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1. Introduction

In this work we study the equation
(1.1 u'(t)+zj5(d+a(t—¢))u(¢>d¢=o, u(O=1, t30,

where prime denotes differentiation with respect to t. The solution is
u=u{t)=ult, ). The convolution Kernel satisfies d30 and a is
nonnegative, nonincreasing and convex., Our purpose is to study the

question: Under what additional conditions does

osupj u"ct,))
(1.2 0}31""TFL" dt<e

hold?

The organization of the paper is as follows. 1In Section 2 we
discuss known results for (1.1) both with and without the parameter .
In Section 3, we state our results and consider some examples. In
Section 4 we give proofs. In Section 5 we give further examples.

The main results of this work are contained in Theorems 7 and
8. In Theorem 7 the hypotheses involve conditions on the Fourier
transform of the Kernel. The hypotheses in Theorem 8 are stated

directly in terms of the Kernel a.



2. History

" Our primary interest concerning (1.1) is L1 behavior, uniform
in x)l, of the solution and its derivatives., We will show how (1.1)

arises in the studr «f an abstract equation in Hilbert space. Uniform

L! behavior of the solution to (1.1) and of its derivatives has
consequences for the Hilbert space equation (regarding, in particular,
asymptotic behavior of the solution).

We will begin with a look at asymptotic results for the scalar

equation
(2.1 u’(t)+J.(§g(u(t))a(t-‘r)d‘r=f(t), £)0, ut0)=y,

both in the linear case, g(x)=x, and the nonlinear case. The papers we
will discuss have assumptions on the convolution Kernel that are similar
or related to the ones we will use in our study of (1.1). We will
observe the progress made by several authors in weaKening the
assumptions made on the convolution Kernel.

In the earlier papers we will discuss, the results were
obtained by workKing directly on the equation and by using energy
me thods. We will observe that transform methods were later used to
advantage even in the nonlinear case.

In the linear case more transform theory can be used. WWe will

examine the methods in [31] that were used to obtain a crucial L1 result
for the linear wersion of (2.1). This result is quite useful in the
study of (1.1).

After showing the above mentioned interplay between (1.1) and



the Hilbert space problem we will consider results on the uniform L1

behavior for (1.1) and discuss the techniques that are used. We will
study the techniques in some detail as the methods used will have a
considerable bearing on our study of ¢1.2).

In 1963 J. J. Levin [21] investigated the problem (2.1) with

$(t)20 under the assumptions a¢ClO,o), (-D¥a®ctyyo, k=0,1,2,3, a is

nonconstant, g€C{-w,0), xgi{x)>0 for xz*0 and G(x)Ejgg(u)duem as Ixldw,

He proved the following:

Theorem A. Under thece hvpotheses, if u=u(t) is any solution

of (2.1) that exists on [0,o) then 1im u®d’
i

(t)=0, j=0,1,2.

(Note: In Theoreme A through E, the proofs can easily be modified with
at most minor addition hypotheses to establish global existence.)
To prove this Levin defined the nonnegative energy function

E(t)se<u<t)>+é%}l[f§g<u<s>>ds]2-%j$a'(t-«)[j:g(u<s>>ds]2d1

and showed that E/{t)¢0, and E ¢t) is bounded. Then

(2.2) G(u(t))&E(t)$E(0)=G(u0)

and since Gi{x)+o as Ixl+o, u is bounded on {0,0). The above facts for
E{t) imply E“{t)40 as t+o. Levin used this to prove his result, Notice
that (2.2) implies that the solution udt,x) of {(1.1) satisfies

(2.3 ludt, 2141, t30, 231,

Indeed €2.3) remains true for the equation (1.1) under the weaker

hypothesis ¢2.12) below. Details can be worked out as in (8].



In 1971 [23]1 S-0 Londen improved this Theorem using a somewhat

different technique. Londen proved

Theorem B. 1f actretico, 1, -0Ka'®¢try0, 0<tew, k=0,1,2, a not

constant, g€Cl-w,o), F¢CL0,a)NLi¢0,0), then any

solution udt) of (2.1) that satisfies sup lul(t)i<o must

0{t{m
satisfy 1im gful{ty))=0., 1f in addition 1im f(1)=0 then
tee t+0
lim v’ (t)=0.

tdo
In particular, a(0+) need not be finite. Instead of using an energy

function, Londen wrote the equation (2.1) in the form

(2.4 G(u(t))=G(u0)+jsg(u(7))Igg(u(s))a(T-s)dsdw

+[g#Cnglucndr,

By rewriting the second term on the right in (2.4) one can immediately
bring out the importance of the monotonicity conditions on a to the

existence of 1im g{ul(t)).
tso

Nohel and Shea, developing ideas introduced by A. Halanay [4]
and R. €. MacCamy and J. S. Wong [25], use the same form (2.4), but they
employ transform methods to analyze the key quadratic term,

Let us recall two definitions that are needed here. The

function a is of positive tvpe if aQL%OCIO,m) and

IE vit) jé viT)alt-1)d1dt)0

for all v¢C[0,0), for all T>0. The function b is stronqly positive if b




is of positive type and if there exists %>0 such that b(t)-'qe-—t is of
positive type.

Nohel and Shea prove

Theorem C. (i) Let u(t) be a bounded sclution of (2.1). Assume

a(t)e-oteLl(O,w) for all o0, a¢BVIl,0), a is strongly positive,

sctrelco,e), gix)€C{-o,0). Then

Tim g{u(t))=0 and 1im [u’()-F(t)1=0,
t4 t+0

1

(i) Let altieLy .

[0,o0) be not identically constant. nonnegative,

nonincreasing and convex and such that da’(t) is not a purely singular

measure. Then a is stronqly positive, so that the conclusions of (i)

hold.

This strengthens Theorem B of Londen.
We will now give a sketch of the proof of Theorem C (i) in

[29]1. Start with (2.4). Define
Qa[v,T]EIgu(t)Iéu(g)a(t-g)dgdt,

where v(t)=g{u(t)), and define

vt 0 t4T
vpetrE{ Y%y 'elsewhere.

=61t ¢t),020. Then

Extend a by an even extension and define ac(t)ie
Qa[u,T]=%Jgu(t)Igv(g)a(t-g)dgdt

=%IfmuT(t)jfmuT(g)a(t-g)dgdt



ey 1f ) _
_]|0nl,zj_mvT(t)J_mvT(g)ac(t §)dedt,
o

where the last step uses the Lebesgue Dominated Convergence Theorem.
Let $(T)§ffof(t)e_it7dt, ¥(s)=fge-5tf(t)dt. Then by evenness

-{c+iT)t

of a, ac(¢)=2ReI89 ac(t)dt=2Re;(s+i1). Note that Re;(c+iw)}yf%2

by strong positivity. Since aceLl(-w,m) for o0 and vy has compact

support, the Parseval Theorem implies

i [0 15 2% ; 1 fo |0, 2
Qa[u,T]-—hnlj_mlvT('r)l ag(mamyge[® 1ortm 1—:1;2—d'r
o0

=Q_(v,T) where c=ne” ' ),

Since u is bounded, Ga(u,T)ZU, (2.4) and f€L1(0,m), the above
inequality shows Qc(u,T) is bounded. Further estimates and the Wiener

tauberian Theorem or an elementary argument is then used to prove

vit)=glu(t))+l as tiam.

Staffans [32] generalizes the notion of strong positivity to

strict positivity., A function a in L}octo,m) is of strictly positive

type if there exists a function b€L1(0,m) such that

Igcoswt b{t)dt>0,~o{wio and a-b is of positive type. Mote that strong

positivity is the special case b(t)=e-nt.

Staffans proves

Theorem D. 1 a ic of strictly positive type and if g€Cl{-o,n),




feLl(O,m), then for a bounded uniformly continuous locally absolutely

continuous solution udt) of (2.1), glui{t))40 as t4w.

All nonnegative, nonincreasing, convex Kernels satisfyring
(2.5 jg coswt alt)dt>0,-wiwle,

are strictly positive, and ©(2.5) excludes only certain piecewise linear
Kernels (see [71), Staffans wrote a series of papers developing these
ideas further, (See [341-[381).

0f course, transforms were used even earlier to study the
linear case of (2.1) {e.g. [(22]). The major landmark is (313, where
Shea and Wainger prove
Theorem E. Let gi{x)=x in (2.1). et adt) satisfy a(ti)=b{(t)+g(t) where

i

b is nonneqative, nonincreasing and convex on (0,0), belL (0,1 and

(1+t)p(t)€L1(0,o). Let a(t) satisty —g(z)tz, Rez30. Then in the

particular case where {20, and u0=l the solution r=r(t) of (2.1) js in

L1¢0,00nC!0,) and its derivative tends to zero as t+e. 1f F€L%(0,a),

the solution u=u(t) to (2.1) is bounded:

Iu(t)l&luolnruw+ufﬂmnrnl, 0{t{.
The main theorem in [31], which is used to prove Theorem E is

a variant of the wiener—Lévy Theorem.

Theorem F. Let a(t)=b(t)+p{t) with b ponnegative, nonincreasing,

convex on (0,0 and beLll . 10,0 and ¢1+0)p(teL!0,0) or att)=bepct)

where b is any constant, ﬁ(t)ELl(U,m). Assume ${w,z) is analytic on



S={(;tz),z):Rez}0} and at (0,0?, (0,0) and that 4¢0,0)=0. Then there

exists r¢(t)eL1¢0,@) such that ¢¢a¢z),z)=r(z), Rez)0.
Jordan and Wheeler weaken the hypothesis (1+t)ﬁ(t)€L1(D,m) to

ﬁ(t)(Ll(O,m) in [181. For further developments along this line see
Jordan, Staffans, Wheeler [171.

In the proof of Theorem F in the case that applies to Theorem

E when p=0, the Key step is to show jfmlé%;(w)'dw<m and then use the
Hardy inequality Jol{ t’ldtgijfmtf(x>|dx for feHl{x+iy: ¥>0) with

f(x)= (r) (x) where r(x) j” T Leodx.

Since f(t)=itr(t), this yields

jg |r(t)|dtsxffm|?!(x>|dx<m.

The difficult estimate in this step is showing j11|3'(w>|dw<m,

that is fl l l+a (w) Idw(m Using the monotonicity condition on a,
(walw))*

Shea and Wainger obtain the estimates

(2.6) 2-3/29[T%T)$13(«)|$4A[T%f], 120,
)

and

(2.7 ’;"”'44091(T%T)' 120

where

(2.8 A(x)sj;a(s)ds,ﬁlﬁx)Ejﬁsa(s)ds.



Inequality ¢2.64) reduces the needed estimate to Jl a ‘W)Idw<m.
a(w)

To show the latter inequality we use {2.68), (2.7), evenness of

lal and a change of variable to obtain

iy 3o

a(w)

I‘ al(y) ¥2
o aly) - 1 _ 1
$K+IIA - Y = K+m¢° &

K is a constant and ﬁé;f =0 if aQLl(O,m). In the last inequality one

uses integration by parts and monotonicity.
Recently Londen in [24] discovered that, for a certain
subclass of functions of the form al{td)=b{t)c{t) where b{t) is completely

monotone and c{t) is of positive type, the coclution u of (2.1), in the

s

linear case with {20, is in Ll(O,m). For related work on ¢2.1) see [14],
(1931, (20].
The parameter problem (1.1) arises when one tries to obtain

results 1ike those above for the Hilbert space problem
(2.9 y'(t>+j5(d+a(t—w))Ly(«)d«=+<t>, 0, 7=y,

where L is & self adjoint linear operator, defined on x dense domain D

of & Hilbert space H, whose spectrum is contained in [i,x2. Letting u
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be the solution of (1.1), define U(t)EJ?u(t,})dEk where {E,} is the

b
spectral family (see [301) corresponding to L.

Carr and Hannsgen establish the resolvent formula

y(t)=U(t)yO+IsU(t-w)4(w)d1 for (2.9). They also give sufficient
conditions for
(2.10) J“”nuu)udum j“uv(t)L"“’udum where U(t)=f°°u’(t ) dE

. 0 ] 0 ] - 1 L) }!

(see [2],[3)).
In particular, (2.10) heolds i+ a is nonnegative, nonincreasing and
convex with -a“ convex. The main work is to show that

® ® u’dt, N
(2.11) _[0 sup 1uct,))1dt o, _[0 sup I—)ﬁ)—|dt<m
7 7

holds and then (2.,10) follows by the functional calculus (see [301)..
The techniques used by Carr and Hannsgen in proving (2,11) are crucial

in our study of (1.2). We will consider them in some detail.

A helpful example is a(t)=e‘t. {1.1) reduces to the ordinary
differential equation u*{tr+u/ (tr+audt)=0 wi th solution
u(t,1)=e-t/2(cosut+éisinpt) where p= (k-é)l/z. Differentiation shows

that u’ and u" must be scaled by dividing by }1/2 and » respectively if

one expects to sup over Al and obtain a finite valued function of t.
The assumptions used to prove (2.11) generally involve a

sufficient transform condition which often implies & <{(generally

stronger) direct sufficient condition. We illustrate this with the next

two theorems from [2] and [3] respectively.
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Theorem G. Assume a€C(0,o)NL ¢0,1),

(2.12) a is nonneqgative, nonincreasing and convex on ¢0,m)

0=ale) <a(0+){o,
d)o0.

Assume morecover

a=b+c where b,c satisfy €2.12) except that b{0+>=0 or

cC04)=0 is germntted,jl 'b¢t)dt4w and -c* is convex on (0,w).

Assume
lim sup llﬂiﬁlll(
TH® TRealT)

Then j“ sup luCt,3) 1dt<e.
= 40 31

Theorem H. Assume aeC(O,m)nLl(ﬂ,l), (2.12)> and a=b+c where b,c gaticfy

(2.12) except that b(0+)=0 or c(0+)=0 is permitted, j” t"!b(t)dt¢o and

-c’ is convex on (0,o). Assume that for some ¢>0,

1im sup |1m3(’) : [Imif*’]”'€|<a. Then
T4 ReaT)

f0§2€ u’ it })'dt<w.

A direct condition on a that implies (2.11) is

(2.13) a is nonnegative, nonincreasing, convex and -a’ is convex, on

(0,07,

Now we will give a sketch of the proof of the first part of

$2.11), under the assumption <2.13).
Using elementary transform theory the representation

iTt
Tt 2)—XIUR9(UT———7JdT, £30, )0



ic obtained for the solution usu{t,x) of (1.1), where

DCr,EDim+ima tracmy—igr leima L,
This is integrated by parts, vielding

D_¢(7,%

(2.14) 1u(t,1)=Re[T%7 ge'T‘B?-;;?dw], 30, 3>0.
T,

Estimates (2.4) and (2.7) and lemma 2 of [31] ensure the
absolute convergence of the integral as well as the wvanishing of the
boundary terms in the integration by parts.

The integrand is then written in the form

D,£T, %) D L7, [1 ] iql-l]z
DZ¢T,3) bim LLERPY

2 bmeinTt p o 2im?
DZ(1) O{T)

120,_¢1,3) 2 1
- K +
22D 2(7)0(« %) [D") D(T’X)]
_Dim i [1 _ 270’(7)] + JG ﬁl_.
D¢y ADE(T v A% DVm)
1207(7,}) 2 1
- y +
3202¢1)D (1, %) [D“”’ SR ]
RS PR PR RV
E 3 *
Then (2.14) becomes
D (71,33
o _iTt "7
1ult,3)=Re *ijo ‘:114"'I +-? ‘?I ]d7+¢TIJ D(T,})qu}

-1

B -3 . b
= Im{} Ul(t)+|A 2(t)+} u3(t)+u4\t,l)+u5(t,}))

where
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1fp iTt
u‘(t)-Tjoe 1,dr,
=1fp it
=1fp iTt
ugttr=g[fe’ Tt ar,
=1 fp it
u4(t,z)-;§:jue 1,d7,
D_¢1,))
=1 fo . 7' !
uctt, )= iTt dT.
o0 EXIP L YIYY

Note that Uy Upy ug are functions of t only. Carr and

Hannsgen show that

5 .
luj(t,})l$;%€L1(l,m), (e, j=4,5)

for some constant M independent of X, This with

1

=m0y +in T2, et tug) and uct, 0 ellco,@)  for each Ayt <by

Theorem F) implies UJ€L1(1,w) for j=1, 2, 3. Thus,

. 1.
sup Judt, 214U, (t)+u{)+ut)+2M €L {1 ,0).
%Y ' 1 2 3 ;? !

The inequality 2.3) then gives the first part of (2.11).

The bound Iuj(t,k)ls s J=4,2 uysed above is obtained by

M
2
integrating the formula for u; by parts. This brings ancther factor of

t into the denominator. The coefficient of t-2 is estimated using
(2.6), (2.7) and the inequality

(2.15) A chaengea o,



proved in [2]. Here C1 is a certain constant and ¢, & are defined as
the real functions such that

(2.16)  a(m)=¢(1)-i78(1) (T¢R,720).
The same methods are alsoc used in [3] to show

(2.17) Ilig? |” (02 | 4o

under the assumption ¢2.13), and we will use them to show

Jl §gp u "t })Idt<°°
/

Now concider the second part of (2.11) wunder (2.13). By

(2.17), we need only look at jé. It turns out that, as opposed to

sup fudt,Xx)l, sup Ju’(t,))] is not a bounded function of t on (0,1).
31 0 ‘“‘T#“’ ’

However, Carr and Hannsgen use the analogue of (2.14) for u’(t,x) to

obtain an estimate of the form

| €,
l% t
3-¢
(M a constant) under the assumption su T8¢ 2 ](m for some €
’ F p/zg'r —T"?)_, ’
AN

0(6(%. They also obtain the estimate

(2.18) sup tu’(t,A) 1Ko
t30

for czome constant K under the assumption (2.12) where o6=c{(}) is defined
by the formula

(2.19) % = % é’“ als)ds.



Note that o+4o as x40 and %40 as Ao,
The above estimates on u‘{t,d) are combined as follows:

. ; Sly- . - 1-p -p,%-Y¥p-p¢
IEIZPI%ZPEZ'I pa.11t Py pe[i&] <M2t A where M1 and M2 are

constants and Wiﬁspu. Then |§é|.gM2t'PeL‘<o,1). This completes the

proof of the second part of (2.11) under the assumptions mentioned

above.

For related work see [8] - {131, [151, {141, [27] and [28].



3. New Results

We study the questicn of whether (1.2) holds for the solution
of (1.1). By lemma 3 (i) in [7], 3(1) is defined, finite and continuous

for tm130, 720 when a(t)eC(O,w)ﬂLl(O,l) is nonnegative and nonincreasing
with

1im alt)=0 and 0<al0+){w.
tow

We will be using the auxiliary functions w, w*, ¢, 8, DCT,2),

DT, A, ©, A, defined by (3.1), (3.2), (2.16), D(T,M=D{m+itx
1

D(T)=;(T)-id7-1, (2.8, (2.19) and (2.8) respectively. We also use
inequalities of these functions which were established in [2] and {3].

In [3], assuming ¢2.12), it is shown that

(3.1) 3" 1=gcw) +do™2
defines a continuous, <trictly increasing function w=w(}) on some

interval [lo,m), where w(}0)=p for some p>0. Extend 0w to [1,0) by

defining w(i)=p on [1,}03 (i€ k0>1). As in [3] define

€3.2) i =w*n

to be any number in [%,2&] such that ¢(m*)= min 4{7)., Assuming ¥2.12),
9¢1¢20
TR

the following inequalities hold <[2] and [31):

(3.3) ¢2<¢>+[I§9)24M-10<1,z>12, 8.
(3.4 A[%)&M-ID(T,})I, 16{%, g)Utzu,m).

16
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(3.5) 04C,5534C,07, 331 where C,,C530,(C,>12).
(3.6) FEABCTIEM, H(T(20

(3.7 oMo, 01, 20414,

(3.8 MA(%)4¢(m*)+w*9(w*), 941420,

(3.9) A {MaZ

(3.10) éAl[éJ4§sclal[éJ, A1,
Here M is a constant independent of T and 3. We also will need the

estimate

(3.11) fgxa(s)ds}kjSa(s)ds CO<K<T,0<x<a)
which holds for aEL%OCIO,o) satisfying a is nonnegative and
nonincreasing. To cee this define F{K)= gxa(s)ds-kfga(s)ds for fixed

x>0, Then F(0)=0=F(1). Moreover F’(k)=xa(kx)-f§a(s)ds iz a

nonincreasing function of K because a is nonincreasing. Thus F is
positive for 0<k{1.
Theorem | gives reprecsentaticone for u”(t,x) in terms of the

transform of the convolution Kernel,
Theorem 1. Assume acLl¢0,1), ¢2.12) and 4¢1)>0 ¢1>0). Then

(i) qu(t,D=lim RefgeiTt(
R4

= iTt[=i1D(T)
= Jore(e' " [3eman])or

-iTD(T)
T, ]d7
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and

. 20, 2
7707 (r)+3D( 1) }dw.

D¢T,3)°

Cii) 1u'(t,x>=Re{7jge‘*t(

{The integrals are Riemann or improper Riemann integrals).
Theorem 2 gives a necessary condition for (1.2).

Theorem 2. Assume (1.2) and the hypotheses of Theorem 1. Then

2

(':0-

(3.12) lim sup (78{71))
T4 LT

The representation for w*(t,2) of Theorem ! (ii) is used to
obtain Theorem 3.

Theorem 3. Assume ¢3.12) and the hypotheses of Theorem 1. Then

i;? Iﬂliéxll|4% for some concstant M independent of t and A.

1f we make a change of variable in the integrand of (1.1) and

then differentiate the result we obtain
(3.13) -u'(t)=a(t)+du(t)+Jéa(¢)u’(t-«)dT,t)O.
—
The next lemma gives an important estaimate on the integral

term of ¢3.13) which yields another necessary condition for (1.2).

Lemma 1. Under the assumptions of Theorem 1, there exist constants

NI’N2>0 such that

2 2
(3.1 N, ¢sup [turct-macmdrigngo, a1,
157 0 2%

t20
A consequence of this lemma is

Theorem 4, For ¢1.2) to hold under the hypotheses of Thecrem 1 it is

necessary that
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(3.15 (-!nt)a(t)eLl(O,l).

We obtain a sufficient condition for ¢1.2). MWe first give two

partial results which isolate transform conditions sufficient for

integrability of sup {u"(t,3>! on <(B,1) and on [1,x).
z;1|—TL"| ' '

Theorem 3. In addition to the assumptions of Theorem 1, suppose ¢3.15)

and
(3.18) sup C(X) ¢
Ayl A ®
IE’]
where

2
(3.17)  cnzds M
> ¢(w )

-
=4
o
>

.[0 sup | "t })Idt(m.

Theorem 4. In addition to the assumptions of Theorem 1, suppose %3.12),

alt)=b(t)+cit) where b,c both satisfy (2.12) except that b{(0+)=0 or

c{0+)=0 is permitted. Assume

(3.18)

J“ BCY) it < and -c’ is convex.

Then

J? ;up |Bii%*£lldt(m.

Thus in terms of the transform of a, we have the following

answer to the main question of this study.

Theorem 7. a) Under &ll the assumptions of Theorems O and 6 we have

{1.2), b) 1f ¢3.15) and ¥2.13) hold, and if, for




2
some q>1, lim sup C(3)|1og% |¥<w, then (1.2) holds.
At ¥

Next we look for direct conditions on al{t) that imply the
transform conditions of Theorem 7. We have not found a satiss. g
"natural® sufficient condition, but some reasonable conditions which
include wide classes of examples can be stated.

By (141, when (2.13) holds,

(3.19) %B(%)<¢(w)<123(%), 0,

where
-1 X 7
(3.20) B(x):jo-sa (s)ds

and we also observe that the following holds:

Lemma 2. If aeLl(O,l) and (2.13) holds then (3.12) holds.

This extends a result in [331]. (Lemma 2 is proved in [1} (Lemma 2
(iii))., For completeness we include the proof in Section 4.,) Putting

this lemma together with Theorem 3 yvieids the following corollary,

Corollary. 1f (2.13) and aeLl(O,l), then the conclusion of Theorem 3

holds.
We next obtain a theorem ensuring ¢1.2) where the hypothesis

are stated directly on a(t). The four cases in part b of the Theorem
say roughly this about ;(7):

) Rea(w), Img(f) have the same order of magnitude as 79w} (ii) Im;(x)
is emaller than Rea(T) as T4mj (iii) and (iv) Rea(T) is smaller than

Img(w) as T40. This is shown in the discussion in Section 4.
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Theorem 8. a) Assume ¢2,13) and a{0+)<w. Then ¢1.2) holds.

b) Assume (2,13), (3.13) and gne of the following:

(i) There exist constants cl,c2>0 such that

(3.21) ‘1’“1(1) []sczm U B¢,

or
1
1A, (=
Ciid lim 1(’ =0,
T in
or
1 2
Ciii) lim B[’r’] =0, 2V s increasing for small t and
T4 -a‘(t)
AlT
alct) 1
—_—— € L' (0,¢) for some ¢>0,
—ta’ () =
or

B[%) ms[%]
Civ) lim =0 and Ma for T in [§,a).
Tao A1 B B
T
Then (1.2) holds.

In Section S we apply this Theorem to examples. In particular
if a(t)=t"P, 0<¢p<l or alt)=-Int for t near 0 or att)=t1-1nt)™9 near 0

(q)2), then (1.,2) holds. Note that at)y=t"1(-1nt)™9 does not satisfy
the necessary condition (3.15) for q{2.
After considering these examples we give an example that

satisfies (2.13), (3.13) but not (3.16). However we still have (1.2) by



Theorem 7 b.
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4. Proofs
The integrated version of (1.1) is

u(t)+lj$u(1) 5-¢(d+a(s))dsd¢=1. The usual method of Picard successive

approximations [28) ensures the local existence of & unique continuous
solution. The a priori estimate lulgl (2.3) ensures that the continuous
solution exists on [(0,w). Now ¢1.1) <shows that u’ is continucus on
{0,0) and ¢(3.13) shows u" is locally integrable for t3%0 and continuous
for t20.

Let us prove Theorem 1, (i), By {71, 1im u(t)=0 and by
tyo

Theorem E, 1im u“(t>=0, By (1.,1), u“{0)=0. These facts and integration
teo

by parts yield

/u}('r)=J-0e Tt eyt

@ e Tty dt=ire-t14i1[®e I T () dt)
0 0

iT(=14iT0(T)) .

Applying the Fourier transform to (1.1) yields

semzacr, =y legen it l-aen-dr™ 27 (10,3510 that s

oem=_ 1 .
ADCT,A)
Thus,
A P Th -1

y'iTi=ir{- 1+Uz—x'7)—l‘f [D-'_—T— (1>0 ;\),1.’-

ALX)
X

By (2.8), |¢£<T)|g4m[§] and by (2.12) lim A(%]ﬂim
T0+ X4

23



0, so limi7at1)i=0. Thus we write 1im 0 CT) 1= 1im | |=
T40+ 140+ T0+ '
ir¢atn-idr ! irea(m)+1d
lim A'T Tty | = lim — é T_‘E,-l l=0 where we have used
1404 a(w)-id1-1+i¢)-1 140+ TalTI-id+iT A
(2.6), Also by (2.4,
/\ o -1
Tim (W) I=1 im | 2LTAT, _1,=0.
T4 Te0ialT)/1=id/ T 402

Theorem F can now be applied with b(t)=a(t)+d, p=0 and

Q(w,z)=z(+—“’;’_7]. The conclusion is jglu'(t,).)ldt<m for each 3. Thus
W+2Z

the inversion formula

R i) LR _iTt(=iTDi
27u"(t,M)=lim| _pe " u(T)dT= lim|_oe ooy |dT, B0
' R»mj R R*mj R ( ' ) ,

holds (see p. 12,13[5D. Calling the integrand I{T), we note that

1¢(-1)=1(7) {(where the bar denc' . complex conjugate). Therefore,

. R )
{4,1) w(t,A)=1imRe]I(1)dr=],Rel{T)dT.
' R4 JO '[0

Throughout the remainder of the paper, M will denote a
constant whose value may change each time it appears.

To prove Theorem | (ii) we integrate (4.1) by parts. This
gives the correct integral term. We will see that the boundary term,

% 6¥¥ng, vanishes at t™=0 and at T=0. We will complete the proof by
]

showing th;t the integral term has an absolutely convergent integrand,
First we show the boundary term vanishes. If d>0 we follow

Carr and Hannsgen [31 and use
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4.2) ID(T,X)I}max{Q(T),d-TZ}}1 y 041¢p,d>0.
T T

By (4.2) and (2.8,

I TD(T) | Iwa(w)-ld
DiT,A) DiT,4)

1
£ [47A(?) +_?_] ‘gM ['TZA (l) +"|’]-)0 as T"U .
—i_ T

gs T

For d=0, |D(¢,x>|;|3<¢>1-¢;2‘3/29(%)—7. Thus,

(4.3 IDCT,3) 1 ymax{2™ %2 A[ ] —1,4¢T)IIM For d=0, 0¢1<p.
. Ta(T) 1A 1
With (2.8) we haue T T 40 as 140 (d=0).
-3/2, (1Y _
~ . -1 A . -1
DiT) 1 (a(T)-idTt )7 a({T)-idT
Also i = x — —|= —rx +0
qlic Y la(w)-idw Teim 7l TI« T -idr 243!

as T+o by (2.8) (for all d). To see that the integrand is absolutely
integrable near the origin, when d}0, use (4,2), (2.7) and (2.8) to
obtain
bloerrs] “ar=[8 1 -smeasy] "o
$j82* 2——2—3—-2d¢<2p+-7j0 dTgM.
1IDCT, )1 15

|arqu[87 (;%Jd«=m%§.

‘7

T

IT D’\T)

Also, J })_

When d=0, use (4.3) to obtain

. D7) |24, f0oy drg2p+L[Pr2gr oM,
b7 ) 'TT_—————__E T8ept= T
01D7T,3 |2an¢]§ ID{T, M) 1 A“IO
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Also,

J8|7201(1)|d1$MJ8 TA(%JdT

D¢T,n)
, (max{2 3/“A( J s$5T)3

2

]
We have used that limwA(%J=0 and 1im ( ~3/2, [ ] ¢]2=§<foa<s>ds) 0.
T4 740

Next we will see that the integrand is absolutely convergent at «.
Use (3.7), (2.19), (3.11), €2.6), (2.7) and the Fubini theorem

to obtain

ch . 20 m|dT

&zznjzc 6( 1/’sa(s>ds]dw
<12M( Izc . I/Tsa(s)dsdw]
$M}2(%+Ié/zclosais)jé/sdwds)

=Mx2[x l/zcloa(s)ds)<M}c

Also by (3.7), (3.11) and (2.8),

(T}zdw

T

J;CIG U%%%%TIZdT(}ZMJ2C c

2f 1/2C. ¢ 2
(M2 Izclo —?dw[ 1 a(s)ds)

2
$”ﬁs( 1/c

: ais)ds]2=Mc.

This proves the theorem,



We note the arqument contains the following estimate:

s 20, 2
(4.4) ( p+ © } 1T D ('T)‘}}D ('T) d‘T\<MG.

This will be used in the proof of Theorem 4.
To prove Theorem 2 use (2.146), (3.10), (3.1) and

1

jglf(t>|dt;|$(«)| for 750 when f€L'(0,») to obtain

(t

A
o°|u (t })Idt>qal(l)|u“(w)|

p)l 5

0(w)| [ afw)—ldw -1 )' 8(w) [ _iw )I
atwr-ide T+in” 3470)

2 2
8(wlw [ 1 )2 (w8{w)) (143 w)

)SCIXHM) 5C, lw)

By the properties of o this proves Theorem 2. Theorem 3 follows
directly from the next lemma.

Lemma 3. Under the assumptions of Theorem 1

(4.5

. *o, ¥..2
u (t,l)k%[g*_[m 0(((.)*)] ]EMC?) (331,500,
${w )

We begin the proof of (4.3) by using (3.4), (2.7), (3.3} the

monotonicity of —n s ¢3.11) and (2.19) to obtain
AiIi
T

/211207 (1) 72D (1)
v | Frmves S E Frmre s B

2. d,[1/7
&l%j201° . [-7+I sats)ds] 4,
2P 2
[fl/qa(s)ds]
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9

S T
‘&[Aéz +AE)]
=M[%+§]$M%.

o2 g2
The last inequality is due to the fact llmjr—au0+)>0 hence, 0<e$7r for
C-®

. 1
some ¢ independent of X, and E$?T'

This establishes

m/’ 20 clT D (1) ]
(4.6) -7[ j Y |d1$MI.

Use ¢3.4), ¢3.5), (3.11) and the monotonicity of —mv to
Al=—
ixi

obtain

%ngzl D¢T) |2d7$§f§/2 24 272 d4r

DIEFEY) IDCT,M) 1

2
/2 T

Le |9
\A“S X

(i)

dr
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6,0 c ]2% _.{6,0 ]
ofi gl (9%

3
Also, by (2.6), (3.4), (3.9), (3.11) it follows that

1 %01° | porsy | Ferd 5o [[]d]dw

T

2C,0 2
-')TJ [ TA-]d'T

4I 2C 6(1 d ]sz
40A7C-1-E

os(vim) sy
WA= AA E

—M0 1Y2 ,40

—M-X[1+E) M.

The last two strings of inequalities give us

w/Z D(T) 2 o

Next we use (3.3, (2.7), (3.8, (3.11), (3.6) and (3.5) to

obtain

2w 2D’('r)

d7
3 w/2 D¢ ZI

1
&7.[(0/ 2 ™ [T) dr

¢2(T)+(1-wl2
2w T 2
{M dtAl=
TAO/Z eI n e tr-al ¢ (“’)



1 * * *
{Ma dTié¢lw 4w 8<{w )
mez (4¢0*I) C+(1-0) ¢
ol *4to® )+w 8¢w®)) M(w* 0 2800* ))
A¢(0™) rela”
(X+ g(w )1 ]
0(@ )
Thus
(4.8) 1 20 720'(T)|dT<M(G [w 8lw )12)
320 2lp 0 332 LA

Also, by (3.3), ¢3.6), (3.3) we have

if2w D{T) |2d7
w2100,

"II@/Z IT} |2d'T

2f2_y, 1577
Yaw/27 T p z>|2

Mf20 4, 72372
w/2 02(1)+II%9|

2 dr

i+ T
W27 yetw¥ e i1-01c

( M{20

4(: w2 )<M(% [ e(w )] ].
$lu” 22} $C™

Thus ¢4.8), ¢4.7), (4.4), ¢(4.4) and Theorem 2, prove the lemma
and hence the theorem.

Qur proof of Lemma 1 depends on Theorem 2.2 in [3]. Namely,

under the assumptions of Lemma 1 there exists a constant K so that

(4.9 éc$§gglu’(t,})l$Kc, M.



The proof of Theorem 2,2 in [3] also contains the inequality

(4.10) uit,a)31/2 for 04 t$7ET§THE_TE

14 t¢E, using €4.9) and (2.19) we get

o

2
ljgu'(t-«)a(«)d«l4KoA<t)$KaA[§)=K%r.
If 1¢t, by (4.9) (2.19) and (2.3),

2
lj u’ Ct-TralTrdTlg Ijl/cu’(t-T)a(w)d7I+III/GU’(t-w)a(T)dwl$KEr

+|j1/5u (t=-m)alT)dr

=K“2+|-a(t>+a AT 1 a’ (Tult-1rd7
Y I3 1/0

2 i 1
4K7r+a(t)+a( )+Ia(t) a[ )l

2 2 1 52
—K7—+23( )(Kjr+7cﬁ( ) ke
The second inequality in (3.3) is proved (N,=K+2),.
By (1.1)>, ¢4.10), and ¢3.11), for T{t{2T we have

ljou'(t 1)a(¢)dwl=ljsu’(1)3(t-7)d1|
=}ljgjgu(w-s)a<s)dsa(t-w)dwl
}%}Ijga(t—w)Iga(s)dsdwl
z%j§/2a<t-w>fga(s>dsd«

e 2aterds[! Lact-mar
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[ t/2 ‘2 A[JT/Z

a(s)dsJ a(s)ds)2

%[11/8(8+d026) a(s)ds)z

2
»wz[ 3/°a(s)ds)2=M%r.

This is the first inequality of (3.3), so Lemma 1| is proved.

We will now prove Theorem 4. From the proof of Lemma 1,

2
(4.11) Ijéu’(t-w)a(T)GTI}Nz%r for TEE2T.
Using aeLl(O,l),lu(t,})lsl for t30, 231 and (3.13) we see

"(t,2) . . 1 t
sup dtie if and only if sup a{Tiu"{(t-1)d7|dt{e.
JO I I IU })lljo
By (4.11) we have for T{t{2T that

ljoa(w)u (t-1)dT = Nyo j"“a(s)ds

i 2t(8+dC.,) MIt
Wy H?ETECETTIO 2 a(s)ds}TIoa(s)ds.

By definition of T, T40 as X4 (as 04® as X+4»). Therefore for each t in

(0,¢) for some ¢>0, there exists T with T{t(2T.

Thus IU §§€|9—i§4zl|dt<w implies Ig % Ié ais)dsdt<w

thence [} H§ atsrasdtcw. But [y s ats)dsdt=g-1ns a(s)ds finishing
the proof.

We will now prove Theorem 5. Partition S={(t,2):t}0,3)1} into

2 2
§=5,US, where S,38N((t,3) 15 (alt)}, S;2enC(t, M act)d. on S,



"(,)) 52 {
| cactream g1 pach+del 1 0,1 by (3.13), Lemma 1 and
(2.3).
"t 2 2 2 2
On Sy, |43a2) | act)+daN S (1N St dgC 14N+ Codd SmS

again by (3.13), Lemma { and €2.3) and also by (3.3).

Now partition 82 into 82=S3US4 where

. WTE, D], o i Ut
§52€(T,3): |"“I*“|$;T773“32' 84-{(t,}).;1/2<l———x4——|}082.

On §q, |4ted) *’I ellco, .

u(t, *’] HMEX by Lemma 3. That is

On Sqs "172‘!

(4,120 Lymt!/Z, |E-i§411|<m° on Sg.

1/x i

Now define h{x)=x 0 a{s)ds, gix)= 3 . Clearly gix) s
lé: als)ds
nondecreasing. To see that h(x) is nondecreasing observe that ,

h’(x)=Jé/xa(s)ds-%a(%)}0. Thus on Sy,

u'(;,k)|=h( u”(glk)']g(lu"(;,l)”

t1/2

$h[C(\)M ( ) MC 1) % : als)ds

17
$¥I$ atsydseLico, 1
where the first inequality follows from Lemma 3, (4.12) and the

monotonicity of f and g, the second inequality is a consequence of
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{(3.11) and (4.12), the last inequality is by (3.1é) and the calculation

11¢l/2 1
JOT 0 a(s)dsdt=IU—21nsa(s)ds<w {by (3.15)) shows that

1/2
% 8 a(s)dseLl(O,l). Considering the estimates on Sl’ 33, and 84 we

see that

. ) 1/2
§g§|!-i§¢ll|4max{(1+N2)a<t)+d,t 72 MitT “acsrasreLlca, 1.
7

The theorem is proved.

Except for minor details, the proof of Theorem & is the same
as the corresponding proofs in [2) and [3].

At this point we introduce auxiliary functions and

inequalities used in [2) and [3]), Let

JCw=iutl-e ' Y)-2¢1-iu-e'¥); then B’(1)=7-3IgJ(-Ts)db(s), 0.
For 1, t>0 define
(4.3 Ut m=173[lsc-r0rdb (s,

(4.14) p“(t,})=1-3j?J(-¢s)db’(s),

(4.15)  act,nD=p0t, D+ (m+idT =D’ (1) -pPCt, ).
The following facts are proved in (2] and [3]. In particular

see Lemma 5.1 of [2] and (5.42) and (5.44) of [3].

. 0
€ eC2(0 ) , 2B ¢C((0,0)x(0,0))
aT

(4.16) 13'(1)|$6000jé/752c<s>ds,1>0

(4.17) 1B2CE, 1) 14407 2¢bCt)=th’ (1)), 30,750
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0 -
(a.18 | 3ct,m|¢s000 zjéb(s)ds, 30, 150
a1 1%t ¢)|<40f1/’sb<s>ds, 30, 10
(4,200 ¢’ (1)I$4OII/Tsc(s)ds, 0.

Wi th q(t)=t-2+t—2jgb(s)ds+t_1b(t)-b’(t), which is in LY¢t,0) by [21, we
also have

(4.21) (i) 180t T 14178t 1+1D’ (1) I1{MLA (1)+t2q(t)1 1y 41,

1)%
Giid lDT<¢,z>14MA1({) M%A[ ), 18
Giiid) 121820, 1) 1gMEqCt) , ty1, 750
Civ) «IA(t,T)I+ID(¢)I$MA[%J, 1, 18

() IA(t,T)l+1757(t,7)|+l0’(7)lsM[l-l+T_lt2q(t)],t}l, 1Y/ 2

cwid 10 <1, 0¢8, ¢ w2

(4,22) T § M IDCT 01, 20¢TLa.

To prove Theorem é we start with

i720 (1) _ iT2[D’(¢)+i}-1 i ]
D(T,3 2 DCT,20¢  Der,M°

- i¢2<o'<«>+i1'1)[ DC1) ]2+ 157 1
D(T) e " DT, 2 ! 2

- - ?.=2
i 12¢D’ (1) +i) 1){ 2imal 1372 ]
D(T)? DLTVAY per,an®

1=
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- iT2[0 (., iz 2imTipren

D2 pimZ DCTIZDCT,H)

212 (D’(7)+il—1)122_2]
DCTI4DCT, M) DCTI2DCT, )%

_ 2{0/(«) ir’! 2i7}_lD’(¢)[1 iTA-l]
D(m% D(M*  D(mT DLT,A)

. 211‘2(1 iTl-l) (D’(1)+i}_l)72}-2(1 iTl_l)]
D¢pySL PO A D(TI D(T,3) OiT,A)

- iTZ[D (m), i X -1 2iTx D (1) 77% -2

nZ 2 bin? b3
_ 218572 m 200873 (D:(¢>+;;'1)¢2;'2(1 i,l-l)]
D Der, %) DKn3DCT,0) DX ¥DeT,H) MIE IOy

2[0 (1, (iz“l 2i11_10’(7)) L2172
D12 D12 D(m>3 D(T)3

_pen+inlard 2 (D’(7)+i}-1)72}—2(1 ifh-l]]
DCT)ODCT,H) DCTIY®DCT, ) DiT,A)

2[0 (), ( ir7! _2iwl_lD’(1)) ,2m 72
(m< {pime  pim?® Der)?
2 i3
2 +[1—U??777)]
Ufﬂ
Dz,rs 7

(0’ (m+iz e

AEDECTIDCT, M)

_ 2[0 (n, ( - 2i1}_10’(7)] 21372
p%¢m (D(m4  p(md D(1)

. (D’(1)+il-l)72[ 2 , 1 Y.
3202(TIDCT, 30 \P T sny

Using this expression for 11 and referring to Il+12, we may

write
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“lapen?,ir?pren

2

i 12D C1+AD(m 2 _1%y
DCT, M) DeT, 00 DCT)

i 121‘1(1 210’(7))+2i73}'2
penl P ) pen?

. i14(D‘(1)+i}_1)[ 2 .1 )
320¢1)2D(T,3) (\D<T) DTy

Putting this into the representation for xu"(t,X) from Theorem 1 <(ii)

yields
(4.23) —1u"Ct,M)=Relin ™1 q, ()43 2 (1)+iX 3q,(t)4q,(t, A 4gaCt,})]
1 2 3 4 5
where
(t)=1Jpei7t 1207 (1)) 4.
9 TJo o2 o
DiT)
q (t)_ljpeiwt 2 [1 270’(‘)]dq
2'V%glet ozl o '
q (t)=1_|“’e"rt 21° 4y
O VY
. 2.-1 2
1 fp iTt, 753 “+AD(T)
—qalt, =[Pl Tl
at:»=g5fh DT, 302
) iw“(D*(w)+i1‘1>[ 2 , 1 ]}d1
22D(1)20¢1,%) LO%T) DiTy3)
and

. 2 inme 2
=1l itT({17°D (T)+3D{T)

aeCt, =31 ( dr.

St EXJp DCT, 1% ]

Let ~94=941 %42 where

_ 1 fp iTt _
qql(t,}>-T§I0e [J,-d,1dT
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and
2. cn.ay=TA teacn
1591475 .
DCT,3)
omdot })_iwq(ﬁ(t,p)+i}-l)[ 2 , 1 ]
L]
272 22D¢1)2DCr, %) [D<T) DT, AT}

. -
1 fp irtf -io'g {(t,m 2 1
Qan(t,3) e [ 1 [ + ]]dw.
42* ! TAJO }26(1)20(1,}) DaTy DlT,A)

Note that the estimates (4.2) and (4.3 hold for D{(7) in place

of D{(7,A). Now we use (4.17), (4.3) and ¢4.2) to write

4, -2.,
QqpCta M) [ M fRa ea™ 9y b=t (D) M iy ey kbt
|"'77_'_|\t}2 Io 32 Y02

Mgty .

1{ we integrate q412(t,I)Ef%igeiTth(T,k)dw by parts we find

At2g4, 50t )

. 4 S | .
lpt[p (AC,p)+ik )[ 2 1 ]]
e +
32D2¢p)DCp,n) (DRI DTy

ar3cact,m+in herts ct,m

) szpeiTt[ [ 2 , 1 )
3¢90 DECTIDT,3) Ty DT, %
1A, m+3TH 0 (DDCT, 40D (1,00 .

- +

D3 (1041, M) [5115 Di*'XSJ

- 74<A<t,w>+ih'1>(20'(«>+D¢(*'})]]dq
D3¢TIDCT, 3> A DZ(T) DZ(T,)))

where the vanishing of the boundary term at 7=0 is ensured by (4.19),

(4,20), (2.46) and (4.15).

The estimates
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D (T,3)
(4.24) Io

1#47)
|d7<M (d>0); 7) dr<a
p2(1,3) °

A

T
follow from €2.7), (4.2) and the discussion of the proof of Theorem F
respectively. It is straightforward to estimate qqlz(t,}) by (2.6),
(2.7), €4.2), (4.3), €4.14) through ¢4.21) and (4.23) to obtain
(4.25) %rljgeiTth(T,})d7 MQit) 1)1,
Notice that

123202 _ per,n2-2im loen 21872
DCT, )% DCT, )%

2123 2-2i 3" Toem

=1 +
DCT,3)°

s 0 that

1 84010 (4«1 “2_2iap(m-2in "0 (n
T g DCT, 02

20_¢1,00¢212 7221 Ipcry)
- s ]5‘31‘52)-
DCT, )

Hence integration by parts yields

iTt -
. . e J. {1, %) .
iR i1t (q ardr= L i [0¢6,-6,0e! Ttyn.
ki 1 3 06276,

Let us estimate the boundary terms. We have

P lpt[1+2p2l 2-2ipx ‘D\p>]|<1+ 2p242p1D¢p) |
Z
D¢p,3)? ¥

where 72 inf 1IDCT, 331, >0 by 4.3), €4.2),
0<71<{p, 142

For the other boundary term, by ¢4.2) and (2.3)
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11
-1 2,-2 Me(a[-)+_>
lim 2€|1 D(€)+§€ 3 |$]|m[ € € + ?e ]=0 ‘FOP d30.
€+0 DCE,N) ¢+0 “'j;%;“‘ e ?J
€

For d=0 use ¢4.3) and (2.4) to obtain

1
s 1y 2
T1im ( ] €4 z¢ =0,
€+0 5 o }Z(A[%)-e)z
iei

Also,

. -2_ “1n.
Ijgelelwth $Ig |4T} 2i3 'D(T)- glw\ D¢ dr
D{T,X)

< MIS(%+7]12d1$M

when d>0 by (2.8), (2.7) and {4.2). When d=0, by (2.6), (2.7) and

(4.3,
ijs eiTthI<Jp|47l_2-2i}-ID(T)-Ziwl-ID’(T)ldT
0™ 0 DCT, 07
1
THA|=
M8 (*) dTgM.

[max<¢(1>,2’3/29(%}-7312

To estimate the final term in Q44 when dX0 use (4.2), (2.4

and (4.24);

(7,8 2,-2_,. . +~1
.[9‘32‘,_,““‘__,,T <J0 D{T — IIQT ) Dé?;:% D(’r)ld,r

D (1,3 D (1,3
<M.|“’|D(1 ——— | (242 +2«(1])¢ dw(MJO 6?:—;:7ld74M.

When d=0, use the same first inequality as zbove and then observe that

by (4.3) and (2.48)
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272+27A[1)
T M.

max{Z-B/zA(l‘-1,¢(1)}

2723 %2in e
VIEINY

M

T
Thus, by our estimates for 941 and Qg2

|q4(t,})

(4.26) —_— {Mgit).

Next we write ~G45745¢ *q57 where

. .2 2
Mo _iTt fiTTACt,T)+AD(T)

}tq51(t,})-Jpe ( YRR ]dq,

H}

. . 2.
}tqsz(t,1)=Ige'Tt(ll—ﬁ—ilﬁgleT.

DCT,3)

e 2
Then |th52<t,m)i<l'§"+ 532+I3m]|16%;%§?%1|d¢.

For the third term, we have

.f?mlﬁm‘%llm”*q““f% 1 an @Aty 012,

2

by (4.22) and (4.21). By (3.4), (4.21), (3.11), (2.19) and ¢3.5) we

have

2. 0
w2 |128°0t, 1) w/2__1 Mtq(t)w
dT{Mtqlt) dT4
jp | DCT,3) o jP Ai%]z ) Aigiz

W
<q ﬁf (t;w $Mtq(t)}2
)0

where the next to the last inequality uses
1 23V, 2,.(1\_2¢
(4.27) A[;J}A(ETE)4CTA(E)—C;1 for 7¢2C,0

and the last inequality follows from (3.5, {Note that (4.27) is a
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consequence of (3.11).)

The next calculation uses (4.21), (3.3, (3.12), (3.9)

(3.6);

2.0
20 |17t 22w dr
TE L2 drgMtqctdn
Jo7l DCT,3) | O/ 2004w %41 t-wlé

, 2 * )

JMtact) =Mtq(t)%2[ 1T ]

Mo 28040 )
*2g00%)2 1

2w
Mtq(t)a?
N 4™ o*%8c®

Mtgqetrn?—1t
28¢

—Mta ()12,
W)

q52(t,1)

3 {Mgit).

Therefore,

Let us write 951=9541 %9595 where

; 2
N =fo itt({ D(T)
thllkt,})-Jpe [m]d'f and
’

L2
t1q512(t,1)=ijge"t(l-éli4%§)dw.

DCr, M)

Integrate tq (t,3) by parts and obtain
St

D)2 ]|T=m
?

s .2 , iTt
itcq {t,2)=e (——————7
St D{T,X) T=p

-zjméift[D(T)D’(T) <o/<¢>+ix'1)o<¢>z]d1
P DiT,A)% DiT, A"

—1: ixt{ D(x) Y2_f D¢p) Y2 ipt_2ife iTt{D{TI{TD"{72-D(T)
—;_l': e (sz,xj) ( '\p! ) € T F‘e [ D(,r,}.)a ']d‘r‘

and
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But ]imlbgé%%f =0 and by (3.4 ID%%%%T|2$M, so the boundary terms are
X+w

bounded by a constant.

The integral term is bounded in absolute value by

1 w/2 ZC o, J D(T){(1D“ (1) ~-Di{T1)) dr
e m/2 2Cso <13 '
DT, %)

We use (3.3), (2.8), (2.7), (3.4), and (3.11) to show

Idw

( m/2 2C c) D) (1D’ (1)-D{T))
pr2 " DCT, 0%

(7]
0/2 ;(1}3 /2 Alz
T

By (2.4), ¢2.7), and (3.7,

1y2
als
D{1)¢1D (1) -D(T1)) 2fw [7)
dT{M dr
IJ2CIB 0(1,})3 | ¥ IZCIG—T;;—

2. (1Y 2f0 -3
M3 A(EJ fzclo’ dT¢M.
By (3.3), (3.8), (2.6), (2.7), (3.12), ¢3.9), and (3.8,

J DCT) (D" {1)-DC(T1)) dr
w/2 DiT,1)°

212w dv
r 4
W/ 20 e tmIN) FH 1) 219 F

$M}2A(§

2.(2 du
Mr2af2
v ( j°[<z¢(w 1) 24217 2

=MAZA[§ 2[ u u=m]
42 (O™ 2eyPH1/27u=0

2, (22
M A(a) Ml )+m efw ))?
(hgle?

£
) ¥ 3
(A4 (™))’
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=M}[¢(m )+m G(w )]2 Mz[ W 6(w ) ]2
AI]2¢(m ) Q(w h)
mx{u__v?]? m[ L ]2
w 8w I w Q(Q )

4M1( ) 22
(38¢0*))

/

5118200 M e
Therefore |-___T___' ;7 §Mqit) .,

Next we integrate q512(t,}) by parts. Then

2 ipt .
2 _—pAlt,ple o _iTt _
t23qg, 50 t,3)= o<plz>2 jp e! THT, -Ty)dn
3y

2 s
218Ct, )48, (t, 112 (20, (1,770t )
and T2

where Tl- 3
0(7’1)2 DCr,2)

The vanishing boundary term at o follows from ¢4.21) and (4.22).

/

2 ipt, Mp|~-"Pats)ds

By (4.21) and (3.3), prAlt,ple |$ JU » y a constant,
$i{pd)=

Dép, )<

We write I:lTlld1=( 2’2 2, sz)lT idr. By (4.22) and ¢4.21),

2
j° ITA(t,1)+¢ AT(t,T)'dT
2220 DCT,3)2
1y,,2
A 2] +t4%q () 2
Mfo T 1[7] q e 1a (1),1
o5\ Tamnfg, 2y (7] er

Fd
™2
(%
<Mj d«j”a(s)ds+Mj°-—3§lld¢<M+Mt q(t). Thus

! (o 1 )
:?;?szlTlId7$M(:?+q(t))4Mq(t).
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By ¢4.21), ¢3.4), (3.11) and (2.19) it follows that
or2] T TI4T28 CH, ) M t2C UTAI[%)+t2q(t)
7J 2] | ene 5[ d
o/ DCT,H) p/2 PN AT
g
2
<I%IZCIG dr +3% 2C,0 tg(t) o
25 p/2 Ai%i A p/2 A[; <
2

(M5 M ctlqit)
oI S SRR B SR
¥a(zrys) 24|z

Mo MotZgct)

$AZA(6] (}A[ ] 2

7

2
LI MemeZqctd

Therefore, ;5321255|T1|d1$nq(t>.

By €(4.21) (v), (3.12), (3.4), (3.3), (3.9), (3.5) and the fact
c¢Mx (by (2.19)), we have

-1 ‘7
1 (20 20 T3 “+tTglit)
lT idrg dr
}2 w/2 ZJw/Z e +|7 w|2

mf2e

2 R
1,t%°qCt)
w/2

dr

(A4l %1017

2
1,t%qit)y 20 TdT
M(T+ ]

W w/“\AQ\w ») +I7-m12

M(l tzq\t)) I dr
<
A 0fl¢\u <

P +1
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4M(§+t2q<t>) 1 M(1+t2q(t))er"’*)

ZQ( ${w )

2
¢(w ) 8w )

Mct+t2qetyy—3 (M(1+t2q(t)).
*wa

1 (o
Therefore, ;};?JplTlld1$Mq(t).

Similarly we write J:IT2Id7=( ‘;/2 2 JZQ)lTZId'r. Then

_[ g ,[ ID (1,128t
T=
220! 2197 77) 2 YERSL

yfe” )
J_UT -ufs, [)

X

|d7

94]"3;1( s) dsJ": Lar,
T

a constant, where we have used (4.21) (iv), (vi) and (4.22). Thus

:Z%ZJ;QITZMN%\MQ( .

By ¢4.21) (iid, C¢iv) and (3.4) it follows that

[0/2)1 | greap[o/2 [IJZdw
32p/2° 2 32 p/2 -
A -J
T
Mw

Fgy

where the 2nd to the last inequality is a consequence of (3.9

(3.11). Hence,

and
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w/2 M ¢
-7-7jp 31T2197¢ eMac .

Also,
%TA(%)dT

l¢(1)2+|I§2l2JB/2

1 {20
;7 m/2'T2|dT<_?Jm/2

* * * 26 TdT
MC® 0 8w*))
N W20 et T 21 ¢

* * * *fw dr
Ma0® +0* 8™
N j°r<z¢(m*)>2+«213/2

(Mo u*ac®)ro*
N

2 (gt 2?8172

(24¢0™)

<M(Q(m*)+m*s<w*))m*s(w*)2
¢(w*)2

Z*Mm*zﬂ(w )3

e O(m*)
*)2

s 4tw

M i 2
{tM|——T177| "M
o (w%(w*) ) )

where we have used (4.21) (iv), (vi), (3.9, (3.12), (3.3, (3.6) and
(3.8).

Therefore

w/le IdT(—zsﬂq(t).

qs(t,})

Consequently, {Mq{t)> and hence

(£,2)4q5(t,3)

T ().

|
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The representation

-m"(t,k):Re(ix"q1+>‘2q2+az'3q3+q4+q5) together witi Jr‘a’lu“(t,l)ldt(m
for each X from the ©proof of Theorem 1 (i) now yields

osupju"it,d) .
Ill)l ———7i——|dt<w, proving the theorem.

Theorem 7 a is obtained by simply combining the hypothesis in
Theorems 5 and é6.
For the proof Theorem 7 b we apply Theorem 4, (by (3.9 our

hypothesis imply (3.12)), obtaining JT??? !:iéill|dt<m. To prove
7

Ié ;g? E:iéiilldt<m, follow the proof of Theorem 5 exactly, but use
different auxiliary functions to combine the estimates (4.11) and Lemma

1. The proof of Theorem S uses h(x)=xA[%), and gQxo= . Here, use

A[;

hixy= :; and g(x)=1nqx instead, completing the proof.
Inx

Now consider Lemma 2. A result in [331 (Theorem 2 (iii)) is:
i f a€Ll(0,o) and ¢2.13) holds, then (3.12) holds. This extends to the
case where a ¢L1(0,m). Define, as in (11,

Lit-t,)2an e vase
al(t)= g(t tl) a (t1)+(t tl)a \t1)+a(t1), 0<t(t1
a(t), <t

and

a7(t)=a(t)-al(t), t>0

where tl is any fixed number with tl}G such that a"(tl) exists, Then
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a,, a, both satisfy (2.13) and ayell(0,0). With atm=g(m-itecn,

;1§¢1-i10l and 325¢2-i102, we have

2 2 2,2 2,2
2g¢m)2 _ TE(8, (TI48,0T)) (27 87(1)+27°85( )
$¢T) SRR 7IC ) I $5(T)
§ 2126f(1) +M
¢2z75

where we have used the result for 37€L1(0,w). We will finish by showing

2«29f(«)
szT;

that is bounded., By (2.13) and (3.19) we have

120f(¢> MTZ[ é/Tsal(s)ds]2

¢
#2010 7 $o(T)

1/1 2
. M( : al(s)ds]

¢2(¢5

Maf(ﬁ)

@72—————
\7 ¢2(1)

M
{ {M
\fzjgjq-sa’z(s)ds ¥

where the last inequality is a concsequence of

x
-sa’,{s)ds
m)1im1215/7-sa’2(s)ds=limjg————jg———-

T4 x-+0 X

a’z(x)i—
3lim 2 0.
x40 X
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This result is Lemma 2.

Before proving Theorem & we give a preliminary estimate and
make some comments. Using €2.68), (2.13) and (3.19) <{under the
assumption (2.13)) we obtain

: Az[%)<|§(1>|2=¢2(1>+¢292<¢>

Hence, 2—3/2A[%)$12(B(l +«A1(1)]. Also
p

(4A(%))2313(t>|2=¢2<«)+«292(1>

Therefore,

4A(%)z(50)’/2(3( ]+ Al(l))

Combining these into one inequality yields

(4.28) [‘]((1152)1/2( ( ]+1A( ]]<960A( )

2

In view of (2.6), ¢2.15) and (3.19), the behavior of la¢mI,

$(T)=Realt) and T8(T)=IIma(m)| as T4o is like that of A[%}, B[%] and
, F

Tﬁl(%) respectively.
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In view of (4,28, condition ¢i) in Theorem 8 correcsponds to
the case where I;(T)I, Reg(w) and IIm;(T)l have the zame order as T-o.
Theorem 8 (ii) corresponde to the case where IImQ(T)I is small compared
to |;(T)| as Tim, l;(¢>l and Re;(¢) having the same order as T4w.
Theorem & (iii) and (iv) are both in the case where 1ImacT)|l and 1a(m)|

N
have the same order as T4o and Reaf{T) is small by comparison, as Tiw.

z

To treat this case the additional assumptions a (t) is increasing for

-3/ (t)

al(t) .1
small t and ————¢€L"(0,€) for some ¢ are made in {iii), and in (iv)
-ta’(td
wh® (%)
the extra assumption we use is {o for wé(p/2,0).
Bla

For the proof of Theorem 8 a we differentiate ¢1.1); thus
u'(t,Z)=-}(d+a(0+))u(t,})—kfsa’(t-T)u(T,l)dT.

u"{t, N

Therefore, |—__TL__

s(d+a(0+))lu(t,})I+jé-a’(t-7)lu(1,l)|d7

§d+af0+r+(al0+r-alt)rd{d+2a{0+),
where we have used (2.3). We use this uniform bound on (0,1) and
Theorem é with Lemma 2 to complete the proof of Theorem 8 a.

Let us turn to the proof of <b). By (2.19), (3.10), (3.2,

{3.11) we have for some constant K

1.1 .| A1[é)}KA1(%]

|
(4.29) = = ; 7 e
LY & I A’l A,IY
UNEUNEs




BYs

In case (i), use ©4.28), (4.29) and £3.22) to obtain
i y 1 1
1, K4 [6) MAy (a] ey (m} M
37 T 3 1 14 - "a-
IEISENCEE

Partition SE{{t,X):04t{1, A31) into 8121 (t,4) 1 t¢ }ﬂS,

f4,30)

= Liyd
82-{(t,}).t>c}ﬂs.
For (t,l)esi, use £3.13), (2.18), Ilud{t, 21l and {(3.13) to make the

estimate

LI |a<t)+du(t,1)+_[5a(¢)u'<t-¢>d¢|

4a<t)+d+KoJ’§a(¢)d«4a(t)+d+K%_[l§a<¢)dweL‘(o,1>.
For (t,)\)es2 we use Lemma 3, (2.12), (3.19) and ¢(2.13); thus
|utctany) Mo, RO 10y ))2

S ¢(

# LYy2
WA =%
$¥( l/ca\s)ds+[ 1[ ))

_[T

M
T(11+12)'
By the definition of 32 and by (3.15) it follows that

i

1. 1t
1t-xls,t-J'Oa«smseL 0,15,

By (3.11), ¢3.21), ¢3.15) and (4,30),
2\ (2
A af2t
L%, (1Y Ma(2 [ﬂ‘a] (ﬁ) MAC L)
Yo Al(w—*)$-{ﬁ[6]$ )¢ B elao,n.

This completes the proof of Theorem 8 b {i).
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To prove (b) (ii) we will sh C(}‘)is bounded and use Theorem
()

?l

1 {1) -
afL afl 1
By ¢3.11), (") = S 4‘*(6]@1.

T T

Use ¢(3.10) and (2.19) to make the estimate

1 1
MA, |=1 (MA,|=
A _ 1 i 1(@)_1 l(w]=1

A=
o} ATIFl T

€

There are two possibilities L(A)31 or L{X)<1.

For LU, A[-;}'z) ;A[%) holds.
Now use ¢(3.17), (3.19), (2.13) and (2.19) to obtain

Ce) M *"'Af[m) _
gt 2

/

Now,

T ER R ESE

where we have used (3.11) and the assumption (ii) together with (4.28),

e Rt RUEC S

We have shown that

CiM)

sup {w.
L) 3t Ailfi
6



Ed

For LML, A[%];A[éum];uzm[%] by (3.11). Finally, use

/ I

(4,28, (3.11>, {3.3) and the assumption {ii) to obtain

s 1) B | P LAl
l[w*) { Ho®) = Hp*/o 1o
1 P 1 1Y, /4 1 1 1
RN RO RRCEE
2(1y,2¢(1 2(2
MwAT | = (A= MwAT =
¢ ! (w*) (“’) ¢ ! [“J :

WrERE 6

To see this is bounded we use the inequality é1(2t)44A1(t). This yields

w*2A2

Cix)

WD e o
“6“""‘1[6)“6“[6)‘”' This shows that sup (o
T LOV <1 Ai—zxj
1w o

Thus,
219.) is bounded for 2A)1. The application of Theorem 7
Ail%i .
c
finishes the proof.

To prove (iii) use (4.28), (4.29) and the assumption of

Ciiide

Thus, é)g as in (4.31) and the rest of the proof follows exactly as in

the lines following (4,30 except for the term %12 which we treat next,

By Lemma 1, ¢(4.28), ¢3.11), assumption (iii) and integration by parts:
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$T 1 1
lw ()
)t en?
1
°()

1 a2 :%ﬂ [ é/zw-sza’(s)ds]z)

e’ |
w Pl

M
= ld 40,0,

By definition of 82 and (4.31) and assumption fiii),

Maz(Mlt)

-ta’(Mlt)

A

A

eLl(O,ﬁ%) (some M,).

Also,

Mjl/zw-sa’(s)ds!l/zw-s3a’(s)ds
MJ < 0 0
TYan

1 i
t—=8
(=]




J'Vz“’ s34/ (s)ds
m_?
Mlsa(s)ds
MI1/2Q -sa (5)dS$TIO -sa’ (s)ds(—lg—T————€Ll(0 1

where we have used the Cauchy-Schwarz inequality, the definition of 82

and (3.15). Note, on [M‘—,1], ¢3.13) implies
1

l" (t 1)|<a[ﬁ§--)+d+2a(ﬁg—-), a constant. With Theorem &, this finiches the
1 1

proof of 8 b {iii).
To prove (iv), by Theorem S, we only need to show that Cex)

(5
= is bounded. The last
A
52

is bounded. We showed in (ii) that

e

step is to use (2.1%, (3.4, (3.19), (4.28), (3.11), (2.9 and

assumption {iv) to obtain
#2.2(1 2
#2 # 2 w AT |— MA
w “#w) l(w¥) [w

* G
G TP T







3. Examples

{a) Suppose a(t)=t_p, 0<p<{1. Then an easy calculation yields
1y_ 1 1 1y_ 1 1
il [T]‘ﬁ ~T=p and B(T)'T:'p‘ 15

Theorem 8 b (i) applies.

{b) Suppose alt)=-1nt for small t and (2.13). Then B{(x)=x,
iy
A{x)=x-xInx for small x and lim T )=0. Part (iii) and {iv) in Theorem
T

“5)

8 b can both be applied. For instance, w

Bl

2
2 i In 3
= [— + — which is bounded on (p/2,m0), so0 Civ) applies,
W o

(c) Suppose a(t)=t-1(-lnt)-q for small t and ¢2.13) holds. The
necessary condition (3.135) holds for qg>2. For these q we see that

Theorem 8 b (ii) applies. We note A(x)=(q-1)_1(-lnx)1-q. Use

L’Hospital‘s rule in the following calculation:

i
1A, |=—
1im 1[7]

T4 A1

T
/

Al(x)(q—l)
=lim ——————

- -q
x+0+ x(-1nx)

-1 ¢=1nx) " 9¢g-1)
=1im =g - =
x_’0+(-1nx) +{q=1){=1nx)

58



o -1 _ . .
= ]”"?:Tﬁ%TTE:T =0. Now (ii) applies.

x-oO+
<0
{d) Let c'(t)=k§0akx[0’xk)(t) where aK)U, k=0,1,2,. . . and

0<x, 41 <X, €172, K=0,1,2,. . ..

fityme’ (1)’ ity [T .- -
-c/{t)=c (1)-c (t)-jtc (s)ds-kgoak(xk t)x[o,xk)(t).
(5.1) (t=[l-cr(srds=1,2 T ¢ -t'2 (1)
. c —.[t cislgs= k=L0ak XK )XIO,XK) .

We will show that for dta(t)=c(t) with (a 3°_o and {x )°_

appropriately chosen, (2.13) and (3.13) hold but not (3.18). {2.13)

holds by definition. To show ¢€3.16) does not hold we will show

* %* 2
(@ g(w 2) is not bounded.
$lw )Aii%i
Let
2" . 52"
(5.2 a =211"2" |y =279 neg,1,2,. .
Note
K
) ® 2
ccot)= T axi= F 232 =o,

k=0 k=0

Also,

2

j‘(-lnt)cft)dt= 5 1723k (=1nt) ¢(x2-2x, t+t2)dt
0 ‘ ok k™2

311 L3 1
(akxk =273 Xy glnxk)
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TP LANE: e
== ¥ 2 +2 T 4010222 27¢ <o,
-33k=0 zk=0
Thus (3.13) holds. To see (w*e(w*))z is not bounded, first we note
* %
$( Al
o
3 M
(5.3 £
;?\w*é =%
)
2 1/6

To see this, observe that %T = 0g a{s)ds is increasing with ¢ so

1/0%

¢ /wa(s)dssz*jo a(s)ds=Mm*A(£¥)

Sy 1=1
Ttlo
where we have used (3.5) and (3.11).

By ¢5.3), ¢(3.19), (2.15), and (3.11) we have

1y ) )

? (fz) # [w *APEL*J)

Thus,

w*8cw* 2,
’ * i
W WA

P
where we have used A1(2x)$4A1(x), x>0, Let t=§. Then t40 as wiw, so by
the above inequality, we only have to chow that there is a sequence
{tn}, tn+0 such that

2
2¢t,)
i T
tnB(tn)A( n

;I\{n i

A
(5.4

] -+ as N+,
L4
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We integrate Al(t) by parts twice and use the definition of

c{t), c’(t) and c"(t) to obtain

2 3. s
A (=D, 1TTe (0) 113

s 73 *z)g% t"{s)ds
t2 % x2 t2 t3 n
= a, foK-x, t+ = 7 a3, (%, 1)
‘7?k=0 k(1? K TFJ &L e KK
¢4 0 Ay > 0
t= T ot for x {t<x .
EXE A A n+18t %%y
Thus,
1.2 23,1 2 4
(5.5) A=t z ak[ ~x bt ) 73, I, K O Xnap$tex,
Similarly,
A(t)=j‘c(s)ds= 5 a"j"(x -5)%, (s)ds
0 (o 2J0° %K X18,x,)
na
2 kJO(Xk 5)2d5+K_n+11?I0k (x -s)2ds for Xn 1\<t<xn
Thus,
1 2 2 2,,3,,1 2 3
(5.6) ACI=Z T 2, (3xt=3x 54t T4z T apxy, xp,$tdxp.
k=0 n+1
Also,
1.2 1 9 3
(5.7 B(t)-1?t ? \ak K 1;3 t)+7?k=§+lak K for xn+1<t<xn

To see this, observe

.2
BCO=[{-sc (s)ds=drt-c (e L [lsZen(s)ds



t2 n 1 N akt3 P @ akxg
= ¥ a3, (X, ~t)tm T + 7 for x $t<{x_.
T2 LTk ZyE0 3 Zy=rey 3 n+1 n
2n
, - n+i1\_,-4.2 n+l
To show (5.4) let tn—xn”[—n—]—Z (T]' then x_, <t <x_.
For this choice of tn’ we observe from (5.5) and (5.7 that
At )”Itza x2 as n+o and B(t Y’ltza X_ as N+ where 6 "F_ as n
1**n’ 3n%"n “*n’ Z 'n%%n ¢ @y W n ' &5 e
Gn
means lim — =1,
n4e F
n
. . ~1 2 -
Also (3.4) implies A(tn) TTanxntn as N,
Therefore, as n+wo, the expression in (5.4) is asymptotic to
'tﬁanxﬁ z Manxn
)2 by ¢(3.11), But for large n,
2,2 43 A —
8'(ntn‘.’nxn’é’( 1 ) a_x- )
a_ x4t ’ L
n"n'n
n 2N 2n-l
xn=2-4-2 (2-3-2 1 <2-42 =,
-nxn
By ¢5.6),
2 2
-1 3x 3x © a X
1 1 " K K 1 1 3 .1 °%n-1%n-1
A[_Z')=T Z ak[ 2 72* tg L 3%y
agxp k=0 anXn [anxn] aXp ) K=n 3 X

Therefore,




N4 .

2N 2n-l
To see this we will show that (2-2 ~3.2 )4@. Thus,

]-m.

We show however that Therc-:m 7 b applies yielding (1.2)., We

n n-1 n n-1_,n n _an-=1
2.2% -322 =22 (2-3.2%2 "2,=3% [2-3-2 2

have

*2 1
%2 *¥.2 W TAT|—
coy=0 8w 27 ( ] [ [w*)

R

+A[—]) by ¢2.15), (3.19) and (3.11).
${w )

Also,

21
2 Al —
T -}Az[I) M (Q*]

by (3.10), (3.3, (3.11) and the fact A1(2x)$4A1(x).

Thus, for any g>i,

2/ 1 201
2 a2l a2
cunnq[%-)m( l(m*] +A(L*))lnq( [w*))
W
| Bl Al
(1) (] (1]

To show this is bounded we only need to show that

AZct) 2
={ 1 qfATit)y .
D(t):[;§§?¥7+ﬁ(t))ln (57?17) is bounded for small t.

<t<x that

By (3.9, (5.6) and ¢5.7) we have for Xn41$

Al(trtz(-},-anxﬁ-éa X, taa, t2) as t40

A(t)”%[Banxst-3anxnt2+anta) as t40



B(t)"%t [a X -3 a tJ as ta0,

respectively,.

Also,
tz(%anxg-%a X t+ga t2)<§t2t23 xﬁ
tz(%anxg-%a X t+ga tz) tzzz n n’
%(Sa x“t 3a Xn t2+a t3)<3a xt,
and

1.2 _2 1,2
Zt [anxn-3ant] ),zt aan

all for x $x Thus, D(t) is asymptotic

n+l
bounded by

2, 2 [2/3a x2t]

nXn t 1/24anxn

2
3/8t%a x ) .
[( non )+%anxgt]lnq[ nn ]$M(anx§J]nq(anx§J

2(1/6t a_x

_,2" 2n 52" on
=M2™2" 1n09¢2327 yM2™?2" 292

Theorem 7 b shows (1.2) holds.

to a function that

+0 as t+40, since n4ex as

t-0.
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UNIFORM L1 BEHAVIOR FOR THE SOLUTION OF A
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{ABSTRACT)

The solution uy=u(ti)=ult,r) of
(E) u’(t)+}jsu(t-1)(d+a(7))d1=0, uC0d=1, 30, a1

where d30, a is nonnegative, nonincreasing, convex and wja{0+)>alwl)=0 is

studied. In particular the question asked is: When is

(F) Ioiup'u UL a2

We obtain two necessary conditions for (F). For (F) to hold,

2
it is necessary that (-Int)a(w)eLl(O,l) and lim sup EI%%%%l—<m where
T4

3(¢>sjge“’*a<t>dt=¢<«)-i¢e<1) (4,9 both reald.

We cobtain sufficient conditions for (F> to hald which involve
¢ and & (See Theorem 7). Then we look for direct conditions on a which
imply (F). With the addition =assumption -a‘ is convex, we prove that

{F) holds provided any one of the following hold:



(i) af0+)<w,

T é/Tsa(s)ds
¢ii) 0lim inf {7+ £1im sup
T4 0 -sa‘{s)ds T4
T é/Tsa(s)ds
Ciii) Tim 177 =0,
T 0 ais)ds
1/7
-sa“{s)ds .2
o) Tim = =0, —& %)
T4 0 a{s)ds -a‘{t)

2
2D e, for some €0,

T é/Tsa(s)ds

{e
é’*—saf(s)ds ’

is increasing for small t and

~-ta‘{t)
é/q-sa’(s)ds 7(]5/7a(s)ds)3
(v) tim 175 =0 and {7 Mo for {710 (some
T 0 afs)ds 0 -sa’(s)ds
6>0).

Thus (F) holds for wide classes of examples.

(F) holds when

attH+d=t"1-1nt)™9, @32 <emall ).

d+aCt)=t"P 0¢p<i;

In particular,

a{t)+d=-1nt (emalil t);



