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Abstract

 With the increasing use of lightweight frame-type structures that span long

distances, there is a need for a method to determine the probability that a structure having

random initial geometric imperfections will become unstable at a load less than a specified

fraction of the perfect critical load.  The overall objective of this dissertation is to present

such a method for frame-type structures that become unstable at limit points.  The overall

objective may be broken into three parts.  The first part concerns the development of a

three-dimensional total Lagrangian beam finite element that is used to determine the

critical load for the structure.  The second part deals with a least squares method for

modeling the random initial imperfections using the mode shapes from a linear buckling

analysis, and a specified maximum allowable magnitude for the imperfection at any

imperfect node in the structure.  The third part deals with the calculation of the probability

of failure using a combined response surface/first-order second-moment method.

Numerical results are presented for two example problems, and indicate that the proposed

method is reasonably accurate.  Several problems with the proposed method were noted

during the course of this work and are discussed in the final chapter.
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CHAPTER 1

INTRODUCTION

Over the years, a lot of research has centered around determining the effects of

initial imperfections on the stability of a structure.  Interest in this area began to grow

when investigators found large discrepancies between theoretical buckling loads and actual

experimental results.  Koiter (1945) hypothesized that all structures have some form of

small initial imperfections, in spite of how carefully they were manufactured, and that it is

these small unavoidable imperfections that cause the large differences between theoretical

and experimental results.  Koiter (1945) went on to identify two specific types of

instability that cause structures to be sensitive to geometric imperfections.  The first is

bifurcation at an unstable symmetric bifurcation point, and the second is bifurcation at an

unstable asymmetric bifurcation point.  The most common form of instability occurs at a

limit point and is not as sensitive to geometric imperfections (El Naschie 1991), but a

significant variation in the critical load can still occur for realistic imperfections.

Since the work of Koiter (1945), the imperfection sensitivity of various types of

structures has been analyzed.  Analysis of the imperfection sensitivity of cylindrical shells

and stiffened cylindrical shells has been the focus of most of this work.  An extensive

review of work pertaining to perfect and imperfect analysis of cylindrical shells can be

found in the review paper by Simitses (1986).  Various types of analyses have been

proposed for examining the distribution of the critical load for cylindrical shells with

random geometric imperfections.  Most of these analyses determine the mean values and
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variances of the imperfections using imperfection data from previously manufactured

shells of a similar type.  Very few results have been presented for structures where the

shape and magnitude of the initial imperfections is not known.  These types of structures

include one-of-a-kind structures where there is no prior experience with the different types

of possible geometric imperfections.

Some of the more interesting types of structures are lattice domes or shallow

reticulated caps that span long distances.  These structures function as space frames, and

are often used in place of continuous shell-type structures.  The most common mode of

failure for these structures is instability, which occurs at a limit point.  The complex

geometry used in the design of reticulated structures usually prevents a closed form

solution for the critical load.  Large deformations before the limit point require a

geometrically nonlinear finite element analysis to determine the critical load.

Most reticulated structures are one-of-a-kind type structures where little if any

knowledge is known about the initial geometric imperfections.  Since most of these

structures become unstable at a limit point, the imperfect critical load will not be extremely

sensitive to geometric imperfections.  However, from a probabilistic standpoint, the

variation in the critical load is important when calculating the reliability of the structure.  If

a maximum tolerance for the initial imperfection at any point on the structure is specified,

the resulting distribution of the critical load may be approximated using probabilistic

methods.

1.1 OBJECTIVES

The objective of this work is to investigate the distribution of the critical load, due

to random initial imperfections, for frame-type structures that become unstable at limit

points.  The distribution of the critical load is found by determining the probability that the
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critical load will be less than specified fractions of the perfect critical load.  The above

objective may be broken into three parts.  The first part concerns the development of a

three-dimensional total Lagrangian beam finite element that will be used to determine the

critical load for the structure.  The second part deals with a least squares method for

applying initial imperfections to a structure using the mode shapes from a linear buckling

analysis, and a specified tolerance for the maximum allowable imperfection at any single

point on the structure.  The third part addresses the problem of approximating the

probability that the structure will become unstable at a load less than a specified fraction of

the perfect critical load.

Chapter 2 contains a short review of the references that were most helpful in

carrying out the above objective.  The first section deals with existing nonlinear three-

dimensional beam finite element formulations, and the second deals with the solution of

nonlinear systems of equations.  The third section contains the references that were most

useful for reliability and response surface methods.  The fourth section contains a brief

review of some of the more interesting work dealing with stability of structures having

initial geometric imperfections.

The third chapter describes in detail the development of the equilibrium equations

for a total Lagrangian formulation of a three-dimensional nonlinear beam finite element

that allows large cross-sectional rotations.  The resulting finite element is required for the

calculation of the critical load for the structure.  Chapter 3 also includes all of the matrices

required for programming of the proposed element.

The fourth chapter deals with solution of the nonlinear system of equations that

result from the finite element formulation presented in Chapter 3.  The first part of the

chapter contains the incremental form of the equilibrium equations and the second presents

three numerical solution techniques to solve nonlinear systems of equations.  The third
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part of Chapter 4 contains some example problems to test the proposed finite element

formulation and the solution technique for the nonlinear system of equations.

Chapter 5 covers reliability methods and response surface methods.  The first

portion of Chapter 5 covers the first-order second-moment method which is used to

approximate the probability of failure for a system.  The second part of the chapter deals

with response surface methods.  These methods are used to approximate the performance

or output of a system using simple polynomial relationships.  The last part of Chapter 5

covers the combined use of the first-order second-moment method and the response

surface method.  The response surface method is used to generate an approximate

expression for the performance of a system which is then used by the first-order second-

moment method to calculate the probability of failure.

Chapter 6 describes the proposed technique for modeling initial geometric

imperfections and then demonstrates how the technique is used to calculate the probability

of failure for two different structures.  The first part of the chapter presents an

imperfection modeling scheme which is based on a least squares distribution of the

geometric imperfections using linear buckling modes as imperfection shapes.  The

resulting imperfections are then used to modify the nodal coordinates of the perfect

structure.  The second part of the chapter covers the specific use of the response

surface/first-order second-moment method for calculating the probability of failure.  The

final part of Chapter 6 demonstrates the proposed technique on two example problems:

Williams' toggle frame and a 24-member star-shaped shallow reticulated cap.

The seventh chapter discusses some of the results and trends from the examples

presented in Chapter 6.  Also, Chapter 7 discusses some of the problems with the

proposed method and some recommendations for future work in the area of probabilistic

stability analysis of structures with random initial geometric imperfections.
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CHAPTER 2

LITERATURE REVIEW

Investigation of the stability of an imperfect geometrically nonlinear frame-type

structure requires knowledge of nonlinear finite element analysis, solution of large systems

of nonlinear equations, reliability methods, and techniques for modeling initial

imperfections.  Using each of these tools, it is possible to examine the distribution of the

critical load for a structure having random initial geometric imperfections.

2.1 THREE-DIMENSIONAL BEAM FINITE ELEMENTS

Over the years, various researchers have proposed different finite element

formulations for the analysis of space-frame structures.  Oran (1973, 1976) pointed out

that a large rotation in three-dimensional space cannot be treated as a vector.  Oran (1973)

also noted some of the problems with formulations from earlier works and mentioned that

these formulations would only be good for small displacements because of the way that

rotations were treated during the analysis.  Oran (1973) presented a corotational

formulation in which the rotations and translations of the joints were large, but the basic

force-displacement relationships for each member were based on conventional beam-

column theory.  This type of method assumes that deformations within a given load

increment are small.

Significant progress in the analysis of space-frame structures came when Bathe and

Bolourchi (1979) and Bathe (1982) introduced an updated Lagrangian and a total
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Lagrangian formulation for a large deformation, large rotation beam finite element.  Once

again, Bathe and Bolourchi (1979) note the difficulty of the problem due to large

rotations.  In both the updated and the total Lagrangian formulations, Bathe and Bolourchi

(1979) use Euler angles to define the rotations of the beam and conclude that the updated

formulation is computationally more efficient because less effort is required to calculate

the strain-displacement transformation matrix.

More recent research in the formulation of finite elements for the analysis of space-

frames has focused on the use of total Lagrangian formulations with alternative

parametrizations for the large rotations.  The equilibrium equations for large deformation

and large rotation analysis of a three-dimensional beam were presented by Novozhilov

(1953).  In this work, Novozhilov notes that the cross-sectional rotations are equivalent to

the large rotations of a rigid body and suggests that Euler angles may be used to solve the

problem.  As mentioned above, Bathe and Bolourchi (1979) found that the total

Lagrangian formulation was very inefficient when combined with the use of Euler angles.

As an alternative, Fellipa and Crivelli (1991) and Crivelli (1991) introduced a formulation

that allowed the use of alternative rotational parameters such as the rotational vector or

Euler parameters.  The results presented by Crivelli (1991) are based on a formulation that

uses Euler parameters, but specific mention is made of a formulation that would include

the rotational vector.  Crivelli (1991) concludes that his constant curvature formulation

using Euler parameters is superior to the formulation using the rotational vector but

provides no numerical results to support his conclusion.  The work presented by Crivelli

(1991) was later duplicated by Ibrahimbegovic et al. (1995) which presented their version

of a total Lagrangian formulation using the rotational vector.  One interesting addition is a

rescaling factor for the magnitude of the total rotation.  The proposed rescaling factor

cures the problem of non-uniqueness near the total rotation magnitude .1
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2.2 SOLUTION OF NONLINEAR SYSTEMS OF EQUATIONS

Large deformation analysis of space-frame structures requires solution of a

nonlinear system of equations.  Nonlinear systems of equations are most commonly solved

using iterative incremental techniques where small incremental changes in displacement are

found by imposing small incremental changes in load on the structure.  The resulting

solutions are used to plot a curve in space, which is referred to as the equilibrium path for

the structure.  An excellent review of solution techniques for nonlinear finite element

analysis is given by Crisfield and Shi (1991).  Explanation and details of implementation,

for the most popular solution techniques, are given by Crisfield (1991).  The most

common technique for solving nonlinear finite element equations is the Newton-Raphson

method.  The Newton-Raphson method is famous for its rapid convergence but is known

to fail at points (limit points) on the equilibrium path where the Jacobian (tangent stiffness)

is singular or nearly singular.  Bathe and Cimento (1980) talk about some of the problems

with the Newton-Raphson method and present various forms of the method that involve

accelerations or line searches to maintain convergence during the solution process.

More recently, arc length methods have been used to overcome the problem of

tracing the equilibrium path in the neighborhood of limit points.  The arc length methods

are very similar to the Newton-Raphson method except that the applied load increment

becomes an additional unknown.  A comparative study of arc length methods was

presented by Clarke and Hancock (1990).  The original idea behind the arc length method

was introduced by Riks (1972, 1979) and Wempner (1971).  The original method

proposed by Riks and Wempner destroyed the symmetry of the finite element equations

and made the numerical solution inefficient.  The Riks-Wempner method was later

modified by Crisfield (1981) and Ramm (1981) to retain the symmetry of the finite

element equations.  Both researchers proposed two methods for modifying the original
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procedure of Riks and Wempner.  The first constrained the iterative process to lie on a

plane normal to a tangent to the equilibrium path.  The second, constrained iteration to the

surface of a sphere whose radius is a tangent to the equilibrium path.  In both cases the

length of the tangent is specified by the user.  Both methods are used extensively in

current finite element work.  Iteration on a normal plane is the easiest solution to

implement, but iteration on a sphere has proven to converge in more cases.  A study of the

convergence of iteration on a sphere was presented by Watson and Holzer (1983).  The

method was found to have quadratic convergence for a single degree-of-freedom system,

and a slightly lower average rate of convergence for a 21-dimensional numerical example.

The major problem with iteration on a sphere is that the technique gives two

approximations to the unknown load increment and in some cases does not give a real

solution at all.  Crisfield (1981, 1991a) proposes a method for choosing the correct

solution from the two given approximations.  Meek and Tan (1984) and Meek and

Loganathan (1989a,b) examined the problem of imaginary solutions and found that this

problem only occurred for certain types of structures and made recommendations on how

to correct the problem.  Meek and Tan (1984) and Meek and Loganathan (1989a,b) also

looked into the problem of determining the correct sign of the load increment in the

neighborhood of limit points.  The authors made some recommendations on how to

choose the proper sign based on numerical results presented in the above papers.  Crisfield

(1991a) has also proposed a version of the spherical arc length method which is known as

the cylindrical arc length method.  Many of the same problems encountered with the

spherical arc length method also occur when using the cylindrical arc length method.
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2.3 RELIABILITY AND RESPONSE SURFACE METHODS

In recent years, the popularity of probabilistic methods in engineering has grown.

As a result, books have been written that contain information that was previously only

available in individual journal publications or conference proceedings.  The books by

Thoft-Christensen and Baker (1981) and Ang and Tang (1975, 1984) contain detailed

introductions to reliability theory and demonstrate the use of reliability theory for solving

common engineering problems.  The book by Madsen et al. (1986) presents a more

advanced discussion of reliability theory as well as some new extensions that only became

available after publication of the books mentioned above.   All three of the text books

listed above contain a historical account of current probabilistic methods and the

individual references that were most significant in developing these methods.

As with probabilistic methods, engineering use of response surface methods has

increased significantly in recent years.  However, the theory behind response surface

methods is only available in textbooks on statistics and very few examples that relate to

common engineering problems are available.  Some of the more popular references that

deal exclusively with response methods are the books by Myers (1971), Khuri and Cornell

(1987), and Myers and Montgomery (1995).  Response surface methods depend heavily

on designed experiments.  There are many references that deal specifically with designed

experiments, but two of the more recent references that link designed experiments to

response surface methods are Montgomery (1991) and Myers and Montgomery (1995).

Until recently, response surface methods were used almost exclusively by

statisticians and system engineers for process optimization.  Over the past decade,

researchers in different branches of engineering have explored the use of response surface

methods in conjunction with probabilistic methods.  Current probabilistic methods require

the gradient of the performance of a system to assess reliability.  Therefore, if an explicit
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expression for the performance is not known the gradient must be approximated

numerically.  Numerical approximation of the gradient is a difficult task that relies on

evaluating system performance at various points using physical experiments or numerical

simulation.  If values of system performance are difficult to obtain, then the cost of

calculating the required derivatives will be high.  In some cases the cost of approximating

the derivatives may be so high that solution of the problem may be impractical.  To

overcome this problem, researchers have used response surface methods to approximate

the performance of a system in a specific region of interest.  Since the response surface

method relies heavily on designed experiments, the error in the approximate performance

is minimized and the resulting approximation can be used to calculate the reliability of the

system.

The book by Casciati and Faravelli (1991) gives a complete historical account of

how response surface methods have been combined with probabilistic methods to assess

the reliability of structural systems.  Detailed examples for the combined use of response

surface methods and probabilistic methods are given by Faravelli (1989) and Faravelli

(1992).  Separate work by Janajreh (1992) and Janajreh et al. (1994) demonstrated the use

of response surface methods to predict the storage life of rocket motors under various

conditions.  The work by Bucher and Borgund (1990) and Brenner and Bucher (1995) has

also played a significant part in introducing the use of response surface methods for

calculating system reliability.

2.4 BUCKLING WITH RANDOM INITIAL IMPERFECTIONS

Very early on investigators noticed large discrepancies between theoretical and

experimental buckling loads.  These discrepancies were largely unexplained until the work

of Koiter (1945).  Koiter showed that unavoidable small imperfections in actual structures
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were to blame for the large differences in theoretical and experimental results.  In his

theory Koiter recognized three different forms of branching: stable symmetric, unstable

symmetric, and asymmetric.  By introducing an imperfection parameter, Koiter (1945)

found that the perfect and imperfect systems were related by a two-thirds power law for

the unstable symmetric case and by a parabolic relationship for the asymmetric case.

Koiter (1945) also realized that for the stable symmetric case there was no imperfection

sensitivity.  For the case of a limit point, which was not examined by Koiter, the

imperfection reduces the critical load linearly (El-Naschie 1991).  The unstable symmetric

and asymmetric cases are often referred to as imperfection sensitive since small

imperfections can cause a drastic decrease in the predicted critical load.  Researchers have

also discovered that the critical points for the unstable symmetric and asymmetric cases

degenerate to limit points when imperfections are introduced.

Upon recognizing the significance of initial imperfections, research turned toward

developing models of characteristic imperfections for specific structures and then using

these imperfections to gain a better estimate of the critical load.  Researchers quickly

realized that very detailed models of the initial imperfections were necessary in order to

duplicate experimental results.  There have been many analytical and numerical studies

(e.g., Bolotin 1958; Roorda 1972; Amazigo 1976; Elishakoff 1979; Brendel and Ramm

1980) which assume simplified forms of actual imperfections.  These studies usually use a

single mode representation of the imperfections in which the amplitude is allowed to vary

or in some cases is treated as a random variable.  Results from this type of work are useful

in obtaining the imperfection sensitivity of a structure but usually do not give an accurate

prediction of the actual buckling load.  Also, over the years many experimental studies

have been conducted.  In most of the recent studies the initial geometric imperfections are

measured very carefully and are then stored, along with experimental results for the
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buckling load, in a data base for future use (Arbocz and Hol 1991).  This data base is

structured so that information for shells of similar type and manufacturing process are

grouped together.  Since experimental methods are costly and time consuming, in recent

years a lot of emphasis has been placed on predicting buckling loads using numerical

methods.  The finite element method in conjunction with characteristic imperfections

determined from actual measurements has proven to yield results comparable to those

from experimental investigations.  Also, attempts have been made to produce random

imperfections that yield lower bounds on the buckling load or to just solve for the worst-

case imperfection directly.  Numerical studies have proven to be the most effective and

least costly technique for predicting buckling loads if an accurate representation of the

initial imperfections is included in the analysis.

2.4.1 Imperfection Modeling

In the design of structures, most specifications indicate a maximum amplitude of

initial geometric imperfection but not the corresponding imperfection pattern.  Two

methods of modeling imperfections are widely used.  The first is deterministic modeling of

imperfections and the second treats the imperfections as random fields.  Using different

variations of these methods, researchers have been able to numerically predict buckling

loads that are in good agreement with experimental values.

Deterministic modeling of imperfections is widely used in conjunction with

commercial structural analysis codes to predict buckling loads.  The most common form

of deterministic modeling uses imperfection data taken from actual test specimens of a

type similar to the structure being analyzed.  As mentioned earlier, measured imperfections

of structures are now stored in an imperfection data bank and are grouped according to

structure type and manufacturing process.  The measured imperfections are usually made
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ready for analysis or design using a modal or Fourier series representation (Elishakoff and

Arbocz 1982; Elishakoff et al. 1987; Ben-Haim and Elishakoff 1990; Arbocz and Hol

1991; Chryssanthopoulos et al. 1991a,b; Ikeda et al. 1996).  The modal amplitudes or

coefficients of the Fourier series are then chosen so as to match the measured data of a

similar structure.  In general this technique yields good results as long as the shape and

manufacturing process of the structure being analyzed are similar to those used to obtain

the imperfection data (Arbocz and Hol 1991).

Deterministic imperfections are also applied to a structure in the form of a typical

shape which is based on previous experience.  For example, imperfections of spherical

shells are often modeled as a dimple or flat spot of varying magnitude at the crown.  Good

agreement with experimental results has been obtained (Blachut and Galletly 1990;

Galletly and Blachut 1991), but for general structures where a good understanding of the

initial imperfections does not exist, this technique may or may not produce good results.

Another form of deterministic modeling yields imperfections in the form of the

buckling modes of a structure (Morris 1991).  Often the first buckling mode is chosen as

the imperfection pattern and results are obtained for various amplitudes.  This method is

useful in determining the imperfection sensitivity of a structure but may or may not

produce results that agree with experimental data.  Work has been done in the area of

directly predicting the most critical imperfection mode for a structure (Nushino and

Hartono 1989; Ikeda and Murota 1990a,b; Hartono and Nishino 1991; Murota and Ikeda

1991).  This technique searches for the mode shape of a given structure which reduces the

critical load most rapidly.  Results from analyses that use a critical imperfection mode

yield a lower bound on the buckling loads obtained from other types of analyses.

Bolotin (1958) was the first to recognize that the geometric imperfections for a

structure could be represented as random fields by using random amplitudes multiplied by
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deterministic spatial functions.  With the values of the imperfections given as random

variables, a probability density function or cumulative distribution function for the

buckling load can be obtained and used to assess the reliability of the structure.  In recent

studies, measured imperfections from past experiments are once again represented by a

Fourier series whose coefficients are now random variables (Elishakoff and Arbocz 1982;

Elishakoff et al. 1987; Arbocz and Hol 1991; Chryssanthopoulos et al. 1991a,b; Ikeda and

Murota 1991; Ikeda and Murota 1993; Ikeda et al. 1996).  Some studies have also

produced excellent results by generating the necessary statistical moments of the Fourier

coefficients using a nearly white noise approximation for the imperfections (Lindberg

1988).  The strong point of this technique is that knowledge of the exact imperfection

shape is not necessary.

In most of the literature to date, researchers conclude that in order to achieve

reasonable estimates for the actual buckling loads of structures the analyst must use

accurate representations of initial geometric imperfections (Arbocz and Hol 1991;

Elishakoff et al. 1987; Chryssanthopoulos et al. 1991a).  Most studies indicate that use of

experimentally measured imperfections from past tests on similar structures must be used

in order to obtain accurate imperfection models.  Attempts to bypass the use of measured

imperfections have produced reasonable results.  Techniques that use white noise, or

attempt to solve for a critical imperfection pattern directly deserve a lot of attention since

it is often impractical or impossible to find or generate measured imperfection data for

most structures.

2.4.2 Use of Imperfections

Once an appropriate imperfection model has been determined, the critical buckling

load for a given structure is usually calculated by some form of numerical method.  Some
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of the more popular methods are the finite element method, the boundary element method,

or the finite difference method.  From a survey of recent literature (e.g., Elishakoff et al.

1987; Ikeda and Murota 1990a; Arbocz and Hol 1991; Galletly and Blachut 1991; Liaw

and Yang 1991a,b) the finite element method appears to be the most popular of the three

previously mentioned methods.  The finite element codes used in most studies range from

specialty codes with only one element type to more general commercial codes with many

element types.  A short review of two common methods of introducing geometric

imperfections into a numerical analysis is given below.

One suggested method of including geometric imperfections is through the use

imperfect strain displacement relationships (Liaw and Yang 1991a,b).  The imperfect

strain displacement relationships are used to derive stiffness matrices that directly include

the initial geometric imperfections.  In developing the stiffness matrices, the imperfections

are interpolated in the same way as displacements so that initial imperfections over an

element may be expressed in terms of nodal values.  This is very convenient since most of

the available imperfection data is obtained by taking measurements at discrete points.  This

method also allows efficient use of the mean centered second-moment perturbation

technique (Liaw and Yang 1991a,b).  Using this technique a random variable can be

expressed as the sum of its mean value and a random variable with zero mean and a

standard deviation equal to that of the original random variable.  The expansion for each

random variable is then substituted into the finite element formulation and the various

order terms are collected and the resulting equations are solved.

Another proposed technique suggests moving the nodal coordinates of the perfect

structure by an amount equal to the specified imperfection and then analyzing the structure

(Morris 1991).  Analysis using this method is very simple when doing deterministic work,

but without the explicit appearance of the imperfections in the governing equations
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probabilistic analyses can be more difficult.  However, when using commercial finite

element programs this technique may be unavoidable since access to the actual computer

code is often limited.  When using commercial finite element programs, successive values

of imperfections may have to be generated by an external subroutine which in turn

modifies the coordinates and resumes the analysis.  The same external subroutine may also

create a link between the finite element code and a reliability analysis code which would

constantly update the initial imperfections by either a Monte Carlo technique or the first-

order second-moment method.

Much of the current research has been devoted to coupling finite element analysis

with either Monte Carlo simulation methods or first-order second-moment reliability

methods.  The geometric imperfections as well as the material properties and cross-section

properties are treated as random variables.  The result of these type of analyses is usually a

probability density function or cumulative distribution function of the buckling load.  The

techniques mentioned above are both useful in representing imperfections in a probabilistic

analysis.  The use of imperfect strain displacement relationships and moving of nodal

coordinates are directly applicable to finite element based reliability methods.
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CHAPTER 3

EQUILIBRIUM EQUATIONS

Nonlinear analysis of solids and structures is usually carried out by using either a

total Lagrangian approach or an updated Lagrangian approach.  In a total Lagrangian

formulation, all quantities such as displacements, stresses, strains, cross-sectional

properties, and material properties are referred to the initial configuration of the structure.

In an updated Lagrangian formulation, all of the above quantities are referred to a

deformed intermediate configuration of the structure.  A third approach, which is rarely

used in structural analysis, is an Eulerian formulation.  In an Eulerian formulation, all

quantities are referred to the current deformed configuration of the structure.

Large displacement analysis of space-frame structures requires the cross-sectional

rotation of each member to be modeled as a large rotation which is not a vector quantity.

Early formulations (Oran 1973; Oran and Kassimali 1976; Bathe and Bolourchi 1979)

used either corotational or updated Lagrangian formulations.  In both formulations, a

coordinate system is attached to each element and allowed to move with the element

during deformation.  The orientation of the displaced coordinate system for each element

is given by Euler angles, and all of the quantities in the analysis are referred to the

displaced coordinate system.  More recent formulations (Crivelli 1991; Fellipa and Crivelli

1991; Ibrahimbegovic et al. 1995) make use of the total Lagrangian approach in which all

quantities in the analysis are referred to the initial configuration of the structure.  In these

formulations, various forms of the large rotation matrix are used to model the cross-
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sectional rotation for each element.  Two of the more commonly used forms for the

analysis of large rotations are Euler parameters and the Euler axis/angle parametrization.

3.1 PRELIMINARIES

In Fig. 3.1, a general body is shown in an initial reference configuration 0 and in a

final deformed configuration 2.  The initial position of a point, , is given by theT

coordinates  and the final position of the same point is given by the coordinates!\3

# ! #\ � \ � ?3 3 3 a b3.1

The left superscripts on the above coordinates indicate the configuration where point  isT

located.  The terms  represent the displacement of point  from the initial#? T3

configuration to the final configuration.  For the remainder of this work, the left

superscripts on any displacement quantities represent a displacement from the initial

configuration to the configuration given by the left superscript.

If the displacements  in Eq. 3.1 are written in terms of the original coordinates#?3

!\3 then the strain-displacement relationships for a body undergoing large displacements

are

#
!

# # # #

! ! ! !&34
3 4 5 5

4 3 3 4
� � �

"

#

` ? ` ? ` ? ` ?

` \ ` \ ` \ ` \� �a b a b a b a b a b3.2

The quantities  are known as the Green-Lagrange strain-displacement relationships.  In#
!&34

short-hand notation the above expression reduces to

# # # # #
! ! ! ! !&34 3ß4 4ß3 5ß3 5ß4� ? � ? � ? ?

"

#
� � a b3.3

The left subscript on the displacement gradients indicate that the derivatives are taken with

respect to the original coordinates of point .  The left superscript on  indicates theT #
!&34
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Figure 3.1  Large deformation of a body from the initial configuration, 0, to the final
 configuration, 2.
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configuration of the strained body and the left subscript indicates the configuration where

the strains are measured.  Therefore, the Green-Lagrange strains are the strains in the

body at configuration 2 but measured in the original configuration 0.  A very important

feature of the Green-Lagrange strain-displacement relationships is that the components

remain zero under rigid body motion (Bathe 1982).

If the displacements  in Eq. 3.1 are written in terms of the deformed coordinates#?3

#\3 then the resulting strain-displacement relationships for a body undergoing large

displacements are

# # # # #
# # # # #I � ? � ? � ? ?

"

#
34 3ß4 4ß3 5ß3 5ß4� � a b3.4

The quantities  are known as Eulerian or Almansi strains (Fung 1965).  The Almansi#
#I34

strains are the strains in the body at configuration 2 that are measured with respect to the

deformed coordinates .  In cases where the left superscripts and subscripts match, the#\3

left subscript is usually dropped and  is abbreviated as .  The Almansi strain tensor# #
#I I34 34

is rarely used in the analysis of solids and structures because the components are given in

terms of the instantaneous or deformed position of the body.

If the displacement gradients are assumed to be small, both the Green-Lagrange

and Almansi strains reduce to the same familiar form which is known as Cauchy's

infinitesimal strain tensor.  An arbitrary function  is required (Dym and Shames0 \a b#
3

1973) to show that

` ? ` ?

` \
�

` \

a b a b a b# #

!

3 3

4 4
2 3.5

Using the chain rule results in

`0 `0 `0 `

` \ ` \ ` \ ` \ ` \
� � \ � ?

` \
! # ! # !

! #

3 4 3 4 3

4
4 4

2 � � a b3.6
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The above expression reduces to

`0 `0

` \ ` \ ` \
� �

` ?
! ! #

#

3 3 4
34

4� �a b a b$ 3.7

where  is the Kronecker delta whose value equals one if  equals  and zero if  is not$34 3 4 3

equal to .  Since the displacement gradients are small compared to one, the4

term  may be neglected leaving` ? Î` \a b# !
4 3

`0 `0

` \ ` \
�! #

3 3
, 3.8a b

or

` `

` \ ` \
�! #

3 3
a b3.9

This result indicates that there is no longer any distinguishable difference between the

undeformed and deformed coordinates for small displacement gradients.  The resulting

expression for the components of Cauchy's infinitesimal strain tensor is

# # #/ � ? � ?
"

#
34 3ß4 4ß3� � a b3.10

Note that the left subscripts have been dropped because there is no difference in the !\3

and  coordinate systems.2\3

The stresses in the deformed body, measured in the deformed configuration, are

known as Cauchy or Eulerian stresses,  (Fung 1965).  Using the notation from above,#

#
734

# #

#
7 734 34 is abbreviated as .  As the body deforms, its volume, surface area, density, stresses,

and strains change continuously (Reddy 1988).  The 2nd Piola-Kirchhoff stresses are often

used in nonlinear analysis of solids and structures and are denoted by .  As indicated by#
!W34

the left superscript and subscript, the 2nd Piola-Kirchhoff stresses are stresses in the

deformed body measured in the undeformed reference configuration.  The Cauchy stresses
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are related to the 2nd Piola-Kirchhoff stresses by the expression (Bathe 1982)

# # #

#

! ! !
#
!7

3

3
34 3ß7 78 4ß8� \ W \ a b3.11

Since the mass of the body is conserved,

( ( a b
# !Z Z

" # $ " # $
# # # # ! ! ! !3 3. \ . \ . \ � . \ . \ . \ 3.12

where  is the mass per unit volume of the body in the configuration given by the left3

superscript.  The relationship between the differential change in coordinates is

. \ . \ . \ � N . \ . \ . \# # # # ! ! !

!" # $ " # $det 3.13� � a b
where

det 3.14� �
â ââ ââ ââ ââ ââ ââ â

a b#

!

# # #

! ! !
# # #

! ! !
# # #

! ! !

N �

\ \ \

\ \ \

\ \ \

"ß" "ß# "ß$

#ß" #ß# #ß$

$ß" $ß# $ß$

Therefore, the change in mass density can be calculated by

! # #

!
3 3� Ndet , 3.15� � a b

and the relationship for the Cauchy stresses in terms of the 2nd Piola-Kirchhoff stresses

becomes

# # #

#

!

! !
#
!734 3ß7 78 4ß8� \ W \

"

Ndet
3.16� � a b

The linear portions of the Almansi strains, , are energetically conjugate to the#I34

Cauchy stresses, , and the Green-Lagrange strains, , are energetically conjugate to# #
!7 &34 34

the 2nd Piola-Kirchhoff stresses,  (Bathe 1982).  Therefore, the strain energy for the#
!W34

deformed body in Fig. 3.1 in terms of the Cauchy stresses and Almansi strains is
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# ## #Y � I . Z
"

#
( a b

#Z
34 347 3.17

The strain energy for the deformed body in terms of 2nd Piola-Kirchhoff stresses and

Green-Lagrange strains is

# #
! !

# !

!
Y � W . Z

"

#
( a b

!Z
34 34& 3.18

The equations of equilibrium for the deformed body in Fig. 3.1 can be developed

using the principle of virtual work.  Virtual work is defined as the work done by actual

forces in displacing the body through virtual displacements that are consistent with the

geometric constraints imposed on the body (Reddy 1988).  The principle of virtual work

states that a body is in equilibrium if and only if the virtual work of all forces is zero for

any virtual displacement (Holzer 1985).  For the deformed body in Fig. 3.1 the principle of

virtual work is

$ $Y � [ � !I a b3.19

where  is the virtual work due to internal forces, which is the first variation of the strain$Y

energy, and  is the virtual work due to the external forces.  Using Eq. 3.17 the$[I

equilibrium equation in terms of the Cauchy stresses and Almansi strains is

( (� � a b
# #Z Z

34 34 3 3
# # ## # #7 $ $I . Z � 0 . Z?

� > . W � !( a b a b
#W

3 3
# # #$ ? 3.20

where  are body forces and  are forces acting on the surface of the body.  The# #0 >3 3

equilibrium equation in terms of the 2nd Piola-Kirchhoff stresses and Green-Lagrange

strains is
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( (a b a b
! #Z Z

34 34 3 3
# ! #

!
# # #
!W . Z � 0 . Z$ & $ ?

� > . W � !( a b a b
#W

3 3
# # #$ ? 3.21

Solutions to both forms of the equilibrium equations is, in general, very difficult.

To solve the first form of the equilibrium equation, the final deformed configuration must

be known in order to perform the required integration. The second form of the equilibrium

equation is a nonlinear function of the displacement gradients and requires special solution

techniques.

3.2 DISPLACEMENT FUNCTIONS

A three-dimensional beam is shown in Fig. 3.2.  The coordinate system for the

member shown is the  system which is assumed to be aligned with the principal axes of0\3

the member.  The orientation of the  system is given by the unit vectors  that are0 0\3 3n

parallel with the  axes.  Assuming that a typical cross-sectional plane remains planar0\3

during bending assures that any point  in the plane remains the same distance from theT

centroid of the plane, point , during bending.  This means that each cross-sectional planeS

along the length of the beam moves as a rigid body during bending.  No assumption as to

whether or not each plane remains normal to the centroidal axis during bending

automatically allows shear deformation to be included in the analysis.

Figure 3.3 shows a typical cross-sectional plane located at some point  along theS

centroidal axis of the member.  A set of right-handed Cartesian axes  is attached to this0B3

plane and is allowed to move with the plane during deformation.  Also shown in Fig. 3.3 is

the point  whose location within the plane is given by the vectorT
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Figure 3.2  Coordinate systems for a three-dimensional beam.
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Figure 3.3  Typical cross-sectional plane for a three-dimensional beam.
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! !r x n
n
n
n

TÎS TÎS
� �B Bc d a bÔ ×

Õ Ø0 3.220 0 0

0

0

0
# $ #

"

$

X

Before deformation the position of point  is given byT

! ! !r r rT S TÎS� � a b3.23

The vector  is equal to!rS

!rS �
\Ô ×

Õ Ø a b
0

"

0
0

3.24

where  is the location of point  along the centroidal axis of the member.  After0\ S"

deformation the plane translates and rotates as a rigid body to a new position.  The vector

!x
TÎS

 rotates along with the plane to its new location given by the vector

# !r x b
b
b
b

TÎS TÎS
� �B Bc d a bÔ ×

Õ Ø0 3.250 0 2

2

2

2
# $ #

"

$

X

where  are the unit vectors that define the orientation of the rotated cross-section.2b3

Note that the components of the vector , in the system attached to the plane, remain#rTÎS

the same before and after deformation due to the fact that the plane rotates as a rigid

body.  The new position of point  is equal to the translated position of point  plus theT S

projection of the vector  along the original  axes.  The projection of the vector#rTÎS
0\3

#r bTÎS is found by taking into account the difference in the orientation of the unit vectors 2
3

and the unit vectors   The relationship between  and  is! !n b n3 3 3Þ 2

# #b R n� 0 a b3.26

The 3 3 matrix  contains the direction cosines between the original axes and the� #R

rotated axes.  The matrix  is often referred to as the rotation matrix or the direction#R

cosine matrix.  Using this relationship, the vector  can be written as#rTÎS
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# ! #r x R nTÎS TÎS
� X 0 a b3.27

The projection of  along the  axes is given by the components of the above vector# !rTÎS \3

as

p x R
TÎS TÎS

X X� ! # , 3.28a b
or

p R xTÎS TÎS
� # !X a b3.29

The final position of point  isT

# # # !r r u R xT S S TÎS
� � �0 X  3.30a b

The vector  was given by Eq. 3.24 and the vector  contains the components of the0r uS S
#

translation of point  which are only a function of the  coordinate.  The displacementS \0 "

of point  is found by subtracting the initial position of  from the final position of T T T

which results in

# # # !u u R I x� � �S TÎS
� � a bX 3.31

In expanded form, the displacement functions are:

# # # #! ! !? � ? \ � B V \ � B V \" 9 " # " " $ $" ""
a b a b a b a b0 0

2 3.32

# # # #! ! !? � ? \ � B V \ � " � B V \# 9 " # # " $ $# "#
a b a b a b a ba b0 0

2 3.33

# # # #! ! !? � ? \ � B V \ � B V \ � "$ 9 " # $ " $ $$ "$
a b a b a b a ba b0 0

2 3.34

3.3 ROTATION MATRICES

In the previous section, it was shown that for a three-dimensional beam the

displacement of a point  can be described by the translation and rigid body rotation ofT
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the cross-sectional plane containing the point .  As mentioned above, the rigid bodyT

rotation of the cross-sectional plane is defined by the rotation matrix.

The rotation matrix, or direction cosine matrix, has several important properties

(Junkins and Turner 1986):

 1.) The  propertyinverse equals transpose

# #R R�" X�

  which is characteristic of orthogonal matrices.  An orthogonal

  matrix has the important property that the dot product between a

  column/row and itself is equal to 1, while the dot product between a

  column/row and another column/row is equal to zero.

 2.) The and more specifically if right-H/> � �"ß H/> � � "c d c d# #R R

  handed coordinate systems are used.

 3.) The rotation matrix  has only one real eigenvalue , and the one#R �"

  eigenvalue is equal to  if right-handed coordinate systems are� "

  used.

 4.) Successive rotations

2b R c� #

c R d� 1

d R n� !
0

  from the initial to the final configuration can be written as one

  composite rotation

2 0b R n� #

  Rwhere the matrix  is#



30

#R R R R� # !1

  b c d n b c dand the matrices , , , and  contain the unit vectors , , ,2 0 2
3 3 3

  and  that orient the body at the various configurations.  Since ,0n R3 !

  , and are orthogonal, the matrix is also orthogonal, and ifR R  R 1 #
#

  , , and  follow (1.) and (2.) then will also followR R R R ! 1 2
#

  (1.) and (2.).

One of the most popular methods for characterizing the rotation of a rigid body

involves the use of three sequential rotations.  The resulting angles of rotation are called

Euler angles and the corresponding rotation matrix takes on different forms depending

upon how the angles are defined and in which sequence the rotations are performed.  The

major disadvantage in using Euler angles in a total Lagrangian formulation of a three-

dimensional beam finite element is that two of the angles are not referenced to the original

axes of the body or structure being analyzed.  The last two angles represent rotations

about axes that are already rotated from the original axes.  Therefore, it is very difficult to

compute the virtual work of moments about the original axes of the body acting through

these angles.  Or, in other words, the moments have no physical meaning because they are

referred to intermediate axes that are not aligned with the original principal axes of the

cross-section of the member.

The general rotation of a rigid body can be described using Euler's Principal

Rotation Theorem.  This theorem states that the rotation of a body about a point can be

accomplished by a single rotation through a principal angle  about a principal axis#9

located by the unit vector (Junkins and Turner 1986).  The resulting rotation matrix is#a 

# # # # # # #R a a a� -9= � " � -9= � =38a b a b a b a ba b9 9 9I 3.35˜X

The matrix  is often referred to as the spin of the vector  which in expanded form is˜# #a a
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given by

#

# #

# #

# #

ã
0

0
0

3.36�

Ô ×Ö Ù
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$ #

$ "

# "

The matrix  has the property that˜#a

# #a a˜ ˜ 3.37X
� � a b

Another interesting parametrization of involves the introduction of a rotation#R 

vector which is equal to

# # #

#

#

#

9 � 9

9

9

9

a�
Ô ×Ö Ù
Õ Ø a b"

#

$

3.38

One important point that must be emphasized is that the rotation vector is not a true

vector in the sense that the components of the rotation vector from two or more

successive rotations cannot be added to form one composite rotation Hughes 1986).Ð

However, the rotation vector does follow one important property; if a rotation  is#9

multiplied by scalar to give , then the vector becomes  (Hughes 1986).  The, 9 ,# # #9 9 

resulting rotation matrix for the three variable form of the Euler axis/angle parametrization

is

# # # # # #R I� � , � ,# $9 9 9˜ ˜ ˜ 3.39a b
where

# # #, � � =38#
�"k k k k a b9 9 , 3.40

# #

#

, � # =38
#

$
�# #k k a bk k

9
9

, 3.41

and the matrix  is the spin of the rotation vector .  This parametrization only requires˜# #9 9
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three quantities to describe the rotation while the previous definition required four.  The

major disadvantages of the three parameter characterization are that sign ambiguities arise

once the body has rotated past 360 degrees and that numerical difficulties may arise when

trying to evaluate  for small values of .  Problems with sign ambiguities ork k# #9 9
�"

singularities are common to all three parameter forms of the rotation matrix.  In practice

the problem with sign ambiguities is not a problem when  is used in the analysis of a#R

three-dimensional beam.  For the finite element formulation sign ambiguities would arise

only when an individual element rotates more than 360 degrees.  Numerical difficulties for

small values of  are also not a problem since  can be compared to the smallest# #9 9k k
number the computer will recognize to prevent overflow errors when computing terms

involving .k k#9
�"

There are other useful forms of the rotation matrix. The rotation matrices for some

of the more important parametrizations, such as Euler parameters, Euler-Rodriquez

parameters, and the direction cosines themselves, are given by Hughes (1986).  A couple

of the more exotic forms of the rotation matrix, such as Cayley-Klein parameters and

quarternions, are outlined by Junkins and Turner (1986).  In spite of the problems with

sign ambiguity, the three parameter Euler axis/angle parametrization will be used in the

development of the three-dimensional beam finite element.

When used in rotational dynamics, the time behavior of the rotation matrix is#R 

usually required.  For use in the development of a three-dimensional beam finite element,

the behavior of  along the length of each element is needed.  Therefore, the rotation#R

matrix used in the finite element formulation will be a function of the coordinate along the

length of the member, , rather than time.!\"

As in dynamics, the first derivative of the rotation matrix is required.  For the

three-dimensional beam, the derivative will be taken with respect to  rather than time.!\"
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In dynamics the derivative is computed by introducing an angular velocity vector, ,#=

whose components are angular velocities about the three coordinate axes.  For the three-

dimensional beam, the vector  contains the curvatures about the three coordinate axes#=

(Crivelli 1991).  The expression for the first derivative of the rotation matrix is

# ##
0R Rw � � =̃ 3.42a b

where  is the spin of the vector .  The prime in the above equation represents the first˜# #= =

derivative with respect to the coordinate .!\"

For the three parameter form of the Euler axis/angle representation of the rotation

matrix the angular velocity vector is related to the first derivative of the rotation angles,

#93, about the three coordinate axes by the expression

# # # # # # # #

! !
= 9 9 9 9 9� � - � - �� � a bI 3.43˜ ˜ ˜# $

w w#D

where

# #

#

- � � # =38
#

#
�# #k k a bk k

9
9

3.44

# # # #- � � =38$
�$k k a b a bk k k k9 9 9 3.45

Once  is known, the values can be substituted into the expression for  and the# #= 0R
w

resulting matrix will then be a function of only  and .# #

!
9 93

w
3

3.4 STRAIN-DISPLACEMENT RELATIONSHIPS

From Section 3.1, the general expressions for the Green-Lagrange strain-

displacement relationships are

# # # # #
! ! ! ! !&34 3ß4 4ß3 5ß3 5ß4� ? � ? � ? ?

"

#
� � a b3.46
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For a three-dimensional beam, the  represent the displacement of point .  Substituting#? T3

the assumed displacement functions, Eqs. 3.32-3.34, into the expression for the Green-

Lagrange strains gives the following strain-displacement relationships for a three-

dimensional beam:

# # # # #

! ! ! ! !
&""

w w w w
9 9 9 9� ? � ? � ? � ?

"

#" " # $

# # #� �

� B " � ? V � ? V � ? V! # # # # # #

! ! ! ! ! !#
w w w w w w
9 " 9 9� �� �
" 2 22 232 3

� B " � ? V � ? V � ? V! # # # # # #

! ! ! ! ! !$
w w w w w w
9 $" 9 $ 9 $� �� �
" 2 32 3

� B B V V � V V � V V! ! # # # # # #

! ! ! ! ! !# $
w w w w w w
" # # $ $� �2 31 2 3 2 3

� V � V � V � V � V � V
B B

# #

! !

# # # # # #

! ! ! ! ! !

# $
# #

w w w w w w
" # $ $" $# $$� � � � a b# # # # # #

2 2 2 3.47

# # # # #

!
&## #

# #
" $

#

� V � " � V � V � " � V
"

#
� � � � a b� �22 22 2 3.48

# # # # #

!
&$$ $$ $$

# #
$" $#

#

� V � " � V � V � V � "
"

#
� � � � a b� � 3.49

# # # # # # # #

! ! ! ! !
# &"# "# " $

w w w
9 9 9� # � " � ? V � ? V � ? V� �
" # $2 22 2

� B V V � V V � V V! # # # # # #

! ! !# " $
w w w
# # ## #$� �2 21 2

� B V V � V V � V V! # # # # # #

! ! !$ " $ # $# $ $$
w w w� � a b2 1 2 2 3.50
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# # # # # # # #

! ! ! ! !
# &"$ "$ $" $ $$

w w w
9 9 9� # � " � ? V � ? V � ? V� �
" # $2

� B V V � V V � V V! # # # # # #

! ! !# $" $$
w w w
# $# ## #$� �1

� B V V � V V � V V! # # # # # #

! ! !$ $" $ $# $# $$ $$
w w w� � a b1 3.51

# # # # # # # #

! !
# &#$ #$ " $# #$ $$� # � V V � V V � V V2 31 22 a b3.52

Assuming that each cross-sectional plane moves as a rigid body implies that ,#

!
&##

# # # #

! ! ! !
& # & &$$ #$ ## $$, and  should be equal to zero.  The strain components  and  deal with the

change in height and the change in width of the cross-section, while  deals with the in-#

!
##$

plane distortion of the cross-sectional plane.  When taking into account the orthogonality

of the rotation matrix , the expressions for , , and  reduce to zero as shown# # # #

! ! !
R & & ### $$ #3

below.

Examining the expression for  and recalling that, due to the orthogonality of#

!
&##

#R,

# # #V � V � V � "# # #
" # $2 2 2 , 3.53a b

the expression for  reduces to#

!
&##

# # #

!
&## #� V � " � # � # V

"

#
� � a b� �22 2 , 3.54

or

#

!
&## � ! a b3.55

The expression for  can also be shown to equal zero by using the same procedure#

!
&$$

along with the dot product of the third row of  with itself.#R
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The expression for the shear strain  is found to equal zero by taking the dot#

!
##$

product between the second and third rows of   The resulting dot product is equal to#RÞ

# #

!
##$ and is also equal to zero, because of the orthogonality of .R

The remaining strains may be written in a more compact form as:

# # ! # ! # ! # ! #

! ! ! ! ! !
& & , , / /"" "" # ## $ $$ ## $$

# #
# $� � B � B � B � B

� B B! ! #

!# $ #$/ a b3.56

# # ! # ! #

! ! ! !
# # 3 3"# # "# $ "$"#� � B � B a b3.57

# # ! # ! #

! ! ! !
# # = ="$ # "# $ "$"$� � B � B a b3.58

where:

# # # # #

! ! ! ! !
&""

w w w w
9 9 9 9� ? � ? � ? � ?

"

#" " # $

# # #� � a b3.59

# # # # # # #

! ! ! ! ! ! !
,##

w w w w w w
9 " 9 9� " � ? V � ? V � ? V� � a b
" 2 22 232 3

3.60

# # # # # # #

! ! ! ! ! ! !
,$$

w w w w w w
9 $" 9 $ 9 $� " � ? V � ? V � ? V� � a b
" 2 32 3 3.61

# # # #

! ! ! !
/##

w w w
" # $� V � V � V

"

#
� � a b# # #

2 2 2 3.62

# # # #

! ! ! !
/$$

w w w
$" $# $$� V � V � V

"

#
� � a b# # #

3.63

# # # # # # #

! ! ! ! ! ! !
/#$

w w w w w w
" # # $ $� V V � V V � V V2 31 2 3 2 3 a b3.64

# # # # # # #

! ! ! !
#"#

w w w
9 9 9" $� " � ? V � ? V � ? V� � a b
" # $2 22 2 3.65

# # # # # # #

! ! ! !
#"$

w w w
9 9 9$" $ $$� " � ? V � ? V � ? V� � a b
" # $2 3.66

# # # # # # #

! ! ! !
3"# " $

w w w
# # ## #$� V V � V V � V V2 21 2 a b3.67
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# # # # # # #

! ! ! !
3"$ " $ # $# $ $$

w w w� V V � V V � V V2 1 2 2 a b3.68

# # # # # # #

! ! ! !
="# $" $$

w w w
# $# ## #$� V V � V V � V V1 a b3.69

# # # # # # #

! ! ! !
="$ $" $ $# $# $$ $$

w w w� V V � V V � V V1 a b3.70

Once again, the primes in the above equations represent the first derivative with respect to

the coordinate .!\"

The shear strains  and  may be further reduced by once again considering# #

! !
# #"# "$

the orthogonality of  .  The expression for  can be rewritten as# #

!
R 312

# # # #

! ! !3"#
" "

" # $� V � V � V �
. " . "

. \ . \# #
� � � �� � a b2 2 2

2 2 2 3.71

which, due to the orthogonality of , is equal to zero.  By a similar process, the#R

expression for  is also found to be zero.  Therefore, the equations for the shear strains#

!
="$

reduce to

# # ! #

! ! !
# # 3"# $ "$"#� � B a b3.72

# # ! #

! ! !
# # ="$ # "#"$� � B a b3.73

The expression for  is found to be equal to the opposite of the expression for  by# #

! !
3 ="$ "#

examining the derivative of the dot product between the second and third columns of :2R

.

. \
V V � V V � V V � !!
# # # # # #

"
" $" $# $ $$#� � a b2 22 3.74

Expanding the above equation results in

� �# # # # # #

! ! !
V V � V V � V V �2 1 2 2" $ # $# $ $$

w w w

� V V � V V � V V� � a b# # # # # #

! ! !$" $$
w w w
# $# ## #$1 , 3.75

or
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# #

! !
3 ="$ "#� � a b3.76

The resulting expressions for the shear strains are:

# # ! #

! ! !
# # 3"# $ "$"#� � B a b3.77

# # ! #

! ! !
# # 3"$ # "$"$� � B a b3.78

The expression for  may be simplified by introducing the nondimensional#

!
&""

displacements:

#

#

!? �
?

P9
� 9

"

" a b3.79

#

#

!? �
?

P9
� 9

#

# a b3.80

#

#

!? �
?

P9
� 9

$

$ a b3.81

and the nondimensional coordinates:

!

!

!0 �
\

P

" a b3.82

!

!

!( �
B

2

# a b3.83

!

!

!< �
B

,

$ a b3.84

In the above expressions,  is the length of the member,  is the width of the cross-! !P ,

section, and  is the height of the cross-section.  Substituting the nondimensional!2

quantities into the expression for  gives&""
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# # # # #

! ! ! ! !
&
�

""
� � � �
9 9 9 9

# # #
� ? � ? � ? � ?

"

#

w w w w

" " # $
� �

� " � ? V � ? V � ? V
2

P

! !

!
# # # # #

! ! ! ! !

( � �� �� w � w � w
9 " 9 9

w w w

" 2 22 232 3

� " � ? V � ? V � ? V
,

P

! !

!
# # # # # #

! ! ! ! ! !

< � �� �� w � w � w
9 $" 9 $ 9 $

w w w

" 2 32 3

� V V � V V � V V
2 ,

P

! ! ! !

!
# # # # # #

! ! ! ! ! !

( <

#
w w w w w w
" # # $ $� �2 31 2 3 2 3

� V � V � V
2

# P

! !

!
# # #

! ! !

(# #

#
w w w
" # $� �# # #

2 2 2

� V � V � V
,

# P

! !

!
# # #

! ! !

<# #

#
w w w
$" $# $$� � a b# # #

3.85

where the primes now denote derivatives with respect to the nondimensional coordinate

! ! ! ! !0.  For a typical shear deformable member, the quantities  and  will be much2 P , P� �
less than one.  This will make the terms containing , , and� � � �� �! ! ! !2 P , P

# #

� �� �� �! ! ! !2 P , P  negligible when compared to the rest of the terms in the above equation.

As a result, the terms involving , , and  are neglected in the final expression! ! ! !B B B B# $
# #

# $

for .#

!
&""

To summarize, the final strain-displacement relationships for the three-dimensional

beam are:

# # ! # ! #

! ! ! !
& & , ,"" "" # ## $ $$� � B � B a b3.86

# # ! #

! ! !
# # 3"# $ "$"#� � B a b3.87

# # ! #

! ! !
# # 3"$ # "$"$� � B a b3.88

where:
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# # # # #

! ! ! ! !
&""

w w w w
9 9 9 9� ? � ? � ? � ?

"

#" " # $

# # #� � a b3.89

# # # # # # #

! ! ! ! ! ! !
,##

w w w w w w
9 " 9 9� " � ? V � ? V � ? V� � a b
" 2 22 232 3

3.90

# # # # # # #

! ! ! ! ! ! !
,$$

w w w w w w
9 $" 9 $ 9 $� " � ? V � ? V � ? V� � a b
" 2 32 3 3.91

# # # # # # #

! ! ! !
#"#

w w w
9 9 9" $� " � ? V � ? V � ? V� � a b
" # $2 22 2 3.92

# # # # # # #

! ! ! !
#"$

w w w
9 9 9$" $ $$� " � ? V � ? V � ? V� � a b
" # $2 3.93

# # # # # # #

! ! ! !
3"$ " $ # $# $ $$

w w w� V V � V V � V V2 1 2 2 a b3.94

3.5 EQUILIBRIUM EQUATIONS

The expression for the internal virtual work for an individual three-dimensional

beam element is

$ $ & $ &� � ( � a b a b# # #

! ! !
# #
! !Y � W � # W

!Z
"" "" "# "#

� # W . Z# !

!
#
!"$ "$$ &a b a b� , 3.95

or

$ $ & $ #� � ( � a b a b# # #

! ! !
# #
! !Y � W � W

!Z
"" "" "# "#

� W . Z# !

!
#
!"$ "$$ #a b a b� 3.96

Assuming the material remains linear elastic, Hooke's law for a three-dimensional beam

reduces to:

#

!
#
!W � I"" ""& a b3.97
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#

!
#
!W � K"# "## a b3.98

#

!
#
!W � K"$ "$# a b3.99

Substituting the stress-strain relationships into Eq. 3.96 gives

$ & $ & # $ #� � ( � a b a b#

!
# # # #
! ! ! !Y � I �K

!Z
"" "" "# "#

� K . Z# #
! !

!# $ #"$ "$a b a b� 3.100

Using the strain-displacemnt relationships, Eqs  386-3.88, and integrating over theÞ Þ

volume of the beam element, the first variation of the strain energy becomes

$ & , ,� � ( ( � � �# # ! # ! #

! ! ! !
!

Y � I � B � B

!

!

P

E
"" # ## $ $$

� � B � B� �� � � � � �$ & $ , $ ,# ! # ! #

! ! !"" # ## $ $$

� K � B� �# ! #

! !
# 3"# $ "$

� � B� �� � � �$ # $ 3# ! #

! !"# $ "$

� K � B� �# ! #

! !
# 3"$ # "$

� � B . E. \� � a b� � � � �$ # $ 3# ! # ! !

! !"$ # "$ " 3.101

Recognizing that

( a b
!E

D
! ! !B . E � M2

2 3.102
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( a b
!E

$ C
! ! !B . E � M2 3.103

and

! ! !N � M � MC D a b3.104

the above expression reduces to

$ & $ & , $ ,� � � � � �( �# ! # # ! # #

! ! ! ! !
!

Y � I E �I M

!P

"" "" C ## ##

� I M � K E! # # ! # #

! ! ! !WD $$ $$ "# "#, $ , # $ #� � � �
�K E �K N . \! # # ! # # !

W ! ! ! !
# $ # 3 $ 3"$ "$ "$ "$ "� � � �� a b3.105

The first variation of the strain components is:

$ & $ $ $� � � � � � � � � � a b# # # # # # #

! ! ! ! ! ! !""
w w w w w w
9 9 9 9 9 9� " � ? ? � ? ? � ? ?
" " # # $ $

3.106

$ , $ $ $� � � � � � � �# # # # # # #

! ! ! ! ! ! !##
w w w w w w
" 9 9 9� V ? � V ? � V ?2 22 23" 2 3

� " � ? V � ? V� � � � � �# # # #

! ! ! !

w w w w
9 " 9"

$ $2 222

� ? V# #

! !

w w
93
$� � a b23 3.107

$ , $ $ $� � � � � � � �# # # # # # #

! ! ! ! ! ! !$$
w w w w w w
$" 9 $ 9 $$ 9� V ? � V ? � V ?

" 2 2 3

� " � ? V � ? V� � � � � �# # # #

! ! ! !

w w w w
9 $" 9 $"

$ $
2 2

� ? V# #

! !

w w
9 $$3
$� � a b3.108
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$ # $ $ $� � � � � � � �# # # # # # #

! ! ! ! ! ! !"# " $
w w w
9 9 9� V ? � V ? � V ?2 22 2" # $

� " � ? V � ? V� � � � � �# # # #

! ! ! !

w w
9 9"" #

$ $2 22

� ? V# #

! !

w
9 $$
$� � a b2 3.109

$ # $ $ $� � � � � � � �# # # # # # #

! ! ! ! ! ! !"$ $" $# $$
w w w
9 9 9� V ? � V ? � V ?
" # $

� " � ? V � ? V� � � � � �# # # #

! ! ! !

w w
9 9$" $#" #

$ $

� ? V# #

! !

w
9 $$$
$� � a b3.110

$ 3 $ $ $� � � � � � � �# # # # # # #

! ! ! ! ! ! !"$
w w w
$ " $# # $$ $� V V � V V � V V1 2 2 2

� V V � V V � V V# # # # # #

! ! ! ! ! !2 1 2 2" $ # $# $ $$
w w w$ $ $� � � � � � a b3.111

Substituting the above quantities into the expression for the internal virtual work results in

$ & ,� � � �( ��# ! # # ! # #

! ! ! ! !
!

Y � I E " � ? � I M V

!

"

P

"" C ##
w w
9 "2

�I M V �K E V! # # ! # #

! ! ! !WD $$ "
w
$" "#, # 2

�K E V ?! # # #
W ! ! !
# $"$ $"

w
9� � �
"

� I E ? � I M V � I M V� ! # # ! # # ! # #

! ! ! ! ! !
& , ,"" C ## D $$

w w w
9 " $"# 2

�K E V �K E V ?! # # ! # # #
W W! ! ! ! !
# # $"# "$" $"

w
92 � � �
#

� I E ? � I M V � I M V� ! # # ! # # ! # #

! ! ! ! ! !
& , ,"" C ## D $$

w w w
9 " $"$ 2

�K E V �K E V ?! # # ! # # #
W W! ! ! ! !
# # $"# "$" $"

w
92 � � �
$
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� K E " � ? �K N V V� �� � � �! # # ! # # #
W ! ! ! ! !
# 3 $"#

w w
9 $""$ "" 2

� K E ? �K N V V� � � �! # # ! # # #
W ! ! ! ! !
# 3 $"#

w w
9 $#"$ ## 2

� K E ? �K N V V� � � �! # # ! # # #
W ! ! ! ! !
# 3 $"#

w w
9 $$"$ $$ 2

� K E " � ? V� �� � � �! # # #
W ! ! !
# $"$

w
9 $""

� K E ? V� � � �! # # #
W ! ! !
# $"$

w
9 $##

� K E ? V� � � �! # # #
W ! ! !
# $"$

w
9 $$$

� I M " � ? V� �� � � �! # # #

! ! !C ##
w w
9 #", $
"

� I M ? V� � � �! # # #

! ! !C ##
w w
9 ##, $
#

� I M ? V� � � �! # # #

! ! !C ##
w w
9 #$, $
$

� I M " � ? � K N V V� �� � � �! # # ! # # #

! ! ! ! !D $$ "$ "
w w
9 $", 3 $
" 2

� I M ? � K N V V� � � �! # # ! # # #

! ! ! ! !D $$ "$ #
w w
9 $#, 3 $
# 2
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The above expression may be rewritten in a more compact form as

$ $ h� � � �( a b# # !

! !
!

Y � . \

!P

" 3.113

where
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$ h $� � � � a b# # #

! ! !
� Í eX

" � #" #" � "

3.114

The vector contains the coefficients of the first variations of the unknown#

!
e 

displacement gradients, rotation parameters, and first derivative of the rotation parameters

found in the internal virtual work.  The vector is a partitioned vector that is given by$� �#

!
Í

$ $ $ $� � � �� � � � � � a b# # # #

! ! !
ÍX w

9
X X wX� u R R

" � $ " � *" � *˜ ˜
3.115

Each of the components of the rotation matrix is a function of all three angles of

rotation .  Therefore, the first variation of each component will in general have three#93

terms.  For a typical component of the rotation matrix the first variation is given by

$ $ 9
9

a b a b a b" a ba b# #

#

#R 3.116
R

34 5

5�"

$
34

5
�

`

`

The vector form of the first variation of the rotation matrix may be expressed in terms of

the angles of rotation as

$ $� � � � a b# #R DR02
˜

3.117
* � " $ � "

* � $
� 9

Details concerning the calculation of the matrix  are dealt with in Appendix A.  TheDR02

first variation of the derivatives of the rotations is a function of  the rotation angles and the

first derivative of the rotation angles.  From Appendix A the resulting expression is

$

$

$

� � a b� �
Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø

� �
� �

#

#

#

!

0R˜
DRP1 DRP2w

w* � "
* � $ * � $

$ � "

$ � "

�

9

9

3.118

With   and   defined, the partitioned vector of variational quantities may be$ $a b a b# #R R
˜ ˜0

w

expressed as
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9w
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In a more compact form the above relationship becomes

$ $� � � � a b# #

! !
Í ®

#" � " * � "
#" � *

� DELTR1 3.120

The integrand of the internal energy, Eq. 3.114, becomes

$ h $� � � � a b# # #

! ! !
� ® eX X

" � * #" � "
* � #"

DELTR1 3.121

Multiplying the transpose of  and  yields a 9 1 vector of internal forces thatDELTR1 #

!
e �

correspond to the nine degrees of freedom for the three-dimensional beam.

The formulation of the three-dimensional beam finite element requires that the

continuous quantities , , and  be expressed in terms of displacements at discrete# # #

! !
u  w w
9 9 9

points along the length of the member.  For the problem at hand, a two-noded

isoparametric formulation has been chosen.  The resulting formulation requires the

coordinates of the member as well as the displacements to be written in terms of the

coordinates and displacements at the ends of the member by using the linear interpolation

functions

R � " �
"

#
" a b a b!0 3.122

and

R � " �
"

#
2 a b a b!0 3.123

The variable  is the natural (nondimensional) coordinate along the length of the beam, as!0
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shown in Fig. 3.4.  The coordinate of any point along the length of the member is given as

! ! ! ! ! !\ � R \ �R \" " " # "a b a b a b a b0 0 0
" #

3.124

where  and  are the locations of the ends of a typical element.  The change in ! ! !\ \ \" " "" 2

with respect to  is!0

. \

.
� \ � \

"

#

a ba b a b a b!

!
! !"

" "
0 # "

, 3.125

but

! ! !P � \ � \" "# "
a b3.126

Therefore, the change in  with respect to  is! !\" 0

. \ P

.
�

#

a ba b a b! !

!

"

0
3.127

which is only a function of the original length of the member.

The displacement functions are interpolated using the same method as the

coordinates:

# # #? � R ? �R ?9 " 9 # 93 3 3" #
a b3.128

# # #9 9 93 " 3 # 3� R �R
" #

a b3.129

The first derivative of the transverse displacements is equal to

. ? . ? .

. \ . . \ P P
� � R ? � R ?

# #a b a b a ba b a b a b a b# # !

! ! ! ! !
# #9 9

" "
"ß #ß9 9

3 3

3 3" #0

0
! !0 0 3.130

In a similar manner, the first derivative of the rotations is

.

. \ P P
� R � R

# #a ba b a b#

! ! !
# #

9
9 9

3

"
"ß #ß3 3! !0 0" #

3.131

Storing the nodal displacements in a vector  the vector#

!
dß
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Figure 3.4  Two-node three-dimensional beam finite element and the corresponding
 parentelement.
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$ $� � � � a b# #

! !
®

* � " "# � "
* � "#

� SHPMAT d 3.132

The matrix  is often referred to as the interpolation matrix and is given by theSHPMAT

partitioned matrix

SHPMAT

N

N

N
* � "#

$ � "#

$ � "#

$ � "#

�

Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø

a b
?w9

w

9

9

3.133

where the matrices , , and  are shown in Fig. 3.5.N N N?w9
w9 9

Introducing the discretized displacements into the internal virtual work results in

the expression

$ $� � � � � �( a b# # # !

! ! !
!

Y � . \d SHPMAT DELTR1X X X
P

"
" � "# #" � "

"# � * * � #"

!

e 3.134

The integral over the coordinate  must be changed to an integral over the natural!\"

coordinate .  From Eq. 3.127!0

. \ � .
P

#
! !

!

" 0 a b3.135

Therefore,

$ $ 0� � � � � �( a b# # # !

! ! !

!

Y � .
P

#
d SHPMAT DELTR1X X X

�"

�"

" � "# #" � "
"# � * * � #"

e 3.136

The resulting integral is evaluated using single point Gauss quadrature.  Integration leads

to a 12 1 vector of internal forces, , that correspond to the nodal degrees of freedom� #
!fM

for the element.  The internal virtual work is further simplified to

$ $� � � � a b# #

! !
#
!Y � d fX
M

" � "# "# � "

3.137
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w, , and  from the partitioned matrix .9 9
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The external virtual work due to applied forces was given in Eq. 3.21.  If the

external forces are only applied at the nodes, and if the direction of the loads does not

change during deformation, then the external virtual work reduces to

$ $� � � � a b# #

! !
#[ �I I

Xd f
" � "# "# � "

3.138

where the vector  contains the external forces corresponding to the nodal degrees of#fI

freedom of the element.

Equilibrium for the three-dimensional beam finite element is given by

$ $� � � � a b# #

! !
Y � [ � !I 3.139

In general,

$� � a b#

!
dX

" � "#

Á ! 3.140

so that the equilibrium condition reduces to

# #
!f fM I
"# � " "# � "

� a b3.141

The resulting equilibrium equation is a nonlinear function of the nodal displacementsß ß#

!
d

and special methods must be used to solve the problem.
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CHAPTER 4

INCREMENTAL EQUILIBRIUM EQUATIONS

The result of the total Lagrangian formulation presented in Chapter 3 was a system

of equations that are nonlinear in the unknown nodal displacements.  Solution of the

nonlinear equations is usually accomplished with numerical techniques that are incremental

and iterative in nature.  All of these types of numerical methods require that the nonlinear

system of equations be written in terms of small incremental changes of the unknown

displacements.  For the three-dimensional beam, the equilibrium equations presented in

Chapter 3 must be written in an incremental form and then linearized in the resulting

unknown incremental displacements.  Once the incremental equilibrium equations are

found, any one of a number of available numerical solutions may be used to solve the

resulting nonlinear system of equations.

4.1 INCREMENTAL DISPLACEMENT FUNCTIONS

Generation of the incremental form of the equilibrium equations begins with

replacing the displacements from configuration 0 to configuration 2 by incremental

displacements which consist of displacements from configuration 0 to a new intermediate

configuration 1, and small incremental displacements from configuration 1 to the final

configuration 2.  The deformable body shown in Fig. 3.1 is reillustrated in Fig. 4.1 with

the additional intermediate configuration 1.  Configuration 1 in the incremental

formulation replaces configuration 2 in the previous chapter in the sense that the
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Figure 4.1  Large deformation of a body from the initial configuration, 0, to an
 intermediate configuration, 1, and a small deformation from configuration,
 1, to the final configuration, 2.
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displacements from configuration 0 to configuration 1 are also arbitrarily large.  The

incremental form of the displacement functions is

# "u u u� � Þa b4 1

where

" " "u u R I x� � � ÞS TÎS
� � a bX 0 4 2

and

u u R x� � ÞS TÎS

X 0 a b4 3

The vector  contains the arbitrarily large displacements from configuration 0 to"u

configuration 1 and the vector  contains the incremental displacements fromu

configuration 1 to configuration 2.  As in the previous chapter, the displacements and

rotations take place between the initial configuration 0 and the configuration indicated by

the left superscript.  The small incremental displacements and rotations are indicated by

the absence of a left superscript.

4.2 INCREMENTAL STRAIN-DISPLACEMENT RELATIONSHIPS

The strain due to the displacement from configuration 0 to configuration 2 was

given by the Green-Lagrange strain-displacement relationship

# # # # #
! ! ! ! !&34 3ß4 4ß3 5ß3 5ß4� ? � ? � ? ? Þ

"

#
� � a b4 4

As in Chapter 3, the left subscript indicates that the derivatives are taken with respect to

the initial coordinate axes of the member.  The incremental form of  is found by#
!&34

substituting the incremental displacements, Eq. 4.1, into the Green-Lagrange relationships

above.  The resulting incremental strains are written in the form

# "
! ! !& & &34 34 34� � Þa b4 5
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where

" " " " "
! ! ! ! !&34 3ß4 4ß3 5ß3 5ß4� ? � ? � ? ? Þ

"

#
� � a b4 6

and

! ! ! ! ! ! ! ! !
" "&34 3ß4 4ß3 5ß4 5ß3 5ß3 5ß4 5ß3 5ß4� ? � ? � ? ? � ? ? � ? ? Þ

"

#
� � a b4 7

Because the incremental displacements are small, the term  is neglected and ! ! !? ?5ß3 5ß4 34&

reduces to

! ! ! ! ! ! !
" "&34 3ß4 4ß3 5ß4 5ß3 5ß3 5ß4� ? � ? � ? ? � ? ? Þ

"

#
� � a b4 8

One noteworthy point is the appearance of the terms containing the displacements from

configuration 0 to configuration 1 in .  These terms represent an initial displacement!&34

effect due to the displacement from 0 to 1.

For the three-dimensional beam, the Green-Lagrange strains , , and ! ! !& & &"" "# "$# #

were given in the previous chapter.  These strain components were then simplified and

written in a more compact form with components that were also given in Chapter 3.  The

incremental form of the strain components is given by:

# "

! ! !
& & &"" "" ""� � Þa b4 9

# "

! ! !
, , ,## ## ##� � Þa b4 10

# "

! ! !
, , ,$$ $$ $$� � Þa b4 11

# "

! ! !
# # #"# "# "#� � Þa b4 12

# "

! ! !
# # #"$ "$ "$� � Þa b4 13

# "

! ! !
3 3 3"$ "$ "$� � Þa b4 14
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The strains from configuration 0 to configuration 1 have the same form as the

corresponding strains from configuration 0 to configuration 2, found in Chapter 3.  The

incremental portions of the strains are given by:

! ! ! ! ! ! !

" " "&""
w w w w w w
9 9 9 9 9 9� " � ? ? � ? ? � ? ? Þ� � a b
" " # # $ $

4 15
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w w w w w w
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! ! ! ! ! ! !
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$" $# $$ a b4 20

The above expressions can be written in matrix form as

! !
& Í

' � "
' � #"

#" � "

� ÞEPSM a b4 21

The vector  is given by!&
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and the vector  is the incremental form of the partitioned vector , which is given by
! !

#Í Í

!

!

!

Í
#" � "
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* � "
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Ô ×Ö ÙÖ Ù a b
Õ Ø

u

R

R

w
9

w
˜

˜

4 23Þ

The matrix  is a partitioned matrix which can be written asEPSM

EPSM EPSMA EPSMB EPSMC
' � #" ' � $ ' � * ' � *

� � � a b4 24Þ

The matrices , , and  are shown in Fig. 4.2.EPSMA EPSMB EPSMC

4.3 INCREMENTAL EQUILIBRIUM EQUATIONS

Equilibrium for the three-dimensional beam finite element was given in Chapter 3

as

$ $� � � � a b# #

! !
Y � [ � ! ÞI 4 25

The linearized incremental form of the equilibrium equation results from expanding the

above equilibrium equation about the known intermediate configuration 1 in terms of the

small incremental displacements from configuration 1 to configuration 2.  The resulting

incremental equilibrium equation is

$ $ $ $� � � � � � � � a b" "

! ! ! !
Y � Y � [ � [ � ! ÞI I 4 26

Since configuration 1 is a known equilibrium configuration the two terms
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Figure 4.2  Matrices , , and  from the partitioned matrixEPSMA EPSMB EPSMC
 .EPSM
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$� � a b"

!
Y � ! Þ4 27

and

$� � a b"

!
[ � ! ÞI 4 28

The resulting incremental equilibrium equation is

$ $� � � � a b
! !
Y � [ � ! ÞI 4 29

Both of the terms  and  are linear functions of the unknown incremental$ $� � � �
! !
Y [I

displacements.

The expression for the internal virtual work was given in Chapter 3 as

$ $ h� � � �( a b# # !

! !
!

Y � . \ Þ

!P

" 4 30

where

$ h $� � � � a b# # #

! ! !
� ÞÍ eX

" � #" #" � "

4 31

The definitions of the vectors  and  were also given in Chapter 3.  The incremental# #

! !
e Í

form of the internal virtual work is found by expanding about the known equilibrium

configuration 1.  The resulting incremental expression for the integrand of the internal

virtual work is

$ h $ $� � � �� �� � � � a b# " "

! ! ! ! !
� � � ÞÍ Í e eX X

" � #" " � #" #" � " #" � "

4 32

Since the displacements at configuration 1 are known, the term

$� � a b"

!
ÍX � ! Þ4 33

The expanded incremental form of  becomes$ h� �#

!
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$ h $� � � �� � a b# "

! ! ! !
� � ÞÍ e eX

" � #" #" � " #" � "

, 4 34

which will be computed in two parts given by:

$ h $� � � � a b# "
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X� ÞÍ e

" � #" #" � "

4 35

and

$ h $� � � � a b
! ! !F

X� ÞÍ e
" � #" #" � "

4 36

The vector  is a partitioned vector that has the same form as Eq. 4.23;$� �
!
ÍX

$ $ $ $� � � �� � � � � � a b
! ! !
ÍX w

9
X X wX� Þu R R

" � $ " � *" � *˜ ˜
4 37

Details of the calculation of the vector form of the incremental rotations is given in

Appendix B.  The resulting expression for  is
˜
R

R RTM01
˜

4 38
* � " $ � "* � $

� Þ9 a b
where the matrix  is a nonlinear function of the rotations to the knownRTM01

intermediate configuration 1 and the vector  contains the incremental rotations from9

configuration 1 to configuration 2.  Using Eq. 4.38,  is given by
˜

$a bR

$ $� � � � a bR RTM01
˜

4 39
* � " $ � "* � $

� Þ9

A complete explanation of the expansion and linearization of the derivative of the

incremental rotation matrix, , is given in Appendix C.  The resulting expression for the
!
Rw

vector form of  is
!
Rw

!
!

R RPR1 RPR2
˜

4 40w
w

* � "
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where the matrices  and  are defined by Eqs. C.38 and C.39.  Since theRPR1 RPR2

matrices  and  are only functions of the rotations to the known configurationRPR1 RPR2

1, the first variation of  becomes
˜!R
w

$

$

$
� � Ö Ù a b� �Ô ×Ö Ù

Õ Ø
� �
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4 41w
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Using Eqs. 4.39 and 4.41 the vector
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w

or in a more compact form as

$ $� � � � a b
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� ÞDELTR2 4 43

As in Chapter 3, the continuous incremental displacements are interpolated using linear

interpolation functions.  Using the interpolation matrix defined by Eq. 3.133, the

incremental displacements may be expressed in terms of nodal displacements as

$ $� � � � a b
! !
®

* � " "# � "
* � "#

� ÞSHPMAT d 4 44

The vector  becomes$� �
!
Í

$ $� � � � a b
! !
Í

#" � " "# � "
#" � * * � "#

� ÞDELTR2 SHPMAT d 4 45

The resulting expression for  is straightforward since the vector  has the$ h� �
! !

"
E e

same form as the vector  from Chapter 3.  Using Eq. 4.45,  is#

! !
e $ h� �E
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The expression for  involves the vector which is calculated in two parts: $ h� �
! ! !F Ee e 

and   The first portion of  is calculated using the incremental strains : 
! ! !e e &FÞ

! !e &E
#" � "

$ � '

$ � '

$ � '

' � "

� Þ
Ô ×Ö Ù
Õ Ø a b

RSAA01
RSAB01
RSAC01

4 47

where the matrices , , and  are shown in Fig. 4.3.  In a moreRSAA01 RSAB01 RSAC01

compact form

! !e &E
#" � "

#" � '
' � "

� ÞRSA01 a b4 48

Using Eq. 4.21 the above expression becomes

! !
e ÍE
#" � " #" � "

#" � ' ' � #"
� ÞRSA01 EPSM a b4 49

The expression for  can be written directly in terms of the vector  as
! !
e ÍF

! !
e ÍF
#" � " #" � "

#" � #"
� ÞRSB01 a b4 50

The matrix  is a partitioned matrix given byRSB01

RSB01

RSBA01
RSBB01
RSBC01

#" � #"

$ � #"

* � #"

* � #"

� Þ
Ô ×Ö Ù
Õ Ø a b4 51

where the sub-matrix  is shown in Fig. 4.4, and the sub-matrices  andRSBA01 RSBB01

RSBC01 are shown in Fig. 4.5.  The expression for  becomes$ h� �
! F

$ h $� � � �� � a b
! ! !F

X� � ÞÍ Í
" � #" #" � "

#" � ' ' � #" #" � #"
RSA01 EPSM RSB01 4 52
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The vector  has the same form as , Eq. 4.45, and is given by
! !
Í Í$� �

! !
Í

#" � " "# � "
#" � * * � "#

� ÞDELTR2 SHPMAT d 4 53a b
Using Eqs. 4.46, 4.52, and 4.53, the integrand of the incremental internal virtual

work  is$ h� �
!

$ h $� � � � �! ! !

"� d SHPMAT DELTR2X X X

" � "# #" � "
"# � * * � #"

e

� � Þ� � � a bRSA01 EPSM RSB01 DELTR2 SHPMAT d
#" � ' ' � #" #" � #" * � "##" � *

"# � "

 4 54
!

Substituting the above expression into the internal virtual work gives

$ $ 0� � � � � �� (! ! !

!

" !Y � .
P

#
d SHPMAT DELTR2X X X

�"

�"

" � "# #" � "
"# � * * � #"

e

�
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#

! ( � �
�"

�"
X XSHPMAT DELTR2 RSA01 EPSM

"# � * #" � ' ' � #"* � #"

� . ÞRSB01 DELTR2 SHPMAT d
#" � #" * � "##" � *

"# � "

� a b� �!

!0 4 55

The resulting integrals are evaluated using single point gauss quadrature, as in Chapter 3.

Integration leads to two 12 1 vectors of internal forces  and .  The expression for� "
! !f fM M

the internal virtual work can be reduced to

$ $� � � �� � a b
! !

"
! !Y � � Þd f fX
M M

" � "# "# � " "# � "

4 56

The external virtual work can also be expanded in terms of the displacements at

configuration 1 and the incremental displacements from configuration 1 to configuration 2.

The incremental form of  is$� �#

!
[I
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$ $ $� � � �� � � � � � a b# "

! ! !
"[ � � � ÞI I I

X Xd d f f
" � "# " � "# "# � " "# � "

4 57

The term  is equal to zero since the intermediate configuration is known.$� �"

!
dX

Therefore, the incremental external virtual work is

$ $ $� � � � � � a b#

! ! !
"[ � � ÞI I I

X Xd f d f
" � "# " � "#"# � " "# � "

4 58

where  is the external force at the intermediate configuration 1 and  is a small change"f fI I

in the external force.

The incremental equilibrium condition for the three-dimensional beam finite

element was given by Eq. 4.29.  Substituting Eqs. 4.56 and 4.58 into 4.29 gives

$� �� � a b
!

" "
! !d f f f fX
M M I I

" � "# "# � " "# � " "# � " "# � "
� � � � ! Þ4 59

In general  is not equal to zero and equilibrium is given by$� �
!
dX

" "
! !f f f fM M I I
"# � " "# � " "# � " "# � "

� � � � ! Þa b4 60

The term

" "
!f fM I
"# � " "# � "

� � ! Þa b4 61

is the equilibrium condition at configuration 1 which is already known to exist.  Therefore,

the incremental equilibrium equation reduces to

!f fM I
"# � " "# � "

� � ! Þa b4 62

where the vector  is taken from Eq. 4.55 as!fM
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� a b� �!

!
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The above integral results in a 12 12 matrix, , that is often referred to as the tangent� "

!
kX

stiffness matrix, and is a nonlinear function of the displacements and rotations to the

intermediate configuration 1.  The incremental equilibrium equation can be further reduced

to

f k dI X
"# � " "# � "# "# � "

� Þ"

! !
, 4 64a b

which means that for a small change in external forces the incremental displacements 
!
d

may be found.

4.4 LOCAL TO GLOBAL TRANSFORMATION

Thus far, the local axes, , of each finite element have been considered to be!\3

aligned with the global axes, , of the entire structure.  In general each element will be!\*
3

arbitrarily oriented with respect to the global axes as shown in Fig. 4.6.  The orientation of

the unit vectors  along the local axes is related to the orientation of the unit vectors,!n3

!n T�
3 , along the global axes by a transformation matrix  that has the same properties as the

rotation matrix covered in Chapter 3.  The rows of the transformation matrix  containT

the direction cosines of each local axis with respect to the three global axes.  The

relationship between  and  is! !n n3
�
3

! !n T n3
�
3� Þa b4 65
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Figure 4.6  Global orientation of a three-dimensional finite element.
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The development of  for an element  with nodes  and  at either end begins byT 8 + ,

specifying a unit vector along the centroidal axis of the member.  The unit vector !n"

along  is!\"

! ! !

! ! ! !

! !n n n"
" " # #

"" "#

� �
" #� �

\ � \ \ � \

P Pðóóóóóñóóóóóò ðóóóóóñóóóóóò
� � � �* * * *

, + , +

T T

� Þ
\ � \

Pðóóóóóñóóóóóò
� � a b! !

!
!

* *
$ $

"$

�
$

, +

T

4 66n

where  is the original length of the member which is given by!P

! ! ! ! !P � \ � \ � \ � \�� � � �* * * *
" " # #

# #

, + , +

� \ � \ Þ� � � a b! !* *
$ $

#

, +

"
#

4 67

To completely describe the orientation of the element, the global coordinates of a point U

that lies in the local -  plane must be specified by the user.  A vector along the ! ! !\ \ \" # $

axis is found by taking the cross product between the unit vector  and a vector from !n" +

to , .  The resulting cross product isU rUÎ+

! !! ! ! !n r n" UÎ+ "# "$$ $ # # "
�� � \ � \ � \ � \� �� � � �T T* * * *

U + U +

� \ � \ � \ � \� �� � � �T T"$ """ " $ $ #
�! ! ! ! !* * * *

U + U +
n

� \ � \ � \ � \ Þ� � a b� � � �T T 4 68"" "## # " " $
�! ! ! ! !* * * *

U + U +
n

To form the unit vector  along the  axis, a constant  must be defined as! !n$ $\ H"
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H" � \ � \ � \ � \�� �� � � �T T"# "$$ $ # #
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#
! ! ! !* * * *

U + U +

� \ � \ � \ � \ Þ� � a b� � � � �T T 4 69"" "## # " "

#
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"
#

The unit vector is then equal to!n  $
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n

A vector along the  axis is found by taking the cross product of  and  which! ! !\# $ "n n

gives

! ! ! !n n n n$ " $# "$ $$ "# $$ "" $" "$
� �
" #� � � � �a b a bT T T T T T T T

� � Þa b a bT T T T 4 71$" "# $# ""
�
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!n

The unit vector  is found by first defining the constant  which is equal to!n# H#

H# � � � ��a b a bT T T T T T T T$# "$ $$ "# $$ "" $" "$
# #

� � Þa b � a bT T T T 4 72$" "# $# ""
#

"
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The unit vector  is given by!n#

! ! !n n n#
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!n

The local element displacements are stored in 12 1 vectors  whose left� d

superscripts and subscripts depend on the configuration under consideration.  The vector

d contains the nodal displacements at both the  and  ends of element .  At each end of+ , 8

the element there are six degrees of freedom that consist of three translations and three

rotations.  The vector  may be partitioned into four 3 1 vectors that contain thed �

translations and rotations at each end of the element.

To demonstrate the use of the transformation matrix consider the transformation

of the translations at the  end of element .  The three translations are stored in a 3 1+ 8 �

vector .  The local nodal translations can be expanded and written asd+>

D d n+
X
+> >

�
! a b4 74Þ

The same displacement vector along the global axes is

D q n+
X �
+> >

�
! a b4 75Þ

The matrix  is related to the matrix  by the transformation matrix (Eq. 4.65).! !n n�

Substituting Eq. 4.75 into Eq. 4.65 gives

D d T n+ +
X �

> >
� Þ! a b4 76

Comparing Eqs. 4.75 and 4.76, the global displacement vector  is given byq+>

q T d+ +
X

> >
� a b4 77Þ
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Each of the four 3 1 vectors of displacements that are contained in the 12 1 vector � � d

are transformed in the same way.  The resulting transformation matrix is a partitioned

12 12 matrix given by�

T

T
T

T
T

*
"# � "#

$ � $

$ � $

$ � $

$ � $

� Þ

Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø

a b
0 0 0

0 0 0
0 0 0
0 0 0

4 78

Therefore, the total global displacement vector for element  is8

q T d�
* X a b4 79Þ

In a similar manner, the global internal forces may be found using the same transformation,

F T f�
* X a b4 80Þ

The tangent stiffness matrix  for a specific element may be transformed using"

!
kX

the transformation matrix, , from above.  The relationship between the incrementalT*

internal forces and the incremental displacements was given by Eq. 4.63 as

! ! !

"f k dM X
"# � " "# � "# "# � "

� Þa b4 81

Substituting Eqs. 4.79 and 4.80 into Eq. 4.81 gives

! ! !

"F T k T qM X
X

"# � " "# � "# "# � "
"# � "# "# � "#

� Þ* *  4 82a b
The matrix product

" "

! !
K T k TX X

X

"# � "# "# � "#
"# � "# "# � "#

� Þ* * a b4 83

results in the global tangent stiffness for element .8
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4.5 NUMERICAL SOLUTION TECHNIQUES

Most numerical schemes to solve nonlinear systems of equations are incremental

iterative processes that use a series of linear solutions to approximate the nonlinear

solution.  The linear solutions are achieved by expanding the nonlinear equations in terms

of small incremental values of the unknowns about some known solution.  For problems in

structural mechanics the objective of the solution process is to trace the nonlinear

equilibrium path for a given structure.

The equilibrium path for a structure is defined by the external load on the structure

and the corresponding displacements necessary to maintain equilibrium at a given level of

the external load.  The nodal displacements of a structure are stored in a  vector ,R � " q

while the external nodal forces are stored in a  vector .  In both cases  is theR � " RQ

number of nodal degrees of freedom included in the model of the structure.  In the

solution of most nonlinear structural problems the external load is applied in fractions or

increments of the total external load.  The external load vector is incremented by

multiplying  by a scalar  which is equal to a number between 0 and 1.  For each loadQ -

increment an iterative process is applied, consisting of a series of linear analyses which are

solved for the unknown displacements required to maintain equilibrium of the structure

under the specified increment of the external load.

The most basic nonlinear solution methods use load control techniques in which a

specified increment of load is applied to the structure and the resulting displacements

required to maintain equilibrium are calculated.  The most popular load control technique

is the Newton-Raphson method.  More sophisticated solution techniques treat both the

incremental loads and displacements as unknowns in the analysis.  These methods are

referred to as arc length methods.  Arc length methods use a specified length of a vector

that is tangent to the equilibrium path at some known point.  The most popular of the arc
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length methods are derived from the Riks-Wempner method.  Each method differs in the

way that iterations are constrained within a specified load increment.  The first of the two

methods used in this work is called the Riks-Wempner method on a normal plane and the

second is called the Riks-Wempner method on a sphere.  The discussion for both methods

follows the fundamental work of Crisfield (1981) and Ramm (1981).

Details for the use of each of the three methods mentioned above are presented in

the following sections.  For each method, figures are given that demonstrate the procedure

for a single degree-of-freedom model.  In the development of each method, the

displacement quantities will be treated as general  vectors which contain the nodalR � "

displacements for the entire structure.

4.5.1 Newton-Raphson Method

The Newton-Raphson method begins at a known point  on the equilibrium path as3

shown in Fig. 4.7.  An increment, , of the total external load is applied to the structure?-3

making the total load increment equal to

- - -3�" 3 3� � Þ? a b4 84

The first iteration consists of finding the incremental displacements  by solving?q3

K q QX 3 3�" 3

3

3
R �R R � "R � " R � "

?

?

� � � Þðóóñóóòa b a b- -

-

FV3
4 85

where  is the tangent stiffness matrix at point  which is assembled using Eq. 4.83.K X3 3ß

Once the displacements  are known the total displacements are given by?q3

q q q5 3 3� � Þ? a b4 86

The total displacements  are then used to calculate the internal force vector whichq F5 5

was defined by Eq. 3.136.  The difference between the external loads, , and the-3�"Q
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Figure 4.7  Newton-Raphson method for a single degree-of-freedom system.
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internal forces, , form a vector  which is known as the residual force vector.  TheF5 FV5

presence of the residual vector  indicates that the structure is not in equilibrium underFV5

the current combination of external load  and internal forces  calculated from the-3 5Q F

displacements .q5

Subsequent iterations seek the incremental displacements that cause the residual

vector  to become approximately zero for the given external load .  Actually, theFV5
-3Q

first iteration also seeks to minimize the out of balance forces  which is equal to theFV3

user specified .  The incremental displacements, , for subsequent iterations are? ?-3 5Q q

found from the expression

K q Q FX 5 3�" 55
R �R R � " R � " R � "

? � Þðóóóóóóñóóóóóóò� � a b- �

FV5

4 87

The total displacements are updated by

q q q5�" 5 5� � Þ? a b4 88

The residual forces at  are then computed and if the resulting residual vector is not5 � "

close to zero then another iteration is performed until the residual force vector is

approximately zero.

4.5.2 Riks-Wempner Method on a Normal Plane

Iteration begins at point  on the load displacement curve and proceeds as shown3

in Fig. 4.8.  A partitioned vector  which is tangent to the equilibrium path at point  ist3 3

defined as

t
q

3
3

3

� Þ� � a b?

?
R � "

-
4 89

where the scalar  is the incremental change in the applied load at , and the vector ? ?-3 33 q
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contains the incremental displacements found from solving

K q QX 3 33
R �R R � " R � "

? ?� Þ- a b4 90

The matrix  is the global tangent stiffness matrix at  which is assembled using Eq.K X3 3

4.83.  The objective of the method is to iterate along a normal to the tangent vector t3

until the next equilibrium point is found.  From Fig. 4.8 the normal  is defined byn3

n
q

3
5

5

� Þ
�� � a b?

?
R � "

-
4 91

where the vector  is a vector of unknown displacements from  to the point where a?q5 5

tangent at  intersects with the normal vector .  The scalar  is an unknown load5 n3 5?-

increment from  down to the intersection between  and the tangent from point .-5 3n 5

Constraining the iterative process to a normal plane requires that the dot product

between  and  be equal to zero ort n3 3

t n3 3� � ! Þa b4 92

Substituting Eqs. 4.89 and 4.91 into Eq. 4.92 gives

? ? ? ?q qX
3 5 3 5� � ! Þ- - a b4 93

The vector  is then split into two parts (Crisfield 1981; Ramm 1981)?q5

? ? ? ?q q q5 5
MM M
5 5� � Þ- a b4 94

The vector  results from the similar triangles which are also shown in Fig. 4.8.? ?-5
M
5q

Introducing  an intermediate quantity  the similar triangles relationship is?q�5

?

? ?

-5
�
5

M
5

q q
� Þ

"
, 4 95a b

or

? ? ?q q� M
5 55� Þ- a b4 96
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The vector  results from the expression?qM5

K q QX
M
55

R �R R � " R � "
? ?� Þ- a b4 97

where

?- � " Þ, 4 98a b
and  is the tangent stiffness at .  The vector  is computed by the expressionK qX

MM
55

5 ?

K qX
MM
55

R �R R � "R � "

? � ÞFV5
a b4 99

where the vector is a residual vector that contains the difference in the externallyFV5
 

applied forces and the internal forces at .  Introducing the expression for  into the5 ?q5

constraint equation (Eq. 4.93) gives

? ? ? ? ? ?q q qX MM M
3 5 55 3 5� � a b� � � ! Þ- - - 4 100

Expanding the above equation and solving for  yields?-5

?
? ?

? ? ?
-

-
5

X MM
3 5

X M
3 5 3

� Þ
�

q q

q q� � a b4 101

With  known, the external load increment may be updated by the expression?-5

- - -5�" 5 5� � Þ? a b4 102

and the total displacements at  may be found as5 � "

q q q5�" 5 5� � Þ? a b4 103

or

q q q q5�" 5 5
MM M
5 5� � � Þ� � a b? ? ?- 4 104

As shown in Fig. 4.9, the Riks-Wempner method usually begins with a user

specified load increment  which is a fraction of the total external load applied to the?-!

structure.  The load increment  is used to calculate the displacement vector  and? ?-! !q
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the length  of the initial tangent vector .  The displacements  are calculated using? ?W! ! !t q

the similar triangle relationship also shown in Fig. 4.9.  The vector  is computed from?q!

? ?

?

q q! >9>

!-
� Þ

"
, 4 105a b

or

? ? ?q q! >9>!� Þ- a b4 106

The vector  is computed from the expression?q>9>

K q QX >9>!
R �R R � " R � "

? � Þ- a b4 107

where the scalar  is equal to one.  With the vector  known, the length of  can be- ?q t! !

calculated by

k k a bÉt t q q! ! !
# X
! ! !� � � � Þ? ? ? ?W - , 4 108

or using Eq. 4.106

? ? ? ?W! ! >9> >9>
X� " � Þ- É a bq q 4 109

The scalar  is often referred to as the arc length along the equilibrium path.  The arc?W!

length for subsequent iterations is usually held constant or is scaled using the relationship

? ?W W3 3�"
./=

3�"
� Þ

M

M
� � a b"

#

4 110

The scalar  is the current arc length,  is the number of iterations required for?W3�" 3�"M

convergence to the current equilibrium point, and  is the desired number of iterationsM./=

which is usually chosen as a small number approximately equal to 3.  A maximum value

for  is usually specified as?W3

? ?W W7+B !� # Þa b4 111
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The value of  is used to compute the value of  which is required to begin? ?W3 3-

the next iteration (Eq. 4.84).  The value of  is computed from Eq. 4.109 as?-3

?
?

? ?

-3
3

>9> 3 >9> 3
X

� Þ
�

" �

W

É � � � � a b
q q

4 112

The vector  is computed from the relationship� �?q>9> 3

K q QX >9> 33
R �R R � " R � "

� � a b? � Þ- 4 113

where  is equal to one.-

The sign ambiguity in Eq. 4.112 results from the fact that the quantity  is?W3

simply a length (or magnitude) along the path whose direction is uncertain.  The correct

sign for  is found by looking at the projection of the hypothetical tangent vector  on?-3 3t

the initial tangent vector for the previous iteration,  (ABAQUS 1987).  The partitionedt3�"

tangent vector  was given by Eq. 4.89.  Using the expressiont3

? ? ?q q3 >9>3 3
� Þ- � � a b, 4 114

the vector  becomest3

t
q

3
3 >9> 3

3

� Þ� �� � a b? ?

?

-

-
4 115

The vector  is termed hypothetical because the correct sign of  is not yet known.t3 3?-

The projection of  on  ist t3 3�"

t t q q3 3�" 3 3�">9> 3 3 3�"
X  4 116� � � Þ? ? ? ? ?- - -� � a b

which reduces to

t t q q3 3�" 3 3�">9> 3 3�"
X  4 117� � � Þ? ? ? ?- -� �� � a b

If the projection of  on  is negative then the slope of the equilibrium path at  ist t3 3�" 3

negative and the load parameter  should be negative so that the external load on the?-3
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structure is reduced, thereby producing an unloading effect.  If the projection of  on t t3 3�"

is positive then the slope of the equilibrium path at  is positive and  should be positive3 ?-3

indicating that the external load is increasing.

4.5.3 Riks-Wempner Method on a Sphere

As with Riks-Wempner on a normal plane, iteration begins by defining a

partitioned tangent vector  and continues as shown in Fig. 4.10.  The tangent vector ist3

equal to

t
q

3
3

3

� Þ� � a b?

?
R � "

-
4 118

where the incremental change in load  is given by Eq. 4.112 and the incremental?-3

displacements  are given by Eq. 4.114.  The basic difference between the Riks-?q3

Wempner method on a normal plane and the Riks-Wempner method on a sphere is the

way in which iterations are constrained for a given load increment.  The Riks-Wempner

method on a sphere constrains the iterative process to a sphere centered at point  with a3

radius that is equal to the magnitude, , of the tangent vector .  The constraint?W3 3t

equation may be written as

r r5 5
#
3� � W Þ? a b4 119

The vector  locates the position of the point, from point , where a tangent from point r5 3 5

intersects with the sphere.  The vector  is given byr5

r
q q

5
3 5

3 5
� Þ

�
�� � a b? ?

? ?- -
4 120

The constraint equation becomes

a b a b? ? ? ? ? ? ? ?- - ?3 5 3 5 5
# X X X #

3 3 5 3� � � # � � W Þq q q q q q 4 121
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The term  is equal to?W#
3

? -W � � � � Þ# # X
3 3 33 3 3t t q q? ? ? a b4 122

Substituting the expression for  into the constraint equation and simplifying results in?W#
3

a constraint equation of the form

? ? ? ? ? ? ?- - -# X X
5 3 53 5 5 5� # � # � � ! Þq q q q a b4 123

where  is the unknown incremental change in load and  is the vector of unknown? ?-5 5q

incremental displacements.  Just as in the method of Riks-Wempner on a normal plane, the

unknown displacements  will be broken into two parts.  The resulting expression for?q5

?q5  is (Eq. 4.94)

? ? ? ?q q q5 5
MM M
5 5� � Þ- a b4 124

The displacements  are found using Eq. 4.97 and the displacements  are found? ?q qM MM
5 5

using Eq. 4.99.  Substituting the expression for  into Eq. 4.123 results in a constraint?q5

equation which is a function of only ,?-5

� � � �" � � # � �? ? ? ? ? ? ? ? ?q q q q q qM M # M M MM
5 5 5 5 5 5

X X
3 3 5

X- - -

� # � � ! Þ� � a b? ? ? ?q q q q3
X MM MM MM

5 5 5

X
4 125

The unknown value of  may be found by solving the above quadratic equation which?-5

has two roots:  and .a b a b? ?- -5 5" 2

For subsequent iterations a more general form of the constraint equation is given

by

r r r r5�" 5�" 5 5
#
5� � W � � Þ? a b4 126

where the vector  was given by Eq. 4.120 and the vector is equal tor r5 5�"
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r
q q q

5�"
3 5 5�"

3 5 5�"
� Þ

� �
� �� � a b? ? ?

? ? ?- - -
4 127

The unknown incremental displacements  are once again broken into two parts as in?q5�"

Eq. 4.124, which results in

? ? ? ?q q q5�" 5�"
MM M
5�" 5�"� � Þ- a b4 128

The resulting expression for the unknown load increment  is?-5�"

� �" � ? ? ?q qM M #
5�" 5�" 5�"

X
-

� # � � ��a b � �? ? ? ? ?- -3 5 3 5
X X M

5�"q q q

� ? ? ?q qM MM
5�" 5�" 5�"
X � -

� # � � � ! Þ� � a b� �? ? ? ? ?q q q q q3 5
X X MM MM MM

5�" 5�" 5�"

X
4 129

Solution of this equation results in the two roots  and .a b a b? ?- -5 5"+1 +1 2

The correct value of  is found by looking at the value of the cosine of the?-5+1

angle between the vector  and tentative vectors  which are formed using the twor r5 5�"

roots  and  (Crisfield 1991).  The cosine of the angle between  anda b a b? ?- -5 5 5"+1 +1 2 r

r5�" is

-9= � Þ
�

W
)

?

r r5 5�"
#
5

a b4 130

The vectors  and  are given by Eqs. 4.120 and 4.127.  The tentative incrementalr r5 5�"

displacement vectors  are computed using Eq. 4.128 and  which is equal to? ?q5�" 5�"-

one of the two roots  or .  The resulting expression for the cosine of  isa b a b? ?- - )5 5"+1 +1 2
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-9= � " � Þ
� � �

W
)

- - -

?

a b a b a b? ? ? ? ? ?q q q3 5 5�" 3 5 5�"
#
5

4 131

The value of  or  that yields the maximum value of  is the correcta b a b? ?- - )5�" 5�"" 2 -9=

value of .?-5�"

One major problem with the Riks-Wempner method on a sphere occurs when the

roots of Eq. 4.129 are not real (Crisfield 1981; Meek and Tan 1984).  When this situation

is encountered, the load increment  is reduced by half and the iterative process begins?-3

again from the previous equilibrium point .  A major advantage of Riks-Wempner on a3

sphere is that the iterative process converges to the correct solution for a larger variety of

problems than any other of the methods mentioned so far.

4.5.4 Convergence Criteria

In all three of the methods covered above, iteration must continue until some

convergence criterion is met.  Two types of convergence criteria are usually used when

solving nonlinear systems of equations during a finite element analysis.

The first criterion ensures that the incremental displacements  are small.  The?q5

criterion used in this work ensures that the norm of the incremental displacements  is?q5

small compared to the total displacement .  This criterion is stated asq5�"

l ll l a b?q
q

5

5�"
.� Þ$ 4 132

where  is a small user specified tolerance on the order of .$.
�$"!

The second, and most important, convergence criterion involves the residual or out

of balance forces .  The idea behind this criterion is to ensure that the residual forcesFV5�"

themselves, or that the norm of the vector , is small.  For the three-dimensional finiteFV5�"

element, and all problems with rotational variables, additional problems arise because the
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residual vector contains both forces and moments.  Therefore, when computing the norm

of , quantities with different units must be added together.  Because of the unitsFV5�"

involved in the analysis, the moments can be much larger than the forces and therefore

contribute much more to the calculation of the norm of .  This problem can causeFV5�"

convergence of the solution to be obtained based solely on the moments rather than on the

combination of both forces and moments.  To solve this problem, scaling of the residual

force vector is recommended (Crisfield 1981, 1991; Fellipa 1988).  The convergence

criterion for the out of balance forces, used in this work, is

É
È a bF FX

V 3

5�" 3
X

0
5�"

S

Q S Q

V5�"

-
$� Þ4 133

The matrix  is a diagonal scaling matrix that contains the inverse of the diagonalS3

elements of the tangent stiffness matrix, .  As previously defined, the vector  containsK QX3

the external loads and  is the current total load increment.  The quantity  is a small- $5�" 0

user specified tolerance on the order of .  Using this type of criterion ensures that the"!�%

residual forces are small compared to the total applied load on the structure.  One major

drawback associated with this criterion is that larger residual forces are allowed as the

external load is increased.  In practice, this is usually not a problem since the value of  is$0

small.

Many other convergence criteria have been proposed (Bathe 1982; Fellipa 1988;

Cook et al. 1989; Crisfield 1991) and each has its own benefits and drawbacks for certain

types of problems.  The above criteria have been successfully implemented by Crisfield

(1981) and have proven to be reliable for a variety of problems.
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4.6 EXAMPLE PROBLEMS

The proposed finite element formulation is verified using seven examples that have

exact solutions or have been solved by other researchers using different finite element

formulations.  All seven example problems were solved using Riks-Wempner on a sphere

and a displacement tolerance, , equal to 0.001, and a residual force tolerance, , of$ $. 0

0.0001.

4.6.1 Single Element Eigenvalue Test

A single element eigenvalue test (Bathe 1982; Cook et al. 1989) was run to

identify any spurious energy modes that may exist in the proposed element.  The single

unsupported element has a length of 10 and a circular cross-section as shown in Fig. 4.11.

The various geometric and material properties are also shown in Fig. 4.11.  The

eigenvalue test results in six non-zero eigenvalues and six zero eigenvalues which

correspond to the six rigid body modes for the element.  This indicates that the element

has no zero-energy deformation modes and that the element can accurately represent the

required number of rigid body modes.

4.6.2 Cantilever Beam with a Concentrated End Moment

A cantilever beam with a concentrated end moment is shown in Fig. 4.12 along

with the necessary geometric and material properties.  The cantilever beam was modeled

using 5, 10, and 20 elements.  The results for the non-dimensional tip displacements ,?ÎP

@ÎP Î# QPÎ# IM, and  are plotted against the non-dimensional moment parameter , in9 1 1

Fig. 4.12.  The exact solution for the tip deflection is the equation of a circle (Crivelli

1991), with a radius equal to
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The exact solution is also shown in Fig. 4.12.  The coarse five element solution compares

well with the exact solution for the displacements  and , but is slightly different for large@ 9

values of .  The 10 and 20 element solutions compare almost exactly with the analytic?

solution for all three tip displacements.

4.6.3 Cantilever Beam with a Concentrated End Load

A second cantilever beam is shown in Fig. 4.13.  The beam is loaded with a

concentrated end load and has the geometric and material properties shown in Fig. 4.13.

An exact solution for this problem was presented by Fertis (1993) and is plotted in Fig.

4.13.  For the finite element solution, the cantilever beam was discretized using eight

elements.  The resulting non-dimensional tip displacement is plotted against the

normalized load  in Fig. 4.13.  The results from the finite element model compareTP ÎIM#

well with the results presented by Fertis (1993).

4.6.4 45-Degree Circular Bend

The 45-degree circular bend, as presented by Bathe and Bolourchi (1979), is

shown in Fig. 4.14.  The circular bend has a fixed support at the left end and is loaded by a

concentrated end load at the right end.  The required geometric and material properties are

also given in Fig. 4.14.  The circular bend was modeled using eight finite elements.  The

results for the non-dimensional tip displacements , , and  are plotted� ?ÎV @ÎV � AÎV

against the non-dimensional load  in Fig. 4.14.  Also shown in Fig. 4.14 are theTV ÎIM#

solutions from Bathe and Bolourchi (1979) who also used eight elements.  The results

from both analyses are nearly the same.



94

v

L
L = 1000 in
EI = 1.8x105 kip-in2

P = CONCENTRATED
        END LOAD

P

0.0 0.2 0.4 0.6 0.8 1.0
Non-Dim. Tip Disp., v/L

0.0

10.0

20.0

30.0

40.0

50.0

60.0

N
o
n
-D

im
. 
L
oa

d
, 
P

L
2

 /E
I

8 elements

Fertis, 1993

Figure 4.13  Load-deflection curve for the cantilever beam with a concentrated end
 load.



95

x

y

z

R
45 o

v

PFIXED
 END

R=100.0 in
n=0.0
E=10

7
psi

1in

1in
BEAM CROSS-SECTION

w
u

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Non-Dim. Tip Disp., -u/R, v/R, -w/R

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

N
o
n
-D

im
. 
L
o
a
d
, 
P

R
2
 /E

I

v/R

-u/R

-w/R

8 elements

Bathe and Bolourchi, 1979

Figure 4.14  Load-deflection curves for the 45-degree circular bend.
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4.6.5 Williams' Toggle Frame

The frame shown in Fig. 4.15 was first investigated by Williams (1964).  The frame

is fixed against translation and rotation at both the left and right ends, and has a

concentrated load applied at the apex.  The values of  and  are given in Fig. 4.15IE IM

along with the rise and the span of the frame.  The entire frame was modeled using 8, 10,

20, and 40 elements.  The results for load versus apex deflection are plotted in Fig. 4.15.

Also shown, are the finite element results from Davalos (1989) and Crivelli (1991).

Davalos (1989) used four three-noded elements to model the entire frame, and Crivelli

(1991) used 10 total elements with a correction to better approximate the behavior of the

thin members.  The 8 and 10 element models for the proposed formulation are too stiff

and produce deflections that are smaller, for a given load, than those predicted by Davalos

(1989) and Crivelli (1991).  However, the 20 and 40 element models produce results that

are very similar to the results from Davalos (1989) and Crivelli (1991).

4.6.6 12-Member Hexagonal Frame

A 12 member hexagonal frame is shown in Fig. 4.16.  The material and cross-

sectional properties for the members are also given in Fig. 4.16.  Finite element models

were created for one, two, four, and eight elements in each diagonal member, and one

element in the remaining six elements around the base of the frame.  The resulting load

versus apex displacement curves for the four different models are shown in Fig. 4.17.

Also, the results from Meek and Tan (1984) are given in Fig. 4.17.  For the proposed

formulation, the single element case is very stiff, but the two element case falls beneath the

results presented by Meek and Tan (1984).  When the mesh was refined to four elements

per member, the load-displacement curve fell even more, and finally converged for the

eight element case.  In order to verify the results of the analysis, both the two and the
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eight element results were compared to similar results from ABAQUS (1988) using a two-

noded shear-deformable (B31) element.  The results are shown in Fig. 4.18.  Both

solutions are very close to one another for the eight element case, which indicates that the

proposed element does converge to the correct solution.

4.6.7 24-Member Hexagonal Star-Shaped Shallow Cap

The response of the 24-member star-shaped cap has been examined by many

researchers (i.e. Holzer et al. 1980) by using truss elements to model the individual

members.  For the example presented here, the star-shaped cap is treated as a rigid frame

with joints capable of transferring bending moments.  This problem was first studied by

Meek and Tan (1984).  The geometry of the cap and the required cross-sectional and

material properties are shown in Fig. 4.19.  The shallow cap is acted upon by a

concentrated load at the apex.  The star-shaped cap was modeled using two, four, and

eight elements for all of the members except the six that form the base of the hexagon.

These six members were modeled using only two elements.  The results from Meek and

Tan (1984) and those from the proposed formulation are shown in Fig. 4.20.  The two

element case was very stiff and gave results that were well above those from the four

element case.  The eight element case produced results that were only slightly different

from those of the four element case, which indicates convergence of the solution.  The

results from the eight element case agree very well with those from Meek and Tan (1984).
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CHAPTER 5

RELIABILITY ANALYSIS

AND

RESPONSE SURFACE METHODS

Probabilistic methods attempt to model the variabilities of given system parameters

with random variables, resulting in a realistic assessment of the reliability of a system.

Reliability is defined as the probabilistic measure of assurance of performance of a design

in its intended environment (Ang and Tang 1984).  Various methods have been proposed

for calculating the reliability of a system.  Some of the more interesting are the

computational methods and in particular the second-moment methods.  In these methods,

all random variables are modeled using only the first and second moments of each variable.

The first and second moments of a random variable are more commonly referred to as the

mean and variance.  The most common of the second-moment methods is the first-order

second-moment method which models the response of a system at a point using a first-

order surface, or plane.  The second-moment methods give excellent results using very

little information about the random variables but problems arise when an exact expression

for the response of the system is not known.

Current methods for reliability analysis require that the response of the system be

given as an explicit function of the random variables involved.  To circumvent this

problem, response surface methods have been used to model the response of a system in a

specified region of interest.  Response surface methods, in their most basic form, combine
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least squares methods with designed experiments to fit a surface to experimental output

from the system under consideration.  More elaborate response surface methods are used

to search for areas of minimum or maximum yield of the system being studied.  When

combined with the first-order second-moment method, the response surface method

allows the reliability of a system to be calculated without an explicit relationship between

the response of the system and the random variables involved.

5.1 CONCEPTS OF RELIABILITY

Methods of reliability analysis depend on the ability to calculate probability of

failure.  The concept of probability of failure is best described by considering the specific

example of supply ( ) versus demand ( ).  Failure for this problem is defined when\ \" #

demand is greater than or equal to supply, or when .  In a reliability analysis,\ �\ � !" #

the variables  and  are treated as random variables with probability density functions\ \" #

as shown in Fig. 5.1.  If the supply and demand are statistically independent, then the

expression for the probability of failure is (Ang and Tang 1984)

: � " � J B 0 B .B0 \ " \ "
�_

�_

( c d a b a ba b
# "

5.1

where  is the cumulative distribution of  at  and  is the probabilityJ B \ B 0 B\ " # " \ "# "
a b a b

density of  at .\ B" "

The supply and demand problem may be reformulated in terms of the safety margin

(Ang and Tang 1984),

KÐ Ñ � \ �\X " # a b5.2

where  and  are independent normally distributed random variables.  Failure is\ \" #

defined when
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Figure 5.1  Probability distributions of supply and demand (Ang and Tang 1984).
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KÐ Ñ � \ �\ � !X " # a b5.3

Since the safety margin  is a function of two independent normally distributedKÐ ÑX

random variables,  itself is a normally distributed random variable with probabilityKÐ ÑX

density function, .  The mean value of  is given by0 1 KÐ ÑKa b X

. . .K \ \� �
" #

, 5.4a b
and the standard deviation of  isKÐ ÑX

5 5 5K
# #
\ \� �É a b
" #

5.5

The probability of failure is equal to

: � 0 1 .1 � J !0 K K
�_

!

( a b a b a b5.6

which is represented by the cross-hatched area shown in Fig. 5.2.  If  is the number of"

standard deviations  from the mean value  to the failure region, then failure occurs5 .K K

when

. "5K K� � !, 5.7a b
or when

"
. . .

5 5 5
� �

�

�

K \ \

K # #
\ \

" #

" #
É a b5.8

Substituting Eq. 5.8 into Eq. 5.6, the probability of failure becomes

: � J � " �0 K
K

K
� � a b a b.

5
F " 5.9

where  is the standard normal cumulative density function evaluated at .  TheF " "a b
quantity  is often referred to as the reliability or safety index."
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Figure 5.2  Probability density function for the safety margin G (Ang and Tang 1984).
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5.2 FIRST-ORDER SECOND-MOMENT METHOD

In general, the response of a system may be function of many random variables.

The response of a system is usually given in the form of a performance function (Ang and

Tang 1984),

1Ð Ñ � 1 \ ß\ ßá ß\X a b a b" # 8 5.10

where  is a vector of random variables that defines the state of the system.  TheX

performance function describes all possible responses of the system that are of interest.

The failure surface or limit state of the system is the transition of the system from a safe to

an unsafe state, and is defined by setting the performance function equal to zero,

1Ð Ñ � !X .

The probability of failure for a general system may be calculated by

: � á 0 B B á B .B .B á.B0 \ \ á\ " # 5 " # 5( ( ( a b a b
1Ð Ñ � !\

" # 5
, , , 5.11

where , , ,  is the joint probability density function of the variables0 B B á B\ \ á\ " # 5" # 5
a b

\ \ á \" # 5, , , .  For independent variables, Eq. 5.11 reduces to

: � á 0 B 0 B á0 B .B .B á.B0 \ " \ # \ 5 " # 5( ( ( a b a b a b a b
1Ð Ñ � !\

" # 5
5.12

where  is the probability density function for the variable .  However, for most0 B \\ 3 33
a b

problems the exact distributions of the random variables involved are not known.

Therefore, a second-moment formulation (Ang and Tang 1984) is often used to

approximate the exact solution given by Eqs. 5.11 and 5.12.  A second-moment

formulation provides an estimate of the probability of failure by using only the first and

second moments of each random variable.  The first and second moments are more
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commonly referred to as the mean and the variance.  Use of the second-moment approach,

is in general limited to systems having linear performance functions and uncorrelated

normally distributed random variables.  But, the method may be adapted to systems having

nonlinear performance functions and correlated nonnormal random variables.

The objective of the second-moment method is to find the point on the failure

surface that has a minimum distance  to the origin of a normalized coordinate system.F

This point is often referred to as the most probable failure point, and has coordinates .\�
3

The shortest distance is found by minimizing  under the constraint that .  AngF 1Ð Ñ � !X

and Tang (1984) have shown that the method of Lagrange multipliers may be used to

solve this problem.  For a general nonlinear limit state, the distance  to a point on theF

failure surface is

F � �á � �É È a bW W#
"

# X
8 S S 5.13

where the  are standardized normal variables which are equal toW3

W3
3 \

\
�
\ � .

5
3

3

a b5.14

By using standardized normal variables, measurements along all the normalized axes are

the same, and are expressed in units of number of standard deviations.  Using a Lagrange

multiplier gives (Ang and Tang 1984)

P � F � 1- a b a bS , 5.15

or

P � � 1È a b a bS S SX - 5.16

Minimizing  with respect to  and  requires thatP S -

`P `1

` `
� � � !

S S
S

S SÈ a b
X

- 5.17
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and

`P

`
� 1 � !

-
a b a bS 5.18

The vector  is the gradient of the function  and is often written as`1Î` 1S

fW1 �
ã

a b Ö Ù a b
Ô ×Ö ÙÖ Ù
Ö Ù
Õ Ø

S

`1
`
`1
`

`1
`

W

W

W

"

#

8

5.19

Using the chain rule,  may be written as`1Î`W3

`1 `1 `\ `1

` `\ ` `\
� �

W W3 3 3 3

3
5\3

a b5.20

Therefore, the gradient of  is given by1

f fW \1 � 1a b a b a bS X5\ 5.21

where is a diagonal matrix whose elements are the standard deviations of each random5\  

variable.

Simultaneous solution of Eqs. 5.17 and 5.18 yields the minimum distance to the

limit state and the most probable failure point, .  Equation 5.17 may bea bW W W� � �
" # 8ß ßá ß

rewritten as

S

S S
SÈ a b a b

X
� 1 � !-fW 5.22

or

S S� f� F 1- W a b a b5.23

Substituting Eq. 5.23 into the expression for  givesF

F � F 1 1- � �a b a b a bf fX
W WS S

"
# 5.24
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The expression for the Lagrange multiplier is

- � 1 1� �a b a b a bf fX �
W WS S

"
# 5.25

The resulting vector  is found by substituting Eq. 5.25 into Eq. 5.23 which givesS

S
S

S S
� �

f

f f

F � �F
1

1 1

W

W W

a b
� a b a b�

a b
X

"
#

! 5.26

The vector contains the direction cosines along the axes.  Premultiplying the above! 

equation by  and rearranging gives a distance  equal to!X F

F � � !XS a b5.27

Substituting  into the limit state equation gives the minimum distanceF

F � � �738
� �X" ! S a b5.28

Once  is known, the most probable failure point can be found by"

S� �� � " ! a b5.29

The reliability index, , may also be found by expanding the performance function"

1a bX X in a Taylor series about a point  on the failure surface (Ang and Tang 1984).  The�

resulting expression is

1 � 1 � � 1a b a b a b a bX X X X X� � �X f\

� � � �á
"

#
a b a b a b a bX X H X X X� � �X 5.30

where the matrix  is the Hessian which contains the termsH Xa b
L �

` 1

`\ `\
34

#

3 4
a b5.31

Neglecting the higher order terms and recognizing that  gives1 � !a bX�
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1 � � 1a b a b a b a bX X X X� �X f\ 5.32

Changing to standardized normal variables the vector  becomesX X� �

X X S S� �� � 5\a b a b� 5.33

and the gradient becomes

f f\ W1 � 1a b a b a bX S5�"\ 5.34

The first-order expansion may be rewritten as

1 � � 1a b a b a b a bS S S S� �X fW 5.35

The first-order approximation of the mean value is

.1
� �X� � 1S SfW a b a b5.36

and the corresponding first-order approximation of the variance is

5# X � �
1 � 1 1f f

W Wa b a b a bS S 5.37

The reliability index is given by

"
.

5
� �

� 1

1 1

1

1

� �X

X � �

S S

S S

f

f f

W

W W

a b
� a b a b�

a b"
#

5.38

or

" � � !� �X S a b5.39

This value of , obtained from a first-order expansion of , is the same as the value" 1a bX

from Eq. 5.28.  For this reason, the second-moment method is often referred to as the

first-order second-moment method.  More accurate estimates of  may be found by using"

higher order terms in the expansion of  about the failure surface, but in most cases the1a bX

cost increases drastically because the higher derivatives must also be computed.
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For a nonlinear performance function, the reliability index  is found using an"

iterative procedure that incorporates the results of the Lagrange multiplier method

presented above.  The following iterative algorithm was proposed by Rackwitz (1976):

1. ) Assume initial values of X  and obtain the standardized normal variables�
3

W� 3
3

�

�
\ � .

5

\

\

3

3

2.) Evaluate  and .fW1a bS� �!

3.) Form X� �
3 3� � Þ. ! 5 "\ \3 3

4.) Substitute X  into  and solve for � �
3 1 � ! Þa bX "

5.) Using  from step 4, reevaluate " ! "W� �
3 3� � Þ

6.) Repeat steps 2 through 5 until the change in  or the changes in  are" W�
3

sufficiently small.

The resulting probability of failure is found from the expression

: � " �0 F "a b a b5.40

5.3 LEAST SQUARES ANALYSIS

5.3.1 Linear Approximation

To fit a linear surface to a given set of data requires an equation of the form

] � � \s s< <! 3
3�"

5

3" a b5.41

where there are a total of  unknown coefficients in the model and  is the total: � 5 � " 5
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number of independent variables included in the analysis.  To solve for the unknown

coefficients, , in Eq. 5.41, a series of experiments must be run at various levels of each<s3

independent variable .  The number of experiments run must be greater than the number\3

of independent variables included in the analysis.  The experimental data for  experiments8

is typically written in the form (Myers 1971)

] \ \ â \
] \ \ â \
ã ã ã ä ã
] \ \ â \

" "" #" 5"

# "# ## 5#

8 "8 #8 58

where .  Using the experimental results, the assumed linear model may be written as8 � 5

Y
8 � " : � " 8 � "8 � :

� �B G / a b5.42

where  is a vector of random variables that represents the difference between the/

experimental results and the results predicted by the linear model.  The  for each/3

experiment are assumed to be independent with zero mean and variance  (Myers 1971).5#

The vector  contains the results of the  experimental runs and is given byY 8

Y
8 � "

�

]
]
ã
]

Ô ×Ö ÙÖ Ù a b
Õ Ø

"

#

8

5.43

The vector  contains the unknown coefficients and may be expressed asG

G
: � "

�
ã

Ô ×Ö ÙÖ ÙÖ Ù a bÖ Ù
Õ Ø

<

<

<

<

!

"

#

8

5.44

and the matrix  contains the various levels of the independent variables  and has theB \3

form
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B
8 � :

�

" \ \ â \
" \ \ â \
ã ã ã ä ã
" \ \ â \

Ô ×Ö ÙÖ Ù a b
Õ Ø

"" #" 5"

"# ## 5#

"8 #8 58

5.45

The method of least squares finds the coefficients, , that minimizes the sum of theG

squares of the random values  for each experiment.  Therefore, the coefficients  may/3 G

be found by minimizing

P � / �" a b
3�"

8
# X
3 / / 5.46

Equation 5.46 may also be written as

P � � �� � � � a bY Y
8 � " : � " 8 � " : � "8 � : 8 � :

B G B Gs s
X

5.47

where  are the estimated values of the coefficients , resulting from the least squaresG Gs

approximation.  The expanded form of Eq. 5.47 is

P � � # �Y Y Y
" � 8 8 � " " � : 8 � " " � : : � ": � 8 : � 8 8 � :

X X XX X
G B G B B Gs s s a b5.48

To solve for the coefficients ,  must be minimized and set equal to zero givingGs P

`P

`
� � # � # � !

G
B B B G

s
s

: � 8 : � 8 8 � :8 � " : � "

X XY a b5.49

The resulting vector  is found by solving the linear system,Gs

� � a bB B G B
: � 8 8 � : : � 8: � " 8 � "

X Xs � Y 5.50

The system of equations given in Eq. 5.50 are called the normal equations for estimating

Gs  (Myers 1971).
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5.3.2 Quadratic Approximation

The procedure used to fit a linear function may be extended to fit a function of the

form

] � � \ � \ � \ \s s s s< < < <! 3 33 3 34
3�" 3�" 3�" 4�3

5 5 5 5

3 3 4
#" " "" a b5.51

where there are now  parameters in the model rather than the: � " � #5 � 5 5 � " Î#a b
: � 5 � " parameters in the linear approximation.  The assumed quadratic model may be

written in the same form as the linear model

Y
8 � " : � " 8 � "8 � :

� �B G / , 5.52a b
but the matrix  now has extra columns to account for the quadratic terms in the model.B

The vector  also has extra rows to account for the additional coefficients.  For the caseG

that includes only two independent variables, the matrix  isB

B
8 � '
�

Ô ×Ö ÙÖ Ù a b
Õ Ø

" \ \ \ \ \ \

" \ \ \ \ \ \
ã ã ã ã ã ã

" \ \ \ \ \ \

"" #" "" #"
# #
"" #"

"# ## "# ##
# #
"# ##

"8 #8 "8 #8
# #
"8 #8

5.53

and the vector  is given byG

G
' � "

�

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù a bÖ ÙÖ Ù
Õ Ø

<

<

<

<

<

<

!

"

#

""

"#

##

5.54

Just as in the linear case, the vector of coefficients  is found by solving the linear systemGs

of equations

� � a bB B G B
: � 8 8 � : : � 8: � " 8 � "

X Xs � Y 5.55
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5.4 EXPERIMENTAL DESIGNS

5.4.1 Two-Level Factorial Designs

The success of the response surface method depends to a large extent on the 8

experimental runs used in the least squares analysis.  Designed experiments are often used

to maximize the efficiency and the accuracy of the least squares analysis.  One important

class of experimental designs is factorial experimentation, and in particular factorial

experiments with each independent variable at two levels.  This type of design is called the

#5  factorial design, and has two major advantages over the more common one-factor-at-a-

time procedure (Myers 1971).  For a study that includes three independent variables, a

total of  experiments are required for the  factorial design:# � ) #$ 5

\ \ \

" P P P
# L P P
$ P L P
% L L P
& P P L
' L P L
( P L L
) L L L

" # $

a b5.56

where  indicates the high level and indicates the low level of the independent variableL P

\3.  One example of a one factor at a time design includes four experiments (Myers

1971):

\ \ \

" P P P
# L P P
$ P L P
% P P L

" # $

a b5.57

The first advantage of the factorial design is that interaction between the independent
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variables can automatically be measured because there are enough experiments in the

design to include the coefficients  in the least squares analysis.  However, there is not<s34

enough information in the  factorial design to gain any information about the pure#5

quadratic terms by finding the coefficients .  The second advantage is that the variance<s33

of a typical coefficient from the  factorial design is much less than the variance of a#5

typical coefficient from the one-factor-at-a-time analysis (Myers 1971).  Therefore, the

coefficients from the factorial design are considered to be more precise than those from

the one-factor-at-a-time design.

When using the  factorial design the independent variables are often transformed#5

so that the high and low levels of each are  and .  The resultingL � � " P � � "

transformation is

'3
3 3

3
� #

\ �\
q

.
� � a b5.58

where the variables  are referred to as coded variables.  The quantity  is the difference'3 3.

between the high and low value of , and  is the average of the high and low value for\ \
q

3 3

\ #3
5.  The various combinations of the coded variables for a  design are placed in a design

matrix .  The design matrix for the case where there are three independent variables isD

D �

� " � " � "
" � " � "

� " " � "
" " � "

� " � " "
" � " "

� " " "
" " "

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù a bÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

5.59

Note that there is a pattern to the design matrix and that in every column there are #a b3�"

( column number) clusters of the high and low level of each coded variable.  This3 �
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pattern holds for any number of independent variables and makes computer generation of

the design matrix fairly straightforward.  When used with the linear least squares analysis,

the design matrix is incorporated into the  matrix as the last  columns.  For the threeB 5

variable case, the matrix  isB

B �

" � " � " � "
" " � " � "
" � " " � "
" " " � "
" � " � " "
" " � " "
" � " " "
" " " "

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù a bÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

5.60

Use of the coded variables also simplifies the matrix  which is required for theB BX

solution of the unknown coefficients. For  independent variables the matrix  is the5 B BX

diagonal matrix

B BX 5

5

5

5

� � #

# !

#
ä

! #

Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø

a bI
: � :

5.61

Besides making the solution for the coefficients much easier, the fact that  is diagonalB BX

also implies that the covariance between any two coefficients is equal to zero which makes

the  factorial design part of a larger class of designs known as orthogonal designs#5

(Myers 1971).

5.4.2 Central Composite Design

As mentioned above, the standard  factorial design does not provide enough#5

data to determine the coefficients of the pure quadratic terms in the least squares analysis.

However, the  factorial design may be supplemented with axial data points at some#5
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distance  along the axis of each independent variable.  Also, at least one center point!

must be added to the design.  The resulting experimental design is called the Central

Composite Design (CCD), and is shown in Fig. 5.3 for three independent variables.  As a

result of adding more experimental points, the design matrix has additional rows.  For 5

independent variables, the additional portion of the design matrix is

' ' ' '" # $ 5â

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù a bÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

! ! ! â !
� ! ! â !

! ! â !
! � ! â !
! ! â !
! ! � â !
! ! â !
â â â â â
! ! ! â �
! ! ! â

!

!

!

!

!

!

!

!

5.62

The distance  is chosen by the user, but in most cases only varies between ! "Þ!

and  (Myers and Montgomery 1995).  For three independent variables the first valueÈ5

of  places all of the axial points on the faces of a hypercube, and the second value, ,"Þ! 5È
places all the axial points on a sphere.  There are various choices for the value of  (Myers!

and Montgomery 1995), all of which have some desirable effect on the response surface

analysis.  The value of  that will be used in this work is the value that causes the design!

to be orthogonal.  The value of  needed to make the central composite design orthogonal!

is computed using (Myers 1971)

! �
UJ

%
� � a b

"
%

5.63

where
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Figure 5.3  The Central Composite Design for Three Variables (Myers 1995).
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U � J � X � J� � a bÈ È #

, 5.64

J X is the number of factorial points in the design, and  is the number of additional points

needed for the Central Composite Design.  For three independent variables ,J � # � )$

X � # � $ � " � ( � "Þ#"', and .!

5.4.3 Two-Level Fractional Factorial Designs

The example shown earlier pointed out that the coefficients obtained using a #5

factorial design were more accurate than those using the one-factor-at-a-time approach,

but the  factorial design required twice the number of experiments.  If the cost of#5

running experiments is very high and the difference in accuracy of the coefficients is not a

problem, then the one-factor-at-a-time approach may appear to be a better alternative.

However, it turns out that fractions of the  factorial design may be used without#5

sacrificing the accuracy or the orthogonality of the design.  The  fraction of a 7th #5

factorial design is abbreviated as a  factorial design.  If  then the design is a# 7 � "5�7

"Î# # "Î# fraction of the  factorial design and only  of the full number of experiments are5

required for the analysis.

The fraction chosen for the  design depends on which coefficients the user is#5�7

most interested in knowing.  When using a fractional factorial design, there is no longer

enough experimental data to uniquely estimate each coefficient.  Therefore, some of the

coefficients lose their independence or they become confused with one another.  When the

values of two coefficients are not unique there is said to be aliasing in the design.  The

objective in using a  design is to not have aliasing between any two coefficients of#5�7

interest.  As an example, if a user wants to fit a linear surface to a set of experimental data

then it is imperative that no two coefficients of linear terms be aliased with one another.  If
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the user wishes to fit a quadratic model to a set of data then there must be no aliasing

between first-order terms, between first and second-order terms, or between any two

second-order terms.  A design of the latter type is said to be of Resolution V or better

(Montgomery 1991).  Resolution III designs guarantee that no two linear terms are aliased

with one another and Resolution IV designs guarantee that no two linear terms are aliased

with one another and that no linear terms are aliased with quadratic terms.

Once a design resolution has been specified, the fraction  of the full  design is7 #5

also known.  The question that remains is how to choose which rows in the design matrix

D will be used to actually conduct the experiments.  The first step is to identify a defining

contrast, which basically determines which terms will be aliased in the analysis.  As an

example, consider the  design which is a resolution III design.  The defining contrast#$�"

for this design is

M � ' ' '" # $ a b5.65

To determine which experiments must be run, the defining contrast may be rewritten as

M � ' ' '
# # #" # $�" �" �"
" # $ a b5.66

where is equal to  or  and determines whether or not the corresponding variable  is# '3 3! "

included in the defining contrast.  New variables  which correspond to  are definedD \3 3

such that  if  is at the high level and  if  is at the low level.  A value  isD � " \ D � ! \ P3 3 3 3

computed for every row in the design matrix using the expression

P � D � D � D � D � D � D# # #" " # # $ $ " # $ a b5.67

Then for every value , a value  is computed by the expressionP >

> � P79.?69 #a b a b, 5.68

or
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> � P � MRX �#
P

#
� � a b5.69

This method causes the value of  to be either  or .  When applied to the three variable> ! "

case, the resulting values of  are>

' ' '" # $ >

� " � " � " !
" � " � " "

� " " � " "
" " � " !

� " � " " "
" � " " !

� " " " !
" " " "

The result is two sets of experiments, one having  and the other having .  Either> � ! > � "

set may be used to run the actual experiments.  The general procedure for finding the

appropriate rows to use for an  fraction design having  variables is explained by7th 5

Myers (1971).  In general there will be  defining contrasts in a  design.  Therefore,7 #5�7

there will be  values of , , and  values of , .  The correct rows of  are chosen7 P P 7 > >3 3 D

from one of the  sets of  generated using the above process.  Tables of defining# >7
3

contrasts for various resolutions and various numbers of independent variables are given

by Montgomery (1991).

5.5 SIGNIFICANCE OF INDIVIDUAL REGRESSION COEFFICIENTS

When using a technique like the response method it is often difficult to decide

which independent variables must be included in the model.  Since experimentation is

costly it is best to only include those variables which influence the response of the system

the most.  One method for determining which variables are most significant involves the

use of a screening experiment.  In a screening experiment, all independent variables of
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interest are included in the analysis and a first-order surface is fit to the experimental

results.  The effect of each independent variable  is assessed by testing the coefficients\3

<s3.

One simple method for comparing the effects of the variables  is to simply\3

compare the magnitudes of the individual coefficients .  The major problem with this<s3

method is that differences in units among the independent variables may cause some of the

coefficients to appear artificially small when compared to the rest.  In the response surface

method, hypothesis testing is normally used to determine the significance of each

independent variable.  The hypotheses used for testing the significance of individual

coefficients are (Montgomery 1991),

L À � !s
! 3<

L À Á !s
" 3< a b5.70

The test statistic for the above hypotheses is (Myers and Montgomery 1995)

> �
s

s G
!

3

#
3

<

5È a b5.71

where  is the th diagonal element of the matrix .  The term  is estimatedG 3 s3
X �" #a bB B 5

from the mean square error as (Myers 1971)

QWI � �
�

8 � : 8 � :

WWIY Y Y
" � 8 8 � " " � : 8 � ": � 8

X X XG B a b5.72

where  is referred to as the error sum of squares which is computed using theWWI

differences between each experimental result and the corresponding least squares

prediction.  The variable  is the total number of experiments used in the analysis and  is8 :

the total number of coefficients in the model.  The hypothesis  is rejected ifL À � !s
! 3<

k k a b> � >! Î#ß8�:! 5.73
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where  is equal to one minus the confidence level and  is the percentile value of! >!Î#ß8�:

the students t-distribution with  degrees of freedom.  The hypothesis test basicallya b8 � :

reflects a certain user specified confidence that a specific coefficient  should be included<s3

in the model.

The hypothesis test presented above does have one major disadvantage in that the

coefficients  are assumed to be statistically independent (Montgomery 1991).  In<s3

general, the off-diagonal terms in the matrix  are not zero indicating that there isa bB BX
�"

some correlation between the coefficients .  But, if a two-level full or fractional factorial<s3

design is used to conduct the experiments the design is orthogonal, the matrix  isa bB BX
�"

diagonal, and the coefficients  are independent.  In this case the hypothesis test gives<s3

good results.

Once the hypothesis test has been performed on all of the coefficients then all of

the independent variables which are not significant can be dropped from the analysis.  In

many cases this can significantly reduce the amount of experimentation and therefore

make the response surface method a cost effective alternative for estimating the response

of a system.

5.6 MODELING OF THE PERFORMANCE FUNCTION

5.6.1 Linear Model

The performance function needed for the first-order second-moment method may

be generated by using the least squares method combined with designed experiments.  If

the experiments in the analysis are performed in accordance with a two-level factorial

design,  using coded variables, a linear performance function of the following form may be

generated:
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1 � �s sa b a b"' = = '! 3 3

3�"

5

5.74

where the coded variables  are now random variables.  To fit into the first-order second-'3

moment method, the resulting performance function must be written in terms of

standardized normal variables, .  The expression for the variables  in terms of  isW W3 3 3\

\ � �3 \ \ 3. 5
3 3

W a b5.75

Substituting Eq. 5.75 into the equation for the coded variables, Eq. 5.58, gives

'3 3 3 3� + � , W a b5.76

where

+ �
# �\

q

.
3

\ 3

3

a b a b.
3 , 5.77

and

, �
#

.
3

\

3

5
3 a b5.78

The performance function may be written in terms of  by substituting Eq. 5.76 into Eq.W3

5.74:

1 � � + � ,s sa b a b a b"' = =! 3 3 3 3

3�"

5

W , 5.79

or

1 � � + � ,s s sa b a b" "S = = =! 3 3 3 3 3

3�" 3�"

5 5

W 5.80

The most probable failure point is given by

W3 3
� �� � " ! a b5.81
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where

!3
�

`1
`

X � �

�

1 1

a bS�

3
"
#

W

� a b a b�
a b

f f
W WS S

5.82

Using the chain rule, one may write  as`1 Î`a bS W3

`1 `1 ` #

` ` ` .
� � s

a b a b a bS�

3 3 3 3

3 \
3

W W

'

'

' 5
=3 5.83

Setting Eq. 5.80 equal to zero yields the equation of the limit state which is given by

1 � � + � , � !s s sa b a b" "S = = =! 3 3 3 3 3

3�" 3�"

5 5

W 5.84

At the most probable failure point the limit state becomes

= = " = !s s s� + � , � !! 3 3 3 3

3�" 3�"

5 5

3
�" " a b5.85

Solution for the reliability index  yields"

"

= =

= !

�

s s� +

s ,

! 3 3
3�"

5

3�"

5

3 3 3
�

!
!

a b5.86

5.6.2 Quadratic Model

The procedure presented above may be modified slightly to include a quadratic

model of the performance function.  The vector form of the second-order performance

function may be written as

1 � � �sa b a b' = ' ' H'=!
X Xs s 5.87

where
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=s �

s
s
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s
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#

5

5.88

and

Hs �

s s sÎ# â Î#

s sâ Î#
ä ã

=C7Þ s

Ô ×Ö ÙÖ Ù a b
Õ Ø

= = =

= =

=

"" "# "5

## #5
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5.89

The vector form of the relationship between  and  is' S

' � �a BS a b5.90

where

a � #
ã

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

a b

� �
� �

� �

.

.

.
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"
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.

�\
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.

�\
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.

5.91

and

B �
ä

Ô ×Ö ÙÖ ÙÖ Ù a bÖ Ù
Õ Ø

#

.
#

.

#

.

5

5

5

\"

"

\#

#

\5

5

0

0

5.92

Substituting Eq. 5.90 into the performance function gives

1 � 1 � �a b a bS S S G SX X1 5.93

where

1 � � � ßs=!
X X= Hs sa a a a b5.94
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1 � s sB a BX X= H� # ß a b5.95

and

G B B� sXH a b5.96

The vector  is given by!

! �
1

1 1

f

f f

W

W W

a b
� a b a b�

a bS

S SX

"
#

5.97

where  is equal tofW1Ð ÑS

f 1W1Ð Ñ � � #S G S a b5.98

The most probable failure point is

S� �� � " ! a b5.99

The equation of the limit state at the most probable failure point is

1 � 1 � � � !a b � � � � a bS G� � � � #X X
! ! !1 " " 5.100

The resulting quadratic equation is then solved for the unknown reliability index ."

When the response surface method is used to model the performance function, the

general iterative procedure for the first-order second-moment method may be rewritten as:

1.) Assume initial values  and make these values the center of the\�
3

 designed experiment.

2.) Set the upper and lower values (usually ) for the experimental� 5\3

 region and conduct a response surface analysis to predict a model for the

 performance function over the experimental region.

3.) Evaluate  and .fW1a bS� �!
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4.) Solve  for the reliability index 1 � ! Þa bS� "

5.) Using  from step 4, reevaluate  and correspondingly " ! "W� � �
3 3 3� � \ Þ

6.) Make the new values of  the center of a new designed experiment and\�
3

 perform the necessary experiments.

7.) Repeat steps 2 through 6 until the change in  or the changes in  are" W�
3

 sufficiently small.
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CHAPTER 6

STABILITY ANALYSIS WITH RANDOM

 IMPERFECTIONS

Most of the work pertaining to stability analysis with random imperfections deals

with the modeling of imperfections which are known at discrete points on the structure, or

with finding a critical imperfection shape that causes the largest reduction in the critical

load for the structure.  Questions about the modeling of imperfections arise when a

structure is designed for the first time and no information is available about the initial

imperfections.  Usually, a maximum allowable limit on the imperfection at any point on the

structure is specified by a design code or dictated by the manufacturing process used to

build the structure itself, or the various members in the structure.  The objective is to

model the imperfections in a realistic manner, by treating the imperfections as random

fields, so that a resulting distribution of the imperfect critical load may be calculated using

the techniques presented in Chapter 5.

6.1 IMPERFECTION MODELING

The objective in modeling the initial geometric imperfections is to obtain the

variance of the modal imperfection amplitudes.  Modeling of the initial geometric

imperfections is accomplished using four basic assumptions.  The first assumption only

allows translational imperfections at the imperfect nodes.  This means that crooked

members are modeled by translational movements of the nodes of the finite elements used
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to discretize each structural member.  The second assumption forces the shape of the

initial imperfection to be characterized by a summation of  linear buckling modes.  The8

third assumption specifies that the variance of the amplitude of the initial imperfection is

found from a specified maximum allowable imperfection magnitude.  The fourth

assumption limits the nodal imperfections to be independent normally distributed random

values.  For the work presented here, the mean value of the initial imperfection is assumed

to be zero.

The first step in applying imperfections to a structural model is to define which

joints or nodes will be allowed to have imperfections.  The next step is to create a matrix

of eigenvectors, , that only contains the components corresponding to the imperfectF

degrees of freedom.  The imperfection vector for the entire structure may be written as

? F
R � " R � 8 8 � "M M

� a a b6.1

where  is the matrix of eigenvectors mentioned above,  is a vector containing the modalF a

imperfection magnitudes, and  is the number of imperfect degrees of freedom.  TheRM

imperfection, , given by Eq. 6.1 is basically like the imperfections described in Chapter?

2.  The eigenvectors contained in  determine the shape of the imperfection and theF

amplitudes contained in the vector  determine the magnitude of the imperfection.  If thea

nodal imperfections are known, the modal imperfection magnitudes may be found using

a
8 � " 8 �R R � "

� F ?
�

M M

a b6.2

where the matrix  is the pseudo-inverse of the matrix .  The pseudo-inverse isF F�

calculated using least squares as described in Chapter 5, which in this case yields

F F F F
� X X�"
� � � a b6.3

Unlike the imperfections described in Chapter 2, the imperfection vector, , for the?

structure is not known and the modal imperfection vector, , is not easily found.a
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The goal of modeling the imperfections is to find the mean and variance of the

modal imperfection vector, .  To avoid specification of the exact nodal imperfections, thea

variance of the nodal imperfections may be specified.  From Eq. 6.2, a typical modal

amplitude is given by

+3 4

4�"

R
�
34�" a bM

F ? 6.4

Therefore, each modal amplitude is a linear function of the nodal imperfections.  If the

nodal imperfections, , are independent normally distributed random variables then the?4

mean value and variance of each modal amplitude is given by (Ang and Tang 1975):

. F .+3 4

M

�" a b
4�"

R
�
34 ? 6.5

5 F 5# � #

4�"

R

34
#

+3 4

M

�"� � a b? 6.6

For the work presented here, the mean values of the nodal imperfections are assumed to

be zero which means that the mean values of the modal amplitudes will also be zero.

If the nodal variances are known, Eq. 6.6 may be used to calculate the variance of

the modal amplitudes.  Most specifications require that the maximum allowable

imperfection be no greater than a prescribed value, .  This means that the?7+B

imperfection, , at any imperfect node  on the structure should be less than or equal to?5 5

? ?7+B 7+B.  The prescribed maximum imperfection, , may be used to calculate a

maximum allowable standard deviation for any imperfect node  using5

= � �
� �

7+B
5 7+B? . ? .

5 5

? ?

? ?

5 5

5 5

, 6.7a b
or



136

5
? .

?
?

5

5�
�

=
7+B

7+B
a b6.8

where the mean value, , of the imperfection at any imperfect node  is assumed to be.?5
5

zero.  Using Eq. 6.8 ensures that the maximum imperfection will be located at ,� =7+B

where  is the specified number of standard deviations from .  Therefore, the= � !7+B .?5

maximum allowable standard deviation, at any imperfect node  on the structure, is given5

by

5
?

?5
�

=
7+B

7+B
a b6.9

Tentative values of the nodal variances may be found using a unit variance for the

modal amplitudes and

5 F 5# #

3�"

8

43
#

?4 3
�"a b a b+ 6.10

The resulting values of  are then normalized with respect to the largest value of 5 5# #
? ?4 4

and are then multiplied by  from Eq. 6.9.  This procedure locates the imperfect node in5#?5

the structure with the largest variance and then makes this variance equal to the maximum

allowable variance calculated by using Eq. 6.9.  The result is a normalized group of nodal

variances whose maximum value is .  The modal variances are found using Eq. 6.6 and5#?5

the normalized nodal variances, .  With the variances of the modal imperfection5#?4

magnitudes known, a study of the distribution of the buckling load for a structure can be

performed.
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6.2 RELIABILITY ANALYSIS

6.2.1 Definition of the Limit State

For this study, the reliability or probability of survival, , of a structure is defined:=

as the probability that an imperfect structure will become unstable at a load greater than a

specified percentage of the critical load for the perfect structure.  The probability of

failure, , is equal to:0

: � " � :0 =, 6.11a b
or the probability that an imperfect structure will become unstable at a load less than a

given fraction of the perfect critical load for the structure.  The limit state or failure

surface for this problem is defined by

a b a b a bU � U � !-< -<37: :/<0-0<+- 6.12

where  is the critical load for the perfect structure,  is the critical loada b a bU U-< -<:/<0 37:

for the imperfect structure, and  is a specified fraction of the perfect critical load.-0<+-

For the general multiple degree of freedom problem, the load  becomes a vector U-< Q

which is multiplied by a scalar   The resulting failure surface is--<Þ

� �a b a b a b- --< -<37: :/<0� � !-0<+- Q , 6.13

or

a b a b a b- --< -<37: :/<0� � !-0<+- 6.14

The above equation may be normalized by dividing both sides by  which givesa b--< :/<0

a b
a b a b-

-

-< 37:

-< :/<0

� � !-0<+- 6.15

If  is equal to one, Eq. 6.15 becomes-0<+-
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a b
a b a b-

-

-< 37:

-< :/<0

� " � ! 6.16

and the resulting probability of failure, , is the probability that an imperfect structure:0

will have a critical load less than that of the perfect structure.

6.2.2 Response Surface/First-Order Second-Moment Method

With the imperfections modeled by the method presented in Section 6.1, the

probability of failure may be calculated using Eq. 6.15 and the combined response

surface/first-order second-moment (RS/FOSM) method presented in Chapter 5.  The

value of  is in general a nonlinear function of the modal imperfection amplitudes,a b--< 37:

+3
5.  A  factorial design is used to fit a first-order surface over an experimental region#

bounded by  for each random variable and centered at the mean values which are� 5+3

zero.  Using a first-order surface, the reliability index, , may be found using Eq. 5.87."

With the reliability index known, a new estimate of the most probable imperfection

amplitudes, , may be calculated.  For the next iteration, the experimental design is+�3

centered at  and, if the values of  are inside of the previous experimental region then+ +� �
3 3

the size of the new experimental region is reduced by half.  Otherwise, the bounds of the

experimental region remain at   until the predicted values of  fall inside the current� 5+3 +�3

experimental region.  Iteration using the first-order approximation continues until the

values of  are inside the experimental region and the difference between the values of +�3 "

for two successive iterations is less than or equal to a specified tolerance, .  After$"

meeting the two previously mentioned criteria, a second-order surface is fit over the

current experimental region.  The second-order surface is fit by supplementing the

experimental data for the  factorial design with the data necessary to form a Central#5

Composite Design (Sect. 5.4.2).  The final value of the reliability index is found by solving
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Eq. 5.101.

6.3 EXAMPLE PROBLEMS

Two example problems are presented that demonstrate the use of the RS/FOSM

method for determining the probability that the critical load for the structure will be less

than a specified fraction, , of the perfect critical load.  The first example is Williams'-0<+-

toggle frame and the second is the star-shaped reticulated cap.  The analysis of the perfect

structure for each problem was presented in Chapter 4.  The RS/FOSM method is used for

both examples and the results are compared with the results from numerical simulations.

6.3.1 Example 1: Williams' Toggle Frame

The analysis for the perfect version of Williams' toggle frame was presented in

Chapter 4.  The frame was modeled using 10 elements per member.  The analysis in

Chapter 4 revealed that the structure becomes unstable at a limit point where the load

multiplier, , is equal to 0.57110.  This value of  corresponds to a criticala b a b- --< -<:/<0 :/<0

load of 34.266 pounds.  Two different cases of Williams' toggle frame are considered.

The first uses an imperfection shape derived from the first 10 linear buckling modes, and

the second with an imperfection shape composed of the first six linear buckling modes.

Both cases assume the maximum allowable imperfection anywhere on the structure to be

less than five percent of the height of the apex or,

?7+B � !Þ!& � !Þ$)' � !Þ!"*$in. in. 6.17a b
With  known, the maximum allowable variance at any imperfect node in the structure?7+B

may be calculated using Eq. 6.9 and  equal to three:=7+B

5
?# �'7+B

7+B

# #

?5
� � � %Þ"$) � "!

= $

!Þ!"*$� � � � a bin.
6.18
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In both cases, all of the translational degrees of freedom are allowed to be imperfect,

which results in  imperfect degrees of freedom.R � $)M

6.3.1.1 Case 1: 10 mode imperfection

For the first case, the shape of the imperfection was modeled by the first ten linear

buckling mode shapes which are shown in Figs. 6.1 and 6.2.  The modal variances were

found using the procedure outlined in Section 6.1 and the maximum allowable variance

from Eq. 6.18.  The resulting modal variances are shown in Table 6.1.  The RS/FOSM

method was then used to find the probability that the imperfect critical load will be less

than the fractions, , of the perfect critical load, which are located in the first column-0<+-

of Table 6.2.  The number of numerical experiments was reduced by using a fractional

factorial design with only  experiments instead of the standard factorial design# � "#)"!�$

which requires  experiments.   The value of  used in the analysis is .# � "!#% !Þ!""! $"

Table 6.3 contains the predicted most probable imperfection amplitudes, , and the+�3

reliability index, , for each iteration of a RS/FOSM analysis with  equal to 0.968." -0<+-

The resulting failure probabilities, for all of the values of , are given in the fourth-0<+-

column of Table 6.2.

A 10,000 data point simulation was run to verify the results from the RS/FOSM

method.   During the simulation, the modal imperfection amplitudes were treated as

normally distributed random numbers with variances as shown in Table 6.1.  A frequency

density diagram which shows the resulting distribution of the imperfect critical load is

given in Fig. 6.3.  The number of cells in the frequency density diagram is given by

(Sturges, 1926)

RG ¸ " � $Þ$ 691 Ð8?7,/< 90 .+>+ :938>=Ñ"! a b6.19

For 10,000 data points  is approximately 14.  The frequency density diagram was usedRG
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MODE 3
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MODE 5

Figure 6.1  Linear buckling modes 1-5 for Williams' toggle frame.
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MODE 6

MODE 7

MODE 8

MODE 9

MODE 10

Figure 6.2  Linear buckling modes 6-10 for Williams' toggle frame.



143

Table 6.1  Modal variances for the 10 mode case for Williams' toggle frame.

 Mode No. Modal Variance, 5#+3
 1 5.499E-06
 2 4.906E-06
 3 6.003E-06
 4 2.792E-06
 5 1.422E-05
 6 8.880E-06
 7 6.185E-06
 8 3.397E-06
 9 1.857E-05
 10 7.667E-06
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Table 6.2  Calculated failure probabilities, for the 10 mode case for Williams' toggle
 frame, using simulation data and the RS/FOSM method.

 Simulation Simulation Response Response
 Histogram Histogram Surface Surface
 (10) (10/3)* (10) (10/3)*
     -0<+- 0 0 0 0: : : :

 0.952 0.000400 0.000300 0.000396 0.000396
 0.968 0.015400 0.014700 0.013584 0.013585
 0.984 0.148900 0.133000 0.138119 0.137459
 0.992 0.308900 0.283300 0.293650 0.293620
 1.000 0.526600 0.494100 0.500065 0.500003
 1.008 0.728000 0.699700 0.704518 0.704483
 1.016 0.869200 0.854000 0.858316 0.857534
 1.024 0.953000 0.943500 0.944813 0.944788
 1.032 0.985900 0.981600 0.982945 0.982933
 1.040 0.995800 0.995300 0.995809 0.995807
 1.048 0.998900 0.998600 0.999182 0.999182
 1.056 0.999900 0.999900 0.999873 0.999873
 1.064 1.000000 1.000000 0.999984 0.999984

* Results using the three most dominant imperfection modes, and the same variances
 as if all 10 imperfection modes were included in the analysis.
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Table 6.3 RS/FOSM results for the 10 mode case for Williams' toggle frame, with
  equal to 0.968.-0<+-

  iter. #1 iter. #2 iter. #3 iter. #4 quadratic+�3
 1 0.392E-02 0.398E-02 0.403E-02 0.404E-02 0.404E-02
 2 0.206E-07 -0.161E-07 0.263E-07 0.839E-08 0.919E-07
 3 0.298E-07 -0.588E-07 -0.217E-06 -0.383E-06 -0.345E-06
 4 0.697E-07 -0.135E-07 -0.143E-06 -0.656E-07 -0.412E-07
 5 0.361E-02 0.375E-02 0.379E-02 0.381E-02 0.381E-02
 6 0.258E-07 0.200E-07 -0.846E-07 -0.123E-07 -0.291E-07
 7 -0.181E-07 0.483E-07 -0.144E-06 -0.251E-06 -0.228E-06
 8 -0.172E-07 0.186E-07 -0.236E-07 -0.738E-08 0.195E-07
 9 -0.385E-02 -0.398E-02 -0.403E-02 -0.404E-02 -0.404E-02
 10 0.152E-07 -0.376E-07 0.416E-07 0.778E-08 -0.308E-07
  2.124  2.174  2.200  2.207  2.209"
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Figure 6.3  Frequency density diagram for the full 10 mode simulation for Williams'
 toggle frame.



147

to calculate the failure probabilities corresponding to the values of  found in the first-0<+-

column of Table 6.2.  The resulting failure probabilities are given in the second column of

Table 6.2.  The results from the RS/FOSM method are comparable to those from the

simulation.  The maximum percent difference is approximately 12 percent and occurs at a

value of  equal to 0.968.  The cumulative distribution function using the simulation-0<+-

data, and the response surface data are both plotted in Fig. 6.4.

The fractional factorial design used above reduced the number of numerical

experiments significantly, but the CPU time required to complete the analysis was still

large.  To further reduce the number of numerical experiments, a screening experiment

was run to determine which imperfection modes had the most significant effect on the

critical load.  The significance of each imperfection mode was determined by using the

hypothesis test presented in Section 5.5.  The value of  for each imperfection mode is>!

given in Table 6.4.  The values of  are compared to the tabulated value of the students t->!

distribution at a 95 percent level of confidence.  The tabulated value for this example is

> � "Þ'&)& Î#ßÐ"#)�""Ñ% a b6.20

Comparing the values of  with the tabulated value of 1.658 reveals that only the first,>!

fifth, and ninth modes have a significant effect on the critical load.  This information can

also be obtained from Table 6.3 by noticing that for all but the first, fifth, and ninth modes,

the most probable modal imperfections are nearly zero for each iteration.  The RS/FOSM

method was then used with only the three dominant imperfection modes, but the modal

variances remained the same as if all 10 modes were included in the analysis.  The new

results from the RS/FOSM analysis are given in the fifth column of Table 6.2.  The results

using the three most influential mode shapes are very close to the RS/FOSM results using

all 10 modes, and are comparable to the simulation results.
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Figure 6.4  Cumulative distribution functions, for the 10 mode case, for Williams'
 toggleframeÞ
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Table 6.4  Values of  for the 10 modal imperfection amplitudes for Williams' toggle>!
 frame.

 Mode No. >!

 1 -182.030
 2 -1.015E-03
 3 -1.324E-03
 4 -4.542E-03
 5 -104.038
 6 -9.444E-04
 7 7.936E-04
 8 1.020E-03
 9 97.345
 10 -6.000E-04

NOTE: All values of  are compared to the tabulated value of >! > � "Þ'&)& Î#ßÐ"#)�""Ñ%
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A second simulation was run to examine the effects of using only three of the 10

imperfection modes.  This simulation was run with only the three dominant modal

imperfections as random variables.  As in the second RS/FOSM analysis, the modal

variances remained the same as if all 10 modes were included in the analysis.  The

resulting distribution of the imperfect critical load is also shown in the form of a frequency

density diagram (Fig. 6.5).  Using the frequency density diagram, the failure probabilities

are calculated and tabulated in the third column of Table 6.2.  Comparison of the 10 mode

simulation data and the 3 mode simulation data shows that the seven non-dominant modes

do have a small impact on the calculated failure probabilities.  The results from the three

mode simulation and both RS/FOSM analyses are all very close to each other indicating

that the RS/FOSM method basically ignores the seven non-dominant imperfection modes

when calculating the probability of failure.  The cumulative distribution function for the

simulation data is plotted in Fig. 6.4 along with the full 10 mode simulation data and the

results from the RS/FOSM method.

6.3.1.2 Case 2: 6 mode imperfection

The second case for Williams' toggle frame uses the first six of the linear buckling

modes, shown in Figs. 6.1 and 6.2, to model the imperfection.  As with the first case, the

modal variances are found using the procedure presented in Section 6.1 and the maximum

allowable variance from Eq. 6.18.  The resulting modal variances are shown in Table 6.5,

and are in general larger than the variances from the 10 mode analysis (Table 6.1).  The

reason for this is that the same maximum allowable variance is now spread over fewer

modes which results in higher modal variances.  The RS/FOSM method was again used to

find the failure probabilities for the values of  from the first column of Table 6.6.  The-0<+-

required number of numerical experiments was reduced from the required  to# � '%'
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Figure 6.5  Frequency density diagram for the 10/3 mode simulation data for Williams'
 toggle frame.
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Table 6.5  Modal variances for the 6 mode case for Williams' toggle frame.

 Mode No. Modal Variance, 5#+3
 1 1.486E-05
 2 1.366E-05
 3 8.798E-06
 4 5.060E-06
 5 2.039E-05
 6 1.256E-05
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Table 6.6  Calculated failure probabilities, for the 6 mode case for Williams' toggle
 frame, using simulation data and the RS/FOSM method.

 Simulation Simulation Response Response
 Histogram Histogram Surface Surface
 (6) (6/2)* (6) (6/2)*
     -0<+- 0 0 0 0: : : :

 0.930 0.000200 0.000300 0.000166 0.000166
 0.940 0.001400 0.001200 0.001167 0.001169
 0.950 0.007900 0.007100 0.006011 0.006014
 0.970 0.081800 0.067200 0.069451 0.069472
 0.980 0.185200 0.160300 0.163189 0.164005
 0.990 0.338900 0.314700 0.313737 0.313789
 1.000 0.525400 0.495400 0.499944 0.500019
 1.010 0.709600 0.679100 0.683549 0.683590
 1.020 0.844800 0.829000 0.828507 0.828569
 1.030 0.932200 0.924400 0.921079 0.921122
 1.040 0.972500 0.972500 0.969284 0.969297
 1.050 0.992000 0.990700 0.989894 0.989897
 1.060 0.997600 0.997400 0.997186 0.997187
 1.070 0.999900 0.999300 0.999335 0.999336
 1.080 1.000000 0.999900 0.999867 0.999867

* Results using the two most dominant imperfection modes, and the same variances as
 if all six imperfection modes were included in the analysis.
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# � $#'�"  experiments by using a fractional factorial design.  The predicted values of the

most probable modal imperfections are given in Table 6.7 for each iteration and a value of

-0<+- equal to 0.95.  The predicted values of the reliability index for each iteration are also

shown in Table 6.7.  The resulting failure probabilities, for all of the values of , are-0<+-

shown in the fourth column of Table 6.6.

A 10,000 data point simulation was run to verify the results from the RS/FOSM

method.  As for the previous simulations, the modal imperfection amplitudes were treated

as normally distributed random numbers with variances as given in Table 6.5.  A frequency

density diagram showing the distribution of the imperfect critical load is given in Fig. 6.6.

The frequency density diagram was used to calculate the failure probabilities found in the

second column of Table 6.6.  As with the first case, the values from the RS/FOSM

analysis and the simulation are comparable but for small failure probabilities the percent

difference is very high with a maximum of approximately 24 percent at a value of -0<+-

equal to 0.95.  The results from the RS/FOSM and the simulation are plotted in the form

of a cumulative distribution function in Fig. 6.7.

The number of numerical experiments was further reduced by noting, from Table

6.4, that the first and fifth modes are the most dominant of the first six modal

imperfections.  The RS/FOSM method was again used to calculate the failure probabilities

corresponding to the values of  given in Table 6.6.  The modal variances are the same-0 <+-

variances used for the RS/FOSM analysis using all six modes.  The resulting failure

probabilities are shown in the last column of Table 6.6.  The results using only the two

dominant mode shapes are very similar to the results for the RS/FOSM method using all

six modes.  Once again, the results do not compare well with the results from the full six

mode numerical simulation.
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Table 6.7 RS/FOSM results for the 6 mode case for Williams' toggle frame, with -0 <+-
 equal to 0.95.

  iter. #1 iter. #2 iter. #3 iter. #4 quadratic+�3
 1 0.849E-02 0.884E-02 0.889E-02 0.890E-02 0.891E-02
 2 0.911E-07 0.578E-07 0.350E-07 0.115E-07 0.668E-06
 3 -0.872E-07 0.122E-06 -0.139E-06 0.218E-06 0.278E-06
 4 -0.234E-07 0.360E-06 -0.501E-06 0.679E-06 0.730E-06
 5 0.412E-02 0.439E-02 0.441E-02 0.442E-02 0.442E-02
 6 0.895E-07 0.560E-07 0.329E-07 0.941E-08 -0.266E-06
  2.386  2.491  2.506  2.510  2.512"
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Figure 6.6  Frequency density diagram for the 6 mode simulation for Williams' toggle
 frame.
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Figure 6.7  Cumulative distribution functions for the 6 mode case for Williams' toggle
 frame.
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A second simulation was run using only the two dominant imperfection modes as

random variables.  The variances for the two dominant imperfection modes remain the

same as in the full six mode simulation.  The distribution of the imperfect critical load is

given by the frequency density diagram (Fig. 6.8).  The failure probabilities were

calculated using the frequency density diagram, and are tabulated in the third column of

Table 6.6.  The results from both the RS/FOSM method with six modes and the two most

dominant modes are closer to the results from the two mode simulation than for the full

six mode simulation.  As in the 10 mode case, the RS/FOSM analysis essentially ignores

the non-dominant imperfection modes.  The cumulative distribution for the two mode

simulation data is plotted in Fig. 6.7 along with the six mode simulation data and the

RS/FOSM results.

6.3.2 Example 2: Star-Shaped Cap

Analysis of the perfect 24-member hexagonal star-shaped cap was presented in

Chapter 4.  The structure was modeled using eight elements per member for all members

except those that form the base of the hexagon, and those six members were discretized

using only two elements per member.  The total number of members used in the analysis

was 156 and the total number of nodes was 145.  For the imperfect analysis, all

translational degrees of freedom were allowed to be imperfect, which resulted in a total of

R � %"(M  imperfect degrees of freedom.  The perfect star-shaped cap was found to

become unstable at a limit point where the load multiplier, , was equal toa b--< :/<0

0.55348.  The corresponding critical load was equal to 553.48 pounds.  The imperfection

shape for the structure was taken to be a combination of the first 20 linear buckling mode

shapes.  The maximum allowable imperfection, , anywhere on the structure, was?7+B

limited to four millimeters or 0.4 centimeters.  The maximum allowable variance at any
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Figure 6.8  Frequency density diagram for the 6/2 mode simulation for Williams'
 toggleframe.
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point on the structure was calculated using Eq. 6.9 and  equal to three.  The resulting=7+B

allowable variance is

5
?# �#7+B

7+B

# #

?5
� � � "Þ(() � "!

= $

!Þ%� � � � a bcm
6.21

As mentioned above, the imperfection is modeled by using the first 20 linear

buckling modes for the structure.  The modal variances were found using the least-squares

technique presented in Section 6.1 and the maximum allowable variance from Eq. 6.21.

The variances for each imperfection mode are shown in Table 6.8.  The next step was to

run a RS/FOSM analysis, but the analysis could not be completed because, for such a

large problem, the number of required numerical experiments was too high.  A screening

experiment was run to reduce the total number of imperfection modes included in the

analysis.  Because of the large number of  experiments involved, the screening procedure

using the hypothesis test presented in Section 5.5 could not be used.  Instead, the direction

cosines

! 53

`1
`+

3�"

8
`1
`+

#
� 3

3

3

Ë!� �
a b+ 6.22

were used to examine the effects of each imperfection mode on the perfect structure.  The

partial derivatives were calculated using central differences:

`1

`+ 2
�

1 + � � 1 + �

3

3 3
2 2
# #

� � � � a b6.23

where  is equal to  and  is the performance function2 "Þ" 15+3

1 � � "
a b
a b a b-

-

-< 37:

-< :/<0

6.24

The resulting direction cosines were then normalized with respect to the largest direction
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Table 6.8  Modal variances for the 20 mode analysis for the shallow reticulated cap.

 Mode No. Modal Variance, 5#+3
 1 2.576E-03
 2 3.658E-03
 3 3.799E-03
 4 2.744E-03
 5 2.159E-03
 6 2.832E-03
 7 1.452E-03
 8 3.894E-03
 9 4.342E-03
 10 1.070E-03
 11 1.385E-03
 12 6.642E-04
 13 1.080E-03
 14 4.072E-03
 15 4.579E-03
 16 6.418E-04
 17 1.336E-03
 18 1.419E-03
 19 6.091E-03
 20 6.848E-03
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cosine and used to rank the modal imperfections.  The modal rankings and corresponding

direction cosines, , are given in Table 6.9.!3

Using the 10 most influential imperfection modes from Table 6.9, a RS/FOSM

analysis was run to predict the failure probabilities for the values of  given in the first-0<+-

column of Table 6.10.  A fractional factorial design was used to reduce the number of

required experiments to .  The value of  used in the analysis was 0.1, due to# � "#)"!�$ $"

the large amount of CPU time required for the analysis.  Predicted values for the most

probable modal amplitudes, , and the reliability index, , are shown in Table 6.11 for+�3 "

- -0<+- 0 <+- equal to 0.94.  The failure probabilities for all of the values of  are shown in the

fourth column of Table 6.10.

A 5,000 data point simulation was run to verify the results from the RS/FOSM

analysis.  The simulation treated all 20 modal imperfection amplitudes as random variables

with variances as shown in Table 6.8.  The distribution of the imperfect critical load is

shown using a frequency density diagram (Fig. 6.9).  The calculated failure probabilities

are given in the second column of Table 6.10.  The results from the simulation and the

RS/FOSM analysis are comparable, but for small failure probabilities the percent

difference is high with a maximum of approximately 36 percent at  equal to 0.88.-0<+-

The results from the simulation and the RS/FOSM analysis are used to plot cumulative

distribution functions which are shown in Fig. 6.10.

A second 5,000 data point simulation was run to examine the effects of using only

10 of the 20 imperfection modes.  In this simulation, only the 10 most dominant

imperfection modes were used in the simulation, and the modal imperfection amplitudes

were treated as random variables with the same variance (Table 6.8) as if all 20 modes

were used in the analysis.  The results of the simulation are presented in the form of a

frequency density diagram which is shown in Fig. 6.11.  The simulation data was then used
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Table 6.9  Modal ranking and direction cosines for the 20 modal imperfection
 amplitudes for the shallow reticulated cap.

 Mode No. !3

 1 1.000000
 13 0.179522
 4 0.063373
 3 0.037874
 2 0.037078
 8 0.014320
 9 0.014121
 5 0.010386
 7 0.010312
 6 0.010250
 12 0.006755
 11 0.006691
 10 0.006483
 15 0.005256
 14 0.005100
 19 0.005049
 20 0.004735
 16 0.003211
 17 0.003112
 18 0.003092
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Table 6.10  Calculated failure probabilities, for the 20 mode analysis for the shallow
 reticulated cap with a 4 mm imperfection, using simulation data and the
 RS/FOSM method.

 Simulation Simulation Response Response
 Histogram Histogram Surface Surface
 (20) (20/10)* (20/10)* (20/2)**
     -0<+- 0 0 0 0: : : :

 0.88 0.018800 0.019200 0.011993 0.011938
 0.94 0.185000 0.185800 0.141951 0.139019
 1.00 0.587000 0.586200 0.500881 0.500910
 1.06 0.891200 0.890200 0.849521 0.845737
 1.12 0.984400 0.984800 0.975760 0.975864

* Results using the 10 most dominant imperfection modes, and the same variances as
 if all 20 imperfection modes were included in the analysis.

** Results using the two most dominant imperfection modes, and the same variances
 as if all 20 imperfection modes were included in the analysis.
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Table 6.11 RS/FOSM results for the 10 mode analysis for the shallow reticulated cap,
 with  equal to 0.94.-0<+-

  iter. #1 iter. #2 quadratic+�3
 1 -0.450D-01 -0.463D-01 -0.533D-01
 13 0.220D-05 0.244D-05 -0.226D-04
 4 0.472D-04 0.504D-04 0.606D-04
 3 0.201D-02 0.210D-02 0.239D-02
 2 -0.339D-05 -0.369D-05 -0.564D-05
 8 -0.248D-04 -0.245D-04 -0.249D-04
 9 0.624D-05 0.637D-05 0.392D-07
 5 0.584D-07 0.215D-06 -0.335D-04
 7 -0.112D-04 -0.115D-04 -0.198D-04
 6 -0.562D-02 -0.590D-02 -0.679D-02
  0.905 0.931 1.072"



166

0.728 0.796 0.864 0.932 1.000 1.068 1.136 1.204

λfrac

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

f(λfrac )

Figure 6.9  Frequency density diagram for the 20 mode simulation for the shallow
 reticulated cap.
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Figure 6.11  Frequency density diagram for the 10 mode simulation for the shallow
 reticulated cap.
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to calculate the failure probabilities for the given values of .  The calculated failure-0<+-

probabilities are given in the third column of Table 6.10.  The results from the 10 mode

simulation compare well with the results from the full 20 mode simulation, indicating that

the 10 non-dominant imperfection modes do not contribute much to the calculation of the

failure probabilities.  Once again, results from the 10 mode simulation and the 10 mode

RS/FOSM analysis are comparable, but a large percent difference is found for the smaller

failure probabilities.  Results from the 10 mode simulation are plotted in the form of a

cumulative distribution function in Fig. 6.10.

Further examination of the modal sensitivities (Table 6.9) reveals that the first and

thirteenth modes are by far the most dominant imperfection modes.  A RS/FOSM analysis

was run using only the two most dominant imperfection modes with the same variances

(Table 6.8) as if all 20 modes were included in the analysis.  The failure probabilities for

the given values of  are included in the fifth column of Table 6.10.  The results from-0<+-

the two mode RS/FOSM analysis compare well with the results from the 10 mode

RS/FOSM analysis, but very poorly with the simulation results.  This indicates that the

RS/FOSM is basically ignoring all but the two most dominant imperfection modes when

calculating the probability of failure.
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CHAPTER 7

CONCLUSIONS AND FURTHER RESEARCH

Probabilistic stability analysis of structures with random initial geometric

imperfections is an interesting topic that has drawn the attention of many investigators

over the years.  The problem of approximating or simulating initial geometric

imperfections is a relatively new field of research.  In the past, imperfection patterns for a

structure were developed from available imperfection data from similar structures.  With

the increasing use of lightweight reticulated structures, a method for approximating the

initial imperfections must be available for structures where there is no previous

imperfection data.  Once an appropriate initial imperfection pattern is determined, an

efficient technique must be used to determine the probability of failure for the structure.  A

method for approximating the initial geometric imperfections and calculating the

probability of failure for a structure was presented in Chapter 6.  This method produces

acceptable imperfection patterns and is relatively efficient in calculating the probability of

failure, but the method has several undesirable features which are discussed below.

7.1 CONCLUSIONS

A method for modeling initial geometric imperfections was presented in Chapter 6.

The major problem with the proposed method is determining which or how many of the

linear buckling modes should be used to model the imperfection.  This problem leads to

two other significant problems.  The first problem is that the total variance, or total
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variability, changes depending upon the number of linear buckling modes used to model

the imperfection.  Examining the modal variances for the 10 and six mode toggle frame

analyses (Tabs. 6.1 and 6.5), reveals that the total variance is not the same.  The second

problem deals with the use of modal imperfections that do not have a significant influence

on the critical load.  As shown for the example problems in Chapter 6 (Tables 6.4 and

6.8), many of the imperfection modes have almost no influence on the critical load.  When

selecting the number of linear buckling modes to model the imperfection, enough modes

should be chosen so that there will be more than one dominant imperfection mode.  Using

the method proposed in Chapter 6, it is difficult to determine how many modes should be

used to guarantee that a certain number of dominant modes will be present in the analysis.

Also, difficulties arise when trying to decide the number of dominant modes that should be

included in the analysis.

Two different methods were used in Chapter 6 to determine the probability of

failure, or the probability that the critical load will fall below a specified fraction of the

perfect critical load.  The first method was a numerical simulation that treated the modal

imperfection amplitudes as random variables with zero mean and variances determined

from the proposed imperfection modeling scheme.  The results from the simulation are

considered to be the most accurate, but the number of required simulations makes the

method impractical for general use.  The only real problems to be expected from the

simulation deal with choosing enough simulations to obtain accurate results.  Also, certain

random number generators are more effective than others at generating values in the tails

of the normal distribution.  This can have a significant effect when calculating small failure

probabilities.

The second method presented was the response surface/first-order second-moment

(RS/FOSM) method.  Results from the first-order second-moment (FOSM) method
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depend on the accuracy of the direction cosines, , which are computed from the!3

derivatives of the performance function with respect to the various random variables

included in the analysis.  The values of , along with the performance function, are used!3

to predict the reliability index, .  If an explicit expression for the performance function is"

known, then the values of  may be calculated accurately and the results from the FOSM!3

method are very good.  For the examples presented in Chapter 6, the response surface

method was used to determine an approximation of the performance function over a

specified region.  The direction cosines, , and the reliability index, , were then! "3

calculated using the approximate function.  Therefore, the results from the RS/FOSM

method depend entirely on the approximate performance function whose coefficients were

estimated from a least squares analysis.  Once again, the significance of the individual

imperfection modes becomes a problem.  The iterative results from the 6 and 10 mode

analysis of Williams' toggle frame (Tables 6.3 and 6.7) and the 10 mode analysis for the

shallow reticulated cap (Table 6.11) show that the predicted most probable imperfection

amplitudes, for the non-dominant modes, change throughout the RS/FOSM analysis.  In

most cases the predicted values, even though small, do not even follow a trend throughout

the iterative process.  This indicates that the RS/FOSM method is not accurately

predicting the most probable imperfection amplitudes for the non-dominant imperfection

modes and that the derivatives of the performance function with respect to the non-

dominant values of  are not accurate.  Even though the values of  for the non-+3 3!

dominant modes are small compared to the others, the predicted value of the reliability

index can be affected enough to cause a significant difference in the predicted probability

of failure.  As noted in Chapter 6, small errors in the probability of failure will cause a

significant percent difference for small failure probabilities.
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The results from the example problems presented in Chapter 6 (Tables 6.2, 6.6,

and 6.10) show that the RS/FOSM method produces reasonably good estimates of the

failure probability when compared with the results from the numerical simulations.  Even

though the results of the RS/FOSM are good, they still may not be good enough to use for

calculating a high accuracy estimate of the reliability of the structure.  However, the

results from the RS/FOSM method may be useful to a designer who only wants a quick

estimate of the distribution of the critical load for a preliminary design.

Problems with the invariance of the total variability and lack of guidelines for

choosing the number of imperfection modes implies that the calculated failure probabilities

are only good for the imperfection being considered.  In other words, changing the

number of modes used to model the imperfection will change the probability of failure.

This can be a serious drawback if a designer plans to compare the distribution of the

critical load for two perspective designs that are similar in construction but may require a

different number of imperfection modes to get the same number of dominant modes.  In

general, the method presented in Chapter 6 is not good for accurately comparing the

probability of failure for two different structures.

Another drawback to the RS/FOSM method is that large numbers of random

variables cannot be included in the analysis.  The  factorial analysis used in the response#
5

surface method causes the required number of experiments to become large for moderate

values of .  Even if a fractional factorial analysis, , is used and  is larger than5 # 5 �7
5�7

10, the response surface method will still require at least 1,024 experiments for one

iteration.  For even larger values of  the number experiments approaches the5 �7

number of runs required for a full numerical simulation.  Since the results from a

simulation are more accurate, use of the RS/FOSM method is no longer an option.
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7.2 FURTHER RESEARCH

Future research in stability of structures with random geometric imperfections

should examine new methods for modeling imperfections that will resolve the problem of

invariance of the total variability.  Also, some guidelines should be established for

determining the number of imperfection modes used in the analysis and how many of these

modes should be dominant modes.

A second topic for future work is the solution of problems where the limit state is

a discontinuous function of the imperfection amplitudes.  Such problems may occur for

structures that become unstable at an unstable symmetric bifurcation point.  For problems

like these, the FOSM method will not work because of the discontinuity at the point on

the failure surface where the imperfections are zero.  Previous research dealt with this

problem by assuming a non-zero mean imperfection which moves the analysis to a smooth

continuous portion of the limit state.  Further work should include different methods for

determining a mean imperfection shape with an amplitude based on recommended

fabrication tolerances.  Also, methods other than the response surface method should be

used to solve these problems since it is possible for the experimental region to straddle the

discontinuity and produce erratic approximations of the performance function.

A third topic for future work would be the use of methods other than probabilistic

methods.  Since the failure probabilities from the RS/FOSM are not very accurate, and

only problems with smooth performance functions can be solved, it is natural to wonder if

probabilistic methods are even appropriate for this type of problem.  As an alternative,

fuzzy methods could be used to analyze the behavior of the critical load.  In a fuzzy

analysis, the modal imperfection amplitudes would be modeled using membership

functions with shapes determined by an expert.  The result of the fuzzy analysis would be

a value for the failure possibility rather than the probability of failure.  Use of fuzzy
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methods would eliminate many of the difficulties that occur when trying to model, or

approximate, the performance function in a FOSM analysis.
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APPENDIX A

FIRST VARIATION OF ROTATION AND DERIVATIVE

OF ROTATION MATRICES

A.1 FIRST VARIATION OF THE ROTATION MATRIX

The rotation matrix for the three variable form of the Euler axis/angle

parametrization is given in Chapter 3.  In symbolic form, the rotation matrix is

# # # # #R I R R� � , � ,# MM $ MMM a bA.1
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A typical component, R , of the rotation matrix is given by#
34
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# # # # #R I R R A.634 # MM $ MMM� � , � ,
34 34

a b
and is in general a function of all three rotation angles .293

The first variation of  R is equal to#
34 
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Therefore, the first variation of each rotation component will in general have three terms.

To simplify future computations the first variations of  and  will be stored in the# #R   RMM MMM

9 1 column vectors  and  .  The expression for  is� $ $ $a b a b a b# # #R R R
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The expression for  is$a b#R
˜ MMM
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With the first variations of the various portions of the rotation matrix known, the vector

form of the first variation of the rotation matrix may be expressed as

$ $� � � � a b# #R DR02
˜

A.19
* � " $ � "

* � $
� 9

where each row of   is computed using Eqs. A.11 and A.13 along with Eqs. A.14-DR02

A.18.

A.2 FIRST VARIATION OF THE DERIVATIVE OF THE ROTATION

 MATRIX

The expression for the first derivative of the rotation matrix was given in Chapter

3.  The expanded form of the first derivative of the rotation matrix is shown in Fig. A.1.

The first variation of the derivative of the rotation components, just like the rotation

components themselves, will be stored in vector form.  The resulting expression is
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The matrices  and  are given in Fig. A.2.OMGM1 RM1

The vector  is related to the first derivative of the rotation vector by Eq. 3.43.#=

When written in a form that is compatible with that of the rotation matrix, the expression

for becomes#= 
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Figure A.1  Expanded form of the first derivative of the rotation matrix.
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Figure A.2  Matrices  and  from the matrix expression for the firstOMGM1 RM1
 variation of the derivative of the rotation components.
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# # # # # # # #
! !

= 9 9� � - � - �a b a bI A.21# MM $ MMM
w wR R D

The scalars  and  are given in Chapter 3 but are repeated here for convenience;# #- -# $

- � � # =38
#

2 k k a bk k2
2

9
9�# # , A.22

and

- � � =383 k k a b a bk k k k2 2 29 9 9
�$ A.23

The first variation of   may be written as#=

$ $ $a b a b a b a b# # # # #
! !

= 9 9� �D Dw w A.24

or in terms of  partitioned matrices as

$
$

$
� � � � a bÔ ×Ö Ù

Õ Ø
� �
� �# #

#

#
!

=
9$ � "

$ � *
$ � $

* � "

$ � "

� PHPM1 D
D
˜
w

A.25

where the matrix  is shown in Fig. A.3.  Using Eq. A.25, the partitioned vectorPHPM1

Ô ×Ö Ù
Õ Ø

� �
� � � �

Ô ×Ö ÙÖ ÙÖ Ù a bÖ Ù
Õ Ø

� �
� �
� �

$

$

$

$

$

#

#
#

#

#

#
!

R
˜

I
PHPM1 D

R
˜
D
˜

* � "

$ � "

* � *

$ � *
$ � $

* � "

* � "

$ � "

=
9

�
0 0

0 A.26

w

The first variation of the components of  is computed in the same way as the first#D

variation of the components of  .  The resulting expression for the first variation of a#R

typical component of  is#D

$ $ $a b a b � �# # # # #D R R34 # MM # MM� - � -
34 34

� - � -$ $a b a b� �# # # #
$ MMM $ MMMR R A.27

34 34

where R  and R  are given by Eqs. A.8 and A.9.  Computation of the first$ $� � � �# #
MM MM34 34
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Figure A.3  Matrix  required for the calculation of PHPM1 #=.
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variation of the scalars  and  is similar to that for  and :# # # #- - , ,# $ # $

$ $ 9
9

a b a b a b" a ba b#

#

#

#- �
` -

`
# 5

5�"

$
#

5

, A.28

and

$ $ 9
9

a b a b a b" a ba b#

#

#

#- �
` -

`
$ 5

5�"

$
$

5

A.29

The partial derivatives are given by

` -

`
� # =38 -9=

# #

a ba b � k k k k k k#

#

#

# #
#

5

�#

9
9

9 9

�k k a bk k a bk ka b� % =38
#

`

`
#

# #

#9
9 9�$ #

59
A.30

and

` - � #

` `
� � �

-9= $=38 `a ba b a b� �k k k k k k
k k k k a bk k a b#

# ## # #

# # #
$

5 5
$ $ %9 99 9 9

9 9 9
A.31

Just as with the vector form of , the vector form of  may be written in terms of
˜ ˜

$ $a b a b# #R D

the rotation vector, , as#9

$ $� � � � a b# #D DD02
˜

A.32
* � " $ � "

* � $
� 9

where each row of  contains the three terms that result from the first variation of theDD02

various portions of the matrix .  The partitioned vector from the right-hand side of Eq.#D

A.26 can now be written as
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A.33

Using Eqs. A.20, A.26, A.33, and carrying out the required matrix multiplication yields

the final expression for the variation of the first derivative of the rotation matrix which is

given in Fig. A.4.  A more compact expression for  is$a b#
0R˜

w

$
$

$

� � Ö Ù a b� �Ô ×Ö Ù
Õ Ø

� �
� �

#

#

#
!

0R˜
DRP1 DRP2w

w* � "
* � $ * � $

$ � "

$ � "

�
9

9

A.34
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Figure A.4  Final expression for the variation of the first derivative of the rotation
 matrix.
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APPENDIX B

EXPANSION AND LINEARIZATION OF THE 

LARGE ROTATION MATRIX

The incremental form of the large rotation matrix is

# "R R R� � a bB.1

where the rotation matrix  is linear in the rotation angles .  From Appendix A, theR 93

expanded form of  is#R

# # # # #R I R R� � , � ,# MM $ MMM a bB.2

The incremental form of Eq. B.2 is

# " " " "R I R R R R� � , � , � � , � , �a ba b a ba b a b# # MM MM $ $ MMM MMM B.3

When expanded,  becomes#R

#

"

R I R R

R

� � , � ,ðóóóóóóóóóñóóóóóóóóóò1 1 1 1
# MM $ MMM

� , � , � , � ,ðóóóóóóóóóóóóóóóóóóóñóóóóóóóóóóóóóóóóóóóò a b1 1 1 1
# MM # MM $ MMM $ MMMR R R R

R

B.4

The matrix  is the arbitrarily large rotation matrix which has the same form as  from" #R R

Chapter 3 and the matrix  represents a small incremental rotation from configuration 1 toR

the final configuration 2.

The small rotation matrix  is found by expanding the large rotation matrix  inR R#

terms of the small rotation angles .  The expansion of the matrix  is93 MM
2R
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2R R RMM MM MM� �
" a bB.5

where

"

" "

" "

" "

RMM

$ #

$ "

# "

�

Ô ×Ö Ù
Õ Ø a b! �

! �

� !

9 9

9 9

9 9

B.6

and

RMM

$ #

$ "

# "

�

Ô ×
Õ Ø a b! �

! �

� !

9 9

9 9

9 9

B.7

Expansion and linearization of the matrix  leads to2RMMM

2R R RMMM MMM MMM� �
" a bB.8

where the matrices and  are given in Fig. B.1."R   RMMM MMM

The incremental forms of the scalars  and  are found by using the incremental# #
, ,# $

rotation angles

# "9 9 93 3 3� � a bB.9

From Chapter 3, the expression for  is#
,#

# # #
, � � =382 k k k k a b9 9

�"
B.10

The magnitude of the rotation angle is given by

k k a b� � � �2 2 2 2 2 29 9 9� � � �9 9 9# # #

" # $

X
"

#

"

# B.11

The incremental form of  isk k29

k k a b� �29 9 9 9 9 9 9� � # �
" " "X X X

"

# B.12

Taking a binomial series expansion of  and neglecting all higher order terms in  leadsk k29 93

to
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Figure B.1  Matrices "R R RMMM MMM MMM and  from the expansion of the matrix .2
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k k k k k k a b� �29 9 9 9 9� �
" " "�" X B.13

The expression for  may be expanded using Eq. B.13 and the trigonometric=38a bk k29

identity

=38 � � =38 -9= � -9= =38a b a b! " ! " ! " B.14

where

! � k k a b"9 B.15

and

" � k k a b� �" "9 9 9
�" X B.16

Making the substitution gives

=38 � =38 -9=a b a b � �k k k k k k � �29 9 9 9 9" " "�" X

� -9= =38a b � � a bk k k k � �" " "9 9 9 9
�" X B.17

Since the  are small93

=38 � =38 � -9=a b a b a b� � a bk k k k k k k k � �29 9 9 9 9 9" " " "�" X B.18

Expanding  using a binomial expansion and neglecting higher order terms  givesk k29
�"

39

k k k k k k a b� �29 9 9 9 9
�" �" �$ X

� �
" " " B.19

The expression for  reduces to#
,#

# " "

"

, � � =38

,

2

2

ðóóóóóóñóóóóóóòk k k k9 9
�"

� =38 � -9=

,

ðóóóóóóóóóóóóóóóóóóóóóóóóñóóóóóóóóóóóóóóóóóóóóóóóóò� � a bk k a b k k a bk k k k � �" " " " "9 9 9 9 9 9
�$ �# X

2

B.20
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The expression for , from Chapter 3, is#,$

# #

#

, � # =38
#

$

�# #k k a bk k
9

9
B.21

Using Eq. B.18, the term

=38 � =38 � =38 -9=
# # # #

# # X�"k k k k k k k kk k a b� �# " " "

" "
9 9 9 9

9 9 9 B.22

Using a binomial expansion and neglecting higher order terms, the expression for

k k k k k k a b� �# " " "9 9 9 9 9
�# �# �% X

� � # B.23

Combining Eqs. B.22 and B.23, the expansion of  is#
,$

# " �# #

"

"
$

,$ � # =38
#

,

ðóóóóóóñóóóóóóò¸ ¸ ¸ ¸
9
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" " "�$ �%

" " "

# X

$

9 9 9 9
9 9 9 a bB.24

The product  is stored in a 9 1 vector  which is equal to
˜

1
, �# MM ER R

R RAM01
˜

B.25E
* � "

* � $
* � $

� 9 a b
where

RAM01
* � $

� ,

� "

"

"

� "

� "

"

1
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Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù a bÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

0 0 0
0 0
0 0
0 0
0 0 0

0 0
0 0

0 0
0 0 0

B.26

The product of  and  can be calculated by writing the scalar  as, ,# MM #
1R
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, � F � �# # " " # # $ $a b a b" " "9 9 9 9 9 9 B.27

where

F � =38 � -9=#

�$ �#� � a bk k a b k k a bk k k k" " " "9 9 9 9 B.28

The product  is stored in the 9 1 vector  which is given by
˜

, �# MM F
1R R

R RBM01
˜

B.29F
* � "
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* � $

� 9 a b
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The product  is stored in the 9 1 vector  which is given by
˜

1
, �$ MMM GR R

R RCM01
˜

B.31G
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� 9 a b
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The scalar  can be rewritten as,$

, � F � �$ $ " " # # $ $a b a b" " "9 9 9 9 9 9 B.33

where

F � # =38 -9= � % =38
# # #

$

�$ �% #� �k k k k a bk k k k k k
" "

" " "

9 9
9 9 9

B.34

The product of  and  is then expressed as,$ MMM
1R

R RDM01
˜

B.35H
* � "

* � $
* � $

� 9 a b
where the matrix  is shown in Fig. B.2.  The resulting vector form of the smallRDM01

rotation matrix  isR

R RTM01
˜

B.36
* � " * � $

* � $
� 9 a b

where the matrix  isRTM01

RTM01 RAM01 RBM01 RCM01 RDM01
* � $ * � $ * � $ * � $* � $

� � � � a bB.37
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Figure B.2  Matrix  from the expression for the vector RDM01 R
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APPENDIX C

EXPANSION AND LINEARIZATION OF THE 

DERIVATIVE OF THE LARGE ROTATION MATRIX

The derivative of the rotation matrix was given in Chapter 3 as

# # #

!
R R˜w

� � = a bC.1

The incremental form of this expression is

# " "

!
R R R˜ ˜w

� � � �a ba b a b= = C.2

which when expanded gives

# " " " "

!

"

! !

R R R R˜ ˜ ˜

R R

w

w w

� � � � �ðóñóò ðóóóóóóñóóóóóóòa b a b= = = C.3

The above expansion neglects the higher order terms resulting from the product of  and=̃

R R.  The matrix  represents the derivative of the large rotation from the initial"

!

w

configuration 0 to the intermediate configuration 1.  The matrix  contains the derivative
!
Rw

of the small rotation from configuration 1 to the final configuration 2.  A 9 1 vector 
˜

�
!
Rw

will be used to store the components of the matrix .  The vector  will be computed
˜! !

R Rw w

in two parts and stored in the two vectors  and 
˜ ˜! !
R Rw w

E F
Þ

The first portion of  contains the results of the matrix product
˜!
Rw

!
R R˜w

E
� � 1= a bC.4

where the vector form is given by
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!
R OMGM01 R
˜ ˜

C.5w

E
* � "

* � * * � "

� a b
The vector  is the vector form of the incremental rotation  and the matrix  is

˜
R R OMGM01

given in Fig. C.1.

The second part of  is the vector form of the matrix product
˜!
Rw

!
R R˜w

F
� � = 1 a bC.6

The vector form of  is
!
Rw

F

!
R RM01
˜

C.7w

F
* � "

* � $ $ � "
� = a b

where the matrix  isRM01

RM01
* � $

�

� V V

� V V

� V V
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Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
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$# ##

$$ #$

$" ""

$# "#

$$ "$

#" ""

## "#

#$ "$ 0

C.8a b

and the vector  is the incremental form of the angular velocity vector which is yet to be=

determined.

The angular velocity vector is related to the first derivative of the rotation angles,

#

!
9w
3
, by the expression

# # #

!
= 9� D w a bC.9

The incremental form of this expression is

# " "

! ! !

"

= 9 9 9

= =

� � �ï ðóóóóñóóóóò a b1 1D D Dw w w C.10
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Figure C.1  Matrix  from the expression for OMGM01
!
R
˜

.w

E



205

where the higher order terms, , have been neglected.  The incremental form of theD
!
9w

angular velocity,  will be computed in two parts.=,

The first part of  is stored in  and is equal to= =E

= 9E
w

$ � " $ � $ $ � "

� "

!
D a bC.11

where the matrix  takes on the same form as the matrix  given in Chapter 3.  The"D D2

second part of  is given by=

=F
$ � " $ � *

* � "

� PHPM01 D
˜

C.12a b
The 9 1 vector  is the vector form of the matrix  which contains the linearized

˜
� D D

portion of , and will be computed in the next section.  The transpose of the matrix2D

PHPM01 is
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* � $

X

w

"
w

#
w

$
w
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w

#
w
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#
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The matrices  and  are similar in structure, therefore the expansion and2 2D R

linearization of  proceeds in the same way as the expansion and linearization of the2D

matrix .  The incremental form of the matrix  is2 2R D

#

"

D I R R

D

� � - � -ðóóóóóóóóóñóóóóóóóóóò1 1 1 1
# MM $ MMM

� - � - � - � -ðóóóóóóóóóóóóóóóóóóóñóóóóóóóóóóóóóóóóóóóò a b1 1 1 1
# MM # MM $ MMM $ MMMR R R R

D

C.14
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The vector form of  will be stored in a 9 1 vector  that will be computed in four
˜

D D�

parts corresponding to the four matrices given in the above expression.  The expressions

for the matrices , , , and  were given in Appendix B.  The incremental1 1R R R  RMM MM MMM MMM

forms of the scalars  and  are computed in the same way as the incremental forms of# #
- -# $

the scalars  and .# #
, ,# $

The expression for  is the same as the expression for  (Appendix B).1 1
- ,# $

Therefore, the incremental form of  is2
-#

# " �# #

"

"
#

-# � # =38
#

-

ðóóóóóóñóóóóóóò¸ ¸ ¸ ¸
9

9

� # =38 -9= � % =38
# # #
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ðóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóñóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóò� �¸ ¸ ¸ ¸ � �¸ ¸ ¸ ¸ ¸ ¸
" " "�$ �%

" " "

# X

#

9 9 9 9
9 9 9 a bC.15

The expression for  is#
-$

# # # #
- � � =38$

�$k k a b a bk k k k9 9 9 C.16

From Appendix B, the incremental form of  isk k#9

k k a b� �29 9 9 9 9 9 9� � # �
" " "X X X

"

# C.17

The expression for  can be written ask k#9
�$

k k a b� �# " " "9 9 9 9 9 9 9
�$ X X X �

� � # �
$

# C.18

Taking a binomial expansion of the above relationship and ignoring higher order terms

gives

k k k k k k a b� �# " " "9 9 9 9 9
�$ �$ �& X

� � $ C.19

The incremental expression for sin  was given in Appendix B, and when combined withk k#9

Eq. C.19 yields the incremental expression for  which is equal to#
-$
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# " " "
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C.20

The first part of  is found from the product  and is stored in the vector .
˜ ˜
D R D1

-# MM E

The resulting expression for  is
˜
DE

D DAM01
˜

C.21E
* � "

* � $
$ � "

� 9 a b
and the matrix  isDAM01
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C.22

The second part of  is found from the product of .  The result is stored in the
˜
D R-# MM

1

vector  which is calculated from
˜
DF

D DBM01
˜

C.23F
$ � "

* � $
$ � "

� 9 a b
where the matrix  is given byDBM01
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DBM01
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and the term  is equal toG#
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C.25

The third part of  is placed in the vector whose elements are computed from 
˜ ˜
D D RG $ MMM

1
-

which in vector form is

D DCM01
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The matrix  isDCM01
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9 9

9 9

9 9

9 9

9 9

9 9

9 9

9 9

9 9

The final portion of  is given by the vector form of the product .  The result is
˜
D R-$ MMM

1

stored in a vector  which is computed by,
˜
DH

D DDM01
˜

C.28H
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$ � "

� 9 a b



209

where the matrix  is shown in Fig. C.2.  With the various pieces of  defined, the
˜

DDM01 D

final expression for  can be written as
˜
D

D DTM01
˜

C.29
$ � " $ � "

* � $
� 9 a b

where the matrix  is equal toDTM01
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Using Eqs. C.5 and C.7 the vector  may be written as
˜!
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From Appendix B
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which makes the vector  equal to
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Substituting Eq. C.29 into the previous expression gives
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The above expression for  is then substituted into the expression for  (Eq. C.33)
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which yields
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After grouping the coefficients of  and , the vector  becomes
˜

9 9
! !

w wR
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