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The stochastic dynamics of rectangular and V-shaped atomic force
microscope cantilevers in a viscous fluid and near a solid boundary

M. T. Clarka� and M. R. Paul
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061, USA

�Received 22 January 2008; accepted 27 February 2008; published online 8 May 2008�

Using a thermodynamic approach based upon the fluctuation-dissipation theorem, we quantify the
stochastic dynamics of rectangular and V-shaped microscale cantilevers immersed in a viscous fluid.
We show that the stochastic cantilever dynamics as measured by the displacement of the cantilever
tip or by the angle of the cantilever tip are different. We trace this difference to contributions from
the higher modes of the cantilever. We find that contributions from the higher modes are significant
in the dynamics of the cantilever tip angle. For the V-shaped cantilever the resulting flow field is
three-dimensional and complex in contrast to what is found for a long and slender rectangular
cantilever. Despite this complexity, the stochastic dynamics can be predicted using a
two-dimensional model with an appropriately chosen length scale. We also quantify the increased
fluid dissipation that results as a V-shaped cantilever is brought near a solid planar boundary.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2912989�

I. INTRODUCTION

The stochastic dynamics of micron and nanoscale canti-
levers immersed in a viscous fluid are of broad scientific and
technological interest.1,2 Of particular importance is the os-
cillating cantilever that is central to atomic force
microscopy.3,4 Significant theoretical progress has been made
using simplified models in the limit of long and thin rectan-
gular cantilevers.5–7 In this case, a two-dimensional approxi-
mation is appropriate �therefore neglecting effects due to the
tip of the cantilever� and has yielded important insights.
However, it is not certain how well these approximations
work for many situations of direct experimental interest. For
example, a commonly used cantilever in atomic force mi-
croscopy is V-shaped, and a theoretical description of the
dynamics of these cantilevers in fluid is not available.

Furthermore, micron and nanoscale cantilevers are often
used in close proximity to a solid boundary either by neces-
sity or out of experimental interest. It is well known experi-
mentally and theoretically that the presence of a solid bound-
ary increases the fluid dissipation, resulting in reduced
quality factors and reduced resonant frequencies.7–15 Overall,
the deterministic motion of micron-scale cantilevers in fluid,
for many situations of experimental interest, yields complex
fluid-solid interactions.14 Again, theoretical descriptions are
available in the limit of long and thin rectangular cantilevers,
and it is uncertain if these approaches can be applied to these
more complex geometries.

In this paper we use a powerful thermodynamic ap-
proach to quantify the stochastic dynamics of cantilevers due
to Brownian motion for experimentally relevant geometries
for the precise conditions of experiment, including the pres-
ence of a planar boundary. Our results are valid for the pre-
cise three-dimensional geometry of interest and include a
complete description of the fluid-solid interactions. Using

these results we are able to compare with available theory to
yield further physical insights and to suggest simplified ana-
lytical approaches to describe the cantilever dynamics for
these complex situations.

II. THERMODYNAMIC APPROACH––FLUCTUATIONS
FROM DISSIPATION

The stochastic dynamics of micron and nanoscale canti-
levers driven by thermal or Brownian motion can be quanti-
fied using strictly deterministic calculations. This is accom-
plished using the fluctuation-dissipation theorem since the
cantilever remains near thermodynamic equilibrium.16,17 We
briefly review this approach for the case of determining the
stochastic displacement of the cantilever tip, and then extend
it to the experimentally important case of determining the
stochastic dynamics of the angle of the cantilever tip.

The autocorrelation of equilibrium fluctuations in canti-
lever displacement can be determined from the deterministic
response of the cantilever to the removal of a step force from
the tip of the cantilever �i.e., a transverse point force re-
moved from the distal end of the cantilever�. If this force f�t�
is given by

f�t� = �F0 for t � 0

0 for t � 0,
� �1�

where t is time and F0 is the magnitude of the force, then the
autocorrelation of the equilibrium fluctuations in the dis-
placement of the cantilever tip is given directly by

�u1�0�u1�t�� = kBT
U1�t�

F0
, �2�

where kB is Boltzmann’s constant, T is the temperature, and
�� is an equilibrium ensemble average. In our notation, low-
ercase letters represent stochastic variables �u1�t� is the sto-
chastic displacement of the cantilever tip� and uppercase let-a�Electronic mail: clarkmt@vt.edu.
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ters represent deterministic variables �U1�t� represents the
deterministic ring-down of the cantilever tip due to the step
force removal�. The spectral properties of the stochastic dy-
namics are given by the cosine Fourier transform of the au-
tocorrelation.

The thermodynamic approach is valid for any conjugate
pair of variables.16 For example, it is common in experiment
to use optical techniques to measure the angle of the canti-
lever tip as a function of time.4 It has also been proposed to
use piezoresistive techniques to measure voltage as a func-
tion of time.18 The thermodynamic approach remains valid
for these situations by choosing the correct conjugate pair of
variables.

In this paper we also explore the stochastic dynamics of
the angle of the cantilever tip. In this case, the angle of the
cantilever tip is conjugate to a step-point torque applied to
the cantilever tip. If this torque is given by

��t� = ��0 for t � 0

0 for t � 0,
� �3�

where �0 is the magnitude of the step torque, then the auto-
correlation of equilibrium fluctuations in cantilever tip angle
��t� is given by

��1�0��1�t�� = kBT
�1�t�

�0
. �4�

Here, �1�t� represents the deterministic ring-down, as mea-
sured by the tip angle, resulting from the removal of a step-
point torque. Again, the cosine Fourier transform of the au-
tocorrelation yields the noise spectrum.

A powerful aspect of this approach is that it is possible
to use deterministic numerical simulations to determine U1�t�
and �1�t� for the precise cantilever geometries and condi-
tions of experiment. This includes the full three-
dimensionality of the dynamics, which is not accounted for
in available theoretical descriptions. The numerical results
can be used to guide the development of more accurate the-
oretical models.

III. THE STOCHASTIC DYNAMICS OF CANTILEVER
TIP DEFLECTION AND TIP ANGLE

The stochastic dynamics of the cantilever tip displace-
ment u1�t� and that of the tip angle �1�t� yield interesting
differences. Using the thermodynamic approach, insight into
these differences can be gained by performing a mode ex-
pansion of the cantilever using the initial deflection required
by the deterministic calculation. The two cases of a tip force
and a tip torque result in a significant difference in the mode
expansion coefficients which can be directly related to the
resulting stochastic dynamics.

For small deflections the dynamics of a cantilever with a
nonvarying cross section is given by the Euler-Bernoulli
beam equation,

�
�2U

�t2 + EI
�4U

�x4 = 0, �5�

where U�x , t� is the transverse beam deflection, � is the mass
per unit length, E is Young’s modulus, and I is the moment

of inertia.20 For the case of a cantilever, where a step force
has been applied to the tip at some time in the distant past,
the steady deflection of the cantilever at t=0 is given by

U�x� = −
F0

2EI
	 x3

3
− Lx2
 , �6�

where L is the length of the cantilever and the appropriate
boundary conditions are U�0�=U��0�=U��L�=0 and U��L�
=−F0 /EI. The prime denotes differentiation with respect
to x.

Similarly, the deflection of the same cantilever beam due
to the application of a point torque at the cantilever tip is
quadratic in axial distance and is given by

U�x� =
�0

2EI
x2, �7�

where the appropriate boundary conditions are U�0�=U��0�
=U��L�=0 and U��L�=�0 /EI. The angle of the cantilever
measured relative to the horizontal or undisplaced cantilever
is then given by tan �=U��x�.

The mode shapes for a cantilevered beam are given by

�n�x� = − �cos �L + cosh �L��cos �x − cosh �x�

− �sin �L − sinh �L��sin �x − sinh �x� , �8�

where n is the mode number, and the characteristic frequen-
cies are given by �4=	2� /EI. The mode numbers � are
solutions to 1+cos �L cosh �L=0.20 The initial cantilever
displacement given by Eqs. �6� and �7� can be expanded into
the beam modes

U�x� = �
n=1




an�n�x� , �9�

with mode coefficients an. The total energy Eb of the de-
flected beam is given by

Eb =
EI

2
�

0

L

U��x�2dx , �10�

which is entirely composed of bending energy. The fraction
of the total bending energy contained in an individual mode
is given by

bn =
EI

2Eb
�

0

L

�an�n��x��2dx . �11�

The coefficients bn for the rectangular cantilever of Table I
are shown in Table II. For the case of a force applied to the
cantilever tip, 97% of the total bending energy is contained
in the fundamental mode, and the energy contained in the
higher modes decays rapidly with less than 1% of the energy
contained in mode three. When a point torque is applied to
the same beam, it is clear that a significant portion of the
bending energy is spread over the higher modes. Only 61%
of the energy is contained in the fundamental mode and the
decay in energy with mode number is more gradual. The fifth
mode for the tip-torque case contains more energy than the
second mode for the tip-force case. Although we have only
discussed a mode expansion for the rectangular cantilever,
the V-shaped cantilever will exhibit similar trends since the
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transverse mode shapes are similar to that of a rectangular
beam.21

The variation in the energy distribution among the
modes required to describe the initial deflection of the can-
tilever can be immediately connected to the resulting sto-
chastic dynamics. For the deterministic calculations the ini-
tial displacement can be arbitrarily set to a small value. In
this limit the modes of the cantilever beam are not coupled
through the fluid dynamics. As a result, the stochastic dy-
namics of each mode can be treated as the ring-down of that
mode from the initial deflection. This indicates that, the more
energy that is distributed among the higher modes initially,
the more significant the ring-down and, using the fluctuation-
dissipation theorem, the more significant the stochastic dy-
namics.

The mode expansion clearly shows that the tip-torque
case has more energy in the higher modes. This suggests that
stochastic measurements of the cantilever tip angle will have
a stronger signature from the higher modes than measure-
ments of cantilever tip displacements. Using finite element
simulations for the precise geometries of interest, we quan-
titatively explore these predictions.

IV. THE STOCHASTIC DYNAMICS OF A
RECTANGULAR CANTILEVER

We have performed deterministic numerical simulations
of the three-dimensional, time-dependent, fluid-solid interac-
tion problem to quantify the stochastic dynamics of a rectan-
gular cantilever, shown in Fig. 1�a�, immersed in water using
the thermodynamic approach discussed in Sec. II. The deter-

ministic numerical simulations are done using a finite ele-
ment approach that is described elsewhere.22,23

The stochastic fluctuations in cantilever tip displacement
for a rectangular cantilever in water have been described
elsewhere.16,17,24,25 In the following, we compare these re-
sults with the stochastic dynamics as determined by the fluc-
tuations of the cantilever tip angle. The geometry of the spe-
cific micron-scale cantilever we explore is given in Table I.

As discussed in Sec. II, the autocorrelations in equilib-
rium fluctuations follow immediately from the ring-down of
the cantilever due to the removal of a step force �to yield
�u1�0�u1�t��� or step-point torque �to yield ��1�0��1�t���. The
autocorrelations of the rectangular cantilever are shown in

TABLE I. Summary of the cantilever geometries and material properties. �1�
The rectangular cantilever. �2� The V-shaped cantilever used is the commer-
cially available Veeco MLCT type E microlever that is used in atomic force
microscopy �Ref. 19�. The geometry is given by the cantilever length L,
width w, and height h. For the V-shaped cantilever the total length between
the two arms at the base is b=161.64 �m. The cantilever spring constant k,
torsional spring constant kt, and resonant frequency in vacuum f0 are deter-
mined using finite element numerical simulations. The cantilevers are im-
mersed in water with density �l=997 kg /m3 and dynamic viscosity �
=8.59
10−4 kg /m s.

L ��m� w ��m� h ��m� k �N /m� kt �Nm / rad� f0 �kHz�

�1� 197 29 2 1.3 1.6
10−8 71
�2� 140 15.6 0.6 0.1 8.9
10−10 38

TABLE II. The fraction of the total energy Eb contained in the first five
beam modes given by the coefficients bn. The tip-force results are for a
rectangular beam that has been deflected by the application of a point force
to the cantilever tip. The tip-torque results are for a rectangular beam that
has been deflected by the application of a point torque to the cantilever tip.
The coefficients clearly show that the tip-torque case has significantly more
energy contained in the higher modes.

n bn �Tip-force� bn �Tip-torque�

1 0.970 68 0.613 08
2 0.024 72 0.188 30
3 0.003 15 0.064 73
4 0.000 82 0.033 09
5 0.000 30 0.026 69

FIG. 1. Schematics of the two micron-scale cantilever geometries consid-
ered �not drawn to scale�. Panel �a�, a rectangular cantilever with aspect
ratios L /h=98.5, w /h=14.5, and L /w=6.8. The cantilever is composed of
silicon with density �c=2329 kg /m3 and Young’s modulus E=174 GPa.
Panel �b�, a V-shaped cantilever with aspect ratios L /h=233, w /h=30, and
L /w=7.8. The total width between the two arms normalized by the width of
a single arm is b /w=10.36. The cantilever platform is an equilateral triangle
with �=� /3. The cantilever is composed of silicon nitride with �c

=3100 kg /m3 and E=172 GPa. The specific dimensions for the rectangular
and V-shaped cantilever are given in Table I.
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Fig. 2. The magnitude of the noise is quantified by the root-
mean-squared tip angle and deflection, which is listed in
Table III.

A comparison of the autocorrelations yields some inter-
esting features. At short times ��1�0��1�t�� shows the pres-
ence of higher harmonic contributions. This is shown more
clearly in the inset of Fig. 2. This further suggests that the
angle autocorrelations are more sensitive to higher mode dy-
namics, as discussed in Sec. III.

The cosine Fourier transform of the autocorrelations
yield the noise spectra shown in Fig. 3. In our notation the
subscript of G indicates the variable over which the noise
spectrum is measured: G� is the noise spectrum for tip angle
and Gu is the noise spectrum for tip displacement. The equi-
partition theorem of energy yields

1

2�
�

0




Gu�	�d	 =
kBT

k
, �12�

1

2�
�

0




G��	�d	 =
kBT

kt
, �13�

where k and kt are the transverse and torsional spring con-
stants, respectively. The curves in Fig. 3 are normalized us-
ing the equipartition result to have a total area of unity. Using
this normalization, the area under a peak is an indication of
the amount of energy contained in a particular mode. Figure
3 shows only the first two modes, although the numerical
simulations include all of the modes �within the numerical
resolution of the finite element simulation�. The energy dis-
tribution across the first two modes shows the significance of
the second mode for the tip-angle dynamics.

Using a simple harmonic oscillator approximation, it is
straightforward to compute the peak frequency 	 f and qual-
ity Q for the cantilever in fluid. Using a single-mode ap-
proximation yields the values shown in Table IV. As ex-

pected, there is a significant reduction in the cantilever
frequency when compared with the resonant frequency in
vacuum 	0, and the quality factor is quite low because of the
strong fluid dissipation. The values of 	 f and Q for tip angle
and tip displacement are nearly equal. This is expected since
the displacements and angles are very small, resulting in
negligible coupling between the modes. Any differences in
	 f and Q can be attributed to using a single-mode approxi-
mation.

It is useful to compare these results with the commonly
used approximation of an oscillating, infinitely long cylinder
with radius w /2.5,6,17 The cantilever used here has an aspect
ratio of L /w
7, and the infinite cylinder theory is quite
good at predicting 	 f and Q.

V. THE STOCHASTIC DYNAMICS OF A V-SHAPED
CANTILEVER

We now explore the stochastic dynamics of a V-shaped
cantilever in fluid, see Fig 1�b�. An integral component of
any theoretical model is an analytical description of the re-
sulting fluid flow field caused by the oscillating cantilever.
The deterministic finite element simulations that we per-
formed yield a quantitative picture of the resulting fluid dy-
namics. Exploring the flow fields further yields insight into
the dominant features that contribute to the cantilever dy-
namics.

As discussed earlier, for long and slender rectangular
cantilevers the flow field is often approximated by that of a
cylinder of diameter w undergoing transverse oscillations.
This approach assumes that the fluid flow is essentially two-
dimensional in the y−z plane and neglects any flow over the
tip of the cantilever. Figure 4�a� illustrates this tip flow for
the rectangular cantilever using vectors of the fluid velocity
in the x−y plane at z=0. The figure is a close-up view near
the tip of the cantilever. It is evident that the flow over the
rectangular cantilever is nearly uniform in the axial direction
leading up to the tip. However, near the tip there is a signifi-
cant tip flow that decays rapidly in the axial direction away
from the tip. The increasing significance of the tip flow as the
cantilever geometry becomes shorter �for example, by sim-
ply decreasing L� is not certain and remains an interesting
open question. However, for the geometry used here it is
clear that this tip flow is negligible based upon the accuracy
of the analytical predictions using the two-dimensional
model.

Figure 4�b� illustrates the tip flow for the V-shaped can-
tilever, again by showing velocity vectors in the x−y plane at
z=0. The shaded region indicates the part of the cantilever
where the two arms have merged. The area to the right of the

TABLE III. The magnitude of stochastic fluctuations in tip deflection and in
tip angle for the rectangular �1� and V-shaped �2� cantilevers. These values
were obtained from numerical simulations of the beams in vacuum.

�u1
2�1/2 �nm� ��1

2�1/2 �rad�

�1� 5.6 5.0
10−7

�2� 20 7.0
10−9

FIG. 2. The normalized autocorrelation of the rectangular cantilever for tip
deflection �solid� and tip angle �dashed�. �Inset� A detailed view of the
autocorrelation at short time differences to illustrate the influence of higher
modes in the tip-angle measurements.
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shaded region illustrates flow off the tip and to the left indi-
cates flow that circulates back in between the two individual
arms.

In order to illustrate the three-dimensional nature of this
flow, the flow field in the y−z plane is shown at two axial
locations in Fig. 5. Figure 5�a� is at an axial location x
=77 �m. The two shaded regions indicate the two arms of
the cantilever. Each arm is generating a flow with a viscous
boundary layer �Stokes layer�, as expected from previous
work on rectangular cantilevers. However, the Stokes layers
interact in a complicated manner near the center. It is ex-
pected that as one goes from the base of the cantilever to the
tip that these fluid structures would transition from noninter-
acting to strongly interacting.

Figure 5�b� illustrates the flow field at an axial location
x=108.8 �m, the axial location at which the two arms of the
cantilever merge to form the tip region. The length of the
shaded region is therefore 36 �m or twice that of a single
arm shown in Fig. 5�a�. For this tip region the flow field is
similar to what would be expected of a single rectangular
cantilever of this width.

Overall, it is clear that the fluid flow field is more com-
plex for the V-shaped cantilever than for the long and slender
rectangular beam. For the V-shaped cantilever the flow is
three-dimensional near the tip region where the two arms
join together.

Central to the flow field dynamics are the interactions of
the two Stokes layers caused by the oscillating cantilever
arms. The thickness of these Stokes layers is expected to
scale with the frequency of oscillation as �s /a�R	

−1/2, where
a is the half-width of the cantilever and R	=	a2 /� is a
frequency-based Reynolds number �often called the fre-
quency parameter�. For the relevant case of a cylinder of
radius a oscillating at frequency 	, the solution to the un-
steady Stokes equations yields a distance of approximately
5�s to capture 99% of the fluid velocity in the viscous bound-
ary layer.26 For a single arm of the V-shaped cantilever this
distance is nearly 10 �m. In comparison, the total distance
between the two arms at the base is 125 �m. This separation
is large enough such that the two Stokes layers have negli-
gible interactions near the base. However, as the arms ap-
proach one another with axial distance the Stokes layers
overlap and eventually merge at the tip.

TABLE IV. The peak frequency and quality factor of the fundamental mode
of the rectangular cantilever determined by finite element simulations using
the thermodynamic approach. �1� Is computed using the cantilever tip dis-
placement due to the removal of a step force. �2� Is computed using the
cantilever tip angle due to the removal of a point torque. The frequency
result is normalized by the resonant frequency in vacuum 	0. Using the
infinite cylinder approximation with a radius of w /2, the analytical predic-
tions are Q=3.24 and 	 f /	0=0.34.

	 f /	0 Q

�1� 0.35 3.34
�2� 0.36 3.26

FIG. 3. The noise spectra of stochastic fluctuations in cantilever tip angle
�dashed� and tip deflection �solid� for the rectangular cantilever. The curves
are normalized to have the same area; however, only the first two modes are
shown.

FIG. 4. The fluid flow near the tip of the cantilever as illustrated by the
velocity vector field calculated from finite element numerical simulations. A
cross section of the x−y plane at z=0 is shown �see Fig. 1� that is a close-up
view of the tip region. The shaded region indicates the cantilever �because
of the small deflections used in the simulations, that cantilever does not
appear to be deflected�. �a� The flow field near the tip of the rectangular
cantilever. This flow field is at t=6 �s and the magnitude of the largest
velocity vector shown is −0.3 nm /s. �b� The flow field near the tip of the
V-shaped cantilever. This flow field is at t=7.2 �s and the magnitude of the
largest velocity vector shown is −26 nm /s. The shaded region indicates the
tip region where the two single arms have merged. The open region to the
left is where the two single arms have separated, revealing the open region
in the interior of the V-shaped cantilever.
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Despite the complicated interactions of the three-
dimensional flow caused by the cantilever tip and the axial
merging of the two Stokes layers, the V-shaped cantilever
behaves as a damped simple harmonic oscillator. The auto-
correlations in tip angle and tip displacement that are found
using full finite element numerical simulations are shown in
Fig. 6. It is again clear that the tip-angle dynamics has sig-
nificant contributions from the higher modes; see the inset of
Fig. 6. The area normalized noise spectra are shown in Fig.
7.

Using a simple harmonic oscillator analogy, a peak fre-
quency and a quality factor can be determined from the first
mode in the noise spectra of Fig. 7. These values are given in
the first two rows of Table V. The quality of the cantilever is
Q
2 and the peak frequency is reduced significantly,
	 f /	0
0.2, compared to the resonant frequency in the ab-
sence of a surrounding viscous fluid.

It is insightful and of practical use to determine the ge-
ometry of the equivalent rectangular beam that would yield
the precise values of k, 	 f, and Q calculated for the V-shaped

cantilever from full finite element numerical simulations. For
the rectangular beam the equations are well known �cf. Ref.
17� and yield a unique value of length L�, width w�, and
height h� as shown below,

k =
3EI

L�3 =
Ew�h�3

4L�3 , �14�

Q =
mf	 f

� f
=

4�ch�

�� fw�
+ ���w�,	 f�

���w�,	 f�
, �15�

where the peak frequency is determined from the maximum
of the noise spectrum,

FIG. 5. The fluid velocity vector field at two axial positions along the
V-shaped cantilever calculated from deterministic finite element numerical
simulations. Cross sections of the y−z plane are shown �see Fig. 1�; the
entire simulation domain is not shown and the shaded region indicates the
cantilever. Both images are taken at t=7.2 �s and the maximum velocity
vector shown is −26 nm /s. �a� The y−z plane at x=77 �m. The skewed
width of a single arm of the cantilever in this cross section is 18 �m. The
distance separating the two cantilever arms is 36 �m. �b� The y−z plane at
x=108.8 �m. This is the point at which the two single arms join to make a
continuous cross section of width 2w.

FIG. 6. The normalized autocorrelation of equilibrium fluctuations in the tip
deflection �u1�0�u1�t�� �solid line� and in tip angle ��1�0��1�t�� �dashed line�
for the V-shaped cantilever. The inset shows a close-up of the dynamics for
short time differences to illustrate the influence of the higher modes in the
tip-angle measurements.

FIG. 7. The noise spectra for the V-shaped cantilever as determined from
the tip displacement Gx �solid line� and from tip angle G� �dashed line�. The
curves are normalized to have an area of unity, with only the first two modes
shown.
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Gu =
4kBT

k

1

	0



T0	̃���R0	̃�

��1 − 	̃2�1 + T0���R0	̃���2 + �	̃2T0���R0	̃��2�
.

�16�

In the above equations 	̃=	 /	0 is the normalized frequency,
�=0.234 is a constant factor to determine an equivalent
lumped mass for a rectangular beam, mf is the equivalent
mass of the cantilever plus the added fluid mass, � f is the
fluid damping, � is the hydrodynamic function for an infinite
cylinder, �� is the real part of �, and �� is the imaginary part
of �. Equations �14� and �15� can be solved to yield values
for the unknown geometry of the equivalent rectangular
beam L�, w�, and h� which are given in Table VI. The
equivalent beam is shorter, thinner, and wider than the
V-shaped cantilever. Importantly, the width of the equivalent
beam is nearly twice that of a single arm of the V-shaped
cantilever.

These results suggest that the parallel beam approxima-
tion �PBA�,27–30 commonly used to determine the spring con-
stant for a V-shaped cantilever, may also provide a useful
geometry for determining the dynamics of V-shaped cantile-
vers in fluid. In this approximation the V-shaped cantilever is
replaced by an equivalent rectangular beam of length L,
width 2w, and height h to yield a simple analytical expres-
sion for the spring constant. This has been shown to be quite
successful for V-shaped cantilevers that have arms that are
not significantly skewed. The results of using the geometry
of this approximation to determine 	 f and Q from the two-
dimensional cylinder approximation are shown in the third
row of Table V. It is clear that this is quite accurate. It is
expected that these results will remain useful for cantilever
geometries that do not deviate significantly from that of an

equilateral triangle as studied here. An exploration of the
breakdown of this approximation is possible using the meth-
ods described but is beyond the scope of the current efforts.

VI. QUANTIFYING THE INCREASED DISSIPATION
DUE TO A PLANAR BOUNDARY

In practice, the cantilever is never placed in an un-
bounded fluid, and the influence of nearby boundaries must
be accounted for to provide a complete description of the
dynamics. In many cases the cantilever is purposefully
brought near a surface out of experimental interest in order to
probe some interaction with the cantilever or to probe the
surface itself. To specify our discussion we will consider the
situation depicted in Fig. 8 showing a cantilever a distance s
from a planar boundary. In the following we study the case
where the cantilever exhibits flexural oscillations in the di-
rection perpendicular to the boundary. However, we would
like to emphasize that our approach is general and can be
used to explore arbitrary cantilever orientations and oscilla-
tion directions if desired. The fluid is assumed to be un-
bounded in all other directions. It is well known that the
presence of the boundary will influence the dynamics of the
cantilever.8,9,15 The result is a reduction in the resonant fre-
quency and quality factor. This has been described theoreti-
cally for the case of a long and thin cantilever of simple
geometry where the fluid dynamics have been assumed
two-dimensional.7,10,12,13

In the following, we use the thermodynamic approach
with finite element numerical simulations to quantify the dy-
namics of the V-shaped cantilever as a function of its sepa-
ration from a boundary. We have performed eight simula-
tions over a range of separations from 10 to 60 �m using
both the tip-deflection and tip-angle formulations. The noise
spectra for these simulations are shown in Fig. 9. Using the
insights from our simulations of the V-shaped cantilever in
an unbounded fluid, we expect the relevant length scale for
the fluid dynamics to be twice the width of a single arm, 2w.
Using the peak frequency of the V-shaped cantilever in un-
bounded fluid yields a Stokes length �s=4.14 �m. Scaling
the separation by the Stokes length yields 2.5�s /�s�15,
which covers the range from what is expected to be a strong
influence of the wall to a negligible influence. Figure 9
clearly shows a reduction in the peak frequency and a broad-

TABLE V. The peak frequency and quality factor of the fundamental mode
of the V-shaped cantilever determined by finite element simulations using
the thermodynamic approach. �1� Is computed using the cantilever tip dis-
placement due to the removal of a step force. �2� Is computed using the
cantilever tip angle due to the removal of a point torque. The third line
represents theoretical predictions using the geometry of an equivalent rect-
angular beam given by �L ,2w ,h�. The frequency result is normalized by the
resonant frequency in vacuum 	0.

	 f /	0 Q

�1� 0.21 1.98
�2� 0.22 2.04

�L ,2w ,h� 0.19 1.98

TABLE VI. The geometry of the equivalent rectangular beam that yields the
exact values of k, 	 f, and Q for the V-shaped cantilever that have been
determined from full finite element numerical simulations. The length,
width, and height of the equivalent beam �L� ,w� ,h�� are calculated using
Eqs. �14� and �15� and are normalized by the values of �L ,w ,h� for the
V-shaped cantilever given in Table I.

L� /L w� /w h /h�

0.8 1.9 0.8

FIG. 8. A schematic of a cantilever a distance s away from a solid planar
surface �not drawn to scale�. The cantilever undergoes flexural oscillations
perpendicular to the surface.
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ening of the peak as the cantilever is brought closer to the
boundary. In fact, for the smaller separations the peak is
quite broad, and the trend suggests that eventually the peak
will become annihilated as the cantilever is brought closer to
the boundary.

Using the noise spectra, we compute a peak frequency
and a quality factor for the fundamental mode as a function
of separation from the boundary, which are plotted in Fig.
10. The horizontal dashed line represents the value of the
peak frequency and quality factor in the absence of bounding
surfaces using the two-dimensional infinite cylinder
approximation17 where the cylinder width has been chosen to
be 2w. It is clear from the results that for separations greater
than s /�s�7 the V-shaped cantilever is not significantly af-
fected by the presence of the boundary. However, as the
separation decreases below this value the peak frequency and
quality factor decrease rapidly.

The triangles in Fig. 10 represent the theoretical predic-
tions of Green and Sader12,13 using a two-dimensional ap-

proximation for a beam of uniform cross section that ac-
counts for the presence of the boundary. We have used a
width of 2w in computing these theoretical predictions for
comparison with our numerical results. Despite the complex
and three-dimensional nature of the flow field, the theory is
able to accurately predict the quality factor over the range of
separations explored. The frequency of the peak for the
V-shaped cantilever shows some deviation from these predic-
tions.

In general, an increase in the period of oscillation for a
submerged object can be attributed to the mass of fluid en-
trained by the object.31 The lower peak frequency calculated
for the V-shaped cantilever using a two-dimensional solution
indicates an overprediction of the mass loading. This can be
attributed to the three-dimensional flow around the tip being
neglected for this approach. It is reasonable to expect the
cantilever tip to carry a smaller amount of fluid than a sec-

FIG. 9. Panel �a�, the noise spectra Gu of stochastic fluctuations in cantilever
tip deflection for separations s=10,12,15,20,40 �m. Panel �b�, the noise
spectra G� of stochastic fluctuations in cantilever tip angle for separations
s=15,25,60 �m. The spectra have been normalized by the maximum value
of Gu or G�. The smallest and largest values of separation are labeled with
all other values appearing sequentially.

FIG. 10. The variation of the peak frequency �panel �a�� and quality �panel
�b�� of the fundamental mode of the V-shaped cantilever in fluid as a func-
tion of separation from a nearby wall. Results calculated using tip deflection
are circles, results using tip angle are squares, and theoretical predictions
using the results of Ref. 13 are triangles. The peak frequency and quality
factor of the fundamental mode in an unbounded fluid are 	 /	 f 
0.19 and
Q
2, respectively, and are represented by the horizontal dashed line. The
distance s is normalized by the Stokes length �s, where a=w to yield
�s=4.14 �m.
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tion of the beam body moving with the same velocity; see
Fig. 4. The quality factor relates to the ratio of the mass
loading and the viscous dissipation, and is less sensitive to
deviations incurred from the two-dimensional approxima-
tion. Despite neglecting three-dimensional flow around the
cantilever tip, the two-dimensional model for the fluid flow
around the V-shaped cantilever gives an accurate prediction
of the peak frequency and quality factor.

VII. CONCLUSIONS

We have shown that the thermodynamic approach is a
versatile and powerful method for predicting the stochastic
dynamics of cantilevers in fluid for the precise conditions of
experiment including complex geometries and the presence
of nearby boundaries. Available analytical predictions are for
idealized situations including simple geometries where the
three-dimensional flow near the cantilever tip has been ne-
glected. Although this has provided significant insight, many
situations of experimental interest are more complicated. It is
often required to have a quantitative baseline understanding
of the cantilever dynamics for the precise conditions of ex-
periment in order to make and interpret measurements in
novel situations and in the presence of other phenomena of
interest.

We emphasize that, by using the fluctuation-dissipation
theorem, a single deterministic calculation is sufficient to
predict the stochastic behavior for all frequencies. Further-
more, the deterministic calculation is computationally inex-
pensive and does not require special computing resources.

The thermodynamic approach is general in that it can be
used to compute the stochastic dynamics of any conjugate
pair of variables. We have shown that the stochastic dynam-
ics that are measured depends upon the choice of measure-
ment. This could be exploited in future experiments, for ex-
ample, to minimize or maximize the significance of the
higher mode dynamics by choosing to measure tip deflection
or tip angle, respectively.

Our results also suggest that, despite the complicated
three-dimensional nature of the flow field around a V-shaped
cantilever, analytical predictions based upon a two-
dimensional description are surprisingly accurate if the ap-
propriate length scales are used. We anticipate that these

findings will be of immediate use as the atomic force micro-
scope continues to find further use in liquid environments.
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