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(ABSTRACT) 

In this disertation class groups and unit groups of number fields with elementary Galois 

groups of order 4 and 8 are considered. In chapter 3 we consider bicyclic biquadratic 

extensions A/k and give a method for determining the structure of the 2-class group of 

k. In chapters 4 and 5 this method is applied to real and imaginary bicyclic biquadratic 

extensions of Q. In chapter 6 a method for determining the unit group of an imaginary 

octic field is given. In the final chapter all imaginary octic fields of class number less than 

or equal to 16 or prime class number are determined.
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Chapter 1 

INTRODUCTION 

The algebraic integers in a number field form a ring. If K is an algebraic number field 

and R is its ring of integers we will say that ideals A and B of R are related if and only 

if aA = BB for some a, € R. Under this equivalence relation the classes form a group 

known as the class group of K. The order of the class group is the class number of K. This 

dissertation examines class groups of number fields of degree 4 and 8 having elementary 

Galois group. 

If k is a number field of odd class number and K’/k is a bicyclic biquadratic extension, 

then the odd part of the class group of K is easily shown to be the direct product of the 

class groups of its subfields. However, the 2-class group of K is more difficult to determine. 

Lemmermeyer [13] and Kubota [11] give results relating the 2-class group of K to the 2-class 

groups of its subfields, but neither fully determine the 2-class group. In our recent work [14] 

we developed a method for determing the 2-class group of K when k = Q. In chapter 2 this 

method is extended to any field k of odd class number. Two applications of this method 

are given. In chapter 3, the real bicyclic biquadratic extensions of Q having cyclic 2-class 

group are characterized. In chapter 4 it is shown that every abelian group of exponent 2 or 

A occurs as the 2-class group of some imaginary bicyclic biquadratic extension of Q.



In chapters 5 and 6 imaginary octic fields K having elementary Galois group are consid- 

ered. The class number of K is the product of the class numbers of its quadratic subfields 

times a unit index divided by 32. In chapter 5 a method is given for computing the unit 

index. In chapter 6 all octic fields K having class number less than or equal to 16 or prime 

class number are given. Using the technique of chapter 2 the class group of each field is 

computed.



Chapter 2 

NOTATION 

The following notation will be used for the remainder of this dissertation. 

k: A number field having odd class number. 

Kk: A bicyclic biquadratic extension of k. 

Ky, Ko, K3: The subfields of K of degree 2 over k. 

H, Hy, H2,H3: The 2-Sylow subgroups of the ideal class groups of K, Ky, Ko and Ks, re- 

spectively. 

H;: The group of quadratic character values on H;. 

S$: The subgroup of H, x Hy x consisting of those character values which are consistent 

on each pair of 1, H2 and H3. 

S : The subgroup of H; x H2 x Hz with character group S. 

6: The homomorphism H, x H2 x H3 — H defined by 0(C4, C2, C3) = Ci C2C3. 

ker : The kernel of 6. 

Ho: The image of 0.



t: The positive integer determined such that 2‘ is the product of the ramification indices 

of all primes, including infinite primes, for the extension K/k. 

t;: The number of primes, including infinite primes, ramified in the extension K;/k for 

t= 1,2,3. 

R,: The rank of H, xX Hz x H3. 

Rz2: The rank of 7. 

7: The number of divisors of 2 in k which are totally ramified in K. 

(1,qg,7r): An element of H, x Hz x Hz determined by the ideal classes of prime divisors of 

l,qand rin Ky, K2 and K3, respectively. 

w: The isomorphism from the multiplicative group {+1} to the additive group Z2. 

A: The ideal class determined by the ideal A. 

(¢) : The Kronecker symbol using the convention () = (?) for all odd positive integers. 

E_: The unit group of the field _. 

The following notation applies only when K is an imaginary octic field of type (2, 2, 2). 

ky,...,k7: The quadratic subfields of K with ky, k2 and k3 real. 

hy,...,h7: The class numbers of ky,...,k7, respectively. 

d,,...,d7: Positive squarefree integers with k; = Q(./d;) for 1 = 1,2,3, k; = Q(./—d;) for 

17=4,...,7 and dy < dz < dz.



Ko = Q(/d;, /d2) : The maximal real subfield of K. 

€; : The fundamental unit of k; for 1 = 1, 2,3. 

T;,8;,@;: Integers such that ¢; = rita with a; = 0 or 1. 

E*: The subgroup of Ex generated by the units of the proper subfields of K. 

W : The roots of unity in K. 

7 

Wo: The roots of unity in I] Ex,. 
t=1 

7 

Q: The index [Ex : || Ex,]. 
w=1 

3 
Qo: The index [Ex, : [| £«l- 

i=1 

Qi: The index [Ex :WEx,]. 

Qo: The index [W : Wo]. 

A;: The absolute value of a nontrivial principal divisor of k; when Ne; = +1. If possible 

take A; = 2. If Ne; = —1 take A; = 1. 

A: The semigroup generated by the principal divisors A,, Az and A3 modulo square fac- 

tors. 

D: The set {d4, ds, dg, dz}. 

t': The positive integer determined such that 2" is the product of the ramification indices 

of all rational primes for the extension K/Q.



t/: The number of rational primes which ramify in the extension k;/Q. 

w: The integer determined such that 2” is the 2-class number of K. 

We say that the prime 2 is maximally ramified in K if it ramifies in six quadratic subfields.



Chapter 3 

CLASS GROUP STRUCTURE OF BICYCLIC 

BIQUADRATIC EXTENSIONS 

The structure of the odd part of the class group of K is easily shown to be the direct 

product of the class groups of its subfields. While the structure of H depends on the 

structures of H,, Hz and H3, the relation is more complicated. In this chapter we describe 

a method for determining H. 

  ~ HH?’ for any integer Theorem 1 The homomorphism 6 induces an isomorphism Sin; ~ 
er 

71> 0. 

Proof Let (C?’,C?’',C2') € $?° with (Cy,C2,C3) € S. Since the characters on C; in 

~ 

H; are consistent with one another for 1 = 1,2,3, there is a prime p of k which satisfies 

these character values. Now p splits completely in K and has a prime divisor Po such that 

P; = Py NK; = PoP, where (p) = PoP; P2P3 in K. Note that (P2’, P2’, P2’) € S?* with P; 

and C; being in the same genus of K;. Now 

O(P? P22?) = PP PF BF = (P,PyPs)” = (P2p)* = BRP € Hw”, 

Since PiCr 1 is in the principal genus of K;, PiCr te B? for some class B; of K;. Hence 

(P,\Cy}, PeCz',P3Cz') = (B?, B3, B3),



sO 

B? B? B2 = (PyP2P3)(C1C2C3)* = P3(C1C2C3) 1. 

Therefore 

git] soitl 

(B, B2B3) = Po (C2 c?' Cc?) 

and C?'C3'C?' € H?*’, 

Conversely, let C arth 6 2"*) and Py € C be a prime ideal of degree 1 and index 1 

over k. Let P; = Po N K; for i = 1,2,3. Then P, = PoPi,P2 = PoP. and P3 = PoP3 

where Po Nk = (p) = PoP; P2P3. Now (P1, P2, P3) € S and P1P2P3 = P? = C?, Thus 

  PP? D2 Pp? = pe = C?'*" . Therefore a ~ He 

The characters on H; must be normalized so that every unit of k belongs to the principal 

character system. The number of normalizations that occur for the extension K;/k is 1;, 

where 2” is the number of different unnormalized character values generated by the units 

of k . Also, the number of normalizations that occur for the extension K/k is n, where 

2” different character values are generated by the units of & in the direct product of the 

unnormalized characters of K;/k, for i = 1,2,3. [8] 

Lemma 2 The order of a 

Proof Each divisor of 2 in k, which ramifies in K , determines either two or one independent 

characters according as it is totally ramified or not. The other primes of k which ramify in 

K each determine one character. These t characters must satisfy I] x = +1, for? = 1, 2,3, 

x€H;



and any two product conditions determine the third. Normalization of characters imposes 

7 more conditions on the characters. Therefore S has 2'-2-" elements. 

Corollary 3 If k = Q then 

Qt-2 if K is real and no prime congruent to 3 modulo 4 ramifies in K, 

|S| = 
2-3 otherwise. 

Proof If K is real and no prime congruent to 3 modulo 4 ramifies in K, then 7 = 0. 

Otherwise 7 = 1. 

Lemma 4 The order of 5 is hikghs | 9), 

Proof The order of H 1X Hy x Hy is 2%« and the same number of classes of H, x H2 x Hz 

belong to each character value of A, x H 9X Hs. 

3 

Lemma 5 The number t is given by t) +tg+t3 = 2t—7. Moreover, Ry = So (ti —)-3= 
i=l 

3 

2t-7r-3-S 0. 
t=1 

Proof Each divisor of 2 in k which ramifies in K , ramifies in either two or three intermediate 

fields. All other primes of k which ramify in K ramify in two intermediate fields. Thus 

ty +t2+¢t3 = 2t-—7. The rank of H; is t; — n; — 1, so the expression for R, follows. 

For an extension K/k where k has odd class number, Lemmermeyer [13] shows that 

|ker| = aver EEG) where vy = 1 if K = k(é, pe) for units e,p of k and v = 0 

otherwise; e(p) is the ramification index in K/k of a prime ideal p in k; Ex is the group of



units in EF, which are norm residues in K/k and q(K) = [Ex : Ex,Ex,Ex,]. For k = Q, 

Lemmermeyer’s result reduces to the following Theorem of Kubota [11]: 

2‘/q(K) if K is real and n = 0, 

|ker|= 4 2'-1/9(K) if K is real and 7 = 1, 

2'-2/q(K) if K is imaginary. 

For the remainder of this chapter let k = Q. In this case we will show that the rank of 

HT is given by the rank of a Z2-matrix. 

Theorem 6 The rank of H 1s given by 

t—2 if K is real and n = 0, 
R2 = log,[Ai x Ha x H3:S-ker| + 

t—3 otherwise. 

2'-2 if K is real and 7 = 0, 
Proof From Kubota [11], H? C Ho and [H : Ho] = Thus 

2'-3 otherwise. 

R, = log,[H: H?] 

logs[H : Ho] + log.[Ho : H?] 

t—2 if K is real and 7 = 0, 
= log.[Ho: H7)+ 

t—3 otherwise. 

Now Ho/H? ~ eer and S$/SMker ~ S-ker/ker so [Ho : H?] = [Hi x H2 x H3: 

S - ker]. 

Corollary 7 If K is real andn =0 thent—2< Ro < R,. Otherwise t —3 < Ro < Ra. 

10



Proof It is immediate from Theorem 6 that Rp > t—2if K is realand 7 =O and Rp >t-3 

otherwise. Now 

  

| Ay x Ho x H3| 
7S: ———__—__— k [H, x H. x H3: S-ker| is] ker] |S 9 ker| 

|H, x H2 x H3| _ |Hi x Ho x Hs| _ 2Re 
~ | S| Hy x H2 x Hs||S) 15 

2a 

QFa/ot-2 if K is real and n = 0, 

QF /2*-3 otherwise. 

It now follows from Theorem 6 that R2 < Rg. 

Theorem 8 Let m denote the rank of § -ker. Then 

t—2 if K ts real and yn =0, 
Ro = Rag—m+t 

t—3 otherwise. 

3 3t-—5 if K is real and n= 0, = -r-m-Yomt 
i=1 3t—6 otherwise. 

Proof Let ¢: H, x Hy x H3—- A, x Hp x A be the mapping determined by taking a 

  class C; of H; to its character system in H;. Then peeks ~ hay But ¢(S-ker) = 

O(S)- (ker) = S - ker. Moreover, ker¢ is the direct product of the 2-Sylow subgroups of 

the principal genera of K,, K2 and K3 which is clearly contained in S. Thus EH xt ~ 

aan The result now follows from Lemma 5 and Theorem 6. 
-ker 

In order to determine Rj we must be able to find a set of generators for ker. If p 

is a rational prime which ramifies in K then either (p,p,1),(p,1,p) or (1,p,p) is in ker 

according as p ramifies in Ky, and K2, Ky and K3 or K2 and K3. Elements of this form 

11



generate ker unless K is real, 7 = 0 and Ne; = +1 for some z. In this case there is an 

additional generator determined by weak ambiguous classes. 

Lemma 9 Suppose K is real and» = 0. Then there exist ideals A; of K; such that A; is 

an ambiguous class and A,A2A3 = (@) for some a € K with Nx/;Q(a@) < 0. Futhermore, 

A; is a weak ambiguous class for each i with Ne; = +1. 

Proof The existence of ideals A}, Az and A3 such that A; is ambiguous and A; A2A3 = (a), 

for some a with Nx /Q(@) < 0, is proven in Lemmas 14 and 15 of [11]. Suppose Ney = 

+1 and let o; be the automorphism of K fixing K;. Then Ay? = pees = 

praghe ga = (pi) for some p; € Ky with Nx,/Q(p1) < 0. Therefore A; is not an 

ambiguous ideal, so A; must be a weak ambiguous class. 

Now m is the rank of a Z.-matrix M whose rows correspond to generators of S - ker by 

means of the isomorphism w. 

Example Let Ky = Q(/lqrs), Ko = Q(Jlq) and K3 = Q(./rs) withl=q=3 (mod 4) 

and r=s=1 (mod 4). The table of consistent characters is: 

  

12



Here § is generated by (0,1,1,0,1,1) and ker is generated by {(/,1,1), (¢,1,1), (7, 1,7)}- 

Thus 

    LHL) OE) 9G) | 
where the first row corresponds to the generator of S$ and the last three rows correspond to 

generators of ker. We have deleted one character from each subfield since the product of 

the characters for a quadratic field is +1. The first two columns correspond to characters 

for K,, determined by r and s, and the last column to a character for K3, determined by 

r. Now Rg =3 andt=4s0 Rp =4-—™m. 

13



Chapter 4 

REAL BICYCLIC BIQUADRATIC FIELDS OF 

2-RANK 1 

The real bicyclic biquadratic fields having odd class number have been determined by 

Hasse [6] using the class number formula. As an application of the techniques developed in 

chapter 3 we will determine all such fields having 2-class group of rank one. 

Theorem 10 The real bicyclic biquadratic fields whose class groups have 2-rank one are 

listed below. In each case H, X H2 X H3 ~ Zoe X Zo X +++ X Zo for somea>1andH ~ 

Zya-1,Z 90 OF Loati. In the following table [a1,a2,a3] followed by [b1,b2,...,b,] indicates 
that Q(,/a1),Q(,/a2) and Q(,/a3) are the quadratic subfields of K and by,b2,...,b, are 

congruence conditions modulo 4 on the prime divisors of a,,a2 and ag listed in alphabetical 

order. Here l,q,r and s are distinct primes. The second column gives further conditions 

that must be satisfied and the third column gives the 2-class group of K. 

[1 or 2,1] 

2. [Iq, 1,4] 
[1,3] 

3. [Igr,lq,7] 
[1 or 2,1,1 or 2] 

hy >2 

Ney = Nég= —1 and 

(7) =@=-1 
Ne, = -1, Nég = +1 and either 

hg = 2 and @ =-lor 

ho =2and (2) = -lor 

hg > 2 and @ = (4)=-1 

14 

ZLoa-1 

Zoa-1 

Zya+1 

Zya41



4, [lgr,lq, 7] 

[2 or 3,3, 1 or 2] 

5. [lar,lq,r] 

(3, 3, 3] 

6. [lgr,lq, 7] 

(1, 3,3] 

7. [lgr,lq,7] 

(1, 1,3] 

8. [Igr,lq,r] 

[3, 1, 1] 

9. [lgr, lg, 7] 
[1, 3, 2] 

10.[lgr, lq, r] 

(2, 1,3] 

11.[lgr, lq, r] 
[2, 3, 3] 

12.[lq, lr, qr] 

[1 or 2,1 or 2,1 or 2] 

Ney = +1,Neq = -1, 

h, = 4 and (4) # (4) 

Ne, = Neqg= +1, (4) # (2) 

and either hy = 4 and hy = 2 

or hy > 4 and hg = 2 

£\) = (4) =-lor 

£) = (2) =-1 or 

()=(;)=-1 
(4) = -1 and either 

(4) =-lor (2)=1 

Né, = Néq = Né3 and at 

least two of (4) , (4) and 

(2) equal -1 

Ne = +1, Neéq = Neé3 =-] 

15 

Zoe 

Zoe 

Zoa-1 

Za 

Zoot if q( K) = 2 

Zo if q(K)=1 

Zoati if q(K) = 2 

Za af q( Kr) =] 

Zo 

Zya+1 af q( Ir) =2 

Za if q( Kk) =1 

Za 

Zo041



13.[lq, lr, qr] 

(1, 3, 3] 

14. [Iq, lr, qr] 

[1, 1, 3] 

15.[lq, lr, qr] 

[2, 1,3] 

16.[lgrs,lq,rs] 

[2 or 3,3,3,3] 

17.[Igrs, lq, rs] 

[2 or3,3,1,1 or 2] 

18.[lgrs, lqr, s] 

[2 or 3,3,1,1 or 2] 

19.[lgrs, lgr, | 

with hy = 2 and either 

(4) =-lor (2) =-1, 

or hy > 2 and (4) = (4)=-1 

Ne = Néq = +1,Né3 = —l, 

(2) = -1 and either hy = 2 and 
hg > 2 or hy > 2 and ha = 2 

()=-16 (I= 
4 = +1 and either 

f\ = (4) =-1 or 

1) = (4) =-1or 
(4) = (3) =-1 

) 
) 

(2) and (4) # (4) or 

= (4) = -1 and (4) # (4) or 

# (2) and (4) = (3) =-1 3 
[
~
 

B 
l
n
 

3 
l
e
 

= —1 and either 

—lor (4) =-1 

r
e
r
 
—
 

& 
|
~
 %
 

IS
 

S
e
 
a
”
 

I| 

= —1 and either 

o
n
 

® 
[~

~ 

16 

Zoot 

Zya+1 uf q( kK) = 2 

Zo if q(/K)=1 

Zoati if q( K) = 2 

Zoa if q(K)=1 

Zy0+1 af q(K) =2 

Zoe tf q(K)=1 

Zoe if q(K)=2 

Zoa if q(K)=1 

Zyat1 af q(K) =4 

Z20 tf q(K) = 2 

Zo 

Zoot if q(K) =2 

Zo if q(K)=1 

Loot af q( Kk) =2 

Zoo if q(K)=1 

Zoa+1 if q(K) =2



[2, 3,3, 1] (4) =-lor (£)=-1 Zoo if q(K)=1 

20. [lgr,lqs, rs] (4) =-lor (4) =-1 Za 

[1 or 2,2 or 3,3,2 or 3] 

21.[lqr, igs, rs] i) = @ = -1 and either Zoati tf qi Kk) = 2 

[2 or 3,3,1,1 or 2] (4) =+41 or (4) =41 Zoo if q(K)=1 

(4) =-—-l, (4) = +1 and either Zoot if q( K) = 2 

(4) =-lor (£)=-1 Zoe tf q(K)=1 

(4) = +1, (4) = —1 and either Zoot1 tf g( K) = 2 

(4) = -1 or (£) =-1 Zoe if (/K)=1 

(4) = (4) = +1 and at least Zari if g(K) = 2 

two of (£),(2) and (£) equal -1 Za if g(K)=1 

Proof Since ker is elementary and Hi xH2x Hs ~ Ho is a subgroup of H, it follows that 

if H is cyclic then at most one factor of H, xX Hy xX Hg has order greater than 2. It 

follows from Corollary 7 that if H is cyclic then ¢ < 4 and ¢ = 4 only if 7 = 1. The 

above list follows from a careful analysis of cases. For example, when d,; = lqr,do = Iqs 

and d3 = rs, with 1 = 2 or 3 (mod4),q=3 (mod4),r=1 (mod 4) and s = 1 

lq r | Ig | r 8s 8 

or 2 (mod 4) the table of consistent characters is: + +/+ 4/4 4. Here S 
  

is generated by (1,1,1,1,1,1) and ker is generated by (J,/,1),(¢,q,1) and (r,1,r). Thus 

1 1 1 

v(7) ¥(f) 0 
w(2) (2) 0 

w((4)(2)) 0 BCE) 
for K,, determined by r, and the last two columns correspond to characters for Ky and K3, 

M= where the first column corresponds to a character 

determined by s. By Theorem 8, Rp = 4—™m. If (4) = (4) = —1 then M reduces to 

17



0 0 1 

ib (2) v2 5 so Rz = 1 if either (4) = +1 or (4) = 41. If (4) =: 3) = +1 

1+¥(7) 0 0 
1 1 1 

then M reduces to v(2) (4) 0 so R2 = 1 if at least two of (2), (2) and 

v (7) (3) 
0 1 1 

(£) equal —1. If (4) = —1 and (4) = +1 then M reduces to 1 0 0 sO s r s 0 p (4) 0 

0 0 wp (<) 

Ry = 1 if either (2) = —-1 or (§) = -1. If @ = +1 and (4) = —1 then M reduces to 

1 0 1 

ot 8 so Ro = 1 if either (4) = —1 or (£) = —1. That H ~ Zagat: or Zoa w (2) 0 0 2 r 8 Qat 2 

0 0 () 
according as q(K) = 2 or 1 follows from the class number formula h = iqQ( K \hyhgh3. The 

remaining cases are done similarly. 

18



Chapter 5 

GROUPS OCCURING AS CLASS GROUPS OF 

IMAGINARY BICYCLIC BIQUADRATIC 

FIELDS 

In this section we will show that every abelian group of exponent 2 or 4 occurs as the 

2-class group of some imaginary bicyclic biquadratic field. Several technical lemmas preceed 

the main result. 

For any nx n Z,—matrix A, let A(i1,...,%%) denote the matrix obtained by adding 1 to 

the 7;2; entry of A for, 7 = 1,...,k. Define C; = (1) and for n > 1 define C, = (¢;;) to be 

the n x n Zag—matrix given by: enn = 1,¢;i41 = Cig; = 1 for? =1,...,n—1 and c;; =0 

otherwise. 

Lemma 11 The following hold for each n: 

1. detC, = 1, 

2. det C,,(1,2,...,3k) = 1, 

8. det C,(1,2,...,38k +1) = 0, 

4. det C,(1,2,...,3k +2) = 1, 

19



5. det Cn(1,2,...,3k,3k +2) =1. 

Proof Now detC,; = detC2 = 1 and expanding about row 1 of C, and then about 

column 1 of the resulting minor we see that detC, = detC,_2. Thus detC’, = 1 for 

each n. It is easily verified that detC,(1) = det Co(1) = det C3(1) = 0, det C2(1,2) = 

det C3(1,2) = 1 and det C3(1,2,3) = 0. Expanding about row 1 of C,(1,...,2) and then 

about column 1 of the resulting 1-2 minor we see that det C,(1) = detC,_1 + det C,_2 

and det C,(1,...,2) = det C,_i(1,...,i- 1) + det C,,_2(1,...,i-— 2) for i > 2. Thus (2),(3) 

and (4) hold. Now detC,(2) = detC3(2) = detC,(2) = 1. Expanding about row 1 

of C,(1,...,3k,3k + 2) and then about column 1 of the resulting 1-2 minor we see that 

det C,,(2) = det C,_2 = 1 and det C,(1,...,3k,3k + 2) = det C,_1(1,...,3k — 1,8k +1)4 

det C,_o(1,...,3k—2,3k) for k > 1. Repeating this for C,_1(1,...,3k—1,3k+1) we see that 

det Cn-i(1,...,3k—1,3k+1) = det Cy_o(1,...,3h —2,3k) + det C,_3(1,...,3h—3, 3k —1). 

Therefore det C,,(1,...,3k,3k + 2) = det C,_3(1,...,3k — 3,3k — 1) and (5) holds. 

For n > 2 let A, be the n X n Z.—matrix defined by A, = C,,(1). 

Lemma 12 The following hold for each n : 

1. det A,(1,...,3k) = 0, 

92, det A,(1,...,3k +1) =1, 

3. det A,(1,...,3k +2) = 1, 

4. det A,(1,...,3k —1,3k +41) =1. 

20



Proof Now det A2(1) = det A2(1,2) = 1. For n > 3, ay2 and ag; are the only nonzero en- 

tries in row 1 and column 1 of A,(1,...,7), respectively. Thus, deleting the first two rows and 

first two columns of A,(1,...,7) we see that det A,(1) = det C,_2 and det A,(1,...,2) = 

det Cn_2(1,...,2-— 2) for i > 2. The result now follows from Lemma 11. 

For n = 3m,m > 2, define B, = (6;;) to be the n X n Zo—matrix given by: bi2 = 

di2 + 1,621 = aor + 1, b14 = Gig + 1, ba, = G41 + 1,622 = Gog + 1, b4g = Gag + 1 and 5;; = aj; 

otherwise. 

Lemma 13 For each n, det B,(1,...,n) = 1. 

Proof Note that 6,4 and 64; are the only nonzero entries in row 1 and column 1 of 

B,(1,...,7), respectively. Thus B,(1,...,n) can be reduced to the matrix 

0001 

B 0 0010 | 
( 0 Cy-a(1,-..,2—4) where B= 0111 The result now follows from 

10410 
Lemma 11. 

Let pi,...,ps be primes with p} = 3 (mod 4) and pj=1 (mod 4),i#1. Forl<i< 

s—llet y= (2). 

Lemma 14 The 2-rank of the class group of Q(./—p1 -*-Ps—1,./Ps) 18 (28-3) -—(yr++°°+ 

Ys-1)- 

Proof Let Ky = Q(./—p1--:Ps-1), Ko = Q(,/ps) and K3 = Q(./-p---p;). For 1 < 

s—1 

ij<s-lifz let z,;=% (2+) and 2;; = So aij. Since ker is generated by {(p;, 1, p;)|t = 
j=l 
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1,...,s— 1}, 

    

( 1 0 0 1 0 0 1 \ 

0 1 0 0 1 0 1 

M= 0 0 1 0 0 1 1 

X11 Yi20 tts Xs 2 M1 + Yr O12 U1 5-2 L1 s—1 

\ Zis-1 22s-1 *** VLs—-2s-1 Fis-1 T2s-1 *** Ls—2s-1 Fs—-1s-1 + Ys / 

a s-l 

where the first s — 2 rows correspond to generators of S. Since > z;; = 0 for each 1, M 

j=l 

reduces to 

( 1 0 0 1 O 0 1 \ 

0 1 00 1 0 1 

0 0 1 0 0 1 1 

0 0 0 yw O 0 600 

\ 00 --- 0 0 0 -+: O Y5-4 ]     
The result now follows from Theorem 8. 

For the field Q(./—p1 ---ps—1,./Ds), if Hi x Hz x Hg is elementary then it follows from 

Corollary 7 and the class number formula that s — 2 < Rz < 2s — 4. 
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Lemma 15 For any s > 3,8 #4 and for anyl with s —-2<1< 2s —4 there exist primes 

P1,--+)Ps such that H; x H2x Hg is elementary and the 2-class group of Q(,/—P1 -**Ps—1, /Ds) 

has rank |. If s = 4 then there exist primes such that the rank is 3 or 4. 

Proof Choose pj,...,ps—1 such that for: 4 7, » (2:) equals the ij—entry of A,_;. The 

first row of A,_; is the sum of rows 2 through s— 1 and these rows are clearly independent, 

so A,_1 has rank s—2. Thus #7; is elementary. Now the character table for K3 corresponds 
y, 0 --- O 

0 yw --- 0 
to As1+ . . . By Lemma 12, if 1 < w < s—2 then p, can be chosen 

O --- O Ys-y4 

so that H3 is elementary and exactly w of y1,...,Ys_1 are equal to 1. It also follows from 

Lemma 12 that if s #1 (mod 3) and p, is chosen such that y; =... = ys-1 = 1, then H3 

is elementary. 

Ifs=1 (mod 3),s £# 4 choose p;,...,p,—1 such that (24) equals the ij7—entry of 

B,_;. The rows of B,_; are dependent, but after adding row 1 to row 4 and deleting row 

2 we are left with s — 2 independent rows. Thus H, is elementary. The character table for 
wy OO --- O 

0 
Hz corresponds to B,1+]| , ; . . By Lemma 13, p, can be chosen so that 

O +s O Ys-4 

Hz is elementary and y; =... = ys—1 = 1. The result now follows from Lemma 14. 

With K as in the previous lemma and s = 4 the character system of K; must be one of 

the following: 

  

| Pi P2 Ds Pi P2 D3 Pi P2 Ps 
ralt+ — —- ml- + - mil- - + 
P2|)- + - pal+t+ - -—  pal- + —- 

P3|- - + pP3|- - + pP3|+ - - 
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A case by case analysis shows that there is no choice of p, such that H3 is elementary and 

Ry = 2. 

Now let p,,...,ps be primes with p) = ... = ps-2 = 1 (mod 4) and p,_1 = ps = 3 

(mod 4). Choose p1,...,ps—1 so tht w (z:) equals he 17—entry of A,_1, for 1,7 < s—1. For 

1=1,...,8s-—2, let y= (2). 

Lemma 16 The rank of the 2-class group of Q(,/—p1 ..-Ds—1,./Ps—1Ps) 18 28 —5— (y+ 

    

    

+++ Ys—3). 

Proof The kernel is generated by {(p;,1, p;)|1 < i < s — 2} and (ps-1,1,1) so 

{100 0 0 0 1 0 0 +: 0 \ 
010 0 :+ 0 0 0 1 O ::- 0 

M= 000 0 01 0 0 0 1 
110 0 00 1+%m% #1 «0D 0 
101 0 0 0 1 y2 1 0 
010 1 0 0 1 y3 0 

00 0 se» 1 0 0 0 0 1+ Ys—2 
.0 00 0-01 #0 0 0 +: 0 

where the first s — 2 rows correspond to generators of S. Now M reduces to 

f1 0-00 1 0 0 +. 0 \ 
01 -:--- 00 0 1 0 ::- O 

0 0 010 0 0 1 
0 0 000 0 0 1 
0 0 00m O O 0 
0 0 00 0 yw O 0 

(0 0 --- 00 0 0 O Ys—2 ) 
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The result now follows from Theorem 8. 

  

For the field Q(./—p1 - +: Ps—1,./Ps—1Ps), if Hy x H2 X Hz is elementary then it follows 

from Corollary 7 and the class number formula that s —2 < Ry < 2s — 5. 

Lemma 17 For any s > 3 and for any l with s —-2 < 1 < 2s —5 there exist primes 

P1,---,ps such that H, x H2 x H3 ts elementary and the rank of the 2-class group of 

Q(./—Pi***Ps—1,VPs—1Ps) 1s L. 

Proof Since A,_; has rank s—2 , Hy is elementary. The character table for K3 corresponds 
Y1 0 eae 0 

0 ¥y 
to A,s—et+ . . . . It follows from the proof of Lemma 11 that for 

0 O +++ Ysa 
0<w<s—3,if w of y,...,¥,-3 are equal to 1 then y, 2 can be chosen such that H3 is 

elementary. The result now follows from Lemma 16. 

Theorem 18 Every abelian group of exponent 2 or 4 occurs as the 2-class group of some 

imaginary bicyclic biquadratic field. 

Proof The result follows immediately from Lemmas 15 and 17 except for the group 24 X Z4. 

In that case let K = Q(./—pipop3, ./pa) with p; = p2 = p3 = 3 (mod 4) and py = 1 

(mod 4). Choose p,,...,p4 such that (2) = +1 and (z+) = —1 fori = 1,2,3, 7 = 2,3,4, 

(1,7) # (1,3) and z < 7. Then AH, x H2 x Hz is elementary and H ~ Z4 x Z4, since the 

matrix M has rank 5. 
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Chapter 6 

UNIT GROUPS OF OCTIC FIELDS 

For this chapter let K be an imaginary octic field of type (2,2,2). An easy group 

theoretic argument shows that Q = QoQ1Q2. Now according to Kuroda [12], Qo = 1,2 or 

4 and Q2 = 1 or 2 according as /—1, V2 € K or not. By Theorem 4.12 of Washington [23], 

Q; = 1 or 2 since K is a CM-field. In this section we give conditions for determining Qj. 

Let ¢ = We be a primitive eighth root of unity. 

Lemma 19 Ife € Ex — E* then one of the following must hold: 

1. e? = 1€3 with Nez = 41, 

2. e2 = —£9£3 or e2 = LE9ER with Nég = Neé3 = +1, 

2 
3. e? = —E1{EQE3 OFT €° = LELEQERZ with Ne = Néq = Né3, 

foe? = Cen eh!” op ce? = Ceyen eh? with Neg = Ne3 = +1. 

Proof Since [Ex : WEx,] < 2, e? = we for some w € W and € € Ex,. We may assume 

that w is an eighth root of unity since any root of unity of odd order in K is a square. Thus 

2 = wetedes with a,b € {0,1} or e? = werede,!? with a,b € {0, 4,1, 3}. € ae) 

2 Suppose e* = wé3 and note that w #4 +1 since e ¢ E*. If dj = 2 and w = ¢ choose an 
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automorphism o of K with o(t) = 1 and o(V2) = —V2. Then (e?)!+7 = —ve3t? = 2 = w? 

so elt? = tw contradicting that w is not in the fixed field of o. Thus either d3 # 2 or w 

is not a primitive eighth root of unity, so there is an automorphism 7 of K with r(w) =@ 

and T(/d3) = —/d3. Now (e?)!+7 = e}t7 = N(e3. If N(e3 = —1 then s = +e!+7 is fixed 

by 7, a contradiction. Thus Ne3 = +1. If w = ¢ choose an automorphism p with p(e) = 2, 

p(v2) = —V2 and p(./d3) = —V/d3. Then (e?)!+? = —: contradicting that ¢ is not in the 

fixed field of p. Therefore w =. 

2 — were3. If w = C, choose an automorphism o with o(e) = 2, o(V2) = Now suppose e 

—V2 and o(/d3) = Vd3. Then (e”)!*+° = tue? contradicting that ¢ is not in the fixed 

field of o. Thus w # ¢ so there is an automorphism 7 with r(w) = @, T(./d2) = Vd2 and 

T(Vd3) = —V/d3. Now (e7)!*7 = e%e3+7 = c2 Nex = te2. If (e?)!4*7 = —c2 then e!+7 = tue 

contradicting that z is not in the fixed field of r. Thus Ne3 = +1 and similarly, Neg = +1. 

2 Now supose e* = wé €2€3. If w = ¢ take dz = 2 and let 7 be an automorphism 

with r(v) = 4, T(V¥2) = -V2 and r(Vdy) = Vay. Then (e?)!t7 = —ve?(ege3)'47 = 

veve,t? = +ue?, contradicting that ¢ is not in the fixed field of r. Thus w # ¢ so there is 

an automorphism o with o(w) = 0, o(Vd1) = —Vd1, o(./d2) = —Vd2 and o(./d3) = Vd3. 

Now (e?)!+? = (€,€2)!*7e2 and «¢ is not in the fixed field of o so Ney = Neg. Similarly, 

Ne; = Neé3 so Ney = Neg = NE3. 

Now suppose e? = weted_l/? with a,b € {0, 3, 1,3}. Let o be an automorphism with 

a(Vd3) = Vd3, o(/d1) = —Vd1, o(Vd2) = —Vdz and o(t) = -1 ifs € K. Now e4 = 

wetter e, with w? = —1 ore so (e*)!t7 = (eft? (cht? )ke2 with j,k € {1,2}. Thus 
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(et)!+7 = +e2. If (e*)!*7 = —e2 then (e?)1+? = tve3 contradicting that e is not in the 

fixed field of o. Thus (e4)!*? = ¢2 and (e?)!+? = +e3. This implies that \/£é3 is in a 

biquadratic subfield of K and it follows from [12] that Nez = +1. Now let Fy and F2 be 

the imaginary biquadratic subfields of K containing /d3. Then 

Nxyr,(e)” = NK/F, (W)NK/F, (€1)°Nxyr, (€2)’(+s) = W13 

and 

Nxyp,(e)? = Nxjp,()Nxyr(€1)* NKR, (€2) (Es) = wr€3 

where w, and w2 are roots of unity in Fy and Fy,respectively. Since both Fy and F> have unit 

index 2, F, = k3(e) and Fy = k3(/—2). Thus K = k3(t, V2) = Qi, V2, /d3). Moreover, 

we may assume that ky = Q(V/2) so Ney = —1. Since e? = etedel!? has no solutions in 

K, it follows that w = ¢. Let r be the automorphism with T(z) = —e, r(V2) = V2 and 

t(/d3) = —V/d3. Then (e?)!*7 = 624(ebel/2)147 = w3€?% for some root of unity w3 in 

the fixed field of 7. If follows from [12] that a € Z. If b = 0 then Nx p,(e)? = (-1)%e3 

and Nxjp,(e)” = —(-1)%e3 so fez € F, or /é3 € Fy. This contradicts that F, and Fp 

are imaginary. If b = 1 let p be the automorphism with p(t) = 4, p(/2) = —V2 and 

p(/d3) = —Vd3. Then (e?)'+? = —1(—1)*e2(e31”)!/2 = +1e2 which is impossible since C is 

not in the fixed field of p. Hence 6 € {4,3}. Since Nxyx,(e)? = e2%e3e3 = efte}? le2€3 = 

2b—1 
(e¢e,? )*e2¢3 where 2b — 1 is and even integer, it follows that ./e1é2 € Ko. It follows from 

[12] that Neg = +1. From symmetry in €2 and ¢3 it follows that 2 is a principal divisor of 

2 1/2 1/2 
) = weres! ex! é 

V20 
  ky. Thus €2 = 2a” for some a € ka. Hence if e? = were! ?el/? then ( 
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so we may take b = ‘. 

Corollary 20 If e? = wetedel/? has a solution in K then /—1 € K, ko = Q(./m) and 

k3 = Q(V2m) with m=3 (mod 4). Moreover, 2 is a principal divisor in both kg and kz. 

Proof As shown in the above proof, Ko = Q(V2,/m) with kz = Q(./m). By symmetry 

in kj and k3 we may assume that m is odd. Since 2 is a principal divisor in k2 it follows 

that m=3 (mod 4). Also, w=¢so0 /-1€ K. 

In the following lemmas we describe a method for computing units of the form ‘/1é2€3 

and ¥/tezé2€3. Let dy = 2, d2 = m= 3 (mod 4), K = Ko(c) and suppose that 2 is a 

principal divisor in both kg and k3. Write €2 =r+s/m and 63 = ut vV2m. 

Lemma 21 There exist integrs a,b,c and d such that ,/ez = av2-+bv/2m and ,/é3 = cV2 + 

d/m. Ifm=7 (mod 8) thenr+1=a*, r—1= mb?,u+1 = 4c? and u—1 = 2md? and 

ifm=3 (mod 8) thenr—1=a?,r+1= mb’, u—1 = 4c? andu+1 = 2md?. Moreover, 

b and d are both odd. 

Proof Since Neg = Nez = +1 it follows that /é2 = V2r4tV20=1) and //é3 = 

V2 uti) oe) Clearly u is odd since u* — 2mr? = 1. Since 2 is a principal divisor of ko, 

2(r +1) = 2a? and 2(r $1) = 2mb? for some a,b € Z. Thus r+1 = a? and rF1 = mb’. It 

follows that r is even, for otherwise r+1=r—1=0 (mod 4). Therefore, /éz = aV2+bv2m 

and /é3 = cV2 + dy/m with {r+ 1,r— 1} = {a?, mb?} and {u+ 1,u— 1} = {4c?, 2md?}. 

Suppose r+ 1 =a? and u—1=4c?. Then r+u = mb? 4 2md?, r+u+2 = a? +2md? and 

r+u—2 = 4c? +mb?. Thus a2 =2 (mod m) and 4c? = -2 (mod m) so (5) =-1 4c? 
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(mod m), contradicting that m=3 (mod 4). The case r—1 =a? and u+ 1 = 4c? yields 

a similar contradiction. Therefore, either 7+ 1 = a? and u+ 1 = 4c? or r—1 = a” and 

u—1= 4c?. Now r is even and r+1 = mb? so b must be odd. Also d must be odd, for 

otherwise u+1=u—1=0 (mod 4). Suppose r+1= a? andm=3 (mod 8). Then 

r—1=mb?=3 (mod 8) soa? =r+1=5 (mod 8), which is impossible. Therefore 

r—l=a?ifm=3 (mod 8) and similarly r+1=a?ifm=7 (mod 8). 

Now define a = mbd + (ac + 1)V2, B = mbd + (ac — 1)V2, py = 2mbd + 2a — Ac, 

p2 = 2mbd — 2a + 4c, p3 = 2mbd + 2a +4+ 4c, pg = 2mbd — 2a — 4c, yy = —2mbd + 4ac + 

2a + 4c+ 4, yo = —2mbd + 4ac — 2a — 4c + 4, y3 = —2mbd + 4ac + 2a — 4c — 4 and 

4 = —2mbd + 4ac — 2a 4+ 4c — 4 with a,b,c and d as in Lemma 21. 

Lemma 22 Ifm=3 (mod 8) then #/é2é3 = 4(1+e)(1-v+ V2)(Vat+ Vp) = (Vai t+ 

Via + Vos + Joa and {frereres = H+ (1-1 + VO(va + VB). Ifm=7 (mod 8) 

then exes = “2 Jei(y/ae;! + be) = Bal Vint Vat Vist V7A) and Yeas = 
1 (141)(1-v+-V2)(aey! + V/Bez!). Here we take ¥/=2 = Wt and Yue = B(1-.+- V2). 

Proof It follows from Lemma 21 that /é9€3 = 4(2ac + mbdV2 + 2bce,/m + ady/2m) and 

Nko/ky (/€2€3) = +1. Thus 

ings = \V 2ac + 2+ mbdV2 + V/2ac — 2 + mbdv?2) 

= w (Vint + (ac + 1)V2 + \/mbd + (ac — 1)v3) 

4 

“(va+ VB). 

b
o
l
 

N
o
l
 
“
o
™
~
™
 

s
 

Note that (mbd)? = 2a*c* + 2 — a? — 4c? or (mbd)? = 2a7c? + 2 + a? + 4c? according as 
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m=T7 (mod 8)orm=3 (mod 8). From this it follows that 

f 

  

—~(a+2c)? if m=7 (mod 8) 
N(a) = 4 

(a—2c)* if m=3 (mod 8) 

and . 

—(a—2c)? if mz=7 (mod 8) 
N(B) = 9 

(a+2c)* if m=3 (mod 8). 

  Thus N(~°32) = N(f) =+1lifm=3 (mod 8), so 

x 

[a _il ambd + 2a ~ 4c | 2mbd — 2a + 4c 

a—2c 2 a—2c a — 2c 
    

  

    

  

and 

Bp _i ambd + 2a+ de | 2mbd — 2a — 4c 

a+2c 2 a+ 2c a+ 2c , 

Therefore 

Ja = 5 (V2mbd + 2a — 4c+ V/2mbd — 2a + Ac) 

1 
= 5(vp1 + v2) 

and 

  Jo = 5(Vimbd + 2a + 4 + V2mbd— Ba — 4) 
1 = 5(vps + Vea): 

Ifm=7 (mod 8) then ae;! = (—mbd+2(ac+1))+(mbd—(ac+1))V2 and N(25 = +1. 

Thus 

| aey* _il —2mbd + dac + 2a + det 4 | —2mbd + 4ac — 2a — 4c +4 

a+2c 2 a+ 2c a+ 2c 
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so jae! = 5(./71 + /7¥2). Similarly \/ Be; = 4(./¥3 + /7a)- The expressions for {/1é2€3 

and </ve7e2€3 are immediate. 

Corollary 23 If m|(ac+1) or m|(ac—1) then either #/1é2€3 € K or ¢/tete2€3 € K accord- 

  

ingasm=7 (mod 8) orm=3 (mod 8). Conversely, if s/é2é3 € K or /tederes EK 

then m|(ac + 1) or m|(ac — 1). 

Proof Ifm=7 (mod 8) then 

atc? —1 = arc? — 2c? + 2c* —1 

= c*(a? —2)+ 2c? — 1 

u—1 

2 
  = c(r— 1)+ 

= mb*c? 4+ md?. 

Similarly, a*c? — 1 = mb?c? — md? ifm =3 (mod 8). Now let p be a prime with p Ym, 

p|bd and p|(ac+ 1) and note that p # 2 since bd is odd. Since a?c? — 1 = mb*c? + md? it 

follows that p|b and pid. Thus p?|(ac + 1). Suppose that p‘|b, p'|d and p™|(ac + 1). Now 

= me?(5)? — ms)? so if P| and pl oa then p?| i and P| ar Thus the highest a?c?—-1 
pt 

power of p dividing gcd(bd,ac+ 1) must be even. The same argument holds for bd and 

ac—1. Now suppose that m|(ac+1) or m|(ac—1). By Lemma 22 it will suffice to show that 

ae; / Bez’ € K or Va, JVB € K according asm =7 (mod 8)orm=3 (mod 8). 

The argument above shows that a = mia?n%... re! and B = m!~?g27!1 ...7?tek where 

a1,01 € Z, ™,...,7s (resp. 7),..-,7 ) are nonconjugate primes in Z[V2] andi=0Oorl 
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according as m|(ac + 1) or m|(ac — 1). As in the proof of Lemma 22, 

—(ac+2)* if m=7 (mod 8) 
N(a) = 

(a—2c)* if m=3 (mod 8) 

and 

—(a—2c)*? if m=7 (mod 8) 
N(8) = 

(a+2c)* if m=3 (mod 8). 

It follows that c,,...,¢5,61,...,6; are even and 7 and k are both odd or even according as 

m=7 (mod 8) orm=3 (mod 8). Therefore, \/aej',\/Bey' € K if m=7 (mod 8) 

and J/a,/G € K ifm =3 (mod 8). Suppose m = p,---p, with py---py|(ac + 1) and 

Py41°**Pz|(ac — 1) for some y < z. Then as above, a = py-+-pyazmy! +--+ ae} and § = 

  

Py + Peet h woop Ptek with cy,...,Cs,b1,...,5; even. Now JPi-** Pys/Pyt1 °° Dx gk 

so it follows that /a,/£, Voez!, Bez? ¢ K if j and k are odd and Va, V6 ¢ K if j 

and k are even. Note that if 7 and k are even and ,/aéy, /Bé2 € K then /neé; € K for 

some positive integer n. Thus ky(,/né;) = Ko, so ney = mz? for some z € ky. Thus 

—n? = m?N(z)? > 0, a contradiction. 

Corollary 24 If m is prime then either 4/1€2€3 € K or </te2E9€3 € K. 

Proof As in Corollary 23, a*c? — 1 = mb*c? + md? so m|(ac + 1) or m|(ac — 1). 

If Ney = Neg = Ne3 = —1 define 

my = (ry + 274 e)(rg + 27 e)(73 + 2732), 

22 = (m1 + 2%0)(rq + 272) (73 — 272), 
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zg = (ry + 2%)(r2 — 272)(1r3 — 2%2) and 

zq = (ry — 27%4)(ro + 272) (13 + 270). 

Lemma 25 If Ne, = Nég = Né3 = —1 then 

1 4 

(24 E2€3 _— gy Brera es S ,4/ Re z; + |[z;|. 

j=l 

Proof Now N,(ve;) = +1 so 

1 
Jie; = 3 (\/2'-2(20 + rye) + f/2'-4 (2% — ri) . 

  

    

Thus 

Ja = WIR Ft is H) 
Note that 

las] = f(r? + 2201)(03 + 2281)(12 + 2299) = 51 5983,/ma maT 

and 

Re /zj = Vil cos ora) = Vizih Bog +1)= a (Re zj+ iz). 

Therefore 

1 4 

Veie2es = gv ae umaznas Si(/5 + V3) 
j=l 

1 4 

= gv eas S > 2Re 2; 
j=l 

1 4 
= gV oer aaeas 2 \/ Re z; + |z;]. 

Theorem 26 If Ne; = +1 for some i then [Ex : WEx,]| = 2 if and only if one of the 

following holds: 
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1. J/-1¢ K and AND #9. 

2. J-1E K, J/-2¢K and2AnD £9. 

3. J-1E€ K, V-2€ K ,d, = Ag = Az = 2 ,d2 =3 (mod 4) and either d2|(ac + 1) or 

dy|(ac — 1). 

If Ney = Neg = Neg = —1 then [Ex : WEx,| = 2 if and only if /-1 ¢ K and 

2271-92-43 ( Re z; + |z;|) € D fort = 1,2,3,4. 

Proof Suppose Ne; = +1 for some i. If /—1 ¢ K and AN D F O then VV —£fe383 € 

Ex —WERk, for some a,b,c € {0,1} not all zero. If /—1 € K, /-2 ¢ K and 2AND #9 

then \/tetebes € Ex —WEx, for some a,b,c € {0,1}. If J/—-1,/-2 € K, dy = Ay = 

A3 = 2, dj = 3 (mod 4) and either d,|(ac + 1) or dg|(ac — 1) then Corollary 23 shows 

that either “/1é2é3 € Ex — WEx, or ¢/te?e2¢3 € Ex -WEx,. Thus if (1),(2) or (3) 

hold then [Ex : WEx,| = 2. Conversely, if [Ex : WEx,| = 2 then either [Ex : E*] = 2 

or [E* : WEx,| = 2. If [E* : WEx,] = 2, then an imaginary biquadratic subfield of 

K contains a unit not in WEx,. Thus either /—1 ¢ K and /—€; is in a biquadratic 

subfield for some j or /—1 € K, /-2 ¢ K and /t€; is in a biquadratic subfield. Moreover, 

Ne; =+land AND # 9. If [Ex : E*] = 2, then by Lemma 18 either \/—etebes, \/tetebes, 

4/lE2E3 OF /iederes must be in Ex — E*. If \/ —efebe3 € Ex — E* then /—1 ¢ K, for 

otherwise \/—e%e8e3 = uferedes € E*. That AND ¥F @ follows since \/e; = w/ Ky + ay/& 

for some w,z € Q. If \/eZege3 € Ex — E* then it follows from the above expression 

for /e; that Y-1 € K and 2AN D # O, However /-2 ¢ K since vetebes ¢ E*, 
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If 4/1E2E3 € EK — E* or {/1E262€3 

/-1,V2 € K, dy = Ag = A3 = 

d2|(ac + 1) or da|(ac — 1). If Ney = 

and 25. 

€ Ex — E* then it follows from Corollary 20 that 

2 and d; = 3 (mod 4). Corollary 23 shows that 

Né2q = Ne3 = —1 the result follows from Lemmas 19 
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Chapter 7 

OCTIC FIELDS OF SMALL CLASS NUMBER 

In this chapter we determine all imaginary octic fields of type (2,2,2) having class 

number less than or equal to 16 or prime class number. For each of these fields we determine 

the structure of its class group. 

For this section K will be an imaginary octic field of type (2,2,2) with imaginary 

quadratic subfields numbered so that h4 < hs < he < hz. Recall that ker refers to the 

kernel of the mapping 6: H; x H2. x H3 — H. The following lemma is used in determining 

ker. 

Lemma 27 Let M = L(,/m) be a quadratic extension of L and let A be an ideal of M 

which is ambiguous for M/L. If A is a principal ideal of M then either A = (./m8) for 

some 8 € L or there is a unit e of M, with Nyjz(e) = +1, such that (1+ e) = A(() for 

some BE L. 

Proof Let o be a generator of the Galois group of M/LI and let A = (a). Then A = (a7) so 

a = ea’ for some unit e of M. Nowe = a!~? so Nuyz(e) = elt? = (ql-?7)ite = qi-o — 1, 

If e = —1 then (/m)’ = —./m so ()" = 4 = 8 € L. Suppose e # —1. Then 

(l+e)"e=etee?=ltesoe = Geis = & or (323) = a. Thus (14) =BE€EL,so



(1 +e) = (a)(B) = A(S). 

Lemma 28 Let M/L be a quadratic extension and let hy and hz be the class numbers of 

M and L, respectively. Then hy > Shr. 

Proof Let Fy and Fy be the Hilbert class fields of M and L, respectively. Then MF, C Fry 

and hy = [Fu : M| > [M Fy : M| = thy [M Fr, : Fy] > pho. 

Lemma 29 Let K be an octic field with imaginary quadratic subfields k; and k;. Then 

h> thih;. 

Proof This follows from Lemma 28 and the class number formula for imaginary biquadratic 

fields. 

Lemma 30 Let K be an octic field such that h < 16 or h = p for an odd prime p. If 

hz > 16 then hg, hs, he < 4. 

Proof By Lemma 29, h > thih7 for i = 4,5,6, so if h < 16 and h7 > 16 then he < 4. If 

h = p> 16 then it follows from Lemma 28 that 4 is the highest power of 2 dividing any 

h;. Thus if hz > 16 then hz must be divisible by p. Since only one h; is divisible by p, it 

follows that h; < 4. 

Recall that ¢/ denotes the number of rational primes which ramify in the extension k;/Q 

and t’ denotes the integer such that 2" is the product of the ramification indices of all 

rational primes for the extension K/Q. Also, w denotes the integer such that 2” is the 

2-class number of K. 
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Lemma 31 [f 2 is mazimally ramified in K then t’ < wilt | Otherwise t’ < wth) 

Proof The 2-class number of k; is greater than or equal to 2%~? or 2%-! according as 

k; is real or imaginary. Each odd rational prime which ramifies in K ramifies in exactly 

four quadratic subfields and 2 ramifies in either four or six quadratic subfields. Thus 

7 
Sot = 4t' — 2 or 4t' according as 2 is maximally ramified or not. According to Wada [22], 
i=1 

7 
h= 39Q| [Ai so we have 

1=1 

7 o4t'-17_ if 2 is maximally ramified, 
h >92 isl t;-15 = 

, . 

94-15 otherwise. 

The result now follows. 

Since an imaginary octic field of type (2, 2,2) is completely determined by three imagi- 

nary quadratic fields, we will consider the following set of fields. Let F be the set of octic 

fields determined by choosing three imaginary quadratic fields F,, Fy and F3 with class 

numbers hr, = 24 F, and hf, odd, subject to the following conditions: 

1. F; belongs to the set of fields known to have class number less than 16. 

2. hp hphp, < 8. 

3. fit fot fa <6. 

4. If hip hp hp, > 1 then 2ht+hy hp hip, < 20. 

Theorem 32 If K 1s an octic field with h < 16 or h = p for an odd prime p then K € F. 
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Proof Lemma 29 shows that either hz > 16 and h4,hs,he < 4 or h4,hs,he,h7 < 16. Now 

all imaginary quadratic fields of class number less than or equal to 4 are known [1, 15, 18, 19]. 

Moreover, there is at most one imaginary quadratic field of class number less than 16 which 

is unknown [10]. Thus K is determined by three fields F\, Fy and F3 known to have class 

number less than 16. Let F, be the fourth imaginary quadratic subfield. It follows from 

that class number formula that hi, hi, hp, < 16. However, if hp hip hp, = 9,11,13 or 15 

then hp, = 1,2 or 4 and we may take hip, = land hp, = lor 3. Thus replacing F3 with F4 

we have hr, Fy F, < 8. It also follows from the class number formula that M), Fo and F3 

can be chosen so that fi + fo + fg < 6. Now suppose hy hi, hp, > 1. Since hh, hp, hip, < 8 

we may assume that hy, = hp, = 1 and hy, = 3,5 or 7. Note that if A = 3,5 or 7 then 

K is generated by three fields Fy, F) and F3 with hr,,hr,, hp, < 4. Hence we may assume 

that h = 6,9,10,12,14 or 15. If h = 9 or 15 then hp, = 3 or 5 and 24+fi-2 divides A for 

any t,j = 1,2,3. Thus f;+ f; <2 and 2h+Si hi, hip, hip, < 20. If h = 6,10 or 14 then hy, is 

a power of 2. We may assume hp, > 8, for otherwise K is generated by three fields of class 

number less than or equal to 4. But 2/'+/-? divides h, fori = 1,2,3,s0 hr, = hp, = 1 and 

hp, = 3,5 or 7. Thus 2th hy hp hip, < 20 for any i,j = 1,2,3. If A = 12 then as above 

we may assume that hp, = 2° for some a < 3. But then 2fit] divides h for any i = 1,2,3. 

Thus fi, fo, fg < 1 and 2hthhi, hi, hp, < 12. 

Corollary 33 Let K be and octic field with h < 16 or h = p for an odd prime p. Then K 

is determined by imaginary quadratic fields F\, Fz and F3 satisfying one of the following: 

1. hp, , hp, hr, < 4, 
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2. hr, = 5,6 or 10 and hp, < hp < 2, 

3. hr, = 7 or 12 and hr, = hr, = 1, 

4. hr, = 8 andhprhp, = 2' withO<i<3. 

Proof Ifh < 8 or if his prime then K is determined by fields with hp,, hp, hr, < 4. Thus 

we may assume that A = 9,10,12,14,15 or 16. By Theorem 32, hr, < 16 for 7 = 1,2,3 and 

rlphp, < 8s0 hp, = 5,6,7,8, 10 or 12. If hp, = 8 then hphp, = 2' with 0 <i < 3 since 

fit fe+fs <6. Ifhp, = 5,6,7,8 or 10 then the conditions on hr, and hp, follow from the 

inequality 2fi+f; hy, hp, hip, < 20. 

Lemma 34 Let K be an octic field with h < 16 or h = p for an odd prime p. Suppose 

K is determined by imaginary quadratic fields F,, Fy and F3 satisfying the conditions of 

Corollary 33 and hp, <hr, < hp,. Ifhmhr, > 4 then F, is a known field of class number 

less than or equal to 16 or discF, > 4000000. 

Proof It follows from Lemma 29 and the class number formula that if hzhp, > 4 then 

hr, < 16. That Fy is a known field or discF, > 4000000 follows from Buell [3]. 

Lemma 35 If K is an octic field with h < 16 or h = p for an odd prime p then t' < 5 and 

t’! = 5 only if 2 is mazimally ramified and h = 8 or 16. 

Proof This is immediate from Lemma 31. 

Theorem 36 The imaginary octic fields of type (2,2,2) having class number less than or 

equal to 16 or prime class number are listed below. In addition, the class group of each field 
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is given. The first two columns give the class number and conductor of K. The nest three 

columns give three imaginary quadratic fields which generate K. The last colurnn gives the 

class group of K when necessary. 
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9005 -7 -55 -91 

5016 = -2 -19 -66 

5016 = -2 -11 -114 

5016-2 -3 -418 

5060 -1 -55 -115 

5160 -10 -15 -43 

5160-3 -10 -43 

9160 -2 -15 -43 

5180-5 -35 -37 

5187-3 -19 -91 

5313-3 -11 -483 

5320 -14 -19 -35 

5336-1 -46 -58 

5340 = -3 -5  -267 

5412-3 -33 -123 

5412-1 -11 -123 

5640 = -3 -10 -235 

0640 = -2 -15  -235 

5720 -10 -55 -130 

5740-5 -35 -205 

5852 -11 -19 -77 

5896-1 -22 -67 

6020 -5 -35 -43 

6028 -1 -11 -137 

6045-3 -155 -195 

6405 -7 -15 -427 

6440 -7 -10 -115 

6440-2 -35 -115 

6545-7 -55 -187 
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7035 = -3 -35 -67 
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Proof There are 8265 fields satisfying the conditions of Corollary 33, Lemma 34 and 

Lemma 35. The class number of each field was computed yielding the list below. The struc- 

ture of the 2-class group of each field was determined using one of the following methods. 

If K contains a biquadratic subfield K; such that a prime divisor of AK; ramifies in K 

then H contains a subgroup isomorphic to H;. If H and H; have the same order then the 

structure of His determined. 

If K contains a biquadratic subfield K; of odd class number, then the number of am- 

biguous classes for the extension K/K; determines the 2-rank of H. This determines the 

structure of H unless h = 16 and R2 = 2. 

If the kernel of the mapping @ can be determined then the techniques of section 1 can be 

used. For example, let k = Q(/217) and K = k(./—35, V65). Here h = 16 and |ker| = 2. 

Let Ky = k(./—35), Ko = k(V65) and K3 = k(./—91). Then Hy ~ Z, and Hy ~ H3 ~ Zp. 

The table of consistent characters is: 

Poo, Poop 5 | 5 Pia, Piz, | Poo: Poo. Pis, Pis, 
+ +/+ + + + 

where P;3, and P;3, are divisors of 13 in k and P,., and P., are infinite primes of k. Here 

the characters for each field have been normalized. Since 7 is a principal divisor in Q(V217 ), 

(5,1, 1) is in the kernel of the mapping el(Q(./—35)) x el(Q(V/217)) x el(Q(./—155)) > Ay. 

Since 155 is a principal divisor in Q(V14105) and 31 is a principal divisor in Q(V217), 

(1,1,5) is in the kernel of the mapping cl(Q(/217)) x cl(Q(V65)) x cl(Q(V/14105)) > Ho. 

13 Hence the divisor of 5 in Ky is principal as is the divisor of 5 in Ky». Since (3) = —1 the 

divisors of 13 belong to the nonprincipal genus of K2. Since N(162 + 11/217) = —13 the 
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divisors of 13 belong to the nonprincipal genus of K3. Let C’ be a class of order 4 in Ky. Then 

ker = {(1,1,1),(1, Pis,, Pis,)} and $? = {(1,1,1),(C?,1,1)}. Thus H4 ~ $?/S?*nker ~ Z, 

so H ~ Z2 X Zp. 

There are seven fields of class number 16 for which the above method cannot be used 

to determine the structure of H. We now consider each of these fields. 

1. K = Q(V-11, V-13, V-77) 

Let k = Q(V7), Ky = k(./—11), Ko = k(V/143) and K3 = k(./—13). Then Hy ~ Z 

and Hz ~ H3 ~ Zp. In Ky, (3) = P3, Ps, P3,P3, and P3, generates a class of order 4. 

Also (13) = P13, Pi3, and Pi3, generates a class of order 2 since N(21+5V/77) = 13714 

and the divisor of 14 becomes principal in K,. The units of K having relative norm 

1 to Ky are generated by —1,¢2 and ¢3. Now (1+ €2) = Pe, Po, Piz, Piz, in K where 

(2) = (Po, P2,)? and (13) = (Pi3,Pi3,)*. Note that P2,P2, = (3+ V7 is principal 

in Ky. Also (1+ €3) = (166)(6931 + 202V1001) = (166)(/7)(/—11) in Ky. The 

unit —1 = is, and (V/13) = Py3, Pi3, in K. Thus by Lemma 27, if Py3, becomes 

principal in K then (a@)Pi3, = (Pis, Pis, )*(8) for some a, 3, € Ky. Considering powers 

of Pi3, we see that a must be even. Thus (a)P13, = (Pi3,P13,)*/?(8) or (a)Pis, = 

(13)2/2(8), a contradiction since Py3, % (1) in K. Now S? = {(1,1,1),(Pis,,1,1)} 

and (Pi3,,1,1) ¢ ker so S*/S*Q ker ~ Zz and H ~ Z_ X Zz. 

2. K = Q(v-3, V-17, V-33) 

Let k = Q(V—3), Ki = k(V11), Kz = k(V51) and K3 = k(./561). Then Hy ~ H3 ~ 

59



Z2 and H2 ~ Z4.In Ko, (3) = (Ps,P3,)? and P3, generates a class of order 4. Also 

(11) = Py, P11, and Py, generates a class of order 2 since N(15 + /—17) = 1172 

and the divisor of 2 becomes principal in Ky. The units of K having relative norm 

1 to K2 are generated by —1,¢, and /e3. Now (1 — €1) = (3)(3+ V11) ~ (34+ 

V11) = Po, Po, in K, but Po, Po, = (7+ V51) ~ 1 in Ky. Also (1 + /—e3) = 

  (=TtTEITts/—s8+5v561 (5 — 3\/—17) ~ P3, Pa, where (3) = (Ps, P3,)? and (11) = 

(P11, Pi1,)? in K. The unit -1 = ~ and (V11) = Py, Pui, in K. Thus by Lemma 

27, if P11, becomes principal in K, then (a)P11, = (Ps, Pir, )*( Pi, Pi, )°(8) for some 

a,@ € K2. By considering powers of Pj, and P,1, we see that a+ 6 and 6 must 

be even, so a is even. Thus Py, ~ P3 Pot Pb ~ PY per pb | Nw PEP pre 

so (1) ~ Poy, (Pi,Pi1,)/? ~ Pi, (11)°? ~ Pz’. But Py, has order 2 and a—1 

is odd, a contradiction. Therefore P,;, does not become principal in K. Now S? = 

{(1,1,1), (1, Pi,,1)} and (1, Pii,,1) ¢ ker so S?/S? N ker ~ Zz and H ~ Z2 xX Zz. 

. K = Q(v-3, V-5, V-141) 

Let k = Q(/—3), Ky = k(V15), Ko = k(V47) and K3 = k(/705). Then Hy ~ H3 ~ 

Zz and Hz ~ Z4. In Ke, (5) = Ps,Ps5, and Ps, generates a class of order 2 since 

N(3+ /—141) = 576 and the divisor of 6 becomes principal. The units of K having 

relative norm 1 to K2 are generated by —1,¢, and €3. Now (1 +1) = (5+ V15) = 

P2, Pz, Ps, Ps, in K where (2) = (Po, Po,)* and (5) = (Ps, Ps, )?. Note that Po, Po, ~ 1 

in Ky. Also (1+ €3) = (58)(4089 + 154/705) ~ (./—3)(V47) ~ 1 in Ko. The unit 

-l= “4 and (/—5) = Ps, Ps,. Thus by Lemma 27, if Ps, becomes principal in 
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K then (a)P5, = (Ps, Ps, )*(8) for some a, 8 € Kz. By considering powers of Ps, we 

see that a is even. Thus (a)Ps, = (5)*/?(8), a contradiction since Ps, % 1 in Ko. 

Therefore Ps, does not become principal in K. Now S? = {(1,1,1),(1,Ps,,1)} and 

(1,Ps,,1) ¢ ker so S?/S*N ker ~ Zz and H ~ Z2 x Zz. 

_ K = Q(V-3, V—-5, V-69) 

Let k = Q(V23), Ky = k(/—3), Ko = k(V15) and K3 = k(./—5). Then Ay ~ Z 

and Hz ~ H3 ~ Ze. In Ky, (5) = Ps,P5, and Ps, generates a class of order 2 since 

N(9 + /—69) = 56 and the divisor of 6 becomes principal. The units of K having 

relative norm 1 to Ky are generated by —1,€, and €3. Now (1+ €1) = Po, Po, Ps, Ps, 

in K where (2) = (P2,P2,)? and (5) = (Ps, Ps,)?. Note that P2, P2, ~1in K;,. Also 

(1+ 3) = (14)(483 + 26V345) ~ (/—3)(V23) ~ 1 in Ky. The unit -1 = % 

and (/—5) = Ps, Ps, in K. Thus by Lemma 27, if Ps, becomes principal in K, 

then (a)P5, = (Ps, Ps,)*(8) for some a, € Ky. Considering powers of Ps, we see 

that a is even. Thus (a)Ps, = (5)*/2(8), a contradiction since Ps, 4 1 in K;. Now 

S? = {(1,1,1),(Ps,, 1, 1)} and (Ps,,1,1) ¢ ker so S?/S?*Nker ~ Zz and H ~ Z2x Zg. 

. K = Q(v-3, V-5, V—33) 

Let k = Q(/-3), Ky = k(V11), Ko = k(V15) and K3 = k(V165). Then Hy, ~ 

Hy ~ Z2 and H3 ~ Z4. In K3, (2) = Po,P2, and P2, generates a class of order 2 

since N (S+v=55 ) = 45 and the divisor of 5 becomes principal. The units of K having 

relative norm 1 to K3 are generated by —1,¢, and €2. Now (1+€2) = Po, Po, Pir, Pir, in 
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K where (2) = (P2,P2,)? and (11) = (Pi1,Pu,)*. Note that Py, Pi, = 114/165 ~1 

in K3. Also (1+ €2) = Po, Po, Ps, Ps, in K where (5) = (Ps, Ps,)?. But Ps, Ps, ~ 1 

in K3. The unit —1 = Gh and (/—5) = Ps, Ps, ~ 1 in K3. Thus by Lemma 

27, if P2, becomes principal in K then (a)P2, = (P2,P2,)*(G) for some a, 6 € K3. 

By considering powers of P,, we see that a is even. Thus (a)P2, = (2)*/2(8), a 

contradiction since P2, ~ 1 in K3. Therefore P2, does not become principal in 

K. Now S? = {(1,1,1),(1,1,Po,)} and (1,1, P2,) ¢ ker so S?/S* 1M ker ~ Z and 

H ~ Zy X Zz. 

6. K = Q(v-5, V-11, V—-35) 

Let k = Q(V7), Ki—k(V/—5), Ko = k(V/55) and K3 = k(/—11). Then H, ~ Ho ~ Z, 

and H3 ~ Z4. In K3, (3) = P3,P3,P3,P3,. Now N(2++/—77) = 3* so 3 generates 

a class of order 4 in Q(./—77). But 3 is principal in k so Ps; = P3,P3, generates a 

class of order 2 in K3. The units of K having relative norm 1 to K3 are generated 

by —l,e, and /—e9. Now (1+ 4) = 3(34+ V7) ~ 1 in K3. Also (1 + /—e2) = 

  (=<DHGStyotev58) (1-¥=11) ~ Pp, Pe, Ps, in K where (2) = (P2, Pz,)? and (5) = 

(P5,P5,)?. Note that Po, P2, = (3+ V7) ~ (1) in Ky. The unit -1 = -% and 

(/—5) = Ps,Ps,. Thus it follows from Lemma 27 that P3 does not become principal 

in K. Now S? = {(1,1,1),(1,1, P3)} and (1,1, P3) ¢ ker so S*/S?*N ker ~ Zz and 

H ~ ZX Zz. 

7. K = Q(vV-1, v-6, V—34) 
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Let k = Q(/—1), Ki = k(V6), Ko = k(/34) and K3 = k(V51). Then Hy ~ Z2, Ho ~ 

Z2 X Zq and H3 ~ Z2 X Zz. In Ke, (5) = Ps,P5.P53;Ps,. Now Kz contains the 

quadratic subfield Q(.,/—34) which has class group Z4. Its Hilbert class field contains 

the subfield Q(./—2, V17) in which the divisors of 5 are inert. Hence they gain 

degree 4 in the Hilbert class field of Q(./—34). Since 5 splits completely in Kz and 

the Hilbert class field of Q(.,/—34) is contained in the Hilbert class field of K2, the 

divisors of 5 in Ke gain degree at least 4 in the Hilbert class field of Ke. Since 

HH. ~ Z2 X Z4, the divisors of 5 in K2 belong to classes of order 4. We will show 

that P2, becomes principal in K. Let a = 16+3V3447V6+2V51 16+3V34+V6 (7+V'34) 

and let Ps = (5,2 + V34) be a divisor of 5 in Q(V34). Then a = 0 (mod Ps). 

Now N(a) = —50 so (a) = P2Ps = P2P5,Ps, where P2 is a divisor of 2 in Ko. 

Also P3 ~ (Ps,P5.)? ~ P2? ~ (1) so PZ, ~ PZ. Thus (P2Ps,Ps5,)? ~ (1). Suppose 

P2P5,Ps5, ~ (1) in Ke. Since this ideal is ambiguous over Q(V34) there must be a 

unit e of K2 of relative norm 1 such that P2Ps,Ps, = (78) with B € Q(V34) and 

y'-? = e. The group of units of relative norm 1 for K2/Q(V/34) is generated by z 

and this gives y = 1+. But (7)? = (2) = (6+ V34)?, so (y) = (64 V34 in Ko. 

Thus P2Ps, Ps, ~ (1) in Q(V34), a contradiction,since P2 is not an ideal of Q(/34). 

Therefore P2P5, Ps, is not principal in K2. By considering genera of K2/Q(z) we have 
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the following distribution: 

  

}2 17%, 17. 
+ + + 

(Ite)|+ -  - 
(2+ }- + - 
(2-e)}- - + 

Thus P2Ps,P5, is a nonprincipal class in the principal genus so P2P5, Ps, ~ Pe. Thus 

Pg, becomes principal in K. Now S? = {(1,1,1),(1,P2,,1)} and (1, P?,,1) € ker so 

S?/S*N ker ~ 1. Thus H has no classes of order 8. From Lemmermeyer [13] it follows 

that the kernel has order 8 so Hy X Hz X H3/ker has order 8. Since (1, P35 1) € ker 

this factor group has no elements of order 4, so is Zz X Zz X Zz. Hence the rank of H 

is at least 3. But 5/5 ker has an element of order 2 so H ~ Z2 X Zo X Z4. 
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