UNITS AND CLASS GROUPS OF

IMAGINARY OCTIC FIELDS

by
Thomas Mark McCall
Dissertation submitted to the faculty of the
Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Mathematics
APPROVED:

C.J. Parry, Chairman

Keywords: Class Number, Biquadratic, Octic

UNITS AND CLASS GROUPS OF IMAGINARY OCTIC FIELDS

by
Thomas Mark McCall
Committee Chairman: C.J. Parry
Mathematics

(ABSTRACT)
In this disertation class groups and unit groups of number fields with elementary Galois groups of order 4 and 8 are considered. In chapter 3 we consider bicyclic biquadratic extensions K / k and give a method for determining the structure of the 2 -class group of K. In chapters 4 and 5 this method is applied to real and imaginary bicyclic biquadratic extensions of \mathbf{Q}. In chapter 6 a method for determining the unit group of an imaginary octic field is given. In the final chapter all imaginary octic fields of class number less than or equal to 16 or prime class number are determined.

ACKNOWLEDGEMENTS

First I would like to thank my advisor Charles Parry for the valuable direction which he provided. His time and patience are greatly appreciated. I would also like to express my gratitude to my parents, T.R. and Diane McCall for their support throughout my education. Most of all I would like to thank my wife Dolly for her love, patience and support while this dissertation was in progress.

TABLE OF CONTENTS

1 INTRODUCTION 1
2 NOTATION 3
3 CLASS GROUP STRUCTURE OF BICYCLIC BIQUADRATIC EX-
TENSIONS 7
4 REAL BICYCLIC BIQUADRATIC FIELDS OF 2-RANK 1 14
5 GROUPS OCCURING AS CLASS GROUPS OF IMAGINARY BICYCLIC
BIQUADRATIC FIELDS 19
6 UNIT GROUPS OF OCTIC FIELDS 26
7 OCTIC FIELDS OF SMALL CLASS NUMBER 37

Chapter 1

INTRODUCTION

The algebraic integers in a number field form a ring. If K is an algebraic number field and R is its ring of integers we will say that ideals A and B of R are related if and only if $\alpha A=\beta B$ for some $\alpha, \beta \in R$. Under this equivalence relation the classes form a group known as the class group of K. The order of the class group is the class number of K. This dissertation examines class groups of number fields of degree 4 and 8 having elementary Galois group.

If k is a number field of odd class number and K / k is a bicyclic biquadratic extension, then the odd part of the class group of K is easily shown to be the direct product of the class groups of its subfields. However, the 2-class group of K is more difficult to determine. Lemmermeyer [13] and Kubota [11] give results relating the 2-class group of K to the 2 -class groups of its subfields, but neither fully determine the 2-class group. In our recent work [14] we developed a method for determing the 2 -class group of K when $k=\mathbf{Q}$. In chapter 2 this method is extended to any field k of odd class number. Two applications of this method are given. In chapter 3, the real bicyclic biquadratic extensions of \mathbf{Q} having cyclic 2-class group are characterized. In chapter 4 it is shown that every abelian group of exponent 2 or 4 occurs as the 2 -class group of some imaginary bicyclic biquadratic extension of \mathbf{Q}.

In chapters 5 and 6 imaginary octic fields K having elementary Galois group are considered. The class number of K is the product of the class numbers of its quadratic subfields times a unit index divided by 32 . In chapter 5 a method is given for computing the unit index. In chapter 6 all octic fields K having class number less than or equal to 16 or prime class number are given. Using the technique of chapter 2 the class group of each field is computed.

Chapter 2

NOTATION

The following notation will be used for the remainder of this dissertation.
k : A number field having odd class number.
$K:$ A bicyclic biquadratic extension of k.
K_{1}, K_{2}, K_{3} : The subfields of K of degree 2 over k.
H, H_{1}, H_{2}, H_{3} : The 2-Sylow subgroups of the ideal class groups of K, K_{1}, K_{2} and K_{3}, respectively.
\hat{H}_{i} : The group of quadratic character values on H_{i}.
\widehat{S} : The subgroup of $\hat{H}_{1} \times \widehat{H}_{2} \times \widehat{H}_{3}$ consisting of those character values which are consistent on each pair of H_{1}, H_{2} and H_{3}.
S : The subgroup of $H_{1} \times H_{2} \times H_{3}$ with character group \widehat{S}.
θ : The homomorphism $H_{1} \times H_{2} \times H_{3} \rightarrow H$ defined by $\theta\left(C_{1}, C_{2}, C_{3}\right)=C_{1} C_{2} C_{3}$.
ker : The kernel of θ.
H_{0} : The image of θ.
t : The positive integer determined such that 2^{t} is the product of the ramification indices of all primes, including infinite primes, for the extension K / k.
t_{i} : The number of primes, including infinite primes, ramified in the extension K_{i} / k for $i=1,2,3$.
R_{a} : The rank of $H_{1} \times H_{2} \times H_{3}$.
R_{2} : The rank of H.
τ : The number of divisors of 2 in k which are totally ramified in K.
$(l, q, r):$ An element of $H_{1} \times H_{2} \times H_{3}$ determined by the ideal classes of prime divisors of l, q and r in K_{1}, K_{2} and K_{3}, respectively.
ψ : The isomorphism from the multiplicative group $\{ \pm 1\}$ to the additive group Z_{2}.
\tilde{A} : The ideal class determined by the ideal A.
$\left(\frac{a}{b}\right):$ The Kronecker symbol using the convention $\left(\frac{b}{2}\right)=\left(\frac{2}{b}\right)$ for all odd positive integers. E_{-}: The unit group of the field \quad.

The following notation applies only when K is an imaginary octic field of type (2,2,2).
k_{1}, \ldots, k_{7} : The quadratic subfields of K with k_{1}, k_{2} and k_{3} real.
h_{1}, \ldots, h_{7} : The class numbers of k_{1}, \ldots, k_{7}, respectively.
d_{1}, \ldots, d_{7} : Positive squarefree integers with $k_{i}=\mathbf{Q}\left(\sqrt{d_{i}}\right)$ for $i=1,2,3, k_{i}=\mathbf{Q}\left(\sqrt{-d_{i}}\right)$ for $i=4, \ldots, 7$ and $d_{1}<d_{2}<d_{3}$.
$K_{0}=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right):$ The maximal real subfield of K.
ε_{i} : The fundamental unit of k_{i} for $i=1,2,3$.
$r_{i}, s_{i}, a_{i}:$ Integers such that $\varepsilon_{i}=\frac{r_{i}+s_{i} \sqrt{d_{i}}}{2^{a_{i}}}$ with $a_{i}=0$ or 1.
E^{*} : The subgroup of E_{K} generated by the units of the proper subfields of K.
W : The roots of unity in K.
W_{0} : The roots of unity in $\prod_{i=1}^{7} E_{k_{i}}$.
Q : The index $\left[E_{K}: \prod_{i=1}^{7} E_{k_{i}}\right]$.
Q_{0} : The index $\left[E_{K_{0}}: \prod_{i=1}^{3} E_{k_{i}}\right]$.
Q_{1} : The index $\left[E_{K}: W E_{K_{0}}\right]$.
$Q_{2}:$ The index $\left[W: W_{0}\right]$.
Δ_{i} : The absolute value of a nontrivial principal divisor of k_{i} when $N \varepsilon_{i}=+1$. If possible take $\Delta_{i}=2$. If $N \varepsilon_{i}=-1$ take $\Delta_{i}=1$.
$\Delta:$ The semigroup generated by the principal divisors Δ_{1}, Δ_{2} and Δ_{3} modulo square factors.
$D:$ The set $\left\{d_{4}, d_{5}, d_{6}, d_{7}\right\}$.
t^{\prime} : The positive integer determined such that $2^{t^{\prime}}$ is the product of the ramification indices of all rational primes for the extension K / \mathbf{Q}.
t_{i}^{\prime} : The number of rational primes which ramify in the extension k_{i} / \mathbf{Q}.
w : The integer determined such that 2^{w} is the 2-class number of K.

We say that the prime 2 is maximally ramified in K if it ramifies in six quadratic subfields.

Chapter 3

CLASS GROUP STRUCTURE OF BICYCLIC BIQUADRATIC EXTENSIONS

The structure of the odd part of the class group of K is easily shown to be the direct product of the class groups of its subfields. While the structure of H depends on the structures of H_{1}, H_{2} and H_{3}, the relation is more complicated. In this chapter we describe a method for determining H.

Theorem 1 The homomorphism θ induces an isomorphism $\frac{S^{2^{i}}}{S^{2^{i}} \cap k e r} \simeq H^{2^{i+1}}$ for any integer $i \geq 0$.

Proof Let $\left(C_{1}^{2^{i}}, C_{2}^{2^{i}}, C_{3}^{2^{i}}\right) \in S^{2^{i}}$ with $\left(C_{1}, C_{2}, C_{3}\right) \in S$. Since the characters on C_{i} in \widehat{H}_{i} are consistent with one another for $i=1,2,3$, there is a prime p of k which satisfies these character values. Now p splits completely in K and has a prime divisor P_{0} such that $\mathcal{P}_{i}=P_{0} \cap K_{i}=P_{0} P_{i}$ where $(p)=P_{0} P_{1} P_{2} P_{3}$ in K. Note that $\left(\widetilde{\mathcal{P}}_{1}^{2^{i}}, \widetilde{\mathcal{P}}_{2}^{2^{i}}, \widetilde{\mathcal{P}}_{3}^{2^{i}}\right) \in S^{2^{i}}$ with $\widetilde{\mathcal{P}}_{i}$ and C_{i} being in the same genus of K_{i}. Now

$$
\theta\left(\widetilde{\mathcal{P}}_{1}^{2^{i}}, \widetilde{\mathcal{P}}_{2}^{2^{i}}, \widetilde{\mathcal{P}}_{3}^{2^{i}}\right)=\widetilde{\mathcal{P}}_{1}^{2^{i}} \widetilde{\mathcal{P}}_{2}^{2^{i}} \widetilde{\mathcal{P}}_{3}^{2^{i}}=\left(\tilde{\mathcal{P}}_{1} \tilde{\mathcal{P}}_{2} \widetilde{\mathcal{P}}_{3}\right)^{2^{i}}=\left(\widetilde{P}_{0}^{2} \widetilde{p}\right)^{2^{i}}=\widetilde{P}_{0}^{2^{i+1}} \in H^{2^{i+1}}
$$

Since $\tilde{\mathcal{P}}_{i} C_{i}^{-1}$ is in the principal genus of $K_{i}, \widetilde{\mathcal{P}}_{i} C_{i}^{-1}=B_{i}^{2}$ for some class B_{i} of K_{i}. Hence

$$
\left(\tilde{\mathcal{P}}_{1} C_{1}^{-1}, \tilde{\mathcal{P}}_{2} C_{2}^{-1}, \tilde{\mathcal{P}}_{3} C_{3}^{-1}\right)=\left(B_{1}^{2}, B_{2}^{2}, B_{3}^{2}\right),
$$

$$
B_{1}^{2} B_{2}^{2} B_{3}^{2}=\left(\widetilde{\mathcal{P}}_{1} \tilde{\mathcal{P}}_{2} \tilde{\mathcal{P}}_{3}\right)\left(C_{1} C_{2} C_{3}\right)^{-1}=\widetilde{P}_{0}^{2}\left(C_{1} C_{2} C_{3}\right)^{-1}
$$

Therefore

$$
\left(B_{1} B_{2} B_{3}\right)^{2^{i+1}}=\tilde{P}_{0}^{2^{i+1}}\left(C_{1}^{2^{i}} C_{2}^{2^{i}} C_{3}^{2^{i}}\right)^{-1}
$$

and $C_{1}^{2^{i}} C_{2}^{2^{i}} C_{3}^{2^{i}} \in H^{2^{i+1}}$.
Conversely, let $C^{2^{i+1}} \in H^{2^{i+1}}$ and $P_{0} \in C$ be a prime ideal of degree 1 and index 1 over k. Let $\mathcal{P}_{i}=P_{0} \cap K_{i}$ for $i=1,2,3$. Then $\mathcal{P}_{1}=P_{0} P_{1}, \mathcal{P}_{2}=P_{0} P_{2}$ and $\mathcal{P}_{3}=P_{0} P_{3}$ where $P_{0} \cap k=(p)=P_{0} P_{1} P_{2} P_{3}$. Now $\left(\widetilde{\mathcal{P}}_{1}, \widetilde{\mathcal{P}}_{2}, \widetilde{\mathcal{P}}_{3}\right) \in S$ and $\widetilde{\mathcal{P}}_{1} \widetilde{\mathcal{P}}_{2} \widetilde{\mathcal{P}}_{3}=\widetilde{P}_{0}^{2}=C^{2}$. Thus $\widetilde{\mathcal{P}}_{1}^{2^{i}} \widetilde{\mathcal{P}}_{2}^{2^{i}} \widetilde{\mathcal{P}}_{3}^{2^{i}}=\widetilde{P}_{0}^{2^{i+1}}=C^{2^{i+1}}$. Therefore $\frac{S^{2^{i}}}{S^{2^{i}} \mathrm{nker}} \simeq H^{2^{i+1}}$.

The characters on H_{i} must be normalized so that every unit of k belongs to the principal character system. The number of normalizations that occur for the extension K_{i} / k is η_{i}, where $2^{\eta_{i}}$ is the number of different unnormalized character values generated by the units of k. Also, the number of normalizations that occur for the extension K / k is η, where 2^{η} different character values are generated by the units of k in the direct product of the unnormalized characters of K_{i} / k, for $i=1,2,3$. [8]

Lemma 2 The order of \widehat{S} is $2^{t-2-\eta}$.

Proof Each divisor of 2 in k, which ramifies in K, determines either two or one independent characters according as it is totally ramified or not. The other primes of k which ramify in K each determine one character. These t characters must satisfy $\prod_{\chi \in \widehat{H}_{i}} \chi=+1$, for $i=1,2,3$,
and any two product conditions determine the third. Normalization of characters imposes η more conditions on the characters. Therefore \widehat{S} has $2^{t-2-\eta}$ elements.

Corollary 3 If $k=\mathbf{Q}$ then

$$
|\widehat{S}|= \begin{cases}2^{t-2} & \text { if } K \text { is real and no prime congruent to } 3 \text { modulo } 4 \text { ramifies in } K, \\ 2^{t-3} & \text { otherwise } .\end{cases}
$$

Proof If K is real and no prime congruent to 3 modulo 4 ramifies in K, then $\eta=0$. Otherwise $\eta=1$.

Lemma 4 The order of S is $\frac{h_{1} h_{2} h_{3}}{2^{R_{a}}}|\widehat{S}|$.

Proof The order of $\hat{H}_{1} \times \widehat{H}_{2} \times \widehat{H}_{3}$ is $2^{R_{a}}$ and the same number of classes of $H_{1} \times H_{2} \times H_{3}$ belong to each character value of $\hat{H}_{1} \times \hat{H}_{2} \times \hat{H}_{3}$.

Lemma 5 The number t is given by $t_{1}+t_{2}+t_{3}=2 t-\tau$. Moreover, $R_{a}=\sum_{i=1}^{3}\left(t_{i}-\eta_{i}\right)-3=$ $2 t-\tau-3-\sum_{i=1}^{3} \eta_{i}$.

Proof Each divisor of 2 in k which ramifies in K, ramifies in either two or three intermediate fields. All other primes of k which ramify in K ramify in two intermediate fields. Thus $t_{1}+t_{2}+t_{3}=2 t-\tau$. The rank of H_{i} is $t_{i}-\eta_{i}-1$, so the expression for R_{a} follows.

For an extension K / k where k has odd class number, Lemmermeyer [13] shows that $|k e r|=\frac{2^{\nu-1} \prod_{q(K)} e(p)\left[\bar{E}_{k}: E_{k}^{2}\right]}{}$, where $\nu=1$ if $K=k(\sqrt{\varepsilon}, \sqrt{\rho})$ for units ε, ρ of k and $\nu=0$ otherwise; $e(p)$ is the ramification index in K / k of a prime ideal p in $k ; \bar{E}_{k}$ is the group of
units in E_{k} which are norm residues in K / k and $q(K)=\left[E_{K}: E_{K_{1}} E_{K_{2}} E_{K_{3}}\right]$. For $k=\mathbf{Q}$, Lemmermeyer's result reduces to the following Theorem of Kubota [11]:

$$
|\operatorname{ker}|= \begin{cases}2^{t} / q(K) & \text { if } \mathrm{K} \text { is real and } \eta=0 \\ 2^{t-1} / q(K) & \text { if } \mathrm{K} \text { is real and } \eta=1 \\ 2^{t-2} / q(K) & \text { if } \mathrm{K} \text { is imaginary }\end{cases}
$$

For the remainder of this chapter let $k=\mathbf{Q}$. In this case we will show that the rank of H is given by the rank of a Z_{2}-matrix.

Theorem 6 The rank of H is given by

$$
R_{2}=\log _{2}\left[H_{1} \times H_{2} \times H_{3}: S \cdot k e r\right]+ \begin{cases}t-2 & \text { if } K \text { is real and } \eta=0 \\ t-3 & \text { otherwise }\end{cases}
$$

Proof From Kubota [11], $H^{2} \subseteq H_{0}$ and $\left[H: H_{0}\right]=\left\{\begin{array}{ll}2^{t-2} & \text { if } \mathrm{K} \text { is real and } \eta=0, \\ 2^{t-3} & \text { otherwise. }\end{array}\right.$ Thus

$$
\begin{aligned}
R_{2} & =\log _{2}\left[H: H^{2}\right] \\
& =\log _{2}\left[H: H_{0}\right]+\log _{2}\left[H_{0}: H^{2}\right] \\
& =\log _{2}\left[H_{0}: H^{2}\right]+ \begin{cases}t-2 & \text { if } \mathrm{K} \text { is real and } \eta=0 \\
t-3 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Now $H_{0} / H^{2} \simeq \frac{H_{1} \times H_{2} \times H_{3} / k e r}{S / S \cap k e r}$ and $S / S \cap k e r \simeq S \cdot k e r / k e r$ so $\left[H_{0}: H^{2}\right]=\left[H_{1} \times H_{2} \times H_{3}\right.$: $S \cdot k e r]$.

Corollary 7 If K is real and $\eta=0$ then $t-2 \leq R_{2} \leq R_{a}$. Otherwise $t-3 \leq R_{2} \leq R_{a}$.

Proof It is immediate from Theorem 6 that $R_{2} \geq t-2$ if K is real and $\eta=0$ and $R_{2} \geq t-3$ otherwise. Now

$$
\begin{aligned}
{\left[H_{1} \times H_{2} \times H_{3}: S \cdot k e r\right] } & =\frac{\left|H_{1} \times H_{2} \times H_{3}\right|}{|S||k e r|}|S \cap k e r| \\
& \leq \frac{\left|H_{1} \times H_{2} \times H_{3}\right|}{|S|}=\frac{\left|H_{1} \times H_{2} \times H_{3}\right|}{\frac{\left|H_{1} \times H_{2} \times H_{3}\right| \widehat{S} \mid}{2^{R_{a}}}=\frac{2^{R_{a}}}{|\widehat{S}|}} \\
& = \begin{cases}2^{R_{a} / 2^{t-2}} & \text { if } \mathrm{K} \text { is real and } \eta=0, \\
2^{R_{a}} / 2^{t-3} & \text { otherwise. }\end{cases}
\end{aligned}
$$

It now follows from Theorem 6 that $R_{2} \leq R_{a}$.

Theorem 8 Let m denote the rank of $\widehat{S} \cdot \widehat{k e r}$. Then

$$
\begin{aligned}
R_{2} & =R_{a}-m+ \begin{cases}t-2 & \text { if } K \text { is real and } \eta=0 \\
t-3 & \text { otherwise } .\end{cases} \\
& =-\tau-m-\sum_{i=1}^{3} \eta_{i}+ \begin{cases}3 t-5 & \text { if } K \text { is real and } \eta=0 \\
3 t-6 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof Let $\phi: H_{1} \times H_{2} \times H_{3} \rightarrow \widehat{H}_{1} \times \widehat{H}_{2} \times \widehat{H}_{3}$ be the mapping determined by taking a class C_{i} of H_{i} to its character system in \widehat{H}_{i}. Then $\frac{H_{1} \times H_{2} \times H_{3}}{k e r \phi(S \cdot k e r)} \simeq \frac{\widehat{H}_{1} \times \widehat{H}_{2} \times \widehat{H}_{3}}{\phi(S \cdot k e r)}$. But $\phi(S \cdot k e r)=$ $\phi(S) \cdot \phi(k e r)=\widehat{S} \cdot \widehat{k e r}$. Moreover, $\operatorname{ker} \phi$ is the direct product of the 2-Sylow subgroups of the principal genera of K_{1}, K_{2} and K_{3} which is clearly contained in S. Thus $\frac{H_{1} \times H_{2} \times H_{3}}{S \cdot k e r} \simeq$ $\frac{\widehat{H}_{1} \times \widehat{H}_{2} \times \widehat{H}_{3}}{\widehat{S} \cdot k \text { ker }}$. The result now follows from Lemma 5 and Theorem 6.

In order to determine R_{2} we must be able to find a set of generators for ker. If p is a rational prime which ramifies in K then either $(p, p, 1),(p, 1, p)$ or $(1, p, p)$ is in ker according as p ramifies in K_{1} and K_{2}, K_{1} and K_{3} or K_{2} and K_{3}. Elements of this form
generate $k e r$ unless K is real, $\eta=0$ and $N \varepsilon_{i}=+1$ for some i. In this case there is an additional generator determined by weak ambiguous classes.

Lemma 9 Suppose K is real and $\eta=0$. Then there exist ideals A_{i} of K_{i} such that \tilde{A}_{i} is an ambiguous class and $A_{1} A_{2} A_{3}=(\alpha)$ for some $\alpha \in K$ with $N_{K / \mathbf{Q}}(\alpha)<0$. Futhermore, \tilde{A}_{i} is a weak ambiguous class for each i with $N \varepsilon_{i}=+1$.

Proof The existence of ideals A_{1}, A_{2} and A_{3} such that \tilde{A}_{i} is ambiguous and $A_{1} A_{2} A_{3}=(\alpha)$, for some α with $N_{K / \mathbf{Q}}(\alpha)<0$, is proven in Lemmas 14 and 15 of [11]. Suppose $N \varepsilon_{1}=$ +1 and let σ_{i} be the automorphism of K fixing K_{i}. Then $A_{1}^{1-\sigma_{2}}=\frac{\left(A_{1} A_{2} A_{3}\right)^{1+\sigma_{1}}}{A_{1}^{1+\sigma_{2}} A_{2}^{1+\sigma_{1}} A_{3}^{1+\sigma_{1}}}=$ $\frac{\left(\alpha \alpha+\sigma_{1}\right.}{A_{1}^{1+\sigma} A_{2}^{1++\sigma_{1}} A_{3}^{1+\sigma}}=\left(\rho_{1}\right)$ for some $\rho_{1} \in K_{1}$ with $N_{K_{1} / \mathbf{Q}}\left(\rho_{1}\right)<0$. Therefore A_{1} is not an ambiguous ideal, so \tilde{A}_{1} must be a weak ambiguous class.

Now m is the rank of a Z_{2}-matrix M whose rows correspond to generators of $\widehat{S} \cdot \widehat{\operatorname{ker}}$ by means of the isomorphism ψ.

Example Let $K_{1}=\mathbf{Q}(\sqrt{l q r s}), K_{2}=\mathbf{Q}(\sqrt{l q})$ and $K_{3}=\mathbf{Q}(\sqrt{r s})$ with $l \equiv q \equiv 3(\bmod 4)$ and $r \equiv s \equiv 1 \quad(\bmod 4)$. The table of consistent characters is:

$l q$	r	s	$l q$	r	s
+	+	+	+	+	+
+	-	-	+	-	-

Here \widehat{S} is generated by $(0,1,1,0,1,1)$ and ker is generated by $\{(l, 1,1),(q, 1,1),(r, 1, r)\}$. Thus

$$
M=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\psi\left(\frac{l}{r}\right) & \psi\left(\frac{l}{s}\right) & 0 \\
\psi\left(\frac{q}{r}\right) & \psi\left(\frac{q}{s}\right) & 0 \\
\psi\left(\left(\frac{l}{r}\right)\left(\frac{q}{r}\right)\left(\frac{r}{s}\right)\right) & \psi\left(\frac{r}{s}\right) & \psi\left(\frac{r}{s}\right)
\end{array}\right)
$$

where the first row corresponds to the generator of \widehat{S} and the last three rows correspond to generators of ker. We have deleted one character from each subfield since the product of the characters for a quadratic field is +1 . The first two columns correspond to characters for K_{1}, determined by r and s, and the last column to a character for K_{3}, determined by r. Now $R_{a}=3$ and $t=4$ so $R_{2}=4-m$.

Chapter 4

REAL BICYCLIC BIQUADRATIC FIELDS OF 2-RANK 1

The real bicyclic biquadratic fields having odd class number have been determined by Hasse [6] using the class number formula. As an application of the techniques developed in chapter 3 we will determine all such fields having 2 -class group of rank one.

Theorem 10 The real bicyclic biquadratic fields whose class groups have 2-rank one are listed below. In each case $H_{1} \times H_{2} \times H_{3} \simeq Z_{2^{a}} \times Z_{2} \times \cdots \times Z_{2}$ for some $a \geq 1$ and $H \simeq$ $Z_{2^{a-1}}, Z_{2^{a}}$ or $Z_{2^{a+1}}$. In the following table $\left[a_{1}, a_{2}, a_{3}\right]$ followed by $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ indicates that $\mathbf{Q}\left(\sqrt{a_{1}}\right), \mathbf{Q}\left(\sqrt{a_{2}}\right)$ and $\mathbf{Q}\left(\sqrt{a_{3}}\right)$ are the quadratic subfields of K and $b_{1}, b_{2}, \ldots, b_{n}$ are congruence conditions modulo $\&$ on the prime divisors of a_{1}, a_{2} and a_{3} listed in alphabetical order. Here l, q, r and s are distinct primes. The second column gives further conditions that must be satisfied and the third column gives the 2-class group of K.

1. $[l q, l, q]$

$$
h_{1}>2
$$

$Z_{2^{a-1}}$
[1 or 2,1]
2. $[l q, l, q]$
$\left(\frac{l}{q}\right)=\left(\frac{2}{l}\right)=+1$
$Z_{2^{a-1}}$
$[1,3]$
3. $[l q r, l q, r]$

$$
N \varepsilon_{1}=N \varepsilon_{2}=-1 \text { and } \quad Z_{2^{a+1}}
$$

[1 or $2,1,1$ or 2]
$\left(\frac{l}{r}\right)=\binom{q}{r}=-1$
$N \varepsilon_{1}=-1, N \varepsilon_{2}=+1$ and either $\quad Z_{2^{a+1}}$
$h_{2}=2$ and $\left(\frac{l}{r}\right)=-1$ or
$h_{2}=2$ and $\binom{q}{r}=-1$ or
$h_{2}>2$ and $\left(\frac{l}{r}\right)=\left(\frac{q}{r}\right)=-1$

$$
\begin{array}{ll}
N \varepsilon_{1}=+1, N \varepsilon_{2}=-1, & Z_{2^{a}} \\
h_{1}=4 \text { and }\left(\frac{l}{r}\right) \neq\left(\frac{q}{r}\right) & \\
N \varepsilon_{1}=N \varepsilon_{2}=+1,\left(\frac{l}{r}\right) \neq\left(\frac{q}{r}\right) & Z_{2^{a}} \\
\text { and either } h_{1}=4 \text { and } h_{2}=2 & \\
\text { or } h_{1}>4 \text { and } h_{2}=2 &
\end{array}
$$

4. $[l q r, l q, r]$
[2 or 3, 3,1 or 2]

5. $[l q r, l q, r]$	If $\left(\frac{l}{s}\right)=\binom{q}{s}$ then either	$Z_{2 a}$
$[3,3,3]$	$\left(\frac{l}{r}\right)=+1$ or $\binom{q}{r}=+1$	

6. $[l q r, l q, r]$ $[1,3,3]$
7. $[l q r, l q, r]$

$$
\begin{aligned}
& \left(\frac{l}{r}\right)=\binom{q}{r}=-1 \text { or } \\
& \left(\frac{l}{r}\right)=\left(\frac{q}{s}\right)=-1 \text { or } \\
& \left(\frac{q}{r}\right)=\left(\frac{l}{s}\right)=-1
\end{aligned}
$$

$$
Z_{2^{a+1}} \text { if } q(K)=2
$$

$$
Z_{2^{a}} \text { if } q(K)=1
$$

8. $[l q r, l q, r]$
$\binom{q}{r}=-1$ and either
$Z_{2^{a+1}}$ if $q(K)=2$
$[3,1,1]$
$\left(\frac{l}{r}\right)=-1$ or $\left(\frac{r}{s}\right)=1$
$Z_{2^{a}}$ if $q(K)=1$
9. $[l q r, l q, r]$ $[1,3,2]$
10. $[l q r, l q, r]$ $[2,1,3]$
$\left(\frac{l}{r}\right)=-1$
$Z_{2}{ }^{a}$
11. $[l q r, l q, r]$
$\left(\frac{l}{q}\right)=-1$ or $\binom{q}{r}=-1$
$Z_{2^{a+1}}$ if $q(K)=2$
$Z_{2^{a}}$ if $q(K)=1$ $[2,3,3]$
12. $[l q, l r, q r]$
[1 or 2,1 or 2,1 or 2]
$N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}$ and at $\quad Z_{2^{a+1}}$ least two of $\left(\frac{l}{q}\right),\left(\frac{l}{r}\right)$ and $\binom{q}{r}$ equal -1
$N \varepsilon_{1}=+1, N \varepsilon_{2}=N \varepsilon_{3}=-1 \quad Z_{2^{a}}$
with $h_{1}=2$ and either
$\left(\frac{l}{r}\right)=-1$ or $\left(\frac{q}{r}\right)=-1$,
or $h_{1}>2$ and $\left(\frac{l}{r}\right)=\left(\frac{q}{r}\right)=-1$
$N \varepsilon_{1}=N \varepsilon_{2}=+1, N \varepsilon_{3}=-1, \quad Z_{2^{a+1}}$
$\binom{q}{r}=-1$ and either $h_{1}=2$ and
$h_{2}>2$ or $h_{1}>2$ and $h_{2}=2$
13. $[l q, l r, q r]$
$[1,3,3]$
$\left(\frac{l}{q}\right)=-1$ or $\left(\frac{l}{r}\right)=-1$
$Z_{2^{a+1}}$ if $q(K)=2$
$Z_{2^{a}}$ if $q(K)=1$
$\left\{\begin{array}{l}\left(\frac{l}{q}\right)=+1 \text { and } \text { either } \\ \left(\frac{l}{r}\right)=\binom{q}{r}=-1 \text { or } \\ \left(\frac{l}{r}\right)=\left(\frac{q}{s}\right)=-1 \text { or }\end{array}\right.$
$Z_{2^{a+1}}$ if $q(K)=2$
$Z_{2^{a}}$ if $q(K)=1$
$\left(\frac{q}{r}\right)=\left(\frac{l}{s}\right)=-1$
$\left(\begin{array}{l}\left(\frac{l}{q}\right)=-1 \text { and } \text { either } \\ \left(\frac{l}{r}\right)=-1 \text { or }\left(\frac{q}{r}\right)=-1\end{array}\right.$
$Z_{2^{a+1}}$ if $q(K)=2$
$Z_{2^{a}}$ if $q(K)=1$
$\left(\frac{l}{q}\right)=-1,\left(\frac{l}{r}\right)=\binom{q}{r}=+1 \quad Z_{2^{a}}$ if $q(K)=2$
and $\left(\frac{l}{s}\right) \neq\left(\frac{q}{s}\right)$
$Z_{2^{a}}$ if $q(K)=1$
14. $[l q, l r, q r]$
$[2,1,3]$
15. [lqrs, $l q, r s]$
[2 or $3,3,3,3$]
16. [lqrs, $l q, r s]$
[2 or $3,3,1,1$ or 2]
$\binom{q}{r}=-1$ or $\left(\frac{l}{q}\right)=-1$
$Z_{2^{a+1}}$ if $q(K)=4$
$Z_{2^{a}}$ if $q(K)=2$
$\left(\frac{l}{r}\right) \neq\left(\frac{l}{s}\right)$ or $\left(\frac{q}{r}\right) \neq\left(\frac{l}{s}\right)$ or
$\binom{q}{r} \neq\binom{ q}{s}$
$\begin{array}{lll}\left(\frac{l}{r}\right) \neq\binom{ q}{r} \text { and }\left(\frac{l}{s}\right) \neq\left(\frac{q}{s}\right) \text { or } & & Z_{2^{a+1}} \text { if } q(K)=2 \\ \left(\frac{l}{r}\right) & =\left(\frac{q}{r}\right)=-1 \text { and }\left(\frac{l}{s}\right) \neq\binom{ q}{s} \text { or } & \\ \left(\frac{l}{r}\right) \neq\left(\frac{q}{r}\right) \text { and }\left(\frac{l}{s}\right)=\left(\frac{q}{s}\right)=-1 & & \end{array}$
17. [lqrs,lqr,s]
[2 or 3, 3, 1, 1 or 2]
$\left(\frac{r}{s}\right)=-1$ and either
$Z_{2^{a+1}}$ if $q(K)=2$
$\left(\frac{l}{s}\right)=-1$ or $\binom{q}{s}=-1$
$Z_{2^{a}}$ if $q(K)=1$
18. [lqrs, lqr, s]
$\left(\frac{l}{s}\right)=-1$ and either
$Z_{2^{a+1}}$ if $q(K)=2$

$$
\begin{array}{lll}
{[2,3,3,1]} & \left(\frac{q}{s}\right)=-1 \text { or }\left(\frac{r}{s}\right)=-1 & Z_{2^{a}} \text { if } q(K)=1 \\
20 .[l q r, l q s, r s] \\
{[1 \text { or } 2,2 \text { or } 3,3,2 \text { or } 3]} & & Z_{2^{a}} \\
& \left(\frac{l}{r}\right)=-1 \text { or }\left(\frac{l}{s}\right)=-1 & \\
21 .[l q r, l q s, r s] & \left(\frac{l}{r}\right)=\left(\frac{l}{s}\right)=-1 \text { and either } & Z_{2^{a+1}} \text { if } q(K)=2 \\
{[2 \text { or } 3,3,1,1 \text { or } 2]} & \left(\frac{q}{r}\right)=+1 \text { or }\left(\frac{q}{s}\right)=+1 & Z_{2^{a}} \text { if } q(K)=1 \\
& \left(\frac{l}{r}\right)=-1,\left(\frac{l}{s}\right)=+1 \text { and either } & Z_{2^{a+1}} \text { if } q(K)=2 \\
& \left(\frac{q}{s}\right)=-1 \text { or }\left(\frac{r}{s}\right)=-1 & Z_{2^{a}} \text { if } q(K)=1 \\
& \left(\frac{l}{r}\right)=+1,\left(\frac{l}{s}\right)=-1 \text { and either } & Z_{2^{a+1}} \text { if } q(K)=2 \\
& \left(\frac{q}{r}\right)=-1 \text { or }\left(\frac{r}{s}\right)=-1 & Z_{2^{a}} \text { if } q(K)=1 \\
& \left(\frac{l}{r}\right)=\left(\frac{l}{s}\right)=+1 \text { and at least } & Z_{2^{a+1}} \text { if } q(K)=2 \\
\text { two of }\left(\frac{q}{r}\right),\left(\frac{q}{s}\right) \text { and }\left(\frac{r}{s}\right) \text { equal }-1 & Z_{2^{a}} \text { if } q(K)=1
\end{array}
$$

Proof Since ker is elementary and $\frac{H_{1} \times H_{2} \times H_{3}}{\text { ker }} \simeq H_{0}$ is a subgroup of H, it follows that if H is cyclic then at most one factor of $H_{1} \times H_{2} \times H_{3}$ has order greater than 2. It follows from Corollary 7 that if H is cyclic then $t \leq 4$ and $t=4$ only if $\eta=1$. The above list follows from a careful analysis of cases. For example, when $d_{1}=l q r, d_{2}=l q s$ and $d_{3}=r s$, with $l \equiv 2$ or $3(\bmod 4), q \equiv 3(\bmod 4), r \equiv 1(\bmod 4)$ and $s \equiv 1$ or $2(\bmod 4)$ the table of consistent characters is: \quad\begin{tabular}{ll|ll|ll}
$l q$ \& r \& $l q$ \& s \& r \& s

\hline+ \& + \& + \& + \& + \& +

- \& - \& - \& - \& - \& -
\end{tabular}\quad Here \widehat{S} is generated by $(1,1,1,1,1,1)$ and $k e r$ is generated by $(l, l, 1),(q, q, 1)$ and $(r, 1, r)$. Thus $M=\left(\begin{array}{ccc}1 & 1 & 1 \\ \psi\left(\frac{l}{r}\right) & \psi\left(\frac{l}{s}\right) & 0 \\ \psi\left(\frac{q}{r}\right) & \psi\left(\frac{q}{s}\right) & 0 \\ \psi\left(\left(\frac{l}{r}\right)\left(\frac{q}{r}\right)\right) & 0 & \psi\left(\frac{r}{s}\right)\end{array}\right)$ where the first column corresponds to a character for K_{1}, determined by r, and the last two columns correspond to characters for K_{2} and K_{3}, determined by s. By Theorem $8, R_{2}=4-m$. If $\left(\frac{l}{r}\right)=\left(\frac{l}{s}\right)=-1$ then M reduces to

$\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 1 & 0 \\ \psi\binom{q}{r} & \psi\binom{q}{s} & 0 \\ 1+\psi\binom{q}{r} & 0 & 0\end{array}\right)$ so $R_{2}=1$ if either $\binom{q}{r}=+1$ or $\left(\frac{q}{s}\right)=+1$. If $\left(\frac{l}{r}\right)=\left(\frac{l}{s}\right)=+1$ then M reduces to $\left(\begin{array}{ccc}1 & 1 & 1 \\ \psi\left(\frac{q}{r}\right) & \psi\left(\frac{q}{s}\right) & 0 \\ \psi\left(\frac{q}{r}\right) & 0 & \psi\left(\frac{r}{s}\right)\end{array}\right)$ so $R_{2}=1$ if at least two of $\left(\frac{q}{r}\right),\left(\frac{q}{s}\right)$ and ($\frac{r}{s}$) equal -1. If $\left(\frac{l}{r}\right)=-1$ and $\left(\frac{l}{s}\right)=+1$ then M reduces to $\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & \psi\left(\frac{q}{s}\right) & 0 \\ 0 & 0 & \psi\left(\frac{r}{s}\right)\end{array}\right)$ so $R_{2}=1$ if either $\left(\frac{q}{s}\right)=-1$ or $\left(\frac{r}{s}\right)=-1$. If $\left(\frac{l}{r}\right)=+1$ and $\left(\frac{l}{s}\right)=-1$ then M reduces to $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ \psi\binom{q}{r} & 0 & 0 \\ 0 & 0 & \psi\left(\frac{r}{s}\right)\end{array}\right)$ so $R_{2}=1$ if either $\binom{q}{r}=-1$ or $\left(\frac{r}{s}\right)=-1$. That $H \simeq Z_{2^{a+1}}$ or $Z_{2^{a}}$ according as $q(K)=2$ or 1 follows from the class number formula $h=\frac{1}{4} q(K) h_{1} h_{2} h_{3}$. The remaining cases are done similarly.

Chapter 5

GROUPS OCCURING AS CLASS GROUPS OF IMAGINARY BICYCLIC BIQUADRATIC FIELDS

In this section we will show that every abelian group of exponent 2 or 4 occurs as the 2-class group of some imaginary bicyclic biquadratic field. Several technical lemmas preceed the main result.

For any $n \times n Z_{2}-$ matrix A, let $A\left(i_{1}, \ldots, i_{k}\right)$ denote the matrix obtained by adding 1 to the $i_{j} i_{j}$ entry of A for, $j=1, \ldots, k$. Define $C_{1}=(1)$ and for $n>1$ define $C_{n}=\left(c_{i j}\right)$ to be the $n \times n Z_{2}$-matrix given by: $c_{n n}=1, c_{i+1}=c_{i+1 i}=1$ for $i=1, \ldots, n-1$ and $c_{i j}=0$ otherwise.

Lemma 11 The following hold for each n :

1. $\operatorname{det} C_{n}=1$,
2. $\operatorname{det} C_{n}(1,2, \ldots, 3 k)=1$,
3. $\operatorname{det} C_{n}(1,2, \ldots, 3 k+1)=0$,
4. $\operatorname{det} C_{n}(1,2, \ldots, 3 k+2)=1$,
5. $\operatorname{det} C_{n}(1,2, \ldots, 3 k, 3 k+2)=1$.

Proof Now $\operatorname{det} C_{1}=\operatorname{det} C_{2}=1$ and expanding about row 1 of C_{n} and then about column 1 of the resulting minor we see that $\operatorname{det} C_{n}=\operatorname{det} C_{n-2}$. Thus $\operatorname{det} C_{n}=1$ for each n. It is easily verified that $\operatorname{det} C_{1}(1)=\operatorname{det} C_{2}(1)=\operatorname{det} C_{3}(1)=0, \operatorname{det} C_{2}(1,2)=$ $\operatorname{det} C_{3}(1,2)=1$ and $\operatorname{det} C_{3}(1,2,3)=0$. Expanding about row 1 of $C_{n}(1, \ldots, i)$ and then about column 1 of the resulting $1-2$ minor we see that $\operatorname{det} C_{n}(1)=\operatorname{det} C_{n-1}+\operatorname{det} C_{n-2}$ and $\operatorname{det} C_{n}(1, \ldots, i)=\operatorname{det} C_{n-1}(1, \ldots, i-1)+\operatorname{det} C_{n-2}(1, \ldots, i-2)$ for $i \geq 2$. Thus (2),(3) and (4) hold. Now $\operatorname{det} C_{2}(2)=\operatorname{det} C_{3}(2)=\operatorname{det} C_{4}(2)=1$. Expanding about row 1 of $C_{n}(1, \ldots, 3 k, 3 k+2)$ and then about column 1 of the resulting $1-2$ minor we see that $\operatorname{det} C_{n}(2)=\operatorname{det} C_{n-2}=1$ and $\operatorname{det} C_{n}(1, \ldots, 3 k, 3 k+2)=\operatorname{det} C_{n-1}(1, \ldots, 3 k-1,3 k+1)+$ $\operatorname{det} C_{n-2}(1, \ldots, 3 k-2,3 k)$ for $k \geq 1$. Repeating this for $C_{n-1}(1, \ldots, 3 k-1,3 k+1)$ we see that $\operatorname{det} C_{n-1}(1, \ldots, 3 k-1,3 k+1)=\operatorname{det} C_{n-2}(1, \ldots, 3 k-2,3 k)+\operatorname{det} C_{n-3}(1, \ldots, 3 k-3,3 k-1)$. Therefore $\operatorname{det} C_{n}(1, \ldots, 3 k, 3 k+2)=\operatorname{det} C_{n-3}(1, \ldots, 3 k-3,3 k-1)$ and (5) holds.

For $n \geq 2$ let A_{n} be the $n \times n Z_{2}$-matrix defined by $A_{n}=C_{n}(1)$.

Lemma 12 The following hold for each n :

1. $\operatorname{det} A_{n}(1, \ldots, 3 k)=0$,
2. $\operatorname{det} A_{n}(1, \ldots, 3 k+1)=1$,
3. $\operatorname{det} A_{n}(1, \ldots, 3 k+2)=1$,
4. $\operatorname{det} A_{n}(1, \ldots, 3 k-1,3 k+1)=1$.

Proof Now $\operatorname{det} A_{2}(1)=\operatorname{det} A_{2}(1,2)=1$. For $n \geq 3, a_{12}$ and a_{21} are the only nonzero entries in row 1 and column 1 of $A_{n}(1, \ldots, i)$, respectively. Thus, deleting the first two rows and first two columns of $A_{n}(1, \ldots, i)$ we see that $\operatorname{det} A_{n}(1)=\operatorname{det} C_{n-2}$ and $\operatorname{det} A_{n}(1, \ldots, i)=$ $\operatorname{det} C_{n-2}(1, \ldots, i-2)$ for $i \geq 2$. The result now follows from Lemma 11 .

For $n=3 m, m \geq 2$, define $B_{n}=\left(b_{i j}\right)$ to be the $n \times n Z_{2}$-matrix given by: $b_{12}=$ $a_{12}+1, b_{21}=a_{21}+1, b_{14}=a_{14}+1, b_{41}=a_{41}+1, b_{22}=a_{22}+1, b_{44}=a_{44}+1$ and $b_{i j}=a_{i j}$ otherwise.

Lemma 13 For each $n, \operatorname{det} B_{n}(1, \ldots, n)=1$.

Proof Note that b_{14} and b_{41} are the only nonzero entries in row 1 and column 1 of $B_{n}(1, \ldots, n)$, respectively. Thus $B_{n}(1, \ldots, n)$ can be reduced to the matrix
$\left(\begin{array}{cc}B & 0 \\ 0 & C_{n-4}(1, \ldots, n-4)\end{array}\right)$ where $B=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$. The result now follows from Lemma 11.

Let p_{1}, \ldots, p_{s} be primes with $p_{1} \equiv 3(\bmod 4)$ and $p_{i} \equiv 1(\bmod 4), i \neq 1$. For $1 \leq i \leq$ $s-1$ let $y_{i}=\psi\left(\frac{p_{i}}{p_{s}}\right)$.

Lemma 14 The 2-rank of the class group of $\mathbf{Q}\left(\sqrt{-p_{1} \cdots p_{s-1}}, \sqrt{p_{s}}\right)$ is $(2 s-3)-\left(y_{1}+\cdots+\right.$ $\left.y_{s-1}\right)$.

Proof Let $K_{1}=\mathbf{Q}\left(\sqrt{-p_{1} \cdots p_{s-1}}\right), K_{2}=\mathbf{Q}\left(\sqrt{p_{s}}\right)$ and $K_{3}=\mathbf{Q}\left(\sqrt{-p_{1} \cdots p_{s}}\right)$. For $1 \leq$ $i, j \leq s-1, i \neq j$ let $x_{i j}=\psi\left(\frac{p_{i}}{p_{j}}\right)$ and $x_{i i}=\sum_{j=1}^{s-1} x_{i j}$. Since ker is generated by $\left\{\left(p_{i}, 1, p_{i}\right) \mid i=\right.$

$$
\left.\begin{array}{l}
1, \ldots, s-1\}, \\
M=\left(\begin{array}{ccccccccc}
1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 1 \\
0 & 1 & & 0 & 0 & 1 & & 0 & 1 \\
\vdots & & \ddots & & & & \ddots & & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 1 & 1 \\
x_{11} & x_{12} & \cdots & x_{1 s-2} & x_{11}+y_{1} & x_{12} & \cdots & x_{1 s-2} & x_{1 s-1} \\
\vdots & & & & & & & & \vdots \\
x_{1 s-1} & x_{2 s-1} & \cdots & x_{s-2 s-1} & x_{1 s-1} & x_{2 s-1} & \cdots & x_{s-2} s-1 & x_{s-1} s-1
\end{array}\right) y_{s}
\end{array}\right) .
$$

where the first $s-2$ rows correspond to generators of \widehat{S}. Since $\sum_{j=1}^{s-1} x_{i j}=0$ for each i, M reduces to

$$
\left(\begin{array}{ccccccccc}
1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 1 \\
0 & 1 & & 0 & 0 & 1 & & 0 & 1 \\
\vdots & & \ddots & & & & \ddots & & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & \cdots & 0 & y_{1} & 0 & \cdots & 0 & 0 \\
& & & & & & & & \\
\vdots & & & & & & \ddots & & \vdots \\
& & & & & & & & \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & y_{s-1}
\end{array}\right) .
$$

The result now follows from Theorem 8.
For the field $\mathbf{Q}\left(\sqrt{-p_{1} \cdots p_{s-1}}, \sqrt{p_{s}}\right)$, if $H_{1} \times H_{2} \times H_{3}$ is elementary then it follows from Corollary 7 and the class number formula that $s-2 \leq R_{2} \leq 2 s-4$.

Lemma 15 For any $s \geq 3, s \neq 4$ and for any l with $s-2 \leq l \leq 2 s-4$ there exist primes p_{1}, \ldots, p_{s} such that $H_{1} \times H_{2} \times H_{3}$ is elementary and the 2-class group of $\mathbf{Q}\left(\sqrt{-p_{1} \cdots p_{s-1}}, \sqrt{p_{s}}\right)$ has rankl. If $s=4$ then there exist primes such that the rank is 3 or 4 .

Proof Choose p_{1}, \ldots, p_{s-1} such that for $i \neq j, \psi\left(\frac{p_{i}}{p_{j}}\right)$ equals the $i j-$ entry of A_{s-1}. The first row of A_{s-1} is the sum of rows 2 through $s-1$ and these rows are clearly independent, so A_{s-1} has rank $s-2$. Thus H_{1} is elementary. Now the character table for K_{3} corresponds to $A_{s-1}+\left(\begin{array}{cccc}y_{1} & 0 & \cdots & 0 \\ 0 & y_{2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & y_{s-1}\end{array}\right)$. By Lemma 12 , if $1 \leq w \leq s-2$ then p_{s} can be chosen so that H_{3} is elementary and exactly w of y_{1}, \ldots, y_{s-1} are equal to 1 . It also follows from Lemma 12 that if $s \not \equiv 1(\bmod 3)$ and p_{s} is chosen such that $y_{1}=\ldots=y_{s-1}=1$, then H_{3} is elementary.

If $s \equiv 1(\bmod 3), s \neq 4$ choose p_{1}, \ldots, p_{s-1} such that $\psi\left(\frac{p_{i}}{p_{j}}\right)$ equals the $i j$-entry of B_{s-1}. The rows of B_{s-1} are dependent, but after adding row 1 to row 4 and deleting row 2 we are left with $s-2$ independent rows. Thus H_{1} is elementary. The character table for H_{3} corresponds to $B_{s-1}+\left(\begin{array}{cccc}y_{1} & 0 & \cdots & 0 \\ 0 & y_{2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & y_{s-1}\end{array}\right)$. By Lemma 13, p_{s} can be chosen so that H_{3} is elementary and $y_{1}=\ldots=y_{s-1}=1$. The result now follows from Lemma 14 .

With K as in the previous lemma and $s=4$ the character system of K_{1} must be one of the following:

| | p_{1} | p_{2} | p_{3} | | p_{1} | p_{2} | p_{3} | | p_{1} | p_{2} | p_{3} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| p_{1} | + | - | - | p_{1} | - | + | - | p_{1} | - | - | + | |
| p_{2} | - | + | - | p_{2} | + | - | - | | p_{2} | - | + | - |
| p_{3} | - | - | + | p_{3} | - | - | + | p_{3} | + | - | - | |.

A case by case analysis shows that there is no choice of p_{4} such that H_{3} is elementary and $R_{2}=2$.

Now let p_{1}, \ldots, p_{s} be primes with $p_{1} \equiv \ldots \equiv p_{s-2} \equiv 1(\bmod 4)$ and $p_{s-1} \equiv p_{s} \equiv 3$ $(\bmod 4)$. Choose p_{1}, \ldots, p_{s-1} so tht $\psi\left(\frac{p_{i}}{p_{j}}\right)$ equals he $i j-$ entry of A_{s-1}, for $i, j \leq s-1$. For $i=1, \ldots, s-2$, let $y_{i}=\psi\left(\frac{p_{i}}{p_{s}}\right)$.

Lemma 16 The rank of the 2-class group of $\mathbf{Q}\left(\sqrt{-p_{1} \ldots p_{s-1}}, \sqrt{p_{s-1} p_{s}}\right)$ is $2 s-5-\left(y_{1}+\right.$ $\cdots+y_{s-3}$).
Proof The kernel is generated by $\left\{\left(p_{i}, 1, p_{i}\right) \mid 1 \leq i \leq s-2\right\}$ and $\left(p_{s-1}, 1,1\right)$ so

$$
M=\left(\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\
& & & & & & & & & & & \\
\vdots & & & \ddots & & & & & & & \ddots & \vdots \\
& & & & & & & & & & & \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 & \cdots & 1 \\
1 & 1 & 0 & 0 & \cdots & 0 & 0 & 1+y_{1} & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & 0 & \cdots & 0 & 0 & 1 & y_{2} & 1 & \cdots & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 0 & 0 & 1 & y_{3} & \cdots & 0 \\
\vdots & & & & & & & & & & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & 0 & \cdots & 1+y_{s-2} \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

where the first $s-2$ rows correspond to generators of \widehat{S}. Now M reduces to

$$
\left(\begin{array}{cccccccccc}
1 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & & \ddots & & & & & \ddots & & \vdots \\
& & & & & & & & & \\
0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 0 & 0 & y_{1} & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & y_{2} & 0 & \cdots & 0 \\
\vdots & & & & & & & \ddots & & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & y_{s-2}
\end{array}\right) .
$$

The result now follows from Theorem 8.
For the field $\mathbf{Q}\left(\sqrt{-p_{1} \cdots p_{s-1}}, \sqrt{p_{s-1} p_{s}}\right)$, if $H_{1} \times H_{2} \times H_{3}$ is elementary then it follows from Corollary 7 and the class number formula that $s-2 \leq R_{2} \leq 2 s-5$.

Lemma 17 For any $s \geq 3$ and for any l with $s-2 \leq l \leq 2 s-5$ there exist primes p_{1}, \ldots, p_{s} such that $H_{1} \times H_{2} \times H_{3}$ is elementary and the rank of the 2-class group of $\mathbf{Q}\left(\sqrt{-p_{1} \cdots p_{s-1}}, \sqrt{p_{s-1} p_{s}}\right)$ is l.

Proof Since A_{s-1} has rank $s-2, H_{1}$ is elementary. The character table for K_{3} corresponds to $A_{s-2}+\left(\begin{array}{cccc}y_{1} & 0 & \cdots & 0 \\ 0 & y_{2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & y_{s-2}\end{array}\right)$. It follows from the proof of Lemma 11 that for $0 \leq w \leq s-3$, if w of y_{1}, \ldots, y_{s-3} are equal to 1 then y_{s-2} can be chosen such that H_{3} is elementary. The result now follows from Lemma 16.

Theorem 18 Every abelian group of exponent 2 or 4 occurs as the 2-class group of some imaginary bicyclic biquadratic field.

Proof The result follows immediately from Lemmas 15 and 17 except for the group $Z_{4} \times Z_{4}$. In that case let $K=\mathbf{Q}\left(\sqrt{-p_{1} p_{2} p_{3}}, \sqrt{p_{4}}\right)$ with $p_{1} \equiv p_{2} \equiv p_{3} \equiv 3(\bmod 4)$ and $p_{4} \equiv 1$ $(\bmod 4)$. Choose p_{1}, \ldots, p_{4} such that $\left(\frac{p_{1}}{p_{3}}\right)=+1$ and $\left(\frac{p_{i}}{p_{j}}\right)=-1$ for $i=1,2,3, j=2,3,4$, $(i, j) \neq(1,3)$ and $i<j$. Then $H_{1} \times H_{2} \times H_{3}$ is elementary and $H \simeq Z_{4} \times Z_{4}$, since the matrix M has rank 5 .

Chapter 6

UNIT GROUPS OF OCTIC FIELDS

For this chapter let K be an imaginary octic field of type (2,2,2). An easy group theoretic argument shows that $Q=Q_{0} Q_{1} Q_{2}$. Now according to Kuroda [12], $Q_{0}=1,2$ or 4 and $Q_{2}=1$ or 2 according as $\sqrt{-1}, \sqrt{2} \in K$ or not. By Theorem 4.12 of Washington [23], $Q_{1}=1$ or 2 since K is a CM-field. In this section we give conditions for determining Q_{1}.

Let $\zeta=\frac{1+\iota}{\sqrt{2}}$ be a primitive eighth root of unity.

Lemma 19 If $e \in E_{K}-E^{*}$ then one of the following must hold:

1. $e^{2}=\iota \varepsilon_{3}$ with $N \varepsilon_{3}=+1$,
2. $e^{2}=-\varepsilon_{2} \varepsilon_{3}$ or $e^{2}=\iota \varepsilon_{2} \varepsilon_{3}$ with $N \varepsilon_{2}=N \varepsilon_{3}=+1$,
3. $e^{2}=-\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ or $e^{2}=\iota \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ with $N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}$,
4. $e^{2}=\zeta \varepsilon_{2}^{1 / 2} \varepsilon_{3}^{1 / 2}$ or $e^{2}=\zeta \varepsilon_{1} \varepsilon_{2}^{1 / 2} \varepsilon_{3}^{1 / 2}$ with $N \varepsilon_{2}=N \varepsilon_{3}=+1$.

Proof Since $\left[E_{K}: W E_{K_{0}}\right] \leq 2, e^{2}=\omega \varepsilon$ for some $\omega \in W$ and $\varepsilon \in E_{K_{0}}$. We may assume that ω is an eighth root of unity since any root of unity of odd order in K is a square. Thus $e^{2}=\omega \varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}$ with $a, b \in\{0,1\}$ or $e^{2}=\omega \varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{1 / 2}$ with $a, b \in\left\{0, \frac{1}{2}, 1, \frac{3}{2}\right\}$.

Suppose $e^{2}=\omega \varepsilon_{3}$ and note that $\omega \neq \pm 1$ since $e \notin E^{*}$. If $d_{3}=2$ and $\omega=\zeta$ choose an
automorphism σ of K with $\sigma(\iota)=\iota$ and $\sigma(\sqrt{2})=-\sqrt{2}$. Then $\left(e^{2}\right)^{1+\sigma}=-\iota \varepsilon_{3}^{1+\sigma}=\iota=\omega^{2}$ so $e^{1+\sigma}= \pm \omega$ contradicting that ω is not in the fixed field of σ. Thus either $d_{3} \neq 2$ or ω is not a primitive eighth root of unity, so there is an automorphism τ of K with $\tau(\omega)=\bar{\omega}$ and $\tau\left(\sqrt{d_{3}}\right)=-\sqrt{d_{3}}$. Now $\left(e^{2}\right)^{1+\tau}=\varepsilon_{3}^{1+\tau}=N\left(\varepsilon_{3}\right.$. If $N\left(\varepsilon_{3}=-1\right.$ then $\iota= \pm e^{1+\tau}$ is fixed by τ, a contradiction. Thus $N \varepsilon_{3}=+1$. If $\omega=\zeta$ choose an automorphism ρ with $\rho(\iota)=\iota$, $\rho(\sqrt{2})=-\sqrt{2}$ and $\rho\left(\sqrt{d_{3}}\right)=-\sqrt{d_{3}}$. Then $\left(e^{2}\right)^{1+\rho}=-\iota$ contradicting that ζ is not in the fixed field of ρ. Therefore $\omega=\iota$.

Now suppose $e^{2}=\omega \varepsilon_{2} \varepsilon_{3}$. If $\omega=\zeta$, choose an automorphism σ with $\sigma(\iota)=\iota, \sigma(\sqrt{2})=$ $-\sqrt{2}$ and $\sigma\left(\sqrt{d_{3}}\right)=\sqrt{d_{3}}$. Then $\left(e^{2}\right)^{1+\sigma}= \pm \iota \varepsilon_{3}^{2}$ contradicting that ζ is not in the fixed field of σ. Thus $\omega \neq \zeta$ so there is an automorphism τ with $\tau(\omega)=\bar{\omega}, \tau\left(\sqrt{d_{2}}\right)=\sqrt{d_{2}}$ and $\tau\left(\sqrt{d_{3}}\right)=-\sqrt{d_{3}}$. Now $\left(e^{2}\right)^{1+\tau}=\varepsilon_{2}^{2} \varepsilon_{3}^{1+\tau}=\varepsilon_{2}^{2} N \varepsilon_{3}= \pm \varepsilon_{2}^{2}$. If $\left(e^{2}\right)^{1+\tau}=-\varepsilon_{2}^{2}$ then $e^{1+\tau}= \pm \iota \varepsilon_{2}$ contradicting that ι is not in the fixed field of τ. Thus $N \varepsilon_{3}=+1$ and similarly, $N \varepsilon_{2}=+1$.

Now supose $e^{2}=\omega \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$. If $\omega=\zeta$ take $d_{2}=2$ and let τ be an automorphism with $\tau(\iota)=\iota, \tau(\sqrt{2})=-\sqrt{2}$ and $\tau\left(\sqrt{d_{1}}\right)=\sqrt{d_{1}}$. Then $\left(e^{2}\right)^{1+\tau}=-\iota \varepsilon_{1}^{2}\left(\varepsilon_{2} \varepsilon_{3}\right)^{1+\tau}=$ $\iota \varepsilon_{1}^{2} \varepsilon_{3}^{1+\tau}= \pm \iota \varepsilon_{1}^{2}$, contradicting that ζ is not in the fixed field of τ. Thus $\omega \neq \zeta$ so there is an automorphism σ with $\sigma(\omega)=\bar{\omega}, \sigma\left(\sqrt{d_{1}}\right)=-\sqrt{d_{1}}, \sigma\left(\sqrt{d_{2}}\right)=-\sqrt{d_{2}}$ and $\sigma\left(\sqrt{d_{3}}\right)=\sqrt{d_{3}}$. Now $\left(e^{2}\right)^{1+\sigma}=\left(\varepsilon_{1} \varepsilon_{2}\right)^{1+\sigma} \varepsilon_{3}^{2}$ and ι is not in the fixed field of σ so $N \varepsilon_{1}=N \varepsilon_{2}$. Similarly, $N \varepsilon_{1}=N \varepsilon_{3}$ so $N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}$.

Now suppose $e^{2}=\omega \varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{1 / 2}$ with $a, b \in\left\{0, \frac{1}{2}, 1, \frac{3}{2}\right\}$. Let σ be an automorphism with $\sigma\left(\sqrt{d_{3}}\right)=\sqrt{d_{3}}, \sigma\left(\sqrt{d_{1}}\right)=-\sqrt{d_{1}}, \sigma\left(\sqrt{d_{2}}\right)=-\sqrt{d_{2}}$ and $\sigma(\iota)=-\iota$ if $\iota \in K$. Now $e^{4}=$ $\omega^{2} \varepsilon_{1}^{2 a} \varepsilon_{2}^{2 b} \varepsilon_{3}$ with $\omega^{2}=-1$ or ι so $\left(e^{4}\right)^{1+\sigma}=\left(\varepsilon_{1}^{1+\sigma}\right)^{j}\left(\varepsilon_{2}^{1+\sigma}\right)^{k} \varepsilon_{3}^{2}$ with $j, k \in\{1,2\}$. Thus
$\left(e^{4}\right)^{1+\sigma}= \pm \varepsilon_{3}^{2}$. If $\left(e^{4}\right)^{1+\sigma}=-\varepsilon_{3}^{2}$ then $\left(e^{2}\right)^{1+\sigma}= \pm \iota \varepsilon_{3}$ contradicting that ι is not in the fixed field of σ. Thus $\left(e^{4}\right)^{1+\sigma}=\varepsilon_{3}^{2}$ and $\left(e^{2}\right)^{1+\sigma}= \pm \varepsilon_{3}$. This implies that $\sqrt{ \pm \varepsilon_{3}}$ is in a biquadratic subfield of K and it follows from [12] that $N \varepsilon_{3}=+1$. Now let F_{1} and F_{2} be the imaginary biquadratic subfields of K containing $\sqrt{d_{3}}$. Then

$$
N_{K / F_{1}}(e)^{2}=N_{K / F_{1}}(\omega) N_{K / F_{1}}\left(\varepsilon_{1}\right)^{a} N_{K / F_{1}}\left(\varepsilon_{2}\right)^{b}\left(\pm \varepsilon_{3}\right)=\omega_{1} \varepsilon_{3}
$$

and

$$
N_{K / F_{2}}(e)^{2}=N_{K / F_{2}}(\omega) N_{K / F_{2}}\left(\varepsilon_{1}\right)^{a} N_{K / F_{2}}\left(\varepsilon_{2}\right)^{b}\left(\pm \varepsilon_{3}\right)=\omega_{2} \varepsilon_{3}
$$

where ω_{1} and ω_{2} are roots of unity in F_{1} and F_{2},respectively. Since both F_{1} and F_{2} have unit index $2, F_{1}=k_{3}(\iota)$ and $F_{2}=k_{3}(\sqrt{-2})$. Thus $K=k_{3}(\iota, \sqrt{2})=\mathbf{Q}\left(\iota, \sqrt{2}, \sqrt{d_{3}}\right)$. Moreover, we may assume that $k_{1}=\mathbf{Q}(\sqrt{2})$ so $N \varepsilon_{1}=-1$. Since $e^{2}=\varepsilon_{1}^{a} \varepsilon_{2}^{b} \epsilon_{3}^{1 / 2}$ has no solutions in K, it follows that $\omega=\zeta$. Let τ be the automorphism with $\tau(\iota)=-\iota, \tau(\sqrt{2})=\sqrt{2}$ and $\tau\left(\sqrt{d_{3}}\right)=-\sqrt{d_{3}}$. Then $\left(e^{2}\right)^{1+\tau}=\varepsilon_{1}^{2 a}\left(\varepsilon_{2}^{b} \varepsilon_{3}^{1 / 2}\right)^{1+\tau}=\omega_{3} \varepsilon_{1}^{2 a}$ for some root of unity ω_{3} in the fixed field of τ. If follows from [12] that $a \in Z$. If $b=0$ then $N_{K / F_{1}}(e)^{2}=(-1)^{a} \varepsilon_{3}$ and $N_{K / F_{2}}(e)^{2}=-(-1)^{a} \varepsilon_{3}$ so $\sqrt{\varepsilon_{3}} \in F_{1}$ or $\sqrt{\varepsilon_{3}} \in F_{2}$. This contradicts that F_{1} and F_{2} are imaginary. If $b=1$ let ρ be the automorphism with $\rho(\iota)=\iota, \rho(\sqrt{2})=-\sqrt{2}$ and $\rho\left(\sqrt{d_{3}}\right)=-\sqrt{d_{3}}$. Then $\left(e^{2}\right)^{1+\rho}=-\iota(-1)^{a} \varepsilon_{2}^{2}\left(\varepsilon_{3}^{1+\rho}\right)^{1 / 2}= \pm \iota \varepsilon_{2}^{2}$ which is impossible since ζ is not in the fixed field of ρ. Hence $b \in\left\{\frac{1}{2}, \frac{3}{2}\right\}$. Since $N_{K / K_{0}}(e)^{2}=\varepsilon_{1}^{2 a} \varepsilon_{2}^{2 b} \varepsilon_{3}=\varepsilon_{1}^{2 a} \varepsilon_{2}^{2 b-1} \varepsilon_{2} \varepsilon_{3}=$ $\left(\varepsilon_{1}^{a} \varepsilon_{2}^{\frac{2 b-1}{2}}\right)^{2} \varepsilon_{2} \varepsilon_{3}$ where $2 b-1$ is and even integer, it follows that $\sqrt{\varepsilon_{1} \varepsilon_{2}} \in K_{0}$. It follows from [12] that $N \varepsilon_{2}=+1$. From symmetry in ε_{2} and ε_{3} it follows that 2 is a principal divisor of k_{2}. Thus $\varepsilon_{2}=2 \alpha^{2}$ for some $\alpha \in k_{2}$. Hence if $e^{2}=\omega \varepsilon_{1}^{a} \varepsilon_{2}^{3 / 2} \varepsilon_{3}^{1 / 2}$ then $\left(\frac{e}{\sqrt{2} \alpha}\right)^{2}=\omega \varepsilon_{1}^{a} \varepsilon_{2}^{1 / 2} \varepsilon_{3}^{1 / 2}$
so we may take $b=\frac{1}{2}$.

Corollary 20 If $e^{2}=\omega \varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{1 / 2}$ has a solution in K then $\sqrt{-1} \in K, k_{2}=\mathbf{Q}(\sqrt{m})$ and $k_{3}=\mathbf{Q}(\sqrt{2 m})$ with $m \equiv 3(\bmod 4)$. Moreover, 2 is a principal divisor in both k_{2} and k_{3}.

Proof As shown in the above proof, $K_{0}=\mathbf{Q}(\sqrt{2}, \sqrt{m})$ with $k_{2}=\mathbf{Q}(\sqrt{m})$. By symmetry in k_{2} and k_{3} we may assume that m is odd. Since 2 is a principal divisor in k_{2} it follows that $m \equiv 3 \quad(\bmod 4)$. Also, $\omega=\zeta$ so $\sqrt{-1} \in K$.

In the following lemmas we describe a method for computing units of the form $\sqrt[4]{L \varepsilon_{2} \varepsilon_{3}}$ and $\sqrt[4]{\iota \varepsilon_{1}^{2} \varepsilon_{2} \varepsilon_{3}}$. Let $d_{1}=2, d_{2}=m \equiv 3(\bmod 4), K=K_{0}(\iota)$ and suppose that 2 is a principal divisor in both k_{2} and k_{3}. Write $\varepsilon_{2}=r+s \sqrt{m}$ and $\varepsilon_{3}=u+v \sqrt{2 m}$.

Lemma 21 There exist integrs a, b, c and d such that $\sqrt{\varepsilon_{2}}=\frac{a \sqrt{2}+b \sqrt{2 m}}{2}$ and $\sqrt{\varepsilon_{3}}=c \sqrt{2}+$ $d \sqrt{m}$. If $m \equiv 7(\bmod 8)$ then $r+1=a^{2}, r-1=m b^{2}, u+1=4 c^{2}$ and $u-1=2 m d^{2}$ and if $m \equiv 3(\bmod 8)$ then $r-1=a^{2}, r+1=m b^{2}, u-1=4 c^{2}$ and $u+1=2 m d^{2}$. Moreover, b and d are both odd.

Proof Since $N \varepsilon_{2}=N \varepsilon_{3}=+1$ it follows that $\sqrt{\varepsilon_{2}}=\frac{\sqrt{2(r+1)}+\sqrt{2(r-1)}}{2}$ and $\sqrt{\varepsilon_{3}}=$ $\frac{\sqrt{2(u+1)}+\sqrt{s(u-1)}}{2}$. Clearly u is odd since $u^{2}-2 m r^{2}=1$. Since 2 is a principal divisor of k_{2}, $2(r \pm 1)=2 a^{2}$ and $2(r \mp 1)=2 m b^{2}$ for some $a, b \in Z$. Thus $r \pm 1=a^{2}$ and $r \mp 1=m b^{2}$. It follows that r is even, for otherwise $r+1 \equiv r-1 \equiv 0 \quad(\bmod 4)$. Therefore, $\sqrt{\varepsilon_{2}}=\frac{a \sqrt{2}+b \sqrt{2 m}}{2}$ and $\sqrt{\varepsilon_{3}}=c \sqrt{2}+d \sqrt{m}$ with $\{r+1, r-1\}=\left\{a^{2}, m b^{2}\right\}$ and $\{u+1, u-1\}=\left\{4 c^{2}, 2 m d^{2}\right\}$. Suppose $r+1=a^{2}$ and $u-1=4 c^{2}$. Then $r+u=m b^{2}+2 m d^{2}, r+u+2=a^{2}+2 m d^{2}$ and $r+u-2=4 c^{2}+m b^{2}$. Thus $a^{2} \equiv 2(\bmod m)$ and $4 c^{2} \equiv-2(\bmod m)$ so $\left(\frac{a^{2}}{4 c^{2}}\right) \equiv-1$
$(\bmod m)$, contradicting that $m \equiv 3(\bmod 4)$. The case $r-1=a^{2}$ and $u+1=4 c^{2}$ yields a similar contradiction. Therefore, either $r+1=a^{2}$ and $u+1=4 c^{2}$ or $r-1=a^{2}$ and $u-1=4 c^{2}$. Now r is even and $r \pm 1=m b^{2}$ so b must be odd. Also d must be odd, for otherwise $u+1 \equiv u-1 \equiv 0(\bmod 4)$. Suppose $r+1=a^{2}$ and $m \equiv 3(\bmod 8)$. Then $r-1=m b^{2} \equiv 3(\bmod 8)$ so $a^{2}=r+1 \equiv 5(\bmod 8)$, which is impossible. Therefore $r-1=a^{2}$ if $m \equiv 3 \quad(\bmod 8)$ and similarly $r+1=a^{2}$ if $m \equiv 7(\bmod 8)$.

Now define $\alpha=m b d+(a c+1) \sqrt{2}, \beta=m b d+(a c-1) \sqrt{2}, \rho_{1}=2 m b d+2 a-4 c$, $\rho_{2}=2 m b d-2 a+4 c, \rho_{3}=2 m b d+2 a+4 c, \rho_{4}=2 m b d-2 a-4 c, \gamma_{1}=-2 m b d+4 a c+$ $2 a+4 c+4, \gamma_{2}=-2 m b d+4 a c-2 a-4 c+4, \gamma_{3}=-2 m b d+4 a c+2 a-4 c-4$ and $\gamma_{4}=-2 m b d+4 a c-2 a+4 c-4$ with a, b, c and d as in Lemma 21.

Lemma 22 If $m \equiv 3(\bmod 8)$ then $\sqrt[4]{\varepsilon_{2} \varepsilon_{3}}=\frac{1}{4}(1+\iota)(1-\iota+\sqrt{2})(\sqrt{\alpha}+\sqrt{\beta})=\frac{\sqrt[4]{2}}{2}\left(\sqrt{\rho_{1}}+\right.$ $\sqrt{\rho_{2}}+\sqrt{\rho_{3}}+\sqrt{\rho_{4}}$ and $\sqrt[4]{\iota \varepsilon_{1}^{2} \varepsilon_{2} \varepsilon_{3}}=\frac{1}{4}(1+\iota)(1-\iota+\sqrt{2})(\sqrt{\alpha}+\sqrt{\beta})$. If $m \equiv 7 \quad(\bmod 8)$ then $\sqrt[4]{\varepsilon_{2} \varepsilon_{3}}=\frac{\sqrt[4]{2}}{2} \sqrt{\varepsilon_{1}}\left(\sqrt{\alpha \varepsilon_{1}^{-1}}+\sqrt{\beta \varepsilon_{1}^{-1}}\right)=\frac{\sqrt[4]{2}}{2} \sqrt{\varepsilon_{1}}\left(\sqrt{\gamma_{1}}+\sqrt{\gamma_{2}}+\sqrt{\gamma_{3}}+\sqrt{\gamma_{4}}\right)$ and $\sqrt[4]{l \varepsilon_{2} \varepsilon_{3}}=$ $\frac{1}{4}(1+\iota)(1-\iota+\sqrt{2})\left(\sqrt{\alpha \varepsilon_{1}^{-1}}+\sqrt{\beta \varepsilon_{1}^{-1}}\right)$. Here we take $\sqrt[4]{-2}=\frac{1+\iota}{\sqrt[4]{2}}$ and $\sqrt[4]{\iota} \sqrt{\varepsilon_{1}}=\frac{\sqrt[4]{2}}{2}(1-\iota+\sqrt{2})$.

Proof It follows from Lemma 21 that $\sqrt{\varepsilon_{2} \varepsilon_{3}}=\frac{1}{2}(2 a c+m b d \sqrt{2}+2 b c \sqrt{m}+a d \sqrt{2 m})$ and $N_{K_{0} / k_{1}}\left(\sqrt{\varepsilon_{2} \varepsilon_{3}}\right)=+1$. Thus

$$
\begin{aligned}
\sqrt[4]{\varepsilon_{2} \varepsilon_{3}} & =\frac{1}{2}(\sqrt{2 a c+2+m b d \sqrt{2}}+\sqrt{2 a c-2+m b d \sqrt{2}}) \\
& =\frac{\sqrt[4]{2}}{2}(\sqrt{m b d+(a c+1) \sqrt{2}}+\sqrt{m b d+(a c-1) \sqrt{2}}) \\
& =\frac{\sqrt[4]{2}}{2}(\sqrt{\alpha}+\sqrt{\beta})
\end{aligned}
$$

Note that $(m b d)^{2}=2 a^{2} c^{2}+2-a^{2}-4 c^{2}$ or $(m b d)^{2}=2 a^{2} c^{2}+2+a^{2}+4 c^{2}$ according as
$m \equiv 7(\bmod 8)$ or $m \equiv 3(\bmod 8)$. From this it follows that

$$
N(\alpha)=\left\{\begin{array}{cccc}
-(a+2 c)^{2} & \text { if } & m \equiv 7 & (\bmod 8) \\
(a-2 c)^{2} & \text { if } & m \equiv 3 & (\bmod 8)
\end{array}\right.
$$

and

$$
N(\beta)=\left\{\begin{array}{cccc}
-(a-2 c)^{2} & \text { if } & m \equiv 7 & (\bmod 8) \\
(a+2 c)^{2} & \text { if } & m \equiv 3 & (\bmod 8)
\end{array}\right.
$$

Thus $N\left(\frac{\alpha}{a-2 c}\right)=N\left(\frac{\beta}{a+2 c}\right)=+1$ if $m \equiv 3(\bmod 8)$, so

$$
\sqrt{\frac{\alpha}{a-2 c}}=\frac{1}{2}\left(\sqrt{\frac{2 m b d+2 a-4 c}{a-2 c}}+\sqrt{\frac{2 m b d-2 a+4 c}{a-2 c}}\right)
$$

and

$$
\sqrt{\frac{\beta}{a+2 c}}=\frac{1}{2}\left(\sqrt{\frac{2 m b d+2 a+4 c}{a+2 c}}+\sqrt{\frac{2 m b d-2 a-4 c}{a+2 c}}\right) .
$$

Therefore

$$
\begin{aligned}
\sqrt{\alpha} & =\frac{1}{2}(\sqrt{2 m b d+2 a-4 c}+\sqrt{2 m b d-2 a+4} \bar{c}) \\
& =\frac{1}{2}\left(\sqrt{\rho_{1}}+\sqrt{\rho_{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sqrt{\beta} & =\frac{1}{2}(\sqrt{2 m b d+2 a+4 c}+\sqrt{2 m b d-2 a-4 c}) \\
& =\frac{1}{2}\left(\sqrt{\rho_{3}}+\sqrt{\rho_{4}}\right) .
\end{aligned}
$$

If $m \equiv 7 \quad(\bmod 8)$ then $\alpha \varepsilon_{1}^{-1}=(-m b d+2(a c+1))+(m b d-(a c+1)) \sqrt{2}$ and $N\left(\frac{\alpha \varepsilon_{1}^{-1}}{a+2 c}\right)=+1$.
Thus

$$
\sqrt{\frac{\alpha \varepsilon_{1}^{-1}}{a+2 c}}=\frac{1}{2}\left(\sqrt{\frac{-2 m b d+4 a c+2 a+4 c+4}{a+2 c}}+\sqrt{\frac{-2 m b d+4 a c-2 a-4 c+4}{a+2 c}}\right)
$$

so $\sqrt{\alpha \varepsilon_{1}^{-1}}=\frac{1}{2}\left(\sqrt{\gamma_{1}}+\sqrt{\gamma_{2}}\right)$. Similarly $\sqrt{\beta \varepsilon_{1}^{-1}}=\frac{1}{2}\left(\sqrt{\gamma_{3}}+\sqrt{\gamma_{4}}\right)$. The expressions for $\sqrt[4]{l \varepsilon_{2} \varepsilon_{3}}$ and $\sqrt[4]{\ell \varepsilon_{1}^{2} \varepsilon_{2} \varepsilon_{3}}$ are immediate.

Corollary 23 If $m \mid(a c+1)$ or $m \mid(a c-1)$ then either $\sqrt[4]{\iota \varepsilon_{2} \varepsilon_{3}} \in K$ or $\sqrt[4]{\iota \varepsilon_{1}^{2} \varepsilon_{2} \varepsilon_{3}} \in K$ according as $m \equiv 7 \quad(\bmod 8)$ or $m \equiv 3 \quad(\bmod 8)$. Conversely, if $\sqrt[4]{\varepsilon_{2} \varepsilon_{3}} \in K$ or $\sqrt[4]{l \varepsilon_{1}^{2} \varepsilon_{2} \varepsilon_{3}} \in K$ then $m \mid(a c+1)$ or $m \mid(a c-1)$.

Proof If $m \equiv 7(\bmod 8)$ then

$$
\begin{aligned}
a^{2} c^{2}-1 & =a^{2} c^{2}-2 c^{2}+2 c^{2}-1 \\
& =c^{2}\left(a^{2}-2\right)+2 c^{2}-1 \\
& =c^{2}(r-1)+\frac{u-1}{2} \\
& =m b^{2} c^{2}+m d^{2} .
\end{aligned}
$$

Similarly, $a^{2} c^{2}-1=m b^{2} c^{2}-m d^{2}$ if $m \equiv 3(\bmod 8)$. Now let p be a prime with $p \nmid m$, $p \mid b d$ and $p \mid(a c+1)$ and note that $p \neq 2$ since $b d$ is odd. Since $a^{2} c^{2}-1=m b^{2} c^{2} \pm m d^{2}$ it follows that $p \mid b$ and $p \mid d$. Thus $p^{2} \mid(a c+1)$. Suppose that $p^{i}\left|b, p^{i}\right| d$ and $p^{2 i} \mid(a c+1)$. Now $\frac{a^{2} c^{2}-1}{p^{2 i}}=m c^{2}\left(\frac{b}{p^{i}}\right)^{2}-m\left(\frac{d}{p^{i}}\right)^{2}$ so if $p \left\lvert\, \frac{a c+1}{p^{2 i}}\right.$ and $p \left\lvert\, \frac{b d}{p^{2 i}}\right.$ then $p^{2} \left\lvert\, \frac{a c+1}{p^{2 i}}\right.$ and $p^{2} \left\lvert\, \frac{b d}{p^{2 i}}\right.$. Thus the highest power of p dividing $\operatorname{gcd}(b d, a c+1)$ must be even. The same argument holds for $b d$ and $a c-1$. Now suppose that $m \mid(a c+1)$ or $m \mid(a c-1)$. By Lemma 22 it will suffice to show that $\sqrt{\alpha \varepsilon_{1}^{-1}}, \sqrt{\beta \varepsilon_{1}^{-1}} \in K$ or $\sqrt{\alpha}, \sqrt{\beta} \in K$ according as $m \equiv 7(\bmod 8)$ or $m \equiv 3(\bmod 8)$. The argument above shows that $\alpha=m^{i} \alpha_{1}^{2} \pi_{1}^{c_{1}} \cdots \pi_{s}^{c_{s}} \varepsilon_{1}^{j}$ and $\beta=m^{1-i} \beta_{1}^{2} \tau_{1}^{b_{1}} \cdots \tau_{t}^{b_{t}} \varepsilon_{1}^{k}$ where $\alpha_{1}, \beta_{1} \in Z, \pi_{1}, \ldots, \pi_{s}$ (resp. $\tau_{1}, \ldots, \tau_{t}$) are nonconjugate primes in $Z[\sqrt{2}]$ and $i=0$ or 1
according as $m \mid(a c+1)$ or $m \mid(a c-1)$. As in the proof of Lemma 22,

$$
N(\alpha)=\left\{\begin{array}{cccc}
-(a c+2)^{2} & \text { if } & m \equiv 7 & (\bmod 8) \\
(a-2 c)^{2} & \text { if } & m \equiv 3 & (\bmod 8)
\end{array}\right.
$$

and

$$
N(\beta)=\left\{\begin{array}{cccc}
-(a-2 c)^{2} & \text { if } & m \equiv 7 & (\bmod 8) \\
(a+2 c)^{2} & \text { if } & m \equiv 3 & (\bmod 8)
\end{array}\right.
$$

It follows that $c_{1}, \ldots, c_{s}, b_{1}, \ldots, b_{t}$ are even and j and k are both odd or even according as $m \equiv 7 \quad(\bmod 8)$ or $m \equiv 3 \quad(\bmod 8)$. Therefore, $\sqrt{\alpha \epsilon_{1}^{-1}}, \sqrt{\beta \varepsilon_{1}^{-1}} \in K$ if $m \equiv 7 \quad(\bmod 8)$ and $\sqrt{\alpha}, \sqrt{\beta} \in K$ if $m \equiv 3(\bmod 8)$. Suppose $m=p_{1} \cdots p_{x}$ with $p_{1} \cdots p_{y} \mid(a c+1)$ and $p_{y+1} \cdots p_{x} \mid(a c-1)$ for some $y<x$. Then as above, $\alpha=p_{1} \cdots p_{y} \alpha_{1}^{2} \pi_{1}^{c_{1}} \cdots \pi_{s}^{c_{s}} \varepsilon_{1}^{j}$ and $\beta=$ $p_{y+1} \cdots p_{x} \beta_{1}^{2} \tau_{1}^{b_{1}} \cdots \tau_{t}^{b_{t}} \varepsilon_{1}^{k}$ with $c_{1}, \ldots, c_{s}, b_{1}, \ldots, b_{t}$ even. Now $\sqrt{p_{1} \cdots p_{y}}, \sqrt{p_{y+1} \cdots p_{x}} \notin K$ so it follows that $\sqrt{\alpha}, \sqrt{\beta}, \sqrt{\alpha \varepsilon_{1}^{-1}}, \sqrt{\beta \varepsilon_{1}^{-1}} \notin K$ if j and k are odd and $\sqrt{\alpha}, \sqrt{\beta} \notin K$ if j and k are even. Note that if j and k are even and $\sqrt{\alpha \varepsilon_{1}}, \sqrt{\beta \varepsilon_{2}} \in K$ then $\sqrt{n \varepsilon_{1}} \in K$ for some positive integer n. Thus $k_{1}\left(\sqrt{n \varepsilon_{1}}\right)=K_{0}$, so $n \varepsilon_{1}=m z^{2}$ for some $z \in k_{1}$. Thus $-n^{2}=m^{2} N(z)^{2}>0$, a contradiction.

Corollary 24 If m is prime then either $\sqrt[4]{l \varepsilon_{2} \varepsilon_{3}} \in K$ or $\sqrt[4]{\iota \varepsilon_{1}^{2} \varepsilon_{2} \varepsilon_{3}} \in K$.

Proof As in Corollary 23, $a^{2} c^{2}-1=m b^{2} c^{2} \pm m d^{2}$ so $m \mid(a c+1)$ or $m \mid(a c-1)$.
If $N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}=-1$ define

$$
\begin{aligned}
& z_{1}=\left(r_{1}+2^{a_{1}} \iota\right)\left(r_{2}+2^{a_{2}} \iota\right)\left(r_{3}+2^{a_{3}} \iota\right), \\
& z_{2}=\left(r_{1}+2^{a_{1}} \iota\right)\left(r_{2}+2^{a_{2}} \iota\right)\left(r_{3}-2^{a_{3}} \iota\right),
\end{aligned}
$$

$$
\begin{aligned}
& z_{3}=\left(r_{1}+2^{a_{1}} \iota\right)\left(r_{2}-2^{a_{2}} \iota\right)\left(r_{3}-2^{a_{3}} \iota\right) \text { and } \\
& z_{4}=\left(r_{1}-2^{a_{1}} \iota\right)\left(r_{2}+2^{a_{2}} \iota\right)\left(r_{3}+2^{a_{3}} \iota\right)
\end{aligned}
$$

Lemma 25 If $N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}=-1$ then

$$
\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}=\frac{1}{4} \sqrt{2^{2-a_{1}-a_{2}-a_{3}}} \sum_{j=1}^{4} \sqrt{R e z_{j}+\left|z_{j}\right|}
$$

Proof Now $N_{i}\left(\iota \varepsilon_{j}\right)=+1$ so

$$
\sqrt{\iota \varepsilon_{j}}=\frac{1}{2}\left(\sqrt{2^{1-a_{j}}\left(2^{a_{j}}+r_{j} \iota\right)}+\sqrt{2^{1-a_{j}}\left(2^{a_{j}}-r_{j} \iota\right)}\right)
$$

Thus

$$
\sqrt{\varepsilon_{j}}=\frac{1}{2} \sqrt{2^{1-a_{j}}}\left(\sqrt{r_{j}+2^{a_{j}}}+\sqrt{r_{j}-2^{a_{j}} \iota}\right)
$$

Note that

$$
\left|z_{j}\right|=\sqrt{\left(r_{1}^{2}+2^{2 a_{1}}\right)\left(r_{2}^{2}+2^{2 a_{1}}\right)\left(r_{3}^{2}+2^{2 a_{3}}\right)}=s_{1} s_{2} s_{3} \sqrt{m_{1} m_{2} m_{3}}
$$

and

$$
\operatorname{Re} \sqrt{z_{j}}=\sqrt{\left|z_{j}\right|} \cos \frac{\arg \left(z_{j}\right)}{2}=\sqrt{\left|z_{j}\right|} \sqrt{\frac{1}{2}\left(\frac{R e z_{j}}{\left|z_{j}\right|}+1\right)}=\sqrt{\frac{1}{2}\left(\operatorname{Re} z_{j}+\left|z_{j}\right|\right)}
$$

Therefore

$$
\begin{aligned}
\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}} & =\frac{1}{8} \sqrt{2^{3-a_{1}-a_{2}-a_{3}}} \sum_{j=1}^{4}\left(\sqrt{z_{j}}+\sqrt{\overline{z_{j}}}\right) \\
& =\frac{1}{8} \sqrt{2^{3-a_{1}-a_{2}-a_{3}}} \sum_{j=1}^{4} 2 R e \sqrt{z_{j}} \\
& =\frac{1}{4} \sqrt{2^{2-a_{1}-a_{2}-a_{3}}} \sum_{j=1}^{4} \sqrt{\operatorname{Re} z_{j}+\left|z_{j}\right|}
\end{aligned}
$$

Theorem 26 If $N \varepsilon_{i}=+1$ for some i then $\left[E_{K}: W E_{K_{0}}\right]=2$ if and only if one of the following holds:

1. $\sqrt{-1} \notin K$ and $\Delta \cap D \neq \emptyset$.
2. $\sqrt{-1} \in K, \sqrt{-2} \notin K$ and $2 \Delta \cap D \neq \emptyset$.
3. $\sqrt{-1} \in K, \sqrt{-2} \in K, d_{1}=\Delta_{2}=\Delta_{3}=2, d_{2} \equiv 3(\bmod 4)$ and either $d_{2} \mid(a c+1)$ or $d_{2} \mid(a c-1)$.

If $N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}=-1$ then $\left[E_{K}: W E_{K_{0}}\right]=2$ if and only if $\sqrt{-1} \notin K$ and $2^{a_{1}-a_{2}-a_{3}}\left(\operatorname{Re} z_{i}+\left|z_{i}\right|\right) \in D$ for $i=1,2,3,4$.

Proof Suppose $N \varepsilon_{i}=+1$ for some i. If $\sqrt{-1} \notin K$ and $\Delta \cap D \neq \emptyset$ then $\sqrt{-\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{c}} \in$ $E_{K}-W E_{K_{0}}$ for some $a, b, c \in\{0,1\}$ not all zero. If $\sqrt{-1} \in K, \sqrt{-2} \notin K$ and $2 \Delta \cap D \neq \emptyset$ then $\sqrt{\iota \varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{c}} \in E_{K}-W E_{K_{0}}$ for some $a, b, c \in\{0,1\}$. If $\sqrt{-1}, \sqrt{-2} \in K, d_{1}=\Delta_{2}=$ $\Delta_{3}=2, d_{3} \equiv 3(\bmod 4)$ and either $d_{2} \mid(a c+1)$ or $d_{2} \mid(a c-1)$ then Corollary 23 shows that either $\sqrt[4]{\iota \varepsilon_{2} \varepsilon_{3}} \in E_{K}-W E_{K_{0}}$ or $\sqrt[4]{\iota \varepsilon_{1}^{2} \varepsilon_{2} \varepsilon_{3}} \in E_{K}-W E_{K_{0}}$. Thus if (1),(2) or (3) hold then $\left[E_{K}: W E_{K_{0}}\right]=2$. Conversely, if $\left[E_{K}: W E_{K_{0}}\right]=2$ then either $\left[E_{K}: E^{*}\right]=2$ or $\left[E^{*}: W E_{K_{0}}\right]=2$. If $\left[E^{*}: W E_{K_{0}}\right]=2$, then an imaginary biquadratic subfield of K contains a unit not in $W E_{K_{0}}$. Thus either $\sqrt{-1} \notin K$ and $\sqrt{-\varepsilon_{j}}$ is in a biquadratic subfield for some j or $\sqrt{-1} \in K, \sqrt{-2} \notin K$ and $\sqrt{\varepsilon_{j}}$ is in a biquadratic subfield. Moreover, $N \varepsilon_{j}=+1$ and $\Delta \cap D \neq \emptyset$. If $\left[E_{K}: E^{*}\right]=2$, then by Lemma 18 either $\sqrt{-\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}}, \sqrt{\iota \varepsilon_{a}^{a} \varepsilon_{2}^{b} \varepsilon_{3}}$, $\sqrt[4]{\ell \varepsilon_{2} \varepsilon_{3}}$ or $\sqrt[4]{l \varepsilon_{1}^{2} \varepsilon_{2} \varepsilon_{3}}$ must be in $E_{K}-E^{*}$. If $\sqrt{-\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}} \in E_{K}-E^{*}$ then $\sqrt{-1} \notin K$, for otherwise $\sqrt{-\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}}=\iota \sqrt{\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}} \in E^{*}$. That $\Delta \cap D \neq \emptyset$ follows since $\sqrt{\epsilon_{i}}=w \sqrt{\Delta_{i}}+x \sqrt{\frac{d_{i}}{\Delta_{i}}}$ for some $w, x \in \mathbf{Q}$. If $\sqrt{\iota \varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}} \in E_{K}-E^{*}$ then it follows from the above expression for $\sqrt{\varepsilon_{i}}$ that $\sqrt{-1} \in K$ and $2 \Delta \cap D \neq \emptyset$, However $\sqrt{-2} \notin K$ since $\sqrt{\iota \varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}} \notin E^{*}$.
 $\sqrt{-1}, \sqrt{2} \in K, d_{1}=\Delta_{2}=\Delta_{3}=2$ and $d_{2} \equiv 3(\bmod 4)$. Corollary 23 shows that $d_{2} \mid(a c+1)$ or $d_{2} \mid(a c-1)$. If $N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}=-1$ the result follows from Lemmas 19 and 25.

Chapter 7

OCTIC FIELDS OF SMALL CLASS NUMBER

In this chapter we determine all imaginary octic fields of type $(2,2,2)$ having class number less than or equal to 16 or prime class number. For each of these fields we determine the structure of its class group.

For this section K will be an imaginary octic field of type ($2,2,2$) with imaginary quadratic subfields numbered so that $h_{4} \leq h_{5} \leq h_{6} \leq h_{7}$. Recall that ker refers to the kernel of the mapping $\theta: H_{1} \times H_{2} \times H_{3} \rightarrow H$. The following lemma is used in determining ker.

Lemma 27 Let $M=L(\sqrt{m})$ be a quadratic extension of L and let A be an ideal of M which is ambiguous for M / L. If A is a principal ideal of M then either $A=(\sqrt{m} \beta)$ for some $\beta \in L$ or there is a unit e of M, with $N_{M / L}(e)=+1$, such that $(1+e)=A(\beta)$ for some $\beta \in L$.

Proof Let σ be a generator of the Galois group of M / L and let $A=(\alpha)$. Then $A=\left(\alpha^{\sigma}\right)$ so $\alpha=e \alpha^{\sigma}$ for some unit e of M. Now $e=\alpha^{1-\sigma}$ so $N_{M / L}(e)=e^{1+\sigma}=\left(\alpha^{1-\sigma}\right)^{1+\sigma}=\alpha^{1-\sigma^{2}}=1$. If $e=-1$ then $(\sqrt{m})^{\sigma}=-\sqrt{m}$ so $\left(\frac{\alpha}{\sqrt{m}}\right)^{\sigma}=\frac{\alpha}{\sqrt{m}}=\beta \in L$. Suppose $e \neq-1$. Then $(1+e)^{\sigma} e=e+e e^{\sigma}=1+e$ so $e=\frac{1+e}{(1+e)^{\sigma}}=\frac{\alpha}{\alpha^{\sigma}}$ or $\left(\frac{\alpha}{1+e}\right)^{\sigma}=\frac{\alpha}{1+e}$. Thus $\left(\frac{1+e}{\alpha}\right)=\beta \in L$, so
$(1+e)=(\alpha)(\beta)=A(\beta)$.

Lemma 28 Let M / L be a quadratic extension and let h_{M} and h_{L} be the class numbers of M and L, respectively. Then $h_{M} \geq \frac{1}{2} h_{L}$.

Proof Let F_{M} and F_{L} be the Hilbert class fields of M and L, respectively. Then $M F_{L} \subseteq F_{M}$ and $h_{M}=\left[F_{M}: M\right] \geq\left[M F_{L}: M\right]=\frac{1}{2} h_{L}\left[M F_{L}: F_{L}\right] \geq \frac{1}{2} h_{L}$.

Lemma 29 Let K be an octic field with imaginary quadratic subfields k_{i} and k_{j}. Then $h \geq \frac{1}{4} h_{i} h_{j}$.

Proof This follows from Lemma 28 and the class number formula for imaginary biquadratic fields.

Lemma 30 Let K be an octic field such that $h \leq 16$ or $h=p$ for an odd prime p. If $h_{7} \geq 16$ then $h_{4}, h_{5}, h_{6} \leq 4$.

Proof By Lemma 29, $h \geq \frac{1}{4} h_{i} h_{7}$ for $i=4,5,6$, so if $h \leq 16$ and $h_{7} \geq 16$ then $h_{6} \leq 4$. If $h=p>16$ then it follows from Lemma 28 that 4 is the highest power of 2 dividing any h_{i}. Thus if $h_{7} \geq 16$ then h_{7} must be divisible by p. Since only one h_{i} is divisible by p, it follows that $h_{i} \leq 4$.

Recall that t_{i}^{\prime} denotes the number of rational primes which ramify in the extension k_{i} / \mathbf{Q} and t^{\prime} denotes the integer such that $2^{t^{\prime}}$ is the product of the ramification indices of all rational primes for the extension K / \mathbf{Q}. Also, w denotes the integer such that 2^{w} is the 2-class number of K.

Lemma 31 If 2 is maximally ramified in K then $t^{\prime} \leq \frac{w+17}{4}$. Otherwise $t^{\prime} \leq \frac{w-115}{4}$.

Proof The 2 -class number of k_{i} is greater than or equal to $2^{t_{i}^{\prime}-2}$ or $2^{t_{i}^{\prime}-1}$ according as k_{i} is real or imaginary. Each odd rational prime which ramifies in K ramifies in exactly four quadratic subfields and 2 ramifies in either four or six quadratic subfields. Thus $\sum_{i=1}^{7} t_{i}^{\prime}=4 t^{\prime}-2$ or $4 t^{\prime}$ according as 2 is maximally ramified or not. According to Wada [22], $h=\frac{1}{32} \mathbf{Q} \prod_{i=1}^{7} h_{i}$ so we have

$$
h \geq_{2} \sum_{i=1}^{7} t_{i}^{\prime}-15= \begin{cases}2^{4 t^{\prime}-17} & \text { if } 2 \text { is maximally ramified } \\ 2^{4 t^{\prime}-15} & \text { otherwise }\end{cases}
$$

The result now follows.
Since an imaginary octic field of type ($2,2,2$) is completely determined by three imaginary quadratic fields, we will consider the following set of fields. Let \mathcal{F} be the set of octic fields determined by choosing three imaginary quadratic fields F_{1}, F_{2} and F_{3} with class numbers $h_{F_{i}}=2^{f_{i}} h_{F_{i}}^{\prime}$ and $h_{F_{i}}^{\prime}$ odd, subject to the following conditions:

1. F_{i} belongs to the set of fields known to have class number less than 16 .
2. $h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime}<8$.
3. $f_{1}+f_{2}+f_{3} \leq 6$.
4. If $h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime}>1$ then $2^{f_{i}+f_{j}} h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime} \leq 20$.

Theorem 32 If K is an octic field with $h \leq 16$ or $h=p$ for an odd prime p then $K \in \mathcal{F}$.

Proof Lemma 29 shows that either $h_{7} \geq 16$ and $h_{4}, h_{5}, h_{6} \leq 4$ or $h_{4}, h_{5}, h_{6}, h_{7} \leq 16$. Now all imaginary quadratic fields of class number less than or equal to 4 are known $[1,15,18,19]$. Moreover, there is at most one imaginary quadratic field of class number less than 16 which is unknown [10]. Thus K is determined by three fields F_{1}, F_{2} and F_{3} known to have class number less than 16. Let F_{4} be the fourth imaginary quadratic subfield. It follows from that class number formula that $h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime}<16$. However, if $h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime}=9,11,13$ or 15 then $h_{F_{4}}=1,2$ or 4 and we may take $h_{F_{1}}^{\prime}=1$ and $h_{F_{2}}^{\prime}=1$ or 3 . Thus replacing F_{3} with F_{4} we have $h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime}<8$. It also follows from the class number formula that F_{1}, F_{2} and F_{3} can be chosen so that $f_{1}+f_{2}+f_{3} \leq 6$. Now suppose $h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime}>1$. Since $h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime}<8$ we may assume that $h_{F_{1}}^{\prime}=h_{F_{2}}^{\prime}=1$ and $h_{F_{3}}^{\prime}=3,5$ or 7 . Note that if $h=3,5$ or 7 then K is generated by three fields F_{1}, F_{2} and F_{3} with $h_{F_{1}}, h_{F_{2}}, h_{F_{3}} \leq 4$. Hence we may assume that $h=6,9,10,12,14$ or 15 . If $h=9$ or 15 then $h_{F_{3}}^{\prime}=3$ or 5 and $2^{f_{i}+f_{j}-2}$ divides h for any $i, j=1,2,3$. Thus $f_{i}+f_{j} \leq 2$ and $2^{f_{i}+f_{j}} h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime} \leq 20$. If $h=6,10$ or 14 then $h_{F_{4}}$ is a power of 2 . We may assume $h_{F_{4}} \geq 8$, for otherwise K is generated by three fields of class number less than or equal to 4 . But $2^{f_{i}+f_{4}-2}$ divides h, for $i=1,2,3$, so $h_{F_{1}}=h_{F_{2}}=1$ and $h_{F_{3}}=3,5$ or 7 . Thus $2^{f_{i}+f_{j}} h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime} \leq 20$ for any $i, j=1,2,3$. If $h=12$ then as above we may assume that $h_{F_{4}}=2^{a}$ for some $a \leq 3$. But then $2^{f_{i}+1}$ divides h for any $i=1,2,3$. Thus $f_{1}, f_{2}, f_{3} \leq 1$ and $2^{f_{i}+f_{j}} h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime} \leq 12$.

Corollary 33 Let K be and octic field with $h \leq 16$ or $h=p$ for an odd prime p. Then K is determined by imaginary quadratic fields F_{1}, F_{2} and F_{3} satisfying one of the following:

1. $h_{F_{1}}, h_{F_{2}}, h_{F_{3}} \leq 4$,
2. $h_{F_{3}}=5,6$ or 10 and $h_{F_{1}} \leq h_{F_{2}} \leq 2$,
3. $h_{F_{3}}=7$ or 12 and $h_{F_{1}}=h_{F_{2}}=1$,
4. $h_{F_{3}}=8$ and $h_{F_{1}} h_{F_{2}}=2^{i}$ with $0 \leq i \leq 3$.

Proof If $h \leq 8$ or if h is prime then K is determined by fields with $h_{F_{1}}, h_{F_{2}}, h_{F_{3}} \leq 4$. Thus we may assume that $h=9,10,12,14,15$ or 16 . By Theorem $32, h_{F_{i}}<16$ for $i==1,2,3$ and $h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime}<8$ so $h_{F_{3}}=5,6,7,8,10$ or 12 . If $h_{F_{3}}=8$ then $h_{F_{1}} h_{F_{2}}=2^{i}$ with $0 \leq i \leq 3$ since $f_{1}+f_{2}+f_{3} \leq 6$. If $h_{F_{3}}=5,6,7,8$ or 10 then the conditions on $h_{F_{1}}$ and $h_{F_{2}}$ follow from the inequality $2^{f_{\mathbf{i}}+f_{j}} h_{F_{1}}^{\prime} h_{F_{2}}^{\prime} h_{F_{3}}^{\prime} \leq 20$.

Lemma 34 Let K be an octic field with $h \leq 16$ or $h=p$ for an odd prime p. Suppose K is determined by imaginary quadratic fields F_{1}, F_{2} and F_{3} satisfying the conditions of Corollary 33 and $h_{F_{1}} \leq h_{F_{2}} \leq h_{F_{3}}$. If $h_{F_{2}} h_{F_{3}}>4$ then F_{4} is a known field of class number less than or equal to 16 or disc $F_{4}>4000000$.

Proof It follows from Lemma 29 and the class number formula that if $h_{F_{2}} h_{F_{3}}>4$ then $h_{F_{4}} \leq 16$. That F_{4} is a known field or $\operatorname{disc} F_{4}>4000000$ follows from Buell [3].

Lemma 35 If K is an octic field with $h \leq 16$ or $h=p$ for an odd prime p then $t^{\prime} \leq 5$ and $t^{\prime}=5$ only if 2 is maximally ramified and $h=8$ or 16.

Proof This is immediate from Lemma 31.

Theorem 36 The imaginary octic fields of type $(2,2,2)$ having class number less than or equal to 16 or prime class number are listed below. In addition, the class group of each field
is given. The first two columns give the class number and conductor of K. The next three columns give three imaginary quadratic fields which generate K. The last column gives the class group of K when necessary.

1	24	-1	-2	-3
1	40	-1	-2	-5
1	60	-1	-3	-5
1	84	-1	-3	-7
1	88	-1	-2	-11
1	105	-3	-7	-15
1	120	-2	-3	-10
1	132	-1	-3	-11
1	140	-1	-5	-7
1	168	-2	-3	-7
1	228	-1	-3	-19
1	264	-3	-6	-11
1	280	-2	-7	-10
1	364	-1	-7	-13
1	532	-1	-7	-19
1	561	-3	-11	-51
1	627	-3	-11	-19
2	56	-1	-2	-7
2	120	-3	-6	-15
2	156	-1	-3	-13
2	165	-3	-11	-15
2	168	-3	-6	-7
2	204	-1	-3	-17
2	220	-1	-5	-11
2	264	-2	-3	-11
2	273	-3	-7	-39
2	308	-1	-7	-11
2	385	-7	-11	-35
2	408	-3	-6	-51
2	408	-2	-3	-34
2	440	-2	-10	-11
2	456	-2	-3	-19
2	616	-7	-11	-14
2	616	-2	-7	-11
2	748	-1	-11	-17
2	969	-3	-19	-51
2	984	-2	-3	-82
2	1032	-2	-3	-43
2	1036	-1	-7	-37
2	1204	-1	-7	-43

2	1496	-2	-11	-34	
2	1624	-2	-7	-58	
2	1672	-2	-11	-19	
2	3553	-11	-19	-187	
3	104	-1	-2	-13	
3	152	-1	-2	-19	
3	231	-3	-7	-11	
3	232	-1	-2	-29	
3	345	-3	-15	-23	
3	372	-1	-3	-31	
3	456	-3	-6	-19	
3	460	-1	-5	-23	
3	483	-3	-7	-23	
3	516	-1	-3	-43	
3	696	-2	-3	-58	
3	708	-1	-3	-59	
3	728	-2	-7	-26	
3	804	-1	-3	-67	
3	805	-7	-23	-35	
3	920	-2	-10	-23	
3	988	-1	-13	-19	
3	1012	-1	-11	-23	
3	1353	-3	-11	-123	
3	1612	-1	-13	-31	
3	1672	-11	-19	-22	
3	1729	-7	-19	-91	
3	2821	-7	-31	-91	(4)
4	120	-5	-10	-15	(4)
4	120	-3	-5	-6	$(2,2)$
4	120	-2	-6	-10	(4)
4	120	-2	-5	-6	(4)
4	120	-2	-3	-5	(4)
4	120	-1	-6	-10	(4)
4	120	-1	-5	-6	(4)
4	120	-1	-3	-10	(4)
4	120	-1	-2	-15	(4)
4	136	-1	-2	-17	$(2,2)$
4	168	-3	-6	-21	$(2,2)$
4	168	-2	-6	-7	$(2,2)$
4	168	-1	-6	-7	$(2,2)$
4	168	-1	-2	-21	$(2,2)$
3					

4	195	-3	-15	-39	(4)	5	1032	-3	-6	-43
4	260	-1	-5	-13	(4)	5	1064	-2	-7	-19
4	264	-2	-6	-11	$(2,2)$	5	1309	-7	-11	-119
4	264	-2	-3	-22	$(2,2)$	5	1645	-7	-35	-47
4	264	-1	-6	-22	(4)	5	1880	-2	-10	-47
4	280	-7	-14	-35	(4)	5	1956	-1	-3	-163
4	280	-5	-10	-35	$(2,2)$	5	2337	-3	-19	-123
4	280	-2	-5	-7	$(2,2)$	5	2552	-2	-11	-58
4	280	-1	-7	-10	(4)	5	2948	-1	-11	-67
4	280	-1	-2	-35	$(2,2)$	5	3416	-2	-7	-122
4	285	-3	-15	-19	(4)	5	5092	-1	-19	-67
4	312	-3	-6	-39	(4)	6	184	-1	-2	-23
4	312	-2	-3	-13	$(2,2)$	6	255	-3	-15	-51
4	312	-1	-6	-13	$(2,2)$	6	276	-1	-3	-23
4	340	-1	-5	-17	(4)	6	312	-2	-3	-26
4	380	-1	-5	-19	(4)	6	465	-3	-15	-31
4	399	-3	-7	-19	(4)	6	520	-2	-10	-26
4	440	-5	-10	-11	$(2,2)$	6	552	-3	-6	-23
4	444	-1	-3	-37	(4)	6	552	-2	-3	-23
4	456	-2	-6	-19	$(2,2)$	6	609	-3	-7	-87
4	492	-1	-3	-41	(4)	6	620	-1	-5	-31
4	665	-7	-19	-35	(4)	6	651	-3	-7	-31
4	760	-2	-10	-19	(4)	6	741	-3	-19	-39
4	760	-2	-5	-19	$(2,2)$	6	812	-1	-7	-29
4	760	-1	-10	-19	$(2,2)$	6	868	-1	-7	-31
4	903	-3	-7	-43	(4)	6	1064	-7	-14	-19
4	1281	-3	-7	-183	(4)	6	1068	-1	-3	-89
4	1608	-2	-3	-67	(4)	6	1085	-7	-31	-35
4	2136	-2	-3	-178	(4)	6	1209	-3	-31	-39
4	2211	-3	-11	-67	(4)	6	1240	-2	-10	-31
4	2937	-3	-11	-267	(4)	6	1265	-11	-23	-55
4	3819	-3	-19	-67	(4)	6	1288	-2	-7	-23
4	5896	-2	-11	-67	(4)	6	1771	-7	-11	-23
4	8643	-3	-43	-67	$(2,2)$	6	1947	-3	-11	-59
5	296	-1	-2	-37		6	1992	-2	-3	-83
5	344	-1	-2	-43		6	2193	-3	-43	-51
5	357	-3	-7	-51		6	2408	-2	-7	-43
5	572	-1	-11	-13		6	3009	-3	-51	-59
5	705	-3	-15	-47	6	3052	-1	-7	-109	
5	836	-1	-11	-19		6	3608	-2	-11	-82
5	1001	-7	-11	-91		6	3729	-3	-11	-339
4										
4										

6	4123	-7	-19	-31		8	420	-7	-21	-35	$(2,4)$
6	4233	-3	-51	-83		8	420	-5	-15	-35	$(2,4)$
6	4521	-3	-11	-411		8	420	-5	-7	-15	$(2,4)$
6	4564	-1	-7	-163		8	420	-3	-15	-21	$(2,4)$
6	5289	-3	-43	-123		8	420	-3	-5	-21	$(2,4)$
6	5336	-2	-23	-58		8	420	-3	-5	-7	$(2,4)$
6	5379	-3	-11	-163		8	420	-1	-15	-21	$(2,4)$
6	7372	-1	-19	-97		8	420	-1	-7	-15	$(2,4)$
6	11033	-11	-59	-187		8	420	-1	-5	-21	$(2,4)$
7	536	-1	-2	-67		8	420	-1	-3	-35	$(2,4)$
7	645	-3	-15	-43		8	440	-2	-5	-22	(8)
7	860	-1	-5	-43		8	440	-1	-10	-22	(8)
7	861	-3	-7	-123		8	456	-3	-6	-57	(8)
7	1505	-7	-35	-43		8	456	-1	-6	-19	(8)
7	1608	-3	-6	-67		8	456	-1	-2	-57	$(2,4)$
7	1720	-2	-10	-43		8	520	-2	-5	-13	$(2,4)$
7	2812	-1	-19	-37		8	520	-1	-10	-13	$(2,4)$
7	5896	-11	-22	-67		8	555	-3	-15	-111	(8)
7	11524	-1	-43	-67		8	616	-2	-7	-22	$(2,2,2)$
7	12388	-1	-19	-163		8	616	-1	-7	-22	$(2,4)$
8	168	-7	-14	-21	$(2,4)$	8	660	-5	-11	-15	$(2,4)$
8	168	-2	-6	-14	(8)	8	660	-3	-15	-33	$(2,2,2)$
8	168	-2	-3	-14	(8)	8	660	-3	-5	-11	$(2,4)$
8	168	-1	-6	-14	(8)	8	660	-1	-11	-15	$(2,2,2)$
8	168	-1	-3	-14	(8)	8	660	-1	-5	-33	$(2,4)$
8	264	-11	-22	-33	$(2,4)$	8	728	-2	-13	-14	(8)
8	264	-3	-6	-33	(8)	8	740	-1	-5	-37	(8)
8	264	-2	-6	-22	$(2,4)$	8	780	-3	-5	-13	$(2,2,2)$
8	264	-1	-6	-11	(8)	8	780	-1	-13	-15	(2,2,2)
8	264	-1	-3	-22	(8)	8	840	-15	-30	-35	$(2,4)$
8	264	-1	-2	-33	$(2,4)$	8	840	-10	-15	-35	$(2,2,2)$
8	280	-5	-7	-10	$(2,4)$	8	840	-7	-35	-42	$(2,4)$
8	280	-2	-10	-14	(8)	8	840	-7	-10	-15	$(2,4)$
8	280	-2	-5	-14	(8)	8	840	-6	-7	-30	$(2,4)$
8	280	-1	-10	-14	(8)	8	840	-6	-7	-15	$(2,4)$
8	280	-1	-5	-14	(8)	8	840	-3	-15	-42	$(2,4)$
8	312	-2	-6	-13	(8)	8	840	-3	-10	-35	$(2,4)$
8	312	-1	-2	-39	(8)	8	840	-3	-7	-30	$(2,4)$
8	408	-2	-6	-34	$(2,2,2)$	8	840	-3	-7	-10	$(2,4)$
8	408	-1	-6	-17	$(2,2,2)$	8	840	-3	-6	-35	$(2,2,2)$
8	408	-1	-2	-51	$(2,2,2)$	8	840	-2	-15	-35	$(2,4)$

$\left.\begin{array}{llllllllllll}8 & 840 & -2 & -10 & -42 & (2,4) & 8 & 1848 & -6 & -7 & -11 & (2,4) \\ 8 & 840 & -2 & -7 & -15 & (2,4) & 8 & 1848 & -3 & -7 & -22 & (2,4) \\ 8 & 840 & -2 & -3 & -35 & (2,4) & 8 & 1924 & -1 & -13 & -37 & (8) \\ 8 & 876 & -1 & -3 & -73 & (2,2,2) & 8 & 1995 & -7 & -15 & -19 & (2,2,2) \\ 8 & 920 & -2 & -5 & -46 & (8) & 8 & 1995 & -3 & -19 & -35 & (2,2,2) \\ 8 & 920 & -1 & -10 & -46 & (8) & 8 & 2024 & -1 & -22 & -46 & (8) \\ 8 & 924 & -7 & -11 & -21 & (2,4) & 8 & 2145 & -3 & -11 & -195 & (2,2,2) \\ 8 & 1020 & -3 & -5 & -51 & (8) & 8 & 2184 & -6 & -7 & -78 & (2,2,2) \\ 8 & 1020 & -1 & -15 & -51 & (2,4) & 8 & 2220 & -3 & -5 & -37 & (2,2,2) \\ 8 & 1032 & -1 & -6 & -43 & (8) & 8 & 2220 & -1 & -15 & -37 & (2,2,2) \\ 8 & 1064 & -2 & -14 & -19 & (8) & 8 & 2236 & -1 & -13 & -43 & (8) \\ 8 & 1092 & -7 & -21 & -91 & (2,4) & 8 & 2244 & -1 & -33 & -51 & (2,4) \\ 8 & 1092 & -3 & -13 & -21 & (2,4) & 8 & 2280 & -6 & -15 & -19 & (2,4) \\ 8 & 1092 & -3 & -7 & -13 & (2,4) & 8 & 2280 & -3 & -19 & -30 & (2,4) \\ 8 & 1092 & -1 & -13 & -21 & (2,4) & 8 & 2380 & -5 & -35 & -85 & (2,4) \\ 8 & 1092 & -1 & -3 & -91 & (2,2,2) & 8 & 2380 & -1 & -7 & -85 & (2,4) \\ 8 & 1140 & -5 & -15 & -19 & (2,4) & 8 & 2415 & -7 & -15 & -115 & (2,4) \\ 8 & 1155 & -7 & -11 & -15 & (2,4) & 8 & 2415 & -3 & -35 & -115 & (2,4) \\ 8 & 1155 & -3 & -11 & -35 & (2,4) & 8 & 2508 & -11 & -19 & -33 & (2,4) \\ 8 & 1164 & -1 & -3 & -97 & (2,4) & 8 & 2508 & -3 & -33 & -57 & (2,4) \\ 8 & 1292 & -1 & -17 & -19 & (2,2,2) & 8 & 2508 & -1 & -19 & -33 & (2,4) \\ 8 & 1320 & -11 & -15 & -22 & (2,4) & 8 & 2508 & -1 & -11 & -57 & (2,4) \\ 8 & 1320 & -3 & -10 & -11 & (2,2,2) & 8 & 2660 & -5 & -19 & -35 & (2,4) \\ 8 & 1320 & -2 & -11 & -15 & (2,2,2) & 8 & 2860 & -5 & -11 & -13 & (2,2,2) \\ 8 & 1365 & -7 & -15 & -91 & (2,2,2) & 8 & 3003 & -3 & -11 & -91 & (2,4) \\ 8 & 1365 & -3 & -35 & -91 & (2,4) & 8 & 3080 & -11 & -22 & -35 & (2,4) \\ 8 & 1380 & -5 & -15 & -115 & (2,2,2) & 8 & 3417 & -3 & -51 & -67 & (8) \\ 8 & 1380 & -1 & -3 & -115 & (2,4) & 8 & 3640 & -2 & -35 & -91 & (2,4) \\ 8 & 1428 & -3 & -21 & -51 & (2,4) & 8 & 3740 & -5 & -11 & -85 & (2,2,2) \\ 8 & 1428 & -1 & -7 & -51 & (2,4) & 8 & 3913 & -7 & -43 & -91 & (8) \\ 8 & 1463 & -7 & -11 & -19 & (8) & 8 & 4836 & -3 & -13 & -93 & (2,4) \\ 8 & 1540 & -5 & -7 & -11 & (2,2,2) & 8 & 5005 & -11 & -35 & -91 & (2,4) \\ 8 & 1540 & -1 & -11 & -35 & (2,2,2) & 8 & 5016 & -6 & -19 & -22 & (2,4) \\ 8 & 1560 & -10 & -15 & -130 & (2,4) & 8 & 5060 & -5 & -11 & -115 & (2,4) \\ 8 & 1560 & -2 & -3 & -130 & (2,2,2) & 8 & 5320 & -7 & -19 & -70 & (2,2,2) \\ 8 & 1596 & -1 & -21 & -57 & (2,2,2) & 8 & 5548 & -1 & -19 & -73 & (2,4) \\ 8 & 1628 & -1 & -11 & -37 & (8) & 8 & 5720 & -2 & -11 & -130 & (2,2,2) \\ 8 & 1672 & -1 & -19 & -22 & (8) & 8 & 6545 & -11 & -35 & -187 & (2,4) \\ 8 & 1752 & -3 & -6 & -219 & (2,4) & 8 & 6916 & -13 & -19 & -91 & (2,4) \\ 8 & 1785 & -7 & -15 & -51 & (2,4) & 8 & 9291 & -3 & -19 & -163 & (8) \\ 8 & 1820 & -5 & -13 & -35 & (2,4) & 8 & 10659 & -19 & -51 & -187 & (2,4) \\ 8 & & & & & & & & & & & \\ 8 & & 0\end{array}\right)$

8	12529	-11	-67	-187	(8)
8	21027	-3	-43	-163	(8)
9	348	-1	-3	-29	$(3,3)$
9	424	-1	-2	-53	$(3,3)$
9	472	-1	-2	-59	$(3,3)$
9	744	-2	-3	-31	$(3,3)$
9	856	-1	-2	-107	$(3,3)$
9	996	-1	-3	-83	$(3,3)$
9	1005	-3	-15	-67	(9)
9	1340	-1	-5	-67	(9)
9	1416	-3	-6	-59	$(3,3)$
9	1419	-3	-11	-43	$(3,3)$
9	1668	-1	-3	-139	$(3,3)$
9	1708	-1	-7	-61	$(3,3)$
9	1892	-1	-11	-43	$(3,3)$
9	1976	-2	-19	-26	$(3,3)$
9	2387	-7	-11	-31	$(3,3)$
9	2680	-2	-10	-67	(9)
9	2728	-2	-11	-31	$(3,3)$
9	3224	-2	-26	-31	$(3,3)$
9	3304	-2	-7	-59	$(3,3)$
9	3652	-1	-11	-83	$(3,3)$
9	3892	-1	-7	-139	$(3,3)$
9	4396	-1	-7	-157	$(3,3)$
9	4587	-3	-11	-139	$(3,3)$
9	4588	-1	-31	-37	$(3,3)$
9	4648	-2	-7	-83	$(3,3)$
9	4708	-1	-11	-107	$(3,3)$
9	5192	-11	-22	-59	$(3,3)$
9	5656	-2	-7	-202	$(3,3)$
9	6963	-3	-11	-211	$(3,3)$
9	7172	-1	-11	-163	(9)
9	7657	-19	-31	-247	$(3,3)$
9	7912	-2	-23	-43	$(3,3)$
9	8241	-3	-67	-123	(9)
9	9416	-11	-22	-107	$(3,3)$
9	14003	-11	-19	-67	(9)
10	429	-3	-11	-39	
10	455	-7	-35	-91	
10	476	-1	-7	-17	
10	564	-1	-3	-47	
9					

10	595	-7	-35	-119	
10	615	-3	-15	-123	
10	795	-3	-15	-159	
10	952	-2	-7	-34	
10	987	-3	-7	-47	
10	1128	-2	-3	-47	
10	1659	-3	-7	-79	
10	2072	-2	-7	-74	
10	2136	-3	-6	-267	
10	2163	-3	-7	-103	
10	2261	-7	-19	-119	
10	2408	-7	-14	-43	
10	2409	-3	-11	-219	
10	2451	-3	-19	-43	
10	2585	-11	-47	-55	
10	2632	-2	-7	-47	
10	2667	-3	-7	-127	
10	3212	-1	-11	-73	
10	3423	-3	-7	-163	
10	4323	-3	-11	-131	
10	4539	-3	-51	-267	
10	6104	-2	-7	-218	
10	6232	-2	-19	-82	
10	7189	-7	-79	-91	
10	9417	-3	-43	-219	
10	12556	-1	-43	-73	
10	13737	-3	-19	-723	
10	32763	-3	-67	-163	
11	1869	-3	-7	-267	
11	3484	-1	-13	-67	
11	3912	-3	-6	-163	
11	6364	-1	-37	-43	
11	11481	-3	-43	-267	
11	14344	-11	-22	-163	
11	18361	-7	-43	-427	
11	43684	-1	-67	-163	
12	248	-1	-2	-31	$(3,4)$
12	312	-3	-6	-13	$(3,2,2)$
12	312	-2	-6	-26	$(3,2,2)$
12	312	-1	-3	-26	$(3,2,2)$
12	435	-3	-15	-87	$(3,4)$
10					

12	440	-11	-22	-55	$(3,4)$	12	1416	-1	-6	-118	(3,2,2)
12	440	-2	-10	-22	$(3,2,2)$	12	1484	-1	-7	-53	$(3,4)$
12	440	-2	-5	-11	$(3,2,2)$	12	1608	-2	-6	-67	(3,2,2)
12	440	-1	-10	-11	$(3,2,2)$	12	1644	-1	-3	-137	$(3,4)$
12	440	-1	-5	-22	$(3,2,2)$	12	1720	-2	-5	-43	$(3,4)$
12	456	-2	-3	-38	$(3,2,2)$	12	1720	-1	-10	-43	$(3,4)$
12	456	-1	-6	-38	$(3,2,2)$	12	1804	-1	-11	-41	$(3,4)$
12	644	-1	-7	-23	$(3,4)$	12	1876	-1	-7	-67	$(3,4)$
12	680	-2	-10	-34	$(3,4)$	12	2065	-7	-35	-59	$(3,4)$
12	696	-3	-6	-29	$(3,2,2)$	12	2093	-7	-23	-91	$(3,4)$
12	696	-2	-6	-58	$(3,4)$	12	2185	-19	-23	-95	$(3,4)$
12	696	-1	-6	-58	$(3,4)$	12	2332	-1	-11	-53	$(3,4)$
12	696	-1	-3	-58	$(3,4)$	12	2356	-1	-19	-31	$(3,4)$
12	728	-7	-14	-91	$(3,4)$	12	2360	-2	-10	-59	$(3,4)$
12	728	-2	-7	-13	(3,2,2)	12	2552	-11	-22	-29	(3,2,2)
12	728	-1	-2	-91	(3,2,2)	12	2680	-2	-5	-67	$(3,4)$
12	732	-1	-3	-61	$(3,4)$	12	2680	-1	-10	-67	$(3,4)$
12	744	-3	-6	-93	(3,2,2)	12	2712	-2	-3	-226	$(3,4)$
12	744	-3	-6	-31	$(3,4)$	12	2728	-11	-22	-31	$(3,4)$
12	744	-2	-6	-31	$(3,2,2)$	12	2739	-3	-11	-83	$(3,4)$
12	744	-1	-2	-93	(3,2,2)	12	2968	-2	-7	-106	$(3,4)$
12	760	-5	-10	-19	(3,2,2)	12	3256	-2	-11	-37	$(3,2,2)$
12	760	-2	-10	-38	$(3,2,2)$	12	3256	-1	-22	-37	(3,2,2)
12	760	-1	-5	-38	(3,2,2)	12	3336	-2	-3	-139	$(3,4)$
12	885	-3	-15	-59	$(3,4)$	12	3363	-3	-19	-59	$(3,4)$
12	888	-2	-3	-37	$(3,2,2)$	12	3723	-3	-51	-219	$(3,4)$
12	888	-1	-6	-37	(3,2,2)	12	3752	-2	-7	-67	$(3,4)$
12	984	-3	-6	-123	$(3,4)$	12	3784	-2	-22	-43	(3,2,2)
12	1023	-3	-11	-31	$(3,4)$	12	3784	-2	-11	-43	$(3,4)$
12	1032	-2	-6	-43	(3,2,2)	12	3796	-1	-13	-73	$(3,4)$
12	1060	-1	-5	-53	$(3,4)$	12	4664	-2	-11	-106	$(3,4)$
12	1064	-2	-7	-38	(3,2,2)	12	4712	-2	-19	-31	$(3,4)$
12	1144	-11	-13	-22	$(3,2,2)$	12	4947	-3	-51	-291	$(3,4)$
12	1144	-2	-11	-13	$(3,4)$	12	5908	-1	-7	-211	$(3,4)$
12	1144	-1	-13	-22	$(3,4)$	12	5992	-2	-7	-107	$(3,4)$
12	1180	-1	-5	-59	$(3,4)$	12	6744	-2	-3	-562	$(3,4)$
12	1196	-1	-13	-23	$(3,4)$	12	6792	-2	-3	-283	$(3,4)$
12	1356	-1	-3	-113	$(3,4)$	12	6923	-7	-23	-43	$(3,4)$
12	1416	-2	-6	-59	$(3,2,2)$	12	7257	-3	-59	-123	$(3,4)$
12	1416	-2	-3	-118	$(3,2,2)$	12	7368	-2	-3	-307	$(3,4)$
12	1416	-2	-3	-59	$(3,4)$	12	7756	-1	-7	-277	$(3,4)$

12	7923	-3	-19	-139	$(3,4)$	15	1236	-1	-3	-103
12	8308	-1	-31	-67	$(3,4)$	15	1245	-3	-15	-83
12	8344	-2	-7	-298	$(3,4)$	15	1272	-2	-3	-106
12	8968	-2	-19	-59	$(3,4)$	15	1276	-1	-11	-29
12	9916	-1	-37	-67	$(3,4)$	15	1432	-1	-2	-179
12	10209	-3	-83	-123	$(3,4)$	15	1545	-3	-15	-103
12	11649	-3	-11	-1059	$(3,4)$	15	1572	-1	-3	-131
12	17347	-11	-19	-83	$(3,4)$	15	1652	-1	-7	-59
12	20504	-2	-11	-466	$(3,4)$	15	1660	-1	-5	-83
13	4408	-2	-19	-58	15	1688	-1	-2	-211	
13	8313	-3	-51	-163	15	1748	-1	-19	-23	
13	9976	-2	-43	-58	15	1992	-3	-6	-83	
13	28036	-1	-43	-163	15	2060	-1	-5	-103	
13	30481	-11	-163	-187	15	2068	-1	-11	-47	
14	852	-1	-3	-71	15	2121	-3	-7	-303	
14	1065	-3	-15	-71	15	2148	-1	-3	-179	
14	1420	-1	-5	-71	15	2424	-2	-3	-202	
14	1435	-7	-35	-287	15	2445	-3	-15	-163	
14	1496	-11	-22	-187	15	2472	-2	-3	-103	
14	1533	-3	-7	-219	15	2532	-1	-3	-211	
14	1704	-3	-6	-71	15	2596	-1	-11	-59	
14	2044	-1	-7	-73	15	2717	-11	-19	-143	
14	2485	-7	-35	-71	15	2905	-7	-35	-83	
14	4921	-7	-19	-259	15	3260	-1	-5	-163	
14	5467	-7	-11	-71	15	3268	-1	-19	-43	
14	6248	-11	-22	-71	15	3320	-2	-10	-83	
14	8492	-1	-11	-193	15	3404	-1	-23	-37	
14	9709	-7	-19	-511	15	3496	-2	-19	-23	
14	10947	-3	-123	-267	15	3605	-7	-35	-103	
14	19497	-3	-67	-291	15	3619	-7	-11	-47	
14	23048	-2	-43	-67	15	3684	-1	-3	-307	
14	31089	-3	-43	-723	15	3784	-11	-22	-43	
14	34067	-11	-19	-163	15	4120	-2	-10	-103	
15	488	-1	-2	-61	15	4296	-3	-6	-179	
15	636	-1	-3	-53	15	4433	-11	-31	-143	
15	664	-1	-2	-83	15	4548	-1	-3	-379	
15	872	-1	-2	-109	15	4697	-7	-11	-427	
15	940	-1	-5	-47	15	4731	-3	-19	-83	
15	957	-3	-11	-87	15	5064	-3	-6	-211	
15	1048	-1	-2	-131	15	5068	-1	-7	-181	
15	1144	-2	-11	-26	15	5332	-1	-31	-43	
1										
102										

15	5405	-23	-47	-115	
15	5705	-7	-35	-163	
15	7089	-3	-51	-139	
15	7304	-11	-22	-83	
15	7611	-3	-43	-59	
15	7689	-3	-11	-699	
15	7924	-1	-7	-283	
15	9273	-3	-11	-843	
15	9331	-7	-31	-43	
15	9339	-3	-11	-283	
15	10564	-1	-19	-139	
15	11528	-11	-22	-131	
15	12328	-2	-23	-67	
15	12331	-11	-19	-59	
15	13237	-7	-31	-427	
15	15752	-11	-22	-179	
15	16683	-3	-67	-83	
15	18568	-11	-22	-211	
15	20009	-11	-107	-187	
15	21508	-1	-19	-283	
15	22161	-3	-83	-267	
15	24497	-11	-131	-187	
15	25993	-11	-139	-187	
16	328	-1	-2	-41	$(2,2,4)$
16	408	-17	-34	-51	$(4,4)$
16	408	-3	-6	-17	$(4,4)$
16	408	-2	-6	-17	$(2,8)$
16	408	-2	-3	-17	$(2,8)$
16	408	-1	-6	-34	$(2,8)$
16	408	-1	-3	-34	$(4,4)$
16	520	-5	-10	-65	$(2,8)$
16	520	-2	-10	-13	$(2,8)$
16	552	-3	-6	-69	$(2,8)$
16	552	-2	-6	-46	$(4,4)$
16	552	-2	-3	-46	$(4,4)$
16	552	-1	-6	-46	$(2,8)$
16	552	-1	-3	-46	$(2,8)$
16	552	-1	-2	-69	$(2,8)$
16	584	-1	-2	-73	$(2,8)$
16	616	-11	-22	-77	$(4,4)$
16	616	-2	-14	-22	$(2,8)$

16	616	-2	-11	-14	$(4,4)$
16	616	-1	-14	-22	$(4,4)$
16	616	-1	-11	-14	$(2,8)$
16	616	-1	-2	-77	$(4,4)$
16	660	-11	-33	-55	$(2,2,4)$
16	660	-5	-15	-55	$(2,8)$
16	660	-3	-5	-33	$(2,8)$
16	660	-1	-15	-33	$(2,8)$
16	660	-1	-3	-55	$(2,8)$
16	663	-3	-39	-51	$(2,8)$
16	680	-2	-10	-17	$(2,8)$
16	680	-2	-5	-34	$(2,2,4)$
16	680	-1	-10	-34	$(4,4)$
16	744	-2	-3	-62	$(2,8)$
16	744	-1	-6	-62	(16)
16	760	-5	-10	-95	(16)
16	760	-1	-2	-95	(16)
16	777	-3	-7	-111	$(2,8)$
16	780	-5	-15	-65	$(2,8)$
16	780	-5	-13	-15	$(2,8)$
16	780	-3	-13	-15	$(2,8)$
16	780	-1	-5	-39	$(2,8)$
16	780	-1	-3	-65	$(2,2,4)$
16	820	-1	-5	-41	$(2,8)$
16	840	-7	-14	-15	$(4,4)$
16	840	-6	-14	-30	$(2,8)$
16	840	-6	-14	-15	$(2,8)$
16	840	-3	-14	-30	$(2,8)$
16	840	-3	-14	-15	$(2,8)$
16	884	-1	-13	-17	$(4,4)$
16	888	-2	-6	-37	(16)
16	915	-3	-15	-183	$(2,8)$
16	924	-3	-11	-21	$(2,8)$
16	924	-3	-7	-33	$(2,8)$
16	924	-1	-21	-33	$(2,2,4)$
16	984	-1	-6	-82	$(2,8)$
16	1020	-5	-15	-17	$(2,8)$
16	1020	-3	-15	-17	$(2,8)$
16	1045	-11	-19	-55	$(2,8)$
16	1092	-13	-39	-91	$(2,8)$
16	1092	-7	-13	-21	$(2,8)$
16					

16	1092	-3	-21	-39	$(2,2,4)$
16	1092	-1	-21	-39	$(2,8)$
16	1092	-1	-7	-39	$(2,8)$
16	1128	-3	-6	-141	$(2,8)$
16	1128	-1	-2	-141	$(4,4)$
16	1140	-3	-15	-57	$(2,2,4)$
16	1140	-3	-5	-19	$(2,8)$
16	1140	-1	-15	-19	$(2,8)$
16	1140	-1	-5	-57	$(2,8)$
16	1155	-15	-35	-55	$(2,8)$
16	1155	-3	-7	-55	$(2,8)$
16	1160	-2	-5	-58	$(2,2,4)$
16	1240	-5	-10	-155	$(4,4)$
16	1240	-1	-2	-155	$(4,4)$
16	1320	-10	-15	-55	$(2,8)$
16	1320	-10	-11	-15	$(2,8)$
16	1320	-6	-15	-22	$(2,8)$
16	1320	-6	-11	-30	$(4,4)$
16	1320	-3	-22	-30	$(2,8)$
16	1320	-3	-15	-66	$(2,8)$
16	1320	-2	-10	-66	$(2,2,4)$
16	1320	-2	-3	-55	$(2,8)$
16	1365	-15	-35	-39	$(2,8)$
16	1365	-7	-35	-39	$(2,8)$
16	1380	-3	-15	-69	$(2,8)$
16	1380	-3	-5	-69	$(2,8)$
16	1380	-1	-15	-69	$(2,8)$
16	1380	-1	-5	-69	$(2,8)$
16	1416	-3	-6	-177	(16)
16	1416	-1	-2	-177	$(2,8)$
16	1428	-7	-17	-21	$(2,8)$
16	1428	-3	-7	-17	$(2,8)$
16	1428	-1	-17	-21	$(4,4)$
16	1496	-11	-17	-22	$(4,4)$
16	1496	-2	-17	-22	$(4,4)$
16	1496	-1	-22	-34	$(2,8)$
16	1540	-7	-35	-77	$(2,2,4)$
16	1540	-5	-35	-55	$(2,8)$
16	1540	-5	-11	-35	$(2,8)$
16	1540	-1	-7	-55	$(2,8)$
16	1540	-1	-5	-77	$(2,8)$
13					

16	1560	-3	-10	-39	$(4,4)$
16	1560	-2	-15	-39	$(2,8)$
16	1560	-2	-10	-39	$(2,8)$
16	1596	-7	-19	-21	$(2,8)$
16	1596	-3	-19	-21	$(4,4)$
16	1596	-3	-7	-57	$(2,8)$
16	1608	-1	-6	-67	$(2,8)$
16	1624	-1	-14	-58	$(4,4)$
16	1624	-1	-7	-58	$(2,2,4)$
16	1640	-2	-10	-82	$(2,8)$
16	1704	-2	-3	-142	$(4,4)$
16	1716	-11	-13	-33	$(2,8)$
16	1716	-3	-11	-13	$(2,8)$
16	1716	-1	-13	-33	$(2,8)$
16	1740	-5	-15	-145	$(2,8)$
16	1785	-3	-35	-51	$(2,8)$
16	1820	-7	-13	-35	$(2,8)$
16	1820	-5	-7	-65	$(2,8)$
16	1820	-1	-35	-65	$(4,4)$
16	1848	-7	-11	-42	$(2,8)$
16	1848	-6	-14	-22	$(2,2,4)$
16	1848	-3	-11	-42	$(2,8)$
16	1848	-3	-11	-14	$(2,8)$
16	1860	-3	-15	-93	$(2,2,4)$
16	1860	-3	-5	-93	$(2,8)$
16	1860	-1	-15	-93	$(2,8)$
16	1860	-1	-5	-93	$(2,8)$
16	1880	-2	-5	-94	(16)
16	1932	-3	-21	-69	$(2,8)$
16	1932	-1	-7	-69	$(2,8)$
16	2040	-15	-30	-51	$(2,2,4)$
16	2040	-10	-15	-34	$(2,8)$
16	2072	-2	-14	-37	$(4,4)$
16	2072	-2	-7	-37	$(2,2,4)$
16	2145	-15	-55	-195	$(2,8)$
16	2145	-11	-15	-39	$(2,8)$
16	2184	-3	-14	-78	$(2,8)$
16	2184	-2	-39	-42	$(2,8)$
16	2244	-11	-33	-187	$(2,8)$
16	2244	-11	-17	-33	$(2,8)$
16	2244	-3	-33	-51	$(2,8)$
16					

16	2244	-3	-17	-33	$(2,8)$	16	3180	-5	-15	-265	$(2,8)$
16	2244	-1	-11	-51	$(2,8)$	16	3192	-7	-19	-42	$(2,8)$
16	2244	-1	-3	-187	$(2,8)$	16	3192	-6	-7	-19	(2,2,4)
16	2280	-10	-15	-19	$(2,2,4)$	16	3220	-5	-35	-115	$(2,2,4)$
16	2280	-3	-10	-19	$(2,2,4)$	16	3220	-1	-7	-115	$(2,8)$
16	2280	-2	-15	-19	$(2,2,4)$	16	3224	-2	-13	-62	(16)
16	2316	-1	-3	-193	$(2,2,4)$	16	3315	-3	-51	-195	(2,2,2,2)
16	2328	-3	-6	-291	$(2,8)$	16	3432	-11	-22	-39	$(2,8)$
16	2380	-7	-17	-35	$(2,8)$	16	3480	-3	-10	-58	$(2,8)$
16	2380	-5	-7	-17	$(2,8)$	16	3480	-2	-15	-58	$(2,8)$
16	2380	-1	-17	-35	$(4,4)$	16	3612	-3	-21	-43	$(2,8)$
16	2392	-1	-13	-46	$(4,4)$	16	3640	-7	-10	-91	$(2,8)$
16	2408	-2	-14	-43	$(2,2,4)$	16	3740	-1	-55	-85	$(2,8)$
16	2460	-3	-5	-123	$(2,2,4)$	16	3784	-1	-22	-43	(16)
16	2580	-3	-5	-43	$(4,4)$	16	3795	-3	-11	-115	$(2,2,4)$
16	2580	-1	-15	-43	$(2,8)$	16	3864	-7	-42	-322	$(2,2,4)$
16	2584	-2	-19	-34	$(2,8)$	16	3864	-3	-42	-138	$(2,8)$
16	2604	-3	-21	-93	$(2,2,4)$	16	3864	-2	-7	-138	$(2,8)$
16	2604	-3	-7	-93	$(2,8)$	16	3864	-2	-3	-322	$(2,8)$
16	2604	-1	-21	-93	$(2,8)$	16	3885	-7	-15	-259	$(2,2,4)$
16	2604	-1	-7	-93	$(2,8)$	16	4004	-11	-13	-77	$(2,8)$
16	2760	-10	-15	-115	$(2,2,4)$	16	4020	-3	-5	-67	$(4,4)$
16	2760	-6	-15	-46	$(2,8)$	16	4020	-1	-15	-67	$(2,8)$
16	2760	-3	-30	-46	$(2,8)$	16	4161	-3	-19	-219	$(2,8)$
16	2760	-3	-10	-115	$(2,8)$	16	4305	-7	-15	-123	$(2,8)$
16	2760	-2	-15	-115	$(2,8)$	16	4305	-3	-35	-123	$(2,8)$
16	2760	-2	-3	-115	$(2,8)$	16	4488	-11	-22	-51	$(2,8)$
16	2805	-15	-51	-55	$(2,8)$	16	4488	-6	-11	-102	$(2,8)$
16	2820	-3	-5	-141	$(2,8)$	16	4488	-3	-22	-102	$(2,8)$
16	2840	-2	-5	-142	$(4,4)$	16	4488	-2	-51	-66	$(2,2,4)$
16	2856	-7	-34	-42	$(2,8)$	16	4488	-2	-11	-51	$(2,2,4)$
16	2856	-7	-14	-51	$(2,2,4)$	16	4488	-2	-3	-187	$(2,2,4)$
16	2860	-1	-13	-55	$(2,8)$	16	4515	-7	-15	-43	$(2,8)$
16	2860	-1	-11	-65	$(2,2,4)$	16	4515	-3	-35	-43	$(2,8)$
16	2964	-13	-19	-39	$(2,8)$	16	4760	-7	-10	-34	$(2,8)$
16	3003	-7	-11	-39	$(2,8)$	16	4760	-2	-34	-35	$(4,4)$
16	3036	-3	-11	-69	$(2,8)$	16	4836	-1	-39	-93	$(2,8)$
16	3036	-1	-33	-69	$(2,8)$	16	4872	-3	-42	-58	$(2,8)$
16	3045	-7	-15	-203	$(2,2,4)$	16	4935	-7	-15	-235	$(2,8)$
16	3080	-10	-11	-35	$(2,2,4)$	16	4935	-3	-35	-235	$(2,8)$
16	3080	-7	-22	-55	$(2,8)$	16	4972	-1	-11	-113	$(2,8)$

16	5005	-7	-55	-91	$(2,8)$	16	10659	-3	-187	-323	$(2,8)$
16	5016	-2	-19	-66	$(2,2,4)$	16	11284	-7	-13	-217	$(2,8)$
16	5016	-2	-11	-114	$(2,2,4)$	16	11284	-1	-91	-217	$(2,8)$
16	5016	-2	-3	-418	$(2,2,4)$	16	11480	-2	-35	-82	$(2,2,4)$
16	5060	-1	-55	-115	$(2,8)$	16	13160	-7	-10	-235	$(2,8)$
16	5160	-10	-15	-43	$(2,8)$	16	13160	-2	-35	-235	$(2,8)$
16	5160	-3	-10	-43	$(2,8)$	16	13468	-13	-37	-91	$(2,8)$
16	5160	-2	-15	-43	$(2,8)$	16	14105	-35	-91	-155	$(2,8)$
16	5180	-5	-35	-37	$(2,8)$	16	15544	-2	-58	-67	(16)
16	5187	-3	-19	-91	$(2,2,4)$	16	15652	-13	-43	-91	$(2,8)$
16	5313	-3	-11	-483	$(2,8)$	16	16120	-2	-130	-155	$(2,8)$
16	5320	-14	-19	-35	$(2,8)$	16	16215	-3	-115	-235	$(2,8)$
16	5336	-1	-46	-58	$(2,8)$	16	19684	-19	-37	-133	$(2,8)$
16	5340	-3	-5	-267	$(2,2,4)$	16	20049	-3	-123	-163	(16)
16	5412	-3	-33	-123	$(2,8)$	16	22204	-7	-13	-427	$(2,8)$
16	5412	-1	-11	-123	$(2,8)$	16	53599	-19	-91	-403	$(2,8)$
16	5640	-3	-10	-235	$(2,8)$	17	8476	-1	-13	-163	
16	5640	-2	-15	-235	$(2,8)$	17	14833	-7	-91	-163	
16	5720	-10	-55	-130	$(2,8)$						
16	5740	-5	-35	-205	$(2,2,4)$						
16	5852	-11	-19	-77	$(2,8)$						
16	5896	-1	-22	-67	$(2,8)$						
16	6020	-5	-35	-43	$(2,8)$						
16	6028	-1	-11	-137	$(2,8)$						
16	6045	-3	-155	-195	$(2,8)$						
16	6405	-7	-15	-427	$(2,2,4)$						
16	6440	-7	-10	-115	$(2,2,4)$						
16	6440	-2	-35	-115	$(2,8)$						
16	6545	-7	-55	-187	$(2,8)$						
16	6580	-5	-35	-235	$(2,2,4)$						
16	7035	-3	-35	-67	$(2,8)$						
16	7752	-6	-19	-102							
16	7755	-3	-11	-235	$(2,2,4)$						
16	7788	-3	-33	-177	$(2,8)$						
16	8008	-2	-11	-91	$(2,8)$						
16	8060	-5	-13	-155	$(2,8)$						
16	8463	-3	-91	-403	$(2,2,4)$						
16	8855	-11	-35	-115	$(2,8)$						
16	9944	-2	-11	-226	$(2,8)$						
16	10184	-2	-19	-67	(16)						
16	10659	-11	-51	-323	$(2,8)$						

Proof There are 8265 fields satisfying the conditions of Corollary 33, Lemma 34 and Lemma 35. The class number of each field was computed yielding the list below. The structure of the 2 -class group of each field was determined using one of the following methods.

If K contains a biquadratic subfield K_{i} such that a prime divisor of K_{i} ramifies in K then H contains a subgroup isomorphic to H_{i}. If H and H_{i} have the same order then the structure of H is determined.

If K contains a biquadratic subfield K_{i} of odd class number, then the number of ambiguous classes for the extension K / K_{i} determines the 2 -rank of H. This determines the structure of H unless $h=16$ and $R_{2}=2$.

If the kernel of the mapping θ can be determined then the techniques of section 1 can be used. For example, let $k=\mathbf{Q}(\sqrt{217})$ and $K=k(\sqrt{-35}, \sqrt{65})$. Here $h=16$ and \mid ker $\mid=2$. Let $K_{1}=k(\sqrt{-35}), K_{2}=k(\sqrt{65})$ and $K_{3}=k(\sqrt{-91})$. Then $H_{1} \simeq Z_{4}$ and $H_{2} \simeq H_{3} \simeq Z_{2}$. The table of consistent characters is:

$$
\begin{array}{cc|cc|cc}
P_{\infty_{1}} P_{\infty_{2}} & 5 & 5 & P_{13_{1}} P_{13_{2}} & P_{\infty_{1}} P_{\infty_{2}} & P_{13_{1}} P_{13_{2}} \\
+ & + & + & + & + & + \\
- & - & - & - & -
\end{array}
$$

where $P_{13_{1}}$ and $P_{13_{2}}$ are divisors of 13 in k and $P_{\infty_{1}}$ and $P_{\infty_{2}}$ are infinite primes of k. Here the characters for each field have been normalized. Since 7 is a principal divisor in $\mathbf{Q}(\sqrt{217})$, $(5,1,1)$ is in the kernel of the mapping $\operatorname{cl}(\mathbf{Q}(\sqrt{-35})) \times \operatorname{cl}(\mathbf{Q}(\sqrt{217})) \times \operatorname{cl}(\mathbf{Q}(\sqrt{-155})) \rightarrow H_{1}$. Since 155 is a principal divisor in $\mathbf{Q}(\sqrt{14105})$ and 31 is a principal divisor in $\mathbf{Q}(\sqrt{217})$, $(1,1,5)$ is in the kernel of the mapping $\operatorname{cl}(\mathbf{Q}(\sqrt{217})) \times \operatorname{cl}(\mathbf{Q}(\sqrt{65})) \times \operatorname{cl}(\mathbf{Q}(\sqrt{14105})) \rightarrow H_{2}$. Hence the divisor of 5 in K_{1} is principal as is the divisor of 5 in K_{2}. Since $\left(\frac{13}{5}\right)=-1$ the divisors of 13 belong to the nonprincipal genus of K_{2}. Since $N(162+11 \sqrt{217})=-13$ the
divisors of 13 belong to the nonprincipal genus of K_{3}. Let C be a class of order 4 in K_{1}. Then $\operatorname{ker}=\left\{(1,1,1),\left(1, P_{13_{1}}, P_{13_{1}}\right)\right\}$ and $S^{2}=\left\{(1,1,1),\left(C^{2}, 1,1\right)\right\}$. Thus $H^{4} \simeq S^{2} / S^{2} \cap \operatorname{ker} \simeq Z_{2}$ so $H \simeq Z_{2} \times Z_{8}$.

There are seven fields of class number 16 for which the above method cannot be used to determine the structure of H. We now consider each of these fields.

1. $K=\mathbf{Q}(\sqrt{-11}, \sqrt{-13}, \sqrt{-77})$

Let $k=\mathbf{Q}(\sqrt{7}), K_{1}=k(\sqrt{-11}), K_{2}=k(\sqrt{143})$ and $K_{3}=k(\sqrt{-13})$. Then $H_{1} \simeq Z_{4}$ and $H_{2} \simeq H_{3} \simeq Z_{2}$. In $K_{1},(3)=\mathcal{P}_{3_{1}} \mathcal{P}_{3_{2}} \mathcal{P}_{3_{3}} \mathcal{P}_{3_{4}}$ and $\mathcal{P}_{3_{1}}$ generates a class of order 4. Also (13) $=\mathcal{P}_{13_{1}} \mathcal{P}_{13_{2}}$ and $\mathcal{P}_{13_{1}}$ generates a class of order 2 since $N(21+5 \sqrt{77})=13^{2} \dot{1} 4$ and the divisor of 14 becomes principal in K_{1}. The units of K having relative norm 1 to K_{1} are generated by $-1, \varepsilon_{2}$ and ε_{3}. Now $\left(1+\varepsilon_{2}\right)=P_{2_{1}} P_{2_{2}} P_{13_{1}} P_{13_{2}}$ in K where (2) $=\left(P_{2_{1}} P_{2_{2}}\right)^{2}$ and (13) $=\left(P_{13_{1}} P_{13_{2}}\right)^{2}$. Note that $P_{2_{1}} P_{2_{2}}=(3+\sqrt{7}$ is principal in K_{1}. Also $\left(1+\varepsilon_{3}\right)=(166)(6931+202 \sqrt{1001})=(166)(\sqrt{7})(\sqrt{-11})$ in K_{1}. The unit $-1=\frac{\sqrt{13}}{\sqrt{-13}}$ and $(\sqrt{13})=P_{13_{1}} P_{13_{2}}$ in K. Thus by Lemma 27, if $\mathcal{P}_{13_{1}}$ becomes principal in K then $(\alpha) \mathcal{P}_{13_{1}}=\left(P_{13_{1}} P_{13_{2}}\right)^{a}(\beta)$ for some $\alpha, \beta, \in K_{1}$. Considering powers of $P_{13_{2}}$ we see that a must be even. Thus $(\alpha) \mathcal{P}_{13_{1}}=\left(\mathcal{P}_{13_{1}} \mathcal{P}_{13_{2}}\right)^{a / 2}(\beta)$ or $(\alpha) \mathcal{P}_{13_{1}}=$ $(13)^{a / 2}(\beta)$, a contradiction since $\mathcal{P}_{13_{1}} \nsim(1)$ in K. Now $S^{2}=\left\{(1,1,1),\left(\mathcal{P}_{13_{1}}, 1,1\right)\right\}$ and $\left(\mathcal{P}_{13_{1}}, 1,1\right) \notin$ ker so $S^{2} / S^{2} \cap k e r \simeq Z_{2}$ and $H \simeq Z_{2} \times Z_{8}$.
2. $K=\mathbf{Q}(\sqrt{-3}, \sqrt{-17}, \sqrt{-33})$

Let $k=\mathbf{Q}(\sqrt{-3}), K_{1}=k(\sqrt{11}), K_{2}=k(\sqrt{51})$ and $K_{3}=k(\sqrt{561})$. Then $H_{1} \simeq H_{3} \simeq$
Z_{2} and $H_{2} \simeq Z_{4}$.In $K_{2},(3)=\left(\mathcal{P}_{3_{1}} \mathcal{P}_{3_{2}}\right)^{2}$ and $\mathcal{P}_{3_{1}}$ generates a class of order 4. Also (11) $=\mathcal{P}_{11_{1}} \mathcal{P}_{11_{2}}$ and $\mathcal{P}_{11_{1}}$ generates a class of order 2 since $N(15+\sqrt{-17})=11^{2} \dot{2}$ and the divisor of 2 becomes principal in K_{2}. The units of K having relative norm 1 to K_{2} are generated by $-1, \varepsilon_{1}$ and $\sqrt{\varepsilon_{3}}$. Now $\left(1-\varepsilon_{1}\right)=(3)(3+\sqrt{11}) \sim(3+$ $\sqrt{11})=P_{2_{1}} P_{2_{2}}$ in K, but $P_{2_{1}} P_{2_{2}}=(7+\sqrt{51}) \sim 1$ in K_{2}. Also $\left(1+\sqrt{-\varepsilon_{3}}\right)=$ $\left(\frac{-71+7 \sqrt{-17}+5 \sqrt{-33}+3 \sqrt{561}}{2}\right)(5-3 \sqrt{-17}) \sim P_{3_{1}} P_{11_{1}}$ where $(3)=\left(P_{3_{1}} P_{3_{2}}\right)^{2}$ and (11)= $\left(P_{11_{1}} P_{11_{2}}\right)^{2}$ in K. The unit $-1=\frac{\sqrt{11}}{-\sqrt{11}}$ and $(\sqrt{11})=P_{11_{1}} P_{11_{2}}$ in K. Thus by Lemma 27, if $\mathcal{P}_{11_{1}}$ becomes principal in K, then $(\alpha) \mathcal{P}_{11_{1}}=\left(P_{3_{1}} P_{11_{1}}\right)^{a}\left(P_{11_{1}} P_{11_{2}}\right)^{b}(\beta)$ for some $\alpha, \beta \in K_{2}$. By considering powers of $P_{11_{1}}$ and $P_{11_{2}}$ we see that $a+b$ and b must be even, so a is even. Thus $\mathcal{P}_{11_{1}} \sim P_{3_{1}}^{a} P_{11_{1}}^{a+b} P_{11_{2}}^{b} \sim \mathcal{P}_{11_{1}}^{a / 2} \mathcal{P}_{11_{1}}^{(a+b) / 2} \mathcal{P}_{11_{2}}^{b} \sim \mathcal{P}_{11_{1}}^{a+b / 2} \mathcal{P}_{11_{2}}^{b / 2}$ so $(1) \sim \mathcal{P}_{11_{1}}^{a-1}\left(\mathcal{P}_{11_{1}} \mathcal{P}_{11_{2}}\right)^{b / 2} \sim \mathcal{P}_{11_{1}}^{a-1}(11)^{b / 2} \sim \mathcal{P}_{11_{1}}^{a-1}$. But $\mathcal{P}_{11_{1}}$ has order 2 and $a-1$ is odd, a contradiction. Therefore $\mathcal{P}_{11_{1}}$ does not become principal in K. Now $S^{2}=$ $\left\{(1,1,1),\left(1, \mathcal{P}_{11_{1}}, 1\right)\right\}$ and $\left(1, \mathcal{P}_{11_{1}}, 1\right) \notin k e r$ so $S^{2} / S^{2} \cap \operatorname{ker} \simeq Z_{2}$ and $H \simeq Z_{2} \times Z_{8}$.
3. $K=\mathbf{Q}(\sqrt{-3}, \sqrt{-5}, \sqrt{-141})$

Let $k=\mathbf{Q}(\sqrt{-3}), K_{1}=k(\sqrt{15}), K_{2}=k(\sqrt{47})$ and $K_{3}=k(\sqrt{705})$. Then $H_{1} \simeq H_{3} \simeq$ Z_{2} and $H_{2} \simeq Z_{4}$. In $K_{2},(5)=\mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}}$ and $\mathcal{P}_{5_{1}}$ generates a class of order 2 since $N(3+\sqrt{-141})=5^{2} \dot{6}$ and the divisor of 6 becomes principal. The units of K having relative norm 1 to K_{2} are generated by $-1, \varepsilon_{1}$ and ε_{3}. Now $\left(1+\varepsilon_{1}\right)=(5+\sqrt{15})=$ $P_{2_{1}} P_{2_{2}} P_{5_{1}} P_{5_{2}}$ in K where (2) $=\left(P_{2_{1}} P_{2_{2}}\right)^{2}$ and (5) $=\left(P_{5_{1}} P_{5_{2}}\right)^{2}$. Note that $P_{2_{1}} P_{2_{2}} \sim 1$ in K_{2}. Also $\left(1+\varepsilon_{3}\right)=(58)(4089+154 \sqrt{705}) \sim(\sqrt{-3})(\sqrt{47}) \sim 1$ in K_{2}. The unit $-1=\frac{\sqrt{-5}}{-\sqrt{-5}}$ and $(\sqrt{-5})=P_{5_{1}} P_{5_{2}}$. Thus by Lemma 27 , if $\mathcal{P}_{5_{1}}$ becomes principal in
K then $(\alpha) \mathcal{P}_{5_{1}}=\left(P_{5_{1}} P_{5_{2}}\right)^{a}(\beta)$ for some $\alpha, \beta \in K_{2}$. By considering powers of $P_{5_{1}}$ we see that a is even. Thus $(\alpha) \mathcal{P}_{5_{1}}=(5)^{a / 2}(\beta)$, a contradiction since $\mathcal{P}_{5_{1}} \nsim 1$ in K_{2}. Therefore $\mathcal{P}_{5_{1}}$ does not become principal in K. Now $S^{2}=\left\{(1,1,1),\left(1, \mathcal{P}_{5_{1}}, 1\right)\right\}$ and $\left(1, \mathcal{P}_{5_{1}}, 1\right) \notin$ ker so $S^{2} / S^{2} \cap k e r \simeq Z_{2}$ and $H \simeq Z_{2} \times Z_{8}$.
4. $K=\mathbf{Q}(\sqrt{-3}, \sqrt{-5}, \sqrt{-69})$

Let $k=\mathbf{Q}(\sqrt{23}), K_{1}=k(\sqrt{-3}), K_{2}=k(\sqrt{15})$ and $K_{3}=k(\sqrt{-5})$. Then $H_{1} \simeq Z_{4}$ and $H_{2} \simeq H_{3} \simeq Z_{2}$. In $K_{1},(5)=\mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}}$ and $\mathcal{P}_{5_{1}}$ generates a class of order 2 since $N(9+\sqrt{-69})=5^{2} \dot{6}$ and the divisor of 6 becomes principal. The units of K having relative norm 1 to K_{1} are generated by $-1, \varepsilon_{1}$ and ε_{3}. Now $\left(1+\varepsilon_{1}\right)=P_{2_{1}} P_{2_{2}} P_{5_{1}} P_{5_{2}}$ in K where (2) $=\left(P_{2_{1}} P_{2_{2}}\right)^{2}$ and (5) $=\left(P_{5_{1}} P_{5_{2}}\right)^{2}$. Note that $P_{2_{1}} P_{2_{2}} \sim 1$ in K_{1}. Also $\left(1+\varepsilon_{3}\right)=(14)(483+26 \sqrt{345}) \sim(\sqrt{-3})(\sqrt{23}) \sim 1$ in K_{1}. The unit $-1=\frac{\sqrt{-5}}{-\sqrt{-5}}$ and $(\sqrt{-5})=P_{5_{1}} P_{5_{2}}$ in K. Thus by Lemma 27, if $\mathcal{P}_{5_{1}}$ becomes principal in K, then $(\alpha) \mathcal{P}_{5_{1}}=\left(P_{5_{1}} P_{5_{2}}\right)^{a}(\beta)$ for some $\alpha, \beta \in K_{1}$. Considering powers of $P_{5_{2}}$ we see that a is even. Thus $(\alpha) \mathcal{P}_{5_{1}}=(5)^{a / 2}(\beta)$, a contradiction since $\mathcal{P}_{5_{1}} \nsim 1$ in K_{1}. Now $S^{2}=\left\{(1,1,1),\left(\mathcal{P}_{5_{1}}, 1,1\right)\right\}$ and $\left(\mathcal{P}_{5_{1}}, 1,1\right) \notin k e r$ so $S^{2} / S^{2} \cap k e r \simeq Z_{2}$ and $H \simeq Z_{2} \times Z_{8}$.
5. $K=\mathbf{Q}(\sqrt{-3}, \sqrt{-5}, \sqrt{-33})$

Let $k=\mathbf{Q}(\sqrt{-3}), K_{1}=k(\sqrt{11}), K_{2}=k(\sqrt{15})$ and $K_{3}=k(\sqrt{165})$. Then $H_{1} \simeq$ $H_{2} \simeq Z_{2}$ and $H_{3} \simeq Z_{4}$. In $K_{3},(2)=\mathcal{P}_{2_{1}} \mathcal{P}_{2_{2}}$ and $\mathcal{P}_{2_{1}}$ generates a class of order 2 since $N\left(\frac{5+\sqrt{-55}}{2}\right)=4 \dot{5}$ and the divisor of 5 becomes principal. The units of K having relative norm 1 to K_{3} are generated by $-1, \varepsilon_{1}$ and ε_{2}. Now $\left(1+\varepsilon_{2}\right)=P_{2_{1}} P_{2_{2}} P_{11_{1}} P_{11_{2}}$ in
K where $(2)=\left(P_{2_{1}} P_{2_{2}}\right)^{2}$ and (11) $=\left(P_{11_{1}} P_{11_{2}}\right)^{2}$. Note that $P_{11_{1}} P_{11_{2}}=\frac{11+\sqrt{165}}{2} \sim 1$ in K_{3}. Also $\left(1+\varepsilon_{2}\right)=P_{2_{1}} P_{2_{2}} P_{5_{1}} P_{5_{2}}$ in K where (5) $=\left(P_{5_{1}} P_{5_{2}}\right)^{2}$. But $P_{5_{1}} P_{5_{2}} \sim 1$ in K_{3}. The unit $-1=\frac{\sqrt{-5}}{-\sqrt{-5}}$ and $(\sqrt{-5})=P_{5_{1}} P_{5_{2}} \sim 1$ in K_{3}. Thus by Lemma 27, if $\mathcal{P}_{2_{1}}$ becomes principal in K then $(\alpha) \mathcal{P}_{2_{1}}=\left(P_{2_{1}} P_{2_{2}}\right)^{a}(\beta)$ for some $\alpha, \beta \in K_{3}$. By considering powers of $P_{2_{2}}$ we see that a is even. Thus $(\alpha) \mathcal{P}_{2_{1}}=(2)^{a / 2}(\beta)$, a contradiction since $\mathcal{P}_{2_{1}} \not \nsim 1$ in K_{3}. Therefore $\mathcal{P}_{2_{1}}$ does not become principal in K. Now $S^{2}=\left\{(1,1,1),\left(1,1, \mathcal{P}_{2_{1}}\right)\right\}$ and $\left(1,1, \mathcal{P}_{2_{1}}\right) \notin$ ker so $S^{2} / S^{2} \cap k e r \simeq Z_{2}$ and $H \simeq Z_{2} \times Z_{8}$.
6. $K=\mathbf{Q}(\sqrt{-5}, \sqrt{-11}, \sqrt{-35})$ Let $k=\mathbf{Q}(\sqrt{7}), K_{1}-k(\sqrt{-5}), K_{2}=k(\sqrt{55})$ and $K_{3}=k(\sqrt{-11})$. Then $H_{1} \simeq H_{2} \simeq Z_{2}$ and $H_{3} \simeq Z_{4}$. In $K_{3},(3)=\mathcal{P}_{3_{1}} \mathcal{P}_{3_{2}} \mathcal{P}_{3_{3}} \mathcal{P}_{3_{4}}$. Now $N(2+\sqrt{-77})=3^{4}$ so 3 generates a class of order 4 in $\mathbf{Q}(\sqrt{-77})$. But 3 is principal in k so $P_{3}=\mathcal{P}_{3_{1}} \mathcal{P}_{3_{2}}$ generates a class of order 2 in K_{3}. The units of K having relative norm 1 to K_{3} are generated by $-1, \varepsilon_{1}$ and $\sqrt{-\varepsilon_{2}}$. Now $\left(1+\epsilon_{1}\right)=3(3+\sqrt{7}) \sim 1$ in K_{3}. Also $\left(1+\sqrt{-\varepsilon_{2}}\right)=$ $\left(\frac{-7+\sqrt{-5}+\sqrt{-11}-\sqrt{55}}{2}\right)\left(\frac{1-\sqrt{-11}}{2}\right) \sim P_{2_{1}} P_{2_{2}} P_{5_{1}}$ in K where $(2)=\left(P_{2_{1}} P_{2_{2}}\right)^{2}$ and $(5)=$ $\left(P_{5_{1}} P_{5_{2}}\right)^{2}$. Note that $P_{2_{1}} P_{2_{2}}=(3+\sqrt{7}) \sim(1)$ in K_{3}. The unit $-1=\frac{\sqrt{-5}}{-\sqrt{-5}}$ and $(\sqrt{-5})=P_{5_{1}} P_{5_{2}}$. Thus it follows from Lemma 27 that P_{3} does not become principal in K. Now $S^{2}=\left\{(1,1,1),\left(1,1, P_{3}\right)\right\}$ and $\left(1,1, P_{3}\right) \notin$ ker so $S^{2} / S^{2} \cap k e r \simeq Z_{2}$ and $H \simeq Z_{2} \times Z_{8}$.
7. $K=\mathbf{Q}(\sqrt{-1}, \sqrt{-6}, \sqrt{-34})$

Let $k=\mathbf{Q}(\sqrt{-1}), K_{1}=k(\sqrt{6}), K_{2}=k(\sqrt{34})$ and $K_{3}=k(\sqrt{51})$. Then $H_{1} \simeq Z_{2}, H_{2} \simeq$ $Z_{2} \times Z_{4}$ and $H_{3} \simeq Z_{2} \times Z_{2}$. In $K_{2},(5)=\mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}} \mathcal{P}_{5_{3}} \mathcal{P}_{5_{4}}$. Now K_{2} contains the quadratic subfield $\mathbf{Q}(\sqrt{-34})$ which has class group Z_{4}. Its Hilbert class field contains the subfield $\mathbf{Q}(\sqrt{-2}, \sqrt{17})$ in which the divisors of 5 are inert. Hence they gain degree 4 in the Hilbert class field of $\mathbf{Q}(\sqrt{-34})$. Since 5 splits completely in K_{2} and the Hilbert class field of $\mathbf{Q}(\sqrt{-34})$ is contained in the Hilbert class field of K_{2}, the divisors of 5 in K_{2} gain degree at least 4 in the Hilbert class field of K_{2}. Since $H_{2} \simeq Z_{2} \times Z_{4}$, the divisors of 5 in K_{2} belong to classes of order 4. We will show that $\mathcal{P}_{5_{1}}^{2}$ becomes principal in K. Let $\alpha=\frac{16+3 \sqrt{34}+7 \sqrt{6}+2 \sqrt{51}}{2}=\frac{16+3 \sqrt{34}+\sqrt{6}(7+\sqrt{34})}{2}$ and let $P_{5}=(5,2+\sqrt{34})$ be a divisor of 5 in $\mathbf{Q}(\sqrt{34})$. Then $\alpha \equiv 0\left(\bmod P_{5}\right)$. Now $N(\alpha)=-50$ so $(\alpha)=\mathcal{P}_{2} P_{5}=\mathcal{P}_{2} \mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}}$ where \mathcal{P}_{2} is a divisor of 2 in K_{2}. Also $\mathcal{P}_{2}^{2} \sim\left(\mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}}\right)^{2} \sim \mathcal{P}_{5}^{2} \sim(1)$ so $\mathcal{P}_{5_{1}}^{2} \sim \mathcal{P}_{5_{2}}^{2}$. Thus $\left(\mathcal{P}_{2} \mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}}\right)^{2} \sim(1)$. Suppose $\mathcal{P}_{2} \mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}} \sim(1)$ in K_{2}. Since this ideal is ambiguous over $\mathbf{Q}(\sqrt{34})$ there must be a unit e of K_{2} of relative norm 1 such that $\mathcal{P}_{2} \mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}}=(\gamma \beta)$ with $\beta \in \mathbf{Q}(\sqrt{34})$ and $\gamma^{1-\sigma}=e$. The group of units of relative norm 1 for $K_{2} / \mathbf{Q}(\sqrt{34})$ is generated by ι and this gives $\gamma=1+\iota$. But $(\gamma)^{2}=(2)=(6+\sqrt{34})^{2}$, so $(\gamma)=\left(6+\sqrt{34}\right.$ in K_{2}. Thus $\mathcal{P}_{2} \mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}} \sim(1)$ in $\mathbf{Q}(\sqrt{34})$, a contradiction, since \mathcal{P}_{2} is not an ideal of $\mathbf{Q}(\sqrt{34})$. Therefore $\mathcal{P}_{2} \mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}}$ is not principal in K_{2}. By considering genera of $K_{2} / \mathbf{Q}(\iota)$ we have
the following distribution:

	2	17_{1}	17_{2}
	+	+	+
$(1+\iota)$	+	-	-
$(2+\iota)$	-	+	-
$(2-\iota)$	-	-	+

Thus $\mathcal{P}_{2} \mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}}$ is a nonprincipal class in the principal genus so $\mathcal{P}_{2} \mathcal{P}_{5_{1}} \mathcal{P}_{5_{2}} \sim \mathcal{P}_{5_{1}}^{2}$. Thus $\mathcal{P}_{5_{1}}^{2}$ becomes principal in K. Now $S^{2}=\left\{(1,1,1),\left(1, \mathcal{P}_{5_{1}}^{2}, 1\right)\right\}$ and $\left(1, \mathcal{P}_{5_{1}}^{2}, 1\right) \in$ ker so $S^{2} / S^{2} \cap k e r \simeq 1$. Thus H has no classes of order 8. From Lemmermeyer [13] it follows that the kernel has order 8 so $H_{1} \times H_{2} \times H_{3} /$ ker has order 8 . Since $\left(1, \mathcal{P}_{5_{1}}^{2}, 1\right) \in$ ker this factor group has no elements of order 4 , so is $Z_{2} \times Z_{2} \times Z_{2}$. Hence the rank of H is at least 3. But $S / S \cap k e r$ has an element of order 2 so $H \simeq Z_{2} \times Z_{2} \times Z_{4}$.

REFERENCES

[1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arithmetica, LX. 4 (1992),321-334.
[2] E. Brown and C.J. Parry, The imaginary bicyclic biquadratic fields with class number 1, Reine Angew. Math., 266 (1974), 118-120.
[3] D.A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
[4] D.A. Buell, On the imaginary bicyclic biquadratic fields with class number 2, Math. Comp., 31 (1977), 1034-1042.
[5] H. Cohn, A numerical study of units in composite real quartic and octic fields, Computers in Number Theory, Academic Press, London-New York, (1971), 153-165
[6] Über die Klassenzahl abelscher Zahlköper, Akademie Verlag,Berlin,(1952).
[7] E. Haught, Bicyclic biquadratic number fields, Masters Thesis, VPI SU, (1972).
[8] D. Hilbert, Bericht über die algebraischen Zahlkörper, Jber. Deutsche Math.-Verein. 4 (1894-95)
[9] M. Hirabayashi, Unit indices of imaginary abelian number fields of type ($2,2,2$), Journal of Number Theory, 34 (1990), 346-361.
[10] Hoffstein, On the Siegel-Tatuzawa theorem, Acta Arith., 38 (1980/81) no. 2, 167-174.
[11] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J., 10 (1956), 65-85.
[12] S. Kuroda, Über den Dirichletschen Körper, J .Fac. Sci. Imp. Univ. Tokyo, 4 (1943), 383-406.
[13] F. Lemmermeyer, Kuroda's class number formula, Acta Arithmetica, LXVI. 3 (1994), 245-259.
[14] T.M. McCall, C.J. Parry and R.R. Ranalli, The 2-rank of the class group of imaginary bicyclic biquadratic fields,
[15] J. Oesterlé, Nombres de classes de sorps quadratiques imaginaires, Sem. Bourbaki, exp. 631 (1983-1984).
[16] B. Oriat, Groupes des classes d'idéaux des quadratiques imaginaires $Q\left(d^{1 / 2}\right),-24572<$ $d<0$, Theorie des nombres, Années, 1986/87-1987/88, Fasc. 2, 63 pp., Publ. Math. Fac. Sci. Besancon, Univ, Franhe-Compté, Besancon (1988).
[17] C.J. Parry, Units of algebraic number fields, Journal of Number Theory, 7 (1975), 385-388.
[18] H.M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J., 14 (1967), 1-27.
[19] H.M. Stark, On complex quadratic fields with class number two, Math. Comp., 29 (1975), 289-302.
[20] T. Tatuzawa, On a theorem of Siegel, Japanese J., 21 (1951), 163-178.
[21] K. Uchida, Imaginary abelian number fields with class number one, Tôhoku Math. Journal, 24 (1972), 487-499.
[22] H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo, 13 (1966), 201-209.
[23] L.C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics 83, Springer-Verlag, New York, (1982),39.

VITA

Thomas Mark McCall was born on October 2, 1961, in Hendersonville, North Carolina. He received the B.S. degree in Mathematics from Liberty Baptist College in 1983. He received the M.S. degree in Mathematics from Virginia Polytechnic Institute and State University in 1986. He was an Assistant Professor of Mathematics at Clinch Valley College from 1988-1992. He taught as an Instructor of Mathematics at Virginia Polytechnic Institute and State University from 1995-1996.

