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1; Introduction

In this work we study the equation

(1.1) u’(t)+}Iä(d+a(t—w))u(¢)d¢=0, u(0)=1, t}U,

where prime denotes differentiation with respect to t. The solution is

u=u(t)=u(t,A). The convolution kernel satisfies dzü and a is

nonnegative, nonincreasing and convex. Our purpose is to study the

question: Under what additional conditions does

(1.2) '|°°[;'§,*;:§’|-“lÄ”l-jf,-i-’-Ü-|dz<¤„
hold?

The organization of the paper is as follows. In Section 2 we

discuss known results for (1.1) both with and without the parameter 1.

In Section 3, we state our results and consider some examples. In

Section 4 we give proofs. In Section 5 we give further examples.

The main results of this work are contained in Theorems 7 and

8. In Theorem 7 the hypotheses involve conditions on the Fourier

transform of the kernel. The hypotheses in Theorem 8 are stated

directly in terms of the kernel a.

l



2; History

{Our primary interest concerning (1.1) is L1 behavior, uniform

in ä}1, of the solution and its derivatives. we will show how (1.1)

arises in the study cf an abstract equation in Hilbert space. Uniform

L1 behavior 0+ the solution to (1.1) and o+ its derivatives has

consequences for the Hilbert space equation (regarding, in particular,

asymptotic behavior 0+ the solution).

we will begin with a look at asymptotic results for the scalar

equation

(2.1) u’(t)+fäg(u(t))a(t-¢)d¢=+(t), t)0, u(0)=u0

both in the linear case, g(x)=x, and the nonlinear case. The papers we

will discuss have assumptions on the convolution kernel that are similar

or related to the ones we will use in our study of (1.1). we will

observe the progress made by several authors in weakening the

assumptions made on the convolution kernel.

In the earlier papers we will discuss, the results were

obtained by working directly on the equation and by using energy

methods. Ne will observe that transform methods were later used to

advantage even in the nonlinear case.

In the linear case more transform theory can be used. we will

examine the methods in [311 that were used to obtain a crucial L1 result

for the linear version of (2.1). This result is quite useful in the

study 0+ (1.1).

After showing the above mentioned interplay between (1.1) and

2
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the Hilbert space problem we will consider results on the uniform L1

behavior for (1.1) and discuss the techniques that are used. we will

study the techniques in some detail as the methods used will have a

considerable bearing on our study of (1.2).

In 1963 J. J. Levin [21] investigated the problem (2.1) with

f(t)ä0 under the assumptions a€C£ü,m), (·1)Ka(k)(t);0, k=ü,1,2,3, a is

nonconstant, g€C(—»,¤), xg(x)>ü for x=U and G(x)Efäg(u)du+¤ as ixI+«.

He proved the following:

Theorem 3; Under these hygotheses, ij u=u(t) lg ag; solution

gi (2.1) that exists gg [0,m) then lim u(J)(t)=0, j=0,1,2.
li-bo:

(Note: In Theorems A through E, the proofs can easily be modified with

at most minor addition hypotheses to establish global existence.)

To prove this Levin defined the nonnegative energy function

and showed that
E’(t)$0,

and E"(t) is bounded. Then

(2.2) G(u(t))$E(t)$E(0)=G(uÜ)

and since G(x)+¤ as lxl+m, u is bounded on I0,¤). The above facts for

E(t) imply E’(t)+0 as t+m. Levin used this to prove his result. Notice

that (2.2) implies that the solution u(t,2) of (1.1) satisfies

(2.3) |u(t,))l$1, t}0, ä;1.

Indeed (2.3) remains true for the equation (1.1) under the weaker

hypothesis (2.12) belw. Details can be worked out as in [8].
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In 1971 [23] 3-0 Londen improved this Theorem using a somewhat

different technique. Londen proved

Theorem Q; Ii a(t)€L1(0,1),(-1)ka(K)(t))0, 0<t<m, k=0,1,2, a pg;

constant, g€C(·m,w), f€C[0,¤)¤L1(0,¤), then gp;

solution u(t) gi (2.1) that satisfies sup lu(t)I<¤ must
Ü.{t(o¤

satisfy lim g(u(t))=ü. Ii lg addition lim f(t)=0 then
t+¤ t+0

lim u’(t)=0.'(-•o

In particular, a(0+) need not be finite. instead of using an energy

function, Londen wrote the equation (2.1) in the form

(2.4) G(u(t))=G(uÜ)+Iäg(u(¢))Igg(u(s))a(¢-sbdsdf

+Iäf(v)g(u(1))d1.

By rewriting the second term on the right in (2.4) one can immediately

bring out the importance of the monotonicity conditions on a to the

existence of lim g(u(t)).
t-mo

Nohel and Shea, developing ideas introduced by A. Halanay {6]

and R. C. MacCamy and J. S. Hong [25], use the same form (2.4), but they

employ transform methods to analyze the key quadratic term.

Let us recall two definitions that are needed here. The

function a is of positive type if a€L%Oc[0,m) and

t . , _fg ima fü tmiatt wmdiyo
for all v€C[0,¤), for all T>0. The function b is stronglv positive if b
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is of positive type and if there exists n>0 such that b(t)—ne—t is of

positive type.

° Nohel and Shea prove

Theorem Q. (i) ggg u(t) gg g bounded solution gg (2.1). gggggg

a(t)e—°t€L1(0,m) ggg ggg ¤>0, a€BU[1,m), a gg stronglg gositive,

t(t)€L1(0,o), g(x)€C(-¤,¤>. [ggg

lim g(u(t))=0 ggg lim £u’(t)-f(t)]=0.
{-von t-Mo

(ii) ggg gg ggg identicallg constant, nonnegative,

nonincreasing ggg gggggg ggg gggg gggg da’(t) gg ggg g gggggg singular

measure. [ggg a gg stronglg gositive, gg gggg ggg conclusions gg (i)

gggg.

This strengthens Theorem B of Londen.

Ne will now give a sketch of the proof of Theorem C (i) in

[29]. Start with (2.4). Define

where v(t)Eg(u(t)), and define

Extend a by an even extension and define aa(t)Ee-°‘t'a(t),6>0. Then

naiv ,T1=%ßv<t>_|”gv<g>a<t—g>¤g¤iz
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=11m.H°j_„vT<t>,['j°°vT<g>a6<f-gidgdt,
6+Ü+

where the last step uses the Lebesgue Dominated Convergence Theorem.

Let f(t)§f€®f(t)e_itTdt, f(s)=fge-Stf(t>dt. Then by evenness

of
at

a (¢)=2ReI°e-(°+iT)ta (t)dt=2Rea(6+i1) Note that Rea(6+iw)>-JL?
* 6 0 6 ' /1+7

by strong positivity. Since aG€L1(-m,m) for 6)0 and vT has compact

support, the Parseval Theorem implies

Ga[U,T]=16+0
1+7

=QC(v,T) where c=ne_lt|.

Since u is bounded, Ga(v,T)}0, (2.4) and f€L1(0,m>, the above

inequality shws GC(v,T) is bounded. Further estimates and the wiener

tauberian Theorem or an elementary argument is then used to prove

v(t)Eg(u(t)>+0 as t+¢.

Staffans [32} generalizes the notion of strong positivity to

strict positivity. A function a in is of strictlg positive

tgpe if there exists a function b€L1(0,m) such that

Iäcoswt b(t)dt>0,—¤<w<m and a—b is of positive type. Note that strong

positivity is the special case b(t)=e-nt.

Staffans proves

Theorem §g_ Li a lg gi strictly positive tgpe ggg ij g€C(-w,¤),
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f€L1(0,«), then ggg g bounded uniform}; continuous local}; absolute};

continuous solution u(t) gg (2.1), g(u(t))+0 gg t+m.

All nonnegative, nonincreasing, convex Kernels satisfying

(2.5) fg coswt a(t)dt>O,-¤(w<w,

are strictly positive, and (2.5) excludes only certain piecewise linear

Kernels (see [71). Staffans wrote a series of papers developing these

ideas further. (See [34]-[381).

Of course, transforms were used even earlier to study the

linear case of (2.1) (e.g. [22]). The major landmarK is [31], where

Shea and Uainger prove

Theorem gg ggg g(x)=x gg (2.1). ggg a(t) satisfy a(t)=b(t)+ß(t) where

b gg nonnegative, nonincreasing ggg convex gg (O,m), b€L1(0,1) ggg

(1+t)p(t)€L1(0,m). ggg a(t) satisf; —;(z)¢z, Rezäü. Then gg the

garticular case where fEO, ggg u0=1 ggg solution r=r(t) gg (2.1) gg gg

L1(O,¤)OC1[0,¤) ggg ggg derivative tends gg zero gg t+¤. gg ¥€Lm(Ü,m),

ggg solution u=u(t) gg (2.1) gg bounded:

The main theorem in [31], which is used to prove Theorem E is

a variant of the wiener-Levy Theorem.

Theorem gg Let a(t>=b(t)+p(t) with b nonnegative, nonincreasing,

convex gg (0,m) ggg [0,m) ggg (1+t)ß(t)€L1(O,¤) gg a(t)=b+ß(t)

where b gg gg; constant, p(t)€L1(O,m). Assume ¢(w,z) gg analytic gg
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S=<<a(z),z):Rez}0} ggg gg (0,m), <m,O) and that ¢(0,«>=0. Then there

exists r(t)€L1(0,w> such that a<§<z>,z>=F<z>, Rez}0.

Jordan and wheeler weaken the hypothesis (1+t)ß(t>€L1(O,m> to

p(t)€L1(0,m) in {18]. For further developments along this line see

Jordan, Staffans, wheeler [171.

In the proof of Theorem F in the case that applies to Theorem

E when p=U, the Key step is to show f?m|äär(w)|dw<m and then use the

Hardy anequaiatyV

V ·f(x)=<r)’<x) where r(x)Efäe'tx r<x)dx.

Since f<t)=itr(t), this Yields

lg i«~<i>idt4«_[°jwi?·'<x>i¤x<.„.

The difficult estimate in this step is showing fi1lr’(w>Idw<m,

that is, fil Using the monotonicity condition on a,
<w+a<w>>‘

Shea and Hainger obtain the estimates

)

and

where

(2.8) •¢‘«<x>E>[äa·(s)ds,A1•(x)E].äsa•IsZ>ds.



9

. , .1Inequality(2.6) reduces the needed estimate to I_ X--? dw<o.I Ia(w) I

To show the latter inequality we use (2.6), (2.7), evenness of

la! and a change of variable to obtain

1 $11m_ x--? dw
I I Ia(w) I

1A (—-—>
1 1 w1 111 I1 "2"“i““d'^'

AA

(y)
:640 Io I dy

‘A2<y> yz

1“*I°{°fzI;%°'>’ = K+?$(%'»T ‘ A'(II')'
y

K is a constant and Äé;7 =0 if a4LI(0,m). In the last inequality one

uses integration by parts and monotonicity.

Recently Londen in [241 discovered that, for a certain

subclass of functions of the form a(t)=b(t)c(t) where b(t) is completely

monotone and c(t) is of positive type, the solution u of (2.1), in the

linear case with +50, is in L1(Ü,w). For related work on (2.1) see [14],

[191, [201.

The parameter problem (1.1) arises when one tries to obtain

results like those above for the Hilbert space problem

(2.9) y’(t)+Iä(d+a(t—¢))Ly(¢)d«=f(t), t}0, y(0)=yÜ,

where L is a self adjoint linear operator, defined on a dense domain 0

of a Hilbert space H, whose spectrum is contained in [1,m). Letting u
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be the solution of (1.1), define U(t)EI?u(t,A)dEk where (E,) is the

spectral family (see [30]) corresponding to L.

Carr and Hannsgen establish the resolvent formula

for (2.9). They also give sufficient

conditions for

(2.10) .[‘;lIU(t)ildt<¤¤, fg*iiv<t>L"éiidt<.., where v<t>s_|"}°¤)<t,>.>¤e,‘,
(see [21,[3]).

In particular, (2.10) holds if a is nonnegative, nonincreasing and

convex with
—a’

convex. The main work is to show that

(2.11) °° sup iu<t1>i¤t<„» °° sup 7*) dt<·m

holds and then (2.10) folluws by the functional calculus (see [30})..

The techniques used by Carr and Hannsgen in proving (2.11) are crucial

in our study of (1.2). we will consider them in some detail.

A helpful example is a(t)=e_t. (1.1) reduces to the ordinary

differential equation u'(t)+u’(t)+Au(t)=0 with solution

u(t,A)=e-t/2(cosut+éEsinpt) where p= {A-aa)/2. Differentiation shows

that
u’

and u" must be scaled by dividing by A1/2 and A respectively if

_ one expects to sup over AAI and obtain a finite valued function of t.

The assumptions used to prove (2.11) generally involve a

sufficient transform condition which often implies a (generally

b stronger) direct sufficient condition. we illustrate this with the next

two theorems from (2] and [31 respectively.
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Theorem gg Assume a€C(0,w)OL1(0,1),

(2.12) a [g nonnegative, nonincreasing ggg convex gg (0,m),

Ü=a(¤o)(a(O+)$<o,

d}O.

Assume moreover a=b+c where b,c satisfy (2.12) except that b(0+)=ü gg

c(0+)=0 gg permitted,I?t-1b(t)dt<m ggg
-c’

[g convex gg (0,m). Assume

limsupmag
«Rea(¢)

Then fg sup Iu(t,1)Idt<m.
A)1

Theorem gg Assume a€C(0,m)0L1(ü,1), (2.12) ggg a=b+c where b,c satisfy

(2.12) except that b(U+)=0 gg c(ü+)=ü [g permitted, fg t-1b(t)dt(¤ ggg

-c’ gg convex gg (0,¤). Assume that ggg some
€>0,

iim sup Ilßäill [ggg
w+« Rea(1)

)$1 ÄE

A direct condition on a that impiies (2.11) is

(2.13) a is nonnegative, nonincreasing, convex and
—a’

is convex, on

(Ü ,.:0) .

Now we wiii give a sketch of the proof of the first part of

(2.11), under the assumption (2.13).

Using eiementary transform theory the representation

t}0, ))0
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is obtained for the solution u=u(t,)) of (1.1), where

D(1,l)ED(1)+i1ä_1Ea(1)-id1-1+11)-1.

This is integrated bv parts, yielding

. D (1 A)(2.14) 1u<1,1>=Re(1-11-1-_[°11*e'*1ä£;2d+], 110, mo.
*1

Estimates (2.6) and (2.7) and lemma 2 of [311 ensure the

absolute convergence of the integral as well as the uanishing of the

boundarv terms in the integration bv parts.

The integrand is then written in the form

1 — 112-1 2
021+ 11 1-11**1 111*11

S

_ D’(1)+i%-1 [1 _ 211}-11
-0 <+> *

+20 1+,11_ 1
1

2 1 1
1R1 0 11101+,11 * *·

= D’(1) 1 i 11
_ 21D’(1)] 1 J7 21

02111 1021+1
¤‘*’ 1— 031+1

+2011+,11 2 1
Ä D (1)D(1,}) T) 7*

= i 1 1

Then (2.14) becomes

·1 11-12 { 1 jp 1*111 +11 +11 +11 1d++

1where
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:1 p i·rt

:1 p i·rt

:1 p i·1t

D (·r A)
-1 oo · T

’
u (t ·r)= nt d·r.5 ° YXIP

° D(T,A)2
Note that ul, u2, u3 are functions of t only. Carr and

Hannsgen show that

i <1 1 <i<1< ‘—4Uj 1 x?2’€
1°° 1 ·. °°1

J“ 15)

for some constant M independent of A. This with

u%1m[A-1ul+iA-2u2+A-3u3+u4+u51 and u(t,A)€L1(0,•») for each A31 (by

Theorem F) implies uJ€L1(1,.») for „i=1, 2, 3. Thus,

. 1.sup iu(t A)I$u (t)+u ·„t)+u (t)+2M {L (1 {:1).
Ä}1

’ 1 2 3 :2
’

The inequality (2.3) then gives the first part of (2.11).

The bound |uJ(t,A)I$M, „i=4,5 used above is obtained byI?
integrating the formula for uj by parts. This brings another factor of

t into the denominator. The coefficient of t-2 is estimated using

(2.6), (2.7) and the inequality

· ·
5“1‘« 1 · 1 1 1 « ·

{2 15) ‘ (i)<9(¢)’C A {$1
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proved in [21. Here Cl is a certain constant and ¢, G are defined as

the real functions such that

(2.16) ;(¢)=¢(w)—iw8(¢) (¢€R,w¢0).

The same methods are also used in [31 to show

<2.17> °sup Hiiägll dt<„
I Ä I

under the assumption (2.13), and we will use them to show

I?supNow

consider the second part of (2.11) under (2.13). By

(2.17), we need only look at I6. It turns out that, as opposed to

sup lu(t 1)I sup
u’(t

1) is not a bounded function of t on (0 1).
111

’ ’
111 I‘“Qp#"I ”

However, Carr and Hannsgen use the analogue of (2.14) for u’(t,1) to

obtain an estimate of the form

|u'<1:1>I4M1°€,
1

3-6
(M . w8(¢)2a constant), under the assumption sup —-T;T-— <m for some 6,

p/2$¢
¢‘ ‘ ,

0<6<;. They also obtain the estimate

(2.18) sup |u’(t,1)l$k6
t)0

for some constant k under the assumption (2.12) where c=6(1) is defined

by the formula

(2.19)
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Note that cad as 1+m and gaß as ä+¤.

The above estimates on u’•(t,}.) are combined as +oiiows:

. , „ 1-p -p bé—!&p—p£u =u p u 1-p -p
-p€

6 <Mt ZX where M ard M are1 2 1 ‘ 2

constants and 1-gz?-$p<1. Then |äé|•;(M2t_p€L1(0,1>. This compietes the

proo+ 0+ the second part of (2.11) under the assumptions mentioned

above.

For reiated work see [8] — [13], [15], [16], [27] and [281.



L New Results

we study the question 0+ whether (1.2) holds +or the solution

0+ (1.1). By lemma 3 (i) in [71, ;(v) is de+ined, +inite and continuous

+or lmv)0, ¢¢0 when a(t)£C(0,«)0L1(0,1) is nonnegatiue and nonincreasing

with

lim a(t)=0 and 0<a(U+)$¤.
t-bo)

Ne will be using the auxiliary +unctions w, w*, ¢, 9, D(1,)),

D(¢), A, 6, A1 de+ined by (3.1), (3.2), (2.16), D(¢,k)=D(¢)+iwä_1,

D(w)=;(¢)—id¢-1, (2.3), (2.19) and (2.3) respectively. we also use

inequalities o+ these +unctions which were established in [2] and [3].

In [3], assuming (2.12), it is shown that

(3.1) X-1=0(w)+dw—2

defines a continuous, strictly increasing +unction m=m()) on some

interval [)O,m), where w()ü)=p +0r sme p)0. Extend w to [1,m) by

de+ining w(ä)=p on [1,lÜJ (i+ )Ü)1). As in {3] de+ine

(3.2) «.)*=(.i*·:))

to be any number in [§,2w] such that ¢(o*)= inin 4(w). Assuming (2.12),

°°<·r<2wEx x

the +ollowing inequalities hold ([2] and {3]): ‘

(3.3) g2(«)+[?)2(M-i0(«,).)i2, wg.

(2.4) A[·,%)$M·iD(·r,7«)|, weig, g]ui2(.),..). -

l6
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o
(3.5) w$C16;)$C2¤“,k)1 where C1,C2)0,(C1)l2).

(3.6)(3.7)

m)-1$M·lD(¢,))I, 2w$1<«.

ägfgzw.

2(3.9) ä$Mw

1 1 1 1

Here M is a constant independent of ¢ and A. we also will need the

estimate

(3.11) Iäxa(s)ds)KIäa(s)ds (0<K<1,0<x<¤)

which holds for a€L%OC[0,m) satisfying a is nonnegative and

. . . .
=

kx_ _ x_ .nonincreasing. To see this define F(K)-IO a(s)ds K Ua(s)ds for fixed

x>0. Then F(O)=0=F(1). Moreover F’(K)=xa(Kx)—fäa(s)ds is a

nonincreasing function of K because a is nonincreasing. Thus F is

positive for 0<K<1.

Theorem 1 gives representations for u”(t,}) in terms of the

transform of the convolution Kernel.

Theorem 1; Assume a€L1(U,1), (2.12) ggg ¢(¢))0 (¢>0). Then

<a>R-+0 V 1

_ iwt -iwD(¢)
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and

. . 2 , 2cm 1u··<t,>.>=Re{-;j°ge'*t[]d«.
D(6,A)

(The integrals are Riemann or improper Riemann integrals).

Theorem 2 gives a necessary condition for (1.2).

Theorem gi Assume (1.2) ggg ggg hggotheses gi Theorem gi Then

(3.12) lim sup (¢8(w))2<m.
'T—hc¤ ¢z'T5

The representation for u'(t,A) of Theorem 1 (ii) is used to

obtain Theorem 3.

Theorem Qi Assume (3.12) and the hggotheses gi Theorem gi Then

sup I!;i}#llI$¥ ig; some constant M indegendent gi t and A.
A31

If we make a change of variable in the integrand of (1.1) and

then difierentiate the result we obtain

(3.13) -u'(t)=a(t)+du(t)+Iäa(¢)u’(t-¢)d¢,t>0.

The next lemma gives an important estaimate on the integrai

term 0+ (3.13) which yields another necessary condition for (1.2).

Lemma gi Under ggg assumgtions gi Theorem gg there exist constants

N1,N2>0 such that

62, t , 62
(3.14) Nljrxggä A31.

A consequence 0+ this lema is

Theorem Qi For (1.2) gg hold under ggg hggotheses gi Theorem g gg ig

necessary that
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(3.15) (-!nt)a(t)€L1(0,1).

Lde obtain a sufficient condition for (1.2). Lde first give two

partial results which isolate transform conditions sufficient for

integrability of on (0,1) and on [1,6).

Theorem Q1 1g addition gz; gg; assumgtions Q Theorem LL suggose (3.15)

ä
(3.16) sup C().)6

was;

(3.17) C()i)E§+.
¢·(w )

1*1211

fgTheoremQ 1g addition E assumgtions Q Theorem 1, suggose (3.12),

a(t)=b(t)+c(t) v_.;lQ b,c Q satisfy (2.12) g<_g;_Q ggg; b(0+)=0 gi;

c(0+)=0germitted.(3.18)

Ef;-ldt<¤¤ gg
-c’

g Q1;.

jfThus in terms of the transform of a, we have the following

answer to the main question of this study.

Theorem Z. a) 1h; assumgtions Q Theorems 5 ggg 6 ig gg);

(1.2). b) 11 (3.15) E (2.13) ggg, EQ, ig;
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G2
some q>1, lim sup then (1.2) holds.

7i-bo:

Next we look for direct conditions on a(t) that imply the

transform conditions of Theorem 7. we have not found a satisf„%»g

"natural” sufficient condition, but some reasonable conditions. which

include wide classes of examples can be stated.

By [16], when (2.13) holds,

(3.19)where

(3.20) B(x)Efä-sa’(s)ds _

and we also observe that the following holds:

Lemma gg gi a€L1(0,1) ggg (2.13) holds then (3.12) holds.

This extends a result in [33]. (Lema 2 is proved in [1] (Lemma 2

(iii)). For completeness we include the proof in Section 4.) Putting

this lemma together with Theorem 3 yields the following corollary.

Corollarg. gg (2.13) and a€L1(0,1), then ggg conclusion gi Theorem Q

holds.

Ne next obtain a theorem ensuring (1.2) where the hypothesis

are stated directly on a(t). The four cases in part b of the Theorem

say roughly this about a(f):

(i) Rea(f), Ima(f) have the same order of magnitude as 7+Q; (ii) Ima(f)

is smaller than Rea(f) as few; (iii) and (iv) Rea(f) is smaller than

Ima(f) as 7+Q. This is shown in the discussion in Section 4.
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Theorem §. a) Assume (2.13) ggg a(0+)<6. Then (1.2) holds.

b) Assume (2.13), (3.15) ggg ggg gg ggg following:

(i) There exist constants c1,c2>0 such that

(321) am lualgc 1A l gw' 1 1 1 ‘
1 2 1 1 ' *

QL

11A —
(ii) limAlal

QL

B l azm
(iii) lim 1 =0, --—— gg increasing ggg small t ggg

1+6
-a’(t)

Alxl
a2<1> 1-——-——— €

L
(0,€)

ggg some
€>0,

—ta’(t)

QL

(iv) lim T =O ggg $M<6 ggg 1 gg [@,6).
T4Q

(I]
[I) “

Then (1.2) holds.

In Section 5 we apply this Theorem to examples. In particular

if a(t)=t-P, U<p<1 or a(t)=—lnt for t near 0 or a(t)=t_1(-lnt)-Q near 0

(q)2), then (1.2) holds. Note that a(t)=t-i(-lnt)-Q does not satisfy

the necessary condition (3.15) for q$2.

After considering these examples we give an example that

satisfies (2.13), (3.15) but not (3.16). However we still have (1.2) by
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Theorem 7 b .



L Proo·Fs

The integrated version 0+ (1.1) is

u(t)+)Iäu(¢)jä-T(d+a(s))dsd¢=1. The usual method of Picard successive

approximations [261 ensures the local existence of a unique continuous

solution. The a priori estimate Iui$1 (2.3) ensures that the continuous

solution exists on [0,m). Now (1.1) shows that u' is continuous on

[0,m) and (3.13) shows u" is localiy integrable for t}0 and continuous

for t>0.

Let us prove Theorem 1, (i). By {71, lim u(t)=0 and by
t+m

Theorem E, lim u’(t)=0. By (1.1), u’(0)=0. These +acts and integration
t-bo

by parts yield

= Iäive-iTtu’(t)dt=i·r(-1+i·rf‘3e-iTtu(t)dt)

= iw(—1+iwu(«)).

Applying the Fourier transform to (1.1) yields

mai es

I]<«>= 1 .
ÄÖ(7,A)

Thus,.

/\ . -1 _ _, ..

f 1 . 1 _ . A(x)
-i By (2.6), ira(¢)I$4¢A(;) and by (2.12) lim w A ;

-l•m
-7;- —

r+0+ xam

23
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. ^ . . . ^ . «o<«>0 so liml1a(1)I=0. Thus we write limIu”(1)|=lim UT-TT =I
1+0+ 1+0+ 1+0+ I T' I

. ^ _. -1 . 2^
liml-lliéill-igl——l—I = lim where we have used

1+0+ 1+0+ 1a(1)-id+i1 l

(2.6). Also by (2.6),

/\ ~¢ -1im iu·<«>i=iiml|=o.
1+m 1+m a(1)/1-id/1 +iZ

Theorem F can now be applied with b(t)=a(t)+d, ps0 and

4(w,z)=z(——:ä§qJ. The conclusion is Iälu'(t,E)ldt<¤ for each Z. Thus
w+z

the inversion formula
. /\ . _. ,3: ·_

t>0-•m -•c¤

holds (see p. 12,13[5]). Calling the integrand I(1), we note that

I(-1)=1(1) (where the bar denoT~~ complex conjugate). Therefore,

- R oo(4.1) 1u“(t })=limRe I(1)d1= Re1(1)d1.I
R-wi Io IO

Throughout the remainder 0+ the paper, M will denote a

constant whose value may change each time it appears.

To prove Theorem 1 (ii) we integrate (4.1) by parts. This

gives the correct integral term. we will see that the boundary term,

Ilm") -‘n tuer- w ‘ii iiti ~+bT UT;TXT, vanis es a 1= an a 1-m. e wi comp e e ie proo y

showing that the integral term has an absolutely convergent integrand.

First we show the boundary term vanishes. If d>0 we tollow

Carr and Hannsgen [3) and use
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(4.2) |D(1,})|)max{¢(1),d-12}}é_, 0<1$p,d>0.
1 1

By (4.2) and (2.6),

A ‘ 1esI
I

M?For

d=0, 1¤<1,1>1112<1>i-112'3*’2„¤(%)-1. Thve,

<4 a> ¤o<
'3’2 1 — —. 1,})l)max{2 A for d—0, 0$1(p.

^ 1with <2.6> we have +0 as 1+0 <¤=0>.¤ ...........
·3/2 1 _

:\ . -1
A l -11 1D(1) 1 (a(1)-¤d1 )1 1 a(1)-id1Also bw- = = -9ÜYI 7* I Y Ia(1)-1d1 +11} I YI1 a(1)-id1 +1} I

as 1+m by (2.6) (for all d). To see that the integrand is absolutely

integrable near the origin, when d>U, use (4.2), (2.7) and (2.6) to

obtain

p D(1) 2 _ p _ 11 2dq

2 2
< P2+ Z1 1114211+ M Pl

ÄZIPQE

2 . 2 1 3p 1QTmeh,joD(‘T,Ä) l·I——

{2

when d=0, use (4.3) to obtain

2P M") 261< P2+ Z" es <¤ +" P zu <MD7-)- .‘ 'T „p 'T T •·I°I —*·^I ·I° 1
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Also,

2 , 1
l8I§’—§y$ä·|¤«<~lS

"^(*]“" tit-
7 \

we have used that iim·m(%]=0 and lim (2'S/2%%]-«]2=§<_[‘;a<s>ds>2>0.
w+« ¢+0

Next we will see that the integrand is absolutely convergent at m.

Use (3.7), (2.19), (3.11), (2.6), (2.7) and the Fubini theorem

to obtain

fw2C1"
o<«,x>

d 1/w

2 1 oo 1/'T

$1=M12(§+ß/2C1°a(s)ds)$1416.

Also by (3.7), (3.11) and (2.6),

1 2Im I om Izcmäzmfa dl
2Clo'T

2 wb 1 1/2C G 2(M1 dw 1 ·(s)dsIZCI6:22
.

$M%;(Iä/°a(s)ds]2=Mc.

This proues the theorem.
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Ue note the argument contains the following estimate:

' I2l"2“" ‘ '(4 4)° 2°1° 1 011,20 Y

This will be used in the proof of Theorem 4.

To prove Theorem 2 use (2.16), (3.10), (3.1) and

I°6'If(t)Idt}If(·r)l for ·r>0 when f€L1(0,-») to obtain

¤ /\> °°sup ie-E 61>‘ °°¤u··<1 m¤d1>i•¤ (l) ¤··<«.1>
°° 11 I /'X,I0

'
/511,1 I I

io5C"+;T"'7':1' 5C E ( 51 a(w)-idw +61171 1 Ö Q

0<«.1>1.12 ) 1 2
CO)-

By the properties of co this proves Theorem 2. Theorem 3 follows

directly from the next lemma.

Lemma 34 Under _t_h_g assumgtions gi Theorem L

u"(t I) M 6 {w*6(m*)]2 MC(A) -<4.s> [7-==-|4,([I+€V-]a—,(— <„1;1,1>0>.
¢

w“)

we begin the proof of (4.5) by using (3.4), (2.7), (3.5) the

monotonicity of T , (3.11) and (2.19) to obtain"‘I?I

2 21 w/2 ·r D’(·r) d44 21316·r2

d 1/·rM 2C 6 ·r[ + sa·Zs)ds1$#4 1 $2 ,I0
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4i‘,j§°1° [-+7,* + -+7*}d„

I6 +6*
Ära-} Ära-}1° 1°

G6?} 6 +62z=M

l+° <M°6 X ‘ X'

62 62
The last inequality is due to the fact 1imj;=a(0+)>U; hence, for

6+¤>

. 1 16some 6 independent of X, and E$?x.

This establishes

21 m/2 2C 6 1 D’(1) 6(4.6) + 1 l-•zd1<M .X2}·I*°
I2°" Io<6,>„>I

“2

Use (3.4), (3.5), (3.11) and the monotonicity of X to
Ä;}

obtain

71 0/2 D(1) 0/2 2+ 21* d61-xr_2-IP I "• I X2-IP X|D(1,X)I

62 dq“^;2° Aß}2
J

6 w 6 2
IEF "
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6 6 6 2 _ 6 6 6M6; i. -1l6
Also, by (2.6), (3.4), (3.9), (3.11) it follows that

1 2C 6 D(6) 2 M 206-M

20 6 d 2A A] M

4§_[§°1° 1+ Ö 26+
°° "‘° Aix-;}

1

1 1 )2

_ 6 1 2 6

The last two strings 0+ inequalities give us

1 0/2 206 D(6) 2 6(4.71Next

we use (3.3), (2.7), (3.8), (3.11), (3.6) and (3.5) to

obtain

1 2 2 J_ZI 0 I6D2.
***/2 0<-1,2.1

M 26 ·
6-0

2dT
§)

20 6 2 -"‘
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4r1o*ßf2 ü-l_.,,zd«<¢<o*>+o*a<o*>>
(¢(0 )X) +(1-0)

_M o*+w*26<o*>1 Ä T. · T ä¢(0 )

X¢(0Thus

2 ,, ä . x 21 20 w D 6(0 )]
)·

Also, by (3.3), (3.6), (3.5) we have

1 20 D(1) 2
XIO/2IU(¢,X5I

l,_ mfl Izdq
X 0/2 U(1,X5

2 -22 20 w X
< 1+ dw

2 -2M 20 m X1%/2"";¤$i;T[2 °’

2M 20 v
<2

ä * 20+ 0 {M 6+[0 9(0 )] ].

Thus (4.8), (4.7), (4.6), (4.4) and Theorem 2, prove the lemma

and hence the theorem.

Our proof of Lemma 1 depends on Theorem 2.2 in [31. Namely,

under the assumptions of Lemma 1 there exists a constant K so that

(4.9) &6$sgäIu’(t,X)l$K¤, X)1.
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The proof of Theorem 2.2 in [3] aiso contains the inequality

1 -(4.10) u(t,)1))1/2 for 041(2-;(gqm?-2T.

If t$%, using (4.9) and (2.19) we get

2

If %<1, by (4.9) (2.19) and (2.3),

2

+II§/Gu’(t—¢)a(1)d¢I
62 1 1 1

62 1 1

2 2 2

The second inequaiity in (3.3) is proved (N.,=K+2).

By (1.1), (4.10), and (3.11), for T$t$2T we have

IIäu’(t-·r)a(·v)d·rI=|Iäu’(·r)a(t-·r)d·r|

=}1|L§fgu(¢-s)a(s)dsa(t—·‘r)d*r|
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2

mxThisis the first inequality of (3.3), so Lemma 1 is proved.

we will now prove Theorem 4. From the proof of Lemma 1,

t , _ . 62
(4.11) I ou (t ¢)a(w)d¢I}N27r for T$t$2T.

Using a€L1(0,1),Iu(t,})I$I for t)0, A)1 and (3.13) we see

1 sup
u”(t

Ä)
dt<« if and only if 1 sup ta(¢)u’(t-1)dw dt<m.

° A;1 ° am °/

By (4.11) we have for T$t$2T that

2[_[,§a<«>¤*<t-«>¤«|;N2-‘§‘- = ~2¤_[ä’°a<a>ds

By definition of T, T+0 as kaw (as Gäm as law). Therefore for each t in

(0,€) for some
€)0,

there exists T with T$t$2T.

1 u“(t 1) - - 6 1 t
Thus sup dt<w nmplies a(s)dsdt<wI. wlw-*—| I. f Io
(hence But +a¤asmng

the proof.

we will now prove Theorem 5. Partition S={(t,}):t)U,l}1} into

G2 62
S=S1US2 where S1ES0{(t,A):jT$a(t)}, S2E$ü<(t,}):qT>a(t)}. On S1,
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.[Li-}¤£|4a<t>+d+N2§‘-4<1+N2>a<1>+d6L‘<0,11 by (3.13), Lemma 1 and
(2.3).

2 2 2 2u'(t lt) 6 6 6 _ 6Un

S2,againby (3.13), Lemma 1 and (2.3) and also by (3.5).

Now partition S2 into S2=S3US4 where

=
_ u"(t li) 1 =

_ 1 u"(t 31)

'( Z1)On

33,Un 34, by Lemma 3. That ae

t 1/2 u"(t 71) 62

Now define h(x)=x-fg/xa(s)ds, g(x)“ X1 . Clear-ly g(x) islol: a(s)ds

nondecreasing. To see that h(x) is nondecreasing observe that ,

iv<x>=·[ä"‘a<e>de-éa<%>;0. Tnue on 3,,

'( “(t "( )i)|L?£|=•=(|%#}l|)¤(|L}·—l)
, 2 . 1/2C·.Z'·1)M 6 MC·.?«) 1 t .<h -—,E— g 1 )< a·„s)dsTI0

1/2
a(s)ds€L1(0,1)

where the first inequality follows frcm Lemma 3, (4.12) and the

monotonicity c·f f and g, the second inequality is a consequence of
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(3.11) and (4.12), the last inequality is by (3.16) and the calculation

1/2
a<·;.>ds¤t=_[t§-21¤sa<s>ds<„ <b>« <a.1s>> shows um

1 tl/2 1
YJO a(s)ds€L (0,1). Considering the estimates on S1, S3, and S4 we

see that

SUPIP;}-{-‘&|(ma><<<1+N2>a<'<)+d,t'V2,'§L§1/2a<s>de>eL‘<o,1>.
Ä)!

The theorem is proved.

Except for minor details, the proof of Theorem 6 is the same

as the corresponding proofs in [2] and [31.

At this point we introduce auxiliary functions and

inequalities used in [2] and [3]. Let

then B{<«>=«’3f‘gJ<-«s>¤¤<e>, no.

For w, t>0 define

(4.13) ß0(t,w)=v-3fäJ(-«s)db’(s);

{4 14> °° - '3 °° - *'. . ß (t,k)—w tJ( ¢s)db (s),

(4.15)The

following facts are proved in [2] and [31. In particular

see Lemma 5.1 of [2] and (5.42) and (5.44) of [3].

^
Ü

c6c2<o,a>,äL6c<<0,a>¤<0,„>>
Sw

(4.16) ic"(·r)I$6000Ié/Ts2c(s)ds,·r)0

(4.17) iß°(t,¢)I$40v-2(b(t)—tb’(t)), t)0,¢)0
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a 11 -2 1(4.18) |-.éL<1,«>|4so0« Ib(s)ds, 1>0, «>01 0

<4.19> ip°<1,«>i440f11"sb<s>¤s, 1>o, no

(4.20) T)Ü.

with q<1>=1‘2+1'2_[1§b<s>ds+1'1b<1>-b·<1>, wbsbb es an L1(1,¤o) by :21, we

also have

(4.21) (i) iA(t,1)I+|1AT(t,1)i+ID’(1)l$M[A1(%)+t2q(t)1-1],t}1,

1)%

(ii) :011 1>i<M¢>. 11111.11- ng‘
1 '

‘
1 T ‘

1 1 ' '

_ (iii) 1 Iß (t,1)I$Mtq(t),t)1, 1>0

(iv) 1|A(t,1)I+|D(1)|$MA(%), t)1, 1)§

(v) IA(t,1)l+l1ßT(t,1)|+lD’(1)l$M[)_1+1_1t2q(t)],t)1, 1)w/2

(vi) w/2

(4.22) § $ M ID(1,k)|, 2w$1<¤.

To prove Theorem 6 we start with

:«20'<«> _ 1,21:>'<1>+a1.'1_ szi.'1
1D(1,l)“ D(1,)) D(1,A)“

_ 112<:>‘<«>+a1'1>10<«> 12+ «2;1'1 ,1 +1
0:11

’·
o<«,1> 1 2

I1
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- iT2[D’•(·r_)+ afl _ 2i·r}_1D’•(·r)
D(·r)d D·(·r> D•(·r) D•„·r,7i>

+ zwi'? _ <0*<·n+s1">«2>.'2]

DM) D(·r) Dvr) T"

T'

- i,T2[D’<·r)+ I}.-1_2i·r}„-1D’(·r)+2*r1s_2
D(·r) D(·r)DM)DM)

D<·r,>.) D(·r) D(·r,)\) Dh) D(·r,}„) 1*

- i,T2[D’<·r)+(i)«—1_2i·r).-1D’(·r))+2·r7«-2
D(·r) D<·r> D•(·r> DM)

_ <0'<«>+a>„"2«21'2 _<0*<«>+s;i">·i22„‘2(1_ 6+;*]]
D(·r) D(·r,}.) D•(·r) D(·r,li> 1*

- iT2[0“<«>+( afl _2m’*0#<«>)+2·ix'2
D<·r) Dvr) D·.·r> DH)

_1 2
i·r}.°-1

_ •(D’•(·r>+iI# >·r 2 1—DZ·r,A$

Z D (‘1')D('r,}i) T
—D-ZT , ‘

- i,T2[D’(·r>+(i7·._1_2i·r}„_1D’·1·r)]+2·r1A-2
D -11) DM) DM) O(·r>

_ (D’('r)+iJ\-1)‘r2[ 2 + 1
‘”2'2"'—"' UZ UZ X5 ‘

>. 0 <«>0<«,>„>
"’

"· 1

Using this expression for 11 and re+erring to 11+12, we mav

' write
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a«2¤'<«>+1o<«>2 _«21'1+1a:><«>2+a«2¤'<«>
D(w,1)2 D(w,1) D(w)2

2 1
.

1 D(w) 016,11 "
’·

Putting this into the representation for 1u"(t,1) from Theorem 1 (ii)

yieids

(4.23) -1u“(t,1>=Re[ik_1q1(t)+Z-2q2<t)+iA—3q3(t>+q4<t,1>+q5(t,1)]

where

- 2 „_1 p awt w D (w)q (t)- e-

2 „
1 p iwt w 2wD’uw)q an-6q

<1>=-}j°6"'*—Äiägd«,3 0 D(w)

. 2 ·1 21 p awt w 1 +kD<w)—q (t })= e {—-———-Tr-4 ” WIG D(w,).)

_ iw4(D’•(w)+i).—1>[ 2 +1A
D<w) D(w,1) T T'

and

Q (t })_-ljmeitw(1w2D’<w>+kD<w)21dT
5 ' UP D(w,I\) ,

Let —q4=q41+q42 where



38

and

2 -1 2

D(w,X)

_,=J (1 m=i·r4(A(t,p)+iX_1)[ 2 +15
52 2 >..

. 4 co_ 1 p iwt -1w (t w) 2 1q (11142 "’
"=

Note that the estimates (4.2) and (4.3) hold +0r D(¢) in place

0+ D(¢,X). Now we use (4.17), (4.3) and (4.2) to write

Iq42(t,X)|< M M (b(t)_tb,(t))\ \"‘T'* $2 0 12 X2

$Mq(t).

1+ we integrate by parts we +ind

2Xt q4,2(t,X)

2 ,1X
0 (p)D(p,X) P p'

2 1‘ EX0

DT4(A(t,¢)+iX_1)(3D’(¢)D(¢,X)+D(1)DT(¢,X))
2 1·—·———¤—¤—-———l¤<·1*¤«->·1»lo <·r>0 <«,>.>
’

"·

D (¢)D(¢,X> D (T) D (¢,X),

where the vanishing 0+ the boundary term at w=0 is ensured by (4.19),

(4.20), (2.6) and (4.15).

The estimates
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1D (7,}) A —
(4.24) P 1--* d«<M <d>0>· 1 1(’)d«<„

7

follow from (2.7), (4.2) and the discussion of the proof of Theorem F

respectively. lt is straightforward to estimate q4l2(t,1)
by (2.6),

(2.7), (4.2), (4.3), (4.16) through (4.21) and (4.23) to obtain

<·1.2s> ,1,-U°ge1"1J2<«,>.>¤«|graqm,t;1.
Notice that

D(7,))2 D(7,))

2 —2_
- --1

= 1 + 27 A 217; D(7), so that
D(7,))

111 af ¤<«,1>

20_r<«,>.><2«21'2-2a«>.'10<«>>- --—l---3--—i]s<6,—62>.D(7,k)

Hence integration by parts yields

i7t -- - J ( A) -läge‘”1.1,<«,1>d«=l§+Ig<62-6,>e"1¤«.
Let us estimate the boundary terms. we have

; 7

where 75 inf ID(7,ä)|. 7>0 by (4.3), (4.2).
U<7<p,1$A

For the other boundary term, by (4.2) and (2.3)
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for d=0.
6+0 D(6,A) 6+0 """"l'l VI-I}?

*2
€

6

For d=0 use (4.3) and (2.6) to obtain _

1 1(A - + -) 2lim §§ (6] 6 + 2 -0.
6+0 A (A E -6)

Also,

Ifpßeiwtd„'<Ip“P
1 P 0(w,)>

4 mfg(%+w]w26w4M

when d>U by (2.6), (2.7) and (4.2). when d=ü, by (2.6), (2.7) and

(4.3),

0 1 ~ 0D(T,A)

1T+ATo

estimate the final term in qql when d>ü use (4.2), (2.6)

and (4.24)}

. 2D (T A) 2 -2 - -11Tt p T
’

2T A -2iTA D(T)
U‘ÜG2° °’i610iz‘||***—¤?T.cT··—|°**

0 (w,).) 2 1 2 0 (w,).)<M P -l--? (zw +zw(-)>w dw<M P -l--—2 dT4M.‘
I°|0(w,x) I *

‘
I°*0(w,1> l

when d=ü, use the same first inequality as above and then observe that

by (4.3) and (2.6)
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2«2;(’2-2m"0<«> 2*2*2***1%)1———m?':é1(" <"·

Thus, by our estimates for q4, and q42,

q4(t,l)
(4.26) I--X———1$Mq(t).

Next we write -q5=q51+q52 where

..
anD(¢,1)

Ätq <t >„>= °°e‘“(—L-iz-"*1 ’ ]q«.52 ° -1** 0<«,1>

-. 2 0’ q·¤/Z Zw 0 m (t Ä)Then lktq (t Z'()< ° + + ]—l¤—2—d·r.
1 52 ’ 1*119 10/2 120 1 D(TIÄ) 1

For the third term, we have

2 0 . 20 'T (t Ä) I. 0 1 Mt '.t)Ä . 2·12°°1_5EÄi;;_T1d”1Mt°‘t)12wE‘ä'2°’(*2z,7—("*¤**’* ·
)

bY (4.22) and (4.21). B7 (3.4), (4.21), (3.11), (2.19) and (3.5) we

have

2 0w/Z 1 Q w/Z 1 Mt (t)wq„t) dw<-1-P
10<«,>.> 1 ‘ -1-P AH2 “¢.I?2j2

IQ Mt
(tgwVI

*1
where the next to the last inequality uses

„ _ 2

and the last inequality foliows from (3.5). (Note that (4.27) is a
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consequence 0+ (3.11).)

The next caicuiation uses (4.21), (3.3), (3.12), (3.9) and

(3.6);

2 oo2w 1 (t 1) 2 210 d1
IP/ZI ¤<«,x> I +lt-wi

Mt (t))12 2 9(u*) °
4-3-;- =Mtq(t)ä [--¥--;-]).¢(w ) §x%(co )¢(m ))

.2 u*26<u*>2 1<Mtq(t))1 -—-

4M1q<1>x2-—-L;-4M1q<1>12.
äß(w )

q (t D1)
Therefore, I-gg-,T;|$Mq(t).

Let us write q51=q511+q512 where

tq <1 andI511 P 011,11
. 2 „_- 6 11t 1 Axt 1)

D(1,A)

Integrate tq511(t,)i) by parts and obtain

I
1=p

.. , , . -1 2 .(1)+1} )D(1) wmp D-.1,31)0-11,31)x—w

x' I‘p’ TIP D(1,)·.) _„
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But and by (3.4) so the boundary terms are

bounded by a constant.

The Integral term is bounded in absolute value by

1 0/2+ 20 + 2C16+ 0 dT-2[I2 I2„2 I2., I DW, I
we use (3.5), (2.6), (2.7), (3.4), and (3.11) to show

1 0/2 + ZCI6) D(·r)(·rD’(·r)—D(·r)) ÖTI 0M,m I

*I*Vp/2
A(I]3

p/2 A;
?

By (2.6), (2.7), and (3.7),

1 D( )( D ( ) D( )) 2
AG)2

0 ·r ·r ’ ·r - ·r 0 ·r d·rI 12

1 2 oo *3mm.

By (3.3), (3.6), (2.6), (2.7), (3.12), (3.9), and (3.8),

120 D(·r)(·rD’(·r)—D(·r))* *+***a" °”

2 2 2 20 d·r
1**** ^ * *—%*¤*2*¤“ (1**) *1°’2:<+<«>>(> +<«-am ‘—

2 2 2 0 du
(Q) 'I·0[()l¢(0*))“+u J

=***2^I%I2I —···———22
“

.2 2 71/Zläiä]()I¢(0 )) ((I\¢(0 )) +u")

2 2 2
<***

‘°'(öI
<M>I2<£<22*>+6*e<6*>>2

\ \""""". <x¢·:«.2*>>··
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11.1*1+1.1*611„*1 2 . 11*611.1*1 2
1 1 1111*1 1

) 1 +11.1*1
1 2 1 2

4111 (1
;

q (t X)
Therefore Iä—Ä-i„§%)Z.$Mq(t).

Next we integrate q512(t,X) by parts. Then

2 ipt .
2 - Mt )e 111 11t1 Xq 11 11;*;--¤Lz—- +1 11 -1 1111512 1 2

2 .2 2D (1 X)1 Mt 1)
where and

T2_

1011,112 0***)

The vanishing boundary term at 1:1 folldws ·From (4.21) and (4.22).

/

2 ipt Mp 1’1°a(s)ds
By (4.21) and (3.3), IP @*1*022 |4Ä-7-, a constant.

D(p,)·.)2 1***)

we write Byand-

'T12 2'*’
011,11

1 2
M *1**) _ 1 1 1 12111$;2,l.°2

17 °‘*‘"1
21.1 1‘1'1(1]*—22—°*

[Ii

2 11 . 111116

1 v|”°°
IT 1111111 1+ (t)]<|‘·1 1111211211 “‘ ··
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By (4.21), (3.4), (3.11) and (2.19) at (due-es that

(a(t «)+«26 (t t) (A l +t2q(t)alle/2l ‘ ’ ·r 11 d/2 """“““‘TZ“'““' =‘2 "1 P 0((,1) 1 p/2 "‘ 3

2d·r1
p/2 Aßi 1 p/2 Al;—

)

, Me +M at2 (t)1 12Alz-CLIGIZ

M6 (t)
\

)

2=g-+@(M+Mt2q( t) .

Thehe(ene,t
1

By (4.21) (v), (3.12), (3.6), -:3.3), (3.9), (3.5) and the (act

MM} (by (2.19)),we have

1 (t) dq
Tw/2 1 *-2 w/2 ·r-to 21 71 ¢(·r) + -7-

2 c1 t g(t)
“ @/2**2-2**2

(}1¢((o )) +|·r-(ol

21 t (t) 2to 'Td'T(M,M

l+t2g·(t))mj'r.o d·r‘ " . · **-*2*-2,. .“
^ n* °(11(n*))—+«
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. as.
6r1(§+t2q<t1]-6M11+12q61>>$$-9%

l§(w ) ¢(w')

. 2 6«.1*6<w*>>2 1
w* 6(w*)

$M(1+t2q(t))———L;—$M(1+t2q(t)).
Ä'·•G(w )

1 coTh { IT Id (M (t).GPE DPG,
1

'I’\
Q

- - - oo __ w/Z 2w ooS1m1IarIy we wrnte Then

IT Idw= dwÄ2 2°’ 2 X2 2‘°
0<«,x>2

-1 1k wA — 1
dw

w -2-
IxI w

col

a constant, where we have used (4.21) (iv), (vi) and (4.22). Thus

11.
t X t

By (4.21) (II), (iv) and (3.4) It {oIIows that

1‘2M Q -1 w/2 , w/2 (w dwAß]2

6%
"’

6
"‘° =-'}§ 6 Mk” Alöj lgäléj

where the 2nd to the last inequality is a consequence 0+ (3.5) and

(3.11). Hence,



47

1 w/2

MAlso, _

1 2w M 2w 2

<M<,<o*>+o*0<o*>>Zw\
Iw'”z1<1¢<o*>> +l«-ol 1

4M<+<o*>+u*6<o*>>o*]°‘ö’2—,-372
[(1¢(w )) +«“]

\

<14<o*>>z <<1q<o*>>z+o*z>1/z

$M(g(0*)+w*8(w*))m*ß(w*)2
¢(w*)

* * 2 *2 * 3=Hw 9(m ) +Mw9(wM

1 2<-—+M —-————T7? (M\w* (m8(w*) \

where we have used (4.21) (lv), (vi), (3.9), (3.12), (3.3), (3.6) and

(3.8).

Therefore

1 2m M

q5(t,A)
Consequently, |——j¥-——'$Mq(t) and hence

q (t A)+q (t A)
|.‘l;,};|$Mq.;t>_
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The representation

-1u"(t,A)=Re(iA-1q1+A”2q2+1A-3q3+q4+q5) together with I3lu"(t,A)ldt<«

for each A from the proof of Theorem 1 (1) now yields

IT§;¥I!;i§4llIdt<m, proving the theorem.

Theorem 7 a is obtained by simply combining the hypothesis in

Theorems 5 and 6.

For the proof Theorem 7 b we apply Theorem 6, (by (3.5) our

hypothesis imply (3.12)), obtaining To prove

I1 s“°|“”‘1 1"|u1< 1 11 th 1 1 Th 6 tl 6 10 m, o ow e proo o eorem exac y, u use

different auxiliary functions to combine the estimates (4.11) and Lemma

1. The proof of Theorem 5 uses h(x)=xA[é), and g(x)— 1 . Here, useAI;1I

h(x)=-l%- and g(x)=lnqx instead, completing the proof.
ln x

Now consider Lemma 2. A result in [33] (Theorem 2 (111)) is:

if a€L1(0,m) and (2.13) holds, then (3.12) holds. This extends to the

case where a dL1(Ü,m). Define, as in [1],

1
_

2 l
_

' ."

a1(t)= ?(t ti) a (t1)+(t t1)a (t1)+a(t1), O<t<ti
a(t), t1<t

and

a2(t)=a(t)-a1(t), t)0

where ti is any fixed number with t1)ü such that a"(t1) exists. Then
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al, a2 both satisfy (2.13) and a2€L1(0,¤>. with a(7)=¢(7)-i70(7),

and a2E¢2-i7%2, we have

2 2 2 2 2 27 (81(7)+&2(7)) (27 81(7)+27 62(7)
¢(7) ¢ (7)+¢ (7) ‘

4 (771 2 2

4 2«26f<«> +M
#2zTS

where we have used the result +0r a,€L1(0,«). we will +inish by showing

2«262<«>that 1 is bounded. By (2.15) and (3.19) we have

-—T—T—<

*21/7 2M a (s)ds

¢2(7$

Ma?(U)
4jZ-————\7 ¢2(7)

4 „" 4M72lä: -sa’2(s)ds

where the last inequality is a consequence 0+

x ,·sa’ (s)ds

x+U x

2
a*2<x>ä-

3lim 2 >0.
x+0 X2



so

This result is Lemma 2.

Before proving Theorem 8 we give a preliminary estimate and

make some comments. Using (2.6), (2.15) and (3.19) (under the

assumption (2.13)) we obtain

1 1· 2

Hence, Also
I

(4A(},,))21i§111i2=+21«1+«2621«1
1 1 2 21 1 21581*]] ” (5**11*]]

1 1 1 2 ·
Therefore,

1 1/2 1 1·

Combining these into one inequality yields

14.261 AG]1111621V2(6(§]+«A(§,-U1660%%).
I

In view of (2.6), (2.15) and (3.19), the behavior of Ia(v)l,

66 ++6 es like that 6+ AG), 6[Q and
. I

«A,(%) respectively.
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In view of (4.28), condition (i) in Theorem 8 corresponds to

the case where la(m)I, Rea(w) and |Ima(¢)l have the same order as ¢+¤.

Theorem 8 (ii) corresponds to the case where IIma(¢)| is small compared

to Ia(¢)I as sam, la(¢)I and Rea(¢) having the same order as w+m.

Theorem 8 (iii) and (iv) are both in the case where IIma(1)i and la(«)I

have the same order as 9+m and Re;(v) is small by comparison, as v+m.

2
To treat this case the additional assumptions jL££l— is increasing for—a’<t)

a2(t) 1small t and -————-6L (0,6) for some 6 are made in (iii), and in (iv)
-ta’(t)

‘·*^3(%lthe extra assumption we use is (o for w6(p/2,m).

For the proof of Theorem 8 a we differentiate (1.1); thus

u'(t,>)=-)(d+a(0+))u(t,))—kf5a’(t-¢)u(¢,k)dw.

Tne«~e+m~e, Eli}-¤i|((d+a(0+))1¤(t,);>1+j,§—a·'(i-«)i¤(«,))1d«

$d+a(0+)+(a(0+)-a(t))$d+2a(0+),

where we have used (2.3). we use this uniform bound on (0,1) and

Theorem 6 with Lemma 2 to complete the proof of Theorem 8 a.

Let us turn to the proof of (b). By (2.19), (3.10), (3.5),

(3.11) we have for some constant K

1 1‘
A —- A -(4.29) 1
A ET

° [6 [6]
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In case (i), use (4.28), (4.29) and (3.22) to obtain

im (Ä) MA (L] MA (Ä]
{A 30) é} 1 w z 1 w, 3

1PartitionSE{(t,}):0$t$1, Ä}1} into S1E{(t,ä):t$%}0S,

2

•For(t,1)€S1, use (3.13), (2.18), iu(t,k)i$1 and (3.15) to make the

estimate

0

For (t,Z)€S2 we use Lemma 3, (2.12), (3.19) and (2.15); thus

x x 2“ >>lu (t,l)|<¥(§+(w 0(u;
]¢(w )

16 1 2w A —*ggg,/¤.«.>.«.+i 411)) ]B17]
W 2

- M:By

the definition of S2 and by (3.15) it foiiows that

gc-11$·Häa(s)ds€L1(0,1).

By (3.11), (3.21), (3.15) and (4.30),

2 2‘°‘[ Air?) r1.¤*1> 1 (0,1). A
This compietes the proof of Theorem 8 b (i).
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To prove (b) (ii) we will sh :0*) is bounded and use Theorem
1.2]

7.

1 [1) ·A — A - 1
B7 (3.11), 161 = ,6 4^1E]4M.

A A ——
1621 1**6

Use (3.10) and (2.19) to make the estimate

1 1MA — MA —
l‘,=§A* 1 *1***1;% *1**]*,,11411.
6

—

1**1 ^
äThereare two possibilities 1.(Ä)}1 or L()i)<1.

Now use (3.17), (3.19), (2.15) and (2.19) to obtain

cm(M‘
6 w ‘

G
G—;W

1

Now,

*221 *221 *”
11.1A — Mm A — co A — co A 4**16*) 4 °’ 1411

A B — A — B — A — T! ’

161*1 1161 16:*1 11.1*
°’

where we have used (3.11) and the assumption (ii) together with (4.28).

we have shown that

sup
CO')

<6¤.
L()))1 AwU

1
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X 1 1 „ . _
For L(X)<1, A -ä XA —L(X) )L(X)A

-

by (6.11). Finally, use
G1 Ü

1
Lo

(4.28), (3.11), (3.5) and the assumption (ii) to obtain

*2 2 1 *2 2 1 *2 2 1 1 2 1w A - w A — w A - —A —
11w*a ( 116:*) = 11w*]°’ 1°1

2 1 2 1 2
2‘

HQA ·— A — MwA —

(
B161^161^116] (*1161

To see this is bounded we use the inequality A,(2t)(4A1(t). This yields

2 2°"°‘1 6 1 1 com$16r.oA1(ö)$16A[ö)$M. This shows um app T.,-Ta.
A _ L(X)<1 A -2

1 w 6

Thus, h

C(1)
is bounded for X11. The application of Theorem 7

[6]

finishes the proof.

To prove (iii) use (4.28), (4.29) and the assumption of

(iii):

1 1 1
(4 31) 1 }

KA1[öq
}

MäA[ö1
° M

A - A -*1 le]
Thus, %)g as in (4.31) and the rest of the proof follous exactly as in

the lines following (4.30) except for the term %I2 which we treat next.

By Lemma 1, (4.28), (3.11), assumption (iii) and integration by parts:
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11 (M': 1 ae)
T 2~T °"Bla}

W 2

M$1*

2 1 2 2 1M A 121.11 Allml
$'{ Vf

11211 1 00 lo >

BB + I0 >

:11-t[J1+J2].

V By definition of S2 and (4.31) and assumption (iii),

1,2 1 2 1111,. ";¤* (ea] :**1 (22)
\

/
_

I

some .\—ta’(M1t) 001 1

Also,

M 1/20]-sa’(s)ds 1/200-s3a’(s)ds'QJ < 0 0
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1F
1

Mwherewe have used the Cauchy-Schwarz inequaiity, the definition of S2

and (3.15). Note, on
[Ää,1],

(3.13) impiies

I!:i§4Äl‘<a(äi)+d+2a[äi), a constant. with Theorem 6, this finishes the
1 1

proof of 8 b (iii).

To prove (iv), by Theorem 5, we only need to show that
C(})

A igl“ A(AJ
is bounded. we showed in (ii) that X = G is bounded. The last

6

step is to use (2.15), (3.6), (3.19), (4.28), (3.11), (3.5) and

assumption (iv) to obtain

*2 42zuf(w ) 41°
’ wä E2 w*) gz

2*1 2 1 21MA — 14:4 -4 -4 (J 4 (J (J
IAIIE-I

4 1
MA ;

4
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3 1 3 1



Q; Examgles

(a) Suppose a(t)=t-P, 0<p<1. Then an easy calculation yields

1 _ 1 1 1 _ 1 1'm1[T)°Y¥ 3*6 and #6)*16 :F;T'
Theorem 8 b (i) applies.

(b) Suppose a(t)=-lnt for small t and (2.13). Then B(x)=x,

A(x)=x-xlnx for small x and lim T =0. Part (iii) and (iv) in Theoremaial
1*-bm A

__
’T

8 b can both be applied. For instance, w

**16*1I

2 1 in 3 _ _
=m [- + --9) which is bounded on (p/2,¤), so (iv) applies.

(1) (11)

(c) Suppose a(t)=t_1(—lnt)—q for small t and (2.13) holds. The

necessary condition (3.15) holds for q>2. For these q we see that

Theorem 8 b (ii) applies. we note A(x)=(q·1)-1(-lnx)1_q. Use

L’Hospital’s rule in the follwing calculation:

1mA —-
lim 1[T]
'T-No

**l6*lI
A1(x)(q-1)

=lim ——··——F·
X+0+ x(—lnx) Q

=Hm 1-1nx>"*<g—1> _
X+0+(-lnx) q+(q—1)(-lnx) q

58
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=0. Now (ii)applies.(d)

Let where akzü, K=0,1,2,. . . and

0<xk+1<xk41/2, k=0,1,2,. . ..

-c’(t)=c’(1)-c’(t)=I1c”(s)ds= ä a (x —t) (t)1 K=0 it 1< I[0,xk)‘ *

1 , 2 .2(5.1) c(t)=It-c (s)ds=1/2ké0ak(xK—t) X[0,xk)(t).

we will show that for d+a(t)=c(t) with

andappropriatelychosen, (2.13) and (3.15) hold but not (3.16). (2.13)

holds by definition. To show (3.16) does not hold we will show

x x 2(0 g(° )> is not bounded.
Q(w )A [IZ]
Let

2“ _ 2"
(5.2) an=211°2 ,xn=2 "'2 ,n=0,1,2,. . .

Note ”
koo oo 2

c(0+)= E aKxä= E
23”2

=«.
K=0 K=0

Also,

”
(0

älnxk)
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K on
11°° -22 1‘°

2" -2*
· E 2 + E 4(ln2)2 2 < .

Thus (3.15) holds. To see (w*8(w*))2 is not bounded, first we note

6

1 M(5.3) <

. 52 1/5 . . . .
To see this, observe that 77 = cfo a(s)ds is increasing with 6 so

62 an C /6 * 1/6* ä 1

jowherewe have used (3.5) and (3.11).

By (5.3), (3.19), (2.15), and (3.11) we have

6

Thus,

*2 2 1 m 2 2 2<«.1*o<6*>>2, MA A1 , "[2l A1(ö)‘* gi} 6 B 6 A
00 (OA Ö-(.01*1J

where we have used A1(2x)$4A,(x), x>0. Let t=ä. Then t+0 as 6+6, so by

the above inequality, we only have to show that there is a sequence

{tn}, tn+0 such that

(5.4) +6 as n+6.
tEB(tn)AI En

IÄkfnj;



6l .

Ne integrate A{(t) by parts twice and use the definition of

c(t), c’(t) and
c”(t)

to obtain

A1 2 6 3 0

{2 X2 {2 {3 n— a K-x t+ +
“

a (x -t)
K1'? K 2-] 2-11150 K K

1‘1Q.°¤
1 or x x .

Thus,

(6 s> A a 1x2-1x 1+112 +1 2 a
x‘1

+o«~ x $t<x' 1 K=0 K W K 5 K K K n+1 n'

Simiiariy,

_ 1 _ °° ax 1 _ 2.s)I1

a oo a_ „ K t _ 2 K x _ 2s) (xk s) ds for xn{11t<xn.

Thus,

1 " 2 2 2 1 °° 2(5.6) +t )+Zk E+1akxK, xn{1$t<xn.
= =n

Aiso,

2 1211>—1122' -2 1>+1 2 2+ <1<(5..) -1T Kgoxakxk
or xA{{„ xn.

To see this, observe

10Ü?‘
Ü? 0

‘
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t2 n 1 n akta
1 m akxä

' E a (x -t)+
“

-1;-+ E -1T- for x $t<x .

T6 11 12 -11 let 1 =
9i—2""22n "*‘

th <1 15 °w ' n xn+1 n " 'F'
'

en Xn+1 n Xn'

For this choice of tn, we observe from (5.5) and (5.7) that

A 11 )”1t2 2 :1 211 12112 - ~ -1 n Z nanxn as n+¤ an . n jr nanxn a5 n+«, where Bn Fn 45 n+m

.
GR

means l1m -— =1.
n+¤ Fn

Also (5.6) implies A(tn)"%?anxätn as nem.

Therefore, as nem, the expression in (5.4) is asymptotic to

(täanx§12 Manxg
} by (3.11). But for large n,

2 2
(

2f
1n

n n

2n 2n 2n-1
X :2-4-2 (2-3-2 : 1 <2-42 :Xn _ X2 “ n—1'“n

n

By (5.6),

2 2
1 1"" 2"1< 3*11 1 1 °° 2 „1an-1Xn-1A --1T = Z a 1--1;- + +-— E a x -?--——$——.

K
anxn 1anxE12 1anxä1E) °K=n K K anx;

Therefore,

_
Q

_ 'A. Tl TI‘2 2 2 2 2 2 2 2n 1
“nXn „‘anxnanXn

:
2“nXn

:-2---1
:22-22 -3-22 +6 as

,2 _ 2 n-22-22
Tl VI
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I'I—§•1)•

2n 2n-1To see this we will show that (2-2 -3-2 )+d. Thus,

2n Zn-1 Zn Zn-i_2n Zn _2n-1
2-2 -32 =2 (2-3-2 )=2 (2-3-2 )+m.

we show however that Ther ew 7 5 applies yieiding (1.2). we

have

11*2616*12 1 1c<>1>=—-?+¢1(E]4M( 1.1 +A[7B by (2.15), (3.19) and (3.11).¢(to to
*(.1)

Also,

2 12 A -—
Sg.by

(3.10), (3.5), (3.11) and the {act A1(2x).§4A1(x).

Thus, for any q)1,

-2 -.11.1(1)
(.1) (1)

To show this is bounded we only need to show that

o<t>s[-E-W+¢.<t>]1n°(A,_„‘-1-{-5-2**)] is bounded {cn- small tt Btw 1 1"
By (5.5), (5.6) and (5.7) we have for xn+1$t<xn that

A1(t)”t2(éranxä-§anxnt+éant2) as t+0

as taü
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B(t)”%t2(anxn-ä ant] as t+0,

respectively.

Also,

2 1 2_1 1 2 3 2 2 2t (zanxn ganxnt+gant ]$gt t anxn,

2 1 2_1 1 2 21 2t (Ianxn ganxnt+gant )}t Ezanxn,

%(3anxät-3anxnt2+ant3)$§anxät,

and

1 2 ;2 1 22* [am 3¤„*]>z* ¤„><„
all for xn+1$t<xn. Thus, D(t) is asymptotic to a function that is

bounded by

2 2 2 2 23/St a x 2/3a x t
+§anxät lnq n

ntzll/étzanxnit 1/24anxn-

_ 2" 2" _ 2" n
=M2 2 lnq<232 )$M2 2 2q2 +0 as t+0, since n+« as t+0.

Theorem 7 b shows (1.2) holds.
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UNIFORM L1 BEHAUIOR FOR THE SOLUTION OF A

UOLTERRA EOUATION wITH A PARAMETER
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Mathematics

(ABSTRACT)

The solution u=u(t)=u(t,)) 0+

(E)where d)O, a is nonnegative, nonincreasing, convex and 0}a(Ü+)}a(0)=Ü is

studied. In particular the question asked is: when is

. 0 u"(t Ä)«i=> ,[0sdp|—Y¤-|dt<e?
1)I

we obtain two necessary conditions +or (F). For (F) to hold,

, 2it as necessary ine: (-lnt)a(·r)£L1(O,1) and isn sep Üääll-<e nnene
'T-mo

both real).

we obtain su++icient conditions +0r (F) to hold which involve

¢ and G (See Theorem 7). Then we look +or direct conditions on a which

imply (F). with the addition assumption
-a’

is convex, we prove that

(F) holds provided any one 0+ the +ollowing hold:



(i) a(0+)<m,

wfg/Tsa(s)ds wfg/Tsa(s)ds
(ii) O<lim inf T (lim sup T <¤,¢+¤ Iäz —sa’(s)ds Tau lg: —sa’(s)ds

Tja/Tsa(s)ds
(iii) lim T =0,

wad lg: a(s)ds

Ia/7-sa’(s)ds _2(t)
(iv) lim T =0, ——fL—— is increasing (or small t and

vam lg: a(s)ds —a’(t)

a2•’t) 1
·-—-L--(L (0,€) for some €>U,
-ta’(t)

I6/T-sa’(s)ds w(Iä/Ta(s)ds)3
(v) lim T =0 and T $M<m for 6$¢<¤ (some

1+m lg: a(s)ds Iä: —sa’(s)ds

6>0).

Thus (F) holds for wide classes 0+ examples. In particular,

(F) holds when d+a(t)=t—p,U(p<1; a(t)+d=—lnt (small t);

a(t)+d=t-1(-int)-Q, q>2 (small t).


