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Tamoxifen reduces fat mass by boosting reactive
oxygen species

L Liu1, P Zou1, L Zheng1, LE Linarelli1, S Amarell1, A Passaro1, D Liu1 and Z Cheng*,1

As the pandemic of obesity is growing, a variety of animal models have been generated to study the mechanisms underlying the
increased adiposity and development of metabolic disorders. Tamoxifen (Tam) is widely used to activate Cre recombinase that
spatiotemporally controls target gene expression and regulates adiposity in laboratory animals. However, a critical question
remains as to whether Tam itself affects adiposity and possibly confounds the functional study of target genes in adipose tissue.
Here we administered Tam to Cre-absent forkhead box O1 (FoxO1) floxed mice (f-FoxO1) and insulin receptor substrate Irs1/Irs2
double floxed mice (df-Irs) and found that Tam induced approximately 30% reduction (Po0.05) in fat mass with insignificant
change in body weight. Mechanistically, Tam promoted reactive oxygen species (ROS) production, apoptosis and autophagy,
which was associated with downregulation of adipogenic regulator peroxisome proliferator-activated receptor gamma and
dedifferentiation of mature adipocytes. However, normalization of ROS potently suppressed Tam-induced apoptosis, autophagy
and adipocyte dedifferentiation, suggesting that ROS may account, at least in part, for the changes. Importantly, Tam-induced ROS
production and fat mass reduction lasted for 4–5 weeks in the f-FoxO1 and df-Irs mice. Our data suggest that Tam reduces fat mass
via boosting ROS, thus making a recovery period crucial for posttreatment study.
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Excess fat mass or adiposity is the hallmark of obesity, the
rapidly growing epidemic.1,2 In the United States, over two-
thirds of adults are overweight or obese according to the
statistics of years 2011–2012.3 For children, the overweight or
obese population accounts for about 25% in the 2–5-year olds
and 33% in school students (including adolescents).3 It is
estimated that obesity care accounts for 21% of national
healthcare expenditures, that is, 190.2 billion US dollars
per year, in the United States.4 Because adipose tissue is an
important endocrine organ, which secretes adipokines or
cytokines that regulate inflammatory responses andmetabolic
homeostasis, aberrant adiposity dysregulates adipokine
levels and leads to a variety of metabolic disorders
and complications, such as diabetes and cardiovascular
diseases.5 As such, the healthcare burden that obesity
imposes on the society is far greater.
To understand the molecular mechanism of obesity devel-

opment, various rodent models have been generated to study
the gain or loss of functions of different genes.6,7 To this
end, the Cre/lox site-specific recombination system has been
versatile to generate conditional mouse mutants, controlling
gene expression and activity in target tissues.8,9 In particular,
Tamoxifen (Tam) is used to activate Cre recombinases
spatiotemporally in vivo through intraperitoneal (I.P.) or
subcutaneous administration.10–12 Injection of Tam at a dose
of 1–8mg/kg body weight for 5 consecutive days deletes

target genes, thus establishing a versatile system to study
functional genes in obesity.8–12

The use of Tam in clinical treatments has led to the
argument about its potential effect on body fat or weight gain in
human patients.13,14 It raises the question as to whether and
how Tam influences adipocytes and fat mass in the experi-
mental animal models after administration. Exclusion of direct
regulation of adiposity by Tam as a confounding factor in
animal models is critical to better understand target genes in
adipogenesis and metabolic homeostasis. In the present
work, we present the evidence that 5-day administration of
Tam significantly reduces mouse fat mass, which persists till
weeks 4–5 after the treatment. At the cellular level, Tam
promotes the production of reactive oxygen species (ROS),
which is accompanied with enhanced apoptosis, autophagy
and adipocyte dedifferentiation. However, treatment of adipo-
cytes with antioxidant N-acetyl cysteine (NAC) dramatically
counteracted Tam-induced ROS and suppressed apoptotic
and autophagic markers, concomitant with reversal of
adipocyte dedifferentiation. In vivo, fat mass was restored
upon the normalization of ROS, which is associated with
suppressed adipocyte dedifferentiation and downregulated
apoptotic and autophagic markers. Our data reveal a ROS-
mediated mechanism by which Tam induces fat mass
reduction. As it may confound the posttreatment study,
deliberate determination of the recovery period after Tam
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administration is essential to understand the functions of
target genes using Tam-induced knockout mice.

Results

Tam induced fat mass reduction in mice. To test the effect
of Tam on fat mass, we conducted a 5-day I.P. administration
of Tam (1mg/20 g body weight) on forkhead box O1 (FoxO1)
floxed mice bearing no Cre recombinase (f-FoxO1),15–17 by
following a standard protocol established previously.12 Two
weeks after Tam administration, the body fat was reduced by
34% (Po0.05) in f-FoxO1 mice (Figure 1a). To validate the
findings, we treated insulin receptor substrate 1 (Irs1) and
Irs2 double floxed mice without Cre recombinase (df-Irs) in a
similar way,15,16 and found that fat mass was also significantly
reduced (26%, Po0.05; Supplementary Figure S1A).
However, the changes in body weight were insignificant
between vehicle (sunflower oil) control and the treatment
groups (Figure 1b; Supplementary Figure S1B). Monitoring of
the kinetics of fat mass change suggested that the reduction
was persistent till week 5 (week 4 in df-Irs mice), after which
the fat percentage was comparable to the pretreatments
(Figure 1a; Supplementary Figure S1A). In line with this
finding, the weight of epididymal white adipose tissue (eWAT)
was significantly reduced in Tam-treated f-FoxO1 mice at
week 2, while there was no significant difference at week 6

(Figures 1c and d). By contrast, injection of the vehicle
caused indiscernible change in the body fat mass (Figure 1a;
Supplementary Figure S1A). Therefore, the reduction of fat
mass in mice arose primarily from Tam treatment. Given that
both mouse models shared this phenotype, we used f-FoxO1
mice for the following mechanistic study.

Tam promoted apoptosis and autophagy in adipose
tissue. The regulators of apoptosis and autophagy
were implicated in the regulation of fat mass.18–23 To
examine whether Tam had effects on apoptosis and
autophagy, we used eWAT at weeks 2 and 6 after
Tam administration and analyzed the mediators of apoptosis
and autophagy—the activated or cleaved caspase 3 (Cas3
(c)) and microtubule-associated protein 1A/1B-light chain
3-phosphatidylethanolamine conjugate (LC3), respectively.24,25

As shown in Figures 2a and b, Tam treatment increased the
level of Cas3(c) by 6.8-fold (Po0.0001) and the auto-
phagosomal marker LC3-II by 1.9-fold (Po0.05) at week 2.
However, these changes were largely reversed at week 6 and
showed no statistical significance (Figures 2c and d).

Tam promoted the production of ROS. ROS and the
resultant oxidative stress have an important role in apoptosis
and autophagy.26–28 To examine whether ROS and oxidative
stress was involved in Tam-induced effects, we analyzed
heme oxygenase 1 (HO1), the sensitive indicator of cellular

Figure 1 Tam reduced fat mass in f-FoxO1 mice. (a) The kinectics of fat mass regulation after 5-day administration of Tam. (b) Measurement of body weight before Tam
treatment (pre-Tam), 2 weeks (2wk) and 6 weeks (6wk) after Tam injection. (c) The weight of epididymal adipose tissue (eWAT) at week 2 in mice treated with Tam. (d) The weight
of eWAT at week 6 in mice treated with Tam. n= 4–6; *Po0.05; **Po0.01; NS, not significant
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oxidative stress.29 Tam treatment upregulated HO1 protein
levels in adipose tissue by over 7-fold (Po0.0001) in mice at
week 2; however, at week 6, the HO1 abundance in the
treated mice was comparable to that in untreated mice,

showing no statistical significance (Figures 3a and b).
Interestingly, the HO1 levels in untreated mice were higher
at week 6 than at week 2, supporting the notion that HO1
expression increases with age.30,31 Measurement of ROS

Figure 2 Tam increased apoptotic and autophagic regulators in adipose tissue. (a and b) At week 2 after Tam administration, western blotting (a) was performed to analyze
Cas3(c) and LC3 with densitometric analysis (b) of western blotting images using the NIH ImageJ software; n= 5–7. (c and d) At week 6 after Tam administration, western
blotting (c) was performed to analyze Cas3 (c) and LC3, and densitometric analysis (d) of western blotting images with the NIH ImageJ software; n= 5–7. GAPDH
(glyceraldehyde 3-phosphate dehydrogenase) was probed as a loading control. *Po0.05; ***Po0.0001; NS, not significant

Figure 3 Tam promoted ROS and oxidative stress. (a) Western blotting analysis of HO1 in mouse adipose tissues at weeks 2 and 6, respectively, after Tam administration,
with GAPDH (glyceraldehyde 3-phosphate dehydrogenase) probed as a loading control. (b) Densitometric analysis of western blotting images using the NIH ImageJ software;
n= 6–8. (c) Measurement of ROS in adipose tissue at week 2 after Tam administration (n= 3–4). (d) Measurement of ROS in adipose tissue at week 6 after Tam administration
(n= 3–4). **Po0.01; ***Po0.0001; NS, not significant
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levels in adipose tissue indicated a 2.3-fold elevation in
Tam-treated mice than in vehicle-treated mice at week 2
(Figure 3c), but they became statistically insignificant
at week 6 (Figure 3d). Of note, the upregulation and
downregulation of ROS and HO1 levels seems to coincide
well with the changes in Cas3(c), LC3-II and fat mass
(Figures 1 – 3).

Antioxidant abolished Tam-induced ROS, apoptosis and
autophagy. To map the interaction between ROS and other
Tam-induced cellular events, we treated 3T3L1 adipocytes
with Tam combined with a potent ROS-scavenger NAC.32,33

As observed in adipose tissue, Tam induced significant
upregulation of HO1 in 3T3L1 adipocytes, and the effect was
dose dependent in the tested range of 0–128 μM
(Supplementary Figure S2). Tam also promoted ROS
production by 2.5-fold (Po0.01) in 3T3L1 adipocytes
(Figure 4a) and significantly upregulated the apoptosis
regulators Cas3(c) and autophagosomal marker LC3-II
(Figures 4b and c). However, inclusion of NAC in the
treatments suppressed Tan-induced elevation of ROS and
HO1 and normalized the protein levels of Cas3(c) and LC3-II
(Figures 4a–c).

Antioxidant reversed Tam-induced reduction in cell
density and adipocyte population. Because alteration in
adipocyte number affects adiposity,2 we asked whether Tam
treatment influenced cell density. Compared with the vehicle-
treated adipocytes, Tam-treated cells showed a significant
decrease in cell density (24%, Po0.05), consistent with

the upregulation of apoptotic marker (Figures 5a, b and d,
Figures 4b and c). Interestingly, the population of lipid-
droplet-containing cells (i.e., mature adipocytes) also
declined (36%, Po0.05), implying a process of ‘dedifferentia-
tion’ might be induced by Tam (Figures 5a, b and e).34–36

Regardless, addition of the ROS-scavenger NAC largely
restored the cell density and population of mature adipocytes
(Figures 5c and e).

Antioxidant reversed Tam-induced downregulation of
peroxisome proliferator-activated receptor gamma
(PPARγ). PPARγ is a key regulator of adipogenesis (de
novo generation of mature adipocytes) and adipocyte
dedifferentiation.34,35,37 The observation of reduced popula-
tion of mature adipocytes after Tam treatment prompted us to
analyze the effect of Tam on PPARγ. As shown in Figure 6a,
PPARγ protein levels were reduced by 74% (Po0.01) in Tam-
treated adipocytes. However, co-treatment of the adipocytes
with Tam and NAC significantly restored PPARγ level. These
data suggest that Tam may regulate adipogenesis or
population of mature adipocytes through ROS-mediated
downregulation of PPARγ. Consistent with this hypothesis,
we found that the PPARγ levels were dramatically decreased
(69%, Po0.01) in the adipose tissues of Tam-treated mice at
week 2 (Figure 6b), which is accompanied by elevation of
ROS and HO1 (Figures 3a–c). At week 6 when ROS and
HO1 levels returned to normal (Figures 3a, b and d);
however, the abundance of PPARγ also returned to the
values comparable to those in the control mice (Figure 6c). In
addition, the reversal of ROS overproduction and PPARγ

Figure 4 Antioxidant NAC attenuated ROS level and reversed Tam effects. (a) Measurement of ROS in 3T3L1 adipocytes. (b and c) Western blotting analysis (b) of HO, Cas3 (c)
and LC3 in 3T3L1 adipocytes after 48-h treatment with Tam (128 μM) or Tam (128 μM) plus NAC (1 mM), with densitometric analysis (c) of western blotting images using the NIH
ImageJ software; GAPDH (glyceraldehyde 3-phosphate dehydrogenase) was probed as a loading control. n= 3–5; *Po0.05; **Po0.01
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suppression was accompanied by normalization of fat mass
at week 6 (Figures 1, 3 and 6 Supplementary Figure S1).

Discussion

Tam has been widely used to activate inducible Cre
recombinase and knockout target genes in mechanistic
studies of adipose development and metabolic
homeostasis.8,11,12,38–41 However, the effect of Tam adminis-
tration on adipocytes and adipose tissue has not been
investigated to the best of our knowledge. In this study, we
chose to use f-FoxO1 bearing no Cre recombinase for Tam
treatment, aiming to rule out the effect of Cre activation (or gene
deletion) on fat mass. We found that a 5-day administration of
Tam led to a significant reduction of fat mass in mice, which
lasted for 4–5 weeks after the last injection. The findings were
validated in Cre-absent df-Irs mice. The Tam-induced fat mass
reduction could confound the effects of gene knockout, making
it critical to allow for 6 weeks as a recovery period before further
study is conducted. Note that the recovery periodmay vary with
different animal models, thus warranting a deliberate determi-
nation for a specific laboratory model to establish a reliable
experimental system.
The mechanism by which Tam reduces fat mass includes

several cellular events. Tam treatment increased apoptosis

and autophagy, the processes that reduce adipocyte number
and have been implicated in adipose regulation.2,18–23 Indeed,
the cell density and population of mature adipocytes
decreased after Tam treatment. Tam also promoted adipocyte
dedifferentiation and ROS production, whereas normalization
of ROS level markedly mitigated Tam-induced adipocyte
dedifferentiation, apoptosis and autophagy, concomitant with
restoration of mature adipocyte population and fat mass.
Together, our data strongly suggest that the short-term (5-day)
treatment with Tam reduces fat mass via boosting ROS
production.
Tam was shown to induce ROS and oxidative stress in

breast cancer cells, hepatoblastoma cells, retinal cells and
platelets through activation of NAD(P)H oxidase, the enzyme
that also promotes ROS production in macrophages.32,42–46

The ROS-boosting effect of Tam was extended and further
validated by our study in adipocytes and adipose tissues.
Importantly, we found that ROS elevation resulted in PPARγ
downregulation and adipocyte dedifferentiation, which support
the notion that mature adipocytes undergo dedifferentiation
under stress conditions.34,35 It was shown that proinflamma-
tory adipocytokines (e.g., TNFα) could promote adipocyte
dedifferentiation through downregulation of PPARγ.34,35 Given
that ROS elevation or oxidative stress increases TNFα
production,47 Tam may promote adipocyte dedifferentiation

Figure 5 Antioxidant NAC mitigates Tam effect on cell density and mature adipocyte population. (a–c) Microscopy imaging of 3T3L1 adipocytes treated with vehicle (a),
128 μM Tam (b) and Tam (128 μM) plus NAC (1 mM) (c). The microscope was set at × 100. (d and e) Measurement of cell density and population of mature adipocytes using the
NIH ImageJ software; n= 6–8. *Po0.05
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by activating a ROS–TNFα–PPARγ axis. To this end, macro-
phage infiltration in adipose tissue might have a role, because
these phagocytes were shown to instigate ROS and TNFα
production and also respond sensitively to ROS- and TNFα-
mediated signaling cascades.46,48

The effect of Tam on fat mass in humans, for example,
breast cancer patients, remains inconclusive. Although Tam
was reported to increase fat mass through its anti-estrogenic
effect,13 recent studies loosened the conclusion by showing
that Tam has no effect on the fat mass in breast cancer
patients.14 It should be noted that the Tam dosage and
treatment duration for mice in this study significantly differs
from that for the long-term Tam treatment of breast cancer
patients. To activate Cre recombinase to knock out target
genes, animal models are typically treated for 5 consecutive
days (administration of 1–8mg/20 g body weight or 50–
400mg/kg body weight, once a day).8–12 However, Tam
therapy for breast cancer patients in the United States
generally lasts 5 years, with a dose of 20mg (either one
20mg tablet or two 10mg tablets) taken by month once a
day.49–51 Assuming that the body weight of breast cancer
patients ranges from 50 kg to 80 kg, the average daily use of
Tam would be 0.25–0.4 mg/kg, a dosage being 0.06–0.8% of
that used in animal models. Owing to different dosage and
treatment duration, the effect of Tam on mouse fat mass
observed in this study might not be phenocopied in breast
cancer patients with Tam therapy.

Materials and Methods
Materials. Dulbecco’s modified Eagle’s (DMEM) medium was from Corning Inc.
(Manassas, VA, USA). Fetal bovine serum (FBS) was from GeneMate (Kaysville,
UT, USA). Dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), rosiglitazone and
Tam were purchased from Cayman chemical (Ann Arbor, MI, USA). Penicillin/
streptomycin (P/S) was from GE Healthcare Life Sciences HyClone Laboratories
(Logan, UT, USA). Insulin and NAC were from Sigma-Aldrich (St. Louis, MO, USA).
Phosphate-buffered saline (PBS) was from Caisson Laboratories, Inc. (North Logan,
UT, USA).

Mice. The FoxO1 floxed mice (f-FoxO1) and Irs1/Irs2 double floxed mice (df-Irs)
were bred and housed as previously described.15,16,52 Briefly, the mice were housed
in plastic cages on a 12-h light–dark photocycle, with free access to water and
regular chow diet. Before Tam treatment experiments, male mice (14–16-week old)
were weighed, and fat mass was measured with a Bruker Minispec LF90 NMR
Analyzer (Bruker Optics, Billerica, MA, USA). Then the mice were transferred to a
biosafety level 2 (BSL2) room and administered with Tam (1 mg/20 g body weight)
or the vehicle (sunflower oil) by I.P. injection (once a day for 5 consecutive days).
After Tam administration, the cages were changed every 2 days until week 2, when
the mice were transferred into BSL1 room, and the measurement of body fat mass
was resumed. Depending on the experimental design, the mice were weighed and
killed to harvest tissue for snap freezing in liquid nitrogen, at week 2 or week 6 after
Tam treatment. All the procedures followed the NIH guideline and were approved by
the Virginia Tech Institutional Animal Care and Use Committee.

Cell culture and treatment. 3T3L1 preadipocytes (ATCC CL-173, Mana-
ssas, VA, USA) were cultured in basal media (i.e., DMEM media supplemented with
10% FBS, 100 units/ml penicillin and 100 μg/ml streptomycin (1 × P/S)), at 37 °C in
a humidified atmosphere of 5% CO2. The media were replaced every 2 days.
Differentiation of 3T3L1 cells was induced as described previously with minor
modifications.53 Briefly, 3T3L1 cells were grown to confluence (day 0) and
maintained in fresh basal media (BMI) for 2 days (days 1–2). At the end of day 2,

Figure 6 Counteracting or normalizing ROS reduced Tam effect on PPARγ. (a) Western blotting analysis (left panel) of PPARγ in 3T3L1 adipocytes after 48-h treatment with
Tam (128 μM) or Tam (128 μM) plus NAC (1 mM), with densitometric analysis (right panel) of western blotting images using the NIH ImageJ software; n= 3–5. (b) At week 2 after
Tam administration, western blotting (upper panel) was performed to analyze PPARγ, with densitometric analysis (lower panel) of western blotting images using the NIH ImageJ
software; n= 3–5. (c) At week 6 after Tam administration, western blotting (upper panel) was performed to analyze PPARγ, with densitometric analysis (lower panel) of western
blotting images using the NIH ImageJ software; n= 3–5. GAPDH (glyceraldehyde 3-phosphate dehydrogenase) was probed as a loading control. *Po0.05; **Po0.01
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BMI medium was changed to differentiation medium I (DMI): DMEM supplemented
with 10% FBS, P/S (1 × ), IBMX (0.5 mM), dexamethasone (1 μM), insulin (1 μg/ml),
and rosiglitazone (2 μM). At the end of day 4, DMI medium was changed to
differentiation medium II (DMII): DMEM supplemented with 10% FBS, P/S (1 × ),
and insulin (1 μg/ml). At the end of day 6, DMII medium was changed to basal
media (BMII), and the cells were maintained in BMII (replaced with fresh basal
medium every 2 days) until fully differentiated (day 12). As a control, preadipocytes
were maintained in BMI till day 12 and supplied with fresh medium every other day.
Upon full differentiation, 3T3L1 adipocytes were treated with Tam for 48 h at the
concentrations of 0, 8, 16, 32, 64 and 128 μM and the vehicle 0.1% sunflower as a
treatment control.12 When applicable, NAC was added at a concentration of 1 mM
with Tam for a 48-h treatment to study the role of ROS.32 Images of the cells were
captured on day 12 with a Nikon ECLIPSE TS100 microscope (Melville, NY, USA),
and the cell counting and population analysis was conducted with the NIH ImageJ
software (Bethesda, MD, USA).

ROS measurement. ROS in adipocytes and adipose tissue was measured as
previously described,54,55 with a cell-permeable dye 5,6-carboxy-2′,7′-dichloro-
fluorescein diacetate (Carboxy-DCFDA, Molecular Probes, Grand Island, NY, USA).
Snap-frozen adipose tissues were weighed and transferred into buffered medium
(5 mmol/l HEPES in PBS) for quick thawing to improve the probe diffusion. After
rapid thawing, the medium was discarded. Samples were exposed to 8 μM
Carboxy-DCFDA in fresh medium and were incubated at 37 °C for 45 min under
agitation. Medium was then removed, and samples were further incubated in a lysis
buffer (0.1% SDS, Tris-HCl, pH 7.4) for 15 min at 4 °C. After homogenization,
samples were centrifuged at 16 000 × g for 20 min at 4 °C. Supernatants were
collected and subjected to fluorescence analysis at 530 nm under excitation at
485 nm using a Synergy H4 Hybrid Multi-Mode Microplate Reader (BioTek
Instruments, Winooski, VT, USA).
To measure ROS in 3T3L1 adipocytes, 1–5 × 106 cells were harvested with typsin

and washed three times with cold PBS, followed by incubation with 8 μM Carboxy-
DCFDA in fresh medium (5 mmol/l HEPES in PBS) and were incubated at 37 °C for
45 min under agitation. Medium was then removed, and samples were further
incubated in PLC lysis buffer:15,52 (30 mM Hepes, pH 7.5, 150 mM NaCl, 10%
glycerol, 1% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA, 10 mM NaPPi, 100 mM NaF,
1 mM Na3VO4) supplemented with protease inhibitor cocktail (Roche, Branchburg,
NJ, USA) and 1 mM PMSF for 15 min at 4 °C. After homogenization, samples were
centrifuged at 16 000 × g for 20 min at 4 °C. Supernatants were collected and
subjected to fluorescence analysis at 530 nm under excitation at 485 nm, and the total
protein was determined with DC protein assay (Bio-Rad, Hercules, CA, USA) on a
Synergy H4 Hybrid Multi-Mode Microplate Reader (BioTek Instruments, Inc.). The
ROS levels were normalized to the total protein for each cell dish.

Western blotting. To prepare tissue lysates, snap-frozen adipose tissues were
weighed and homogenized with a Bullet Blender (Next Advance, Averill Park, NY,
USA) in PLC lysis buffer supplemented with protease inhibitor cocktail (Roche),
1 mM PMSF, 10 μM TSA (Trichostatin A, Selleckchem, Houston, TX, USA) and
5 mM Nicotinamide (Alfa Aesar, Ward Hill, MA, USA).15,52 For cell lysates, the
3T3L1 adipocytes were washed with ice-cold PBS and homogenized with a Bullet
Blender. Total protein concentrations of the lysates were determined using the DC
protein assay (Bio-Rad). Western blotting and image analysis were conducted as
described previously.15 Antibody catalog numbers and vendors are as follows:
cleaved caspase-3 Rabbit mAb (9664) and LC3B antibody (no. 2775) from Cell
Signaling Technology (Beverly, MA, USA); PPAR-gamma antibody (MA5-14889)
and GAPDH antibody (MA5-15738) from Pierce (Rockford, IL, USA) or Thermo
Fisher Scientific (Waltham, MA, USA); and HO1 antibody (3391-100) from Biovision
(Milpitas, CA, USA).

Statistical analyses. All results are expressed as means± S.D. and are
analyzed by analysis of variance to determine P values; Po0.05 was considered
statistically significant.
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