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ABSTRACT 

 

 

Raman spectroscopy, together with multivariate statistical analyses, has proven to be a 

near real-time analytical technique capable of phenotyping cells, tissues and organs. This 

dissertation will show exclusively the application of the Raman spectroscopy phenotypic 

profiling method to; (i) microbial toxicity, (ii) ex-vivo organ perfusion, and (iii) subcellular 

location targeting. 

Real-time analytical methods for monitoring living biological systems will enable 

study of the physiological changes associated with growth, genetic manipulations, and adverse 

environmental conditions. Most existing analytical methods (NMR exempt), though highly 

accurate, must be performed off-line and most require destruction of the studied sample.  These 

attributes make these methodologies less desirable to the study of physiological changes of 

cells, tissues, and organs. In this work, Raman spectroscopy has been identified and shown to 

be a good candidate for real-time analysis mainly because it can be performed: (i) in near real-

time, (ii) non-destructively and with minimal sample preparation, (iii) through a glass barrier 

(i.e., can be performed in situ), and (iv) with minimal spectral interference from water.  Here, 

Raman spectroscopy was used in combination with multivariate statistics to analyze the 

differing toxic effects of 4-C chain alcohols on E. coli.  Good correlations were established 

between Raman spectra and off-line analytical techniques used to measure: (i) saturated, 

unsaturated, and cyclopropane fatty acids; (ii) amino acid composition of total protein; and (iii) 

cell membrane fluidity.  Also, Raman “fingerprint” analysis was used to discriminate among 

different phenotypic responses of cells.  In addition, this methodology was applied to analyze 

perfusates of organs maintained by the VasoWave® organ perfusion system.  Raman 

fingerprints can be used to assess organ health, and it is believed this data can be used to inform 

decisions such as whether or not to transplant an organ.  Finally, molecular biology techniques 

were used to design and produce specific protein targets harboring a silver binding domain 

fusion, which upon release migrate to specific subcellular locations. By employing the related 

technique of surface-enhanced Raman scattering (SERS), which produces a highly amplified 

Raman signal in the presence of metallic nanoparticle substrates (e.g., silver nanoparticles), 

different regions of the E. coli cell structure were studied. The target regions studied by the 

technique included: (i) outer cell membrane, (ii) periplasm, and the (iii) cytoplasm. 
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CHAPTER ONE 

INTRODUCTION 
 

MOTIVATION 

 

This work was aimed at applying Raman spectroscopy together with statistical methods 

as an analytical methodology for continuous monitoring and assessment of phenotypic and 

physiological changes in both micro (e.g., cellular and sub-cellular) and macro (e.g., tissues and 

organs) systems in response to environmental stimuli.  This methodology has several immediate 

applications, including understanding (i) the microbial toxicity mechanisms of engineered 

biofuels and chemicals and (ii) the fate of organs as they are perfused ex vivo awaiting transplant. 

 

ANALYSIS OF BIOLOGICAL SAMPLES 

 

Due to their complex nature, biological samples (i.e., macromolecules, cells, tissues, or 

organs) often require much detailed sample preparations such as extraction of individual 

components prior to analysis (1). Different approaches have been employed for biological 

sample analyses depending on the state or form of the samples. For example biological fluids 

(urine, saliva, gastric juice, plasma) have been analyzed for nitrate via high-pressure cadmium 

reduction column (2). Gas chromatography-mass spectrometry has been employed largely for 

metabolite profiling in biological samples (3, 4). However, more than 50% of the metabolites 

that are covered by GC-MS are currently represented as non-identified mass spectral metabolite 

tags (MSTs) (2).  

 The techniques mentioned above though highly efficient, most certainly cannot be 

employed for real-time analysis. Also these techniques are destructive in that the sample 

preparation involves disruption of the cell membrane and for pharmaceutical products produced 
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at high cost, it may be undesirable for use with analytical techniques requiring relatively large 

sample amount. Also each approach focuses on limited extractable content and rarely gives a 

holistic data source for each individualized sample. The ability to non-destructively characterize 

biological phenotypes in real-time will have great implications for advancement in both 

industrial and clinical microbiology (12). 

Motivation for biofuel research 

 

World energy consumption is projected to increase by 53% between 2008 and 2035 according 

to the International Energy Outlook 2011 (IEO) (13). To meet this demand, scientists are seeking 

energy solutions which are both renewable and cost-effective. Biomass is simply organic matter 

mostly derived from dead material that was once living. For example, kernels of corn, mats of 

algae, and stalks of sugar cane are all biomass. Biomass is one such natural resource currently 

being researched due to its abundance and renewable nature (14). Biodiesel and ethanol are 

currently very competitive energy sources representing approximately 90% of the renewable 

liquid biofuels on the market (15). Challenges with these biofuel sources (e.g. ethanol), include 

incompatibility with existing storage and transport infrastructure mainly due to differences in 

energy content and hygroscopicity (16, 17). Unlike ethanol, 1-butanol has a similar energy 

content to gasoline (27 vs. 32 MJ/L) making it a preferred candidate for biofuel yield 

optimization. Current approaches involve the creation of microbial cell factories that are used as 

bio-refineries for the production of advanced biofuels from non-native producers such as E. coli 

and also de-novo synthesis of value-added chemicals [18-20]. Product toxicity to the microbe is 

a major impediment in this regard (18-20), resulting in yields as low as 1% (v/v) of isobutanol 

in E. coli (21). This challenge with low product yields, presents research interests for 

investigating host toxicity mechanisms of microbially derived products. However, the major 
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challenge to understanding solvent toxicity effect on an organism is the ability to characterize 

the organisms’ chemical composition and inherent changes upon solvent exposure opening doors 

for research in this field. 

Argument for organ perfusion 

 

Like microbes, mammalian cells (organs and tissue) have an even more complex nature 

where an organism’s phenotype is a complex function involving its genotype and constantly 

changing environmental conditions.  To facilitate better diagnosis and care of patients, methods 

are needed for quick and easy detection and possible arrest of degenerate tissue (22). Real-time 

diagnosis is essential in critical surgical procedures such as organ transplants. Over a 9-year 

course (315/yr in 1990 to 2,000/yr in 1999) patients on the liver donor waiting list who have died 

prior to receiving a donor liver has increased about 6-fold (23). To offset the current mortality 

rate, methods need to be developed to enable a more objective review of donor organs, which 

will otherwise be discarded based on subjective review or existing protocols such as a donor’s 

age. The average cost of a single liver transplant is about $60,000 (23) and it is important to 

detect any post-surgical issues, such as graft failures, and avert them (24, 25).  

 

TRADITIONAL METHODS OF ANALYSES  

 

Biological samples are traditionally analyzed by methods such as gas-chromatography 

mass-spectroscopy (GC-MS), liquid-chromatography mass-spectroscopy (LC-MS), nuclear 

magnetic resonance (NMR) and transmission electron microscopy (TEM). Both methods, 

however, involve laborious sample preparation and analysis and cannot be performed in real-

time. A faster analytical approach, the Fourier transform infrared spectroscopy (FTIR) has the 

major disadvantage for analyzing biological samples, which is signal interference from water, 

which constitutes the bulk of biological mass. Analytical methods are thus needed to address 
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these challenges with sample preparation time, ease of analysis, and ability for data acquisition 

in near real-time analysis.  

 

RAMAN SPECTROSCOPY 

 

Discovered in 1928 by C.V. Raman, the technique of Raman spectroscopy was largely 

unexplored until the past decade when there was major improvements to instrumentation, with 

major feats such as development of the coupled-charge device (CCD) (26). The major initial 

restrictions to the use of Raman spectroscopy included (i) high cost, (ii) interference from 

background fluorescence, (iii) low sensitivity, and low (iv) reproducibility, making analysis by 

infra-red (IR) spectroscopy a preferred method (27, 28) . Together, IR and Raman spectroscopy 

have been employed as powerful tools for analysis of biological samples acting as 

complementary techniques. Raman spectroscopy is an optical technique that utilizes molecular-

specific, inelastic scattering of light photons to interrogate biological tissues (29, 30) and the 

signal is derived from molecular backbone structures and bond symmetry. The acquired Raman 

signal provides information about (i) composition (characteristic peaks), (ii) stress/strain (shift 

in frequency of peak), (iii) symmetry/orientation (polarization direction), (iv) amount (intensity 

of peak) and (v) quality (peak width). Other advantages include; (i) minimal or no sample 

preparation, (ii) sampling directly through glass containers, (iii) non-destructive analysis, which 

allows for further analyses with the same sample, and (iv) minimal water interference. By virtue 

of their unique Raman signal, biological molecules such as nucleic acids, proteins, lipids, and 

carbohydrates can help generate Raman spectral fingerprints of whole cells (31, 32). 
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CHALLENGES WITH RAMAN SPECTROSCOPY 

 

Surface-enhanced Raman scattering (SERS) is a related technique to Raman 

spectroscopy and was developed to address problems of low signal intensities with the latter. 

The SERS principle is based on the fact that particles in close proximity to a roughened metal 

substrate produce enhanced Raman signals by several orders (104 – 1016) of magnitude. The 

development of SERS, though highly useful, has been found to be highly irreproducible due to 

the random dispersion of the metal nanoparticles used in the technique. The results, a highly 

convoluted SERS spectra composed of contributions from bio-chemicals of diverse intracellular 

environments simultaneously (33). To harness the high intensities with SERS, there is the need 

to develop methods that allow control of the localization process of probes used in the scattering 

process. A new methodology, the peptide-guided surface enhanced scattering (pgSERS), has 

been employed in E. coli cells, where nanoparticles covalently linked to synthetic peptides 

functioned as probes to target the outer membrane (33). The revolutionary power with pgSERS 

was in its ability to deconvolute complex Raman spectra by the action of controlled localization 

of the SERS probes. To further utilize this technique of controlled dispersion of nanoparticles, 

molecular biology techniques could allow for in vivo assembly of the probes, making the process 

more cost-effective to synthetic peptide use. 

 

HYPOTHESES 

The hypotheses of this research in regards to Raman spectroscopy as a real-time 

analytical method are that it can (i) detect phenotype changes of microbes upon butanol exposure, 

(ii) differentiate the response mechanisms of microbes upon exposure to different alcohols with 

the same carbon number (isomers), (iii) be used in conjunction with pgSERS probes to further 
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study the structure of different cellular locations in bacteria, and (iv) establish viability indicators 

from perfusion fluids of porcine organs (liver and heart).   

 

DISSERTATION SUMMARY 

 

The first part of this dissertation (Chapters two and three) focus on phenotype changes 

of microbes when exposed to different four-carbon alcohols. Chapter two, which deals with 

exposure to 1-butanol, makes the argument for the use of Raman spectroscopy for real-time 

analysis by analyzing the same biological samples using various standardized techniques, such 

as GC-MS, fluorescence anisotropy, total protein assay and Raman spectroscopy. Following the 

comparative sample analyses, correlations were established for each standardized method in 

relation to Raman data, with good R values (> 0.75). Similar trends were observed in most cases 

for comparisons of Raman data with (i) GC-MS data, (ii) fluorescence anisotropy (FA) data, and 

(iiii) protein assay data. In the follow up experiment in Chapter three, the Raman experiment 

was repeated with four other 4-C alcohols; (i) 2-butanol, (ii) isobutanol, (iii) tert-butanol, and 

(iv) 1,4-butanediol. Having established good correlations previously with 1-butanol toxicity 

study, and identified ideal peak candidates for individual components, phenotype changes were 

once more investigated for (i) branching in alcohols and (ii) chain length in alcohols, towards 

their effects on the phenotypic response of microbes following exposure to the alcohols. 

The second part, Chapter four, focuses on real-time analysis of perfused organs using Raman 

spectroscopy. Different porcine organs (liver, kidney, heart) were perfused ex vivo on the newly 

developed VasoWave® system under different experimental conditions. The experimental 

analysis were performed on six individual livers perfused under three duplicate conditions of 

time and temperature as follows (i) 110-70 mmHg & 25 C, (ii) 70-30 mmHg & 25 C, and (iii) 

110-70 mmHg & 3 C. 
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Finally, the third part, Chapter five, is devoted to challenges of low sensitivity and convoluted 

Raman signatures in biological samples. Three different proteins selected exclusively for their 

target relocation upon release were cloned into E. coli DH5- cells under an inducible promoter. 

The protein sequence was engineered to attach a silver-binding protein (AgBP) tag at the C-

terminus capable of binding to silver nanoparticles, which is the basis for SERS. FadL protein 

(outer membrane), malE protein (periplasm), and aroP protein (cytoplasm) were produced upon 

the induction from an arabinose inducible promoter and targeted to their corresponding 

subcellular location, allowing for targeted SERS analysis within microbial cells. 
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Near real-time analysis of the phenotypic 

responses of Escherichia coli to 1-butanol 

exposure using Raman spectroscopy 

 
ABSTRACT 

 

Raman spectroscopy was used to study the time-course phenotypic responses of 

Escherichia coli (DH5-α) to 1-butanol exposure (1.2% v/v).  Raman spectroscopy is of interest 

for bacterial phenotyping because it can be performed: (i) in near real-time, (ii) with minimal 

sample preparation (label-free), and (iii) with minimal spectral interference from water. 

Traditional off-line analytical methodologies were applied to both 1-butanol treated and control 

cells to draw correlations with Raman data.  Here, distinct sets of Raman bands are presented 

that characterize phenotypic traits of E. coli with maximized correlation to off-line 

measurements. In addition, the observed time-course phenotypic responses of E. coli to 1.2% 

v/v 1-butanol exposure included: (i) decreased saturated fatty acids levels, (ii) retention of 

unsaturated fatty acids and low levels of cyclopropane fatty acids, (iii) increased membrane 

fluidity following the initial response of increased rigidity, and (iv) no changes in total protein 

content or protein-derived amino acid composition. For most phenotypic traits, correlation 

coefficients between Raman spectroscopy and traditional off-line analytical approaches 

exceeded 0.75, and major trends were captured.  Results suggest that near real-time Raman 

spectroscopy is suitable for approximating metabolic and physiological phenotyping of bacterial 

cells subjected to toxic environmental conditions.  
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INTRODUCTION  

 

The role of product toxicity in biofuel production by microbes 

 

 The quest for biofuels due to the scarcity and environmental concerns of non-renewable 

sources is well-established (1-5). In the US, production of 36 billion gallons of renewable fuel 

will be required by 2022, with about 44% to be obtained from cellulosic ethanol (6).  Currently, 

approximately 90% of the renewable liquid biofuels market is represented by biodiesel and 

ethanol (5). However, 1-butanol has long been an alternative biofuel of interest.  Unlike ethanol, 

1-butanol has a similar energy content to gasoline (27 vs. 32 MJ/L), and its hygroscopicity allows 

for storage and transport with existing infrastructure (7, 8).  In addition, advances in synthetic 

biology and de novo metabolic pathway engineering are enabling new routes to 1-butanol and 

other potential liquid biofuels, such as isobutanol, 2-methyl-1-butanol, alkanes, and fatty 

alcohols (2, 4, 5, 9-11). The broader approach involves the creation of microbial cell factories 

that are used as bio-refineries to produce advanced biofuels and value-added chemicals from 

renewable substrates (2, 12-14).  Major obstacles to this approach, however, include product 

toxicity to the host microbe, ultimately resulting in low yields (3, 13, 15). For example, growth 

of Escherichia coli is arrested at concentrations as low as 1% (v/v) of isobutanol (16). In order 

to become a viable source for biofuels and chemicals, the host toxicity mechanisms of microbial 

products must be understood so that rational metabolic engineering strategies can be derived to 

confer adequate product tolerance and ultimately improve yield. 

Microbial toxicity mechanisms of alcohols 

 

 Microbes turn on several genetic programs in response to changing environmental 

conditions (e.g., alcohol stress) in order to maintain homeostasis and optimize the use of 

resources (17-20). The cell membrane plays a significant role in the ability of the cell to sense 
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these changes as well as in the adaptation to stress by counteracting alcohol toxicity (15, 21). 

Both short (<4 C) and long (>4 C) chain alcohols are known to cause membrane disruption by 

mechanisms of desiccation (short chain alcohols) or intercalation (long chain alcohols) of 

lipophilic side chains into the membrane lipid bilayer (15, 16, 22). In general, increased 

membrane fluidity has been observed as a result of 1-butanol exposure for both E. coli and the 

natural 1-butanol-producer Clostridium acetobutylicum (23-26). This fluidizing effect has been 

proposed to result from several host response mechanisms including: (i) altered ratio of saturated 

to unsaturated fatty acids in the cell membrane (27), (ii) denatured protein structure and changed 

cell surface protein composition (26, 28), (iii) increased use of efflux pumps in several Gram-

negative bacteria (17), (iv) disrupted protein-lipid interactions (25), (v) up-regulated synthesis 

of other protective metabolites and macromolecules (26, 28), and (vi) decreased central carbon 

metabolic activity by inhibition of glucose and nutrient transport (16, 21, 26, 28, 29). The general 

consensus is that long chain alcohols have the ability to intercalate further into the membrane 

lipid bilayer and disrupt hydrogen bonding between hydrophobic tails, causing relatively more 

toxicity than short chain alcohols (15, 23, 27, 30). However, this proposed mechanism does not 

always hold true for 1-butanol, for which toxicity appears to be strain dependent (31).  

Major factors found to influence alcohol toxicity include: (i) solvent hydrophobicity, (ii) 

octanol-water partition coefficient (KOW), (iii) length of alkyl chain, and (iv) degree of saturation 

(15). Organic solvents with log KOW values between 1.5 and 5.0 have been found to be extremely 

toxic to microbes, as they preferentially partition the cytoplasmic membrane by disorganizing 

structure and function (e.g., loss of ions, metabolites, lipids, protein, etc.), which leads invariably 

to cell lysis and death (27). The effect of alcohol on microbial cell membrane fluidity has also 

been studied widely (23, 30, 32, 33). It has been observed that E. coli responds to ethanol 
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exposure with an initial alteration of fatty acid composition as a short-term response allowing 

for de novo biosynthesis of membrane components as a permanent and long-term response (23, 

27, 34, 35). A net increase in total protein from cells exposed to growth inhibitory levels of 

ethanol has also been observed (34). Commonly, biological studies of the phenotypic response 

to alcohol toxicity have been carried out using genetic and biochemical approaches that make 

use of standardized procedures such as thin-layer chromatography (TLC) (36) and gas 

chromatography-mass spectrometry (GC-MS) (36, 37).  By nature, these methods require lipid 

extraction (cell destruction) and extensive sample preparation.  While these methods have proven 

reliable, the time required for analysis is on the order of hours to days.  Real-time methods of 

analysis are needed to further understand the dynamics of the microbial phenotypic responses to 

alcohol toxicity.  With this information, it is likely that metabolic engineering and process control 

strategies can be developed to confer product tolerance and optimize cell productivity. 

Monitoring dynamic phenotypes with Raman spectroscopy 

 

Raman spectroscopy is a powerful analytical technique that can be applied to a wide 

variety of solid, liquid, and gas samples, including biological tissues (38-41).  The sample is 

excited by a monochromatic laser, and the resulting spectrum shows the intensity of Raman 

scattered radiation (arising from chemical bond rotations, stretching, and bending) as a function 

of frequency (42). The Raman spectrum of a biological sample is usually complex and contains 

bands (i.e., peaks) that result from the thousands (or more) of molecules comprising the sample, 

each having its own specific Raman signature. Biological sample analysis by Raman 

spectroscopy can be performed on dried or liquid samples.  Raman scanning of dried samples 

currently returns more reliable data than scanning liquid samples and has the significant 

advantages of: (i) sample preparation is minimal (involves drying microliters of sample on a 
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metal surface) and label-free, (ii) Raman data is returned in near real-time, and (iii) there is 

minimal spectral interference from water.  Liquid phase scanning of bacterial cultures remains a 

topic of research and offers the additional advantages of: (iv) scanning directly through glass 

containers (enabling near real-time in situ analysis of living cultures) and (v) being non-

destructive in nature, enabling continued single cell monitoring. By virtue of their unique Raman 

signals, biological molecules such as nucleic acids, proteins, lipids, and carbohydrates can also 

be used to generate fingerprints of whole cells (43, 44).   

One of the challenges working with Raman data is the assignment of chemical species to 

spectral bands. Due to the complex nature of biological samples, most Raman bands result from 

the overlapping bands of several individual molecules.  Researchers have often relied on 

literature sources for Raman band identification; however, (i) the interpretation of spectral data 

differs significantly among the various sources and (ii) band assignment remains ambiguous, as 

a single Raman band can have several assignments (42, 45, 46). Recently, a Raman database was 

published that reports the band assignments for several individual biological molecules (42). 

Though useful, expert user input is still required for accurate band assignments. For example, 

different band assignments (980, 1443, 1447, 1449, 1655 – 1680, 1656, 2883, 2900, 2915, and 

2940 cm-1) were reported for both proteins and lipids. De-convolution of a set of Raman spectra 

to obtain chemical composition information is not trivial and represents a unique challenge.  

With advancement in this area, Raman spectroscopy will ultimately be useful as a means of 

obtaining chemical composition data for biological samples in near real-time without disrupting 

the system. 
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Studying the response of E. coli to 1-butanol exposure using Raman spectroscopy 

 

 The practical use of Raman spectroscopy is demonstrated in this research as an analytical 

method for studying the phenotypic responses of E. coli cell to growth inhibitory 1-butanol 

exposure. Traditional methods of analysis including: (i) GC coupled with flame ionization 

detection (FID) and MS, (ii) ultra-performance liquid chromatography (UPLC), and (iii) 

fluorescence anisotropy were used to elucidate the 1-butanol toxicity responses of E. coli. By 

correlating these measurements with specific Raman bands, a methodology was developed that 

can monitor changing phenotypes and cell chemical composition in near real-time. Also, Raman 

bands were identified that characterize the fluidizing effect of 1-butanol on the E. coli cell 

membrane, thus connecting molecular changes to measurable physiological phenotypes. The use 

of Raman spectroscopy to monitor culture phenotypes is advantageous as it is relatively fast and 

non-invasive, unlike traditional analysis methods, which are both resource- and time-intensive.  

The methods described in this research have potentially wide-reaching applications for industrial 

and clinical microbiology; however, the Raman band assignments reported in this research 

should be considered valid for E. coli only until larger-scale studies are completed.  

 

MATERIALS AND METHODS 

 

Bacteria strain 

 

E. coli DH5-α cells were obtained from Invitrogen Life Technologies (Grand Island, NY) 

and used in all experiments. Frozen cells were stored as glycerol stocks at -80°C and were thawed 

and plated onto solid agar plates to select a single colony for experiments in liquid culture media. 

Chemicals and reagents 

 

All chemicals and reagents (1-butanol, methanol, chloroform, ethanol, 1 N methanolic 

HCl, borate buffer, yeast extract, tryptone, sodium chloride, cis-9, cis-12-octadecadienoic acid 
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(C18:2)) were purchased from Sigma-Aldrich (St. Louis, MO) or included as part of a kit. The 

cis-9, cis-12-octadecadienoic acid (C18:2) was used as an internal standard to account for losses 

during GC analysis of fatty acids as fatty acid methyl esters (FAMEs).  It was chosen because E. 

coli does not produce it natively.  All solvents used for extractions were LC or GC grade. 

Culture media, growth conditions, and harvesting 

 

Overnight cultures were prepared by inoculating 15 mL liquid Luria-Burtani (LB) growth 

media with E. coli cells from a solid agar plate.  Cultures were placed in an incubator with a 

rotary shaker set to 210 rpm and 37°C. For solid LB media, agar was used at 15g/L. Cell growth 

in liquid media was monitored by optical density measured at 600 nm (OD600). An aliquot sample 

was then used to prepare a subculture by diluting 10 mL of cell culture with 1 L fresh LB media 

in a sterilized culture flask. The culture was then grown to the start of the exponential growth 

phase (OD600 of 0.4 – 0.5).  At this point, the culture was split into two equal portions (~500 mL 

each), with one serving as the negative control. 1-Butanol was added to the experimental culture 

to a concentration of 1.2% v/v, and both cultures were incubated at 210 rpm and 37°C for 1 h 

prior to sampling. Sample volumes of 50 mL (for FAME analysis), 5 mL (for membrane leakage 

analysis), 1 mL (for cell viability analysis), and 1 mL (for analysis by Raman spectroscopy) were 

taken every half-hour from both cultures until a constant OD600 reading was observed. Cells were 

harvested following centrifugation at 10,000 rpm at 4°C for 5 min.  Cells were washed with ice-

cold purified water (except those for membrane leakage analysis), and this procedure was 

repeated. Cells for Raman analysis were re-suspended in 1 mL of Type I purified water for 

analysis. Cells for FAME and metabolite analyses were frozen in liquid nitrogen and lyophilized.  
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Raman spectroscopy 

 

To prepare samples for Raman analysis, 2 µL of washed cells were dried on an aluminum 

surface at room temperature.  Dried cells were analyzed using a Bruker Senterra dispersive 

Raman spectrometer equipped with a confocal microscope and objective lens of 100x 

magnification (Bruker Optics, Billerica, MA). Measurements were carried out using laser 

excitation of 532 nm (20 mW) for 25 seconds with spectral resolution of 9-15 cm-1. A similar 

method has been published (47). A minimum of 50 individual spectra was acquired per sample 

prior to data analysis. Software enabling data collection as well as data normalization and 

processing are discussed in the next section. 

Raman data processing 

 

Raman data was processed and analyzed using two different software platforms: (i) 

OPUS (Bruker Optics, Billerica, MA) and (ii) MATLAB (R2012A) (MathWorks, Natick, MA) 

using a custom Raman Data Analysis (RDA) Toolbox (manuscript under-review) containing 

functions for comparative peak analysis and multivariate statistics.  The OPUS platform allowed 

for interaction with the Raman instrument and provided initial baseline correction of spectra. 

Raman spectra of biological samples are commonly corrupted by the influence of (i) background 

fluorescence, (ii) charge-coupled device background noise, (iii) Gaussian noise, and (iv) cosmic 

spikes (40). During acquisition, spectra with cosmic spikes were identified through manual 

inspection and discarded.  The following spectra analysis was performed in MATLAB.  The 

RDA Toolbox provided a more convenient graphical user interface, but it was not essential for 

this analysis.  For consistency, data from all spectra (i.e., intensities at all wavenumbers) were 

normalized using vector normalization over the entire spectral range (300 cm-1 – 3600 cm-1). In 

vector normalization, the signal intensity at each wavenumber (i.e., band) was divided by the 
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norm of the spectrum intensities.  This allowed intensities from several spectra to be compared 

directly.  Thus, only the vector normalized intensities of specified bands were used for 

comparisons throughout.  

Fatty acid analysis by GC-MS/FID 

 

  Lipid extractions were performed on 1 mg of lyophilized cells by using biphasic 

chloroform/methanol/water extractions and 10 µg of C18:2 as an internal standard, according to 

standard protocol (48).  Fatty acid methyl esters were prepared by trans esterification in the 

presence of methanolic HCl and analyzed on an Agilent 7890A series GC equipped with an FID 

(Agilent Technologies, Santa Clara, CA).  The FAME separation was achieved on an Agilent 

30-m DB-23 column (0.25 mm x 0.25 µm) and the identity of the individual fatty acids was 

confirmed by analyzing spectral information of FAME in selected samples on the same GC 

instrument coupled to an Agilent 5975C series MS (Agilent Technologies) (48). 

Total protein content, protein hydrolysis and amino acid analysis by UPLC 

 

The total protein content of 1-butanol exposed and control cultures was determined by 

Coomassie PlusTM (Bradford) assay (Thermo Fisher Scientific, Rockford, IL) according to the 

manufacturer’s protocol.  Proteins and free metabolites are contained in the aqueous phase and 

insoluble pellet remaining after the removal and re-extraction of lipids used in FAME analysis. 

It was found that free amino acids are present at very low levels in E. coli cells and do not 

interfere with the analysis of protein-derived amino acids, so there was no need to separate 

proteins by acidic precipitation from the rest of the polar metabolites present in the aqueous 

phase. Because some proteins are not soluble in water and are present in the insoluble pellet, 

total protein hydrolysis was performed in the same tube as the extraction. The solvents (water 

and methanol) were dried and proteins hydrolyzed under vacuum at 110°C for at least 16 h in a 
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custom-made Teflon hydrolysis chamber containing 4 mL of 6N HCl. The resulting protein-

derived amino acids were dissolved in 1 mL of water and 1 µL of sample was derivatized in a 

50 µL total volume using the AccQ•Tag Ultra Amino Acid kit according to the manufacturer’s 

recommendations (Waters Corporation, Milford, MA). The derivatized amino acid samples (0.5 

µL) were injected on an H-class Acquity UPLC and detected by fluorescence as described for 

analysis of protein hydrolysates (Waters Corporation, Milford, MA). 

Membrane fluidity 

 

  Changes in membrane fluidity induced by 1-butanol were monitored by analyzing 

fluorescence anisotropy from E. coli cells labeled with the membrane probe 1,3-diphenyl-1,3,5-

hexatriene (DPH), as described previously (49, 50). Stock 8 mM DPH solution in tetrahydrofuran 

was diluted 1000-fold in vigorously stirred 50 mM NaCl (50). The dispersion was mixed 1:1 

with E. coli cells, washed three times with chilled phosphate buffered saline (pH 7.4), and re-

suspended to an OD600 of 4.0. Fluorescence anisotropy was measured at room temperature using 

a SpectraMax M5 plate reader (Molecular Devices, Sunnyvale, CA) using excitation and 

emission wavelengths of 360 and 428 nm, respectively. Background fluorescence from DPH-

free E. coli cells was measured and subtracted from the DPH-labeled samples.  The fluorescence 

anisotropy (r) of a fluorescent probe is inversely proportional to cell membrane fluidity, as 

defined in Eq. 1. 

𝑟 =
𝐼𝑣𝑣 − 𝐼𝑣ℎ

𝐼𝑣𝑣 + 2𝐼𝑣ℎ
                         (1) 

Here, Ivv and Ivh represent fluorescence intensities measured through a polarizer oriented parallel 

and perpendicular, respectively, to the plane of polarization of the excitation beam (50). 

Fluorescence anisotropy results for 1-butanol treated cultures are presented as a percent change 

from control (i.e., un-treated) cultures (49). 



 

 
23 

RESULTS 

 

Raman spectroscopy of growing and growth inhibited cells 

 

The baseline corrected and vector normalized Raman spectra for E. coli cells at the start 

of 1.2% v/v 1-butanol treatment (time = 0 min) and at the end of the experiment (time = 180 

min) for both the 1-butanol treated and control (untreated) cells are shown in Fig. 1. The three 

spectra were superimposed to show potential differences in the biologically relevant spectral 

region (600-1800 cm-1) (Fig. 1a) and the CH region (2800-3100 cm-1) (Fig. 1b) (40). No 

significant changes were noted in the CH region (Fig. 1b). However, noticeable signal intensities 

were observed (without the use of statistical analyses) in Fig. 1a for bands assigned to: (i) 

phosphodiester bonds in DNA  (~788 cm-1) and in RNA (~813 cm-1) (indicative of nucleic acids) 

(42, 46); (ii) symmetric PO2
- stretching of DNA (~1070 – 1090 cm-1) (indicative of nucleic 

acids); (iii) C-C chain stretch (~1060 - 1075 cm-1) (indicative of fatty acids) (45, 46); (iv) amide 

III bands, =CH bend, and nucleic acid bases (1220 – 1284 cm-1) (indicative of proteins, lipids, 

and nucleic acids) (42, 51); (v) C-H deformation and guanine (~1320 cm-1) (indicative of lipids 

and nucleic acids) (42, 45, 46); (vi) C-H vibrations (~1449 cm-1) (indicative of proteins, lipids, 

and nucleic acids) (42, 46); and (vii) C=C bands (~1607 cm-1) (indicative of aromatics and 

unsaturated lipids) (42, 46).  
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Figure 1. Raman spectra of (a) the biological region (600-1800 cm-1) and (b) the CH region 

(2800-3100 cm-1) at time equal to 0 min (before the application of 1-butanol) (solid heavy red 

line), time equal to 180 min for the control cells (solid thin blue line), and time equal to 180 min 

after treatment for the 1-butanol treated cells (dashed black line). 

 

Significant changes in Raman spectra were observed between the 1-butanol treated and 

control cells with both time and treatment.  Thus, Raman spectroscopy results suggest that 

cellular chemical composition and physiology changed significantly in response to both factors. 

The standard deviation of the averaged spectra (not shown in Fig. 1) was found to be very close 

to zero, confirming high reproducibility of scans. 
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Figure 2. (a) Culture growth (OD600) and (b) Raman (I1449) measure of broader metabolic 

activity as functions of time for 1-butanol treated cells (blue squares) and control cells (red 

circles).  1-Butanol (1.2% v/v) was added to the treated cells at 0 min.  Error bars represent 1 

standard deviation among at least 3 biological replicates. 

 

The time-course OD600 measurements for both 1-butanol treated and control cultures are 

shown in Fig. 2a. Upon exposure to 1.2% v/v 1-butanol, E. coli cells showed arrested cell growth 

over time, consistent with expected toxicity responses.  The Raman signal intensity at 1449 cm-

1 (I1449) over the time-course is shown in Fig. 2b. The Raman band at 1449 cm-1 corresponds to 

C-H vibrations (42), which are abundant in all biomass components (e.g., lipids, proteins, nucleic 

acids, carbohydrates, etc.) of bacterial cells.  The Raman signal intensity at 1449 cm-1 can provide 

insight into the overall metabolic activity of the cells.   
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As seen in Fig. 2b, the Raman signal intensity at 1449 cm-1 increased with 1-butanol exposure.  

This suggests the cells may have up-regulated several metabolic programs (i.e., a toxicity 

response) with 1-butanol treatment.  Because Raman spectra were normalized, an increase in 

I1449 suggests that the number of molecules exhibiting C-H vibration signals (e.g., lipids, 

proteins, etc.) has increased per cell.  This is also consistent with the increased nucleotide 

abundances (per cell) noted at 788 cm-1 and 813 cm-1.  Thus, with 1-butanol exposure, it is likely 

that metabolic activity shifts from growth-related functions to toxicity response programs for 

survival.   The following analyses are aimed at identifying the changes in cell composition and 

phenotype brought on by these metabolic programs.  

The Raman signal intensities for both 1-butanol treated and control cells were 

investigated for potential candidate bands that could explain the observed physiological changes.  

The current methodology for determining chemical composition of cells includes several off-

line analytical measurements.  These often involve long sample preparations, and analyses 

cannot be performed in real-time. In order to establish a new near real-time analysis protocol 

using Raman spectroscopy, it was necessary to correlate Raman results with the existing well-

established methodologies. In this approach, correlations were determined by calculating the 

correlation coefficient (R) between time-course Raman signal intensities and off-line 

experimental measurements.  Often, multiple Raman band assignments exist in the literature for 

a single phenotypic trait (e.g., unsaturated fatty acids content).  The goal of this research was to 

determine the Raman band assignment(s) that best correlate with experimental measurements. 

Correlation of Raman spectroscopy and GC-FID for fatty acids analysis 

 

Time-course Raman signal intensities (at assigned bands taken from the literature (42, 

45, 46, 52-54)) were correlated with the corresponding changes in membrane-derived fatty acid 



 

 
27 

levels and composition, determined by GC-FID.  Correlation coefficients (R values) between 

these two methods are presented in Supplementary Table 1. Several, but not all, of the previously 

assigned Raman bands from the literature showed correlation with the actual changes in the 

composition of different fatty acid types.  While GC-FID provides quantification of absolute 

levels of the individual fatty acids, Raman enabled the identification of three different classes of 

fatty acids that have great relevance to changes in membrane physical properties: (i) saturated, 

(ii) unsaturated, and (iii) cyclopropane fatty acids. From the results in Supplementary Table 1, 

Raman bands for saturated fatty acids (I2870) (i.e., the Raman signal intensity at 2870 cm-1), 

unsaturated fatty acids (I1263), and cyclopropane fatty acids (I1554) showed high correlations with 

results obtained by GC-FID.   

The correlation coefficients between Raman spectroscopy and GC-FID data were 0.78, 0.76, and 

0.79, respectively.  Time-course (over 180 minutes) Raman and FAME analysis data were 

plotted for both 1-butanol treated and control cells, and results are shown in Fig. 3. In general, 

the trends were conserved in all three cases; however, it was obvious that GC-FID analyses 

produced data with less experimental error and better-defined trends over the time-course.  

Relative to the control, the 1-butanol treated cells (i) produced fewer saturated fatty acids (Fig 

3a), (ii) conserved the presence of unsaturated fatty acids (Fig. 3b), and (iii) largely resisted the 

formation of cyclopropane fatty acids over the time-course (Fig. 3c).  On the other hand, the 

untreated control cells reduced the amount of unsaturated fatty acids by about 75% over the time-

course in favor of saturated fatty acids (~20% increase) and cyclopropane fatty acids (~250% 

increase). In summary, the dynamics of fatty acid composition were resolved well by GC-FID 

and were approximated with correlation coefficient levels greater than 0.75 using Raman 
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spectroscopy. While some accuracy is sacrificed with Raman measurements, results can be 

obtained in near real-time in a non-disruptive manner.   

 

Figure 3. (a) Saturated fatty acids measured by GC-FID, (b) unsaturated fatty acids measured 

by GC-FID, (c) cyclopropane fatty acids measured by GC-FID, (d) saturated fatty acids 

measured by Raman (I2870), (e) unsaturated fatty acids measured by Raman (I1263), (f) 

cyclopropane fatty acids measured by Raman (I1554) as functions of time for 1-butanol treated 

cells (blue squares) and control cells (red circles). 1-Butanol (1.2% v/v) was added to the treated 

cells at 0 min.  Error bars represent 1 standard deviation among at least 3 biological replicates. 

Correlation of Raman spectroscopy and UPLC for amino acids analysis 

 

 Total amino acid content and composition did not change in the control and 1-butanol 

treated cultures over the time-course when measured by UPLC.  The steady-state levels of total 

amino acids are shown in Table 1. However, different amounts of each amino acid were 

observed, and these relative abundances remained constant in all samples. The same was 

observed when total protein was measured (Fig. 4). Raman band intensities (using previously 
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published bands for individual amino acids) were correlated with experimental UPLC 

measurements.  In the literature (55, 56), between 9 and 29 distinct Raman bands (with medium 

to strong intensities) were cited for each amino acid (given in Supplementary Table 2).  A unique 

set of Raman bands (one band for each amino acid) was identified computationally to fully 

characterize the amino acid composition of E. coli to be consistent with UPLC experimental 

results and published literature values (Table 1).  

 

Table 1. Amino acid composition determined by Raman spectroscopy with an optimized set of 

bands and UPLC.  The published amino acids composition of E. coli protein is also given. 

Amino 

Acids 

Optimum 

Raman 

Bands (cm-1) 

Amino Acid 

Composition 

Determined 

by Raman 

Amino Acid 

Composition 

Determined 

by UPLC 

Published 

Amino Acid 

Composition 

Ala 1308 0.111 0.111 0.0960 

Arg 1199 0.0246 0.0339 0.0553 

Asp/Asn 1695 0.0641 0.0898 0.0901 

Cys 678 0.0124 0.0164* 0.0164 

Glu/Gln 1319 0.108 0.0916 0.0984 

Gly 1332 0.113 0.120 0.115 

His 731 0.0216 0.00890 0.0177 

Ile 1309 0.111 0.0876 0.0543 

Leu 1243 0.0967 0.114 0.0842 

Lys 1072 0.0344 0.0524 0.0641 

Met 765 0.0114 0.00467 0.0287 

Phe 1214 0.0578 0.0459 0.0346 

Pro 843 0.00727 0.0102 0.0413 

Ser 1010 0.0437 0.0442 0.0403 

Thr 1116 0.0338 0.0626 0.0474 

Trp 759 0.0141 0.0106* 0.0106 

Tyr 798 0.0170 0.00390 0.0258 

Val 1454 0.117 0.0922 0.0791 

Sum - 1 1 1 

     

* Values for Cys and Trp could not be resolved by the UPLC method.  The published literature 

values were used for these cases. 

** Amino acid composition is defined as the fraction of each amino acid in E. coli total protein. 
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Given the large number of possible Raman bands per amino acid, 1.4x1021 possible band 

combinations exist.  A set leading to good correlation with UPLC-derived data (R = 0.93) was 

identified after examining 5x109 possibilities in a stochastic simulation.  The (i) optimum set of 

Raman bands, (ii) amino acid composition determined by Raman, (iii) amino acid composition 

determined by UPLC, and (iv) published amino acid composition (55) are given in Table 1.  

Good correlation was observed between Raman spectroscopy, UPLC, and published data 

suggesting that Raman spectroscopy may be used as a near real-time analytical method for 

determining total amino acid compositions of E. coli cells.  Among the Raman band assignments 

listed in Table 1, the assignments for Ala (1308 cm-1) and Ile (1309 cm-1) overlap and result in 

the same amino acid composition values when determined by Raman spectroscopy.  In addition, 

Trp (759 cm-1) and Met (765 cm-1) are also close to having overlapping bands.  Thus, additional 

sets of amino acids band assignment solutions have been included in Supplementary Tables 3-5.  

Each of these band assignment solutions represents a different alternative that can be employed 

if specific amino acids are of critical interest.  However, the band assignment set in Table 1 

returned the overall optimum solution.      

Correlation of Raman spectroscopy and fluorescence anisotropy for cell membrane fluidity 

analysis 

Membrane fluidity has long been used to assess the effect(s) of solvents on the microbial 

cell membranes (15, 21, 23, 27), and membrane fluidity has been observed to increase in E. coli 

cells upon 1-butanol exposure (23). Previous research has also closely tied cell membrane 

fluidity with changes in fluorescence anisotropy (21, 23, 54).  Experimental fluorescence 

anisotropy results obtained in this research are in agreement with this observation. However, an 

initial decrease in fluorescence anisotropy was observed before a short “lag” phase followed by 
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an increase long-term response. These results are shown in Fig. 4a. The molecular mechanisms 

behind this initial decrease and lag are unknown and remain a topic for further investigation. To 

assess membrane fluidity using Raman spectroscopy, three signal intensity ratios (I2870/I2954, 

I2850/I2880, and I2852/I2924) were analyzed based on previously published results (53, 54, 57, 58).  

The identification of Raman peaks corresponding to symmetric and asymmetric stretching of 

cell membranes was used to derive these ratios.  In all three cases examined in this research, the 

signature decrease, lag, and the eventual increase in signal were observed. In addition, the 

I2852/I2924 Raman signal intensity ratio was found to best correlate with fluorescence anisotropy 

results.  The percent changes in fluorescence anisotropy between 1-butanol treated and control 

cells over the time-course are shown in Fig. 4a, and the percent change between I2852/2924 between 

1-butanol treated and control cells is shown in Fig. 4c.  While a perfect correlation was not 

observed, a strong resemblance in general trend was observed between changes in Raman peak 

intensities obtained in near real-time and off-line fluorescence anisotropy measurements.  To 

determine if total cell protein was involved in the observed changes in membrane fluidity, the 

total cell protein content measured; no change was detected (Fig. 4b).  These results 

corresponded with the Raman I2954, as cited in the literature (54).   
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Figure 4. (a) Change in fluorescence anisotropy (%) for 1-butanol treated cells relative to the 

control cells, (b) experimentally measured total protein content, (c) membrane fluidity 

(I2852/2924) measured by Raman, and (d) total protein content measured by Raman (I2954) as 

functions of time for 1-butanol treated cells (blue circles), control cells (red circles), and percent 

change between 1-butanol treated and control cells (blue diamonds).  1-Butanol (1.2% v/v) was 

added to the treated cells at 0 min.  Error bars represent 1 standard deviation among at least 3 

biological replicates. 

 

DISCUSSION 

 

Use of Raman spectroscopy to study cell physiology in near real-time 

 

 In this research, the applicability of Raman spectroscopy for studying E. coli cell 

physiology and chemical composition in near real-time was demonstrated. It has been 

documented previously that upon exposure to solvents, bacteria initiate response mechanisms to 

revert induced physiological changes (17, 26). In bacteria, the physiological responses upon 
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alcohol exposure are often measured by (i) quantifying the fluidizing effects on the cell 

membrane and (ii) measuring the degree of saturation of membrane lipids. 1-Butanol exposure 

has been found to result in increased membrane fluidity of E. coli (23, 26). This observed 

increase has been shown to be a result of disruptions in fatty acid and protein structure of the cell 

membrane, which also affects protein-lipid interactions (26, 59). In the analysis presented here, 

exposure of E. coli to 1-butanol resulted in an increased level of saturated fatty acids, while 

maintaining a relatively constant level of unsaturated fatty acids.  Low levels of cyclopropane 

fatty acids were also observed with 1-butanol exposure.  These trends were first measured by 

established GC-FID methodology, and Raman bands were identified that showed good 

correlation with these results.  In addition to fatty acid content, Raman bands were justified that 

showed good correlation with (i) cellular amino acid composition, (ii) fluorescence anisotropy 

(a measure of membrane fluidity), and (iii) total protein content of the cell.  While “perfect” 

correlations were not identified in this research, several strong correlations were found, 

indicating that Raman spectroscopy can be successfully and reliably used as a diagnostic tool 

that has the distinct advantage of offering near real-time analyses. However, superior accuracy 

was obtained from elaborate standard methods of analysis.  

Peak assignment observations and discrepancies 

 

 The main objective of this research was to further develop Raman spectroscopy as a near 

real-time measurement tool for a quick, reliable diagnosis of changes in metabolic and 

physiological phenotypes. Currently, researchers commonly rely on published Raman band 

assignments.  However, band selection can be a daunting task as assignments are not always 

consistent within the published literature. Several published studies have compiled useful 

databases of band assignments for biological samples; however, questions regarding band 
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selection remain since assignments of the same molecule/group are often made to several Raman 

bands. In addition, current reported assignments do not differentiate between cyclopropane fatty 

acids and saturated fatty acids. To provide additional experimental evidence to select among the 

several Raman band assignments related to fatty acids, correlations were found among saturated, 

unsaturated, and cyclopropane fatty acids. Raman spectroscopy was found to be able to capture 

the induced variances due to 1-butanol treatment and bacterial cell development over time.  

Currently, the Raman band assignments identified in this research are limited to E. coli, and 

similar studies can be performed to establish useful sets of bands for other organisms.  

Ultimately, the goal of establishing a set of universally applied Raman bands will require a large-

scale study involving several different organisms and treatments. 

Potential applications 

 

 The applications of real-time analysis of biological samples with Raman spectroscopy 

are numerous, and the method is capable of delivering near real-time phenotyping. The results 

of this research demonstrate the power of Raman for phenotypic profiling of E. coli cells.  As 

with the application of 1-butanol exposure in this research, Raman spectroscopy can be used to 

monitor cell culture responses to metabolically engineered products and be used to signal culture 

toxicity or even identify optimally productive cell states.  In addition, real-time phenotypic 

monitoring has tremendous application to the field of biosensing, as cell composition changes 

may be observed in response to small quantities of environmental toxins as well as chemical or 

biological warfare agents.  Future research will determine whether phenotypic profiling can 

exceed the sensitivity of novel methods, such as surface enhanced Raman spectroscopy of a 

sample directly. 
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Assessment of ex vivo perfused liver 

health by Raman spectroscopy 

 
ABSTRACT 

 

 Raman spectroscopy was applied in this research to monitor the overall health and 

degradation of porcine livers perfused ex vivo using the VasoWave® perfusion system.  A novel 

Raman-based diagnostic analysis was developed that enables near real-time and label-free 

monitoring of organ health during ex vivo perfusion designed to extend the useful life of the organ 

for transplantation.  A multivariate statistical analysis of Raman spectra of organ perfusate fluid, 

using a combination of principal component analysis and linear discriminant analysis, proved to 

be an effective technique to assess the degradation properties of the livers.  Three livers (with 

replicates) were perfused ex vivo under different pressures and temperatures and were compared 

over a 24 h time-course.  Results indicated that perfusion pressure was a more significant factor in 

organ degradation than was temperature.  In addition, a non-linear degradation profile was 

identified for all three perfused livers, and this profile was different for individual livers, 

demonstrating the time-dependent transition from its initial “healthy” state towards a more 

“unhealthy” degenerative state at 24 h. The Raman spectroscopy based approach described here 

has potential applications in perfusion and diagnostic instrumentation that can be used in near real-

time during organ transit and in operating rooms to help identify appropriately healthy organs for 

transplantation.   
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INTRODUCTION 

 

Liver transplant statistics and challenges  

 

Statistics 

 In this research, Raman spectroscopy was investigated as a diagnostic tool to monitor the 

health or livers awaiting transplantation. Donated organ preservation is needed desperately, as a 

shortage of transplantable organs exists.  As of April 2014, the Organ Procurement and 

Transplantation Network reported more than 133,000 candidates in the US alone on the waiting 

list for an organ (kidney, liver, heart, or lung), and more than 16,000 were on the waiting list for a 

liver (1).  Chronic liver disease and cancer caused by preventable hepatitis B and C infections 

affect 1-2% of the US population (and about 390 million people world-wide), is responsible for 

more than 16,000 deaths in the US annually (and about 1.1 million deaths world-wide), and 

significantly increases health care expenditures (2-4).  In addition to viral infections, excessive 

alcohol consumption has been attributed to the rising cases of liver disease such as alcoholic fatty 

liver, alcoholic hepatitis, and alcoholic cirrhosis, all of which have life-threatening consequences 

(5, 6). Obesity also contributes in complex ways to all causes of liver dysfunction. Over the years, 

the list of patients awaiting liver transplantation has increased considerably, due to improved 

health care that has decreased immediate morbidity/mortality.  Unfortunately, a scarcity of donors 

has also resulted.  In the present research, a method of transplantable liver preservation by ex vivo 

perfusion was implemented.  The perfusion fluid was monitored in near real-time by Raman 

spectroscopy, which was found to provide information about liver health.  The new methodology 

was used to study the effects of ex vivo perfusion pressure and temperature by determining the rate 

of degradation of several livers over a 24 h time-course.  



 

 
46 

Guidelines for liver transplantation 

 Diagnosis of liver disease often follows liver biopsy and functional tests (7).  For acute 

cases associated with hepatitis viral infections, immediate treatments involve the use of antiviral 

drugs before the disease progresses from fibrosis to cirrhosis (8, 9). Liver transplantation (like 

most other organ transplantation) is the last resort for a patient suffering from an end-stage disease, 

such as chronic cirrhosis (8, 10).  This procedure is known to reduce the mortality rate of affected 

persons significantly, provided there is no recurrence (8). Liver injury (irrespective of cause), 

hepatitis virus, alcohol, nonalcoholic fatty liver disease, or cancer can lead to aberrant attempts at 

regeneration resulting in cirrhotic scarring (11).  However, in severe cases, liver transplantation 

provides the best chances of survival.  The current guiding principles for liver allocation follow 

those of urgency and utility. The urgency principle advocates treatment of the sickest persons on 

the Waiting List, based on the Model of End-Stage Liver Disease (MELD) score, while the utility 

principle focuses on maximizing the survival rate post-transplant (12). There are two main sources 

of donated livers: (i) donation after cardio-circulatory death (DCD) and, (ii) donation after brain-

death (DBD), and the criteria for selection and allocation of livers have been reviewed 

comprehensively in the literature (13-15).  In some countries, segmental donation of a portion of 

liver from living related donors is done. 

Methods of organ storage pending transplant 

 

 For over two centuries, scientists and clinicians have experimented with organ preservation 

outside of the human body. In current protocols, following harvest, livers are stored on ice (static 

cold storage) for periods up to 8-12 hours before implantation.  Recent developments with 

hypothermic machine perfusion of donated kidneys have shown superior performance in kidney 

preservation (16). Studies with kidneys have shown that hypothermic oxygenated perfusion (i.e., 
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nutrient-rich, oxygenated blood substitute at sub-physiological temperature) was successful at 

sustaining the overall quality of perfused kidneys and improving outcomes following 

transplantation (17, 18). Major contributors to the success of kidney preservation ex vivo are 

reliable pumps, successful methods for keeping organ adequately oxygenated, and a reliable means 

of controlling temperature (19). Different types of pumping equipment have been used in machine 

pulsatile perfusion of organs, usually employing the University of Wisconsin (UW) preservation 

solution (20, 21). Hypothermic machine preservation is thought to help reduce or prevent ischemic 

injury, an unavoidable step following organ procurement and actual transplant when the blood 

supply is temporarily interrupted. Lengthy static cold storage (>24 hours) of kidneys is known to 

be detrimental (22).  There have not been extensive studies of successful machine perfusion of 

other organs, such as liver and heart. 

Description of VasoWave® technologies 

 A new ex vivo organ perfusion system, the VasoWave® (Smart Perfusion; Denver, NC), 

was developed to preserve organs for transplantation.  A unique feature of this system is that it 

closely mimics physiologic perfusion waveform characteristics of the human circulatory system. 

Pressurized perfusion fluid is delivered to an organ through the arterial/portal feeds and exits the 

organ via the venous line providing a closed loop circulation with highly controlled pressures, flow 

rates, and fluid temperature. The pulse regulator, a patented technology, is the major feature of the 

system, and it develops and supplies the cardiac waveform associated with the human heart. The 

VasoWave® system allows the user to instantaneously monitor and program the shape, duration, 

pulse, and pressure (systolic and diastolic) of a produced waveform.  Current hypothermic machine 

perfusion systems in clinical use do not have the ability to monitor real-time parameters such as: 

(i) tissue viability, (ii) metabolic degradation products, (iii) oxygenation state, and (iv) nutrient 
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requirements for an organ undergoing perfusion. Most importantly, the use of the VasoWave® 

system allows lengthy ex vivo organ preservation (>12 hours) and repetitive sampling of the 

perfusion fluid bathing the excised organ.  This sampling permits temporal measurements of tissue 

and perfusion fluid analytes that can be correlated with pathophysiology data and other metrics of 

organ quality. The research data presented here illustrates the use of Raman spectroscopy as a 

potential near real-time diagnostic tool to monitor total organ health during the perfusion process. 

Methods for assessment of liver quality 

 

Currently, methods to assess the “quality” of donated livers that may be transplanted 

consist of evaluation of donor characteristics (overall health, co-morbidities, laboratory tests), 

visual inspection of the potentially transplantable organ, and biopsy/histologic interpretation. Over 

50% of potentially transplantable organs are discarded based on these evaluations (23).  More 

complex tests, such as evaluation of metabolic activity and endogenous quantification of liver 

function in donors, are costly and impossible within the time-constraints of donation/implantation 

(8-12 hours). 

Raman spectroscopy and liver disease diagnosis 

 

 Raman spectroscopy is gaining momentum in the study of cells, tissues, and organs (24-

28). Major advantages of Raman spectroscopy for analysis of fluid samples include its (i) non-

invasiveness, (ii) fast acquisition time, (iii) minimal sample preparation (i.e., no labeling) and (iv) 

low sensitivity to water. Relatively little research has been performed to date regarding analysis of 

liver perfusion fluid and tissue by Raman spectroscopy.  A previous study using principal 

component analysis (PCA) of Raman spectra of human liver perfusion fluid found correlation with 

the oxidation reduction potential (ORP) of the fluid, which may have ties to organ viability (29).  

With biopsied liver tissue, an increase in the intensity of the following Raman bands have been 
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found to be associated with liver injury and fibrosis: 644 cm-1 (Tyr), 853 cm-1 (Pro, Tyr), 1004 cm-

1 and 1033 cm-1 (Phe), 1083 cm-1 (phospholipids), 1303 cm-1 (collagen), 1248 cm-1 (amide III, 

collagen, Tyr), and 1660 cm-1 (amide I, collagen, α-helix) (30). A decrease in Raman band intensity 

resulting from stretching vibration of the C-S bond of cysteine (660 cm-1) has been associated with 

fibrosis in biopsied liver tissue. Similarly, liver tissue has been characterized using Raman 

spectroscopy according the intensity ratio of phospholipids and collagen (1450 cm-1) to cysteine 

(1666 cm-1) (30).  

Studying the effects of ex vivo perfusion on porcine liver health  

 

Hypothermic machine perfusion has been shown to be superior to simple cold storage in 

experiments with rat, canine, and porcine livers when livers were continuously perfused for up to 

72 h (31, 32). In the current research, porcine livers were perfused using the VasoWave® system 

at different operating conditions of temperature and pressure.  Raman spectroscopy was applied to 

study changes in the perfusion fluid in near real-time. Multivariate statistical analysis, specifically 

PCA followed by linear discriminate analysis (DA), was applied to Raman spectra to determine 

the rates and possible mechanisms by which the organs degraded under the different perfusion 

conditions.  This multivariate statistical analysis approach was compared to a more traditional 

method of Raman spectra analysis in which the intensities of specific Raman bands (corresponding 

to functional groups of key molecules) are compared over a time-course and among samples. 

Results revealed a significant advantage to the multivariate approach that makes use of entire 

Raman spectra as opposed to specific Raman bands.  The overall goal of this research is to establish 

a non-invasive diagnostic tool capable of near monitoring consisting of Raman spectroscopy and 

multivariate statistical analysis that can provide the first measure of overall ex vivo perfused liver 

health.  Thus, the ability to monitor the health of livers in near real-time as they are perfused ex 
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vivo may have significant value as donor organs are transported as well as in the operating room 

immediately prior to transplantation. 

  

MATERIALS AND METHODS 

 

Animals and liver conditioning 

 

 Porcine liver procurement methods have been described elsewhere (33) and were used in 

this research with some modifications. Livers were obtained from humanely sacrificed mixed 

breed female pigs. Within 15 min of death, livers were harvested, flushed of whole blood with ice 

cold (4oC) modified Krebs-Henseleit solution, with added heparin anticoagulant, and stored on ice.  

Livers were stored for 2 h after procurement for transport to the laboratory to begin perfusion with 

the VasoWave® system, as described below. To facilitate connection with the perfusion system, 

Luer lock syringe connections were made with the portal vein, hepatic artery, and major hepatic 

vein. Livers were then perfused with Krebs-Henseleit solution on the VasoWave® system.  The 

Krebs-Henseleit solution consisted of 118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4∙7H2O, 1.2 

mM KH2PO4, 10 mM glucose, 2 mM CaCl2∙2H2O, 4.2 mM NaHCO3, 200 mM sulphinpyrazone, 

and 10 mM HEPES buffer.  

Liver perfusion by VasoWave® 

 

The VasoWave® perfusion system (Smart Perfusion; Denver, NC) was used to perfuse 

livers ex vivo for a period of 24 h under different temperature and pressure profiles.  The novelty 

of this system is its ability to produce a cardio-emulating pulse wave (competing technologies 

produce a sinusoidal pulse wave) that generates physiological systolic and diastolic pressures and 

flow rates within a perfused organ. The system also allows for direct control of oxygen content of 

perfusate.  Active perfusion with Krebs-Henseleit solution was initiated on each liver following a 
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two-hour flush.  Perfusion was continued for 24 h in a closed circuit. This circuit consisted of the 

following components: (i) perfusate reservoir bag, (ii) cardiovascular emulation system pump, (iii) 

heat exchanger, (iv) pressure regulator, (v) atrial line, (vi) perfused liver, (vii) ventricular line, and 

(viii) recycle stream. Samples of the perfusion fluid were collected at eight time points (0, 0.5, 1, 

2, 4, 8, 16, and 24 h) for each liver.  A total of six porcine livers were studied in this research, 

which allowed for three experimental conditions with replicates.  The effects of temperature (3°C 

and 25°C) and pressure (70-30 mmHg and 110-70 mmHg) were studied. Specifically, (i) condition 

A used a perfusion systolic-diastolic pressure of 70-30 mmHg and temperature 3°C, (ii) condition 

B consisted of 110-70 mmHg pressure and 25°C, and (iii) condition C consisted of 70-30 mmHg 

pressure and 25°C.  Fluid samples were also collected at selected time points from livers 

maintained only in static cold storage, for comparison with VasoWave® perfusion fluid samples. 

Raman spectroscopy 

 

Ten micro-liters (10 µL) of perfusate fluid was air dried on an aluminum surface at room 

temperature and analyzed by Raman spectroscopy. Samples were analyzed using a Bruker Senterra 

dispersive Raman spectrometer (Bruker Optics; Billerica, MA) equipped with a confocal 

microscope. The sample excitation was performed with a 532 nm laser set to 20 mW power and 

focused through a 100x objective lens. A scan time of 20 s and a spectral resolution of 9-15 cm-1 

were used for all measurements. For each sample, a minimum of 50 individual spectra (from 

different locations of the dried sample) were acquired and used in statistical analyses (discussed 

below). All spectra were baseline corrected and analyzed using OPUS 7.2 software (Bruker Optics, 

Billerica, MA). All spectra were further normalized using methods described below prior to 

multivariate statistical analyses. 
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Fatty acid analysis 

 

Extraction of liver perfusate fatty acids was performed following a published protocol (34) 

with modifications detailed below. Fatty acids from liver perfusates (150 µL) were extracted with 

2 volumes of chloroform and 1 volume of methanol in the presence of 10 µg of heptadecanoic acid 

(absent from liver perfusates) as an internal standard to account for analyte recovery.  The 

chloroform phase was dried under a stream on nitrogen gas and fatty acids were then esterified to 

fatty acid methyl esters (FAME) in the presence of 1 N methanolic HCl.  FAME were extracted 

with heptanes and analyzed by gas chromatography coupled with flame ionization detection (GC-

FID) after the initial identification of FAME peak identities by mass spectroscopy (MS). FAME 

separation and analysis was done using an Agilent 7890A series GC and a 5975C series single 

quadrupole MS or FID (Agilent Technologies; Santa Clara, CA) equipped with a 30 m DB-column 

(0.25 µm x 0.25 mm, Agilent Technologies) (34). 

Total protein measurements 

 

 The amount of total protein in perfusion fluids was measured (triplicate per sample) using 

a Coomassie PlusTM (Bradford) Assay kit (Thermo Scientific; Rockford, IL) following the 

manufacture’s protocol. Perfusion fluids were used as is with no further treatment for total protein 

analysis. Data was acquired by measuring absorbance at 595 nm using a BioTek Synergy H4 

Hybrid Multimode Microplate Reader (BioTek; Winooski, VT). 

Statistical methods 

 Statistical analyses were performed to (i) identify correlations between relevant Raman 

spectral bands and measured fatty acid and protein data, (ii) identify sample outliers, and (iii) 

separate and cluster Raman spectra according to liver treatment parameters.  All calculations were 

performed using MATLAB (R2012b) (MathWorks; Natick, MA).  All spectra were vector 
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normalized over the entire wavenumber range of the spectra.  First, correlations between Raman 

band intensities and experimentally measured FAME and total protein values were found by 

calculating the correlation coefficient (R) between experimental data points and Raman intensities 

at several wavenumbers.  Multiple Raman band assignments have been made in the literature to 

different fatty acids and total protein, and this analysis was used to test which of those candidates 

produced an accurate representation of liver perfusate fluid.  The entire list of candidates examined 

has been published previously (35).  PCA was applied to all spectra simultaneously in order to first 

identify and remove spectral outliers.  With the remaining Raman spectra, DA was applied in order 

to separate and cluster samples based on (i) the liver analyzed, (ii) temperature, (iii) pressure, and 

(iv) the time point of sampling.  Instead of using the entire spectral range (600-3200 cm-1) for DA, 

PCA was first performed to reduce the spectral dimensionality (i.e., the number of Raman intensity 

data points associated with each spectra).  Dataset reduction was found to be important, in cases 

where DA was applied to a large number of spectra, in order to reduce computational cost and 

increase the probability of finding the best model that represents the data (i.e., avoiding over-

fitting).  Spectral dataset reduction using PCA was performed using Raman intensities from the 

entire spectral region (600-3200 cm-1). The resulting first 50 principal components of a spectrum 

were used as the reduced dataset and were inputs for DA analysis.  This was based on a previously 

published finding (36). 

 

RESULTS 

Reproducibility and changes observed in Raman spectra  

Livers were perfused on the VasoWave® system under different pressures and temperatures and 

were compared (i) at several time points following perfusion onset and (ii) to un-perfused livers 
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undergoing cold static storage.  For each set of the conditions (i.e., liver, pressure, temperature, 

and time point), a minimum of 50 Raman spectra of perfusion fluid (or of stagnant fluid of un-

perfused livers) were obtained, baseline corrected (using OPUS software), and vector normalized 

(in MATLAB). Averaged Raman spectra for a perfused liver at 0 h, 4 h, and 8 h are shown in Fig. 

1a. Results were found to be highly reproducible, resulting in very low standard deviations (shown 

in Fig. 1b). Clear differences in Raman spectra appeared throughout the duration of perfusion.  In 

particular, the overall signal intensity of the biological region of the Raman spectra (Fig. 1a) 

decreased with time; however, noticeable band shifts were observed and certain band intensities 

decreased faster than others, suggesting these result from metabolic changes of the liver itself.  In 

addition, Raman scans of the initial blood cleared from the liver revealed no similarities with the 

perfusate scans (results not shown), which suggest the observed effects are not due to clearing of 

residual blood with time by perfusion.  In addition, averaged Raman scans of perfusate sampled 

from livers perfused under conditions A (70-30 mmHg, 3C), B (110-70 mmHg, 25C), and C (70-

30 mmHg, 3C) at 8 h are shown in Fig. 2 for the (a) biological region (600-1800 cm-1) and (b) –

CH dominated region (2800-3100 cm-1).  Thus, perfusate conditions, in addition to time, were 

observed to significantly impact resulting Raman spectra.  While Figs. 1 and 2 demonstrate the 

ability of Raman spectroscopy to detect the subtle changes in response to environmental conditions 

and duration of perfusion, more meaningful results were not extracted from the individual bands 

of these datasets. The molecular marker(s) of liver degradation have not yet been identified as 

distinct Raman bands in Figs. 1 and 2. Attempts to correlate individual Raman bands with fatty 

acids and total protein are discussed in a following section.  However, to make meaningful 

conclusions, multivariate analysis involving PCA and DA with the entire Raman spectra was 

required.  This is demonstrated in the following sections.   
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Figure 1.  (a) Raman spectra of perfused porcine liver at the following time points: 2 hours before 

perfusion begins (blue line), 1 hour of perfusion (red line), and 8 hours of perfusion (green line). 

(b) The standard deviations of 50 replicate scans for each sample. 

 

 



 

 
56 

 

Figure 2.  (a) Raman spectra of the biological region at 8h of perfusion for livers purfused under 

conditions A (red line), B (green line), and C (blue line).  (b) Raman spectra of the –CH region for 

the three livers. 

 

Multivariate statistical analysis of Raman spectra 

DA was performed as described in the methods section on PCA reduced Raman spectra of sampled 

fluids from perfused and un-perfused livers. Results are shown in Fig. 3a for perfused and un-

perfused samples taken at 0 h and 8 h. DA produced clear separation among the perfused samples; 

however, only a small separation was observed for the un-perfused samples.  The un-perfused 

samples did not undergo the initial flush procedure, so the Raman signal was likely dominated by 

blood and stagnant fluid that changed in composition very little over the 8 h cold static incubation 
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period.  However, this does not imply that the organ did not undergo significant degradation during 

this time.  Having shown that DA could easily separate perfused and un-perfused samples, the next 

challenge was to establish separation based on perfusion conditions.  Three sets of results were 

generated.  The first set (shown in Fig. 3b-d) considers three livers perfused under perfusion 

Conditions A, B, and C.  The second set (contained in the Supplementary Appendix as Figs. S1-

S3) considers the replicate three livers under perfusion Conditions A, B, and C.  The final set (Figs. 

S4-S6) provides the multivariate statistical results when all six livers are considered 

simultaneously. The three livers (and replicates) were subjected to different perfusion conditions 

(A (70-30 mmHg, 3C), B (110-70 mmHg, 25C), and C (70-30 mmHg, 25C)) and were 

compared across one varied condition at a time. All Raman spectral data for all livers were 

combined and DA was first applied to discriminate according to pressure.  Results are shown in 

Fig. 3b for the first three livers tested (without replicates). Clear separation was observed between 

livers from condition B (perfused at 110-70 mmHg) and conditions A and C (perfused at 70-30 

mmHg).  This indicates pressure was a significant factor in determining the differences among the 

reduced Raman spectra of the livers studied.  Next, DA was applied to classify Raman spectra 

according to temperature of perfusion fluid, and results for the three livers are shown in Fig. 3c. 

While separation was still observed, significant overlap of clusters was also present.  These results 

suggest that both pressure and temperature are important perfusion parameters.  While the 

influence of temperature may be more intuitive, results show that changes in pressure directly 

influence the metabolic activity and degradation kinetics of an ex vivo perfused liver.  This result 

has already been established and was the basis for the design of the VasoWave® instrumentation 

(37); however, it can now be measured and visualized by Raman spectroscopy and multivariate 

statistical analysis. Finally, the Raman spectra were classified using DA on the basis of time (hours 



 

 
58 

of perfusion).  Results are shown in Fig. 3d (again, for the three livers) and establish a trend 

showing the overall progression from the initial sample (0 h) to the final sample (24 h).  Of course, 

this trend comprises both pressure and temperature conditions. These results suggest that a DA 

model can be used to determine how far a perfused liver has degraded from its initial state. These 

analyses were repeated for the three liver replicates (Figs. 4-6) and for the set of all six livers 

considered simultaneously (Figs. 7-9). 

 

Figure 3. Discriminant analysis results of (a) un-perfused and perfused livers at 0 h and 8 h, (b) 

all data points for livers perfused under conditions A, B, and C discriminated by pressure, (c) all 

data points for livers perfused under conditions A, B, and C discriminated by temperature, and (d) 

all data points for livers perfused under conditions A, B, and C discriminated by time. 
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Figure 4. Multivariate statistical analysis of the 2nd set of three livers.  All data points for livers 

perfused under conditions A, B, and C discriminated by pressure. 
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Figure 5. Multivariate statistical analysis of the 2nd set of three livers.  All data points for livers 

perfused under conditions A, B, and C discriminated by temperature. 
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Figure 6. Multivariate statistical analysis of the 2nd set of three livers.  All data points for livers 

perfused under conditions A, B, and C discriminated by time. 
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Figure 7. Multivariate statistical analysis of all livers.  All data points for livers perfused under 

conditions A, B, and C discriminated by pressure. 

 

Results showed a clear influence of both pressure and temperature for the additional three 

livers (Figs. 4-6), and similar degradation kinetics were revealed compared to the first three livers 

(Figs. 6 and 3d).  When all six livers were considered simultaneously, the perfusion pressure had 

a larger influence than temperature (Figs. 7-9); although, this was not seen with the second set of 

three livers (Figs. 4-6).  In addition, the degradation kinetics were similar for the livers considered 

simultaneously as when they were considered individually (Fig. 9). 
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Figure 8. Multivariate statistical analysis of all livers.  All data points for livers perfused under 

conditions A, B, and C discriminated by temperature. 
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Figure 9. Multivariate statistical analysis of all livers.  All data points for livers perfused under 

conditions A, B, and C discriminated by time. 

 

Establishing a measure of time-dependent liver health 

 

 The combination of PCA spectral reduction and DA was performed with respect to time 

along one-dimension (as opposed to the two-dimension analysis of Fig. 3d) for the initial three 

livers exposed to perfusion conditions A (70-30 mmHg, 3C), B (110-70 mmHg, 25C), and C 

(70-30 mmHg, 25C).  The purpose of this analysis was to quantify the rate(s) at which each liver 

transitioned between its initial and final states.  The average of each cluster was calculated along 

the one-dimensional space, and its distance was calculated from the averaged value from the initial 

and final time points.  This allowed calculation of the “fraction of degradation,” which is defined 
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as the distance of a sample from the initial time point per the distance between the initial and final 

time points.  This provides a time-dependent progression of each liver from its initial state (i.e., 0 

h) to its final state (i.e., 24 h). DA with time, given clear initial and final organ states (i.e., 0 and 

24 h), revealed the dynamics of how the liver changed with respect to time.  Clear trends were 

established and significant differences were observed with treatment conditions.  The liver from 

condition A (70-30 mmHg, 3C) degraded rapidly, with the sample at 2 h nearly mimicking the 

sample at 16 h, and both were located much closer to the 24 h sample than the 0 h sample (Fig. 

10a).  In particular, the sample taken at 4 h revealed 76% degradation of the liver from its initial 

state (0 h) to its final state (24 h).  Until proper metrics are established, it can be assumed that 0 h 

represents a “healthy” state and the 24 h sample represents an “unhealthy” liver.  The liver from 

condition B (110-70 mmHg, 25C) showed slower degradation relative to the liver of condition A 

(70-30 mmHg, 3C).  The sample from the liver under condition B (110-70 mmHg, 25C) taken 

at 4 h revealed 63% degradation from the initial to final state (Fig. 10b).  Finally, liver of condition 

C (70-30 mmHg, 25C) showed a prolonged period of time where the liver more closely resembled 

the initial “healthy” state rather than the final “unhealthy” state (Fig. 10c).  In this case, only 23% 

degradation was observed at 4 h.  However, it must be noted, that this analysis only shows the 

dynamics of the degradation of a liver from its initial to final state. The final states of the three 

livers are all different, and their initial states are different as well, since all three livers came from 

separate animals.  In fact, the analyses of Figs. 3b and 3c indicate the final states of the livers 

perfused with conditions A (70-30 mmHg, 3C) and C (70-30 mmHg, 25C) are more closely 

matched than the livers perfused with conditions B (110-70 mmHg, 25C) and C (70-30 mmHg, 
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25C), despite the fact that the livers with conditions A (70-30 mmHg, 3C) and C (70-30 mmHg, 

25C) underwent significantly different rates of degradation. 

  

Figure 10. One-dimensional linear discriminant analysis by time for livers perfused under 

conditions (a) A, (b) B, and (c) C.  The initial state of each liver is denoted by the “Fraction of 

Degradation” equal to 0, and the final state has a value equal to 1. 

 

Correlating Raman bands with GC-FID FAME analysis results  

 

 FAME analysis data were collected for the time-course perfusate samples taken from a 

representative liver from all three sets of perfusion conditions.  Changes were observed for 

saturated and unsaturated fatty acids content of the perfusate fluid for the three livers analyzed.  
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Results are shown in Fig. 11a for saturated fatty acids and Fig. 11b for unsaturated fatty acids.  The 

overall saturated and unsaturated fatty acid content remained relatively constant for livers perfused 

under conditions B (110-70 mmHg, 25C) and C (70-30 mmHg, 25C).  The liver perfused with 

condition A (70-30 mmHg, 3C) exhibited a higher fatty acid content, and 3-4 fold increases were 

observed over the time-course.  This is also consistent with its elevated rate of degradation (Fig. 

10a).  Correlations of these data with Raman spectra were sought.  Similar comparisons were 

performed for bacteria and high correlations (R > 0.85) were identified between Raman and GC-

FID data (35).  In the case of perfusate fluid, the Raman band intensities showing correlation after 

4 h of perfusion were: (i) 2850 cm-1 (indicative of CH2 symmetric stretch of lipids (38)) for 

saturated fatty acids (Fig. 11d) and (ii) 1655 cm-1 (indicative of C=C bonds (38)) for unsaturated 

fatty acids (Fig. 11e).  While perfect correlations were not obtained (especially before 4 h), general 

trends were captured after 4 h of perfusion, and the liver perfused with condition A (70-30 mmHg, 

3C) was shown by both FAME analysis and Raman band analysis to have higher amounts of both 

saturated and unsaturated fatty acids in the perfusates.  However, the Raman band analysis failed 

to effectively capture trends prior to 4 h of perfusion and overall correlation coefficients between 

FAME and Raman data were low (R < 0.5). However, Raman spectroscopy shows promise for 

tracking the presence of saturated and unsaturated fatty acids in liver perfusate after 4 h in near 

real-time. 

Correlating Raman bands with total protein measurements 

 

In addition to fatty acids, protein is another major constituent of liver tissue that was 

expected to accumulate in the perfusion fluid with organ degradation. A comparison of the total 

protein content of perfusion fluid from livers of each set of perfusion conditions may provide 

further indication of their physical states. Livers exposed to condition B (110-70 mmHg, 25C) 
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were perfused at higher pressure and temperature and showed slightly higher protein content in 

the perfusion fluid; however, livers from all three sets showed increases in perfusate protein 

content of ~50% over the course of 24 h (Fig. 11c).  Raman signatures were also sought with good 

correlation to total protein measurements.  Results are shown in Fig. 11f for the Raman band 

intensity at 1450 cm-1, which has been associated with C-H deformation in amino acid side chains 

(38).  Similar to the results for fatty acids, good overall trends were observed between protein 

content measured using standard experimental producer and Raman spectroscopy, but low 

correlation coefficients were observed (average R = 0.32).  These results suggest that time-course 

Raman band analysis can provide only a low confidence estimate of total protein in liver perfusate.  

However, this measurement can be obtained in near real-time, which is significant for time-

sensitive applications such as organ transplantation.  Analyses for specific protein markers 

indicative of liver failure may yield better correlation with Raman data, but these have not yet been 

investigated. 
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Figure 11.  (a) Saturated fatty acids measured by GC-FID, (b) unsaturated fatty acids measured 

by GC-FID, (c) experimental measurements of total protein, (d) saturated fatty acids measured by 

Raman spectroscopy using peak intensity at 2850 cm-1, (e) unsaturated fatty acids measured by 

Raman spectroscopy using peak intensity at 1655 cm-1, (f) total protein measured by Raman 

spectroscopy using peak intensity at 1450 cm-1.  Livers perfused under conditions A (blue-solid 

line), B (red line) and C (green line) are represented in each plot. 

 

DISCUSSION 

 

Raman spectroscopy as a diagnostic tool for near real-time analysis of cells, tissues, and 

organs has many potential applications. Here, Raman spectroscopy was applied to monitor porcine 

liver health during ex vivo perfusion using the VasoWave® system.  Clear distinctions were 
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observed between perfused and un-perfused organs, and significant changes were detected in the 

perfusate based on perfusion conditions (i.e., pressure and temperature) and over the 24 h perfusion 

time-course.  It is suspected that the Raman spectra of the un-perfused samples remained 

dominated by stagnant blood; whereas, perfused livers were quickly cleared of residual blood and 

debris and Raman spectra of perfusate was likely characterized by metabolic byproducts of organ 

degradation.  We have noted similar results in cardiac tissue and kidney perfusate samples 

(unpublished results).  Donor livers preserved for transplantation are known to have a limited 

lifetime that is on the order of hours.  Continuous real-time monitoring of overall organ health is 

critical because often the transplantation window does not allow for comprehensive off-line 

analytical analyses to determine if an organ is a good candidate for transplantation.  In addition, 

real-time diagnostics have the potential to allow for continuous monitoring while the organ is in 

transit as well as in the operating room.  The dynamics of organ degradation over the first few 

hours of ex vivo perfusion may very well provide critical information regarding the long-term 

viability of the transplanted organ and patient.  The Raman-based diagnostic tool presented here 

provides “near” real-time analysis.  The time delay is on the order of seconds (< 240 s) and consists 

of (i) drying time for a 10 L spot sample, (ii) Raman scanning of several points of the sample, 

and (iii) computations.  It is anticipated that Raman technologies capable of repeatable liquid phase 

analysis will further reduce this time delay, but liquid measurements led to inconsistent results in 

this research (data not shown).  The use of a 532 nm laser was also required to produce reliable 

results.  Great care must be taken when operating at higher energies due to the risk of graphitization 

(39).  This was managed by (i) using a short integration time (10 s), (ii) scanning different areas 

of the sample, and (iii) looking for a wide graphitization band around 1500 cm-1 in the Raman 

spectra.  
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In this research, a perfused porcine liver was compared with a non-perfused liver and six 

additional livers were subjected to three sets of perfusion pressures and temperatures and 

monitored over the time-course of ex vivo perfusion using the VasoWave®.  While significant 

differences were detected and trends were repeatable in replicates, the sample size is too small to 

make conclusive statements regarding the effects of perfusion conditions. However, the purpose 

of this study was to develop and demonstrate Raman spectroscopy with multivariate statistical 

analysis as a potential near real-time diagnostic tool for monitoring organ health by analyzing 

perfusate.  Since inherent variability exists in different livers, it is likely that individual liver 

characteristics played a role in its rate of degradation, along with the varied perfusion parameters 

of the VasoWave®.  Large-scale studies are underway and will be used along with clinical 

diagnostics to distinguish between “healthy” and “unhealthy” organs for transplantation.   

The use of Raman spectroscopy as a near real-time diagnostic tool requires significant raw 

data processing and statistical analysis.  In the case of complex biological fluids, as observed in 

liver degradation during ex vivo perfusion, we argue for the use of a multivariate statistical analysis 

approach that makes use of entire Raman spectra rather than comparing intensities of individual 

bands.  Individual band analysis assumes no interference from molecules with similar chemical 

structures and functional groups.  This is ideal for closed systems where all possibilities are known; 

however, the chemistry of a diseased and/or degrading liver can be extremely complex.  Raman 

bands identified for fatty acids and protein in this research must be further verified in large-scale 

studies and may ultimately yield less useful information than a holistic multivariate analysis since 

this approach takes into account all molecular signatures that are changing among all Raman 

spectra.  Thus, it is anticipated that the multivariate statistical analysis approach will best 

characterize a changing complex system. Regardless of whether Raman band analysis for fatty 
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acids or multivariate statistical analysis proves more beneficial in large-scale studies, both may 

ultimately have use in time-sensitive applications, such as in organ transplantation.  As shown with 

the Raman band correlations with fatty acid and protein data, sacrificing accuracy for near real-

time information is required, but this trade-off may be worthwhile.  Furthermore, it is reasonable 

to speculate that further advances in Raman spectroscopy instrumentation, measurement 

techniques, and data analysis methods will enhance the accuracy of near real-time measurements.  

Even though Raman spectroscopy proved valuable in monitoring the differentiation of 

porcine liver perfusate fluid in near-real time, challenges still remain to definitively link these 

changes with organ health.  However, the ability to monitor changes in the complex chemistry of 

a dynamic system, such as a degrading liver, is novel and has significant future medical 

applications.  As additional porcine and human livers are analyzed, a database will be constructed 

linking Raman signatures to the clinical pathophysiology of these organs.  With this information, 

additional multivariate statistical measures and artificial intelligence models will enable the linking 

of the changes in Raman spectra to true measures of organ health.  This is critical near real-time 

information that will ultimately be used by surgeons and clinicians when making the critical 

decision of whether an organ is sufficiently healthy for transplantation into a recipient patient. 
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A study of the phenotypic responses of 

Escherichia coli to multiple 4-carbon 

alcohols using Raman spectroscopy 
 

ABSTRACT  

 

 The phenotypic responses of E. coli cells exposed to 1.2% (v/v) of 1-butanol, 2-butanol, 

isobutanol, tert-butanol, and 1,4-butanediol were studied in near real-time using Raman 

spectroscopy.  A novel method of “chemometric fingerprinting” was developed that uses 

multivariate statistics (principal component analysis and linear discriminant analysis) to identify 

phenotypic changes over a 180-min time course.   A toxicity study showed extreme variability 

among the reduction in culture growth, with 1-butanol showing the greatest toxicity and 1,4-

butanediol showing relatively no toxicity.  Chemometric fingerprinting showed distinct phenotype 

clusters according to the type of alcohol: (i) 1-butanol and 2-butanol (straight chain alcohols), (ii) 

isobutanol and tert-butanol (branched chain alcohols), and (iii) control and 1,4-butanediol (no 

terminal alkyl end) treated cells.  While the isobutanol- and tert-butanol-treated cells showed 

similar phenotypes, isobutanol was significantly more toxic than tert-butanol.  In addition, the 

phenotypic response was found to take place largely within 60 min of culture treatment; however, 

significant responses (especially for 1,4-butanediol) were still occurring at 180 min post-treatment.  

The methodology described here identified different phenotypic responses to seemingly similar 4-

carbon alcohols and can be used to study phenotypic responses of virtually any cell type under any 

set of environmental conditions or genetic manipulations. 
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INTRODUCTION 

 

Phenotyping with Raman spectroscopy 

 

Recently, the power of Raman spectroscopy for near real-time phenotyping was 

demonstrated by the analysis of Escherichia coli DH5 cells exposed to 1.2% 1-butanol (1).  

Raman spectral data for control and butanol-exposed cultures were correlated with GC-MS/FID 

analyses of fatty acids.  Consistent trends were observed for changes in saturated, unsaturated, and 

cyclopropane fatty acids with butanol exposure over time.  Raman bands (i.e. spectral peaks) were 

correlated with results from other standard analytical methods, including: (i) fluorescence 

anisotropy measurements of membrane fluidity, (ii) total protein content, and (iii) total amino acid 

content.  Although some accuracy was sacrificed with analysis by Raman spectroscopy, these 

phenotyping results were obtained in near real-time within seconds. The analysis required minimal 

sample preparation and was label-free.  In the current research, the study was expanded to include 

several 4-carbon alcohols: (i) 1-butanol, (ii) 2-butanol, (iii) isobutanol, (iv) tert-butanol, and (v) 

1,4-butanediol.  In addition, multivariate statistics (i.e., principal component analysis (PCA) and 

linear discriminant analysis (L???DA)) were included with the data analysis to identify similar and 

significantly different phenotypic responses of E. coli cells exposed to different alcohols.     

Conventional uses of Raman spectroscopy to analyze biological samples 

 

Cellular chemical composition includes free solutes and macromolecules (e.g., proteins, 

DNA/RNA, lipids, cell walls, and carbon storage polymers) that change significantly in response 

to environmental perturbations (2-4).  Furthermore, conventional analytical techniques (e.g., 

chromatography) must (i) be performed off-line, (ii) require significant time and resources, and 

(iii) cause destruction of the sample. Raman spectroscopy has demonstrated the capability to 

measure phenotypic responses of E. coli cell culture to 1-butanol toxicity in near real-time (1). 
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Raman spectroscopy has also been applied to other purposes, including (among many others) (i) 

species characterization (5), (ii) distinction of stem cells from differentiating cells (6), (iii) 

identification of multidrug resistance phenotype in cancer cells (7), and (iv) identification of the 

mechanism of action of antimicrobial compounds (8).  Extensive Raman band assignment libraries 

and intensities for biological molecules are available (9-16). However, these databases often differ 

in assignments for the same Raman band (e.g. the bands at 1449, 1660, and 2940 cm-1 have been 

assigned to both proteins and lipids). This is often the case with biological samples where band 

overlap is present, making the band assignments highly ambiguous. Recently, a new database was 

published that consists of a large compilation from a broad spectrum of the literature (17). 

However, most band assignments cited in this database were obtained from organs and tissues, 

and it is unclear how well they apply to bacteria.  This represents a significant challenge in Raman 

spectroscopy research.  Thus, the approach is to use the entire Raman spectrum (instead of 

individual Raman bands) as a “chemometric fingerprint” of a cell and use multivariate statistics 

for clustering and classification of phenotypes.  This approach is designed to avoid some of the 

ambiguity associated with Raman band assignments.  

Toxicity mechanisms of alcohols 

 

Toxicity is a major impediment in the alcohol biofuel fermentation process, as alcohols 

significantly inhibit microbial growth (18-20). For example, during the production of isobutanol 

in E. coli, growth is retarded by concentrations as low as 1% (v/v) (21).  In the presence of an 

alcohol, the E. coli cell membranes change radically in fatty acid composition.  This is significant, 

considering that the inner plasma membrane consists of about 75% lipids and 25% protein by 

weight.  Toxicity is thought to be inversely proportional to fatty acid chain length, and the same is 

true for the concentration of alcohol needed to cause an observable change in fatty acid 
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composition of the cell (22).  This is in an agreement with the argument that alcohol toxicity can 

be predicted by its octanol-water partition coefficient (KOW) (23).  Hydrophobic molecules have 

high KOW values, and organic solvents with log KOW values greater than 1.5 have proven to be 

extremely toxic to microbes as they partition the cytoplasmic membrane, resulting in a loss of 

membrane structure and function as well as membrane leakage (24).  It has been proposed that the 

cell membrane bears the most impact with the addition of organic solvents and plays a significant 

role in the cellular adaptation to stress.  In addition, short-chain alcohols cause desiccation by 

absorbing water, while long-chain alcohols that do not mix with water penetrate the lipid bilayers 

of membranes (23).  Alcohol toxicity causes increased cell membrane fluidity, altered regulation 

of internal pH, disruption of protein-lipid interactions, electron transport chain that generates ATP, 

respiration, and decreased energy generation by the inhibition of glucose and nutrient transport 

(21, 25, 26).  Microbes use several regulatory feedback mechanisms to respond to alcohol toxicity 

and optimize the use of resources in an attempt to maintain homeostasis (27). The following 

alcohol toxicity responses have been elucidated: (i) altered cytoplasmic membrane as well as cell 

surface properties; (ii) altered cell envelope protein composition; (iii) changed peptidoglycan, 

membrane lipid, and lipopolysaccharide (LPS) compositions; and (iv) synthesis of protective 

metabolites and solvent efflux pumps (25, 26).  

Phenotypic responses to 4-carbon alcohols 

 

Four different butanol isomers (1-butanol, 2-butanol, isobutanol, and tert-butanol) along 

with 1,4-butanediol are shown in Fig. 1.  1-Butanol is produced natively through fermentation by 

Clostridium (e.g. both C. acetobutylicum and C. beijerinckii) (28, 29).  Metabolic pathway 

engineering enabled the production of isobutanol (30) and 1,4-butanediol (31). The present study 

builds on the published study with 1-butanol (1) by incorporating additional phenotypic responses 
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with other 4-carbon alcohols and by introducing multivariate statistics (PCA and DA) for 

identifying phenotypic responses by chemometric fingerprinting.  E. coli cultures at the onset of 

the exponential growth phase were subjected to 1.2% v/v of the different 4-carbon alcohols, and 

sampling was performed over a 180-minute period.  E coli cells have a very complex and dynamic 

physiology that changes constantly over the growth period and respond to environmental stimuli. 

Capturing these changes using current off-line experimental methods has been challenging. 

Analysis by Raman spectroscopy allows for a near real-time analysis, but challenges remain in 

deconvoluting complicated Raman spectra into their chemical compositions.  This is complicated 

by the ambiguity of Raman band assignments that appear in the literature.  The chemometric 

fingerprinting approach presented here provides a new way to use Raman spectroscopy in 

phenotyping.  No Raman band assignments are considered.  Instead, the entire Raman spectrum 

of a sample is used in the characterization of the phenotype of the cell.  Knowledge of phenotypes 

of cells representing a “healthy state” and “stressed state” are used in clustering analysis, which is 

particularly useful in phenotype characterization.  The purpose was to develop a new methodology 

for tracking phenotypic changes in microbes in near real-time.  The study was performed with 4-

carbon alcohols because of the wide ranges of toxicity exhibited and their importance to renewable 

biofuel and chemical production.  

 

MATERIALS AND METHODS 

Bacteria strain and chemicals 

E. coli DH5α cells were used in all experiments and were obtained from Invitrogen Life 

Technologies (Grand Island, NY).  Frozen stock cultures were plated onto solid agar plates prior 
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to experiments or otherwise were stored in glycerol at -80°C.  All chemicals were purchased from 

Sigma-Aldrich (St. Louis, MO) and were of at least 99% purity.  

Culture conditions 

 

E. coli cells were grown in LB media containing tryptone (10 g/L), yeast extract (5 g/L), 

and sodium chloride (10 g/L) as previously described (1).  Cultures were grown at 37C and 

agitated in a rotary shaker at 210 RPM.  Culture optical density was measured at 600 nm (OD600).  

Subcultures were prepared by diluting 100 µL of culture with 25 mL fresh LB media. At the onset 

of the exponential growth phase (OD600 of 0.4 – 0.5), the culture was split into six equal portions 

(5 mL each), with one serving as the negative control. The different alcohols: 1-butanol, 2-butanol, 

isobutanol, tert-butanol, and 1,4-butanediol were added to the respective cultures to a 

concentration of 1.2% v/v. All cultures were re-incubated for 60 min prior to sampling. Samples 

(250 µL) were taken every 30 min from all cultures for a total of 180 min.  Cells were centrifuged 

at 10,000 rpm at 4 °C for 5 min and washed with ice cold deionized water.  This process was 

repeated five times.  The cells were re-suspended in 250 µL of purified water for Raman analysis. 

Raman spectroscopy 

 

Raman spectroscopy was performed as published previously (1, 8), except that the analysis 

required 50 µL of washed cells.  In short, cells were dried at room temperature on an aluminum 

surface and analyzed using a Bruker Senterra dispersive Raman spectrometer, which was attached 

to a confocal microscope (100x magnification) and equipped with OPUS software (Bruker Optics, 

Billerica, MA).  Laser excitation of 532 nm (20 mW) was applied for 10 seconds and had spectral 

resolution of 9-15 cm-1. Each sample was scanned at least 50 times and spectra were averaged.  All 

data analysis was carried out in OPUS (baseline correction) and MATAB (R2012A) (MathWorks, 

Natick, MA).  Each sample group (minimum 50 individual scans), was vector normalized over the 
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entire wavelength range of the spectra (400 – 3200 cm-1) (1).  PCA allowed for identification of 

outlier data points, which were then excluded. PCA was then used to reduce the dataset for DA.  

DA was then applied to the top 9 principal components of the dataset, as described previously (8), 

in order to separate and cluster samples based on the different phenotypic responses to 4-carbon 

alcohol exposure. 

 

RESULTS 

 

4-Carbon alcohol toxicity and inhibition of culture growth 

 

E. coli cells were subjected to a 1.2% v/v 1-butanol challenge at the start of the exponential 

phase (OD600 = 0.5-0.6) and showed significantly reduced growth compared to the control (1). To 

test relative toxicity of different 4-carbon alcohols, 1-butanol and other 4-carbon alcohols, 

specifically isobutanol, 2-butanol, tert-butanol, and 1,4-butanediol, were applied to E. coli cultures 

at the same levels (1.2% v/v), and the culture OD600 values were monitored for 180 min.  Results 

are shown in Fig. 1 and dramatic changes in toxicity are apparent.  1-Butanol showed the greatest 

toxicity, followed by isobutanol, 2-butanol, tert-butanol, and 1,4-butanediol respectively. E. coli 

was tolerant to 1,4-butanediol and tert-butanol, as a small reduction in final OD600 readings was 

observed relative to the control culture, to which no alcohol was added.  In addition, a clear 

separation was observed for the more tolerated alcohols (1,4-butanediol and tert-butanol) 

compared to the more toxic 4-carbon alcohols (1-butanol, isobutanol, and 2-butanol).  This 

suggests that different phenotypic responses are present, and these were investigated further by 

using Raman spectroscopy. 
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Figure 1.  Chemical structures of 4-carbon alcohols and E. coli growth inhibition.  Each alcohol 

was added to 1.2% v/v at 0 min.  Each curve label (A-E) corresponds to the alcohol above.  The 

control culture is labeled F. 

 

Normalized Raman spectra 

 

The different 4-carbon alcohols had different toxicity towards E. coli cells and showed 

different levels of growth inhibition. Highly toxic alcohols are expected to cause significant 

changes in cellular structure that is expected to have pronounced effects on growth rates. To 
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associate alcohol toxicity with the changes in cell structure, Raman spectra of cells treated with 

1.2% (v/v) of different 4-carbon alcohols were compared to the spectra of control cells (Fig. 2). A 

visual inspection of the superimposed spectral data (with no statistical analysis), showed 

differences in regions corresponding to nucleic acids (~1070 -1090 cm-1), proteins (1449 cm-1, 

1655 – 1680 cm-1), and lipids (1320 cm-1, 1607 cm-1) (17) within the biological region (Fig. 2a) 

and shifts in the CH region (Fig. 2b). The spectral results of Fig. 2 point to the observations that 

(i) the general shape of the spectra is conserved with exposure to all 4-carbon alcohols and (ii) the 

differences among the spectra occur in wavenumber ranges assigned in the literature to 

macromolecules that largely determine specific phenotypes.  In the previous study (1), individual 

Raman peaks were identified and correlated with results from traditional experimental 

measurements.  In this analysis, however, multivariate statistics is used to analyze entire spectra 

as chemometric fingerprints. 
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Figure 2.  Normalized and averaged Raman spectra of the control and alcohol-treated cultures at 

180 min over (a) the biological range (700-1800 cm-1) and (b) the CH range (2800-3100 cm-1). 

 

 

Discriminate analysis by alcohol 

 

In order to investigate the effect of alkyl chain and branching of the 4-carbon alcohols as 

relates to toxicity, the Raman spectral dataset was first reduced using PCA to remove outlier scans.   

Then PCA was used to further reduce the dataset into its top nine principal components for analysis 

by DA.  The DA was first applied for discrimination by alcohol.  . Each data point in Fig. 3 

represents an entire Raman spectrum.  This contains all information about chemical composition 

in the cell and is a good representation of the cells changing phenotype. Each spectrum has been 

reduced to its top principal components and then classified by DA to be represented on a 2D 

canonical plot.  Next, DA was performed with respect to alcohol in Fig. 3 to determine the effects 

of alkyl chain and branching. This means that all time points are represented and grouped 
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according to the type of alcohol exposure only.  Of particular interest in Fig. 3 is that the six 

datasets (treatment by five alcohols and a non-treated control) separate into 3 clusters on the 2D 

canonical plot: (i) 1-butanol and 2-butanol (linear chain alcohols), (ii) isobutanol and tert-butanol 

(branched chain alcohols), and (iii) 1,4-butanediol and the control (no terminal alkyl end).  The 

first cluster (1-butanol and 2-butanol) is intuitive since these are both toxic to E. coli cultures (Fig. 

1).  The third cluster (1,4-butanediol and the control) is also intuitive because little difference is 

observed in Fig. 1 for these two. The second cluster consists of isobutanol and tert-butanol.  

Isobutanol showed significant toxicity, while tert-butanol showed much less toxicity to isobutanol 

(Fig. 1).  However, the phenotypes of exposed E. coli cells seen as clustered data points in a DA 

canonical plot were shown to be similar in Fig. 3.  This is non-intuitive and suggests that very 

small molecular changes may be responsible for the differences in toxicity of isobutanol and tert-

butanol.   
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Figure 3.  DA results by alcohol.  Three clusters are identified and consist of (1) 1-butanol and 2-

butanol, (2) isobutanol and tert-butanol, and (3) the control and 1,4-butanediol treated cultures. 

 

Discriminate analysis by time  

 

Next, DA was applied to the dataset with respect to time to investigate progression of the 

observed phenotypic changes.  Results are shown in Fig. 4.  In this DA, phenotypes resulting from 

exposure to all alcohols at a specified time point are represented in a 2D canonical plot (Fig. 4).  

The initial time point (0 min) corresponds to the point, at which the 4-carbon alcohols were added 

to the culture (during exponential growth).  Interestingly, results revealed that the culture toxicity 

response was almost immediate and was easily detectable within the first 60 minutes following 

exposure (Fig. 4).  From there, though minimal, continued movement of data point clusters away 

from the initial time point (0 min) was observed, with the final time point (180 min) cluster being 
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the furthest distance from the initial time point.  This analysis provides a means of monitoring the 

dynamics of phenotype changes when the entire chemical composition of a culture (i.e., the entire 

Raman spectrum) is considered simultaneously.  While this analysis considers all 4-carbon 

alcohols, the procedure can also be performed on individual time points and alcohols.  

 

Figure 4.  DA results by time.  The times given in the legend refer to minutes past the addition of 

an alcohol. 
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Discriminant analysis by alcohol at multiple time points  

To further illustrate the 4-carbon alcohol induced response mechanism(s), DA was applied 

with respect to alcohol at single time points (60 and 180 min), as shown in Fig. 5.  At 60 min (Fig. 

5a), the control and 1,4-butanediol-treated cells are similar as the corresponding data points cluster 

together.  However, at 180 min (Fig. 5b), data points have separated completely on the 2D 

canonical plot, suggesting a distinctive long-term response compared to data points at 60 min, even 

though toxicity was not detected (Fig. 1).  It is unclear why this is located farther from the control 

culture than resulting from toxic 1-butanol exposure in Fig. 5b. The short-term response (60 min, 

Fig. 5a) shows significant separation of 1-butanol, 2-butanol, isobutanol, and tert-butanol, 

suggesting a significant toxicity response.  However, none of these clustered together, which 

suggests the phenotypic responses to all 4-carbon alcohols are different in the short-term response 

to the alcohols.  It is noted that a significant short-term phenotype response was observed for tert-

butanol treated cells (Fig. 5a), but toxicity was much less compared to 1-butanol (Fig. 1).   

 

 

 



 

 

93 

 

 
 

Figure 5. DA results by alcohol at (a) 60 min and (b) 180 min 

 

DISCUSSION 

 

Monitoring phenotypic changes in near real-time 

 

The methods presented here provide a way of monitoring phenotypic changes of microbes 

in near real-time using Raman spectroscopy.  In our previous publication (1), the effect of 1-
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butanol toxicity on the E. coli cells was studied by extracting the intensity of specific bands from 

Raman spectra and correlating these with phenotypic traits such as: (i) membrane fatty acids 

composition, (ii) cell membrane fluidity, and (iii) amino acids composition. Here, a different 

approach was taken, as multivariate statistical analyses were used to make use of an entire Raman 

spectrum in an approach termed “chemometric fingerprinting.”  A Raman spectrum includes 

contributions from all chemicals comprising a sample.  When performed on a cell, the Raman 

spectrum is complex (Fig. 2) and can contain contributions from thousands of molecules.  Thus, 

an entire Raman spectrum actually contains very detailed information about the cell-wide 

phenotype, and the Raman spectroscopy based methodology presented here uses this information 

to compare and distinguish among microbial phenotypes.  In the application presented in this 

paper, the phenotypic responses resulting from treatment of E. coli with different 4-carbon alcohols 

was studied.  The alcohols differed in location of the alcohol group and alkyl chain length.  These 

resulted in significantly different toxicity levels (Fig. 1), which was expected based on previously 

published results with 1-butanol toxicity study (Zu, et al, 2014).  However, the observed cell 

responses among the treated cultures were found to be different and dynamic.  

Effects of terminal alkyl chain length 

 

The results of this study confirm that 4-carbon alcohols with longer terminal alkyl chains 

have greater toxicity (primary alcohols > secondary alcohols > tertiary alcohols) to E. coli cells 

when applied at 1.2% (v/v). 1,4-Butanediol does not have a terminal alkyl chain, since both ends 

are capped with alcohol groups. Thus, it was expected that the hydrophilic E. coli cell membrane 

head groups would interact with this alcohol, but prevent penetration of the membrane into the 

hydrophobic center. Also, interactions with polar parts of membrane proteins sticking out could 

potentially impact on the effect of these proteins.  These results were confirmed as minimal toxicity 
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was observed (Fig. 1), and the results of DA (over all time points) revealed clustering between the 

control and 1,4-butanediol-treated (Fig. 3).  This indicates that there was relatively no phenotype 

change with the addition of 1,4-butanediol.  However, if phenotype changes are studied at 180 min 

only, clear separation is observed between the control and 1,4-butanediol treated cells.  Thus, it 

can be concluded that cell phenotypes do in fact respond to 1,4-butanediol, but this happens very 

late (around 180 min) resulting in minimal toxicity.  Overall, 1-butanol and 2-butanol produce 

similar phenotypes (Figs. 3 and 5a), but 1-butanol is more toxic (Fig. 1).  However, at 180 min 

(Fig. 5b), the 2-butanol treated phenotypes showed more similarity to the 1,4-butanediol 

phenotypes, suggesting multiple possible responses over time.  Finally, isobutanol and tert-butanol 

clustered together in Fig. 3, suggesting similarities in phenotypic responses over time.  This is 

interesting because isobutanol proved to be much more toxic than tert-butanol (Fig. 1). With 

similar phenotypes, the dramatic change in toxicity levels can be attributed to the molecular 

structures of the alcohols themselves, which both contain branched alkyl groups.  However, the 

length of the terminal alkyl chain from the terminal alcohol is 3 carbons for isobutanol and only 2 

carbons for tert-butanol.  This suggests that the branched alkyl group played a role in the 

phenotypic response to the 4-carbon alcohols, but even an increase in the terminal alkyl chain 

length by 1 carbon can determine whether this phenotypic response thrives or fails when faced 

with potential toxicity.  Clearly more research is needed to determine how microbes sense their 

environment and induce phenotypic changes.  But it does appear that several phenotype response 

programs are in place with different levels of actions based on molecular factors such as the alkyl 

chain length and branching patterns.    

Potential uses 
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The chemometric fingerprinting approach developed here to study dynamic phenotypic 

responses in near real-time has very broad applicability.  One of the drawbacks of Raman-based 

analyses of complex biological systems (i.e., a cell) is the ambiguity that can exist with Raman 

band assignments.  The approach presented here eliminates that, as entire Raman spectra (not 

individual bands) are used in the analysis.  While this may not have applicability to extract specific 

chemical information (e.g., fatty acids, amino acids, etc.), the approach can be used to compare 

among phenotypes and study the dynamics of phenotypic responses.  Thus, this approach can be 

applied to all microbes and treatments and has additional applicability to eukaryotes and 

biomedical research.   Observed responses from this study with different 4-carbon alcohols could 

prove very useful for engineering of alcohol tolerance in bacteria. By studying the observed 

clustering patterns, one can discern cell response mechanisms that are attributed to improved 

tolerance.  
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Peptide-guided surface-enhanced Raman 

scattering (pgSERS) for localized 

subcellular analysis of E. coli 
 

ABSTRACT 

The technology of peptide-guided surface enhanced Raman scattering (pgSERS) was 

further explored in this research.  In particular, pgSERS probes consist of peptides bound 

covalently to silver nanoparticles (Ag-NPs) that then localize in specified subcellular locations of 

microbes.  pgSERS probes were assembled ex vivo that effectively targeted the cell interior of E. 

coli and produced localized cell chemical composition information when analyzed by Raman 

spectroscopy.  In addition, a novel technique of in vivo pgSERS probe assembly was demonstrated, 

in which a target protein of interest was overexpressed and fused with a silver binding-domain 

(AgBP2).  Three different proteins with different known subcellular localizations were expressed 

with a bound AgBP2 domain: (i) FadL (an outer membrane protein), (ii) MalE (a periplasm bound 

protein) and (iii) AroP (a cytoplasm bound protein).  When the cell was flooded with unbound Ag-

NPs, the particles where drawn to the AgBP2 domain, creating SERS “hot spots” in specific 

locations.  Analysis by Raman spectroscopy revealed location-specific chemical composition 

information, and these were used to study 1-butanol toxicity to E. coli. 
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INTRODUCTION 

Advances in microbial phenotyping using Raman spectroscopy 

 The chemical composition of a cell is very complex and analysis is usually performed with 

several off-line analytical techniques (1).  A recent approach showed that Raman spectroscopy 

analysis of 1-butanol treated and untreated E. coli cultures closely mirrored results obtained by 

extractions and chromatographic analyses (2).  Raman spectroscopy has been shown to be a good 

candidate for microbial phenotyping and has been applied to samples of different phases (i.e., 

solid, liquid, and gas) (3-6), as well as cells, tissues, and organs (7, 8). The major advantages of 

using Raman spectroscopy for analyses biological systems include: (i) near real-time analyses, (ii) 

non-destructiveness to the sample, (iii) lack of interference from water, and (iv) minimal sample 

preparation.  We introduce a novel technology that allows obtaining a Raman signal of specific 

subcellular locations in an E. coli cell.  While similar achievements have been made in eukaryotes 

(9), bacterial cells have proven difficult because of their relative size.  The technology developed 

here has a broad applicability to all organisms and is based on our previously developed technology 

of peptide-guided surface-enhanced Raman scattering (pgSERS) probes (10).   

Surface-enhanced Raman scattering (SERS) 

 Raman spectroscopy produces low signal intensities, which can present challenges to the 

analysis of cells and other biological samples. Because of this, surface-enhanced Raman scattering 

(SERS) has gained popularity for the analysis of cellular components (11, 12). SERS has been 

shown to enhance Raman signal intensities by orders of magnitude (104 – 1016) (13), making the 

technique sensitive down to the single molecule level (13-15). SERS requires the presence of metal 

nanoparticles (usually silver or gold), and the Raman signals from molecules in the proximity of 

these nanoparticles undergo the amplification (13).  Enhancement of the Raman signal, however, 
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is non-specific, posing a challenge for analysis in cells, where the intracellular structure and 

chemical composition are highly complex and heterogeneous (2). This associated complexity 

makes it difficult to interpret SERS signals from cells, as SERS signals are highly irreproducible 

when metal nanoparticles are flooded into a cell uniformly to generate SERS signals (15, 16). The 

irreproducibility and non-specificity of SERS for cell analysis result in random dispersion of the 

SERS probes inside the cell, resulting in convoluted signals arising from contributions from 

potentially all molecules of the intracellular environment (17). As such, there is the need for 

reproducibility of the SERS signal.  This is achieved by targeting nanoparticles to a specific 

intracellular location. 

 Multiple approaches to localize nanoparticles for SERS analysis of subcellular locations 

have been published (4, 14, 17).  Most are largely limited to analysis of a single intracellular 

environment and only one has been tailored for microbial phenotyping as it involves synthetic 

peptides bound covalently to silver nanoparticles (Ag-NPs).  The initial application of this 

technology was to target the outer membrane of E. coli and show significant differences in SERS 

signals between (i) randomly dispersed Ag-NPs and (ii) localized pgSERS probes (10). Though 

very useful, this approach requires relatively expensive custom synthesized peptides, ex vivo 

assembly of peptides and Ag-NPs, and that the pgSERS probes can penetrate cell membranes.  To 

assess a general usefulness of this approach, three different ex vivo assembled pgSERS probes 

were analyzed. We also introduce a new approach of in vivo assembly of pgSERS probes. 

In vivo assembly of pgSERS probes 

Methods regarding the ex vivo pgSERS assembly process and analysis are available (10).  

The in vivo assembly process involves (i) genetically combining a silver-binding domain with a 

protein of interest, (ii) expressing this chimeric protein in an organism of interest, and (iii) 
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introducing unlabeled Ag-NPs to the cell.  The Ag-NPs then localize to the specific silver binding 

domain of the protein, giving rise to a localized SERS signal.  Three proteins were chosen based 

on their known final intracellular localization in E. coli following production (i) FadL (outer 

membrane), (ii) MalE (periplasm), and (iii) AroP (cytoplasm).  

FadL: An outer membrane protein  

 Several Gram-negative bacteria can use long-chain fatty acids (LCFAs) as a carbon and 

energy source (18, 19); however, the outer membrane of a bacterium is generally impermeable to 

hydrophobic LCFAs compounds (20, 21). In order to traverse the outer membrane, LCFAs depend 

on membrane bound accessory proteins.  The fatty acid degradation enzyme FadL (22) is a member 

of a conserved family of outer membrane proteins involved in the transport of LCFAs (23).  FadL 

has an additional function as a receptor for the bacteriophage T2 and is likely associated with 

peptidoglycan (24).  FadL of E. coli consists of 448 amino acids (molecular weight of 48.8 KDa) 

(25).  It has been crystallized (26, 27), and its 3-D structure contains a beta-barrel for LCFA 

transport. The N-terminus extends through the barrel structure and occupies a position on the 

extracellular side of the membrane (Fig. 1) (28).  These characteristics, along with the localization 

of FadL in the outer membrane, guided the protein design to linking the silver binding domain to 

FadL N-terminus in order to target Ag-NPs on the E. coli cell surface. 
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Figure 1. The protein 3D structure for FadL (1T6 in the protein database (PDB)) (26) 

 

MalE: A periplasm localized protein 

The maltose binding protein (MalE) is a soluble protein located in the periplasm of Gram-

negative bacteria and is involved in the active transport of maltose and maltodextrins across the 

cytoplasmic membrane of E. coli and promotes chemotaxis (29).  The mature MalE folds into a 

highly stable, protease-resistant, tertiary structure (Fig. 2) (30).  MalE is a monomeric protein with 

a molecular mass of 40.6 kDa (31). The structure consists of two globular domains that are 

separated by a deep groove or cleft. The maltose binding site is situated within the central cleft 

between the two domains (32, 33).  
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Figure 2. The protein 3D structure for MalE (1FQA in the PDB) model from protein database 

(32). 

 

AroP: A cytoplasm localized protein 

 The three aromatic amino acids phenylalanine, tryptophan, and tyrosine can be actively 

transported across the inner membrane of E. coli by a number of specific and distinct transport 

systems. They can also pass through the cytoplasmic membrane via the general aromatic 

transporter, AroP (34, 35).  It is an integral cytoplasmic 37 kDa membrane protein that targets 

intracellular contents close to the inner membrane on the cytoplasmic side (32).  AroP consists of 

two equivalent domains arranged in 12 membrane-spanning regions of approximately 21 amino 

acids connected by hydrophilic loops of various lengths (Fig. 3) (36-38).  
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Figure 3. The protein 3D structural prediction for AroP (P15993 in the Protein Model Portal (39)). 

 

AgBP2: Silver binding domain 

 The increased use of Ag-NPs in multiple applications has raised concerns about the lasting 

environmental impacts and potential toxicity to microbes (40). Bacterial tolerance to Ag-NPs has 

been investigated by altering the protein binding and transport domains that adhere to these 

particles. A library search approach identified the short peptide AgBP2 (EQLGVRKELRGV) 

exhibiting significant binding to silver (40). When fused to the maltose binding protein the silver 

binding domain increased cell survival by a factor of 1000 upon incubation in silver doped media; 

however, the mechanism of tolerance was not fully elucidated in the published study (40).  
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pgSERS for subcellular targeting of E. coli 

The ex vivo and in vivo pgSERS assemblies were investigated for site specific targeting 

and analysis within the E. coli bacterium.  The ex vivo assembly method followed an established 

protocol (10), and demonstrated the ability to target the interior of the E. coli cell.  The in vivo 

assembly method is shown here for the first time and three specific locations of the E. coli cell 

were targeted using FadL, MBP, and AroP proteins expressed with a fused AgBP2 domain.  Ag-

NPs were found to effectively bind these proteins and create SERS “hot spots” of aggregated Ag-

NPs at specified intracellular locations.  Aggregating Ag-NPs are characteristic of pgSERS probes, 

and these were visualized by transmission electron microscopy (TEM) to verify localization of 

Ag-NPs.   

Our in vivo pgSERS assembly approach is novel and allows for continuous and controlled 

production of individual proteins, allowing for chemical composition analysis of outer membrane, 

periplasmic, or cytoplasmic locations of the E. coli. This technique has a broad applicability to 

virtually any organism, and the protein sequence can be modified as necessary. 

 

MATERIALS AND METHODS 

Bacterial strain, media, and growth conditions 

Proteins were expressed in E. coli ER2566 (New England Biolabs (NEB); Ipswich, MA). 

Cultures were grown at 37°C in liquid Luria-Bertani (LB) media with 100 mg/L ampicillin and 

agitation at 210 rpm. Overnight cell cultures were prepared by inoculating four 15 mL tubes of 

liquid LB growth media with E. coli cells from a solid agar plate containing: (i) an empty pBAD24 

plasmid, (ii) cells with the fadL gene inserted on the pBAD24 plasmid (E. coli pBAD-fadL), (iii) 

cells with malE inserted on a pBAD24 plasmid (E. coli pBAD-malE), and (iv) cells with aroP 
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inserted on a pBAD24 plasmid (E. coli pBAD-aroP). Cultures were incubated and monitored by 

optical density measurements at 600 nm (OD600). Aliquot samples were then used to prepare 

subcultures by diluting 10 mL of cell culture with 15 mL fresh pre-warmed LB media in a sterilized 

culture flask and grown to the start of the exponential phase (OD600: 0.4 – 0.6), at which point the 

first sample (2 mL) from control culture was taken to serve as the positive control and stored in a 

microcentrifuge tube. The sub-cultures were then induced with 0.1 M L-arabinose solution for at 

least 3 hours. At the end of the induction time, samples were taken for: (i) SDS-page protein gel 

analysis (50 µL), (ii) in vivo assembly with Ag-NPs and TEM imaging (1 mL), and (iii) analysis 

by Raman spectroscopy (10 µL).  

PCR and cloning 

Genomic DNA extraction, plasmid DNA purification, and PCR product purification were 

performed using the GenerationTM capture column (Qiagen, Valencia, CA), GenJet Plasmid 

Miniprep Kit (Fisher Scientific, Pittsburgh PA), and GenJet PCR Purification Kit (Fisher 

Scientific, Pittsburgh PA), respectively. All enzymes were purchased from NEB.  E. coli K12 10B 

genomic DNA was used as a template for PCR amplification of FadL, MalE, and AroP. Each gene 

was amplified using the primer sets listed in Table 1, which also contained the AgBP2 silver 

binding domain and EcoR I and Hind III restriction sites for cloning.  
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Table 1. PCR primers used to amplify the fadL, malE, and aroP genes for over-expression. 

Primer Name Sequence (5’3’) 

fadL (forward) TAG GAATTCATGAGCCAGAAAACCCTGTTTACAA 

fadL (reverse) TAGAAGCTTTTAAACACCACGCAGTTCTTTACGAACACCCAGCT

GTTCGAACGCGTAGTTAAAGTTAGTACCG 

malE (forward) TAGGAATTCATGAAAATAAAAACAGGTGCACGCATC 

malE (reverse) TTCAAGCTTTTAAACACCACGCAGTTCTTTACGAACACCCAGCTG

TTCCTTGGTGATACGAGTCTGCGCG 
aroP (forward) TAGGAATTCATGATGGAAGGTCAACAGCACGG 

aroP (reverse) TAGAAGCTTTTAAACACCACGCAGTTCTTTACGAACACCCAGCT

GTTCATGCGCTTTTACGGCTTTGGC 

Plasmid check 

primers 

 

pBAD24-f AAATAAACAAATAGGGGTT GCTCATGAGCCCGAAGTG 
pBAD24-r AGGCGCCC AAACAAAAGAGTTTGTAGAAACGC 

 

*Underline: The AgBP2 silver binding domain 

*Bold: The EcoR I restriction site 

*Bold and Underline: The Hind III restriction site 

 

Primers were synthesized by Integrated DNA Technologies (IDT; Coralville, IA). PCR 

was performed with Q5 High-Fidelity PCR Polymerase (NEB) according to the manufacturer’s 

instruction. PCR products were digested with EcoR I and Hind III and combined with a similarly 

digested and dephosphorylated pBAD24 plasmid (41).  All ligation reactions were performed 

using the Quick LigationTM Sticky-End Master Mix (NEB) using reaction conditions specified by 

the manufacturer. Each of the plasmids was transformed into E. coli ER2566 chemically competent 

cells (NEB).  Transformants were selected on LB agar plates with 100 µg/ml ampicillin.  Colony 

PCR was used to verify cloning and was performed using the plasmid check primers in Table 1 

and the Quick-Load Taq 2X Master Mix (NEB) following to the manufacturer’s protocol.  

Resulting PCR products were visualized by gel electrophoresis. 
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Protein induction  

 

The recovered protein samples, were separated and analyzed on 12% polyacrylamide gels. 

Ex vivo pgSERS probe assembly 

 

 Existing methods for ex vivo pgSERS probe assembly were used (10).  The following 

custom peptides were synthesized (Peptide 2.0; Chantilly, VA) and covalently bound to SFNPs: 

(i) CGRKKRRQRRR and (ii) CEEEEEEEEEE.  With the N-terminal Cys, the covalent attachment 

to Ag-NPs is spontaneous and occurs by incubating 40 nm Ag-NPs (0.02 mg/mL) with the 

synthetic peptide (1 mg/mL) in a 5:1 ratio at room temperature for 2 h.  The pgSERS probes were 

then added to exponentially growing E. coli cells (OD600: 04 – 0.6). 

In vivo pgSERS probe assembly 

 Cells were harvested from 1 mL of culture by centrifugation at 10,000 rpm and 4°C for 5 

min. Cells were washed 3 times with equal-volumes (1 mL) of phosphate-buffered saline (PBS), 

and the supernatant was discarded after each wash. The washed cells were re-suspended in 100 µL 

purified water and diluted with 1,000 µL of 40 nm Ag-NPs (0.02 mg/mL) and incubated at room 

temperature for 2 h. 

TEM imaging 

 

Following the incubation, the cells were recovered by centrifugation at 10,000 rpm and 

4°C for 5 min while discarding excess unbound SNP. The resulting cells with bound SNP were 

then resuspended in 50 µL purified water and fixed in 500 µL of Karnovsky fixative as per 

recommendation of the imaging lab. The prepared slides with samples, were then visualized and 

analyzed on a JOEL 1400 transmission-electron microscopy located in the Morphology Service 

Laboratory at the Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA. 
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pgSERS analysis and data processing 

 Cells incubated with Ag-NPs were brought up in 10 µL Type I purified water and 2 µL 

was dried on an aluminum surface at room temperature. The dried cells were analyzed with a 

Bruker Senterra dispersive Raman spectrometer equipped with a confocal microscope and 

objective lens of 100X magnification (Bruker Optics, Billerica, MA) as described previously (10). 

Measurements were carried out using 532 nm laser excitation (10 mW) for 5 seconds with spectral 

resolution of 9-15 cm-1. At least 10 individual spectra were acquired per sample.  Following data 

acquisition, the data were pre-processed (i.e., baseline correction, error detection) using OPUS 

software (Bruker Optics; Billerica, MA) and further analysis done with MATLAB (R2012A) 

software (MathWorks; Natick, MA). All spectra were vector normalized over the entire spectral 

range (300 cm-1 – 3600 cm-1) (2, 10, 42). 

 

RESULTS 

Ex vivo pgSERS assembly 

 The methods regarding assembly of pgSERS probes ex vivo (10) were followed to create 

two additional sets of pgSERS probes capable of aggregating in the E. coli cell interior and 

producing a SERS signal.  In particular, the pgSERS probes designed were based on including 

hydrophilic amino acids in the pgSERS peptide.  In the previous study (10), a hydrophobic peptide 

resulted in aggregation at the cell membrane, and un-bound Ag-NPs distributed evenly throughout 

the cell.  Results of the hydrophilic pgSERS probes are shown in Fig. 4.  Of particular significance 

is that both hydrophilic pgSERS probes aggregated in the cell interior.  The averaged normalized 

Raman spectrum for each of the pgSERS probes is also presented in Fig. 4.  The pgSERS spectra 
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are largely different for the two probes, which is indicative of the heterogeneous intracellular 

environment. 

 

 

Figure 4.  Ex vivo assembly of pgSERS probes, localization in the E. coli interior, and resulting 

spectra when analyzed by Raman spectroscopy 

 

In vivo pgSERS assembly 

The assembly of Ag-NPs with all three peptides fused with the AgBP2 silver binding 

domain is conceptualized in Fig. 5. 
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Figure 5. Visualization of the hypothesized protein-AgBP2-SNP in vivo assembly and localization 

for (a) FadL:AgBP2, (b) MalE:AgBP2, and (c) AroP:AgBP2 

 

 Location-specific pgSERS signals were obtained by first cloning the target gene sequence 

modified to contain the AgBP2 silver binding domain. Second, by employing an arabinose-

inducible promoter in the plasmid construct, expression of the target protein:AgBP2 fusion could 

be regulated. When the pBAD promoter was not induced, the targets were not expressed.  With 

pBAD induction using 0.1M arabinose, the targets were expressed, as shown in the SDS-PAGE 

protein gel image in Fig. 6. A culture in which the pBAD promoter was induced with 0.1M 

arabinose in the presence of 1.2% 1-butanol showed little to no target protein expression (Fig. 6) 

and cell debris was largely present in TEM images (not shown).  . 

This is likely the result of a loss in culture viability due to previously observed 1-butanol toxicity 

(2).  

 

pgSERS – In vivo Assembly 

Approach 3: 
  

Targeting  

Cell Interior 

Approach 2: 
  

Targeting  

Periplasm 

Approach 1:  
 

Targeting  

Outer Membrane  

a.  b.  c.  
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Figure 6. SDS-page gel image showing the three proteins; (i) FadL, (ii) MalE, and (iii) AroP 

before and after induction with arabinose and in the presence of 1-butanol (but). 

Following the expression of the target:AgBP2 fusions (in absence of 1-butanol), 40 nm Ag-

NPs were infused into the culture, and in vivo assembly and localization of pgSERS probes was 

observed.  TEM images are shown in Fig. 7.  In particular, control cultures (no Ag-NPs) are shown 

in Figs. 7a,b.  The higher magnification in Fig. 7b is required to show the absence of Ag-NPs 

inside the cell.  This is compared with Fig. 7c, which shows a single cell with unlabeled and 

randomly distributed Ag-NPs.  Very little order or aggregation of Ag-NPs is observed for this 

scenario.  The in vivo assembled pgSERS probes are shown in Fig. 7d-f.  Ag-NPs aggregate around 

the exterior of the cell where FadL:AgBP2 is expected to be localized, with few Ag-NPs in the 

interior of the cell (Fig 7d), suggesting that the silver binding domain was successful in binding 

40 nm Ag-NPs.  Likewise, for the second case, Ag-NPs aggregate on inside of the cell close to the 

exterior membrane where MalE:AgBP2 is expected to localize and this is shown in Fig. 7e.  

Significantly greater silver aggregation was observed for the MalE:AgBP2 fusion than for the 

FadL:AgBP2 fusion.  The reasons for this are not entirely clear but could in part be as a result of 
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the hydrophobic outer membrane bilayer.  In addition, the AroP:AgBP2 fusion bound Ag-NPs and 

localized in the cell interior near the center of the cell, (Fig. 7f).  In this case, even fewer probe 

aggregates were observed. 

 

 

Figure 7. Localization of protein:AgBP2-SNP conjugates at targeted locations of E. coli cells. SNP 

aggregates are shown as dark spots in b-f TEM images.  The following images are shown: (a,b) 

control sample with no Ag-NPs added, (c) control sample mixed with unlabeled Ag-NPs, (d) 

induced FadL:AgBP2 (targeting the outer membrane) mixed with Ag-NPs, (e) induced 

MalE:AgBP2 (targeting the periplasm) mixed with Ag-NPs, and (f) induced AroP:AgBP2 

(targeting the cell interior) mixed with Ag-NPs. 

 

Raman spectroscopy of in vivo assembled pgSERS probes 

The representative Raman spectra from cultures harboring the pgSERS probes are shown 

in Figs. 8-10 for the FadL:AgBP2, MalE:AgBP2, and AroP:AgBP2 fusions, respectively.  Raman 
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spectra are shown for both induced and un-induced cultures. Following exposure to 1.2% v/v 1-

butanol, the exposed cells were found to undergo a toxicity response that resulted in altered 

membrane fatty acid structures, increased membrane fluidity, and dramatically reduced cell growth 

(2).  These characteristics were found by both Raman spectroscopy and conventional analytical 

methods.  It was also demonstrated that the total protein content as well as the total amino acids 

content of hydrolyzed protein for exposed and control cells was unaltered.  As shown in Fig. 6, the 

target fusion proteins were not detected when the cells were exposed to 1.2% v/v 1-butanol. The 

Raman spectra results for both cases of protein  expression in the presence and absence of the 

alcohol are shown for comparative in Figs. 8-10 for comparison.  

The pgSERS acquired signal for the FadL:AgBP2 fusion protein and control cells show 

significant differences among the superimposed spectra, as shown in Fig. 8.  FadL is an outer 

membrane protein and the Raman spectrum exhibits characteristics of components of the E. coli 

cell wall such as lipids and -protein polysaccharides. The un-induced culture produced multiple 

signals for DNA, nucleic acids, and proteins, which are absent from the Raman spectra of the 

induced culture.  These Raman peaks are characteristic of Ag-NPs scattered throughout the cell 

randomly (10).  Interestingly, for the 1-butanol exposed cells, the Raman spectrum seems to mimic 

that of the un-induced culture with several less sharp peaks for nucleic acids, which may be 

indicative of toxicity.  
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Figure 8. Averaged (n=10) SERS spectra (top), normal Raman (middle), and standard deviations 

of SERS signal (bottom) for E. coli cells containing the FadL:AgBP2 fusion.  The following SERS 

spectra are shown: (red) induced, (blue-dashed) un-induced, and (green) induced with 1-butanol 

exposure.  The following normal Raman spectra are shown: (red) induced, (blue-dashed) un-

induced, and (green) induced with 1-butanol exposure. 

 

Similarly, when the MalE:AgBP2 fusion protein was expressed by induction, additional 

Raman bands were observed in the resulting spectra that are indicative of lipids, proteins, and 

carbohydrates, as shown in Fig. 9.  Again, the major differences between the spectra of induced 

and un-induced cultures are the presence of lipids, beta-protein structures, and the amide III 

bands for the induced culture and nucleic acids for the un-induced culture.  In addition, the 1-

butanol exposed cells produced a Raman signal similar that of the un-induced culture with the 

notable exception being the strength of the nucleic acids bands.   
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Figure 9. Averaged (n=10) SERS spectra (top), normal Raman (middle), and standard deviations 

of SERS signal (bottom) for E. coli cells containing the MalE:AgBP2 fusion.  The following SERS 

spectra are shown: (red) induced, (blue-dashed) uninduced, and (green) induced with 1-butanol 

exposure.  The following normal Raman spectra are shown: (red) induced, (blue-dashed) 

uninduced, and (green) induced with 1-butanol exposure. 

 

The AroP:AgBP2 fusion protein, which localized in the cytoplasm, showed strong DNA, 

RNA, and carbohydrate Raman signals when induced compared to the un-induced culture.  This 

is shown in Fig. 10.  These two Raman spectra were found to be similar, as nucleic acids normally 

dominate the SERS signal generated from randomly distributed Ag-NPs.  The 1.2% v/v 1-butanol 

exposed cells again closely mimicked the un-induced culture with some notable exceptions in peak 

intensity 
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Figure 10. Averaged (n=10) SERS spectra (top), normal Raman (middle), and standard deviations 

of SERS signal (bottom) for E. coli cells containing the AroP:AgBP2 fusion.  The following SERS 

spectra are shown: (red) induced, (blue-dashed) uninduced, and (green) induced with 1-butanol 

exposure.  The following normal Raman spectra are shown: (red) induced, (blue-dashed) 

uninduced, and (green) induced with 1-butanol exposure 

 

DISCUSSION 

Use of SERS to acquire microbial phenotype signatures 

 In this research, techniques in molecular biology and assembly were combined with SERS 

technology to target subcellular locations in E. coli and obtain chemical composition information.  

This allowed us to address the challenges of (i) reproducibility of SERS spectra due to randomness 

of un-labeled SNP dispersion, and (ii) convoluted signal due to the complex nature of cellular 

composition. The SERS signal is acquired by placing the sample of interest in close proximity to 

metallic nanoparticles (i.e., usually gold or silver). However, the typical procedure of mixing and 
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incubating bacteria with SERS substrates, results in random dispersion of substrates within the 

cell. This leads to the signal amplification of diverse chemical environments simultaneously, 

resulting in a largely un-reproducible signal.  By exploiting the silver binding properties of the 

AgBP2 peptide as a fusion tag, Ag-NPs were shown to be drawn to this domain.  Thus, localizing 

Ag-NPs became possible by fusing AgBP2 with proteins with known localization properties.  The 

prospect of this technology is promising in that very specific cell environments can now be 

targeted, and the potential applications are multi fold.  For example, while this technique was used 

to probe cell chemical composition broadly, it can also be used to identify specific molecules 

within a cell.  This will have applications in nano-medicine as well as environmental microbiology.  

We chose the problem of 1-butanol toxicity for pg-SERS analyses since we already have data for 

the same experiment using Raman spectroscopy analysis.. 

Analyzing 1-butanol toxicity 

 In a separate approach (2), Raman spectroscopy was used together with standardized 

methods of analysis (e.g., GC-FID/MS, UPLC, fluorescence anisotropy, and Bradford assay) to 

study the phenotypic responses of E. coli cells exposed to 1.2% 1-butanol. Good correlations 

between different analytical methods were found.  An attempt was made to further investigate 

these original findings by employing the in vivo assembled pgSERS methodology. SDS-PAGE 

protein gels (Figure 6) showed, interestingly, that the targeted protein fusions were not expressed 

(or at least not visible on the gel) in the presence of 1.2% v/v 1-butanol. This could potentially be 

as a result of interaction of the alcohol groups with hydrophobic parts of the membrane proteins 

disrupting their function.  This presumably means that Ag-NPs were not aggregated in the targeted 

locations, yet caused adverse disruptions in the cells seen as cell debris in the TEM images (not 

shown).  Visual inspection of the SERS spectra for all three cases of presumed induction in the 
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presence of 1.2% 1-butanol showed differences in spectra when compared to spectra of the induced 

cells in absence of 1-butanol.  However, this was found to depend on the target location.  Cells 

expressing the AroP protein (Figure 10) showed less impact by the alcohol showing relatively 

similar signature to the control presumably because this protein disperses from the inner membrane 

through the cytoplasm further from the external membrane which is most impacted by the alcohol. 

Similarly, MalE:AgBP2 protein fusion (Figure 9) induced spectra were more similar to the control 

than did cells expressing FadL:AgBP2  (Figure 8), but the former (MalE:AgBP2) was still worse 

than AroP:AgBP2.   

Integrating pgSERS into metabolic engineering 

 The results presented in this research represent a first step in the use of pgSERS.  The 

potential exists to use the ex vivo and in vivo approaches for biological discovery with further 

applications in the field metabolic engineering.  However, these developments will not be trivial.  

The overall understanding of SERS spectra has proven challenging over the past two decades, 

but reproducibility of pgSERS spectra offers a significant advantage.  Furthermore, analyses, 

such as the 1-butanol toxicity responses, can demonstrate the potential to monitor localized 

phenotype changes.  This will obviously be important in determining toxicity mechanisms and 

will certainly be of use in measuring intracellular storage of valuable products.  Overall, this 

research has demonstrated that pgSERS probes can be assembled in vivo and that both ex vivo 

and in vivo assembled probes can be localized effectively and provide local cell composition 

information.   
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CHAPTER SIX  

CONCLUSIONS 
 

 
Critical to the advancement of microbial biofuel production and donor organ preservation, 

is access to analytical techniques that can be applied in real-time. In this dissertation, Raman 

spectroscopy and multivariate statistical analyses were used to study; (i) alcohol toxicity in E. coli, 

(ii) perfused organ health using the new VasoWave® technology, and (iii) target sub-cellular study 

of microbes employing molecular biology design techniques. Raman spectroscopy is of interest 

for bacterial phenotyping because it can be performed: (i) in near real-time, (ii) with minimal 

sample preparation (label-free), and (iii) with minimal spectral interference from water. 

In the initial study, Raman spectroscopy was used to study the time-course phenotypic 

responses of E. coli (DH5-α) to 1-butanol exposure (1.2% v/v).  Here, traditional methods of 

analysis such as GC-MS and fluorescence anisotropy data were correlated with Raman data which 

showed good correlation (R2 ≥ 0.75) between techniques.  Several macromolecules were 

investigated in this paper in relation to the traditional method chosen. For example, GC-MS data 

allowed for comparison of Raman peaks assigned to different macromolecules (saturated, 

unsaturated, and cyclopropane fatty acids), membrane fluidity data were compared with Raman 

peaks used to measure the degree of order or disorder within the cell membrane, whereas data from 

Bradford assay test allowed comparison with Raman peak intensity for total proteins. The observed 

phenotypic responses following 1-butanol exposure included: (i) decreased saturated fatty acids 

levels, (ii) retention of unsaturated fatty acids and low levels of cyclopropane fatty acids, (iii) 
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increased membrane fluidity following the initial response of increased rigidity, and (iv) no 

changes in total protein content or protein-derived amino acid composition. 

In the follow-up study, E. coli cells were exposed to different 4-carbon alcohols:  (i) 1-

butanol and 2-butanol (straight chain alcohols), (ii) isobutanol and tert-butanol (branched chain 

alcohols), and (iii) 1,4-butanediol (no terminal alkyl end). The Raman data were analyzed using 

the in-house MATLAB software – Raman Data Processing (RDA) toolbox, which allows for 

multivariate statistical analysis, like principle components analysis (PCA) and linear discriminant 

analysis (DA). In this work, distinct phenotype clustering based on alcohol chain length and/or 

positioning of the OH group were explored using “chemometric fingerprint”. While the isobutanol 

and tert-butanol treated cells showed similar phenotypes, isobutanol was significantly more toxic.  

In addition, the phenotypic response was found to take place largely within 60 min of culture 

treatment; however, significant responses (especially for 1,4-butanediol) were still occurring at 

180 min post-treatment. The usefulness of the “chemometric fingerprinting” is that it helps 

eliminate any ambiguity that may exist from Raman band assignments as is evident from the 

literature. The approach allows for comparison of different phenotypes and how they may relate 

to an organism’s phenotypic response. To further ascertain these new capabilities, “chemometric 

fingerprinting” was again applied to monitor the overall health and degradation of porcine livers 

perfused ex vivo using the VasoWave® system. Raman spectroscopy is an excellent analytical 

technique for organ monitoring as it is label-free, non-invasive and can be applied in real-time. 

Three livers, perfused under different pressures and temperatures, were compared over a 24 h ex 

vivo perfusion time-course.  Results indicated that perfusion pressure was a more significant factor 

in organ degradation than was temperature.  In addition, a non-linear degradation time-course was 

identified for all three perfused livers, and this time-course was different for individual livers, 
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demonstrating the time-dependent transition from its initial “healthy” state towards a more 

“unhealthy” degenerative state at 24 h. Finally, the related technique of surface-enhanced Raman 

scattering was employed together with ex vivo and in vivo assembled probes for sub-cellular target 

analyses in E. coli DH5-α. Three different sub-cellular locations: (i) cell outer membrane (FadL 

protein), (ii) cell periplasm (MalE protein) and (iii) cell cytoplasm (AroP protein) were 

investigated. The developed technique, in vivo pgSERS, proved very efficient and clearly showed 

peak specificity for target locations from the SERS acquired spectra. FadL:AgBP2 fused proteins 

showed peaks rich in lipids and polysaccharides as will be present in the E. coli cell membrane. 

MalE:AgBP2 showed a mixture of outer membrane components with inner membrane components 

such as nucleic acids. AroP:AgBP2 fused protein resulted in a spectrum devoid of outer membrane 

components like lipids while being heavily rich with peaks for nucleic acid content which is quiet 

similar to peaks in  the uncontrolled SERS spectrum. 

The applications of real-time analysis of biological samples with Raman spectroscopy are 

numerous, and the method is capable of delivering near real-time phenotyping. The results of this 

research demonstrate the power of Raman for phenotypic profiling of E. coli cells.  In addition, 

real-time phenotypic monitoring has tremendous application to the field of biosensing, as cell 

composition changes may be observed in response to small quantities of environmental toxins as 

well as chemical or biological warfare agents.  Finally, the ability to deliberately target specific 

locations within or outside a cell has tremendous potential for diverse research with microbes and 

endless applications. Different pgSERS probes can be designed for specific study with careful 

thought into the design process all at the control of the researcher. 

. 
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CHAPTER SEVEN: SUPPLEMENTARY MATERIALS 

 
Near real-time analysis of the phenotypic responses of Escherichia coli to 1-butanol exposure using Raman spectroscopy 

 

 

Supplementary Appendix 

 

Supplementary Table 1. Correlation coefficients (R values) for FAME analysis data with Raman spectroscopy data using Raman bands 

assigned in the literature and new bands identified in this research. 

Raman 

Band (cm-1) 

Saturated 

Fatty Acids (R) 

Unsaturated 

Fatty Acids (R) 

Cyclopropane 

Fatty Acids (R) 

Raman Signature Assignment References 

877 0.014 - - Symmetric stretching (C-C-N+) (1) 

968 - - - Lipids (1) 

980 0.20 - - Bending (=CH) (1) 

1057 - 0.37 - Lipids (1) 

1064 - 0.09 - Vibrational stretch (C-C) (1) 

1078 - - - Vibrational stretch (C-C) (C-O) (1) 

1095 - 0.64 - Lipids (1) 

1123 0.33 - 0.56 Vibrational stretch (C-C) (1, 2) 

1131 0.02 - 0.37 Fatty Acid (1) 

1168 - - 0.14 Lipid Assignment (C=C) (COH) (1) 

1249 - 0.53 - Bend (=CH)  (3) 

1250 - 0.57 - Bend (=CH)  (3) 

1251 - 0.60 - Bend (=CH)  (3) 

1252 - 0.59 - Bend (=CH)  (3) 

1253 - 0.60 - Bend (=CH)  (3) 

1254 - 0.60 - Bend (=CH)  (3) 

1255 - 0.61 - Lipids, Bend (=CH) (1, 3) 

1256 - 0.62 - Bend (=CH)  (3) 
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1257 -- 0.64 - Bend (=CH)  (3) 

1258 - 0.66 - Bend (=CH)  (3) 

1259 - 0.69 - Bend (=CH)  (3) 

1260 - 0.72 - Bend, cis Stretch (=CH),  

Deformation (-CH2) 

(1, 3, 4) 

1263 - 0.76 - Bend, Symmetric Rocking 

(=CH)  

(2, 3) 

1264 - 0.75 - Bend (=CH)  (3) 

1265  0.71 - Bend (=CH)  (3) 

1266 - 0.64 - Bend (=CH), cis Deformation 

(=CH) 

(1, 3, 5) 

1267 - 0.55 - Lipid (CH),  Bend (=CH) (1, 3) 

1268 - 0.46 - Deformation (=CH) (1) 

1270 - 0.40 - Lipid assignment (C=C) (1) 

1298 - 0.12 0.30 Palmitic Acid, Acyl Chains, 

Fatty Acids 

(1) 

1299 - 0.03 0.40 Deformation (CH2) (1) 

1300 0.07 - 0.48 Twist (-CH2) (2) 

1301 0.16 - 0.54 Vibration (-CH)  

Twist (-CH2) 

(1, 3) 

1302 0.23 - 0.59 Lipid Assignment, Bend, Twist 

(-CH3) (-CH2)  

(1) 

1304 0.29 - 0.64 Deformation (-CH2 ) (1) 

1307 0.2 - 0.60 Bend, Twist (-CH3) (-CH2) (1) 

1309 0.02 - 0.49 Bend, Twist (-CH3) (-CH2) (1) 

1313 - 0.31 0.11 Twist (-CH2CH3) (1) 

1367 - 0.03 0.47 Phospholipids, Symmetric 

Vibration (-CH3) 

(1) 

1379 - 0.02 0.31 Lipid Assignment (1) 

1393 0.16 - 0.53 Rocking (CH) (1) 

1437 0.10 - - Deformation (CH2) (1) 

1439 0.2 - - Deformation, Scissoring (CH2) (1) 
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1440 0.24 - - Deformation (CH) (CH2) (CH3) (1) 

1441 0.28 - - Deformation, Bend, Scissoring 

(CH) (CH2) (CH3) 

(1) 

1442 0.31 - - Fatty Acids, Deformation, Bend 

(CH2) (CH3) 

(1) 

1443 0.32 - - Fatty Acids, Deformation (CH2) (1) 

1444 0.32 - - Fatty Acids, Deformation (CH2) (1) 

1445 0.3 - - Phospholipids, Deformation, 

Bend, Scissoring (CH2) (CH3)  

(-CH2CH3) 

(1) 

1446 0.26 - - Deformation, Bend (CH2) (1) 

1447 0.2 - - Deformation, Bend (CH2) (1) 

1448 0.13 0.00 - Deformation (CH2) (-CH2CH3) (1) 

1449 0.05 0.09 - Lipids, Vibration (CH) (1) 

1450 - 0.18 - Deformation, Bend (CH2) (CH) (1) 

1451 - 0.26 - Deformation (-CH2CH3) (1) 

1454 - 0.27 - Overlapping Asymmetric CH3 

Bending and CH2 Scissoring 

(1) 

1460 - 0.21 - Deformation (CH2) (CH3) (1) 

1465 - 0.40 - Lipids (1) 

1525 - 0.27 - Vibration (C=C) (1) 

1554 0.38 - 0.79 Discovered in this research  

1580 - - 0.54 Stretching (C-C) (1) 

1582 0.06 - 0.60 Discovered in this research  

1585 0.16 - 0.65 Olefinic Stretch (C=C) (1) 

1607 0.60  0.82 Discovered in this research  

1616 0.68 - 0.79 Discovered in this research  

1628 - 0.13 0.30 Stretch (C=C) (1) 

1652 - 0.38 - Lipids, Stretch (C=C) (1) 

1655 - 0.40 - Lipids, Stretch (C=C) (C=O) (1) 

1656 - 0.37 - Lipids, Stretch, cis Vibration 

(C=C) 

(1) 
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1657 - 0.32 - Fatty Acids (1) 

1660 - 0.13 - Lipids, Fatty Acids,  

cis Vibration (C=C) 

(1) 

1667 - 0.11 - Stretch (C=C) (C=O) (1) 

1674 - 0.54 - Stretch (C=C) (1) 

1734 - 0.21 - Lipids, Stretch (C=O) (1) 

1736 - 0.18 - Lipids, Esters (C=O) (1) 

1738 - 0.27 - Lipids (1) 

1744 - - - Lipids (Carbonyl Group) (1) 

1745 0.1 - 0.11 Lipid Assignment, 

Phospholipids, Vibration (C=O) 

(1) 

1746 0.21 - 0.31 Lipids, Stretch (C=O) (1) 

1747 0.22 - 0.42 Lipids (C=O) (1) 

1750 - - 0.10 Lipids, Fatty Acids (C=C) 

(C=O) 

(1) 

1754 - 0.31 - Lipids (C=O) (1) 

2817 - 0.37 - Symmetric Stretch (-CH2) (1) 

2840 - 0.49 - Symmetric Stretch (-CH3) (1) 

2850 - 0.19 0.10 Lipids, Fatty Acids, Symmetric 

Stretch (-CH2) (-CH3) 

(1) 

2855 0.52 - 0.53 Symmetric Stretch (-CH2)  

(-CH3), Asymmetric Stretch  

(-CH2) 

(1, 2) 

2856 0.59 - 0.58 Symmetric Stretch (-CH2)  

(-CH3), Asymmetric Stretch  

(-CH2) 

(1, 2) 

2858 0.60 - 0.60 Symmetric Stretch (-CH2)  

(-CH3), Asymmetric Stretch  

(-CH2) 

(1, 2) 

2859 0.55 - 0.56 Symmetric Stretch (-CH2)  

(-CH3), Asymmetric Stretch  

(-CH2) 

(1, 2) 

2868 0.76 - 0.63 Symmetric Stretch (-CH2)  (1) 
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* Negative correlation coefficients are represented by a dash. 

 

(-CH3), Asymmetric Stretch  

(-CH2) 

2870 0.78 

 

- 0.64 Symmetric Stretch (-CH2)  

(-CH3), Asymmetric Stretch  

(-CH2) 

(1, 6) 

2876 0.67 - 0.47 Stretch (-CH), Asymmetric 

Stretch (-CH2) 

(1) 

2883 - 0.27 - Stretch (-CH), Asymmetric 

Stretch (-CH2) 

(1) 

2889 - 0.17 0.22 Asymmetric Stretch (-CH2) (1) 

2893 - 0.20 0.21 Symmetric Stretch (-CH3) (1) 

2900 - 0.51 - Stretch (-CH) (1) 

2910 0.67 - 0.52 Stretch (-CH3) (1) 

2915 0.74 - 0.47 Lipids (-CH) (1) 

2924 0.76 

 

- 0.60 Asymmetric Stretch (-CH2) (6, 7) 

2930 0.79 -  

0.50 

Asymmetric Stretch (-CH)  (2) 

2933 0.81 - 0.47 Asymmetric Stretch (-CH) (1) 

2940 0.62 - 0.38 Vibration (-CH) (-CH2) (1) 

2954 - 0.23 - Asymmetric Stretch (-CH3) (6) 

2956 - 0.51 - Asymmetric Stretch (-CH3) (1) 

2960 - 0.65 - Asymmetric Stretch (-CH3) (1) 

2970 - 0.55 - Asymmetric Stretch (-CH3) (1, 5) 

3008 - 0.52 - Lipids, Fatty Acids, Asymmetric 

Stretch (=CH) 

(1) 

3010 - 0.36 - Unsaturated Fatty Acids, Stretch 

(=CH) 

(1) 

3015 0.04 0.08 - Lipids, Vibration (=CH) (1) 
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Supplementary Table 2.  All literature cited Raman bands considered for each amino acid (8, 9) for compiling the optimized results 

shown in Table 1. 

 

 Amino Acids Associated Raman Bands (cm-1) 

Ala 399, 533, 771, 852, 922, 1021, 1115, 1149, 1308, 1361, 1378, 1411, 1464, 1485, 1599 

Arg 857, 873, 930, 985, 1036, 1086, 1176, 1199, 1264, 1310, 1317, 1408, 1423, 1443, 1477 

Asp/Asn 749, 779, 877, 939, 1084, 1125, 1338, 1408, 1426, 1695 

Cys 455, 499, 542, 613, 678, 785, 873, 967, 1341, 1385, 1410 

Glu/Gln 623, 669, 873, 917, 988, 1080, 1182, 1319, 1379, 1422, 1462, 1637, 1682 

Gly 359, 496, 603, 898, 1036, 1327, 1332, 1413, 1442, 1458, 1515 

His 
539, 657, 731, 784, 806, 854, 919, 929, 964, 977, 1062, 1088, 1113, 1176, 1225, 1252, 1272, 1319, 1336, 

1349, 1355, 1409, 1431, 1443, 1500, 1578 

Ile 
536, 557, 675, 765, 820, 825, 852, 873, 918, 964, 993, 1017, 1033, 1134, 1168, 1191, 1257, 1309, 1329, 

1338, 1355, 1398, 1413, 1421, 1448, 1465, 1514, 1583, 1619 

Leu 771, 836, 848, 1135, 1178, 1187, 1243, 1342, 1410, 1457, 1583, 1623 

Lys 
625, 785, 849, 877, 912, 946, 975, 988, 1036, 1055, 1064, 1072, 1097, 1141, 1168, 1305, 1321, 1341, 1360, 

1399, 1414, 1433, 1447, 1456, 1464, 1485, 1609 

Met 645, 682, 700, 721, 765, 805, 877, 1068, 1175, 1245, 1265, 1321, 1343, 1355, 1415, 1428, 1447 

Phe 469, 525, 606, 622, 748, 821, 835, 915, 954, 1005, 1036, 1158, 1188, 1214, 1310, 1413, 1608 

Pro 642, 843, 899, 921, 986, 1035, 1084, 1239, 1453 

Ser 610 805, 814, 854, 857, 969, 1010, 1127, 1220, 1301, 1327, 1417, 1468 

Thr 447, 564, 872, 932, 1045, 1116, 1251, 1341, 1410, 1419, 1458 

Trp 756, 759, 849, 875, 961, 1010, 1013, 1078, 1120, 1233, 1253, 1340, 1360, 1426, 1460, 1489, 1559 

Tyr 641, 798, 831, 847, 986, 1044, 1180, 1201, 1267, 1328, 1615 

Val 
542, 665, 753, 776, 825, 850, 902, 948, 965, 1000, 1066, 1100, 1126, 1200, 1273, 1300, 1331, 1354, 1396, 

1400, 1427, 1454, 1467, 1509 
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Supplementary Table 3.  Alternative Raman band assignment Set 1 for amino acids.  Correlation 

coefficient (R) between Raman and UPLC data = 0.86. 

 

* 

Values for Cys and Trp could not be resolved by the UPLC method.  Cys is converted to several 

oxidation products, while Trp is destroyed during acidic protein hydrolysis used in this research.  

The published literature values were used for Cys and Trp. 

** Amino acid composition is defined as the fraction of each amino acid in E. coli total protein. 

*** Possible overlapping bands: Gly (1327 cm-1) / Ile (1329 cm-1); Arg (1423 cm-1) / Trp (1426 

cm-1) 

  

Amino 

Acids 

Optimum 

Raman Band 

(cm-1) 

Amino Acid 

Composition 

Determined by 

Raman 

Amino Acid 

Composition 

Determined 

by UPLC 

Published 

Amino Acid 

Composition 

Ala 1308 11.4 11.1 9.60 

Arg 1423 3.53 3.39 5.53 

Asp/Asn 1338 11.9 8.98 9.01 

Cys 785 4.47 1.64* 1.64 

Glu/Gln 1637 6.75 9.16 9.84 

Gly 1327 10.9 12.0 11.5 

His 854 2.01 0.890 1.77 

Ile 1329 11.2 8.76 5.43 

Leu 1457 11.7 11.4 8.42 

Lys 1168 2.19 5.24 6.41 

Met 877 1.63 0.467 2.87 

Phe 1413 3.05 4.59 3.46 

Pro 843 0.749 1.02 4.13 

Ser 1010 4.50 4.42 4.03 

Thr 1116 3.48 6.26 4.74 

Trp 1426 3.68 1.06* 1.06 

Tyr 641 1.69 0.390 2.58 

Val 1126 5.20 9.22 7.91 

Sum - 100 100 100 
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Supplementary Table 4.  Alternative Raman band assignment Set 2 for amino acids.  Correlation 

coefficient (R) between Raman and UPLC data = 0.89. 

 

Amino 

Acids 

Optimum 

Raman Band 

(cm-1) 

Amino Acid 

Composition 

Determined 

by Raman 

Amino Acid 

Composition 

Determined 

by UPLC 

Published 

Amino Acid 

Composition 

Ala 1308 12.0 11.1 9.60 

Arg 1199 2.67 3.39 5.53 

Asp/Asn 1338 12.5 8.98 9.01 

Cys 499 1.57 1.64* 1.64 

Glu/Gln 1637 7.10 9.16 9.84 

Gly 1442 10.7 12.0 11.5 

His 964 1.89 0.890 1.77 

Ile 1355 7.03 8.76 5.43 

Leu 1457 12.3 11.4 8.42 

Lys 1064 2.55 5.24 6.41 

Met 1068 3.13 0.467 2.87 

Phe 1413 3.21 4.59 3.46 

Pro 843 0.787 1.02 4.13 

Ser 1417 3.46 4.42 4.03 

Thr 1116 3.66 6.26 4.74 

Trp 849 1.57 1.06* 1.06 

Tyr 641 1.77 0.390 2.58 

Val 1331 12.1 9.22 7.91 

Sum - 100 100 100 

 

* Values for Cys and Trp could not be resolved by the UPLC method.  Cys is converted to 

several oxidation products, while Trp is destroyed during acidic protein hydrolysis used in this 

research.  The published literature values were used for Cys and Trp. 

** Amino acid composition is defined as the fraction of each amino acid in E. coli total protein. 

*** Possible overlapping bands: Pro (843 cm-1) / Trp (849 cm-1); Lys (1064 cm-1) / Met (1068 

cm-1); Val (1331 cm-1) / Asp/Asn (1338 cm-1) 
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Supplementary Table 5.  Alternative Raman band assignment Set 3 for amino acids.  Correlation 

coefficient (R) between Raman and UPLC data = 0.85. 

 

Amino 

Acids 

Optimum 

Raman Band 

(cm-1) 

Amino Acid 

Composition 

Determined 

by Raman 

Amino Acid 

Composition 

Determined 

by UPLC 

Published 

Amino Acid 

Composition 

Ala 1464 10.5 11.1 9.60 

Arg 1036 1.97 3.39 5.53 

Asp/Asn 1426 3.83 8.98 9.01 

Cys 1385 4.08 1.64* 1.64 

Glu/Gln 1319 11.6 9.16 9.84 

Gly 1332 12.2 12.0 11.5 

His 964 1.87 0.890 1.77 

Ile 1257 8.66 8.76 5.43 

Leu 1457 12.2 11.4 8.42 

Lys 785 4.65 5.24 6.41 

Met 765 1.22 0.467 2.87 

Phe 1214 6.20 4.59 3.46 

Pro 986 2.38 1.02 4.13 

Ser 805 1.73 4.42 4.03 

Thr 1116 3.63 6.26 4.74 

Trp 1078 4.42 1.06* 1.06 

Tyr 798 1.82 0.390 2.58 

Val 1354 7.10 9.22 7.91 

Sum - 100 100 100 

 

* Values for Cys and Trp could not be resolved by the UPLC method.  Cys is converted to 

several oxidation products, while Trp is destroyed during acidic protein hydrolysis used in this 

research.  The published literature values were used for Cys and Trp. 

** Amino acid composition is defined as the fraction of each amino acid in E. coli total protein. 

*** Possible overlapping bands: Tyr (798 cm-1) / Ser (805 cm-1) 
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