3723 deals with the in-
planedistortion of the cross-sectionglane. When taking intaccount the orthogonality
of the rotatiormatrix °R ,the expressions fqe,s ¢33 , afighs  reduceeéso asshown
below.

Examiningthe expression foﬁem anecallingthat, due to therthogonality of
QR,

R3, +'R3, + 'R% =1, (3.53
the expression fge,,  reduces to

e = (Roa— 1) + ; {2 9 2322] , (3.54
or

2e99 = 0 (3.55

The expression foﬁegg can also be shown to egqaab byusingthe sameprocedure

along with the dot product of the third row’& with itself.
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productbetween the second and third rows'Rf

The expression for the shear stré’ugg

is found to expra bytaking the dot

Témultingdot product iequal to

3723 and is also equal to zero, because of the orthogonalfi§y of

where:

The remaining strains may be written in a more compact form as:

2 2— 0 2 0 2 0.22 0.22
£11 = 11+ To koo + X3 K33+ Ty Voo + X3 V33

+ 25 23 Jvag (3.56
M2 = Y1g + "Talp1a 4 "3l (3.57
s = 13+ Tajwiz + 3w (3.58
9 9 4 1
vy =ty + 5 (Rl + Sl + F (3.59
okos = (14 Jup ) iRy + up,eRoo + fup i Rog (3.60
ohas = (14 dup, ) o Ry + juo,oRap + pugg o Ry (3.61
g = 5| R+ R + R (3.62
s = ; _iRéi + oRhy + iR;’fg_ (3.63
23 = Ro Ry + Ry Ry + (R'g; (3.64
V1o = (1+ 2ul) ) Roy + 2ul, *Rop + 2ul, "Ry (3.65
iz = (14 jug, ) *Ray + jup, " Rao + jug, " Ray (3.66
w12 = “Ra1 Ry + "R Ry, + Ry Ry (3.67)
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3013 =Ry iRél + QRzziRéz + QstiRé:a (3.68

Ywig = QR3liR§1 + QRsziRéz + QRssiRég (3.69

0

dwig = 233133:/31 + 2332332/32 + 23333333 (3.70

0

Once againthe primes inthe above equations representfilg derivative with respect to
the coordinatéX; .
The shear strain?m arthg may befurther reduced by oncagain considering
the orthogonality of’R . The expression Emz can be rewritten as
d [1 d [1
2 22 212 212
_ b = |= 3.71
Up12 dUXl |:2( R21 + R22 + RB):| dUXl |:2:| ( )
which, due to the orthogonality ofR , is equal trero. By asimilar process, the
expression fOﬁwlg is also found to bero. Therefore, thequations for the shear strains

reduce to

2 = Y12+ T3pei3 (3.72
3713 = 3?13 + 0$2§w12 (373)

The expression ij’plg is found to be equal to the opposite of the expressjcmzfor by
examining the derivative of the dot product between the second and third colufRns of

d
i |Rer*Rs + "Ry Ry + "Ry R | = 0 (3.74
1

Expanding the above equation results in

(2321 "Ry + Ry Riy + QstiRéza) =
— (QRsliRél + ’Ryy2Ryy + 23333353), (3.79
or
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p13 = — lwio (3.76

The resulting expressions for the shear strains are:

2 = (Y12 + T3g0i3 (3.77)
13 = V13— Tagpi3 (3.78

The expression foﬁen may be simplified byintroducing thenondimensional

displacements:
2
= (3.79
2U
QU,; = 022 (3.80
2U
and the nondimensional coordinates:
0
X1
= op (3.82
0
T
0 = 0N (3.83
0 ng,
V= (3.84

In the above expressiony, is fleagth ofthe member,’s ighe width of the cross-
section, and’h is théneight of the cross-section. Substituting thendimensional

guantities into the expression for,  gives
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0.0 r
nh . .
+ (1+ Jup ) iRYy + Jusy iRy + ui ! /23}

Uwob [ 2 2 2 2 2/ ]
+ (1 N 01) Ry, + " Ry + Ju " R33

OL I 0 020 07030
U”Ujff K Ry 2Ry + Ry Rly + "Ry Ry
. ﬁR;,i FIRG R (289

where theprimesnow denotederivatives withrespect to th@ondimensionatoordinate

’¢. For atypical shear deformable membtire quantitiesh/°L antb/°L ilvbe much

less than one. This wil make the terms containing ("»/°L)*, (v/°L)? , and
(°n/°L) ("b/"L) negligible whercompared to the rest of the terms in the above equation.
As a result, the termiavolving "z3, 23, and "z, z3 are neglected in tffieal expression

for Zeq;.

To summarizethe final strain-displacement relationships fbe three-dimensional

beam are:
se11 = pE11 + "Topkan + "3lKas (3.86
2 = Y12+ T3gei3 (3.87)
Y13 = V13— Tagpi3 (3.88
where:
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- 1 2 2 2
teun = 2l + o (Sl + 2l + ) (3.89

2
SRag = (1+ 5“21)33121 + tup, iRy + tuy,. i Rog (3.90
ohss = (L4 fup, ) SRy + fug, o Rip + Jug, o Ry (3.93)
Fip = (1+ tul ) *Roy + 2uy,*Roo+ Juj, "R (3.92
i3 = (14 Jul, )’ Ra1 + Jul, *Rap + 2ul, "R (3.93
iPlS =Ry iRél + QRzziRéz + QstiRég (3.99

3.5 EQUILIBRIUM EQUATIONS
The expression for thaternal virtualwork for anindividual three-dimensional

beam element is

5(U) = / {3511 5(1n) +2 2515 6(21s)

[)V
+ 2 5513 6(3613):| a'v, (393
or
§(2U) :/ {3511 6(5e11) + 5512 6(5m2)
[)V
+ 2513 6(3713)] 4’V (3.96)

Assumingthe material remains linear elastiglooke'slaw for a three-dimensionabeam
reduces to:

5511 =F 3611 (397)
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3512 =G g’)flg (398)
oS13 = G {713 (3.99
Substituting the stress-strain relationships into Eq. 3.96 gives
s(U) = / {E 0e116(Ge11) + G im12 6(Gr12)
[)V
+ G g’)flg 6(5’)/13)] dUV (310Q

Using the strain-displacemnt relationships, Eqs.86&-3.88, andintegrating over the

volume of the beam element, the first variation of the strain energy becomes
°L
s(3U) = / l {E[iﬁl + "zy JKkoo + 23 3%33]
0 A
X [6(3511) + U(EQ 6(3%22) + 0(E3 6(3/%33)]
+ G[i%z + "z 3013]
X [6(01a) + w5 6 (p1s)]

+ G[i%g — 'y 3013]

X [6(513) — "z 6(3013)] }dUA d'X, (3.101

Recognizing that
/ 'y d"A = "I, (3.102

A
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2
[ S dA =,

and

"J =", + L
the above expression reduces to
L
§(20) :/0 {E“A 2116 (Ce11) + B I, 2k226 (ko)
+ EL k336 (Cks3) + G "As 2715 6(712)
G Ay 1 6 () + GO pr 5(ons) }d0X1
The first variation of the strain components is:
6(enn) = (1+ Jug, ) (Gus, ) + Guo, 8 (i) + 006 Gy
8(3n2) = JR216 (s, ) + §R2206 (Jus,) + SR (Jus,)
+ (14 0up, )6 (CRar) + (e, 6 (R52)
+ oy 5( Rys)
8(yzs) = JR316 (s, ) + oRi2 6 (Jus,) + S R336 (Jus,)
+ (L4 Jup, )6 (GRA1) + Jue, 6(3R32)

0 Upg 6( R33)

(3.103

(3.104

(3.105

(3.106

(3.107)

(3.108
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6((712) = eR216 (Jur, ) + sRa220 (fur,) + R 26 (fur,)

0703

+ (1 + 2ul, )6 (CR21) + tul,, 6 (ER22)

001 002

+ ottg, 8 ($Rzs) (3.109
§(21s) = JRs16 (Culy) + 2R326 (Cul,) + 2Rs36 (Pul,,)
+ (14 Jup, )6 (fR31) + jue,d (FRaa)

0701 0702
+ §U;36(§R33) (311Q
8(p1s) = SRy ((Ra1) + (R3:6 ((R2) + i R336 ((R )
+ 'Ry 6(3Ry1) + R0 (CRSy) + SR 56 (CRSs) (3.111
Substituting the above quantities into the expression for the internal virtual work results in
°L
) = [ B ) + B, ey
0
+ E OIZ 3/%33 iRél + G OAS 3§123R21
+G Ay 3?1331%31] 8 (us,)
+[BU A, + B L 3niBhy + B L 2Ry
+ G4 F1p2 Ry + G A By R 6 ()
+[BU A, + B L doniBhy + B L 2Ry

0703

+ G4 Byt Ry + G A By R 6 ()
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+ :G *As 719 (1+juy,) +G°J §P13§R§1]5(3R21)

+ :G "Ag 1 2y, + GOJ iplgiRgz] 5(*Ra)
[ 20, + GO iR 8 ()
60 A5y (14 2,) | 5(Ra)

+ [0 By 2, |6 CRso)

+ [0 By 2, |6 (CRss)

B (1t 2, [5G RY)

B0, 2, | 6 )

+ B8, 2, | 6 )

+ :E OIZ 3/%33 (1 + QU, ) + G OJ §p13§R21] 6(§Rél)

+ _E OIZ 3%3351/02 + G UJ 30133322] 6(§Réz)

I\

+ _E OI 3%3351/03 + G UJ 30133323] 6(§Ré3) }doXl (3113

The above expression may be rewritten in a more compact form as
°L
5(U) = / 5 (U)X, (3.113
0

where
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s(U) = 6<§3T) R (3.114

1x21/ 21x1

The vector iR contains theoefficients of the first variations of the unknown
displacement gradientytation parameters, afidst derivative ofthe rotation parameters

found in the internal virtual work. The vectof’3) s a partitioned vector that is given by

6(;3") = {6(@’?) 6(2F3T) 5(§B’T) } (3.115

Each of the components of the rotatioatrix is a function o&ll threeangles of
rotation ¢, . Therefore, thérst variation of each component will in general have three

terms. For a typical component of the rotation matrix the first variation is given by

2 _ & a(QRij) 2
6(Ryj) = ; o) 6( o) (3.116

The vector form of thdirst variation ofthe rotationmatrix may beexpressed in terms of

the angles of rotation as

6(28) = D9F5926<2¢) (3.117)

9x1 3x1

Details concerninghe calculation ofthe matrix DR0O2 are dealt with irAppendix A. The
first variation of the derivatives of the rotations is a function of the rotation angles and the

first derivative of the rotation angles. From Appendix A the resulting expression is

()
()

With 6(*R) and é6(;R’) definedthe partitioned vector ofariational quantitiesnay be

(3.118

expressed as
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‘ 3x3 ‘
5(23) — |0 DRO2 0 5(2 ) (3.119
2,/ 9x3 9x3 92 1

In a more compact form the above relationship becomes

6(2?3) = DELTR1 6<;u1) (3.120
The integrand of the internal energy, Eq. 3.114, becomes

s(GU) =6 (ﬁuT) DELTR1" °R (3.123)

1x9 21 x1

Multiplying the transpose dPELTR1 arﬁ(R yields a 9x 1 vector of internal forces that
correspond to the nine degrees of freedom for the three-dimensional beam.

The formulation ofthe three-dimensional beam finite elemarguiresthat the
continuous quantitie%u’o 0, arjqb’ be expressed in terms of displacements at discrete
points along thelength of the member. For the problem at hand, @wo-noded
isoparametric formulation has been chosen. The resulting formulation requires the
coordinates of the mdrer as well aghe displacements to be written in terms of the

coordinates and displacementdlat ends of the mdper by usinghe linear interpolation

functions
Ny = ;(1 g (3.122
and
1
Ny, = 5(1 + %) (3.123

Thevariable’¢ isthe natura(nondimensionalyoordinate along the length of the beam, as
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shown in Fig. 3.4. The coordinate of any point along the length of the member is given as

°X1(%) = N1(°€)° X1, + No(%€)° X, (3.124

where"X;, andX;, are the locations of the ends of a typical element. The chaige in

with respect td¢ is

dC°X) 1
d(Ué-; = 5(0X12 - UXll)l (3123
but
"L =Xy, — 'X, (3.126

Therefore, the change fX;  with respectgo is

d"X)) ‘L
() 2

(3.127

which is only a function of the original length of the member.
The displacement functionare interpolatedusing the same method as the
coordinates:
*ug, = N1 "o, + No *uq,, (3.128
20; = N1 2¢i, + No %, (3.129
The first derivative of the transverse displacements is equal to
d(QUm) d(QUm) d(of)

2 2
- = 5 Nuoe "o, + 57 Nooe "u 3.13
d(°X,) ~ d(e) d(°Xy) L Men Top e o, (3.130

In a similar manner, the first derivative of the rotations is

d(’¢;) 2 2
a0xy) — op e G+ ap Mo 0 (3133

Storing the nodal displacements in a ve@br the vector
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Oxl
2-node finite element
0x

3

Parent element

Figure 3.4 Two-node three-dimensional beam finite element and the corresponding
parentlement.

48



6(@) = SHPMAT 6( e ) (3.132

9x1 12 x1

The matrixSHPMAT is often referred to #we interpolatiommatrix and is given by the

partitioned matrix

SHPMAT = | N, (3.133

9 x12 3x12
N(zy

3 x12

where the matriceN,, Ny ,af,  are shownin Fig. 3.5.
Introducing the discretizedisplacements intthe internal virtualwork results in
the expression

L
5(;U) = 5(§dT) /U (SHBMATT DELTR1” ﬁn) d"X; (3.134

1x12 21 x1

The integralover the coordinatéX; must be changed tonéegral over the natural
coordinaté’¢ . From Eq. 3.127
'L
d’X, = 5 d’¢ (3.135

Therefore,

"L T T
6(2U)=6<§dT) /_ (SHBMAT DELTR1 ﬁn) d’¢  (3.139

0
1x12 2 1 21 x1

The resulting integral is evaluated usinggi@rpoint Gauss quadrature. Integratieads
to a 12x 1 vector oihternalforces,’f; , that correspond to the nodal degredéseflom

for the element. The internal virtual work is further simplified to

6(2U) = 5(§dT) 2, (3.137

1x12/12x1
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Figure 3.5 Matricesl, N4, andNy from the partitioned matSHPMAT
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The external virtualvork due toapplied forces wagiven inEq. 3.21. If the
external forces arenly applied athe nodes, and if the direction of the loads does not

change during deformation, then the external virtual work reduces to

S(Wg) = 5(§dT) fp (3.138

1x12/ 12x1

where the vectoffz contains tle&ternal forces corresponding to the nodal degrees of
freedom of the element.
Equilibrium for the three-dimensional beam finite element is given by

§(U) = 6((Wr) =0 (3.139
In general,

6<§dT) £0 (3.140

1x12

so that the equilibrium condition reduces to

2o, = % (3.141)

12 x1 12 x1

The resultingequilibrium equation is a nonlinear function thfe nodanspIacemem;sf)d,

and special methods must be used to solve the problem.
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CHAPTER 4
INCREMENTAL EQUILIBRIUM EQUATIONS

The result of the total Lagrangian formulation presented in Chapter 3 was a system
of equations that araonlinear inthe unknown nodatlisplacements. Solution of the
nonlinear equations issually accomplished with numerical techniques that are incremental
and iterative in natureAll of these types afiumericalmethods require that thnlinear
system of equations beritten in terms ofsmall incremental changes dfie unknown
displacements.For thethree-dimensional beanthe equilibrium equations presented in
Chapter 3 must be written in ancremental form and then linearized time resulting
unknown incremental displacements. Onhe incremental equilibriumequations are
found, any one of anumber of available numericablutionsmay beused to solve the

resulting nonlinear system of equations.

4.1 INCREMENTAL DISPLACEMENT FUNCTIONS

Generation of thancremental form ofthe equilibrium equationsbegins with
replacing the displacements from configuration O to configuration 2 by incremental
displacements whichonsist of displacements from configuration O to a new intermediate
configuration 1, andsmall incremental displacements from configuration 1the final
configuration 2. The deformable body shown in Bd. isreillustrated in Fig4.1 with
the additional intermediate configuration 1. Configuration 1 tire incremental

formulation replaces configuration 2 ithe previous chapter in the sendwtt the
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2P(2X,,2X5,2X,)

2V,2A

1p(1X,,2X,, 1X,)

1V, 1A

Figure 4.1 Large deformation of a body from the initial configuration, 0, to an
intermediate configuration, 1, and a small deformation from configuration,
1, to the final configuration, 2.
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displacements from configuration O to configuratiorargé alsoarbitrarily large. The

incremental form of the displacement functions is

U="'u+u (4.1)
where

= "u, + ("R = 1)%,, (4.2)
and

u=u,+R"%,, (4.3)

The vector'u contains tharbitrarily large displacements from configuration O to
configuration 1 and thevector u contains theincremental displacements from
configuration 1 to configuration 2. As in the previous chapter difglacements and
rotations takeplace betweethe initial configuration O and the configuratiomdicated by
the left superscript. Themall incremental displacements armtations arandicated by

the absence of a left superscript.

4.2 INCREMENTAL STRAIN-DISPLACEMENT RELATIONSHIPS
The strain due to thdisplacement from configuration O to configuration 2 was

given by the Green-Lagrange strain-displacement relationship

1
2 — 2. . 2, .. 2 .2 .
oSij 9 oWi,j T oWji T (Uk,i oUk,j (4- 4)

As in Chapter 3, théeft subscript indicates théthe derivativesare taken with respect to

the initial coordinate axes of themember. The incremental form @f;;  is found by
substituting thencremental displacementsgq. 4.1, into th&sreen-Lagrange relationships
above. The resulting incremental strains are written in the form

2

o€ij = o€ij T ofij (4.5)
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where

1
ofij = 9 oWij T oUjii + Uk oUk,j (4- 6)
and
.._1 Lo ,.+1 . .+1 . N . . (47)
ofij = 9 oUij T oUji T oUk,j oUk,i T (Uk,i ¢Uk,j T oUk,i oUk,j -

Because thancremental displacemenase small, the term u;. ; juy ; is neglected and;
reduces to

1
—_— —_ . . o . 1 . . 1 . .
ofij = 9 oWij Tt g Wji Tt oUk,j o Ukyi T oUk,i oUk,j (4.8)

One noteworthy point is the appearance of the t@wonsainingthe displacements from
configuration O to configuration 1 jg;; . These terms represemitzl displacement
effect due to the displacement from O to 1.

For thethree-dimensional bearthe Green-Lagrange straigs; 2,12, @jéhs
were given inthe previous chapter. These strain components weresiimpfhified and
written in a more compact form with components that weregil@m inChapter 3. The

incremental form of the strain components is given by:

ign = ;511 + 11 (4.9
3%22 = ;%22 + K22 (4.10)
i/isza = 3%33 + K33 (4.17)
M2 = oY1z + T2 (4.12
s = V13 + V13 (4.13
P13 = oP13 + P13 (4.14)
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The strains from configuration O to configuration 1 hahe same form as the
corresponding strains from configuration 0 to configuration 2, found in Chapter 3. The
incremental portions of the strains are given by:

£l = (1 + ;ugl)ou’m + [IJ’U,/OQ oUo, + ;u’m oUo, (4.15

_1p/ / 1/ / 1/ /
0&22 — 0R21 Uuol + 0 220“’02 + 0 230U03

+ (14 o) R + g, Rip + g1, Ry (4.16

001 030

_ 1p/ / 1/ / 1/ /
0&33 - 0R31 Uuol + 0R320U02 + 0R33Uu03

+ (1 + )URg1 + sub, R + cub, Ris (4.17)

0701 020 030

— 1 / 1 / 1 /
0 V12 = 0R21 oUo, + 0R220U02 + ORBUUO.z

+ (1+ Jul ) Rat + jub, R + ul, Rz (4.18)

001 030

— _ 1 / 1 / 1 /
0713 - 0R31 OUOL + 0R320U02 + 0R330U03

+ (L4 guo,) yRat + guo, (R + ju, (Ras (4.19
Up13 = (I)Rél ORZI + éRéQORZQ + éRésORB
+ R Ry + (R Ry + (R Ry (4.20

The above expressions can be written in matrix form as

£ =EPSM 3 (4.21)

The vectore igiven by
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oE11
ofv22
0fv33

e =|"_ : 4.2
Goxl 0712 ( 2)
U§13
oP13

and the vectof3 is the incremental form of the partitioned vébt(which is given by

Uo
3Ix1
— | R
2(1]1?1 o 9:1/ (423)
R
9x1
The matrixEPSM is a partitioned matrix which can be written as
EPSM = [EFSMA EFSMB  ERSMC] (4.2

The matriceEPSMA EPSMB , anHPSMC are shown in Fig. 4.2.

4.3 INCREMENTAL EQUILIBRIUM EQUATIONS
Equilibrium for the three-dimensional beam finite elemevds given inChapter 3
as

sCU) —6(Wg) =0 (4.25)

0

The linearized incremental form dhe equilibrium equation results from expanding the
aboveequilibrium equation about the knowntermediate configuration 1 in terms of the
small incremental displacements from configuration 1 to configuration 2. The resulting
incremental equilibrium equation is

s(U)+6(U) —6(\Wg) —6(Wg) =0 (4.26)

Since configuration 1 is a known equilibrium configuration the two terms
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Figure 4.2 MatriceEPSMA EPSMB , arBPSMC from the partitioned matrix
EPSM.



§(U) =0 (4.27)
and

§(Wg) =0 (4.28)
The resulting incremental equilibrium equation is

§(,U) —6(We) =0 (4.29

Both of the terms(,U) and6(,Wg) arelinear functions othe unknownincremental
displacements.

The expression for the internal virtual work was given in Chapter 3 as
°L
5(°U) = / 5 (U)X, (4.30
0

where

§(U) = 6<§3T) R (4.3

1x21/ 21x1

The definitions ofthe vectorsﬁR an@?; were algoven inChapter 3. Théncremental
form of the internal virtualwork is found by expandingbout the knowrequilibrium
configuration 1. The resulting incremental expressamthe integrand of theternal

virtual work is

T T
s = [s(31) +o(21)| (1= + %) (432
Since the displacements at configuration 1 are known, the term

6(:3") =0 (4.33

The expanded incremental formédf/) ~ becomes
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§(CU) = 5(03T) ( "R+ OR) , (4.34

1x21 21 x1 21 x1

which will be computed in two parts given by:

§(2Uy) = 6(03T) 'R (4.35)

1x21 21 x1
and

§(Up) = 6(03T) R (4.36)

1x21/ 21x1

The vectors (,37) is a partitioned vector that has the same form as Eq. 4.23;

(3 = (o) o(=) o(R7)] 437

Details of the calculation ofthe vectorform of the incrementalrotations isgiven in
Appendix B. The resulting expression B®r is

R =RTMO1 ¢ (4.39)

9x1 h 3x1

where thematrix RTMO1 is a nonlinear function ofhe rotations to the known
intermediate configuration 1 and thector ¢ contains théncrementalrotationsfrom

configuration 1 to configuration 2. Using Eq. 4.88R) giien by

5(R ) =RTMO1 6( ¢ ) (4.39)

9%1 3x1

A complete explanation ofhe expansion and linearization d@he derivative of the
incrementalotationmatrix, R’, is given in Appendix CThe resulting expression for the

vector form ofUR’ is

——F
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where the matriceRPR1 anBPR2 adefined byEgs. C.38 and C.39.Since the
matricesRPR1 andRPR2 arenly functions ofthe rotations to the known configuration

1, the first variation ofR’ becomes
) (4.42)

Using Egs. 4.39 and 4.41 the vector

6l U
I 0 0 (%&?)

3x3

5<03): 0 RTMOL 0 ||4(4) |, (4.42
e 0 RPR1 RPR2

9x3 9x3 /

()

3 x

or in a more compact form as

5( 03) = DELTR2 6<Uu) (4.43

21 x1 9x1

As in Chapter 3, the continuouscremental displacemengse interpolatedising linear
interpolation functions. Usinghe interpolationmatrix defined byEq. 3.133, the

incremental displacements may be expressed in terms of nodal displacements as

6<Uu) = SHPMAT 6( d ) (4.44)

9x1 12 x1

The vectors(,3) becomes

5( 03) = DELTR2 SHPMAT 6(9 ) (4.45

21 x1

The resulting expression f6f 1/4) s straightforwaintethe vector'R has the

same form as the vectfR ~ from Chapter 3. Using Eq. 4(4&,,) is
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21 x1

5(Ua) =6 (UdT) SHPMAT' DELTR2" R (4.46)

The expression faf (Uz) involvesthe vector, R which is calculated itwo parts: R 4

andURB. The first portion 0372 is calculated using the incremental stfains

RSAROL
[Ra= | RSABOL| & (4.47
21 x1 RSZAX\?O]_ X

where the matriceRSAA0L RSABO1 , an@SACO01 are shown in Fig. 4.3. In a more
compact form

R4 =RSA0L ¢ (4.48)
X 6x1

21 x1

Using Eq. 4.21 the above expression becomes

R4 =RSA01 EGF:§MU3 (4.49

21 x1 21 x1

The expression foJRB can be written directly in terms of the vgbtor as

Rp=RSBO1 3 (4.50)

21 % 1 22 o

The matrixRSBOL1 is a partitioned matrix given by

RSBAO1

3 x21
RSB01= | RSBBO1 (4.51)
21 x 21 9 x21
RSBCO1

9 x21

where thesub-matrixRSBAOL is shown in Fig. 4.4, atite sub-matricelRSBB01 and

RSBCO1lare shown in Fig. 4.5. The expressionf0f/z) ~ becomes

1x21

§(Up) = 6(03T) (RSA01 EPSM+ RSB0} 3 (4.52
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Figure 4.3 MatriceRSAAO01 RSABO1 , anRSACO01 from the partitioned matrix
RSAOL



RSBA01 =
21 x3

Figure 4.4 MatribxRSBAOL from the partitioned matikSB01
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Figure 4.5 MatriceRSBB01 an&SBCO01 from the partitioned matREB01
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The vector 3 has the same forméds3)  , Eq. 4.45, and is given by
03 = DEQIT;I;RZ SHIQDXI\{lAT 12&11 (4.53

21 x1 2

Using Egs. 4.46, 4.52and4.53, theintegrand of thencremental internal virtual
work 6 (U) is
§( M) = 6<UdT) SHPMAT" DELTR2" | 'R

1x12 21 x1

2x1

+ (R$AO01 EPSM-+ RSBO) DELTR2 SHPMAT, d] (4.54

Substituting the above expression into the internal virtual work gives

UL +1
5(,U) = 6<UdT) {2/_ (SHBMATT DELTR2" ;R) d"¢

1x12 1 21 x1

6 x21

UL +1
+ — / {SHPMATT DELTR2” (RSA01 EPSM
2 1 12x9 9 x 21 21 x 6

+RSBO1) DELTR2 SHQFZIMIAT] d d“f} (4.55

21 x 21 21 x ¢ 19 % 1

The resulting integralare evaluatedsing single point gausgiadrature, as in Chapter 3.
Integration leads towo 12x 1vectors ofinternal forcesf; angf; . The expression for

the internal virtual work can be reduced to

5(,U) = 6<UdT) (4t + f1) (4.56)

1x12 12 x1 12 x1

The external virtuavork can also be expanded in terms of tieplacements at
configuration 1 and the incremental displacements from configuration 1 to configuration 2.

The incremental form of((Wg) s
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§(2Wg) = {6(§di) + 6(?%)} (Lfﬁ +£§1) (4.57)

The term §(}d”) is equal taero since the intermediate configuration is known.

Therefore, the incremental external virtual work is

§(Wg) =6 (UdT) fp +6 (UdT)fE (4.58)

1x12/ 12x1 1x12 /12x1

where'fz is the external force at the intermediate configuration flzand smigllchange
in the external force.
The incrementalequilibrium condition for the three-dimensional bearfinite

element was given by Eq. 4.29. Substituting Egs. 4.56 and 4.58 into 4.29 gives

(@) i gt t) =0 (459
In generab(,d”) is not equal to zero and equilibrium is given by

o+ fr = e —fp =0 (4.60
The term

(l)fI _ le =0 (461)

12 x1 12 x1

is theequilibriumcondition at configuration 1 which &ready known to exist. Therefore,
the incremental equilibrium equation reduces to

Jfr —fg =0 (4.62)

12 %1 12 x1

where the vectoyf; is taken from Eq. 4.55 as
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21 x 6 6 x 21

UL +1
f, = { / {SHBMATTDELQ'IX'ZI}SZT (RSAOl EPSM

0
+RSBO1) DELTR2 SHQFZIMIAT] d 5}18(31 (4.63)
The above integral results ina 42 12 mal,jibgq , that is often referredhe tangent
stiffness matrix, and is a nonlinear function tbé displacements andbtations to the
intermediate configuration 1. The incremental equilibrium equation can be further reduced

to

fp = ko d, (4.64

12x1 12x 1212 x 1

which means thafor a smallchange in external forces thecremental displacementd

may be found.

4.4 LOCAL TO GLOBAL TRANSFORMATION

Thus far, thdocal axes,'X; , of eacfinite element have beeronsidered to be
aligned withthe global axes?X; , ofhe entire structure. Igeneral each element will be
arbitrarily oriented with respect to the global axes as shown in Fig. 4.6. The orientation of
the unit vectors’n, along tHecal axes is related tthe orientation of the unit vectors,
’n?, along theglobal axes by a transformation matffix that has the same properties as the
rotation matrix covered in Chapter 3. The rows of the transformatiatrix T contain
the directioncosines of each local axis witlespect to the threglobal axes. The
relationship betweetn;, arid; is

', =T 'n* (4.65)
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Figure 4.6 Global orientation of a three-dimensional finite element.



The development of for aglement:, with nodes ardd at either &edins by

specifying a unitvector along the centroidadxis of the member. The univector ’n,

along’X; is
0n, — (Ule _UX*LI) on* (UX;;, _UXkQQ) 0ok
1= or, 1 + or, n,
ut Tio
("X, —'X5)
3 3a *
- : 07 n; (4.66)
T3

where"L is the original length of the member which is given by

'L = {(UXL, B UX*LI)Q + (UXQ,, B 0X2a)2

0, =X, (4.67

To completely describthe orientation of thelementthe globalcoordinates of a poir®@
that lies inthelocal "X; X, plane must be specified the user. A vectaalong the’X;
axis is found by takinghe cross produdietween the unitector’n; and a vectdrom a

to @, rg/. . The resulting cross product is

'y x rgre = [T ("X, — "Xy ) = Tis ("X, = °X, ) |'n;
(0, =) T )]

Q

) e, ) e

To form the unit vectofn; along tH&;  axis, a consfamt must be defined as
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+ [T (", - X ) — T (°X, - UXla)]Q} (4.69)

The unit vectofns is then equal to

[T12 (UX;Q - U‘X;a) N T13 (UX*QQ B UXQ(Z)] 0y

ng = n

(4.70

A vector along the’X, axis is found by takinghe cross product dh; and’n; which
gives
g x Ny = (TsoTiz — Ta3T12)’n] + (T3 T — T3 Tis)'ng
+ (T31T1g — T32T11) "N (4.72)
The unit vectorn, is found by first defining the constant which is equal to

D2 = {(T32T13 — Ta3Tio)? + (TssToy — T3y Tus)?

1
2

+ (T51Ti2 — T32T11)2} (4.72)
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The unit vectofn, igiven by

TyoTis — TagT TysTiy — TarT
o, — (T32T13 — T33T12) e 4 (T33T11 — T31Tq3) oy

Toy Tao
(T31T12 — T32T11)
n 4.73
Tas

The local element displacemerdse stored in 1% 1 vectord  whosst
superscripts and subscripts depend on the configuration under consideration. The vector
d contains the nodalisplacements dioth thea and ends efementn . At each end of
the elementthere aresix degrees of freedom that consist of three translations and three
rotations. The vectod may bepartitioned into four 3« 1 vectors that contain the
translations and rotations at each end of the element.

To demonstrate the use of the transformatmatrix considethe transformation
of the translations at the ende@émentn . Théhree translations astored ina 3« 1

vectord,, . The local nodal translations can be expanded and written as

D, =dg n (4.74)

The same displacement vector along the global axes is

D(lt = qg; Un* (4.75)

The matrix°n is related tdahe matrix °n* by the transformatiommatrix (Eq. 4.65).

Substituting Eq. 4.75 into Eq. 4.65 gives

D, =d], T 'n* (4.76)

Comparing Egs. 4.75 and 4.76, the global displacement \@ggtorgiversby

0o, = T7d,, (4.77)
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Each of the four % 1 vectors displacements thatre contained in the 2 1 vectbr
are transformed in theame way. The resulting transformation matrix is a partitioned

12 x 12 matrix given by

J, 0 0 O
o IR O 4.78
12x12 0 0 3'[3 0 ( . )
O 0O o0 T
3x3
Therefore, the total global displacement vector for element is
q=T"d (4.79)

In a similar manner, the global internal forces may be found using the same transformation,

F=T"f (4.80)

The tangenstiffness matrix;kT for a specific elementay betransformedusing
the transformation matrix]"~ from above. The relationship betwetre incremental
internal forces and the incremental displacements was given by Eq. 4.63 as

fr=kr d (4.81)

12x1 12x12 12 x1

Substituting Egs. 4.79 and 4.80 into Eqg. 4.81 gives

o * Tl *
Fr=Lo ko Lo f) (4.82
The matrix product
=T "%, T 4.83
?w?; TTi2x12 ﬂ(T 12 x 12 ( : )

12 x 12

results in the global tangent stiffness for element
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4.5 NUMERICAL SOLUTION TECHNIQUES

Most numerical schemes to solve nonlinear systemsgoftions arencremental
iterative processes that use a seriedindar solutions to approximate thenlinear
solution. The linear solutions arehseved by expandinthe nonlinear equations in terms
of smallincremental values dhe unknowns about some known solution. For problems in
structural mechanicsthe objective of the solution process is to trace thenlinear
equilibrium path for a given structure.

The equilibriumpath for a structure gefined bythe external load on the structure
and the correspondinmdjsplacements necessary to maintain equilibrium at a given level of
the external load. The noddikplacements of structure are stored in/d x 1 vectpr
while the external nodal forces aséored in alV x 1 vecto® . In bottasesN is the
number of nodal degrees of freedoncluded inthe model of the structure. In the
solution of mosinonlinearstructural problemshe external load iapplied in fractions or
increments ofthe total external load. The external loagkctor isincremented by
multiplying Q by ascalar\ which is equal to a numbertween 0 and 1For eachoad
increment an iterativprocess is applie@¢onsisting of a series of linear analyses which are
solved for the unknowulisplacements required toaintain equilibrium otthe structure
under the specified increment of the external load.

The mostbasic nonlinear solution methodse load control techniqueswhich a
specified increment of load is applied tfwe structureand theresulting displacements
required tomaintain equilibriumare calculated. The most popular load corteohnique
is the Newton-Raphson method. More sophisticated soltgidmiquedreat both the
incremental loads and displacements as unknowiiseianalysis. These methods are
referred to as arlength methods. Arc length methods usspecified length of aector

that is tangent to thequilibrium path at some known point. The most popular of the arc
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length methodsire derivedrom the Riks-Wempner method. Each methditfers in the
way that iterationsire constrainewithin a specifiedoad increment. The first ahe two
methods used in thisork is calledthe Riks-Wempner method on a normal plane and the
second ixalledthe Riks-Wempner method on a sphere. The discudsidmoth methods
follows the fundamental work of Crisfield (1981) and Ramm (1981).

Detalls forthe use of each of the three methat=ntioned abovare presented in
thefollowing sections. For each method, figures are given that demonstrate the procedure
for a single degree-of-freedom model. In the development of each method, the
displacement quantitiesilivbe treated agyeneralN x 1 vectorswhich containthe rodal

displacements for the entire structure.

4.5.1 Newton-Raphson Method

The Newton-Raphson method begins at a known point on the equilibrium path as
shown in Fig. 4.7. An incrememt,)\; , thie totalexternal load is applied to the structure
making the total load increment equal to

Air1 = A + AN (4.84)

The first iteration consists of finding the incremental displacenaemts by solving

Kz, AQ; = (Aiy1 — Ai) Q =Fp, (4.85)
NxN Nx1 h)\,—df\‘ x 1 N x1
AA;

whereKr. is the tangerstiffness matrix apoint i, which is assembled usirteq. 4.83.
Once the displacements);,  are known the total displacements are given by

Qi = 0 + AQ; (4.86)

The totaldisplacementg),, are then used to calculate tindernal forcevector F;, which

was defined byEqg. 3.136. The difference betweetine external loads);;;Q , and the
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Figure 4.7 Newton-Raphson method for a single degree-of-freedom system.
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internalforces,F;, , form avectorFp, which isknown as the residual force vector. The
presence of the rekial vectorFp, indicates thathe structure is not iaquilibriumunder
the currentcombination of external load;Q and internal forégs calculated from the
displacements,

Subsequent iterations seek theremental displacements that catise residual
vectorFp, tobecome approximatelgero for thegiven externaload \;Q . Actually, the
first iteration also seeks tminimize the out of balance force§ . which is equal to the
userspecifiedA);Q . The incremental displacementsy;, for subsequent iterations are

found from the expression

Kpaa; = (M@ —Fu) (487

The total displacements are updated by

Qi+1 = Qi + AQy (4.88

The residual forces @t+ 1 are then computed and ifebglting residuavector is not
close tozero then another iteration gerformed untilthe residual force vector is

approximately zero.

4.5.2 Riks-Wempner Method on a Normal Plane
Iteration begins atpoint: on the loadlisplacement curve amtoceeds as shown
in Fig. 4.8. A partitioned vectdr which istangent to thequilibrium path at point is

defined as

AQ;

N x1

t; =
AN

(4.89

where the scalak)\; is thiecremental change theapplied load at , anthe vectorAg;
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Figure 4.8 Riks-Wempner method on a normal plane for a single degree-of-freedom
system.
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contains the incremental displacements found from solving

NxN Nx1 N x1

The matrixK,, isthe global tangentstiffness matrix at  which is assembled using Eq.
4.83. Theobjective ofthe method is to iterate along a normal to the tangectort;

until the next equilibrium point is found. From Fig. 4.8 the nomal is defined by

AQy

N x1

— A)g

(4.91)

where the vectonq, is a vector of unknodisplacements fromk  tthe point where a
tangent att intersects with tm®rmalvectorn;. Thescalara), is an unknown load
increment from\;, down to the intersection between and the tangent fronk point

Constrainingthe iterative process torermal plane requires th#te dot product
betweert; and; be equal to zero or

t;-n;, =0 (492)

Substituting Egs. 4.89 and 4.91 into Eqg. 4.92 gives
AQT AQy, — ANAN, =0 (4.93
The vectorAq;, is then split into two parts (Crisfield 1981; Ramm 1981)

Adi = AgyT — ANAQ, (4.94)

The vectorA)\kAqi resulterom the similar triangles whichare also shown inig. 4.8.

Introducing an intermediate quantityg,  the similar triangles relationship is

AN 1
Aqk Aqk
or
AQ; = AN,AQE (4.96)
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The vectorAqi results from the expression

Kz, AQy = AAQ (4.97)

NxN Nx1

where

AN =1, (4.98

andK 7, is the tangent stiffnesskat . The vem:pf is computed by the expression

Ky A, = Fp, (4.99

NxN Nx1 N x1

where the vectoFy, is a residual vector that containdifierence inthe externally
applied forces anthe internal forces ak . Introducintpe expression foaq, into the
constraint equation (Eq. 4.93) gives

Aq! (Ag)’ — ANAGE) — ANAN =0 (4.100

Expanding the above equation and solvingXay. yields
Aq” agl!

AN, =
" (aqfag) +an)

(4.101)

With A); known, the external load increment may be updated by the expression

A1 = A\ + AN (4102)

and the total displacementsiat- 1  may be found as
Qr+1 = O + AQg (4.103
or

Qer1 = Oi + (AQ) — ANAQY) (4.104

As shown in Fig. 4.9, th&iks-Wempner methodisually begins with auser
specified load incrememt )\, which is a fraction othe totalexternal load applied to the

structure. The loathcrementa)\, is used to calculdtee displacementvectorAq, and
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Figure 4.9 First iteration for the Riks-Wempner method.
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thelengthAs, of the initial tangent vectty . The displacemanis are calculated using

the similar triangle relationship also shown in Fig. 4.9. The vadgr is computed from
% _ Aqtot
Ay T 1 (4.105

or
A, = ANAQ,,, (4.106

The vectorAq, , is computed from the expression

KTO Aq tot )‘\QXl (4107)

NxN Nx1

where the scalak is equal éme. With the vectong, known, thength oft, can be

calculated by

to -to] = Ay = /AN + Ag ! aq, (4.108

or using Eq. 4.106

ASy = AN, \/ 1+Aq.,Aq,, (4.109

The scalans, is often referred to as thelangth alonghe equilibriumpath. The arc

length for subsequent iterations is usually held constant or is scaled using the relationship

1
I es 2
AS; :ASi_1< Id ) (4.110
1—1

The scalaas;_; is the current arc length,; is nibenber of iterations required for
convergence to the curreeguilibriumpoint, andl,., is the desiradumber of iterations
which is usually chosen as a snralimber approximately equal to 3. maximum value

for AS; isusually specified as

ASpur = 2 ASy (4.11)
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The value ofAs; is used tcompute thevalue ofA)\; which igequired to begin

the next iteration (Eq. 4.84). The valueoX; is computed from Eq. 4.109 as

=45 (4.112
\/1 Aqtoiﬁ Aqtoi&)
The vector(Aq, ,), is computed from the relationship
5@ (Agtot)i = )‘\QXl (4.113

where\ is equal to one.

The sign ambiguity inEq. 4.112results fromthe fact that the quantitys; is
simply a length(or magnitude) along the path whose direction is uncertain. coirect
signfor AJ, is found by looking at the projection of thgpothetical tangentectort; on
theinitial tangent vector for the previous iteratibn,; (ABAQUS 1987). The partitioned
tangent vectot; was given by Eg. 4.89. Using the expression

AQ; = A (Aqtot)i’ (4.114

the vectort; becomes

= [Mi (AAAqtot)i] (4.115

]

The vectort; is termetypothetical becausthe correctsign of A), isnot yet known.
The projection of; om;_; Is

ti -t =aN(ag,,)7 AQi + AN AN (4.116

which reduces to

t; - ti_1 = AN [(Aqtot) AQi—1 + A)\ ] (4113

If the projection oft; ort; ; is negative then the slope ofeatilibrium path at: is

negative and the load parametex, should be negatittasoheexternal load on the
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structure is reducedhereby producing an unloading effect.thé projection of, ob;_;
is positive then the slope of tequilibriumpath at; is positive andl\.  should be positive

indicating that the external load is increasing.

4.5.3 Riks-Wempner Method on a Sphere
As with Riks-Wempner on a normal plane, iteration beginsdbfining a
partitioned tangent vectdr and continues as shown irdE@. The tangent vector is

equal to

AQ;

N x1

t; =
AN

(4.118

where theincremental change in load); @ven byEqg. 4.112and theincremental
displacementsaq; are given by Eq. 4.114. The basic difference betweethe Riks-
Wempner method on a normal plane &né Riks-Wempner method on a sphere is the

way in whichiterations are constrained forgavenload increment. The Riks-Wempner
method on a sphere constrains the iterative process to a sphere centered at point with a
radius that is equal to the magnitude$; , of the tangector t; . The constraint
equation may be written as

[,y =AS? (4.119

The vectorr;, locates the position of the poirdm point: , where a tangent from point

intersects with the sphere. The veator giv@n by

| AQg; + AQy

The constraint equation becomes

(AN — AN)® + AG] AQ; + 2 AQ] AGy, + AQy AQG, = AS? (4.121)
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Figure 4.10 Riks-Wempner method on a sphere for a single degree-of-freedom
system.
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The termAS? is equal to

AS? =t;-t; = AN + Aq) AQ; (4.122

Substituting the expression fArS? into the constraint equatiorsianplifying results in

a constraint equation of the form

AN] — 2ANAN; + 24097 AQ; + AQLAQ, =0 (4.123

whereA ), is the unknowimcremental change in load and|;, the vector ofunknown
incremental displacements. Just as in the method of Riks-Wempner on a normal plane, the
unknown displacementsq; ill\kbe broken intotwo parts. Theesulting expression for
AQy is (Eq. 4.94)

AQy, = Ad;| — ANAQ] (4.124
The displacementaq! are foundusingEq. 4.97and thedisplacementaq! are found

usingEq. 4.99. Substituting the expression fag,  irEm. 4.123results in a constraint

equation which is a function of onty)\,,

(1 + Aq;ZTAq{,) AN} —2 (A)\i +Aq,7Aql + Aq;:,TAqf) AN,
+ (2 Ag;TAql + aqglf TAq;:f ) =0 (4.125

The unknown value oA\, may befound by solvinghe above quadratic equatianich
has two rootsfA);), anth\;),
For subsequent iterations a mgeneral form othe constraint equation is given
by
Mt Thpr = ASS =1, 1 (4.126

where the vector,, was given by Eq. 4.120 and the vegter is equal to
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AQ; + AQy + AQr41

Tl = | AN — AN, — ANt (4.127

The unknown incremental displacements.,; are once again broken into two parts as in

Eq. 4.124, which results in

Ayt = AG | — AN 1Ay, (4.128
The resulting expression for the unknown load incremet, | IS

T I 2
(1 + AquAqu) AN

-2 {(A)\i — AN\;) + (AqiT + AQkT)Aq£+1

T II
+ AquAqu] ANt

T
+ 20007 + saT)aqll, + aqfl{aqll, ] =0 4.129

Solution of this equation results in the two ro@s\;+1), axl; +1),

The correctvalue ofA\,+1 is found by looking a@he value ofthe cosine of the
angle betweeithe vectorr, and tentative vectars ; which are formedusingthe two
roots (AX+1); and (AXz+1), (Crisfield 199). The cosine of thangle betweem; and

M1 S

Mg Tyt
0= 4.13
cos AS% ( 0

The vectors;, and;,; amiven byEqgs. 4.120 and 4.127. The tentatimeremental
displacemenvectorsAq,,; are computadsingEq. 4.128and A\, .; which is equal to

one of the two root§A\;+1); OfAM,+1), . The resulting expression for the costhe of is
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(AQ; + AQp)AQis1 — (AN — AN ) AN

0=1+
COS AS%

(4.131)

The value of A\;;1); 0(AN;11), thatieldsthe maximumvalue ofcosé isthe correct
value ofA\;, .

One major problem witlthe Riks-Wempner method on a sphecurswhen the
roots of Eq. 4.12%re notreal (Crisfield1981; Meek and Tan 1984). R&nh this situation
is encountered, the loadcrementA)\; igeduced byhalf and the iterative procesegins
again fromthe previousequilibrium point ;. A major advantage of Riks-Wempner on a
sphere is that the iterative process converges toattectsolution for a largevariety of

problems than any other of the methods mentioned so far.

4.5.4 Convergence Criteria

In all three of the methods covered above, iteration must contintiesome
convergence criterion is mefTwo types of convergence criteria arsually usedwhen
solving nonlinear systems of equations during a finite element analysis.

The first criterion ensures thtte incremental displacementsy,, aresmall. The

criterion used in thisvork ensures that the norm of theremental displacementsy,,  is

small compared to the total displacemegnt; . This criterion is stated as
AQ;:
[y

wheres, is a small user specified tolerance on the orde)yof

The second, and most important, convergence criterion involves the residual or out
of balance forceBg,,, . The ideahind thiscriterion is to ensurehait theresidual forces
themselves, or thahe norm of the vectdfy,,, , 8nall. For thethree-dimensiondinite

element, ana@ll problems with rotationavariables, additional problems arise because the
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residualvector contains both forces amtbments. Therefore, when computihg norm

of Fg,,,, quantities with different units must be addedether. Because of thaits

involved in the analysis,the moments can be much larger thitwe forces and therefore
contributemuchmore to thecalculation ofthe norm offF,,, . This problem can cause
convergence of the solution to be obtained based solely on the moments rather than on the
combination ofboth forces and moments. TBolve this problem, scaling dthe residual

force vector isrecommended (Crisfield981, 1991;Fellipa 198). The convergence

criterion for the out of balance forces, used in this work, is

V ngﬂsi FR’“H
' < & (4.133

M1V QTS

The matrixS; is a diagonadcaling matrix that containthe inverse ofthe diagonal

elements of the tangent stiffness matix, . As previously defined, the @ector  contains
the external loads and.,; is the currental loadincrement. The quantity,  issanall
userspecifiedtolerance on the order ®0~* Using this type of criterion ensurtésat the
residual forcesre smallcompared to the totapplied load orthe structure.One major
drawback associated with this criterion is that larger residual faresasllowed as the
external load is increased. In practice, thissigallynot a problem since the value®f is
small.

Many other convergence criteria have been prsed (Bathe 198ZEellipa 1988;
Cook etal. 1989;Crisfield 1991) and eachas itsown benefits and drawbacksr certain
types of problems. The above criteria have baecessfully implemented by Crisfield

(1981) and have proven to be reliable for a variety of problems.
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4.6 EXAMPLE PROBLEMS

The proposedinite element formulation is verified using seven examples that have
exact solutions or have been solveddtlier researchernssing different finite element
formulations. All seven example problemgere solvedusing Riks-Wempner on a sphere
and a displacement tolerande, , equal01, and aesidual force tolerancé; , of

0.0001.

4.6.1 Single Element Eigenvalue Test

A single element eigenvaluest (Bathel982; Cook etal. 1989) was run to
identify anyspurious energy modes thamay exist inthe proposectlement. Thesingle
unsupporteclement has a length of 10 and a circular cross-section as shown4nlEig.
The various geometric and materipfoperties are also shown in Fig.11. The
eigenvaluetest results in six non-zero eigenvalues andix zero eigenvalues which
correspond to thsix rigid body modes for thelement. This indicates thtte element
has no zero-energy deformation modes andttietlement can accuratefgpresent the

required number of rigid body modes.

4.6.2 Cantilever Beam with a Concentrated End Moment

A cantilever beam with @oncentrated end moment is shown in Eid.2 along
with the necessary geometric and matepedperties. Theantilever beamvas modeled
using 5,10, and 20 elements. The results floe non-dimensionalip displacements /L
v/L, and¢ /27 are plottedgainst thenon-dimensional momeparameted\/ L /27 ET , in
Fig. 4.12. The exact solution for the tgeflection isthe equation of a&ircle (Crivelli

1991), with a radius equal to
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Figure 4.11 Geometry for the single element eigenvalue test.
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L =100in
| =0.01042 in*
|‘E’| V. A=05in?
E = 1.2x10% psi
My 7¢ M = CONCENTRATED
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0.0 = ] ] ] J
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Figure 4.12 Load-deflection curves for the cantilever with a concentrated end
moment.
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r=— (4.134

The exact solution is also shown in Hgl2. The coarsfve elementsolution compares
well with the exact solution for the displacememnts @nout js slightly different for large
values ofu . The 10 and 20 element solutions compare almost exactlihevahalytic

solution for all three tip displacements.

4.6.3 Cantilever Beam with a Concentrated End Load

A second cantilevebeam is shown in Figd.13. Thebeam isloaded with a
concentrated end load and tithe geometric anchaterialproperties shown in Figt.13.
An exact solution for this problem was presented by FE893) and is plotted ifig.
4.13. For thefinite elementsolution, thecantilever beanwas discretized using eight
elements. The resultinghon-dimensionaltip displacement isplotted against the
normalized load®L?/ET in Figt.13. The results from the finite element model compare

well with the results presented by Fertis (1993).

4.6.4 45-Degree Circular Bend

The 45-degree circular bend, as presented by Bathe and Bol¢ugit8), is
shown in Fig. 4.14. The circular bend has a fixed support at the left end and is loaded by a
concentrated end load at the right end. The required geometric and material properties are
also given in Fig4.14. Thecircular bend was modeled using eifjhite elements. The
results for thenon-dimensionatip displacements- /R v/R , and w/R are plotted
against thenon-dimensional load®R?/EI in Fig.14. Also shown in Fig4.14 are the
solutions from Bathe and Bolourcfi979) who also used eigbhtements. The results

from both analyses are nearly the same.
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Figure 4.13 Load-deflection curve for the cantilever beam with a concentrated end
load.
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Figure 4.14 Load-deflection curves for the 45-degree circular bend.
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4.6.5 Williams' Toggle Frame
The frame shown in Fig. 4.15 was first investigated by Williams (1964). The frame

is fixed against translation andbtation at both thdeft and right ends, and has a
concentrated loadpplied atthe apex. Thealues ofEA andET aregiven in Fig.4.15
along with therise andthe span of th&rame. The entire frame was modeled using 8, 10,
20, and 40 elements. The results for load versus apex deflecggplotted irFig. 4.15.
Also shown,are thefinite elementresults from Davalog1989) andCrivelli (1991).
Davalos(1989) used four three-nodedements to modehe entireframe, andCrivelli
(1991) used 10 totalements with @orrection to better approximate thehavior of the
thin members. The 8 and 10 element mottaighe proposedormulationaretoo stiff

and produceleflections thaaresmaller.for agivenload, than those predicted by Davalos
(1989) andCrivelli (1991). However, the 20 and é@ment modelproduce results that

are very similar to the results from Davalos (1989) and Crivelli (1991).

4.6.6 12-Member Hexagonal Frame

A 12 member hexagonal frame is shown in Eid6. Thematerial andcross-
sectional properties for th@embersare alsogiven in Fig.4.16. Finite element models
were created for onéwo, four, and eightlements in each diagonal member, and one
element inthe remaining six elementaround the base of tHeame. The resulting load
versus apex displacement cunfes the fourdifferent modelsare shown irFig. 4.17.
Also, the resultdrom Meek and Tar{1984) aregiven in Fig.4.17. For the proposed
formulation, the singlelement case is very stiff, but the two element case falls beneath the
results presented by Meek and Tan (1984)hethe meshwas refined tdour elements
per member,the load-displacement curviell even more, andinally converged for the

eight elementase. In order teerify the results of thanalysis,both thetwo and the
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Figure 4.15 Load-deflection curves for Williams' toggle frame.
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Figure 4.16 Geometry for the 12-member hexagonal frame.
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Figure 4.17 Load-deflection curves for the 12-member hexagonal frame;
demonstrating convergence of the proposed formulation.

99



eight element results were compared to similar results from ABAQUS (1988) using a two-
noded shear-deformabiB31) element. The resultare shown in i§. 4.18. Both
solutions arerery close tane another for the eightementcasewhich indicateghat the

proposed element does converge to the correct solution.

4.6.7 24-Member Hexagonal Star-Shaped Shallow Cap

The response of th24-member star-shaped cap has beramined bymany
researchers (i.e. Holzer et al. 1980) uming truss elements to modethe individual
members. For theexamplepresented here, the star-shaped cap is treatedgad flame
with joints capable of transferring bending moments. This prollesfirst studied by
Meek and Tan (1984). The geometry of the cap and the required cross-sectional and
material properties are shown in Fig. 4.19. TBballow cap is acted upon by a
concentrated load at the apex. The star-shaped camedeled usingwo, four, and
eight elementdor all of the membersexcept thesix thatform the base of the hexagon.
Thesesix membersvere modeledising onlytwo elements. The results from Meek and
Tan (1984) and thoskom the proposedormulationare shown irFig. 4.20. The two
element case was vesfiff and gave results that weveell above thosdrom the four
elementcase. The eightlement cas@roduced results that weomly slightly different
from those of the fouelementcase,which indicatesconvergence of the solution. The

results from the eight element case agree very well with those from Meek and Tan (1984).
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Figure 4.18 Load-deflection curves for the 12-member hexagonal frame using the
proposed formulation and ABAQUS.
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Figure 4.20 Load-deflection curves for the 24-member shallow cap.
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CHAPTER 5
RELIABILITY ANALYSIS
AND
RESPONSE SURFACE METHODS

Probabilistic methodattempt tomodelthe variabilities of given system parameters
with random variables, resulting in a realistic assessmetiteateliability of a system.
Reliability is defined ashe probabilistic measure of assurance of performance of a design
in its intended environment (Ang and Tang 1984). Various methods haveropased
for calculating the reliability of a system. Some ofhe more interesting are the
computational methods and in particular the second-moment methods. In these methods,
all random variables are modeled using only the first and second moments of each variable.
The first and second moments of a rand@mableare morecommonlyreferred to as the
mean and varianceThe most common dhe second-moment methods is the first-order
second-moment methaghich modelsthe response of system at a point using a first-
order surface, or plane. The second-moment metlgdeks excellent results usingery
little informationabout the randomariablesbut problems arise when an exact expression
for the response of the system is not known.

Current methods foreliability analysisrequire that the response of thestem be
given as an explicit function ahe randomvariables involved. To circumvent this
problem, response surface methods have been used tothdesponse of system in a

specified region ointerest. Response surface methods, in their basst form,combine
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least squares methods with designed experimenriis dosurface to experimentalutput

from the system under consideratiodMore elaborate responserface methods are used

to search for areas ohinimum or maximum yield othe system beingstudied. When
combined withthe first-order second-moment method, the response surface method
allows thereliability of a system to bealculated without aexplicit relationship between

the response of the system and the random variables involved.

5.1 CONCEPTS OF RELIABILITY

Methods ofreliability analysisdepend on thebility to calculate probability of
failure. Theconcept ofprobability of failure isbest described by considerittge specific
example of supplyX; ) versus demank,( ). Faifiarethis problem isgdefined when
demand igyreater than oequal to supply, or wheX; — X5 < 0 . In areliability analysis,
thevariablesX; and, are treated asndom variables with probability density functions
as shown in Fig. 5.1. Ithe supply and demandre statistically independent, then the

expression for the probability of failure is (Ang and Tang 1984)

py :/_ 00[1 — Fx, (z1)] fx, (z1)dz (5.1)

o0

where Fx, (z1) is thecumulative distribution ofX, at; anfk,(z;) tie probability
density ofX; atr; .
Thesupply and demand problem may be reformulated in terms of the safety margin
(Ang and Tang 1984),
G(X)=X; — Xy (5.2

where X; andX, are independemirmally distributed random variables. Failure is

defined when
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Figure 5.1 Probability distributions of supply and demand (Ang and Tang 1984).
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GX)=X) — X5 <0 (5.3)

Since the safety marginG(X) is a function dfvo independenthormally distributed
random variablesiz(X) itself is a normallydistributed random variable witbrobability

density functionf;(g) . The mean value®fX) is given by

MG =[x, — KXy, (5.4)

and the standard deviation@fX) s

oG =\/0%, + 0%, (5.5

The probability of failure is equal to
0
b= [ fatgdg = Fo0) (5.6

which isrepresented by the cross-hatched area shown in Fig. 52. If nariber of
standard deviations; fromhe mean valug.; tahe failure region, therfailure occurs
when

nG — ﬁO-G =0, (57)

or when

MG Hx, — HX
g="r0 =0 Bl (5.8
96 \Jok, + 0%,

Substituting Eq. 5.8 into Eq. 5.6, the probability of failure becomes

pr=Fo( 1) =1-a(9 (5.9
oG
where ®(3) is the standandormal cumulative density function evaluatedgat . The

guantity3 is often referred to as the reliability or safety index.
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Figure 5.2 Probability density function for the safety margin G (Ang and Tang 1984).
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5.2 FIRST-ORDER SECOND-MOMENT METHOD
In general, the response ofsgstemmay befunction of manyrandom variables.
The response of a systenmusually given irthe form of a performance function (Ang and

Tang 1984),

9(X) = g(X1, X, ..., X) (5.10

where X is a vector of randowariables that definethe state of thesystem. The
performance function describei possible responses tie systemthat are of interest.
Thefailure surface olimit state of thesystem is the transition of the system from a safe to
an unsafestate, and is defined bysetting the performancé&nction equal tozero,
g(X)=0.

The probability of failure for a general system may be calculated by

pf = //'"/leXQ...Xk(xlleP" ,xk)d$1d$2-.-d$k (51])
9(X) <0

where fx x,.. x.(z1 #2 ... x1) is thgoint probability density function ofhe variables
X1,Xs,...,.X;. Forindependent variables, Eg. 5.11 reduces to

pf = /([(;../le(m)fXZ(xQ)...ka(xk)dxlde...dxk (5.12)

<0

where fx. (z;) is theprobability density functiorfor the variable X; . However, for most
problems the exact distributions of the randowariables involvedare not known.
Therefore, a second-moment formulation (Ang and Ta8§4) is often used to
approximate the exact solutiogiven by Egs. 5.11 and5.12. A second-moment
formulation provides an estimate tbfe probability of failure by using onlyhe first and

second moments of each random variable. The first and second marentsore
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commonlyreferred to as the mean and the variance. Use of the second-moment approach,
is in general limited to systems having lingarformance functions and uncorrelated
normallydistributed random variables. But, the method may be adapted to systems having
nonlinear performance functions and correlated nonnormal random variables.

The objective ofthe second-moment method is ftod the point on thdailure
surface that has minimumdistanceB to therigin of a normalizedoordinatesystem.
This point is often referred to as the most probdaileire point, and has coordinatés’
The shortestlistance is found bgninimizing B under the constraint thatX) =0 . Ang
and Tang (1984) dve shown thathe method of Lagrangenultipliers may beused to
solve this problem.For ageneral nonlinealimit state, thedistanceB to a point on the

failure surface is

B=/58*+... +52=+S'S (5.13

where theS; are standardized normal variables which are equal to

Xi - ,U/X,;
0Xx;

S; = (5.14)

By using standardized normal variables, measurements allotig normalized axes are
the same, and are expressed in unitsuohber ofstandard deviationsUsing a Lagrange

multiplier gives (Ang and Tang 1984)

L=B+Xg(S), (5.19
or
L=+S'S+Xg(9 (5.16

Minimizing L with respectt&d and requires that

oL S dg

95~ Jars 95" (5.17)
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and

O 49 =0 (5.18

The vectordg/0S is the gradient of the functipn and is often written as

R
a8
99

V() = | 5 (519
i
oS, |

Using the chain rulglg/0S; may be written as
dg dg 0X; dg

2S; ~ 0X; 0S; "M ox, (5.20
Therefore, the gradient gf ggven by
Vig(S) = ox Vig(X) (5.21

whereo x is a diagonal matrix whose elememtsthe standard deviations of each random
variable.

Simultaneous solution dgs. 5.17 and 5.18ields the minimum distance to the
limit stateand the most probabRailure point, (S5, S5,...,S}). Equation 5.1¥hay be

rewritten as

Sy AV,g(S) =0 (5.22

VSI's

or

S= —ABVgy(9 (5.23

Substituting Eq. 5.23 into the expressionfbgives

B = AB[V7y(S) Vg(S)]* (5.24
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The expression for the Lagrange multiplier is

X = (V7(S) Vig(9) (529

The resulting vecto® is found by substituting Eg. 5.25 into Eq. 5.23 which gives

S= —B VoS g, (5.26

(VSTQ(S) Vig( S) 2

The vectora contains the directimosines alonghe axes. Premultiplyingthe above
equation byn” and rearranging gives a distdfice equal to

B= —a'S (5.27)

SubstitutingB into the limit state equation gives the minimum distance

Bpin=08= —a''s (5.28

Onceg is known, the most probable failure point can be found by

S'=—-fga* (5.29

Thereliability index,3 ,mayalso be found by expandiriige performancéunction
g(X) in a Taylor serieabout a poinK* on thiailure surface (Ang an@lang 1984). The

resulting expression is
g(xX) = g(X*) + (X =X*)" VgX )

+;(X—X*)TH(X*)@(—X*)+... (5.30

where the matrit (X) is the Hessian which contains the terms

g o_ 9
Yo aXZan

(5.31)

Neglecting the higher order terms and recognizinggfét) = 0 gives
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g(X) = (X =X*)" Vg(X ") (5.32
Changing to standardized normal variables the vecterX* becomes

X —=X*"=0x(S—-S" (5.33
and the gradient becomes

Vig(X) = 0x' Vg(S) (5.34

The first-order expansion may be rewritten as

9(S) = (S— 8)" Vig( 9) (5.35

The first-order approximation of the mean value is

Mg = - st Vg(S) (5.36)

and the corresponding first-order approximation of the variance is

02 = VIg(S) Vig(S) (537

The reliability index is given by

ﬁ:@: _S*TVSQ(S‘) : (5.38)
T (vrys) wig(s))”

or

ﬁ = — a*T S (539)

This value of , obtained from fast-order expansion of(X) , ihe same ashe \alue

from Eq. 5.28. Fotthis reasonthe second-moment method is often referred to as the
first-order second-moment method. More accueatemates off may befound byusing

higher order terms in the expansiory(X) about the failure surface, but in most cases the

cost increases drastically because the higher derivatives must also be computed.
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For anonlinear performance functiothe reliability index 5 isfound using an
iterative procedure that incorporates the results of the Lagrangglierumethod

presented above. The following iterative algorithm was proposed by Rackwitz (1976):

1. ) Assume initial values of’X and obtain the standardized normal variables

X;k — Mx;

Ox,

1

7

2.) EvaluateV,¢(S*) and*

3.) Form X = ux, — afox, 3.

4.) Substitute X intg(X*) =0 and solve for

5.) Usings from step 4, reevaluate’ = — o 5.

6.) Repeat steps 2 through 5 until the change in  or the chanfles in  are

sufficiently small.

The resulting probability of failure is found from the expression

pr=1-2(5) (5.40

5.3 LEAST SQUARES ANALYSIS

5.3.1 Linear Approximation

To fit a linear surface to a given set of data requires an equation of the form
AN k AN
Y =1+ Y X (5.41)
1=1

where there are a total pf= k + 1 unknown coefficients ithe model andk ighe total
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number of independent variables includedthe analysis. To solvdor the unknown
coefficients,@i , INEQ. 5.41, aseries of experiments must be run at varieusls of each
independent variabl®; The number of experiments run must be greater than the number
of independent variables included in the analysis. The experimental data for experiments

is typically written in the form (Myers 1971)

i X Xoo oo Xn
Yo X9 Xoo o Xpo

wheren > k . Using the experimental results, the assumed linear model may be written as

Y =2 U +e (5.42)

e
nx1 nXp pxl1 nx1

where e is a vector of randomwariables thatrepresents thelifference between the
experimental results anthe results predicted by tHamear model. The e; for each
experimentareassumed to be independent witromean and varianeg®  (Myet971).

The vectorY contains the results of thexperimental runs and is given by

(5.43

The vector® contains the unknown coefficients and may be expressed as
o]

(1

(1 (5.44

]
X
-

U |

and thematrix Z containghe varioudevels ofthe independentariablesX; and has the

form
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I X Xor 0 Xi
= |! X12 Xog o X2 (5.45

The method of least squarésds the coefficients, ¥ , thatminimizesthe sum of the
squares of the randowaluese; for each experiment. Therefore, thmefficients¥ may

be found by minimizing

L= Ze? —ele (5.46)
i—1

Equation 5.46 may also be written as
— = T p— =
L - (ngl _71‘;17 p?l) (anl _71‘;17 pxl) (547)

where® are the estimatedlues ofthe coefficients¥ resulting frorthe least squares

approximation. The expanded form of Eq. 5.47 is

_~

L=YTY -2¥ '2TY 1@ 'ETE T (5.48

I1xn nxl Xp PXn npxl 1xp PX“ 71XP px1

To solve for the coefficient® I, must be minimized and set equal to zero giving

oL -~
87@ - = 2p‘§71T”Y1 + 2;7‘?717:1@;7 px1 - 0 (549)

The resulting vecto s found by solving the linear system,

(E'E) ¥ =" (5.50

The system of equatiorggven inEq. 5.50 arecalledthe normal equations fastimating

T (Myers 1971).
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5.3.2 Quadratic Approximation
The procedure used fib a linear functionrmay be &tended tdit a function of the

form
N ko . ko . ko
Y = Yy + Z% Zlﬁ Z%]’Xin (5-51)
i 15>

where there are now =1+ 2k + k(k —1)/2 parameters in t@delrather than the
p =k + 1 parameters in the linear approximation. &kssumed quadratic modehy be
written in the same form as the linear model

Y =E W +te, (5.52

nx1 nXp pxl1 nx1

but thematrix Z now has extracolumns toaccount for the quadratic terms in timedel.
The vector¥ alstas extra rows taccount for thedditional coefficients.For thecase
that includes only two independent variables, the m&rix is

1 XH X21 X% X11X21 X%l
= 1 X12 Xoo X%Q X12X99 X%2 (553)

nx6
]- Xln X2n X2 XlnXQn X%n

1n

and the vecto® igiven by

(20
(O
(3P

[ V22 |

Just as in the linear case, the vectaragfficients® is found by solvinte linear system

of equations

(pE TEP) p{Ix}l :P‘gnTngl (555
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5.4 EXPERIMENTAL DESIGNS

5.4.1 Two-Level Factorial Designs

The success of the response surface method depends to a large extent on the
experimental runs used the least squaremalysis. Designed experimeatg often used
to maximizethe efficiency and the accuracy of the least squanealysis. One important
class of experimental designs is factorial experimentation, and in particular factorial
experiments with each independent variablevatlevels. This type of design is called the
2" factorial design, and hawo major advantages over the more common one-factor-at-a-
time procedure (Myers 19). For a study thancludesthree independentariables, a

total of 22 = 8 experiments are required for #efactorial design:

—_

(5.56)

TEmE ISR S
o
s N

0 J O UL i Wi

where H indicatethe high leveland L indicateshe lowlevel of the independentariable
X,;. One example of ane factor at dime design includesour experiment{Myers
1971):

X X3

(5.57)

SESESRSIES

L
H
L
L

=W N =
el ol

The first advantage athe factorialdesign is that interaction betweéme independent
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variables can automatically be measured becthe® are enougkxperiments in the
design to includehe coefficients@ij inthe least squareanalysis. However, there is not
enough information irthe 2% factorialdesign to gain any informatioabout the pure
guadratic terms bfmnding the coefficients@ii . The second advantage is thawariance
of a typical coefficient fronthe 2* factorialdesign is much less thahe variance of a
typical coefficient fromthe one-factor-at-a-timanalysis(Myers 197). Therefore, the
coefficients fromthe factorialdesignare considered to be more precise than tlfrose
the one-factor-at-a-time design.

When usinghe 2" factoriadesignthe independentariablesare often transformed
so that thehigh and low levels of eachare H = +1 andL = —1 . Theesulting

transformation is
Xi - Xi
(G =2 (d) (5.58

where thevariables(; are referred to as codedriables. The quantity;, thedifference
between théiigh and low value ofX; , an&; the average of the high and low value for
X;. The various combinations of the coded variables f3r a  design are placed in a design

matrixD . The design matrix for the case where there are three independent variables is

-1 -1 -1
1 -1 -1
-1 1 -1
11 -1

D=1| | _; (5.59
1 -1 1
-1 1 1
1 1 1]

Note that there is a pattern to ttiesign matrix and that in every colurirere are2(—1

(¢ = column number) clusters ahe high and low level of eachcodedvariable. This
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patternholds forany number ofndependent variables and makesnputer generation of
the design matriXairly straightforward. Wenused with the liear leassquaresanalysis,
the design matrix isncorporated into th& matrix asthe lastk columns. For the three

variable case, the matr is

1 -1 -1 -1
1 1 -1 -1
1 -1 1 -1
—_ 1 1 1 -1
E=|, _{ _1 1 (5.60
1 1 -1 1
1 -1 1 1
11 1 1]

Use of the codedariables also sinfifies the matrix Z'Z which isrequired for the
solution of the unknowoefficients.For k independent variablete matrix 2/ = is the

diagonal matrix

E= . =2k | (5.61)

Besides makinghe solution for the coefficients much easier, the factzh& diagonal
alsoimplies thatthe covariance between any two coefficients is equal to zero which makes
the 2* factorialdesignpart of alarger class of designs known aghogonaldesigns

(Myers 1971).

5.4.2 Central Composite Design
As mentioned abovehe standar®®* factorialesigndoes notprovide enough
data todeterminethe coefficients ofthe pure quadratic terms in the least squanadysis.

However, the2* factoriatlesignmay besupplemented witlaxial data points asome
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distanceax along thaxis of each independent variable. Also, at least center point
must be added to the design. Tiesulting experimental design is calldte Central
Composite DesigiCCD), and is shown in Fi¢.3 for threendependent variables. As a
result of adding more experimental poiritee design matrix has additionedws. Fork

independent variables, the additional portion of the design matrix is

G Co 3 Ck
[ 0 0 0 0]
— 0 0 0
o 0 0 0
0 -—a 0 0
0 o 0 0
0 0 -—a 0 (5.62
0 0 o 0
0 0 0 —
i 0 0 0 a |

The distancex is chosen by the user, but in most cedgvariesbetweenl.(
and\/E (Myers and Montgomery 1899 For threendependent variablabe first value
of 1.0 placesall of the axial points on the faces of a hypercube, and the second Wa@e, ,
placesall the axial points on a sphere. There are various choices for the value of (Myers
and Montgomery 1995gll of which havesome desirable effect dhe responssurface
analysis. The value ofx that iV be used in thisvork is thevalue hat causes theéesign
to be orthogonal. The value @f needed to make the central composite design orthogonal

is computed using (Myers 1971)
oo (Qf) (5.63

where
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Figure 5.3 The Central Composite Design for Three Variables (Myers 1995).

122



Q= (\/F+T—ﬁ)2, (5.64)

F' is thenumber of factorial points ithe design, and’ is thmumber of additional points
needed for the Central Composidesign. For threeindependent variableE = 22 =8
T=2x3+1=7,anda =1.216 .

5.4.3 Two-Level Fractional Factorial Designs

The example shown earligrointedout thatthe coefficients obtained using &
factorial designwere more accurate than thas&ngthe one-factor-at-a-time approach,
but the 2* factorial design required twicthe number of experiments. the cost of
running experiments is very higimd thedifference in accuracy dhe coefficients isnot a
problem, then the one-factor-at-a-time approagly appear to be a bettatternative.
However, it turnsout that fractions of the2* factorialesignmay beused without
sacrificing the accuracy or the orthogonality of the design. W#ith fraction 2f a
factorial design is abbreviated aga™ factorial designn # 1 ttredesign is a
1/2 fraction of the2*® factorialesign andnly 1/2 ofthe full number of experiments are
required for the analysis.

The fraction chosen for tH# ™ design depends omhich coefficientghe user is
most interested in knowing. Mgn using a fractional factorial desighere is no longer
enough experimentalata touniquely estimate each coefficient. Therefore, some of the
coefficients lose their independence or they become confusedmathnother. When the
values oftwo coefficientsare notuniquethere issaid to be aliasing ithe design. The
objective in using 2~ design is tmt havealiasingbetweenany two coefficients of
interest. As amexample, if auser wants tdit a linear surface to a set of experimental data

then it is imperative that no two coefficients of linear terms be aliased with one another. If
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the userwishes to fit aquadratic model to aet of data then there must be al@asing
between first-order terms, between first and second-order terms, or betmedwo
second-order terms. @Aesign ofthe latter type isaid to be of Resolution V dretter
(Montgomery 1991). Resolution Il designs guarantee that no two linear terms are aliased
with one another and Resolution tésigns guarantee that tvoo linearterms arealiased

with one another and that no linear terms are aliased with quadratic terms.

Once a design resolution has been speciffezifractionm of thdull 2* design is
also known. The question th&mains ihow to choosevhich rows inthe design matrix
D will be used toactuallyconduct the experiments. Thest step is tadentify a defining
contrast,which basicallydetermines whiclierms wll be aliased inthe analysis. As an
example, considethe 23! design which is @esolutionlll design. Thelefining contrast

for this design is

I=¢( GG (5.69

To determine which experiments must be run, the defining contrast may be rewritten as

I=7'q7'@ (5.6

where~; is equal t0 or and determines whetherodithecorrespondingariable(; is
included inthe defining contrast. Newvariablesz; whiclcorrespond taX; are defined
such that; =1 ifX; is at thkigh levelandz; = 0 ifX; is at the lovlevel. A valueL is
computed for every row in the design matrix using the expression

L=mz+v2z+y323=2+2+2 (5.67)

Then for every valué , a valdie is computed by the expression

t = L modulo(2), (5.68

or
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t:L—INT<§>*2 (5.69)

This method causdbe value oft to be eithed ar . When appliedhe threevariable

case, the resulting valuestof are

G G G|t
-1 -1 —-11]0
1 -1 —-1]1
—1 1 —-1]1
1 1 —-1]0
-1 -1 11
1 -1 10
—1 1 10
1 1 11

The result igwo sets oexperiments, one haviig= 0  and the other haviagl . Either
setmay beused to run the actual experiments. Temeralprocedure foffinding the
appropriate rows to use for anth  fractidasign having:z variables is explained by
Myers(1971). Ingeneral there ilv be m definingcontrasts in @™ design. Therefore,
there wll be m values ofL ,L; , andn values bft;, . Tberrect rows oD arehosen
from one ofthe 2™ sets oft; generatadgsingthe above processTables ofdefining
contrasts for various resolutions and variousnbers of independent variab® given

by Montgomery (1991).

5.5 SIGNIFICANCE OF INDIVIDUAL REGRESSION COEFFICIENTS

When using a technique likbe response method it is oftelifficult to decide
which independent variableaust be included ithe model. Since experimentation is
costly it is best tanly includethosevariables which influencthe response of thg/stem
the most. One method faletermining which variablegre mostignificant involves the

use of a screening experiment. In a screening experi@emdependent variables of
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interest areincluded inthe analysisand a first-order surface f# to the experimental
results. The effect of each independeariableX; is assessed t®sting thecoefficients
;.

One sinple method for comparing theffects ofthe variablesX; is tosimply
compare themagnitudes othe individual coefficients@i . The major problem withhis
method is that differences in units amdhg independentariables may cause some of the
coefficients toappearartificially smallwhen compared tthe rest. In the response surface
method, hypothesis testing isormally used to determinghe significance of each
independent variable. The hypotheses usedtesting thesignificance of individual
coefficients are (Montgomery 1991),

H: QZ

7

=0
H:1; #0 (5.70)

The test statistic for the above hypotheses is (Myers and Montgomery 1995)

=)

ty = ;C' (5.71

SV

whereC; is the thdiagonal element ahe matrix (ETE)_1 . The tern? is estimated
from the mean square error as (Myers 1971)
YI'y —wr =Ty SSE

MSE:lxn 71X1nf;pxn "Xlzn_p (572)

where SSE is referred to as thexror sum of squareswhich is computedusing the
differences between each experimental result #re corresponding least squares
prediction. Thevariablen isthe totalnumber of experiments usedtire analysisandp is
the total number of coefficients in the model. The hypoth%is@i =0 Is rejected if

|t0| > ta/2>n_p (573)
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wherea is equal to onginusthe confidence leveandt, ., is the percentilealue of

the students t-distribution witth — p)  degrees of freedom. iypothesigestbasically
reflects a certain usspecified confidence that a specific coefficiépt should be included
in the model.

The hypothesisest presentedbove does have omeajor disadvantage in that the
coefficients @i are assumed to be statistically independent (Montgomery 1991). In
general, theff-diagonal terms itthe matrix (ETE)_1 are not zerondicatingthat there is
some correlation between theefficientsy; . But, if atwo-level full or fractional factorial
design is used toonduct theexperimentshe design is orthogonal, the matlﬂETE)_1 is
diagonal, and theoefficients@i are independent. lIthis casethe hypothesigestgives
good results.

Once thehypothesigesthas been performed @il of the coefficients therall of
the independentariables whichare notsignificant can belroppedfrom the analysis. In
many cases this casignificantly reduce the amount of experimentation and therefore
makethe response surface methodasteffective alternativéor estimatingthe response

of a system.

5.6 MODELING OF THE PERFORMANCE FUNCTION

5.6.1 Linear Model

The performance function needed ftbe first-order second-moment method may
be generated bysingthe least squares methodmbined with designed experiments. If
the experiments irthe analysisare performed in accordance with a two-lefaatorial
design, usingodedvariables, a linear performance function of the following form may be

generated:
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9(¢) = @o + Z W; G (5.74)

where the codedariables(; are now randomariables. To fiinto the first-order second-
moment methodthe resulting performance function must be written in terms of
standardized normal variablés, . The expression for the varigbles inteé¥ms of is

X, = wx, + UX,;Si (57@

Substituting Eq. 5.75 into the equation for the coded variables, Eq. 5.58, gives

G = a; +b;S; (5.76
where
o = 2x = Xi) (5.77)
di
and
b = Q‘C’ZX (5.78)

The performance functiomay bewritten in terms ofS; by substitutingqg. 5.76into Eg.

5.74:
k
9(¢) = o + Y Bilas + b:Si), (5.79
1=1
or
k k
g(S) =0+ > _ Dia; + Y 0ib;S; (5.80

The most probable failure point is given by

S = —Ba; (5.81
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where

o = o ; (5.82
(vrg(s) vg(s))

Using the chain rule, one may writg(S)/0S;  as

09(S) _ 99(¢) 96 _ 20x,
dS; a¢; 08, di

(5.83
Setting Eq. 5.80 equal to zero yields the equation of the limit state which is given by
9(S) =0+ > _ Dia; + Y _ @ibiSi =0 (5.84
At the most probable failure point the limit state becomes
k k
Do+ Y Wiai— B b =0 (5.85
1=1 1=1

Solution for the reliability indey yields

g=—"=L (5.86)

5.6.2 Quadratic Model
The procedure presented abaway be modified slightly tonclude a quadratic
model ofthe performance function. Thector form of the second-order performance

function may be written as

9(¢) =@ +@" ¢ +¢"0¢ (5.87

where
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w = .
Wy,
and
Wn @12/2 w1k/2
—~ (;}22 CECEEY an 2
Q= . /
sym. B

The vector form of the relationship betwegen &nd s

¢=a+BS
where
[ (/‘X1_)_(1) ]
dy
(/‘X2_)_(2)
a=2 da
(HXk_)_(k)
di
and
M 20, _
dy 0
2(7X2
B — d2
. Q(TXk
L 0 d

Substituting Eq. 5.90 into the performance function gives

g(S) =g+ g+ S GS

where

g=0p+w'a+aQa

(5.89

(5.89

(5.90

(5.92)

(5.92

(5.93

(5.94)
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g =BT% + 23" 0B, (5.95

and

G =B7QB (5.96)

The vectora: igiven by

o V.g(S) 1 (5.97)
(VSTQ(S) Vig( S) 2
whereV,¢(S) is equal to
V.g(S)=g+2GS (5.98

The most probable failure point is

S'=-pa" (5.99
The equation of the limit state at the most probable failure point is

9(S") =g-— (a*Tg) B+ (a*TGa*)52 =0 (5.100

The resulting quadratic equation is then solved for the unknown reliability fhdex
Whenthe response surface method is useshédelthe performance function, the

general iterative procedure for the first-order second-moment method may be rewritten as:

1.) Assume initial valueX? and make these values the center of the
designed experiment.

2.) Set the upper and lower values (usuatly y. ) for the experimental
region and conduct a response surface analysis to predict a model for the
performance function over the experimental region.

3.) EvaluateV,¢(S*) and*
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4.) Solveg(S*) = 0 for the reliability index.

5.) Usingj from step 4, reevaluatg®® = — o3  and correspondidgly

6.) Make the new values ofF the center of a new designed experiment and
perform the necessary experiments.

7.) Repeat steps 2 through 6 until the change in  or the chanfles in  are

sufficiently small.
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CHAPTER 6
STABILITY ANALYSIS WITH RANDOM
IMPERFECTIONS

Most of the work peaining to stabilityanalysiswith random imperfections deals
with the modeling ofmperfections whicltare known at discrete points on the structure, or
with finding a critical imperfectiorshape that causes the largest reduction irciikieal
load for the structure. Questions about the ehng of imperfections arise when a
structure isdesigned forthe first time and no information iavailableabout theinitial
imperfections. Usually, a maximum allowable limit on the imperfection at any point on the
structure isspecified by a desigoode or dictated by theanufacturingorocess used to
build the structurdtself, or the variousmembers inthe structure. Thebjective is to
model the imperfections in a realistic manner, by treatthg imperfections as random
fields, so that a resulting distribution the imperfect critical loadnay becalculatedusing

the techniques presented in Chapter 5.

6.1 IMPERFECTION MODELING

The objective inmodeling the initial geometric imperfections is to obtain the
variance ofthe modal imperfection amplitudes. Modeling die initial geometric
imperfections is accomplished usifgur basic assumptionsThe first assumptiomnly
allows translational imperfections #te imperfect nodes. This means thatrooked

membersaaremodeled by translational movementstioé nodes of thénite elementsised

133



to discretize each structuralember. The second assumption fortes shape of the
initial imperfection to be characterized by a summation bfiear bucklingmodes. The
third assumption specifies thtte variance ofthe amplitude ofthe initial imperfection is
found from a specifiedmaximum allowable imperfection magnitude. The fourth
assumption lints the nodalimperfections to be independemrmally distributed random
values. For the work presented here, tihhean value ofheinitial imperfection is assumed
to be zero.

The first step inapplying imperfections to atructuralmodel is to definavhich
joints or nodes W be allowed to have imperfections. The nelp is to create matrix
of eigenvectors® , thatnly contains the components corresponding to the imperfect
degrees of freedom. The imperfection vector for the entire structure may be written as

A=® a (6.1

Nrx1 Nrxnnxl1

where® is the matrix of eigenvectors mentioned ab@ve, is a vector containing the modal
imperfection magnitudes, anl;  tise number of imperfect degrees of freedom. The
imperfection,A , given b¥eq. 6.1 isbasically likethe imperfections described in Chapter

2. The eigenvectors contained dn  deterntine shape of th@nperfection and the
amplitudes contained ie vectora determinethe magnitude othe imperfection. If the

nodal imperfections are known, the modal imperfection magnitudes may be found using

a=%& A (6.2)

nx1 nx Ny Nyx1

where thematrix ®* isthe pseudo-inverse of thmatrix ®. The pseudo-inverse is

calculated using least squares as described in Chapter 5, which in this case yields

& = (o7®) ‘&7 (6.3

Unlike the imperfections described i€hapter 2, thamperfectionvector, A , for the

structure is not known and the modal imperfection veetor, , is not easily found.
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The goal ofmodeling theimperfections is to findhe mean and variance of the
modal imperfectiorvector,a . Toavoid specification ofhe exact nodal imperfections, the
variance ofthe nodalimperfectionsmay bespecified. FromEg. 6.2, atypical modal

amplitude is given by
Ny

a; =Y ¥ A (6.4)
j=1

Therefore, each modal amplitude is a linear functiothefnodal imperfections. If the
nodal imperfections)\; are independentormally distributed random variables then the

mean value and variance of each modal amplitude is given by (Ang and Tang 1975):

Ny

fa, = > 05 i, (6.5)
j=1
Ny 5

o0, = > (®5)" o4, (6.6)

For the work presented here, tiiean values afhe nodalimperfectionsareassumed to
be zero which means that the mean values of the modal amplitudes will also be zero.

If the nodalvariancesare known, Eq. 6.6hay beused to calculate theriance of
the modal amplitudes. WMIst specifications require thathe maximum allowable
imperfection be nogreater than a presbad value, A,... . This means that the
imperfection,A;, , at any imperfect nodle the structureshould be less than or equal to
A,.- The prescribednaximum imperfection, A,,... ,may beused to calculate a
maximum allowable standard deviation for any imperfect mode using

o Ak — MA, o Amar — MA, (6 7)

OA OA

Sma:v

or
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oA, = Aoz = pia, (6.9)

Smar

where themean valueyua, , ofheimperfection at any imperfect node is assumed to be
zero. Using Eqg. 6.8ensures that thenaximumimperfection vl be located at+ s,,.. ,
wheres,,., is thespecified number odtandard deviations fromn, =0 . Therefore, the
maximumallowablestandard deviation, @ny imperfect nodé othe structure, is given
by

A

Sma:v

(6.9

OA, =

Tentative values athe nodalvariancesmay befound using a unit variander the

modal amplitudes and

n

oA, = Y _(®)’0o, (6.10

1=1

The resulting values onAj are thennormalized withrespect to the largesalue ofaij

and are themultiplied byaQAk fromEq. 6.9. This procedure locates the imperfect node in
the structurewith the largesvariance and then makes this variance equedg¢amaximum
allowable variance calculated by usigg. 6.9. The result is a normalizegtoup of rodal
variances whosmaximumvalue iS(TQAk . The modal variances are found using Eq. 6.6 and
the normalized nodal variancesr,QAj . Withe variances ofthe modal imperfection
magnitudes known, a study tfe distribution of théucklingload for a structurean be

performed.
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6.2 RELIABILITY ANALYSIS

6.2.1 Definition of the Limit State

For this study thereliability or probability of survivalp, , of atructure is defined
as theprobability that an imperfedtructure willbecome unstable at a logteater than a
specified percentage of theritical load for the perfect structure. Tharobability of
failure,ps , is equal to

pr=1-ps, (6.1

or the probability that an imperfectructure Wil become unstable at a load less than a
given fraction ofthe perfectcritical load for the structure. Thdémit state orfailure

surface for this problem is defined by

(QCT)imp - )\fTaC(QCT)perf =0 (612)

where(QCT)perf is thecritical loadfor the perfect structuré().,) is theitical load

tmp
for the imperfectstructure,and A\, is a specified fraction dfie perfectcritical load.
For thegeneral multipledegree of freedom problem, the lo&d. becomeeator Q

which is multiplied by a scalay...  The resulting failure surface is

[()\CT)imp - )\frac()\cr)perf] Q =0, (613
or
()\CT)imp - )\frac()\cr)perf =0 (614)
The above equation may be normalized by dividing both sid(ascb%erf which gives
()‘CT)imp
~ A rac = 0 (61@
()‘CT)perf d

If \trqc IS €qual to one, Eq. 6.15 becomes
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()‘CT) imp

—-1=0 6.16
()‘CT)perf ( )

and theresulting probability of failurep; , ighe probability that an imperfeatructure

will have a critical load less than that of the perfect structure.

6.2.2 Response Surface/First-Order Second-Moment Method

With the imperfections modeled bthe method presented in Section 6.1, the
probability of failure may be calculated usingeq. 6.15and thecombined response
surface/first-order second-moment (RS/FOSM) method presented in Chapter 5. The

value of(\.,) is in general a nonlinear functiontleé modal imperfection amplitudes,

imp
a;. A 2% factorial design is used fi a first-order surface over agxperimental region
bounded by+ o, for each randovariable andcentered at thenean values which are
zero. Using afirst-order surface, theeliability index, 5 ,may befound usingEg. 5.87.

With the reliability index known, a new estimate of the most probaingerfection
amplitudes,a’ ,may becalculated. For the next iteration, thexperimental design is
centered at; and, if thealues ofa are inside of the previowexperimental region then

the size ofthe newexperimental region ieeduced byhalf. Otherwise, the bounds of the
experimental region remain at o,,  until the predicted valueg of  fall inside the current
experimental region. Iteration using the first-order approximation continuesitil the
values ofa; are irsidethe experimental region artthe difference betweethe values off3

for two successive iterations is less than or equal to a spetifiechnce,é; . After
meeting the two previously mentioned criteria, a second-order surface ievir the
current experimental region. Theecond-order surface & by supplementing the

experimentaldata for the2* factorial design witithe datanecessary to form a Central

Composite DesignSect. 5.4.2). Thénal value ofthereliability index is found by solving
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Eq. 5.101.

6.3 EXAMPLE PROBLEMS

Two example problemare presented that demonstrate the use of the RS/FOSM
method fordeterminingthe probability thatthe critical loadfor the structure will béess
than a specified fractior\s,,. , tifie perfectritical load. The firsexample iVilliams'
toggleframe andhe second is the star-shaped reticulated cap.afiédlgsis othe perfect
structure for each problem was presented in Chapter 4. The RS/FOSM method is used for

both examples and the results are compared with the results from numerical simulations.

6.3.1 Example 1: Williams' Toggle Frame

The analysisfor the perfectversion of Williams' toggle frame waspresented in
Chapter 4. Thdrame was modeled using 10 elemepé&s member. Theanalysis in
Chapter 4 revealed that tis¢ructurebecomes unstable atlinit point where the load

multiplier, (\...) is equal td.57110. This value of(\.,),,, corresponds to eritical

perf
load of 34.266 pounds.Two different cases ofVillams' toggle frame are considered.
The first uses an imperfection shape derived ftoefirst 10 linear bucklingnodes, and
the second with ammperfection shape composed tbe first six linear bucklingmodes.

Both caseassumdhe maximumallowable imperfection anywhere dme structure to be
less than five percent of the height of the apex or,

Az = 0.05 x 0.3861In. = 0.0193 in. (6.17

With A,,... known, the maximum allowable variance at any imperfect node in the structure

may be calculated using Eq. 6.9 angd. equal to three:

Az \ .0193in.\>
oA, = ( ””’) = (0093'n> =4.138 x 107° (6.18)

Sma:v 3
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In both casesall of the translational degrees of freedom allewed to be imperfect,

which results inV; = 38 imperfect degrees of freedom.

6.3.1.1 Case 1: 10 mode imperfection

For thefirst casethe shape of thenperfection was modeled lbige first tenlinear
buckling mode shapewhich are shown irFigs.6.1and 6.2. The modal variances were
found usingthe procedure outlined in Sectiénl and themaximumallowable variance
from Eq. 6.18. The resulting modal variancese shown infable 61. TheRS/FOSM
method was then used fimd the probability thatthe imperfect critical load will bdess
than the fractions)s,,. , of the perfemttical load, which are located in thérst column
of Table 6.2. The number @iumerical experiment&as reduced bysing a fractional
factorial design with onl'°—3 = 128 experiments instead of the standard factorial design
which requires2!’ = 1024 experiments. The valuedef  usethaanalysis is0.01 .
Table 6.3 contains the predicted most probalieperfection amplitudesg; , and the
reliability index, 5 ,for each iteration of a RS/FOShhalysiswith \¢,,. equal t00.968.
The resultingfailure probabilitiesfor all of the values of\¢,,. ,are given inthe fourth
column of Table 6.2.

A 10,000 data poinsimulationwas run toverify the result§rom the RS/FOSM
method.  During thesimulation, the modal imperfection amplitudewere treated as
normally distributed random numbers with variances as shown in Table 6.1. A frequency
density diagram whiclshows theresulting distribution othe imperfect critical load is
given in Fig. 6.3. The number ofcells in the frequency density diagram is given by
(Sturges, 1926)

Neo ~ 1+ 3.3 logio(number of data points) (6.19

For 10,000 data point¥- a@pproximatelyl4. Thefrequency density diagram was used

140



Figure 6.1 Linear buckling modes 1-5 for Williams' toggle frame.
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Figure 6.2 Linear buckling modes 6-10 for Williams' toggle frame.
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Table 6.1 Modal variances for the 10 mode case for Williams' toggle frame.

Mode No. Modal Varianceg?,

5.499E-06
4.906E-06
6.003E-06
2.792E-06
1.422E-05
8.880E-06
6.185E-06
3.397E-06
1.857E-05
7.667E-06

QCQOWOUONOOUID WNPE
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Table 6.2 Calculated failure probabilities, for the 10 mode case for Williams' toggle
frame, using simulation data and the RS/FOSM method.

Simulation Simulation Response Response
Histogram Histogram Surface Surface
(10) (10/3)* (10) (20/3)*
)\frac Dy Dy Dy Dby
0.952 0.000400 0.000300 0.000396 0.000396
0.968 0.015400 0.014700 0.013584 0.013585
0.984 0.148900 0.133000 0.138119 0.137459
0.992 0.308900 0.283300 0.293650 0.293620
1.000 0.526600 0.494100 0.500065 0.500003
1.008 0.728000 0.699700 0.704518 0.704483
1.016 0.869200 0.854000 0.858316 0.857534
1.024 0.953000 0.943500 0.944813 0.944788
1.032 0.985900 0.981600 0.982945 0.982933
1.040 0.995800 0.995300 0.995809 0.995807
1.048 0.998900 0.998600 0.999182 0.999182
1.056 0.999900 0.999900 0.999873 0.999873
1.064 1.000000 1.000000 0.999984 0.999984

* Results using the three most dominant imperfection modes, and the same variances
as if all 10 imperfection modes were included in the analysis.
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Table 6.3 RS/FOSM results for the 10 mode case for Williams' toggle frame, with

A frac €Qual to 0.968.

a; iter. #1 iter. #2 iter. #3 iter. #4 quadratic
1 0.392E-02  0.398E-02  0.403E-02  0.404E-02  0.404E-02
2 0.206E-07 -0.161E-07  0.263E-07  0.839E-08  0.919E-07
3 0.298E-07 -0.588E-07 -0.217E-06 -0.383E-06 -0.345E-06
4 0.697E-07 -0.135E-07 -0.143E-06 -0.656E-07 -0.412E-07
5 0.361E-02  0.375E-02  0.379E-02  0.381E-02  0.381E-02
6 0.258E-07  0.200E-07 -0.846E-07 -0.123E-07 -0.291E-07
7 -0.181E-07  0.483E-07 -0.144E-06 -0.251E-06 -0.228E-06
8 -0.172E-07  0.186E-07 -0.236E-07 -0.738E-08  0.195E-07
9 -0.385E-02  -0.398E-02 -0.403E-02 -0.404E-02 -0.404E-02

10 0.152E-07 -0.376E-07  0.416E-07  0.778E-08 -0.308E-07
g 2.124 2.174 2.200 2.207 2.209
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Figure 6.3 Frequency density diagram for the full 10 mode simulation for Williams'
toggle frame.
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to calculate théailure probabilitiescorresponding to thealues of)¢,,. found inthe first
column of Table 6.2. The resultifglure probabilitiesaregiven inthe seconaolumn of
Table 6.2. The results frothe RS/FOSM method are comparablethosefrom the
simulation. Thanaximumpercentdifference is approximately J@ercent and occurs at a
value of \s,,. equal t®.968. Thecumulative distribution function usirtfpe simulation
data, and the response surface data are both plotted in Fig. 6.4.

The fractional factorial design used abowexluced thenumber of numerical
experiments significantlyput the CPUtime required to completthe analysiswas still
large. To further reduce theumber of numerical experiments, a screening experiment
was run to determine/hich imperfectionmodes had the mosignificant effect on the
critical load. Thesignificance of each imperfectianode was determined by using the
hypothesidest presented iBection 5.5. The value of for eachimperfection mode is
given in Table 6.4.The values of, are compared to the tabulated value of the students t-
distribution at a 95 percent level of confidence. The tabulated value for this example is

t506/2,(128—11) = 1.658 (6.20

Comparingthe values oft, withthe tabulatedralue of 1.658reveals hat only the first,
fifth, and ninth modes have significant effect orthe critical load. This information can
also be obtained from Tabte3 bynoticing that for all but the first, fifth, and ninth modes,
the most probablenodal imperfectionsrenearlyzero foreach iteration. The RS/FOSM
method was then used witinly the three domiant imperfection modefut themodal
variances remainethe same as ifll 10 modes werencluded inthe analysis. The new
results fromthe RS/FOSManalysisaregiven inthefifth column of Table 6.2.The results
usingthe three mognfluentialmode shapes akery close tahe RS/FOSM resultgsing

all 10 modes, and are comparable to the simulation results.
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Figure 6.4 Cumulative distribution functions, for the 10 mode case, for Williams'
toggleframe
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Table 6.4 Values of, for the 10 modal imperfection amplitudes for Williams' toggle
frame.

Mode No. to

-182.030
-1.015E-03
-1.324E-03
-4.542E-03
-104.038
-9.444E-04
7.936E-04
1.020E-03
97.345
-6.000E-04

QOVWOUO~NOOUID WNPE

H

NOTE: All values o, are compared to the tabulated value®$ 123-11) = 1.658
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A secondsimulationwas run toexaminethe effects of using onlyhree of the 10
imperfection modes. Thisimulation was run withonly the three domiant modal
imperfections as random variables. Astie second RS/FOSMnalysis,the modal
variances remainethe same as ifall 10 modes werencluded inthe analysis. The
resulting distribution othe imperfect critical load is also shown in the form of a frequency
density diagram (Fig6.5). Usingthe frequency density diagrarthe failure probabilities
are calculated and tabulated in the tltotlimn of Table 6.2. Comparison of the 10 mode
simulationdataand the 3 modsimulationdata shows that theeven non-dominant modes
do have asmallimpact onthe calculatedailure probabilities. The results fronthe three
mode simulation antoth RS/FOSManalysesare all very close to eachtherindicating
that the RS/FOSM methdahsicallyignores theseven non-dominant imperfection modes
when calculatinghe probability of failure. The cumulative distribution functiofor the
simulationdata is plotted in Fig. 6.dlong with thefull 10 mode simulatiordataand the

results from the RS/FOSM method.

6.3.1.2 Case 2: 6 mode imperfection

The second case fdYilliams' toggleframe useshefirst six of the linear buckling
modes, shown in Figé.1and 6.2, to modeaheimperfection. As witlthefirst case, the
modal varianceare foundusingthe procedure presented in Sectiondhil themaximum
allowable variance frorkq. 6.18. The resulting modal variancase shown inrable6.5,
and are ingeneral larger thathe variances fronthe 10 modanalysis(Table6.1). The
reason for this is thabhe samemaximumallowable variance imow spread ovefewer
modeswhich results in higher modal variances. The RS/FOSM method was agairia
find thefailure probabilities for the values &f,,.  from the first column of Table 6.6. The

required number ohumerical experimentsvas reduced fronthe required2® = 64 to
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Figure 6.5 Frequency density diagram for the 10/3 mode simulation data for Williams'
toggle frame.
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Table 6.5 Modal variances for the 6 mode case for Williams' toggle frame.

Mode No. Modal Varianceg?,

1.486E-05
1.366E-05
8.798E-06
5.060E-06
2.039E-05
1.256E-05

U WNPE
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Table 6.6 Calculated failure probabilities, for the 6 mode case for Williams' toggle
frame, using simulation data and the RS/FOSM method.

Simulation Simulation Response Response
Histogram Histogram Surface Surface
(6) (6/2)* (6) (6/2)*

)\frac Dy Dy Dy Dr
0.930 0.000200 0.000300 0.000166 0.000166
0.940 0.001400 0.001200 0.001167 0.001169
0.950 0.007900 0.007100 0.006011 0.006014
0.970 0.081800 0.067200 0.069451 0.069472
0.980 0.185200 0.160300 0.163189 0.164005
0.990 0.338900 0.314700 0.313737 0.313789
1.000 0.525400 0.495400 0.499944 0.500019
1.010 0.709600 0.679100 0.683549 0.683590
1.020 0.844800 0.829000 0.828507 0.828569
1.030 0.932200 0.924400 0.921079 0.921122
1.040 0.972500 0.972500 0.969284 0.969297
1.050 0.992000 0.990700 0.989894 0.989897
1.060 0.997600 0.997400 0.997186 0.997187
1.070 0.999900 0.999300 0.999335 0.999336
1.080 1.000000 0.999900 0.999867 0.999867

* Results using the two most dominant imperfection modes, and the same variances as

if all six imperfection modes were included in the analysis.
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20-1 — 32 experiments by using a fractional factorial design. The predicted values of the
most probablenodal imperfectionaregiven in Tables.7 for each iteratioand a value of
A frac €qual t00.95. The predictedalues of the reliability index for each iteration are also
shown in Table 6.7. The resultifglure probabilitiesfor all of the values ofA;,,. , are
shown in the fourth column of Table 6.6.

A 10,000 data poinsimulationwas run toverify the resultdrom the RS/FOSM
method. As for the previousmulationsthe modal imperfection amplitudesere treated
as normallydistributed random numbers with variances as given in Table 6.5. A frequency
density diagram showintipe distribution of themperfect critical load igjiven in Fig.6.6.
The frequency density diagram was used to calcthattailure probabilities found in the
secondcolumn of Table 6.6. As witlthe first case,the values fromthe RS/FOSM
analysisand thesimulationare comparabléut for small failureprobabilitiesthe percent
difference is very high with anaximum ofapproximately 24oercent at avalue of A¢,,.
equal t00.95. The resulttom the RS/FOSM and themulationare plotted in théorm
of a cumulative distribution function in Fig. 6.7.

The number ohumerical experimentwas further reduced by noting, frofable
6.4, that thefirst and fifth modes are the most damant of the first six modal
imperfections. The RS/FOSM method was again used to calthidtelure probabilities
corresponding to the values ®f,,.  given in Table 6.6. The modal variances are the same
variances usedor the RS/FOSManalysis usingall six modes. The resultingpilure
probabilitiesare shown in the lagtolumn of Table 6.6. The results usiogly the two
dominant mode shapes arery similar tothe results for the RS/FOSM methosing all
six modes. Once agaithe results damot comparewell with the resultdrom the full six

mode numerical simulation.
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Table 6.7 RS/FOSM results for the 6 mode case for Williams' toggle frame) with

equal to 0.95.
a; iter. #1 iter. #2 iter. #3 iter. #4 quadratic
1 0.849E-02  0.884E-02  0.889E-02  0.890E-02  0.891E-02
2 0.911E-07  0.578E-07  0.350E-07  0.115E-07  0.668E-06
3 -0.872E-07  0.122E-06 -0.139E-06  0.218E-06  0.278E-06
4 -0.234E-07  0.360E-06 -0.501E-06  0.679E-06  0.730E-06
5 0.412E-02  0.439E-02  0.441E-02  0.442E-02  0.442E-02
6 0.895E-07  0.560E-07  0.329E-07  0.941E-08 -0.266E-06
6] 2.386 2.491 2.506 2.510 2.512
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Figure 6.6 Frequency density diagram for the 6 mode simulation for Williams' toggle
frame.
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Figure 6.7 Cumulative distribution functions for the 6 mode case for Williams' toggle
frame.
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A secondsimulationwas run usingnly thetwo domnant imperfection modes as
random variables. The variancks the two domirant imperfection modes remain the
same as irthe full six mode simulation. The distribution tfe imperfect critical load is
given by the frequency density diagram (Fig.8). The failure probabilitieswere
calculated usinghe frequency density diagram, aade tabulated in the thircblumn of
Table 6.6. The results froboth the RS/FOSM method wislix modes and theevo most
dominant modes are closer to the resfutisn the two mode simulation thafor the full
six mode simulation. As ithe 10 mode case, the RS/FOSNhBlysis essentiallignores
the non-dominantmperfection modes. The cumulative distributifem the two mode
simulationdata is plotted in Fig. 6.@long with thesix mode simulatiordataand the

RS/FOSM results.

6.3.2 Example 2: Star-Shaped Cap

Analysis ofthe perfect24-member hexagonal star-shaped cap was presented in
Chapter 4. The structure wasdeled using eight elemengsr nemberfor all members
except those thdbrm the base of the hexagon, atmsesix membersavere discretized
using onlytwo elementgper member. Theotal number of membergsed in theanalysis
was 156 and thdotal number of nodes wad45. For theimperfect analysis, all
translational degrees of freedom were allowed to be impevfbth resulted in a total of
N; = 417 imperfect degrees of freedom. The perfect star-shaped cap was found to

become unstable at lmit point where the loadnultiplier, (\..) was equal to

perf1
0.55348. The correspondimgtical load was equal t653.48 pounds. Thenperfection

shape for thetructure was taken to becambination ofthefirst 20 linear buckling mode
shapes. Thenaximum allowable imperfectionA,,.. , anywhere d@he structure, was

limited to four millimeters or0.4 centimeters. Thenaximumallowable variance at any
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Figure 6.8 Frequency density diagram for the 6/2 mode simulation for Williams'
toggleframe.
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point on the structure waslculated usingq. 6.9ands,,,, equal to three. The resulting

allowable variance is

Az \ 2 Acm\®
o3 = ( m) — (0 Cm) _ 1778 x 1072 (6.21)

Sma:v 3

As mentioned abovethe imperfection is modeled by usindpe first 20 linear
buckling modedor the structure. Thmodal variances were found using the least-squares
technique presented in Sectiérl and themaximumallowable variance fronkq. 6.21.

The variances$or eachimperfection modere shown inrable 6.8. The nexdtep was to

run a RS/FOSManalysis,but theanalysiscould not becompleted because, for such a
large problem, th@umber of requirechumerical experimentwastoo high. A screening
experiment was run to redutkee totalnumber of imperfection modes included in the
analysis. Because of the largeumber of experiments involvethe screeningprocedure
usingthe hypothesis test presented in Section 5.5 could not be used. Instead, the direction

cosines

99
o = n37a2 o, (6.22
(o)

1=1

were used t@xaminethe effects of each imperfection mode the perfect structure. The

partial derivatives were calculated using central differences:

dg  glai+3%) —glai— %)

aai - h (623)
whereh is equal td.1o0,, ang is the performance function
()‘CT)imp
g= —1— —1 (6.24
()‘CT)perf )

The resulting direction cosines were thermalized withrespect to the largest direction
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Table 6.8 Modal variances for the 20 mode analysis for the shallow reticulated cap.

Mode No. Modal Varianceg?,
1 2.576E-03
2 3.658E-03
3 3.799E-03
4 2.744E-03
5 2.159E-03
6 2.832E-03
7 1.452E-03
8 3.894E-03
9 4.342E-03

10 1.070E-03
11 1.385E-03
12 6.642E-04
13 1.080E-03
14 4.072E-03
15 4.579E-03
16 6.418E-04
17 1.336E-03
18 1.419E-03
19 6.091E-03

20 6.848E-03
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cosine and used to rank thedal imperfections. The modal rankings and corresponding
direction cosinesy; , are given in Table 6.9.

Using the 10 mostnfluential imperfectionmodes from Table 6.9, a RS/FOSM
analysiswas run to predict thiailure probabilitiefor thevalues ofA¢,,. given ithefirst
column of Table6.10. Afractional factorial design was used reduce thenumber of
required experiments @13 =128 . The valuéspf used in the analysis was 0.1, due to
the large amount of CPtime requiredfor the analysis. Predicted value$or the most
probable modal amplitudes; , atitk reliability index, 3 ,are shown inTable6.11 for
A rac €qual t00.94. Thefailure probabilities for all of the values &f,,. are shown in the
fourth column of Table 6.10.

A 5,000 data poinsimulationwas run toverify the resultsfrom the RS/FOSM
analysis. The simulationtreatedall 20 modal imperfection amplitudes as randeaniables
with variances as shown in Table 6.8. The distributiothefimperfect critical load is
shown using a frequency density diagram (Bi§). Thecalculated failure probabilities
are given inthe seconctolumn of Table6.10. The resultfrom the simulation and the
RS/FOSM analysis are comparable, but fosmall failure probabilities the percent
difference is high with anaximum ofapproximately 36oercent at\;,,. equal t0.88.
The results fronthe simulation andhe RS/FOSManalysisare used to plotumulative
distribution functions which are shown in Fig. 6.10.

A second 5,000 data poisimulationwas run toexaminethe effects of usingnly
10 of the 20imperfection modes. In this simulatioonly the 10 mostdominant
imperfection modesvere used in theimulation, andhe modal imperfection amplitudes
were treated asmandom variables witthe same variance (Tabi&.8) as ifall 20 modes
were used in thanalysis. The results of thaimulationare presented in thflerm of a

frequency density diagram which is shown in Fig. 6.11. The simulation data was then used
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Table 6.9 Modal ranking and direction cosines for the 20 modal imperfection
amplitudes for the shallow reticulated cap.

Mode No. o
1 1.000000
13 0.179522
4 0.063373
3 0.037874
2 0.037078
8 0.014320
9 0.014121
5 0.010386
7 0.010312
6 0.010250
12 0.006755
11 0.006691
10 0.006483
15 0.005256
14 0.005100
19 0.005049
20 0.004735
16 0.003211
17 0.003112

18 0.003092
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Table 6.10 Calculated failure probabilities, for the 20 mode analysis for the shallow
reticulated cap with a 4 mm imperfection, using simulation data and the
RS/FOSM method.

Simulation Simulation Response Response
Histogram Histogram Surface Surface
(20) (20/10)* (20/10)* (20/2)**

)\frac by by by by
0.88 0.018800 0.019200 0.011993 0.011938
0.94 0.185000 0.185800 0.141951 0.139019
1.00 0.587000 0.586200 0.500881 0.500910
1.06 0.891200 0.890200 0.849521 0.845737
1.12 0.984400 0.984800 0.975760 0.975864

* Results using the 10 most dominant imperfection modes, and the same variances as
if all 20 imperfection modes were included in the analysis.

** Results using the two most dominant imperfection modes, and the same variances
as if all 20 imperfection modes were included in the analysis.
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Table 6.11 RS/FOSM results for the 10 mode analysis for the shallow reticulated cap,

with A, equal to 0.94.

al iter. #1 iter. #2 quadratic
1 -0.450D-01  -0.463D-01 -0.533D-01

13 0.220D-05  0.244D-05 -0.226D-04
4 0.472D-04 0.504D-04  0.606D-04
3 0.201D-02  0.210D-02  0.239D-02
2 -0.339D-05 -0.369D-05 -0.564D-05
8 -0.248D-04 -0.245D-04 -0.249D-04
9 0.624D-05  0.637D-05  0.392D-07
5 0.584D-07  0.215D-06 -0.335D-04
7 -0.112D-04 -0.115D-04 -0.198D-04
6 -0.562D-02  -0.590D-02 -0.679D-02
B 0.905 0.931 1.072
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Figure 6.9 Frequency density diagram for the 20 mode simulation for the shallow

reticulated cap.

166



1.00

0.90 -
0.80 |-
0.70 -
0.60 -

F(A..) 050

0.40
20 mode simulation

0.30 — — - 20/10 mode simulation

o 20/10 mode RS/FOSM
0.20

[0 20/2 mode RS/IFOSM
0.10 |
0.00 : : : ;

0.70 0.80 0.90 1.00 1.10 1.20 1.30

A

frac

Figure 6.10 Cumulative distribution functions for the shallow reticulated cap.
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Figure 6.11 Frequency density diagram for the 10 mode simulation for the shallow

reticulated cap.
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to calculate thdailure probabilitiesfor the given values of\¢,,. .The calculatedailure
probabilitiesare given inthe thirdcolumn of Table5.10. The resultfom the 10 mode
simulationcomparewell with the resultdrom the full 20 mode simulation, indicatinthat
the 10 non-dominanimperfection modes doot cortribute much tothe calculation of the
failure probabilities. Once agairgsults fromthe 10 modesimulation andhe 10 mode
RS/FOSManalysisare comparable, but a large peradifference is foundor the smaller
failure probabilities. Results froitine 10 modesimulationare plotted in the form of a
cumulative distribution function in Fig. 6.10.

Furtherexamination othe modal sensitivities (Tabl&.9) reveals hat thefirst and
thirteenth modes are by far the most dwant imperfection modes. A RS/FOSMalysis
was run usingnly the two most dominantmperfection modes witlthe same variances
(Table6.8) as ifall 20 modes werencluded inthe analysis. The failure probabilities for
the given values of\;,,. areincluded inthefifth column of Table6.10. The resulttom
the two mode RS/FOSManalysiscomparewell with the resultsfrom the 10 mode
RS/FOSManalysis,but very poorly withthe simulationresults. This indicates that the
RS/FOSM isbasicallyignoring all but thetwo most dominantmperfection modesvhen

calculating the probability of failure.
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CHAPTER 7
CONCLUSIONS AND FURTHER RESEARCH

Probabilistic stability analysis ofstructures with random initial geometric
imperfections is an interestingpic that has drawthe attention ofnany investigators
over the years. Theroblem of approximating or simulatingitial geometric
imperfections is a relatively nefield of research. In the pasmperfectionpatterns for a
structure were developdtbm available imperfectiodatafrom similar structures. With
the increasinguse of lightweight reticulatedtructures, a method f@pproximating the
initial imperfections must beavailable for structures where there is no previous
imperfectiondata. Once an appropriataitial imperfection pattern is determined, an
efficient techniquanust be used to determine the probability of failure for the structure. A
method for approximatingthe initial geometric imperfections and calculating the
probability of failurefor a structure was presented in ChapterT®is methodoroduces
acceptable imperfectiopatterns and iselatively efficient in calculatinghe probability of

failure, but the method has several undesirable features which are discussed below.

7.1 CONCLUSIONS

A method for modling initial geometric imperfections was presented in Chapter 6.
The major problem witlthe proposed method @etermining which ohow many of the
linear bucklingmodes should be used to motlet imperfection. This problem leads to

two other significant problems. The first problem is thathe total variance, ortotal
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variability, changes depending uptre number of linear buckling modesed tomodel
the imperfection. Examininghe modal variance$or the 10 andsix mode toggldrame
analysesTabs. 6.1and6.5), reveals thathe totalvariance isnot thesame. The second
problem deals witlthe use ofmodal imperfections that dwot have a significaninfluence
on thecritical load. As shown for thexample problems i€hapter 6 (Table§.4 and
6.8), many oftheimperfection modes have almost influence orthe critical load. When
selectingthe number of linear buckling modes to modet imperfection, enough modes
should be chosen so that therné ae more than one dominamhperfection mode.Using
the method proposed in Chapter 6, idiicult to determinehow manymodes should be
used to guarantee that a certaumber of dominant modes will lpeesent in thanalysis.
Also, difficulties arise when trying tdecide the number of dominant modes that should be
included in the analysis.

Two different methodsvere used in Chapter 6 to determihe probability of
failure, orthe probability thatthe critical load wil fall below a specified fraction of the
perfect criticalload. The first method wasraimerical simulation thateated themodal
imperfection amplitudes as random variables vzi#gno mean and variances determined
from the proposedmperfection modeling schemeThe results fronthe simulation are
considered to be the most accurate, butnilmaber of required simulations makes the
method impracticafor general use. Thenly real problems to be exgted from the
simulation deal with choosingnoughsimulations to obtaiaccurate results. Also, certain
random number gemators are moreffective tharothers at generatingalues inthe tails
of the normal distributionThis can have a significant effect when calculating small failure
probabilities.

The second method presented was the response surface/first-order second-moment

(RS/FOSM) method. Results from the first-order second-moment (FOSM) method
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depend on the accuracy of the direction cosiags,which are computedrom the
derivatives ofthe performancdunction with respect to the various randovariables
included inthe analysis. The values oty; , along witthe performance function, are used
to predict theeliability index,5 . If an expliciexpression for the performanftenction is
known, then theralues ofa;; may becalculated accurately and the restriten the FOSM
method arevery good. For theexamplespresented in Chapter 6, the respossdace
method was used to determine an approximatiothefperformancdunction over a
specified region. The direction cosines,; , and tldiability index, 5, were then
calculated usinghe approximate function. Therefore, the resftrben the RS/FOSM
method dependntirely onthe approximate performané@nction whose coefficients were
estimated from a least squar@salysis. Once againthe significance ofthe individual
imperfection modes becomes a problem. The iterative resultstifidr® and 10 mode
analysis of Williamstoggle frame (Table$.3 and6.7) and the 10 modanalysisfor the
shallow reticulatectap (Table6.11) show that the predicted m@sbbable imperfection
amplitudes, forthe non-dominant modes, chantpeoughout the RS/FOSMnalysis. In
most cases the predictedlues, even though small, do not even follow a trend throughout
the iterative process. This indicates thathe RS/FOSM method isot accurately
predicting the most probabimperfection amplitudefor the non-dominanimperfection
modes and that thderivatives ofthe performancdunction with respect to the non-
dominant values ofi; are not accurate.Even though thevalues ofq; for the non-
dominant modes arsmall compared to the others, the predictedue ofthe reliability
index can be affecteehough to cause sagnificant difference inhe predictegrobability
of failure. Asnoted in Chapter Gmall errors in theprobability of failure willcause a

significant percent difference for small failure probabilities.
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The results fronthe example problemgresented in Chapter 6 (Tables 6%,
and 6.10) show that the RS/FOSM method produeasonablygood estimates of the
failure probability whercompared with the resulfsom the numerical simulations. Even
though the results of the RS/FOSM are good, they still may not be good enough to use for
calculating a highaccuracy estimate of theliability of the structure. However, the
results fromthe RS/FOSM methothay beuseful to a designavho only wants a quick
estimate of the distribution of the critical load for a preliminary design.

Problems with thenvariance ofthe total variability and lack of guidelines for
choosing theaumber of imperfection mod&splies thatthe calculated failure probabilities
are only good for the imperfection beingconsidered. In other wordshanging the
number of modes used to modké imperfection will change thegprobability of failure.
This can be a serious drawback if a designer plans to cortipamdistribution of the
critical loadfor two perspective designs thate similar in construction butayrequire a
different number of imperfection modes get thesame number of dominant modes. In
general, the method presented in Chapter Boisgood foraccurately comparing the
probability of failure for two different structures.

Another drawback to the RS/FOSM method is that largmbers of random
variablescannot béncluded inthe analysis. The 2¢ factorialanalysisused in the response
surface method causes the requimedhber of experiments to become lafgemoderate
values oft . Even if a fractional factorial analygfs,™ ysdsd and: — m is larger than
10, the responseurface method wilktill require at least 1,02éxperiments for one
iteration. For een larger values ok — m the number experiments approaches the
number of runs requiredor a full numerical simulation. Sincéhe resultsfrom a

simulation are more accurate, use of the RS/FOSM method is no longer an option.
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7.2 FURTHER RESEARCH

Future research istability of structureswith random geometric imperfections
shouldexaminenew methods for motlag imperfectionghat will resolve theproblem of
invariance ofthe total variability. Also, some guidelines should be established for
determiningthe number of imperfection modes used in the analysis and how many of these
modes should be dominant modes.

A second topic for future work is ttemlution of problems wherthe limit state is
a discontinuous function dhe imperfection amplitudes. Such problemsy occur for
structures thabecome unstable at an unstable symmetric bifurcatomt. Forproblems
like these, the FOSM methodlwnot work because of thdiscontinuity atthe point on
the failure surfacewhere theimperfectionsare zero. Previous research dealt withis
problem by assumingraon-zeromean imperfection which movése analysis to amooth
continuous portion of thimit state. Further workhould include different methods for
determining a mean imperfection shape with an amplitude based on recommended
fabrication tolerances. Also, methodther than the responserface method should be
used to solve these problesisce it is possibléor the experimentategion to straddle the
discontinuity and produce erratic approximations of the performance function.

A third topic for futurework would be the use of methods other tipaobabilistic
methods. Sincéhe failure probabilities fromthe RS/FOSM ar@ot very accurate, and
only problems withrsmooth performance functions can be solved, it is natural to wonder if
probabilistic methodsre even appropriate fahis type of problem. As an alternative,
fuzzy methods could be used tmalyzethe behavior ofthe critical load. In afuzzy
analysis, the modal imperfection amplitudes would be modeled usmgmbership
functions with shapes determined byexpert. The result of thiezzy analysisvould be

a valuefor the failure possibility rather than theprobability of failure. Use of fuzzy
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methods wouldeliminate many othe difficulties that occur when trying to model, or

approximate, the performance function in a FOSM analysis.
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APPENDIX A
FIRST VARIATION OF ROTATION AND DERIVATIVE
OF ROTATION MATRICES

A.1 FIRST VARIATION OF THE ROTATION MATRIX
The rotation matrix for the three variable form of the Euler axis/angle

parametrization is given in Chapter 3. In symbolic form, the rotation matrix is

‘R=1 +2b22R][+2b3 2R[[[ (Al)
where
0 —%p3 %o
Rir=| 3 0 — %1 (A.2)
— 20y 1 0
— (%% + %03) D1 by D1 03
R = 201 %9 — (%% + 92) o B3 (A3)
201%03 %02 B3 — (% + ¥2)
and
%y = — [p| sin|%g| (A.4)
23 = 2 |2¢|‘23m2|;’5| (A.5)

A typical component, R , of the rotation matrix is given by
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*Rij = | 4+ *b2°Ryz, + *b3 *Ryry, (A.6)

and is in general a function of all three rotation anges

The first variation of* i} is equal to

6(2Rij) = 6(2b2)2RH,;] + 2b26(2 RIL:])
+ 6(*3) "Ry, + b3 6 (*Rurr,) (A7)

Theterms(* R,) and(* R;,) areequalto

2 . & a(QRIL:) 2
5(*Ryz,) _,;a(%k) 5Cor) (A.8)
and
3 (2
§(°Ryrr,) = ;ag?g]f)’) 5(or) (A.9)

Therefore, thdirst variation of eachiotation component will igeneral have three terms.
To simplify future computations thiirst variations of’R;; andR;;;  will be stored in the

9 x 1 column vector§(°R;;) and(°*R;;;) . The expressiorsfoR ;) is

6(2953{1) — DRI 6<2¢) (A.10)

3x1

where the matribRIl is

0o 0 0
0o 0 -1
o 1 0
o o0 1
DRI=| 0 0 0 (A.12)
-1 0 0
0 -1 0
1 0 0
0 0 0|
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The expression faf(°R,;;) is
2
6(2%{1) = DRIl 5(34)1) (A.12)

and the matribDRIIl  is

0 — 2% — 2%
209 “¢1 0
203 0 “¢1
209 "1 0
DRIl = | — 2% 0 — 2 %03 (A.13)
0 203 “2
203 0 “$1
0 203 “2
| —2 201 — 2% 0

The scalar$b, anth; are alsmctions ofall three rotatiomangles. Therefore,

the first variation of each will result in three terms. The first variatiotbef is

3. 9(%,)
by) = Ko A.l4
where
a(*b 2 172 . 2 2 41— 2 0 ’
So = (11 sinlgl - Pol” cosl'0l) 52 (n15
and
a(|2¢|) 2 41— 12
= A.16
Similarly, the first variation of’b; is
3. 9(%s)
5(%b3) = 5oy, A.l17
(*D3) ;0(2@) (“ox) (A.17)
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where

8(2b3) o 92 ,1—2 . |2i| |2i|
9o <2| | “sin 5 €05,

3 '8l o(I’8))
_apglPsinz 2 A.18
With the first variations ofthe various portions of the rotationatrix known,the vector

form of the first variation of the rotation matrix may be expressed as

6(28) = DR02 6(2¢) (A.19)

9x1 3x1

where eacliow of DRO2 iscomputedusingEqgs. A.11 and A.13&long withEgs. A.14-
A.18.

A.2 FIRST VARIATION OF THE DERIVATIVE OF THE ROTATION
MATRIX
The expression for thirst derivative ofthe rotationmatrix wasgiven inChapter
3. The expanded form difie first derivative ofthe rotationmatrix is shown in Fig. A.1.
The first variation ofthe derivative ofthe rotation components, just like the rotation

components themselves, will be stored in vector form. The resulting expression is

2
5(:R') = [OMGM1 RM1 | ZEZ) (A20

9x1
3x1

The matrice©OMGM1 arRM1 are given in Fig. A.2.

The vector’w is related to tHist derivative ofthe rotation vector by Eq. 3.43.
Whenwritten in a form that is compatible with thattbe rotationmatrix, theexpression
for w becomes
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2 2 2 2 2 2 2 2 2 2 2 2
w3Ro1 — “woRz1  “w3Roy — “wr'R3y  “w3™ oz — “wo'R33
2D/ 2 2 2 2 2 2 2 2 2 2 2 2
R = | wiR31 — “w3'Ri1  “wiRza — “w3'Rip  “wi ™R3z — “w3Ry3
3x3 2 2 2 2 2 2 2 2 2 2 2 2
woRip — ‘w1 Re1  “woRig — “wi1'Ree  “wo'Ri3 — “w1Ra3

Figure A.1 Expanded form of the first derivative of the rotation matrix.
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[0 0 0 ws 0 0 —’uw 0 0 |
0 0 0 0 %ws 0 0 —’uw 0
0 0 0 0 0 %ws 0 0 -’
—%ws 0 0 0 0 0 201 0 0
OMGM1 = 0 — 2y 0 0 0 0 0 201 0
0 0 — 2w 0 0 0 0 0 201
%Wy 0 0 — %0 0 0 0 0 0
0 %Wy 0 0 -2 0 0 0 0
0 0w 0 0 - 0 0 0 |
[0 —Ry Ry |
0 — Rz Ry
0 —R33 "R
"R 0 —Ru
RM1 = | “Rs 0 — R
“Rss 0 — "Ry
—"Ryi Ru 0
—Ryy Ry 0
| —Rys Rus 0

Figure A.2 Matrice©OMGM1 ar@M1 from the matrix expression for the first
variation of the derivative of the rotation components.
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‘w= (I +%c2’Rys +*c3 *Ryr) 7@’ =D j¢' (A.21)
The scalaréc, and; are given in Chapter 3 but are repeated here for convenience;
2
= —2 |2¢|_28in2|;ﬁ|, (A.22)
and

cz = |%p| (%] — sin|’p|) (A.23)

The first variation of>°w may be written as

6(w) = 8(*D) i’ + *D5(¢) (A.24)
or in terms of partitioned matrices as

/() s
o(i#)

3x1

(i) [P 2

3x1 3x3

where the matri®HPM1 is shown in Fig. A.3. Using Eq. A.25, the partitioned vector

o

Ao 000

-5 g o] |2() w29
LG

The first variation ofthe components ofD is computed in tsme way ashe first

variation of the components ofR . Thesulting expression fdhe first variation of a
typical component oD is

8(°Dij) = 8(c2)*Ruz, + *c28 (*Ru,)
+ 6(263) QR]][M + 263 6(2RIILI,7) (A27)

whereé(* R;,) and(* B,) argiven byEgs. A.8 and A.9. Computation of tfiest
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Figure A.3 MatrixPHPM1 required for the calculation’af.

190



variation of the scalare, adc; is similar to that’fer  “Apd

6(%cy) = §3 O cz) 6(dr), (A.28)
k:la(Qd)k)
and
2.\ : 8(263) 2
6(%cs) = kE_l o) 6(*or) (A.29)

The partial derivatives are given by

0Cca) (0.2 . |2i| @
o) <2| @| “sin 5 €05,

2 -3 o'l O(I°8])
— 4)°¢| “sin 2) en (A.30)

and

(A.31)

- d(or)

0(%s) ( —2  cos|’d| Ssm|2¢|> R)
- 2,13 2 .13 + 9 14
KR |

Just as with theectorform of §(°R), the vectorform of §(*D) may be written in terms of

the rotation vector'¢ , as
§ (%9) = DDO2 6 (%p) (A.32)
9x1 o 3x1

where eachiow of DD02 contains the three terms that result from the first variation of the
various portions of thenatrix°D. The partitionegtectorfrom the right-handside of Eq.

A.26 can now be written as
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6(2531) DR0O2 0 6(2)
( ol

9
2

ey Lo 1)
3

x 1

(A.33)

Using Eqgs. A.20, A.26, A.33, andarrying out the requiredmatrix multiplicationyields

the final expression for the variation of tifiest derivative ofthe rotationmatrix which is

given in Fig. A.4. A more compact expression&gR’) is
6<2¢)
5(:r') = [DRPL DRP2]| \:* (A34)
9x1

5(i#)
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5(2Rf) - [(OMGMl DR0O2 +RM1 PHPM1 DD02) RM1 QD]
9x9 9x3 9x3 3x9 9x3 9x3

9><~1 9x3

3
(i)

Figure A.4 Final expression for the variation of the first derivative of the rotation
matrix.
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APPENDIX B
EXPANSION AND LINEARIZATION OF THE
LARGE ROTATION MATRIX

The incremental form of the large rotation matrix is

R='R+R (B.1)

where the rotatiomatrix R is linear inthe rotationanglesy;, . From Appendix A, the
expanded form ofR is

2R = | +2b22R11+2b32R111 (BZ)

The incremental form of Eq. B.2 is

R=1+("by +b)('Ryr +Ryp) + (b3 + b3)(Rpr +Ryr) (B.3)

When expandedR becomes

R=1+"Ry+ R
R

+ 272 Rrr + ba'Ryr + b3Ryyr + by 1RHL (B.4)

R

The matrix'R isthe arbitrarily largerotationmatrix which haghe same form asR  from
Chapter 3 and the matrR  represents a small incremental rotation from configuration 1 to
the final configuration 2.

The smallrotationmatrix R is found by expandiniipe largerotation matrix °R in

terms of the small rotation angles . The expansion of the mRiix IS
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Rir = 'Rir + Ryy (B.5)

where
0 — o3 oo
'Ry=| '¢3 0 — o (B.6)
— oy ' 0
and
0 —¢3 @2
Rir=| ¢3 0 — ¢ (B.7)
— ¢ O 0

Expansion and linearization of the mafifi;;; leads to

*Rirr = 'R + R (B.8)

where the matriceR;;; arf;;; are given in Fig. B.1.
The incremental forms of the scaldbs and’b; are found by using the incremental

rotation angles

‘0 = '¢i + ¢ (B.9)
From Chapter 3, the expression foy is
y = — '¢| sin|'| (8.10)
The magnitude of the rotation angle is given by
%] = (30 + %6+ ) = (%7 )" (B.11)
The incremental form df¢| is
P6l = (‘67 ‘¢ +2 0" 6 +¢7 @) (B.12)
Taking a binomial series expansior| ‘of| and neglecting all higher order tepms in  leads

to
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‘01109 — ("¢} +'¢3) ‘oo 3

- (1¢§ + 1¢§) o1 P9 "1 03
'R =
'o1' 03 '$o'd3 — ("% +'¢2)

— 2("papa + 'P303) (‘o102 + 'P2001) (‘o103 + 'o301)
R = (‘o102 + 'P201) —2("p11 + 'P303) ("p203 + 'P309)
(‘o103 + 'o301) ("p203 + 'P30) —2("p101 + 'P202)

Figure B.1 MatricesR;;; andR;;; from the expansion of the matifik;;;
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%8| = '¢| +'¢| ' (‘¢ @) (B.13)

The expression forin(|’¢|) may beexpanded usingeq. B.13and the trigonometric

identity

sin(a+ B) = sina cosf + cosa sinf3 (B.14)
where

a=1'g| (B.15)
and

s=1'¢l"('¢" ¢) (B.16)

Making the substitution gives

sin(|’g|) = sin(|1¢|)008(|1¢|_1(1¢T ¢))

+cos(|'¢l)sin('el ' ('¢” ¢)) (B.17)
Since thep; are small
sin(|*|) = sin(|'¢|) + cos(|'¢)) (I's " (‘6" 9)) (B.18)

Expandinqz¢|_1 using a binomial expansion and neglecting higher orderd¢erms  gives

2 =g — |'8| (‘8T ¢) (B.19)

-1
|

The expression foib, reduces to

-1 .
hy = —|'g[ " sin|'g|

1hy

+ (1" sin(l'g]) ~'6[cos(|'e])) (6" ¢) (8.20

by
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The expression foh; , from Chapter 3, is

2 o]’
by = 29| sin27 (B.21)
Using Eqg. B.18, the term
K '¢] S el '
sin27 = sin’ 5 +|'p| sin 5 6087(1¢T ®) (B.22)

Using a binomial expansion and neglecting higher order terms, the expression for

6|2 =1'8| " —2/'s| (‘87 ¢) (B.23)

-2 -2
| |

Combining Egs. B.22 and B.23, the expansiorbef  is

1
2b3 =2 |1¢|25in2|2¢|

1b3

[ 1 1 ’, 1
+ (2|1¢|35in|2¢|005|2¢| -4 |1¢|45in2|2¢|> (1¢T ¢) (B.24)

The producth, R;; is stored in @9 1 vecRjx which is equal to

R, = RAMOL ¢ (B.25)
9x1 9x3 9x3
where
[0 0 0 |
0 0o -1
0 1 0
0 0 1
RAMOL = by | O 0 0 (B.26)
-1 0 0
0O -1 0
1 0 0
| 0 0 0 |

The product ob, andR;; can be calculated by writing the séalar  as
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by = Bo('¢1 ¢1 + b2 P2 + 'P3 ¢3)

where

By = (1'g| *sin(|'g]) - |'6| *cos('p)))

The producth,'R;; is stored in thex9

R, = RBMO1 ¢
9x1

9x3

9x3

where

RBMO1 = B,

0
— 013
‘o110
‘o1 s

0
—'¢1'%1
— 919
‘o1l

0

The productb; R;;; is stored in thexd

9x1

where

RCMO1 = *bs

9x3

Rc = RCMO1 ¢

9x3

0
'
'3
'
—2'¢y
0
‘3
0
| —2'¢y

1 ved®s which is given by

0
— '3
RN
RN
0
— 019
— 'y
o1 0o
0

1 vediy¥ which is given by

— 2y —2'¢3
‘o1 0
0 ‘o1
‘o1 0
0 — 21¢)3
'3 '
0 ‘o1
'3 '
—2'¢, 0 |

0
— '¢3'¢3
‘o 3
'3 3
0
— 913
— '3
‘1P
0

(B.27)

(B.29)

(B.29)

(B.30)

(B.31)

(B.32)
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The scalab; can be rewritten as

by = B3('1 &1 + 'd2 9o + b3 d3) (B.33
where
B3 = <2|1¢|_33in|2¢|cos|2¢| — 4|1¢|_4sin2|2¢|> (B.34)

The product ob; andR;;; is then expressed as

R, = RDMO1 ¢ (B.35)

9x1 © 9x3

where thematrix RDMO1 is shown in FigB.2. Theresultingvectorform of the small

rotation matrixR is

R = RTMO1 ¢ (B.36)

9%1 9x3  g9x3

where the matriRTMO1 is
RTMO01 = RAMO1 +RBM01 + RCMO01 +RDMO01 (B.37)
9x3 9x3 9x3 9x3 9x3
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[ (foy+'03)'or — (oy+'95) 02 — (105 +'63) 05
101 101 101
o o o,
'Cra' oy 'Cra'po 'Cra'p3
RDMOL = By | — (16} +'63)'o1  — ("6} +'63)'62  — (6} +'03) 03
'Co3' 1 'Cy3'po 'Cy3'd3
'Ci3'1 'C13'd2 'Cr3'd3
'Co3' 1 'Cy3'po 'Cy3'd3
|~ (ot 00) o0 — (6 +10)'0n — (6] +16)'0s

'Cla = '¢1 99
'Ci3 = '¢1'93

'Cas = ‘9903

Figure B.2 MatrixRDMO1 from the expression for the ved}gy.
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APPENDIX C
EXPANSION AND LINEARIZATION OF THE
DERIVATIVE OF THE LARGE ROTATION MATRIX

The derivative of the rotation matrix was given in Chapter 3 as

R'= — % R (C.1)

The incremental form of this expression is

R = — (‘& +&)('R+R) (C.2)

which when expanded gives

R= —0R +(-'"@R-&'R) (C.3
(1)R/ UR/

The above expansion neglettg higherorder termgesulting fromthe product ofo and
R. The matrix R’ representthe derivative of the largerotation from the initial
configuration 0 to the intermediate configuration 1. The mgRix  contains the derivative
of thesmallrotationfrom configuration 1 tahefinal configuration 2. A 9% Vector R’
will be used to store theomponents of theatrix R’. Thevector R’ will be computed
in two parts and stored in the two vectglRs,  #R.

The first portion of R* contains the results of the matrix product

R,= —'@R (C.4

0

where the vector form is given by
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MO1 R (C.5)
: 9 x

The vectoR is the vector form of the incremental rotafon  and the ned#t@MO01
given in Fig. C.1.
The second part R’ is the vector form of the matrix product

R,= —& 'R (C.§

The vector form of R}, is

9x1

where the matriRMO1 is

0 —'Ry1 'Ry
0 — 'Ry 'Ry
0 — 'Rz 'Ry
'Ry, 0 —'Ru
RMO1=| 'Ry O — 'Ry (X
'Ry3 0 — 'Ry3
—'Ryi 'Rn 0
—'Rys 'Ryy 0
—'Ry3 'Ry 0

and the vectow is thiecremental form othe angular velocityectorwhich isyet to be
determined.

The angular velocityector is related to thirst derivative ofthe rotationangles,
»¢;, by the expression

2w = 2D 2¢ (C.9)

The incremental form of this expression is

‘w= D¢ +'D,¢' +D¢
lw w

(C.10
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0
1
w2
0
0
w1

O O O oo

w3

o O o o-

w3

o O o~

0

w1

© o oo

© o oo

OMGMO1
9x9

Figure C.1 MatrbOMGMO1 from the expression L@’A.
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where thehigherorder termspD ¢’ , &ve been neglected. The incremental form of the
angular velocityw, will be computed in two parts.

The first part otv is stored @4 and is equal to

wyg = 1D 0¢/ (Cll)

3x1 3x3 3x1

where thematrix 'D takes on thesame form ashe matrix 2D given inChapter 3. The
second part ab  igiven by

wp = PHPMO1 D
3x9

3x1 - 9x1

(C.12)

The 9x 1 vectoD is the vectdorm of the matrix D which containghe linearized

portion of 2D, and vl be computed in the next section. The transpose ofhthgix

PHPMO1 is

lr 0 0

o, 0 0

o, 0 0

0 ¢, 0

PHPMO1" = | 0 [¢;, O (C.13

0 ¢, O

0 0 4

0o 0 4

| 0 0 ¢

The matrices’D andR aramilar in structure, therefore thexpansion and
linearization of?D proceeds in thesame way ashe expansion and linearization of the
matrix’R . The incremental form of the matfx is

D = L+ o R + ‘e JRIE
'D

+ YeaRyr 4+ caRyr + 'esRyrr + 3 Rypr (C.14

D
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The vector form oD il be stored in a % 1 vectdd thatillbe computed in four
parts corresponding to the foomatrices given inthe above expression. Thgpressions
for the matricesR;; Ry 'Ry . anB;;  wegiven in Appendix B. Theincremental
forms ofthe scalar$c, an@; are computed inghme way atheincremental forms of
the scalardb, ant;

The expression forc, is theame asthe expression forb; (Appendix B).
Therefore, the incremental form@f, s

1
262 =2 |1¢|25in2|2¢|

1
C2

1 1 1
L el |¢|_ 1*4-2|¢|
+ (2| ¢| sin 5 cos 5 4| ¢| sin 5

) (4" 9 (€15

The expression fotc; is
ey = ['g| " (I*¢| - sin|’g]) (C.16
From Appendix B, the incremental form|6®| is
28l = (17 '+ 28" ¢+ " ¢)’ (€17
The expression qu¢|‘3 can be written as

_3
2

26|’ = (‘o7 'p+2 0" ¢+ 6" ¢) (C.18

Taking abinomial expansion ofthe aboverelationship and ignoring high@rder terms
gives

Pl =1'¢l " =3¢l " ('6" @) (C19
The incremental expressidaor sin|*¢| was given in Appendix B, and when combined with

Eq. C.19 yields the incremental expression’fgr ~ which is equal to
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s = 'l ("¢l - sin|'g))

—

lc3

+ |1<]5|_4 (3|1¢|_1sin|1¢| —2— cos|1¢|) (1¢T ¢) (C.20

—

-~

C3

The first part oD is found from the produet R;; and is stored in the vBgtor
The resulting expression f@r, is

D, = DAMO1 ¢ (C.21)

9x1 3x1

and the matrbbAMO1 is

0O 0 O
o 0 -1
0o 1 0
o 0 1
DAMOL='c,| 0 0 0 (C.22

-1 0 0
0 -1 0
1 0 0

0 0 0|

The secondgart of D isfound fromthe product ofc;’'R;; . The result is stored in the
vectorDy which is calculated from

Dy = DBMO1 ¢ (C.23

3x1 h 3x1

where the matrbbBMO1 is given by
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0 0 0
— 01’03 —da'os  — o3l
‘o1 o "o ' o "o ' g
‘o1 dg "o ' g '3 dg
DBMOL=C,| O 0 o |, (C.24
— o101 —o1'ds — 1o
— 01’0y —da'ds  — oo
‘o1 ‘o1 o ‘o1 dg

| 0 0 0o |
and the tern€, is equal to
1 1 1
Cy = <2|1¢|_3sin| ;Mcos| ;M - 4|1¢|_4sin2|2¢|> (C.25

The thirdpart of D isplaced in thevectorD, whoseelementsare computedrom *c3 Ry;;
which in vector form is

D, = DCMO1 ¢ (C.26

9x1 b - 3 x1
The matrixDCMO1 is

0 — 2y —2'¢y ]
' ‘o 0
'3 0 ‘o
' ' 0
DCMOL = ey | —2'¢; 0 —2'g (c.27

0 '3 '
'3 0 '

0 '3 '

—2'¢;  —2'¢y 0

The final portion of D isgiven bythe vectorform of the productc;'R;;; . The result is
stored in a vectoD,, which is computed by,

D, = DDMO1 ¢ (C.28

9x1 3x1
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where thematrix DDMOL1 is shown in FigC.2. WIth the variougieces oD defined, the
final expression foD can be written as

D =DTMO1 ¢ (C.29

3x1 h 3x1

where the matrildoTMO1 is equal to
DTMO1 = DAMO1 +DBMO1 + DCMO01 +DDMO1 (C.30

Using Egs. C.5 and C.7 the vect&®’ may be written as
/R =OMGMO01 R +RMO1 w (C.3))
9x9 9x3 3x1

9x1

From Appendix B
R =RTMO1 ¢ (C.32

3x1

which makes the vectgR’ equal to

R’ = OMGMO1 RTMO1 ¢ +RMO1 w (C.33

3x1 9x3 3x1

Using Egs. C.9, C.10, and C.12 the vector is equal to
@, =PHPMOL1D +'D ¢/ (.34

9x1 3x3 3x1

Substituting Eq. C.29 into the previous expression gives

1
4, = PHPMO1 DTMO1 ¢ + D ,¢' (C.39

3x1 3x3 3x1

The above expression far is then substituted into the expressiqR'f¢Eq. C.33)
which yields
UB’ = OM%I;/IOl RTgMpl (o) +RI})/IX91 PHEMOl DTgMpl (o)

9x1 3Ix1 3Ix1

+RMO1'D ¢’ (C.36)

3x3 3x1

After grouping the coefficients ¢f apd’ , the veg®fbecomes
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[~ (op+105) o — (‘op+'65)' e — (') + '63) 0
'Cra' o1 'Cra' 09 'Cra' o3
'Ciz'on 'Ci3'do 'Cis'os
'Cra' 1 'Cra' 09 'Cro' o3
DDMOL = C5 | — (67 +'¢3) o1 — (67 +765) '¢n  — (o} + '65) 03
'Cosz' 'Cas' o 'Cas's
'Ciz'on 'Ci3'do 'Cis'os
'Cosz' 'Cas' o 'Cas's
|~ (ot 00)'or — (0 +19)'0n — (6] +16) "0

'Cla = '¢1' ¢
'Ci3 = '¢1'93

'Cas = ‘9903

Cs = |1¢|_4 (3|1¢|_1sin|1¢| —2— cos|1¢|)

Figure C.2 MatrbODMO1 from the expression 9.
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R = [RVPI‘Egl RPBZ] [“] (C.37)
where the matriRPR1 is equal to
RPR1= OMGMO01 RTM01 +RMQ1 PHPMO1 DTMO1, (C.38
9x3 9x9 9x3 9x3 3x9 9x3
and the matrbRPR2 is equal to

RPR2 = RgMpllD (C.39

3x3
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