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ABSTRACT Southern Leaf Blight, Northern Leaf Blight, and Gray Leaf Spot, caused by ascomycete fungi,
are among the most important foliar diseases of maize worldwide. Previously, disease resistance
quantitative trait loci (QTL) for all three diseases were identified in a connected set of chromosome
segment substitution line (CSSL) populations designed for the identification of disease resistance QTL.
Some QTL for different diseases co-localized, indicating the presence of multiple disease resistance (MDR)
QTL. The goal of this study was to perform an independent test of several of the MDR QTL identified to
confirm their existence and derive a more precise estimate of allele additive and dominance effects. Twelve
F2:3 family populations were produced, in which selected QTL were segregating in an otherwise uniform
genetic background. The populations were assessed for each of the three diseases in replicated trials and
genotyped with markers previously associated with disease resistance. Pairwise phenotypic correlations across
all the populations for resistance to the three diseases ranged from 0.2 to 0.3 and were all significant at the
alpha level of 0.01. Of the 44 QTL tested, 16 were validated (identified at the same genomic location for the
same disease or diseases) and several novel QTL/disease associations were found. Two MDR QTL were
associated with resistance to all three diseases. This study identifies several potentially important MDR QTL
and demonstrates the importance of independently evaluating QTL effects following their initial identification.
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Genetic resistance is usually the most cost-effective method of control-
ling crop disease. Qualitative disease resistance confers high levels of
resistance, is typically race-specific and controlled by one or few genes
with major effects (Bent and Mackey 2007). By contrast, quantitative
disease resistance (QDR) causes a partial reduction in disease symp-
toms, is usually controlled bymultiple geneswith relatively small effects
and is often not specific to particular pathogen races (Niks et al. 2015;

Yang et al. 2017a). QDR is thought to be more durable than qualitative
resistance because it relies on the resistance mechanisms associated
with many different genes, each of which exerts a relatively small se-
lection pressure on pathogens (Agrios 2005).

Multiple disease resistance (MDR) loci, defined as “loci that confer
resistance to two or more diseases” (Nene 1988; Wiesner-Hanks and
Nelson 2016), can be due to distinct linked genes, each associated with
resistance to one disease, or to an individual allele that confers resis-
tance to more than one disease (pleiotropy). Colocalization of QTL
for resistance to Southern leaf blight (SLB), Northern leaf blight
(NLB) andGray leaf spot (GLS) diseases, caused by the fungiCochliobolus
heterostrophus, Setosphaeria turcica and Cercospora zeae-maydis/
Cercospora zeina, respectively, has been reported in maize (Balint-Kurti
et al. 2010; Zwonitzer et al. 2010; Wisser et al. 2011; Belcher et al. 2012;
Li et al. 2018; Lopez-Zuniga et al. 2019). These diseases are among the
most important foliar diseases of maize worldwide (Mueller et al. 2016).
The pathogens are all ascomycete fungi in the dothideomycete class that
share a largely necrotrophic lifestyle (although S. turcica has been de-
scribed as a hemi-biotroph). One gene associated with detoxification
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(Wisser et al., 2011) and another involved in lignin biosynthesis
(Yang et al. 2017b) appear to confer resistance to all three diseases.

Wisser et al. (2011) found high positive genetic correlations between
resistance to these diseases in a maize association mapping panel of
253 maize inbred lines (Flint-Garcia et al. 2005). Linkage disequilib-
rium in this population is very low, reducing the chances that the
correlations among resistances were due to linkage rather than pleiot-
ropy. Several MDR and multiple disease susceptible (MDS) lines were
selected from this population for the development of populations
designed for the mapping and characterization of MDR loci. We de-
veloped a set of BC3F4:5 chromosome segment substitution line (CSSL)
populations in which segments from four of these MDR donor lines
were introgressed in the backgrounds of two multiple disease suscep-
tible (MDS) lines (Lopez-Zuniga et al. 2019). Disease resistance QTL
were identified in these populations, some associated with resistance to
two or three diseases (Lopez-Zuniga 2016; Lopez-Zuniga et al. 2019).

The use of CSSL mapping populations allows for the comparison of
QTL in a common background and facilitates follow up studies of
specific alleles of interest. Since aparticular donor allele ispresent in only
a few lines in a CSSL population, however, effect estimates are prone to
greater inaccuracy than in biparental mapping populations, where
contrasting alleles are present at approximately equal frequencies. Also,
since the lines are nearly completely homozygous, it is not possible to
estimate dominance effects (Kaeppler 1997; Keurentjes et al. 2007;
Jamann et al. 2015).

The goal of this study was to independently test the significance,
and more precisely estimate the additive and dominance effects of
some of the previously-identified disease resistance QTL (Lopez-
Zuniga 2016), especially those associated with MDR. Twelve F2:3
populations were made from crosses between CSSL with the stron-
gest resistance across the three diseases and their recurrent parent,
H100. The resulting populations were assessed for each of the three
diseases in replicated trials.

MATERIALS AND METHODS

Populations
As part of a previous study (Lopez-Zuniga et al. 2019), four chromo-
some segment substitution populations (BC3F4:5 lines) were created by
crossing four multiple disease resistance maize (Zea mays) lines, Ki3,
NC262, NC304, and NC344 as donors, with the disease susceptible
lines H100 and Oh7B, as the recurrent parent. An identification code
was ascribed to each line, starting with the prefix DRIL (for “Disease
Resistance Introgression Line”) followed by the population code
followed by a specific line number. The line codes were: Ki3 = 3,
NC262 = 5, NC304 = 6, NC344 = 7, H100 = 2, Oh7B = 8). In each case,
the code number for the donor parent is first and the number for the
recurrent parent is second, so, for instance, 32 and 52, meant Ki3/
H100 and NC262/H100 populations respectively. The final popu-
lations were genotyped using Pioneer Illumina publicplex platform
with 765 SNP markers (Jones et al. 2009) with 245-271 informative
SNPs within each population (Lopez-Zuniga et al. 2019). All the
populations were evaluated for SLB, NLB, and GLS in replicated
trials in two locations.

For this study, twelve DRIL lines with H100 as the recurrent parent
that showed strong resistance to all three diseases were chosen and
crossed with H100 to generate F2:3 families (Figure 1, Table 1).

Experimental design
Twelve populations, varying from 49 to 101 F2:3 families (Table 1) were
tested in replicated trials for each of the diseases: SLB, NLB, and GLS.

Each experiment had an augmented compete block design, with the
population as block. The recurrent susceptible parent H100 was in-
cluded at a random location within each sub-block of 21 plots, and each
MDR parent was planted once in its respective population.

During the summer of 2017, two complete replications of 1029 plots
each were planted for the evaluation of SLB in Central Crops Research
Station (CCRS) Clayton NC; two complete replications were planted in
BlacksburgVA,CollegeFarmResearchStation, for theevaluationofGLS;
and one incomplete replication consisting of 700plots,was planted in
Andrews NC for the evaluation of GLS. During summer 2018, two
complete replications were planted in CCRS, Clayton NC, for the
evaluation of NLB.

Inoculation preparation and inoculum procedure
The inoculum was prepared as previously described (Sermons and
Balint-Kurti 2018). Briefly, sorghum kernels were soaked in water for
3-4 days, autoclaved for one hour, allowed to cool overnight and inoc-
ulated with either C. heterostrophus, S. turcica, or C. zeae-maydis. The
fungus was grown at room temperature (23-25�) for at least 10 days
until the sorghum was colonized. The fungus-infested sorghum was
air-dried and stored at 4�. 30-40 day old maize plants were inoculated
by adding 6-10 infested sorghum kernels into the whorl of each maize
plant.

Genotyping
Tips of leaves were collected from 5 adult plants per F2:3 family, bulked,
and lyophilized. The samples were sent to Agriplex Genomics for DNA
extraction and genotyping. For each population, only markers known
to be segregating and that were associated with resistance to one or
more diseases in the previous study (Lopez-Zuniga et al. 2019) were
genotyped. Primers were designed based on the context sequence of
the SNPs reported by Lopez-Zuniga (2016) using the B73 reference
genome version 3. (Table S1). All the genotypic data used are available
in File S1. Genetic map positions are based on the IBM4 genetic map
(Fu et al. 2006).

Phenotypic evaluation of SLB
The experiment was planted in a single field, with 8 seeds per plot,
in 1.8-m single rows with 0.9-m row width. Inoculations of SLB

Figure 1 Scheme used to produce populations of F2:3 families and the
QTL segregation within line.
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were performed 40 days after planting, using C. heterostrophus
isolates, including 2-16Bm and Hm540 (Carson 1998). Visual
scores were taken three times at 10 days interval, starting 77 days
after planting, when the plants were in the developmental stage R2.
The scoring used a scale of 1 to 9, where 1 is dead and 9 is immune
(Sermons and Balint-Kurti 2018). Each plot had one score given at
each evaluation. If the plot was segregating it was given a score that
represented the average disease severity of the plot. For each plot in
both replications, days to anthesis (DTA) was recorded when half the
plants in a plot were shedding pollen. File S2 includes all the SLB
scoring data.

Phenotypic evaluation of NLB
All field evaluations of NLB were performed during summer growing
season of 2018, with two replicates grown at CCRS in Clayton, NC. The
experimentwasplanted in the same fashionas theSLBtrial. Inoculations
ofNLBwereperformed26days afterplanting, using severalExserohilum
turicum isolates (race 0, race 1, race 2,3 and race 2,3,N). Visual scores
were taken three times at six to eleven days interval, starting 64 days
after planting. NLB was scored using the percentage of diseased leaf
area, from 0 to 100. A single score was ascribed to each plot at each
evaluation. If the plot was segregating it was given a score that repre-
sented the average disease severity of the plot. The disease scores were
converted to fit the same scale of GLS and SLB (1 to 9). For each plot in
both replications, days to anthesis (DTA) was recorded when half the
plants in a plot were shedding pollen. File S3 includes all the NLB
scoring data.

Phenotypic evaluation of GLS
Allfield evaluations ofGLSwereperformedduring the summer growing
season of 2017, with two replicates at College Farm Research Station in
Blacksburg,VAandan incomplete replicate inAndrews,NC.Trialswere
planted in 4-m single rowswith a 1-m rowwidthusing 15 seeds per plot,
in both locations. Inoculation was performed in the field in Virginia
30 days after planting, using a mixture of several Cercospora maydis
inoculum isolates. No artificial inoculation was done in Andrews since
the field contained infected plant debris from previous years that pro-
vided a high disease pressure. Visual scores were taken twice at each
location using a scale of 1 to 9, where 1 is dead and 9 is immuneA single
score was ascribed to each plot at each evaluation. If the plot was
segregating it was given a score that represented the average disease

severity of the plot. Scores were recorded with the Field Book applica-
tion (Rife and Poland 2014) File S4 includes all the GLS scoring data.

Statistical analysis

Phenotypic data: Exploratory phenotypic data analysis was performed
using Statistical Analysis System (SAS) v9.4 software (SAS Institute Inc.,
Cary,NC), Tableau v9.1 andR (R core development team2015).We did
not find any outlying data points that warranted removal. Heat maps
were produced tovisualize any disease severity spatial pattern in thefield
andboxplotswere created to check the severityof disease in the F2:3 lines
in comparison to the susceptible and resistant checks. Correlation co-
efficients between disease scores of lines measured in different replica-
tions or on different diseases were calculated.

For each disease trial, using two to three disease scores collected at
different time points, the standardized areaunderdisease progress curve
(sAUDPC) was calculated for each plot by taking the average value of
two consecutive ratings andmultiplying by the number of days between
the ratings. Values were then summed over all the intervals and then
adjusted by dividing by the number of days between evaluations, so that
the sAUDPCscores areona similar one tonine scale as the initial ratings
(Campbell and Madden 1990).

Statistical analysis was performed using the MIXED procedure in
SAS. To adjust the least square means (LSMeans) for field effects, range
and columnof thefield position for eachplotwere added to themodel as
random effects. The mixed linear model used to analyze data from the
SLB trials was

yijkmn ¼ mþ Li þ Dj þ Rk þ Gm þ Cn þ eijknm

where y is the response variable SLB sAUDPC, Li is the fixed effect of
the ith line, Dj is the fixed effect of number jth of days to anthesis
(DTA), Rk is the random effect of the kth replicate, Gm is the random
effect of the mth range, Cn is the random effect of the nth column. A
similar model was used to analyze data from the NLB trial:

yijkmn ¼ mþ Li þ Dj þ Rk þ GðRÞmðkÞ þ CðRÞnðkÞ
þ eijknm

the response variable y was NLBAUDPC, Li is the fixed effect of the ith

line, Dj is the fixed effect of number jth of days to anthesis (DTA), Rk

is the random effect of the kth replicate, G(R)m(k) is the random effect

n Table 1 F2:3 populations were derived from crosses between disease-resistant near-isogenic (DRIL) lines that had previously been
identified as highly multiply disease resistant (Lopez-Zuniga 2016) and H100, the original susceptible recurrent parent used to
construct the DRILs. Original donor parent indicates the original resistant parent used for the production of the DRIL lines (the original
source of all the non-H100 alleles segregating in the F2:3 population). The number of F2:3 families created, and number of distinct
introgressions previously associated with disease resistance segregating in each population are also presented

F2:3 Population name
Susceptible

parent DRIL parent
Original

donor parent
Number of F2:3
families created

Number of
introgressions

H100_DRIL_32.090 H100 DRIL_32.090 Ki3 70 2
H100_DRIL_32.095 H100 DRIL_32.095 Ki3 86 2
H100_DRIL_32.134 H100 DRIL_32.134 Ki3 63 2
H100_DRIL_32.191 H100 DRIL_32.191 Ki3 86 1
H100_DRIL_52.055 H100 DRIL_52.055 NC262 68 3
H100_DRIL_52.157 H100 DRIL_52.157 NC262 101 1
H100_DRIL_52.268 H100 DRIL_52.268 NC262 77 3
H100_DRIL_62.030 H100 DRIL_62.030 NC304 49 1
H100_DRIL_62.078 H100 DRIL_62.078 NC304 87 2
H100_DRIL_62.156 H100 DRIL_62.156 NC304 63 2
H100_DRIL_72.061 H100 DRIL_72.061 NC344 79 2
H100_DRIL_72.232 H100 DRIL_72.232 NC344 63 1
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of themth range nested in kth replicate, C(R)n(k) is the random effect of
the nth column nested in kth replicate. To analyze the data from the
GLS field trial, the model used was

yijkmn ¼ mþ Li þ Oj þ RðOÞkðjÞ þ GðOÞmðjÞ þ CðOÞnðjÞ
þ eijknm

where y is the response variable GLS AUDPC, Li is the fixed effect of
the ith line, O is the random effect of jth location, R(O)k(j) is the
random effect of kth replicate nested in jth location, G(O)m(j) is the
random effect ofmith range nested in jth location, C(O) is the random
effect of nth column nested in jth location. LSMeans for each line and
disease were calculated from the model.

Heritability on a plot and entry-mean basis for each disease were
calculated as described previously (Holland et al. 2003) using the var-
iance components described above and a harmonic mean for the num-
ber of replicates per entry.We used combined data from all populations
to estimate heritability.

Genotypic data
A Chi-square test was performed for each marker within each pop-
ulation to assess if the segregation was significantly different from the
expected 1:2:1. Markers whose segregation was significantly different to
expectation were removed from the study.

Eachmarker was tested separately bymultiple regression of F2:3 family
LSMeans as observations on coefficients representing the additive and
dominance effects at the marker using SAS PROC MIXED. Additive
coefficients represented the number of resistant parent alleles (0, 1, or
2) at the locus in the F2 founder plant of each family. Dominance coef-
ficients were 0 for both homozygous classes and 1 for heterozygotes.
Marker additive effects were estimated directly from the additive regres-
sion coefficient; dominance effects were estimated as twice the dominance
regression coefficient because only half of the individuals in the segregat-
ing lines are expected to be heterozygous. Type III F-tests of additive and
dominance regression coefficients were used to declare significant marker
effects at a=0.05. If more than onemarker was significant in the same bin
and less than 20 cMapart, themarker that had the smallest P-value, or had
a significant effect for the greatest number of diseases, was chosen to
represent the effect of that QTL (Table 2, Table S2). In cases where the
population was segregating for more than one unlinked marker, marker
interactions were tested by fitting the twomarkers and their interaction in
themodel usingPROCGLMto verify epistasis. If therewas no interaction,
a thirdmodel was runwith PROCGLM, fitting themain effects of the two
markers as fixed effects and the disease LSMeans as the response to obtain
simultaneous estimates of the two marker effects.

Data availability
All phenotypic and genotypic data used in this study are included in Files
S1-4. Inmany cases very little seed remains of F2:3 families used.However
F2 populations are available upon request. The original DRILs are avail-
able at themaize genetic stock center (https://maizegdb.org/data_center/
stock?id=9039691).

All phenotypic and genotypic data used in this study are available in
the supplementary files. Further information is available from the
corresponding authors if required. Supplemental material available at
FigShare: https://doi.org/10.25387/g3.7887698.

RESULTS AND DISCUSSION
Twelve F2:3 populations developed from crosses between 12 selected
disease resistant lines and the susceptible parent H100 were created

(Figure 1, Table 1). These populationswere evaluated in replicated trials
for SLB, NLB and GLS resistance. Correlations between replications
were all highly significant. Heritabilities on a plot-basis were 0.45, 0.29,
and 0.36 and on an entry-mean basis were 0.57, 0.49, and 0.52 for SLB,
GLS, and NLB, respectively. Pairwise phenotypic correlations across all
the populations for resistance to the three diseases were moderate but
highly significant ranging from r = 0.2 to 0.3 (P-value ,0.01). The
pairwise disease resistance correlations within individual populations
were often but not always significant (Table S3). Correlation and her-
itability estimates were relatively moderate due partly to the nature of
these populations. Each population was only segregating at a small
number of loci and therefore captured less genetic variation than typ-
ically seen in RIL populations or association panels, for which a large
proportion of the genome is variable.

The fixed effects of line and DTA (when DTA data were available)
were significant for all diseases. For allfield trials, range andcolumnfield
effects were significant but replicate was never significant (Table S4).
The only disease that had field trials in different locations was GLS and
the effect of location was not significant.

Eachof the12DRILs selectedas theparentsof the12F2:3 populations
carried multiple introgressions. Of these, between one and three intro-
gressions had been previously associated with resistance to at least one
disease or the MDR composite score in our previous analyses (Lopez-
Zuniga 2016). We followed the segregation of all of these previously
associated introgressions for all subsequent analyses, but we did not
follow the segregation of any introgressions that were segregating in the
population that had not been associated with resistance to any disease
in the original analysis.

We genotyped 28 markers (Table S1) to examine the segregation of
24 introgressions across the twelve F2:3 family populations (Table 1). Each
populationwas segregating at one to five of thesemarkers/introgressions.
We assessed the association of each segregating marker with re-
sistance to each disease regardless of which disease(s) it had been
associated with in the previous study. In total, associations between
66 QTL-disease combinations (with some QTL represented by
more than one marker) were tested. In cases in which more than
one marker was used to follow the segregation of a single intro-
gression, we selected the marker most strongly associated with
disease resistance as the marker to represent the QTL in that in-
trogression for further analyses (Table S2). The QTL was consid-
ered validated if it had the same directional allele effect on any of
the diseases as was found previously (Lopez-Zuniga 2016). In cases
where two markers representing different introgressions were both
significant for a specific disease/population combination, both were
incorporated in a final model to calculate effect sizes to account for
any potential epistatic effects, though ultimately no epistatic effects
were detected.

After selecting only onemarker for each introgression, we were able
to test 44 previously identified QTL, 20 associated with the MDR
composite score and 24 with single disease resistance, several of which
co-localize (Table S2). The effects of 16 out of these 44 previously
identified QTL were validated. Table 2 summarizes the significant
marker/disease resistance associations that were detected. An MDR
QTL that was previously detected with the composite score (Lopez-
Zuniga 2016) was considered validated when it was significant formore
than one disease. In some cases, the same QTL was validated for MDR
and single disease resistance. In the original analysis, MDR QTL were
detected using an initial analysis based on a composite score (equally
weighted index) derived from the average of the trait values of the three
diseases (Lopez-Zuniga 2016). Subsequent to the development of the
populations for this study, an alternative analysis of the original CSSL
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populations was performed using a composite statistic, Md, which
accounts for covariance between the QTL test results for each trait
(Lopez-Zuniga et al. 2019). The MDR loci that were targeted in the
present study were identified based on the original MDR QTL analysis
(Lopez-Zuniga 2016). Of the 20MDRalleles tested over all the populations
(Table S2), 18 were also identified as MDR alleles in the analysis with
theMd statistic. Of the two alleles not detected using theMd statistic,
(PHM3457-6/Ki3 and PZA03577-1/NC262) one (PHM3457-6/Ki3)
was validated for MDR in this study (Table 2, Table S2).

Considering multiple and single diseases, we identified 33 marker-
disease associations in this study. Since 16 of these were validations of
previously identified QTL, that means that 17 were not identified in the
previous analysis of the CSSL populations (Lopez-Zuniga et al. 2019).
For example, marker PHM4586-12 in population H100_DRIL72.232
was previously associated with GLS but in the current study was signif-
icant for NLB. Marker PHM4495-14 in population H100_DRIL32.191
was previously associated with SLB but in the present study, it was
significant for NLB.

Dominance was observed only in two cases out of the 26 in-
stances where we observed a significant marker-trait association:
marker PHM13420-11 in population H100_DRIL62.156 and marker
PHM14412-4 in population H100_DRIL72.061 (Table 2). In both
cases the allele conferring resistance was dominant. This relative rar-
ity of dominance effects may be partially due to the low power with
which we are able to detect them; only half the plants in an F2:3
family that is derived from a heterozygous parent are themselves

heterozygous, so only half the full dominance effect can be ob-
served and thus dominance is harder to observe than if we were
comparing fully homozygous and fully heterozygous families. It
may also be the case that QDR alleles tend not to show dominance
effects. It is hard to determine from the literature whether this is
the case as most studies have been conducted with RIL populations
from which no dominance effects can be calculated

While alleles from theMDR parent conferred resistance as expected
in most cases, in three of 26 cases, alleles from the donor MDR par-
ent were associated with disease susceptibility. The NC262 allele at
marker2PZA03577-1carrieda susceptibilityallele forSLB inpopulation
H100_DRIL52.055, the NC262 allele at marker PHM4757-14 con-
ferred susceptibility to GLS in population H100_DRIL52.268 and
the NC344 allele at marker PHM4586-12 conferred susceptibility to
NLB inpopulationH100_DRIL72.232 (Table 2). It is not surprising that
a few resistance alleles derived from the susceptible parent. This phe-
nomenon has been observed a number of times in our previous studies
(e.g., Balint-Kurti et al. 2007).

Possible reasons why fewer than half the QTL were validated are
associated with the design of both the original study and this validation
study. The low minor allele frequency in the original CSSL mapping
populations, an inherent featureof thesepopulations,mighthavecaused
inaccuracies since eachminor allele was only sampled a handful of times
ineachpopulation.Also, since thegenotypingof theoriginalpopulations
was not dense (209-271 markers in each population) it is possible that
some introgressions that affected disease resistance were not accounted

n Table 2 Results from selected markers to represent each introgression. Multiple disease resistant donor line (Donor), code name of NIL
parent carrying target introgression and crossed to H100 to form F2:3 families for validation, marker, chromosome (Chr) and genetic bin,
genetic position (cM) based on the IBM4 genetic map, trait and additive effect estimate (â) previously associated with the marker (Lopez-
Zuniga 2016), disease, additive effect (â), dominance effect (d

^
), and trait(s) for which QTL effect was validated by this study. Non-significant

dominance effect are denoted as NS. All reported marker effects are significant at P = 0.05

QTL effect detected in previous
study

Significant QTL effects detected in current
study

Donor
DRIL parent

code Marker Chr/Bin cM Trait â Disease â d̂

Trait(s) with
validated QTL

effect

Ki3 DRIL32.090 PHM3457-6 2.05 96.4 MDR 0.39 GLS 0.18 NS MDR
NLB 0.07 NS

DRIL32.090 PZA00379-2 8.03 59.5 MDR, SLB 0.27, 0.28 SLB 0.16 NS MDR, SLB
NLB 0.10 NS

DRIL32.095 PZA01886-1 9.04 114.7 MDR, SLB 0.50, 0.29 SLB 0.30 NS SLB
DRIL32.134 PZA00485-2 2.05 99.1 GLS 0.28 NS
DRIL32.134 PHM4757-14 8.03 89.8 MDR, GLS, NLB 0.24, 0.16, -2.73 NLB 0.13 NS NLB
DRIL32.191 PHM4495-14 9.03 59.0 MDR, SLB 0.36, 0.25 NLB 0.05 NS

NC262 DRIL52.055 PZA03577-1 2.07 195.7 MDR 0.36 SLB 20.19 NS
DRIL52.055 PZA00060-2 9.04 114.5 MDR 0.33 SLB 0.18 NS MDR

NLB 0.03 NS
DRIL52.268 PZA03577-1 2.07 195.7 MDR 0.36 GLS 0.13 NS
DRIL52.268 PHM4757-14 8.03 98.8 GLS 0.35 GLS 20.11 NS

NC304 DRIL62.030 PHM13420-11 3.04 92.1 MDR, GLS 0.54, 0.17 GLS 0.32 NS GLS
NC304 DRIL62.078 PHM9635-30 4.05 96.0 GLS 0.17 GLS 0.26 NS GLS

NLB 0.05 NS
NC304 DRIL62.078 PZA02209-2 5.04 124.0 MDR 0.25 GLS 0.15 NS MDR

SLB 0.14 NS
NLB 0.06 NS

NC304 DRIL62.156 PHM13420-11 3.04 92.1 MDR, GLS 0.54, 0.17 GLS 0.27 NS MDR, GLS
SLB 0.43 NS
NLB 0.08 0.14

NC344 DRIL72.061 PHM14412-4 2.05 127.4 MDR, GLS 0.30, 0.16 GLS 0.27 0.54 GLS
NC344 DRIL72.061 PZA00667-1 3.04 96.7 MDR 0.35 SLB 0.21 NS MDR

NLB 0.07 NS
NC344 DRIL72.232 PHM4586-12 2.05 79.3 GLS 0.14 NLB 20.07 NS
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for, which may have led to greater errors in the analysis. In the current
study, the number of F2:3 families used in each population was between
49 and 101 (Table 1), a relatively low number of families whichmay not
have provided enough power to detect QTL of modest effect. We noted
previously (Lopez-Zuniga et al. 2019) that the detection of an MDR
locus could be driven by a strong effect on one disease and little or no
effect on the others. In this study, we deliberately took a more stringent
approach, only declaring an MDR QTL if it had a significant effect on
more than one individual disease. In several cases, a marker previously
associated withMDRwas associated with resistance to only one disease
and so by our criteria, it was not considered to be validated. For exam-
ple, marker PHM14412-4 on population H100_DRIL72.061 was asso-
ciated with GLS and MDR previously but was validated only for GLS
(Table 2). In cases like this, it is likely that the originalMDRQTLmight
have been identified due to strong effects on one disease (GLS) in this
case rather than to moderate effects on multiple diseases. In fact, most
of the QTL identified using theMd statistic had effects strongly skewed
toward one disease (Lopez-Zuniga et al. 2019). Conversely, the new
marker/disease associations identified in this study likely occurred be-
cause the F2:3 populations had more power to test associations due to a
higher representation of the minor allele.

In some cases, the same allele was significant for the same disease in
different populations. Marker PHM13420-11 associated with an allele
from NC304 was validated for GLS in population H100_DRIL62.030
and for GLS and MDR in population H100_DRIL62.156 (Table 2). In
these cases, the fact that it was validated in distinct F2:3 populations
increases our confidence in the association of this marker and GLS

resistance. On the other hand, there were instances where the same
allele was segregating in two populations but the results from single
marker analysis differed. For example, Marker PHM3457-6 was signif-
icant for all three diseases in H100_DRIL32.090 and only for GLS in
H100_DRIL32.134 (Table 2). This could have occurred due to the type
of experimental errors described above or possibly the marker may
have been linked to the causal gene in one population but may have
become unlinked in another due to a recombination event occurring
during the development of the parental DRIL.

The main goal of this study was to validate and characterize robust
MDR alleles. Of the six alleles validated for MDR, two were associated
with resistance to all three diseases; in population H100_DRIL62.078,
marker PZA02209-2, bin 5.04 and in population H100_DRIL62.156,
marker PHM13420-11, bin 3.04. In both cases the resistance alleles
derived from the maize line NC304. Both loci have been previously
identified as QTL for all three diseases (Table 3). However, in none of
these cases was the same allele associated with resistance to all three
diseases. Previous meta-analyses of maize QTL have also identified bin
3.04 as a disease resistance QTL hotspot (McMullen and Simcox 1995;
Wisser et al. 2006; Ali et al. 2013).

This studydemonstrates the importanceof independentlyevaluating
QTL effects following their initial identification and before deploying
them in a breeding program. In many cases where validation has been
carried out (e.g., Lennon et al. 2016, 2017), the validation rate was
substantially higher than that reported here. It is nevertheless quite
possible that QTL identified in single studies using a handful of envi-
ronments may not be robust. Disease QTL, and QTL in general, often

n Table 3 Summary of QTL for SLB, NLB and GLS identified in previous studies in bins 3.04 and 5.04. Table includes BIN, marker,
chromosome (Chr), population type (pop), disease (Dis), mapping method (Method) and reference

BIN Marker Pop Dis Method Reference

3.03/3.04 asg48-phi036 B73�Mo17 (RILs) SLB CIM (Carson et al. 2004)
3.04 UMC10 F2:3, ADENT�B73rhm GLS SIM (Bubeck et al. 1993)
3.04 PIO200508 F2:3, ADENT�B73rhm GLS SIM (Bubeck et al. 1993)
3.04 BNL10.24 F2:3, ADENT�B73rhm GLS SIM (Bubeck et al. 1993)
3.04 us41 Propietary F2 GLS CIM (Lehmensiek et al. 2001)
3.04 PHM4621.57 NAM NLB GWAS (Poland et al. 2011; Li et al. 2018)
3.04 phi036-bnlg602 NC300�B104 (RILs) SLB MIM (Balint-Kurti and Carson 2006)
3.04 PZA02077 NILs, Teosinte�B73 SLB LA (Lennon et al. 2014)
3.04 PZA00828 NILs, Teosinte�B73 SLB LA (Lennon et al. 2014)
3.04 PHM4145_18 B73�CML254, B97�CML254/Ki14 (RILs) SLB JL (Negeri et al. 2011)
3.04 umc2275-umc2008 T14�T4 F2:3 SLB CIM (Pengfei et al. 2011)
3.04 umc2275-umc2008 T14�T4 F2:3 SLB CIM (Pengfei et al. 2011)
3.04 npi446-umc2000 B73�Mo17 (AIRIL) SLB CIM (Balint-Kurti et al. 2007)
3.04 mmp69-umc1920 B73�Mo17 (AIRIL) SLB CIM (Balint-Kurti et al. 2007)
3.04 PHM4204.69-PHM2343.25 NAM SLB GWAS (Kump et al. 2011; Li et al. 2018)
3.04 asg48-phi036 B73�Mo17 (RILs) SLB CIM (Balint-Kurti and Carson 2006)
3.04/3.05 umc010-umc 389b F2:3 Lo951�CML202 NLB CIM (Welz et al. 1999a)
5.03/5.04 umc001-bnl5.40 F2:3 Lo951�CML202 NLB CIM (Welz et al. 1999a)
5.03-5.04 umc1171-bnlg1046 BC1F4, Y32�Q11 GLS LA (Zhang et al. 2012)
5.04 bnlg150 Propietary F2 GLS CIM (Lehmensiek et al. 2001)
5.04 UMC43 UMC40 BC1S5, FR1141�O61 GLS CIM (Clements et al. 2000)
5.04 UMC40 BNL7.71 BC1S5, FR1141�O61 GLS CIM (Clements et al. 2000)
5.04 ASG71 CSU440 BC1S5, FR1141�O61 GLS CIM (Clements et al. 2000)
5.04 BNL6.22-UMC51 HighLand�LowLand NLB CIM (Jiang et al. 1999)
5.04 PHM532.23 NAM NLB GWAS (Poland et al. 2011; Li et al. 2018)
5.04 csu36a2bnl7.71 F3 D32�D145 NLB CIM (Welz et al. 1999b)
5.04 BNL5.7I-UMC51 B52�Mo17 F2:3 NLB SIM (Freymark et al. 1993)
5.04 bnl5.40-npi461 F2:3 Lo951�CML202 NLB CIM (Welz et al. 1999a)
5.04 PZA03049.24-PZB01017.1 NAM SLB GWAS (Kump et al. 2011; Li et al. 2018)
5.04/5.05 umc068-bnl5.24 F2:3 Lo951�CML202 NLB CIM (Welz et al. 1999a)

Acronyms: CIM: composite interval mapping; GWAS: genome wide association study; JL: joint-linkage analysis; LA: Linkage analysis; MIM: multiple interval mapping;
SIM: simple interval mapping. Adapted from (Lopez-Zuniga 2016).
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show environment-specific effects (e.g., Bubeck et al. 1993) and genetic
background and epistasis are also common factors affectingQTL effects
(Holland 2007; Kump et al. 2010). This study further confirms the
existence of QTL associated with multiple diseases that could be
exploited in breeding programs. Future studies could fine map and
investigate genes behind theMDRQTL to better understand the mech-
anisms that plants use to resistance against pathogens.
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