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Baojuan Zheng 

 

ABSTRACT 

 

 

Tillage practices have changed dramatically during the past several decades as 

agricultural specialists have recognized the unfavorable environmental effects of 

mechanized tillage. Alternatively, conservation tillage management can mitigate adverse 

environmental impacts of tillage, such as soil and water degradation. Adoption of 

conservation tillage has continued to increase since its first introduction, which raises 

questions of when and where it is practiced. Spatial and temporal specifics of tillage 

practices form important dimensions for development of effective crop management 

practices and policies.  Because Landsat has been and will continue to image the Earth 

globally, it provides opportunities for systematic mapping of crop residue cover (CRC) 

/tillage practices. Thus, the overall objective of this study is to develop methodologies to 

improve our ability to monitor crop management across different landscapes in a time-

efficient and cost-effective manner using Landsat TM and ETM+ imagery, which is 

addressed in three separate studies. The first study found that previous efforts to estimate 

CRC along a continuum using Landsat-based tillage indices were unsuccessful because 

they neglected the key temporal changes in agricultural surfaces caused by tilling, 

planting, and crop emergence at the start of the growing season. The first study addressed 

this difficulty by extracting minimum values of multi-temporal NDTI (Normalized 

Difference Tillage Index) spectral profiles, designated here as the minNDTI method. The 

minNDTI improves crop residue estimation along a continuum (R
2
 = 0.87) as well as 

tillage classification accuracy (overall accuracy > 90%).   A second study evaluated 

effectiveness of the minNDTI approach for assessing CRC at multiple locations over 

several years, and compared minNDTI to hyperspectral tillage index (CAI), and the 

ASTER tillage index (SINDRI). The minNDTI is effective across four different locations 

(R
2
 of 0.56 ~ 0.93). The third study, built upon the second study, addressed the Landsat 

ETM+ missing data issue, and devised methodologies for producing field-level tillage 

data at broad scales (multiple counties).  In summary, this research demonstrates that the 

minNDTI technique is currently the best alternative for monitoring CRC and tillage 

practices from space, and provides a foundation for monitoring crop residue cover at 

broad spatial and temporal scales.
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Chapter 1 Introduction 

1. Research Context and Justification 

Global population growth and increasing demands for food, goods, and energy 

create significant pressures on the environment (Kiers et al., 2008). Worldwide, the FAO 

(2011) estimates that approximately one billion people are undernourished, and events 

such as the severe and widespread drought conditions in the United States in 2012 

illustrate the vulnerability of our current food security situation. We are facing incredible 

challenges to feed the world’s population and to simultaneously maintain, and improve 

environmental conditions (Foley et al., 2011). Although we have successfully increased 

food production and reduced hunger, agricultural activities have also caused substantial 

environmental issues, such as CO2 emission, soil degradation, biodiversity loss, and 

water degradation due to excessive nutrient leaching (Foley et al., 2011). Thus, 

sustainable agricultural management plays an important role in the world’s food security 

and environmental conservation. Crop residue management, one of agriculture’s most 

important conservation management in agriculture, has been deployed in many countries 

around the world to reduce soil erosion, labor input, and fuel consumption, and to 

enhance water use efficiency and soil fertility (Derpsch et al., 2010). Monitoring crop 

residue management could benefit crop production as well as environmental 

sustainability because it permits evaluation of management practices and assists 

designation of effective management plans and policies. Although ground observation of 

crop residue management is inefficient and expensive, remote sensing techniques permit 

systematic monitoring of the management effectively and efficiently over large areas.     
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The goal of this research is to improve our ability to monitor crop residue 

management using remote sensing techniques. The availability of large-scale crop residue 

management data allows analysis of coherent spatial patterns that could lead to a better 

understanding of the interactions among management, crop yields, and the environment. 

To forge sustainable solutions to meet the world’s food security, monitoring agricultural 

activities is strongly demanded.   

Monitoring crop reside management from space has encountered difficulties 

because there are no optical sensors designed to have specific spectral, spatial, and 

temporal resolutions for this task. We need to consider which spectral region is optimal to 

detect crop residues, in other words, to differentiate crop residues from other objects. We 

need to determine the appropriate spatial resolution. In this case, coarse spatial resolution 

remote sensing imagery, such as MODIS (Moderate Resolution Imaging 

Spectroradiometer), is not suitable for this task because of mixed-pixel problems arising 

from its coarse spatial resolution relative to most agricultural patterns. We also need to 

consider the availability of imagery for a specific region within a certain time period. 

Taking all these factors into account, Landsat TM (Thematic Mapper) & ETM+ 

(Enhanced Thematic Mapper) imagery offers the best potential for continuous crop 

residue monitoring over large areas. Landsat imagery provides a long-term synoptic view 

of the Earth at 30-meter spatial resolution. Because it is freely available to everybody, 

there are numerous studies on crop residue mapping using Landsat TM/ETM+ imagery. 

Although early studies were able to differentiate two broad tillage categories using 

logistic regression on a single Landsat image (Sullivan et al., 2008; Thoma et al., 2004; 

van Deventer et al., 1997), they failed to estimate crop residue cover along a continuum 
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(Daughtry et al., 2006). These studies focused on examining the correlation between the 

spectral data and crop residue cover, but neglected the temporal component – the timing 

of crop residue management relative to image acquisitions. This study, thus, aims to 

develop methodologies to enhance the capability of Landsat imagery in estimating crop 

residue cover, which could form a bridge to global monitoring of crop residue 

management. The ability to systematically acquire management data over board regions, 

then, offers great opportunities to observe and study the spatial patterns and trends in the 

use of conservation tillage, and its impacts on food production and our environment.      

 

2. Dissertation Components, Attribution, and Research Objectives 

This dissertation is composed of three manuscript chapters prepared for 

submission to peer-reviewed academic journals. The three manuscripts present a 

progressive study of tillage mapping using multi-temporal Landsat imagery. The first 

manuscript (Chapter 2) develops a technique to improve mapping accuracy of crop reside 

cover and tillage categories using Landsat imagery. This manuscript with coauthors Dr. 

James B. Campbell (chair) and Dr. Kirsten M. de Beurs (committee member) was 

published in Remote Sensing of Environment in February 2012. The second manuscript 

(Chapter 3) tested the effectiveness of the technique at four different locations over 

several years, and compared the effectiveness of this technique to previous techniques 

that used Hyperion and ASTER remotely sensed data. This manuscript with coauthors 

Dr. James B. Campbell (chair), Dr. Guy Serbin (a GIS analyst at InuTeq LLC, 

Washington, DC), and Dr. Craig S.T. Daughtry (a research agronomist at USDA-ARS 

Hydrology and Remote Sensing Laboratory, Beltsville, MD) was accepted for publication 

in the Journal of Soil and Water Conservation. The third manuscript (Chapter 4), which 
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built upon the second manuscript, addressed Landsat 7 ETM+ SLC-off data issues and 

devised an object-based methodology to generate field-level tillage maps at a broader 

scale. This manuscript with coauthors Dr. James B. Campbell (chair), Dr. Yang Shao, 

and Dr. Randolph H. Wynne (committee member) was submitted to ISRPS Journal of 

Photogrammetry and Remote Sensing. Together, these three manuscripts present a 

progressive study of remote sensing of crop residue cover and tillage practices.  �
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Tillage practices, which have direct impacts on soil and water quality, have changed dramatically during the
past several decades. Tillage information is one of the important inputs for environmental modeling, but the
availability of this information is still limited spatially and temporally. Previous studies have encountered dif-
ficulties in defining reliable correlations between crop residue cover (CRC) and Landsat-based tillage indices
because they neglected the significance of the timing of tillage implementation. This study explores relation-
ships between temporal changes of agricultural surfaces and the normalized difference tillage index (NDTI)
in Central Indiana. We found that minimum NDTI (minNDTI) values extracted from multi-temporal NDTI
profiles reliably indicate the surface status when tillage or planting occurred. Simple linear regression reveals
a coefficient of determination (R2) of 0.89 between CRC and minNDTI for calibration. In addition, a percent-
age change (PC) method was tested for classifying CRC into three categories (CRCb30%; 30%bCRCb70%;
CRC>70%). Both the minNDTI and PC methods resulted in overall classification accuracies of >90%, produ-
cer's accuracies of 83–100%, and user's accuracies of 75–100%. Our results indicated that both Landsat TM
and ETM+ imagery are capable of mapping CRC, however, multi-temporal Landsat imagery is required. To
establish a capability for crop residue mapping, designers of future remote sensing platforms should consider
increasing temporal resolution.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Agricultural best management practices, such as conservation till-
age and cover crops, have been adopted widely in recent years. The
benefits of conservation tillage are substantial, including improve-
ment of soil and water quality, reduction of soil erosion, and maximi-
zation of agricultural water use efficiency (USDA-NRCS, 2001).
Reliable and systematic site-specific conservation tillage data do not
currently exist, but would form an important resource supporting
the evaluation of the effectiveness of these practices.

Non-conservation tillage (intensive/conventional and reduced till-
age) leaves less than 30% crop residue cover (CRC), while conservation
tillage leavesmore than 30% CRC (CTIC, 2010). Current CRC data are not
surveyed systematically and vary from one location to another. The
USDA Natural Resources Conservation Service (NRCS) collects CRC
data visually using a line-transect method (Morrison et al., 1993). The
Conservation Technology Information Center (CTIC) provides assess-
ments of conservation tillage practices, but collects data using annual
roadside surveys of crop residue levels, which is subjective. Its tillage
data are available at county, state, and regional levels. The county-
level datawere recently aggregated to 8-digit Hydrologic Unit (HU)wa-
tersheds (Baker, 2011). The National Agricultural Statistics Service
(NASS) data relies on survey respondents and is only available at state
rights reserved.
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and county level. These inventory data are either too coarse (i.e., they
cannot provide field level detail, nor report within-field spatial variabil-
ity), or are inconsistent, adding more uncertainties in the environmen-
tal modeling process. The spatial and temporal gaps in these inventory
data restrict our ability to simulate the impact of crop management on
water quality or carbon sequestration at broad scales (Jarecki et al.,
2005; Saseendran et al., 2007). Thus, there is a strong need to develop
methods to monitor agricultural practices over large areas, over time,
using consistent methods. Multispectral remote sensing offers an op-
portunity to systematically obtain information describing crop residues
efficiently and objectively over broad areas.

Early attempts to use remote sensing techniques for mapping CRC
can be traced back to 1975 (Gausman et al., 1975). Since then, the po-
tential of remote sensing of crop residue has been investigated both
in the laboratory and in the field (Biard & Baret, 1997; Daughtry,
2001; Daughtry et al., 1995; Sullivan et al., 2007, 2006). Remote sens-
ing tillage indices, such as the crop residue index multiband (CRIM)
(Biard & Baret, 1997), the cellulose absorption index (CAI) (Daughtry,
2001), and crop residue cover index (Sullivan et al., 2006) are
designed in the laboratory to amplify the differences in the spectral
signals between crop residues and soils (Table 1). Most tillage indices
are based on the cellulose and lignin absorption features near
2100 nm. Researchers have applied these tillage indices (Table 1) to
airborne (Daughtry et al., 2005) and satellite remote sensing imagery
(Daughtry et al., 2006; Gowda et al., 2003; Serbin et al., 2009a; Sullivan
et al., 2008; Thoma et al., 2004; van Deventer et al., 1997).

http://dx.doi.org/10.1016/j.rse.2011.09.016
mailto:baojuan5@vt.edu
http://dx.doi.org/10.1016/j.rse.2011.09.016
http://www.sciencedirect.com/science/journal/00344257


Table 1
Satellite-based tillage indices.

Sensor Tillage index Formula Description Reference

Landsat CRIM SM/SR SM: distance from point M to the
soil line; SR: distance between
soil and residue lines at point M

Biard & Baret, 1997

Simple tillage index (STI) B5/B7 B2: Landsat TM/ETM+ band 2; B4:
TM/ETM+ band 4; B5: TM/ETM+
band 5; B7: TM/ETM+ band 7;

Van Deventer et al., 1997
NDTI (B5−B7)/(B5+B7)
Modified CRC (B5−B2)/(B5+B2) Sullivan et al. (2006)
NDI5; NDI7 (B4−B5)/(B4+B5);

(B4−B7)/(B4+B7)
McNairn and Protz (1993)

Hyperion CAI 0.5(R2.0+R2.2)−R2.1 R2.0 and R2.2: the reflectance on the
shoulders at 2021 nm and 2213 nm

Daughtry et al. (2006)

ASTER LCA 100(2×B6−B5−B8) B5, B6, B7, B8: ASTER shortwave
infrared bands 5, 6, 7, and 8

Daughtry et al. (2005)
SINDRI (B6−B7)/(B6+B7) Serbin et al. (2009a)

... B. Zheng et al. / Remote Sensing of Environment 117 (2012) 177–183
These previousmethods neglect an important factor— the timing of
tillage or planting, which can vary greatly from field to fieldwithin even
small regions. Three different surface conditions can coexist in a single
image during the planting season (Fig. 1): before tillage/planting (A),
after tillage/planting with no or little vegetation (B&C), and crop emer-
gence (D).Mostfields are under condition A at the early planting season
and in condition D at the end of the planting season. If there are agricul-
tural fields tilled after an image was acquired, the previous methods
would wrongfully designate these fields as no-till. If crops have
emerged, the green vegetation is likely to confound the residue cover
estimation (Daughtry et al., 2005). Therefore, the methods previously
outlined (i.e., single imagemethods) could be problematic in predicting
CRC and cannot be applied broadly. Watts et al. (2009) suggested that
the use of higher temporal datasetsmight better capture surface distur-
bances in minimum tillage fields. Although Watts et al. (2011) pro-
duced better classification accuracy using a five-date Landsat model, a
physical relationship between Landsat data and tillage categories was
Fig. 1. Pictures of agricultural fields: before tillage (A), after tillage/pla
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not defined. Instead they generated classification models with the Ran-
dom Forest classifier. The objective of this study is to reveal the impor-
tant role of temporal changes in CRC mapping, and to present a simple
and objective method to map CRC using multi-temporal Landsat
imagery.

2. Remote sensing imagery for crop residue detection

Accurate mapping of CRC not only requires remotely sensed data
with spectral and spatial detail, but also with high temporal resolu-
tion. Based on crop residue's unique absorption features near
2100 nm (Daughtry, 2001), past and current satellite remote sensing
platforms capable of mapping CRC include Landsat 5 TM and 7 ETM+,
EO-1 Hyperion, the Advanced Spaceborne Thermal Emission and Re-
flection Radiometer (ASTER), and the Moderate Resolution Imaging
Spectroradiometer (MODIS). Hyperion imagery, with a narrow
swath width (7.5 km), has low temporal coverage because its sensor
nting with no or little vegetation (B&C), and crop emergence (D).
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is only active when requested. ASTER's shortwave infrared (SWIR) de-
tector failed in April 2008 (NASA, 2011). Thus, subsequently, ASTER im-
agery is not capable of CRC mapping. MODIS revisits the same area
daily; however, MODIS data have coarse spatial resolution (500 m in
SWIR bands), so may experience mixed pixel problems for many agri-
cultural landscapes.

Landsat 5 TM and Landsat 7 ETM+ imagery currently provide the
best available imagery for mapping CRC, not only because their short-
wave infrared (SWIR) Band 7 (2080–2350 nm) is sensitive to crop
residue, but also because they provide moderate spatial resolution
(30 m) and an eight-day revisit rate using both Landsat 5 and 7.

3. Study area and data

3.1. Study site

This study was conducted in Central Indiana (Fig. 2), one of the
most significant agro-ecoregions within the Eastern Corn Belt Plains
of the United States. Locations of field data for this study are shown
in Fig. 2.

Central Indiana is an extensive agricultural region with flat topog-
raphy. This landscape is drained by long, shallow, streams occupying
sinuous valleys. Agricultural lands often have drainage ditches and
channelized streams to promote soil drainage in flat, poorly drained,
areas. The principal crops are maize (Zea mays) and soybeans (Glycine
max). Most of the soils of this region are Alfisols, Inceptisols, and Mol-
lisols (Major Land Resource Area [MLRA] 111A). Soil erosion rates in
this region are from 7.5 to 4.1 tons per acre from 1982 to 2007
(USDA-NRCS, 2007).

3.2. Field measurements

CRC was measured using a line transect method (Morrison et al.,
1993) from May 13 to May 26 in 2010. We used a 50-foot (15.24 m)
measuring tape which can be easily divided into 100 parts with 0.5-
foot intervals shown as red markings. At each sampling site, the tape
Fig. 2. Locations of sampling
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was stretched diagonally across the rows (NRCS, 1992) and the number
of markings intersecting crop residue was counted. Then we measured
off diagonal and counted the number of markings intersecting crop res-
idue again. Percent cover was calculated by the average of the two
counted numbers of the markings. In addition, we used a Garmin
eTrex GPS unit (positional accuracy of b15 m) to record the location
of each measurement, acquired photographs, and made notes for each
sampling site. We measured a total of 72 fields using the line transect
method, among which 44 fields were planted with corn and 28 fields
with soybean in 2009 with the confirmation of a cropland data layer
(http://www.nass.usda.gov/research/Cropland/SARS1a.htm). We found
that 17 of the 28 soybean fields displayed a mixture of corn and soybean
residue.

3.3. Remotely sensed data

Five Landsat images (Path 21/Row 32) acquired on March 30
(ETM+ 7), April 15 (ETM+ 7), May 9 (TM 5), May 25 (TM 5), and
June 10 (TM 5) in 2010 were atmospherically corrected to surface
reflectance using the Landsat Ecosystem Disturbance Adaptive Proces-
sing System (LEDAPS) (Masek et al., 2006). Images acquired on May 9
and 25 are partially covered by clouds and cloud shadows. The Landsat
7 ETM+ images are scan line corrector (SLC)-off and have data gaps.
Serbin et al. (2009b) compared several Landsat-based tillage indices
and found that the Normalized Difference Tillage index (NDTI) was
the best for separating crop residue and soil. Thus, we generated NDTI
layers for each surface reflectance image and stacked the images into
a time-series of NDTI image.

4. Methods

Multi-temporal Landsat imagery can capture agricultural changes
during the spring planting season. Fig. 3 shows both the changes of
Normalized Difference Vegetation Index (NDVI) and NDTI for our
study region in Indiana between March 30 (day 89) and June 10
(day 161) in 2010. NDVI and NDTI are positively correlated with the
sites in Central Indiana.

http://www.nass.usda.gov/research/Cropland/SARS1a.htm
image of Fig.�2


Fig. 3. Comparison of time-series NDTI and NDVI values from the same pixel: non-
conservation tillage (left); conservation tillage (right).

Table 2
2010 Indiana crop progress (Indiana Crop and Weather Report, 2010).

Week
ending

Corn (%) Soybean (%) Precip.
ξ (cm)

planted Emerged planted Emerged

April 11 1 NA⁎ NA NA 3.3
April 18 17 NA NA NA 0
April 25 56 5 12 NA 1.3
May 2 71 26 23 NA 3.8
May 9 81 52 35 9 1.9
May 23 88 79 50 34 3.4
May 30 94 86 70 52 1.4
June 6 97 92 81 69 3.2
June 20 100 100 91 85 8.6

*NA: not available.
ξPrecip.: weekly total precipitation for Central Indiana.
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green vegetation cover and CRC respectively. The decrease in NDTI
values from day 89 to day 129 (Fig. 3) corresponds to the decrease
of CRC due to residue weathering and tillage application on the
field, while the rebound of NDTI values after day 129 is caused by
growing vegetation. Thus, NDTI values are affected by greening vege-
tation. Fig. 4 shows how the NDTI values change through time from
March 30 (day 89) to June 10 (day 161) in 2010 for three pixels
with different levels of CRC. The abrupt change in NDTI value (the
diamond dotted line) from day 105 (NDTI=0.10) to day 129
(NDTI=0.01) (Fig. 4) is due to significant decreases in the amount of
CRC (b30%) caused by non-conservation tillage, while the change in
NDTI value was less abrupt (e.g., changes from 0.14 to 0.09) when con-
servation tillage (>30% CRC) was applied to the fields. The increased
NDTI value after day 129 (May 9) is caused by growing vegetation. For
this specific example, the use of single images acquired on the days
105 or 145 would result in difficulties differentiating conservation
from non-conservation tillage. A single image cannot provide reliable
assessment of tillage practices because tillage or planting could happen
anytime from April to early June in Central Indiana (Table 2), and in the
absence of sequential imagery, analysts cannot determine the correct
status of a field.

4.1. Minimum NDTI

Due to partial cloud cover in some Landsat images and data gaps in
Landsat 7 ETM+ images, samples affected by clouds, cloud shadows,
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and missing data were removed from analysis, resulting in 63 clean
samples. TheminimumNDTI (minNDTI) values, representing the closest
status of the surface condition right after planting, were chosen from
each spectral profile.We applied simple linear regression (SLR) to deter-
mine the relationship between minNDTI and field observed CRC. We
first sorted our field observation samples by minNDTI values and divid-
ed them into calibration (n=31) and test (n=32) datasets by selecting
every other sample to ensure representative subsamples. The regression
equation from the calibration dataset was then applied to the test data-
set. We divided CRC into three categories: CRCb30% (non-conservation
tillage), 30%bCRCb70%, and CRC>70%. Conservation tillage was split
into two categories (30%–70% and >70%) to identify fields that were
likely managed with no-till (CRC>70%).

4.2. Percentage change method

In the next step, we applied a percentage change (PC) method to
map CRC. We first selected the NDTI values before planting for each
sample pixel (NDTIB). NDTIB was selected according to the following
criteria: 1) it must be acquired before the minNDTI occurred; and 2)
its value should be larger than 0.08 because some fields may have ex-
perienced several tillage operations at different times before planting.
Note that the selection criteria for NDTIB may be different for other
regions.

The rationale for the PC method is to detect changes of the same
pixel from time I (before tillage) to time П (after tillage/planting).
The PC is calculated by

NDTIB−minNDTIð Þ=NDTIB � 100% ð1Þ

The magnitude of change in NDTI is different for different tillage
types (Fig. 4). This method is unique in its ease of use, ability to min-
imize effects of soil variation, and to map tillage practices over broad
regions. It requires less field validation effort, and can be applied ret-
rospectively to archived imagery, as well as those acquired in the
future.

5. Results

5.1. Minimum NDTI

We found a linear relationship between CRC and minNDTI with a
coefficient of determination (R2) of 0.89 and root mean square of
error (RMSE) of 10.5% for the calibration data (Fig. 5). The R2 between
measured and predicted CRC is 0.85 and RMSE is 12.6% for the test
dataset (Fig.6). The slope is 1.05 when the intercept was forced to
zero. The SLR results in an R2 of 0.87 between CRC and minNDTI
and RMSE of 11.5% using all 63 samples (Fig. 7).

Tables 3 and 4 show error matrixes for the three residue cover
categories using SLR for the test dataset and the complete dataset
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Fig. 5. Crop residue cover (CRC) as a function of minimum NDTI extracted from the
time-series of Landsat images (calibration dataset: n=31).
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Fig. 7. Crop residue cover (CRC) as a function of minimum NDTI extracted from the
time-series of Landsat images (n=63).
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respectively. The overall accuracy is better than 90% and the Kappa
coefficient (K ̂) is 85% for both datasets. The K ̂ of 85% suggests that
the classification accuracy is 85% better than chance alone. The user's
accuracies are 72–100%, while the producer's accuracies are 83–
100% for discriminating among three categories.

5.2. Percentage change method

The high correlation between PC values and the CRC (R2=0.80)
(Fig. 8) demonstrates the potential of this PC method for mapping
CRC. Fig. 8 shows that the correct classification of classes with more
than 70% CRC (green dots), more than 30% and less than 70% CRC
(blue dots), and less than 30% CRC (yellow dots). Misclassification is
shown in red dots. According to Fig. 8, we determined that the classi-
fication rules for this study area are as follows: pixels that reveal a PC
less than 40% are assigned to class CRC>70%; pixels with a PC larger
than 40% but smaller than 70% are classified as 30%bCRCb70%; and
pixels with more than 70% change are assigned to non-conservation
tillage (CRCb30%).

The error matrix using the PC method is shown in Table 5. Com-
pared to Table 4, the PC method resulted in the same overall accuracy
and K̂. However, the user's accuracy of the class, 30%bCRCb70%, is
slightly lower than that of minNDTI. We evaluated the difference be-
tween the two classification accuracies using the minNDTI and PC
methods using McNemar's test (Agresti, 1996; Foody, 2004) and
R² = 0.85
RMSE = 12.6
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found no significant difference between two classification results
(z=0.38b1.96).

6. Discussion

Both minNDTI and PC methods were able to classify CRC into three
categories. minNDTI improves both continuous range mapping as
well as categorical classification depending on user needs. Previous
studies either classified CRC into two categories to achieve higher
prediction accuracy (Gowda et al., 2001; Thoma et al., 2004), or
found low correlations between tillage indices and CRC (Daughtry
et al., 2006) using Landsat-based indices. The R2 of 0.11 between
CRC and NDTI reported by Daughtry et al. (2006) is probably because
their Landsat image was acquired on June 12 when most crops had
emerged and confounded the NDTI signal. Other studies (Daughtry
et al., 2005; Serbin et al., 2009b) suggested exclusion of pixels with
green vegetation from the analysis, especially for Landsat-based till-
age indices. Hyperspectral tillage indices are more effective for map-
ping CRC than Landsat-based indices (Daughtry et al., 2005)
because their narrow bands are more sensitive to crop residue and
less sensitive to presence of green vegetation (Serbin et al., 2009b).
Nevertheless, pixels with green vegetation should be masked out
using NDVI or other vegetation indices as suggested by Daughtry et
al. (2005). Variation in soil moisture content may have negative effect
on mapping CRC (Daughtry & Hunt, 2008), but unfortunately, we
don't have soil moisture data to examine the effect of soil moisture
on our methods. No heavy rainfall happened immediately before
our image dates (Fig. 4). Therefore, there is no indication here that
soil moisture influences NDTI values.

Extracting minNDTI values from multi-temporal profiles can re-
duce unmapped areas because this method can eliminate effects of
green vegetation and avoid consideration of areas that farmers have
not tilled yet. Watts et al. (2011) discovered that tillage classification
accuracy was better using all five available Landsat images instead of
Table 3
Error matrix for three residue cover classes using simple linear regression for test
dataset.

Classification data Reference data

CRCb30% 30%bCRCb70% CRC>70% Total User
accuracy

CRCb30% 10 0 0 10 100%
30%bCRCb70% 2 6 0 8 75%
CRC>70% 0 1 13 14 93%
Total 12 7 13 32
Producer's
accuracy

83% 86% 100%

Overall accuracy: 91%; Kappa coefficient: 85%. Bold data are the number of pixels
correctly assigned to each class.



Table 4
Error matrix for three residue cover classes using simple linear regression for all
dataset.

Classification data Reference data

CRCb30% 30%bCRCb70% CRC>70% Total User
accuracy

CRCb30% 19 0 0 19 100%
30%bCRCb70% 3 13 2 18 72%
CRC>70% 0 1 25 26 96%
Total 22 14 27 63
Producer's
accuracy

86% 93% 93%

Overall accuracy: 90%; Kappa coefficient: 85%. Bold data are the number of pixels
correctly assigned to each class.

Table 5
Error matrix for three residue cover classes using the percentage change method.

Classification data Reference data

CRCb30% 30%bCRCb70% CRC>70% Total User
accuracy

CRCb30% 21 0 0 21 100%
30%bCRCb70% 1 12 3 16 75%
CRC>70% 0 2 24 26 92%
Total 22 14 27 63
Producer's
accuracy

95% 86% 89%

Overall accuracy: 90%; Kappa coefficient: 85%. Bold data are the number of pixels
correctly assigned to each class.
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using a single-date image, and demonstrated the importance of tem-
poral frequency in tillage mapping.

Our methods are simple and can be easily adopted by others. The
physical relationship is well explained by the SLR. Reflectance values
at band 7 (2080–2350 nm) of TM/ETM+ images decrease as CRC in-
creases because crop residues have absorption features near 2100 nm
(Daughtry, 2001). Thus, the NDTI has a positive linear relationship
with CRC. Other non-linearmethods, such as Artificial Neural Networks
(Sudheer et al., 2010), should also take into account temporal changes
of agricultural surfaces when mapping tillage practices. Under similar
soil moisture conditions, the PCmethod canmitigate soil color variation
that could confound both single and multi-date approaches. The 40%
break point of the PC method maximizes the classification accuracy
for our study site. Logically, the break point should be 30%. The extra
amount of change is probably due to residue weathering. Thus, one
may adjust this value between 30 and 40% regionally. However, further
investigation is needed to confirm the causes.

Currently, image availability is one of the most important factors
that constrains our ability to map CRC broadly. Landsat provides global
coverage at 30 meter spatial resolution. Multi-temporal Landsat imag-
ery is required to map CRC because its tillage indices can be biased by
any green vegetation (Serbin et al., 2009b). Multi-temporal methods
for mapping CRC are subject to failure with insufficient temporal cover-
age of remotely sensed data. Watts et al. (2011) demonstrated the
potential of STARFM-based synthetic dataset for mapping tillage
practices, which is a potential solution for the lack of availability of
cloud-free Landsat imagery. The planned version 2.0 of Web-
enabled Landsat Data (WELD) (Roy et al., 2010) could be another
source of gap-free Landsat 7 ETM+ data. Our study area includes
R² = 0.80
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ample Landsat 5 TM and 7 ETM+ scenes to support a temporal anal-
ysis for most of the years from 1999 to 2010 (Table 6). Table 6 illus-
trates the availability of Landsat data. Years with more than four
Landsat scenes have a higher chance of success for mapping CRC ac-
curately. Further studies are required to test the transferability of our
method to new scenes.
7. Conclusions

Availability of practical and reliable methods for monitoring prac-
tice of tillage will reduce uncertainty in ecosystemmodels and permit
identification of areas at risk for soil erosion and nutrient losses. Re-
mote sensing is an efficient and cost-effective way to obtain informa-
tion concerning CRC/tillage practices. Mapping tillage practices using
single-date images could be problematic unless the area has very nar-
row window of planting dates. Watts et al. (2011) showed that incor-
porating high temporal datasets can improve mapping accuracy of
conservation tillage. Our study supports the findings by Watts et al.
(2011) that temporal resolution plays a significant role in mapping
CRC/tillage practices accurately. Multi-temporal analyses (minNDTI
and PC methods) are able to classify tillage categories and predict
CRC along a continuummore accurately. Time-series of Landsat imag-
ery have the potential to map CRC at broad scales and fill the tempo-
ral data gaps in the observation of tillage practices. The Landsat Data
Continuity Mission (LDCM) will provide the opportunity for continu-
ously mapping the Earth's continental surface. The Hyperspectral In-
frared Imager (HyspIRI) mission will provide another opportunity
for mapping crop residue with the global coverage and 60 meter spa-
tial resolution. However, a 19-day revisit time of HyspIRI may not be
short enough to provide two to three cloud-free images during plant-
ing season. Future remote sensing platforms should consider im-
provement of temporal resolution for crop residue detection.
Table 6
Summary of Landsat 5 TM and 7 ETM+ scenes available for Central Indiana.

Year Image acquisition date Total imagesξ

2010 30-Mar⁎, 15-Apr⁎, 9-May, 25-May, 10-Jun 5
2009 4-Apr, 12-Apr⁎, 22-May, 23-Jun 4
2007 30-Mar, 15-Apr, 1-May, 2-Jun 4
2006 4-Apr⁎, 28-Apr, 6-May⁎, 22-May⁎, 30-May 5
2005 24-Mar, 9-Apr, 25-Apr, 11-May, 27-May 5
2004 14-Apr⁎, 8-May, 1-Jun⁎, 3
2003 12-Apr⁎, 28-Apr⁎, 6-May, 22-May, 23-Jun 5
2002 25-Apr⁎, 3-May, 20-Jun 3
2001 21-Mar⁎, 14-Apr, 30-Apr, 8-May⁎, 9-Jun⁎, 17-Jun 6
2000 26-Mar, 27-Apr, 13-May, 29-May, 6-Jun⁎ 5
1999 24-Mar, 25-Apr, 11-May, 27-May 4

*Images from Landsat 7 ETM+ archive.
ξTotal: total number of images; the average cloud cover of all the images is 7.43% .
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Abstract 

Accurate, site-specific tillage information forms an important dimension for development 

of effective agricultural management practices and policies. Landsat Thematic Mapper 

(TM) imagery provides the opportunity for systematic mapping of tillage practices via 

crop residue (plant litter/ senescent or non-photosynthetic vegetation) cover (CRC) 

estimation at broad scales because of its repetitive coverage of the Earth’s land areas over 

several decades. This study evaluated the effectiveness of a multi-temporal approach 

using the minimum values of Normalized Difference Tillage Index (minNDTI) for 

assessing CRC at multiple locations over several years. Local models were generated for 

each dataset. In addition, we tested the feasibility of a regional model in mapping CRC. 

Results show that the minNDTI method was able to estimate CRC and a regional model 

is possible. We found that in addition to the known impact of emergent green vegetation, 

soil moisture and organic carbon can also confound the NDTI signal, thereby 

underestimating CRC for low-lying wet and dark areas.  Accuracy of the minNDTI 

technique is comparable to the hyperspectral Cellulose Absorption Index (CAI) and the 

ASTER Shortwave Infrared Normalized Difference Residue Index (SINDRI) for tillage 

classification. This minNDTI technique is currently the best for monitoring CRC and 

tillage practices from space, opening the door for generating field-level tillage maps at 

broad spatial and temporal scales.    

 

Key words: multi-temporal—Landsat—remote sensing—crop residue—tillage—

minNDTI 
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1. Introduction 

The rapid increase in human population and conversion of natural landscapes to 

agricultural production has significantly affected the Earth’s environment (Brown et al. 

2010).  Although advances in plant genetics continue to fulfill the Green Revolution’s 

promise of the 1960s to significantly increase food production for feeding growing 

populations and reducing starvation (Khush 2001), many of these improvements have 

been achieved at the cost of unfavorable impacts upon the landscape and its soil 

resources. Increased use of fertilizers and pesticides, coupled with intensive soil tillage 

practices, can cause serious public health and environmental problems, including soil 

erosion, nutrient loading into surface water, and disruptions to the local carbon balance 

(David 1996; Silgram and Shepherd 1999). Thus, sustainable land management also 

forms a foundation for the world’s food security, environmental resources, and human 

health. To forge better agricultural management policies, monitoring impacts of different 

farming practices is a must (Sachs et al. 2010).  An important parameter for assessment 

of agricultural impacts upon the landscape is that of crop residue management (CRM), 

which affects both the amount of soil disturbance and protective aboveground crop 

residue (plant litter/ non-photosynthetic or senescent vegetation) cover (Causarano et al. 

2006).  

Crop residues often completely cover the soil surface after harvest, but when the 

soil is tilled, residue cover decreases. Categories of soil tillage intensity are based on crop 

residue cover (CRC) after planting. Intensive (conventional) tillage leaves less than 15% 

CRC, while conservation tillage leaves at least 30% CRC on the soil surface. No-till (or 

strip till) management usually disturbs < 25% of row width (USDA-NRCS 2006a). 
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Conservation tillage practices and use of winter cover crops reduce soil losses, increase 

soil carbon sequestration, and partially mitigate the expected increases of atmospheric 

CO2 (Kern and Johnson 1993; Lee et al. 1993; Phillips et al. 1993).  

Although the effects of CRM differ spatially and temporally due to local 

conditions (Guérif et al. 2001), the lack of site-specific crop residue data constrains our 

ability to evaluate CRM practices over broad spatial extents (Foley et al. 2011; Sachs et 

al. 2010). Efforts to obtain crop residue data include roadside surveys by the 

Conservation Technology Information Center (CTIC), surveys of farmers by the National 

Agricultural Statistics Service (NASS), line-point transect methods by the USDA Natural 

Resources Conservation Service (NRCS), and remote sensing techniques (Daughtry et al. 

2005; Gausman et al. 1975; Serbin et al. 2009a; Watts et al. 2011). Only remote sensing 

techniques have the potential to inventory CRC and thus soil tillage intensity in a 

systematic and cost-effective manner over large areas. 

A distinguishing spectral reflectance characteristic of green vegetation is the step-

like transition from low reflectance in the visible (400-700 nm) wavelengths to high 

reflectance in the near infrared (700-1200 nm) wavelengths (Gates et al. 1965). Crop 

residues lack this spectral feature and are spectrally similar throughout most of the 400-

2500 nm wavelength region (Daughtry 2001).  However, in the shortwave infrared 

(SWIR), an absorption feature near 2100 nm associated with cellulose is clearly evident 

in reflectance spectra of dry crop residues, but is absent in the spectra of soils (Daughtry 

2001; Serbin et al. 2009b). Three indices utilizing narrow spectral bands were devised to 

detect crop residues. The Cellulose Absorption Index (CAI) was devised for 

hyperspectral sensors and targets the 2100 nm absorption feature (Daughtry 2001). Two 
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indices were devised for the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) SWIR sensor onboard the NASA Terra spacecraft: the Lignin-

Cellulose Absorption (LCA) index (Daughtry et al. 2005), and the Shortwave Infrared 

Normalized Difference Residue Index (SINDRI) (Serbin et al. 2009a).  Serbin et al. 

(2009a) found that of these two ASTER-based indices, SINDRI fared the best.   

Unfortunately, the utility of these two indices from existing satellite sensors (e.g., EO-1 

Hyperion and Terra ASTER) that have these relatively narrow spectral bands for 

detecting cellulose absorption features are limited.  The Hyperion sensor images narrow 

swaths (7.5 km), resulting in very limited spatial coverage, and suffers from detector line 

problems, generating a significant amount of noise and striping, and is now well-beyond 

its design lifetime (Beck 2003).  SINDRI can no longer be acquired from the ASTER 

SWIR sensor due to detector failure (NASA/JPL 2009). In contrast, the Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper (ETM+) sensors provide the possibility of 

compiling tillage information for large regions over decadal intervals, including 

retrospective analysis when suitable coverage is available because it has systematic 

worldwide coverage since 1982.  Furthermore, future TM-like sensors, e.g., the Landsat 8 

Operational Land Imager (OLI) (USGS 2010) and the European Space Agency (ESA) 

Sentinel-2 (ESA 2011), will have similar spectral bands and are currently scheduled for 

launch in 2013, allowing for continuity of remote tillage assessment.   

Research on utilizing Landsat TM and ETM+ sensors for CRC monitoring task 

has yielded mixed results. Some studies found low, or very low, correlations between 

Landsat-based tillage indices and CRC field data (Daughtry et al. 2006; Serbin et al. 

2009a).  Of these, the Normalized Difference Tillage Index (NDTI) (van Deventer et al. 
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1997) was found to be the most effective (Serbin et al 2009b, 2009c), but was not as 

effective as CAI, SINDRI, or LCA.  In contrast, others concluded that these tillage 

indices were able to differentiate conventional and conservation tillage using logistic 

regression (Gowda et al. 2001; Sullivan et al. 2008; van Deventer et al. 1997).  Zheng et 

al (2012) found that these mixed results were caused by inattention to the significance of 

the temporal dimensions of applications of tillage practices. By extracting the minimum 

values from time-series of spectral profiles of NDTI values; Zheng et al. (2012) showed 

an improved accuracy of CRC estimation as well as for tillage mapping. That is, tillage 

status is most effectively assessed by observing NDTI just before the effects of the 

emerging crop become evident on the TM imagery, when the differences between 

conventional and conservation tillage are most evident in the NDTI values. Observations 

made before implementation of tillage, or after crop emergence, will tend to conceal the 

correct tillage status of the field.  

The ability to provide standardized tillage information can assist assessment of 

soil conservation, assessment of agricultural management strategies and policies, and 

reduction of ecosystem modeling uncertainties. Zheng et al. (2012) validated their 

technique with a single set of field data collected in 2010 for a site in Central Indiana; 

this study continues evaluation of the minNDTI strategy using four additional validation 

data sets collected over time in different regions of the United States. This paper 

addresses the following questions:  

1) How does the minNDTI method perform when applied to a broader range of soils and 

landscapes (here designated as “local models”)?  
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2) How well does the Zheng et al. (2012) model transfer to other regions? (For 

convenience in designation, the Zheng et al. (2012) model is referred as a “regional 

model” in this paper although, strictly speaking, it is local in nature.) 

3) Do local models perform better than the regional model? 

4) How does minNDTI perform compared to the CAI and SINDRI indices?  

Investigation of these questions will provide information about the performance 

of the minNDTI strategy in a wider range of soils and landscapes, will increase our 

understanding of the constraints and limitations for practical application of the technique, 

and will provide the basis for its application to survey broader areas of over intervals of 

several years.  

2. Remote Sensing Tillage 

2.1 Tillage Indices 

 Remote sensing spectral indices are designed to amplify useful information on 

specific targets based on unique absorption and reflectance features of the target. An 

optimal tillage index is sensitive to crop residue, and insensitive to soil background and 

green vegetation. This study investigated three tillage indices (i.e., CAI, SINDRI, and 

NDTI) from hyperspectral, ASTER, and Landsat sensors.  

CAI uses three relatively narrow (10 nm) reflectance bands ~ one near 2100 nm 

(R2100) and one on each shoulder at 2030 and 2210 nm (R2030 and R2210, respectively) to 

estimate CRC (Daughtry 2001):  

CAI = 100 × [0.5 × (R2030 + R2210) – R2100] (1) 
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SINDRI utilizes SWIR bands 6 (2185 ~ 2225 nm) and 7 (2235 ~ 2285 nm), which occur 

along a shoulder of the cellulose absorption feature, to estimate CRC (Serbin et al. 

2009a): 

SINDRI = (ASTER6 – ASTER7)/(ASTER6 + ASTER7) (2) 

NDTI utilizes Landsat TM/ETM+ bands 5 (1550 ~ 1750 nm) and 7 (2080 ~ 2350 nm) to 

detect the presence of CRC (van Deventer et al. 1997): 

NDTI = (TM5 – TM7)/(TM5 + TM7) (3) 

CAI, the hyperspectral tillage index, performs the best because its narrow 

hyperspectral spectral bands capture the cellulose absorption centered at 2100 nm (Serbin 

et al. 2009c). SINDRI, the best ASTER tillage index, is calculated using bands 6 and 7 

where band 6 (2185 ~ 2225 nm) is located on the shoulder of the 2100 nm absorption 

region (Serbin et al. 2009a, 2009c). NDTI, which incorporates TM band 7 covering 

spectral region of 2080 to 2350 nm, is the optimal tillage index for Landsat sensors 

(Serbin et al. 2009c). All three tillage indices used in this paper are based upon use of 

those bands positioned close to the 2100 nm cellulose absorption.  

2.2 Confounding Issues 

 Tillage index values could be influenced by local soils, presence of green 

vegetation, and age of residue. The residue absorption decreases as crop residue degrades 

(Daughtry et al. 2010; Serbin et al. 2009c), but residue weathering was not found to be a 

major confounding issue in CRC estimation using airborne and satellite imagery. Green 

vegetation, however, has been shown to have negative effects on CRC estimation 

(Daughtry et al. 2005; Serbin et al. 2009c; Zheng et al. 2012). Thus, previous research 

has recommended removal of pixels influenced by the presence of green vegetation as 
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assessed by use of the Normalized Difference Vegetation Index (NDVI). CAI, SINDRI, 

and NDTI showed, in sequence, increasing levels of sensitivity to green vegetation 

(Serbin et al. 2009a, 2009c) because the spectral bands of ASTER and Landsat imagery 

are wider, and therefore more sensitive to the effects of green vegetation. Variations in 

surface soil properties can also confound CRC estimation. Daughtry and Hunt (2008) and 

Serbin et al. (2009c) found that increases in soil water content decrease CAI values under 

laboratory conditions, and hence, cause underestimation of CRC. However, estimation of 

CRC was not significantly biased under wet conditions using CAI and SINDRI derived 

from airborne and satellite remote sensing imagery (Serbin et al. 2009a). CAI values of 

soils increase from negative to zero as organic carbon increases (Serbin et al. 2009b). 

Because the spectral resolutions of Landsat bands are coarser, soil water and organic 

carbon may have stronger impacts on NDTI. Effect of other soil properties can be 

obtained from Serbin et al. (2009b).    

3. Materials and Methods   

3.1 Study Sites 

 Field crop residue data were acquired for four sites located near Ames, Iowa; 

Pesotum, Illinois; Fulton, Indiana; and Centreville, Maryland (Serbin et al. 2009a) (figure 

3.1). The first three sites are within Land Resource Region (LRR) M - Central Feed 

Grains and Livestock Region, while Centreville, MD falls in LRR T - Atlantic and Gulf 

Coast Lowland Forest and Crop Region (USDA-NRCS 2006b). Principal crops for all 

sites are corn (Zea mays L.) and soybeans (Glycine max), but the MD site also produces 

winter wheat. Corn/soybean rotations were common. Water erosion, wind erosion, and 

maintenance of soil organic matter and productivity of soils are the major resource 
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concerns. Thus, CRM, crop rotation, and cover crops are important conservation 

practices for these croplands. Land surfaces are mostly level to gently sloping for all 

sites. However, poorly drained post-glacial kettle (prairie pothole) depressions occur 

throughout the IA site (MLRA 103) (figure 3.2A) and the IN site (Major Land Resource 

Area [MLRA] 111C) (figure 3.2B). Serbin et al. (2009a) provided additional descriptions 

of these sites. 

3.2 Crop Residue and Remotely Sensed Data 

 CRC was measured at two locations within corn and soybean fields using the 

line-point transect method (Morrison et al. 1993). Table 3.1 shows acquisition dates for 

field measurements, Landsat, airborne hyperspectral, and ASTER images. Airborne 

hyperspectral imagery was acquired by SpecTIR LLC (Sparks, NV, USA) for each 

location (Serbin et al. 2009a). Landsat images (both Landsat TM 5 and ETM 7+) were 

atmospherically corrected to surface reflectance using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) (Masek et al. 2006) and 

geometrically corrected if positional errors were found.  Clouds and cloud shadows were 

detected and masked as zero values using an object-based detection method (Zhu and 

Woodcock 2012) for those cloud contaminated Landsat images. All airborne and ASTER 

images were atmospherically and geometrically corrected (Serbin et al. 2009a).  

3.3 Tillage Indices and Methods 

CAI (equation 1), SINDRI (equation 2), and NDTI layers (equation 3) were 

generated from airborne hyperspectral, ASTER images, and Landsat images, 

respectively. SINDRI values were also calculated using airborne hyperspectral data 
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which were convolved over the equivalent ASTER band passes using relative spectral 

response functions when ASTER imagery were unavailable (Serbin et al. 2009a). Thirty-

meter buffers were applied to the IA, IN, and IL imagery to extract mean spectral 

signatures of each sampling point, while 20 m buffers were used for MD imagery due to 

smaller field sizes. The minNDTI values for each sampling point were extracted from 

multi-temporal NDTI data (Zheng et al. 2012). Clouds and cloud shadows were excluded 

from analysis. Although the minNDTI technique has the ability to reduce or eliminate 

green vegetation effects, rare circumstances such as weeds growing rapidly in the fields 

before or after planting can occur and confound minNDTI values. Thus, pixels with 

NDVI > 0.30 (Daughtry et al. 2005) at the time of minNDTI were excluded from 

analysis. Further, we found that tillage status had changed for six MD samples. Field data 

were acquired in MD when no corn or soybeans were planted (Maryland Crop and 

Weather Report 2007). Furthermore, the temporal patterns of NDTI and NDVI also 

suggest that tillage was applied after field acquisition dates for those samples (figure 3.3). 

Tillage or planting occurred in this field several days before day 136 (May 16) and 

approximately one month after field data and airborne hyperspectral data acquisition, 

such that CRC was reduced because NDTI values decreased from 0.078 to 0.028. 

Because these field data were collected too early to represent the correct tillage status, 

they are not valid for application of the minNDTI model, and thus, were excluded from 

our analysis.  

We developed local models for each location. Samples were sorted by minNDTI 

values, and divided into calibration and test datasets by selecting every other sample. 

Secondly, we applied the Zheng et al. (2012) relationship between minNDTI and CRC: 
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CRC = 754.7 × minNDTI + 5.4 (4) 

to all four locations to test the effectiveness of applying a regional model in mapping 

CRC. Lastly, we evaluated minNDTI against CAI and SINDRI. The total number of 

samples for some datasets is further reduced because some samples fall on non-imaged 

areas. The performance of each model was evaluated using coefficient of determination 

(R
2
), root-mean-square errors (RMSE), and classification accuracies. In addition, to 

facilitate use by a wider community of users, tillage status was classified into three 

classes: CRC < 30% (non-conservation tillage), 30% < CRC < 70% (conservation 

tillage), and CRC > 70% (conservation tillage – most likely no till). Classification 

accuracy was assessed using overall accuracy, kappa statistic (��), and Z-statistic (Z-stat), 

the last of which is used to test the significance of the classifications (Congalton and 

Green 2008).   

4. Results and Discussion 

4.1 Time-series NDTI 

The pattern of temporal NDTI spectral profiles varied depending on field surface 

status and image availability (figure 3.4). Most temporal spectral profiles show a decrease 

followed by an increase of NDTI values. The decrease in NDTI values not only relates to 

residue weathering and decreases of CRC due to tillage operations (Zheng et al. 2012), 

but also corresponds to removal of green vegetation if weeds are present in fields before 

planting. High NDTI values (> 0.20) of the first four observations in MD 2007 temporal 

spectral profile (CRC = 53% in figure 3.4) are due to the presence of green vegetation, 

while the first decrease from the third to the sixth observations are likely caused by weed 

removal. minNDTI values occurred on different image dates (figure 3.4) because the 
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timing of tillage and planting operations differ from field to field. The majority of the 

minNDTI values were observed between the first and last Landsat observations that were 

available to us (figure 3.4). However, because some fields were tilled or planted very 

early or very late in the planting season, when additional images were not available, 

minNDTI values of several samples were located at the first (e.g., IA 2007 CRC = 18% 

in figure 3.4) and last (e.g., IL 2006 CRC = 74% in figure 3.4) observations. Landsat 

image dates were marked in Table 3.1 if minNDTI of every field sample did not occur on 

that image. Markers on the first and last image dates indicated good temporal coverage 

for the purpose of tillage mapping. Despite the differences of time-series NDTI spectral 

profiles across multiple locations and over several years, the minNDTI technique detects 

the most correct tillage status.  

4.2 minNDTI 

 Local calibration models show R
2
 of 0.66 ~ 0.89 and RMSE of 7.8 ~ 13 (table 

3.2). Figure 3.5 shows linear correlations between CRC and minNDTI. R
2
 and RMSE 

range from 0.56 to 0.93, and from 8.4 to 15.1 respectively for local validation models 

(table 3.2).  The slopes and intercepts of local validation models are not significantly 

different from one and zero respectively for IA and IN sites at the 5% significant level 

(table 3.2). Figure 3.6 presents the plots of measured CRC and predicted CRC. Overall 

accuracies for three tillage classes were 0.68 ~ 0.86, while �� are 0.43 ~ 0.76. Z statistics 

show that all classifications are significantly better than chance alone at a 95% 

confidence level (z = 3.37 ~ 6.69 > 1.96) (table 3.2). The regional model (equation 4) 

yielded R
2
 of 0.61 ~ 0.91, RMSE of 9.2 ~ 18.8, overall accuracies of 0.69 ~ 0.80, and ��  

of 0.44 ~ 0.65 (table 3.2 & figure 3.7). All classifications were significant at a 95% 
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confidence level (z = 3.96 ~ 10.99 > 1.96), however, slopes and intercepts of regional 

models differ significantly from one and zero respectively at the 5% significant level.   

Both local and regional models perform best for the IA 2007 dataset, which has the 

lowest RMSE among the six validations (table 3.2, figures 3.6 & 3.7). Samples with high 

levels of CRC were mostly underestimated by the regional model in IL, while 

overestimation occurred for those samples with less than 30% CRC in MD (figure 3.7). 

The regional model tends to underestimate CRC for most samples of IA 2005, and partial 

samples of IN 2006 and 2007 datasets. RMSE is generally lower when models are 

developed locally (table 3.2). Local models result in better classification accuracies with 

the exception of IA and IN 2007 datasets. 

Both the locally developed models and the regional model were effective in 

assessing tillage status and CRC levels, although specifics of the effectiveness of the two 

strategies differ. The minNDTI method was able to estimate and classify CRC into three 

categories for the six datasets.  Locally developed models in general predicted CRC more 

accurately than the regional model. Significant tests for slope of one and intercept of zero 

suggest that locally tuned models are more robust than the regional model. However, in 

circumstances of unavailability of field data, the regional model would be able to meet 

the needs of tillage classifications. The regional model produced better classification 

accuracies for IA and IN 2007 datasets, due to correct classification of samples with 

negative minNDTI values (classified as non-conservation tillage) although the regional 

model underestimated their CRC.  These negative minNDTI values were located in low 

lying areas which are often wetter and darker than other locations (figure 3.2). For the IA 

site, reported rains hampered spring fieldwork, delaying planting progress, and replanting 
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of corn and soybean due to flooded soils in 2005 (Iowa Crops and Weather 2005). Thus, 

we believe that most of the IA 2005 samples underestimated by the regional model were 

the result of abundant rainfall that increased moisture levels in the surface soil at the time 

that the image was acquired. Under such wet weather conditions, a local or soil moisture-

calibrated model can improve accuracies in mapping CRC (figure 3.6 & table 3.2). The 

IN site was found to have higher SOC than the others (Serbin et al. 2009a). Samples with 

negative minNDTI are all poorly drained soils (Soil Survey Staff  2011). Therefore, these 

negative minNDTI values are likely due to wet and dark soils. Removal of negative 

values from the analysis for IN sites will improve prediction accuracy, as the other 

samples fall closely on the 1:1 line (figure 3.7). Results from the IN sites highlight the 

necessity to separate low-lying wet areas from relatively dry locations for CRC mapping. 

Application of a regional model for mapping CRC and tillage practices over large areas 

and over time is possible, but practitioners should be careful with ‘wet’ years and low-

lying regions because they increase the risk of underestimation.  

Starting and ending dates of a planting season vary across landscapes and over 

time.  The key consideration for applying the minNDTI technique is to have sufficient 

numbers of Landsat observations to cover the entire planting season at intervals of 

approximately one or two weeks.  For double-cropped or irrigated fields with multiple 

planting dates, additional sequences will be required for each planting date. An ideal 

NDTI temporal profile would depict a progressive decrease indicating application of 

tillage and planting, followed by an increase due to crop emergence (figure 3.3). The 

USDA State Crop Progress & Condition Report 

(www.nass.usda.gov/Publications/index.asp) can also assist in determination of a good 
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temporal NDTI profile. For example, according to Iowa 2007 Crop and Weather Report, 

only 8% of corn was planted by April 22, 14% by April 29 (due to heavy rainfall), 53% 

by May 6 (no emergence reported), 77% by May 13 (36% emerged), and 93% for the 

week ending on May 20. Therefore, the April 18 image covers the early planting season, 

the May 12 image was able to map CRC for at least 41% of corn fields which were 

planted but without crop emergence, the 20 May image was capable of mapping CRC for 

additional 16% of the corn fields, while the 13 June image covered the end of planting 

season.  An additional image acquired around May 6 might have reduced mapping 

uncertainties for the 36% emergent corn fields, based on the above information. Weeds 

and replanting can complicate the NDTI temporal profile, but adequate satellite 

observations will help detecting these events. The use of NDVI can detect effects from 

green vegetation upon NDTI values. The tillage status of several samples in MD site 

changed after acquisition of the field validation data. Thus, for validation data, we 

suggest selecting fields with evidence of tillage or planting whenever possible. Kettles 

and small depressions within agricultural fields were found to have lower NDTI values 

than their surrounding areas due to their high SOC and tendency to accumulate water. An 

object-based (field-based) method calculating the average NDTI value of all pixels within 

a field can potentially minimize effects of variation due to elevation and soils, assuming 

farmers apply the same tillage practices to the entire field. Another option to avoid 

underestimation of CRC could be exclusion of poorly drained soils from analysis 

according to soil survey.  

These findings highlight the following issues for the use of the minNDTI strategy: 

(a) assure that the field observations are collected after planting, (b) screen field data to 
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detect points that may be influenced either by recent rain, or by low-lying terrain, that 

may retain moisture even when neighboring well-drained sites may be free of excessive 

moisture, and (c) verify that field sites are free of emergent vegetation that might 

contaminate minNDTI values.  

4.3 minNDTI, CAI, and SINDRI 

The higher R
2
 and lower RMSE values suggest that CAI and SINDRI generally 

perform better than minNDTI (figure 3.8 & table 3.3). However, minNDTI performed 

slightly better than CAI for IL 2006 and MD 2007 datasets, and outperformed SINDRI 

for IA 2007 and MD 2007 dataset. SINDRI yielded R
2 

of 0.55 and RMSE of 18.8 for MD 

2007 dataset, which had the worst agreement between SINDRI and field-measured CRC. 

All three tillage indices produced significant classifications for every dataset (z = 2.60 ~ 

10.87 > 1.96).  minNDTI provided similar classification accuracies to the other two 

indices for most datasets except the Fulton, IN site where both CAI and SINDRI showed 

better classification accuracies.     

minNDTI showed comparable results to CAI and SINDRI with the exception of 

study sites affected by soil moisture and SOC (i.e., IN 2006 & 2007). Note that SINDRI 

was derived from airborne hyperspectral data for IN and IL which had better data quality 

than the actual ASTER data. Therefore, it is possible that the higher data quality of 

airborne hyperspectral data was one of the reasons for a better result from SINDRI than 

minNDTI for IN and IL datasets, as ASTER data did not show significant improvement 

on CRC estimation for IA datasets. A low correlation between SINDRI and CRC for MD 

2007 dataset was due to green vegetation (volunteer wheat and weeds were often 

common in this area in April). CRC was found to be overestimated by SINDRI for 
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samples affected by green vegetation. Thus, although SINDRI was less sensitive to green 

vegetation than NDTI, weeds and moderate crop cover were likely to cause inaccurate 

estimation of CRC, especially when images were acquired in the very late planting 

season. NDTI was also more sensitive to soil variation than CAI and SINDRI as shown in 

figure 3.8. The minNDTI technique can avoid most green vegetation effects, but not 

effects of surface soil variability. Nevertheless, the minNDTI strategy provides the best 

alternative for practical applications using existing sensor systems because of its low 

costs, and the availability of an open archive provides broad spatial and temporal 

coverage with suitable spatial detail.   

5. Summary and Conclusions 

The minNDTI technique was evaluated using data collected at multiple locations 

and different years. Regional mapping of CRC/ tillage is possible using the regional 

model of Zheng et al. (2012), but locally developed models were more accurate. We note 

that close attention should be devoted to areas that might have low-lying fields prone to 

flooding and has soils rich in organic matter, as they can confound results and reduce 

accuracy. USDA/NASS Crop and Weather Reports are useful for selecting appropriate 

Landsat observations by providing information about local field and weather conditions. 

The minNDTI technique is comparable to CAI and SINDRI in terms of tillage 

classification accuracies. Results from this study demonstrate the capability of this 

method for mapping CRC/tillage practices at broad scales. With availability of Landsat 

TM/ETM+ imagery since 1984, it is possible to trace the tillage history at site-specific 

detail, filling in spatial and temporal gaps of coverage of tillage data. Further, real-time 

series of tillage data can be used in agro-ecosystem models to evaluate impacts of CRM 
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practices on soil carbon, soil erosion, and nutrient losses, providing data resources to 

meet needs for improved environmental modeling highlighted by Shaffer and Ma (2001). 

Because field size is relatively large in the Midwestern United States, future studies can 

incorporate object-based (field-based) methods to fill data gaps in scan line corrector 

(SLC)-off Landsat 7 ETM+ products, and to fill missing data caused by small clouds and 

cloud shadows. The Advanced Land Imager (ALI) and historical ASTER imagery prior 

to the SWIR detector failure in May 2008 (NASA/JPL 2009) can be incorporated into the 

minNDTI technique when an adequate number of Landsat observations is lacking. The 

upcoming launches of Landsat 8 and the ESA Sentinel-2 constellation ensure that this 

method will be useful for future monitoring applications.  The Sentinel-2 constellation is 

a particularly good candidate for CRC/ tillage mapping with this method because it will 

have a revisit time of < 5 days and will carry a shortwave infrared sensor with bands 

equivalent to Landsat 5 & 7 (ESA 2011). While the proposed Hyperspectral Infrared 

Imager (HyspIRI) (NASA/JPL 2012) would allow for the use of CAI, its 19-day revisit 

time might not be effective for tillage mapping considering cloud issues in conjunction 

with the narrow time window for tillage and planting operations (Zheng et al. 2012). As 

such, Landsat and Landsat-like sensors with spectral bands covering 1650 and 2100 nm 

provide the most cost and time efficient way for monitoring CRC and tillage practices via 

the minNDTI method.  
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Table 3.1. Acquisition dates for field, Landsat, airborne hyperspectral, and ASTER data.  

Location Ames, IA Pesotum, IL Fulton, IN 

Centreville, 

MD 

Year 2005 2007 2006 2006 2007 2007 

Field 5/19 - 22 5/21 - 23 5/16, 18 5/20, 22, 23 5/21 - 24 4/11, 13 

 

Landsat 

 

4/03
†
, 

5/05, 5/22, 

5/30, 

6/06
†
 

4/18, 5/12, 

5/20, 6/13
†
 

4/10, 4/18, 

4/26, 

5/04, 5/20, 

5/28, 6/05, 

6/13 

4/19
†
, 4/28, 

5/06, 5/21, 

5/29, 6/14 

4/15
†
, 4/22, 

5/08, 5/24, 

6/02, 6/09 

4/21
†
, 4/30

†
, 

5/07, 5/16, 

5/23, 5/31, 

6/17, 6/24
†
 

Airborne NA* 5/27 6/08 5/29 6/06 4/10 

ASTER 5/22 5/19 NA NA NA NA 

*NA: data not available. 

†: no minimum NDTI value was found on the image, indicating tillage did not occur near the image date 

for the available samples. 
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Table 3.2. Linear regressions of minNDTI and crop residue cover and overall 

classification accuracy for three categories of tillage intensity. Local models were 

calibrated and validated for each location. The regional model (Zheng et al. 2012) was 

used to predict crop residue cover and tillage intensity.    

Location 

Year 

Ames, IA 

Pesotum, 

IL Fulton, IN 

Centreville, 

MD 

2005 

200

7 2006 2006 2007 2007 

  
  
  
  
  
  
  
  
  
  
  
L

o
ca

l 

 R
2
 0.69 0.84 0.89 0.66 0.76 0.89 

Calibratio

n RMSE 10.1 8.1 8.8 13.0 12.3 8.5 

 Samples 34 44 57 50 65 13 

 R
2
 0.59 0.78 0.83 0.56 0.72 0.93 

 RMSE 11.0 8.4 10.3 15.1 14.3 10.2 

 Slope  

0.91
*
 

0.92
*
 0.88 

0.88
*
 

1.03
*
 1.22 

Validatio

n Intercept 

3.84
*
 

3.38
*
 2.11

*
 

4.91
*
 

1.97
*
 8.59

*
 

 

Overall 

acc. 0.74 0.68 0.77 0.84 0.75 0.86 

 �� 0.50 0.43 0.59 0.63 0.59 0.76 

 Z-stat 3.37 3.37 6.33 5.60 6.40 5.17 

 Samples 34 44 57 51 65 14 

R
2
 0.64 0.81 0.86 0.61 0.74 0.91 

RMSE 16.5 9.2 10.2 18.8 17.7 12.5 

Slope 0.83 0.89 1.21 0.58 0.66 1.16 

Regional 

model
†
 Intercept 

16.1

8 7.19 8.72 

10.2

1 

14.5

4 -15.39 

Overall 

acc. 0.69 0.75 0.72 0.80 0.80 0.74 

�� 0.44 0.56 0.52 0.53 0.65 0.60 

Z-stat 3.96 6.69 7.74 6.27 

10.9

9 4.36 

Samples 68 88 114 101 130 27 
* Slopes and intercepts are not significantly different than one and zero at the 5% significant level 

respectively. 

† Regression equation from Zheng et al. (2012): CRC = 754.7 × minNDTI + 5.4 
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Table 3.3. Comparisons of minNDTI, CAI, and SINDRI for estimating crop residue 

cover and soil tillage categories.  

Location Ames, IA 
Pesotum, 

IL 
Fulton, IN 

Centreville, 

MD 

Year 2005 2007 2006 2006 2007 2007 

Samples 54 88 33 91 130 26 

 
R

2
 0.68 0.82 0.87 0.60 0.74 0.91 

 
RMSE 10.4 8.1 9.0 14.0 13.1 8.4 

 
Slope 655.7 671.8 935.4 431.3 501.6 871.2 

minNDT

I 
Intercept 19.7 12.0 2.3 13.8 18.1 8.5 

 

Overall 

acc. 
0.78 0.75 0.64 0.82 0.75 0.85 

 
Kappa 0.59 0.56 0.46 0.56 0.59 0.75 

 
Z-stat 5.59 6.70 3.59 6.46 9.18 6.52 

 
R

2
 NA

*
 0.83 0.72 0.80 0.82 0.89 

 
RMSE NA 7.7 13.2 9.8 10.8 9.3 

 
Slope NA 23.8 15.2 27.1 27.3 19.4 

CAI Intercept NA 17.6 5.7 11.1 13.5 24.6 

 

Overall 

acc. 
NA 0.68 0.58 0.92 0.79 0.69 

 
Kappa NA 0.44 0.33 0.80 0.63 0.51 

 
Z-stat NA 4.91 2.60 10.87 10.38 3.79 

 
R

2
 0.75 0.66 0.93

†
 0.82

†
 0.83

†
 0.55

†
 

 
RMSE 9.2 11.0 6.6 9.4 10.7 18.8 

 
Slope 

2062.

8 

1650.

0 
2495.8 

1741.

4 

1713.

5 
1081.8 

SINDRI Intercept 18.2 27.3 10.6 -25.8 -38.1 64.9 

 

Overall 

acc. 
0.74 0.67 0.70 0.85 0.78 0.69 

 
kappa 0.52 0.41 0.51 0.63 0.64 0.50 

 
Z-stat 4.66 4.50 4.35 7.77 10.74 3.80 

* NA: not available  

† ASTER bands were convolved from airborne hyperspectral data.   
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Figure 3.1. Locations of the four validation sites discussed in this study and the 

Nobelsville, IN site used by Zheng et al. (2012). 

 



43 

 

  

 

 

Figure 3.2. Kettles (prairie potholes) highlighted by white arrows in Ames, Iowa sites (A) 

and depressions in Fulton, Indiana site (B). Negative minNDTI values (white dots) were 

measured in the low-lying areas. Elevations of black dots (corresponding to positive 

minNDTI values) are about 1 meter higher than those of white dots (B). (Source: 

42°18'45.22"N & 93°33'40.86"W, April 14, 2008, USDA Farm Service Agency & 2012 

DigitalGlobe (A); 41°00'40"N, 86°18'50"W, March 1, 2005, IndianaMap Framework 

Data (B), Google Earth, retrieved on January 8, 2012).        
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Figure 3.3. NDTI and NDVI values of a sampling point with 59% crop residue cover 

(CRC) change over the time period of 2007 planting season in Centreville, MD. 

Highlighted areas indicate field acquisition dates (left) and the time (right) when NDTI 

drops abruptly to 0.028. The field data were collected too early to capture the correct 

tillage status which should be determined after day 136. 
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Figure 3.4. Time-series NDTI spectral profiles for each dataset with different levels of 

field-measured crop residue cover (CRC). minNDTI values were highlighted using solid 

symbols. 
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Figure 3.5. Crop residue cover (CRC) as a function of minNDTI for local calibration 

datasets. 
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Figure 3.6. Measured vs. predicted crop residue cover (CRC) for local test datasets. 
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Figure 3.7. Measured vs. predicted crop residue cover (CRC) for regional model. 
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Figure 3.8. Crop residue cover (CRC) as a function of minNDTI, CAI, and SINDRI. 
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Abstract 

Crop residue management is an important soil management practice that can conserve 

soil and water resources. Monitoring how farmers manage their land in terms of tillage 

practices can assist development of best management strategies to optimize crop yields 

and environmental conservation. Remote sensing is a cost-effective and time-efficient 

tool for tillage monitoring. Previous studies have established the minNDTI technique at a 

pixel level for tillage mapping by extracting the minimum values from time–series 

Landsat NDTI (Normalized Difference Tillage Index) spectral profiles. The objective of 

this study is to evaluate the minNDTI technique and our proposed strategies for mapping 

tillage practices at the field level. We incorporated a multi-scale image segmentation 

approach to fill Landsat 7 scan line corrector (SLC)-off data gaps to facilitate site-

specific and broad-scale mapping of tillage practices. The gap-filled Landsat 7 images 

were combined with Landsat 5 imagery to develop a multi-temporal image series for 

tillage mapping. We then applied object-based approaches and utilized the USDA 

cropland data layer to produce field-level tillage maps which were evaluated using 

Conservation Technology Information Center (CTIC) county-level tillage data. Our 

results show that the gap-filling procedure is effective for the purpose of tillage mapping. 

Overall classification accuracies of tillage maps range from 69% to 79%. Comparison 

between remotely sensed and CTIC tillage data suggests that we can monitor tillage 

practices systematically using remote sensing imagery. This study provides methods and 

guidelines for researchers and conservationists who are interested in obtaining field-level 

tillage information using Landsat imagery.              

Keywords: Landsat; crop residue; tillage; multi-scale segmentation; SLC-off; gap filling  
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1. Introduction 

Tillage prepares the soil for planting by mechanical disturbance of the soil 

surface.  Tillage has been practiced since antiquity to aerate soil, mix crop residue into 

soil, suppress weeds, and, in mid-latitude climates, dry and warm the surface soil to 

advance spring planting.  Widespread introduction of mechanized agricultural equipment 

in the early 20
th

 century greatly increased uses of tillage and its impact upon soil quality. 

By the 1940s, agronomists recognized unfavorable impacts of conventional tillage 

practices, including soil compaction, soil erosion, and nutrient losses.  Such concerns led 

to the introduction of alternative tillage practices, such as strip-till and mulch-till, which 

has been encouraged by governmental programs in the United States and elsewhere.   

Interest in alternative tillage practices has led to efforts to monitor the adoption of 

conservation agriculture, and its impacts upon landscapes.  However, accurate and 

systematic assessment of conservation tillage has been inhibited by weaknesses in data 

collection capabilities.  Field data collection, self-reporting by farmers, agricultural 

censuses, and roadside surveys each have contributed to estimates, but fail to provide the 

scope, detail, and accuracy necessary to support practical applications of tillage data for 

environmental analysis (Sachs et al., 2010). Many of these difficulties can be addressed 

by applications of remote sensing, which offers the potential to quickly and inexpensively 

survey landscapes over large areas, at reasonable spatial detail.   

Early attempts to use remote sensing techniques for mapping crop residue cover 

(CRC) date from 1975 (Gausman et al., 1975). Since then, numerous investigators have 

evaluated the potential of remote sensing for assessing crop residue both in the laboratory 

and in the field (Biard and Baret, 1997; Daughtry, 2001; Sullivan et al., 2007; Sullivan et 
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al., 2006).  However, attempts to use remotely sensed imagery have also encountered 

practical difficulties. Satellite hyperspectral imagery with fine spectral detail can estimate 

crop residue cover accurately (Daughtry et al., 2006), but its limited spatial and temporal 

coverage constrains its broad-scale application.  

Alternatively, Landsat imagery provides continuous global coverage of the earth. 

Thus, many studies have evaluated Landsat 5 Thematic Mapper (TM) and 7 Enhanced 

Thematic Mapper Plus (ETM+) for crop residue and tillage mapping (Daughtry et al., 

2006; Sullivan et al., 2008; van Deventer et al., 1997; Watts et al., 2009). These studies 

led to development of several Landsat-based tillage indices (van Deventer et al., 1997), of 

which the Normalized Difference Tillage Index (NDTI) fared the best (Serbin et al., 

2009a; Serbin et al., 2009b). The NDTI is calculated by dividing the difference between 

bands 5 and 7 by the sum of the two bands. Early applications of the NDTI encountered 

difficulties in estimating crop residue levels along a continuum using a single Landsat 

NDTI image (Daughtry et al., 2006; Gowda et al., 2001; Thoma et al., 2004), mainly 

because (1) the timing of tillage and planting varies greatly from field to field, resulting 

the presence of green vegetation (emergent crops) on some fields (Zheng et al., 2012); (2) 

Landsat’s coarsely defined spectral bands cannot effectively detect crop residue  in the 

presence of green vegetation (Daughtry et al., 2005). To minimize confounding effects of 

green vegetation on crop residue estimation, one solution is to incorporate multiple 

Landsat images which allow detection of freshly or recently tilled surface. Zheng et al. 

(2012) found that the minimum NDTI values extracted from time-series NDTI spectral 

profiles can reliably represent correct tillage status with adequate Landsat observations, 

and designate this technique as the minNDTI approach. The minNDTI approach 
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improved accuracy of crop residue estimation as well as classification accuracy of tillage 

practices (Zheng et al., 2012). Furthermore, Zheng et al. (in press) evaluated the 

effectiveness of this strategy at multiple locations over several years to demonstrate its 

capability for region-wide applications.  

The minNDTI approach and the open availability of Landsat imagery together 

provide significant opportunities to map tillage practices at broad scales in a cost- and 

time-efficient manner. This approach is simple, but requires utilization of both Landsat 5 

TM and Landsat 7 ETM+ imagery to provide the temporal sequences necessary to 

maximize mapping accuracy during the interval 2003-present (Zheng et al. in press). It is 

noteworthy for our discussion here to mention that tillage status must be assessed during 

a short interval within the early planting season, when the agricultural landscape is 

undergoing changes as farmers till and plant crops, and crops emerge (Zheng et al. 2012). 

This paper continues the work of Zheng et al. (in press) to map tillage practices at 

the field level in the Midwestern United States using sequential Landsat imagery. First, in 

the following section, we address issues concerning the quality of Landsat data for tillage 

mapping, and then present and evaluate our methodologies to generate broad-scale, site-

specific, tillage maps. This study will form the basis for large-scale tillage monitoring in 

the future.  

2. Landsat 7 ETM+ Data Issue   

In May 2003, the Landsat 7 ETM+ scan line corrector (SLC) failed, creating a 

pattern of stripes that cause approximately 22% of each Landsat 7 ETM+ scene to be lost 

(USGS, 2010). These missing data have prevented widespread use of Landsat 7 ETM+ in 

the remote sensing community. In our context, the missing data complicate 
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implementation of the minNDTI technique to generate tillage maps because they reduce 

the length and frequency of the time series required to assess tillage status. (Images 

acquired after the SLC failure are designated as “SLC-off images” in the rest of this 

paper.) Because gaps differ in location for each SLC-off image, the resulting minimum 

NDTI layer will have large gaps (pixel values of zero) when a time-series NDTI image 

consists of a composite of multiple SLC-off images. Thus, practical application of the 

minNDTI technique using TM and ETM+ imagery requires development of a strategy 

specifically designed to fill these missing data in the context of the minNDTI strategy.  

Several methods have been proposed for filling gaps in SLC-off images: 

histogram matching (USGS, 2004), semi-physical fusion (Roy et al., 2008), multi-scale 

segmentation (Maxwell et al., 2007), geostatistical methods (Pringle et al., 2009; Zhang 

et al., 2007), a Neighborhood Similar Pixel Interpolator (NSPI) approach (Chen et al., 

2011), and a hybrid of a geostatistical method and the NSPI (GNSPI) (Zhu et al., 2012). 

The histogram-matching method is simple, but does not work well if significant changes 

have occurred between input and SLC-off images, and if features are smaller than the 

local moving window size (USGS, 2004). The semi-physical fusion method that uses the 

Moderate-resolution Imaging Spectroradiometer (MODIS) to predict reflectance values 

of the missing pixels has a scale discrepancy problem because MODIS has much coarser 

spatial resolution than does Landsat imagery (Roy et al., 2008). The multi-scale 

segmentation approach is effective, although it tends to have lower predictive accuracies 

for narrow landscape features, such as roads and narrow streams (Maxwell et al., 2007). 

The geostatistical methods are computationally inefficient, and cannot predict well when 

ground-cover changes rapidly (Pringle et al., 2009). The NSPI and GNSPI were designed 
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to improve prediction accuracies for heterogeneous landscape pixels with reduced 

computing time (Chen et al., 2011; Zhu et al., 2012).  With the exception of the multi-

scale segmentation approach, each method requires one or several input images acquired 

close to the date of the SLC-off image to guide interpolation of missing pixels. 

The multi-scale segmentation approach assumes that the pixels are spectrally 

similar within an object, and has the advantage of not requiring a cloud-free SLC-on 

image acquired close to the SLC-off image acquisition date (Maxwell et al., 2007). Thus, 

this method can be repetitively applied to the SLC-off images once field boundaries are 

correctly defined. We believe that the multi-scale segmentation approach is best suited 

for our application because of the following reasons: first, agricultural fields are generally 

large and uniform in shape in the Midwestern United States; second, CRC (i.e., the NDTI 

values) is relatively homogeneous within each agricultural field because farmers rarely 

apply two or more different tillage practices within a single agricultural field; third, 

segmentation maps are useful later in the map generation procedure. Because of the 

relatively homogeneous characteristics of fields in this application, we can simplify the 

multi-scale segmentation approach by making the reasonable assumption that pixels 

within an agricultural field are likely to have similar NDTI values.  

3. Multiresolution Segmentation 

Segmentation is a process of grouping pixels into objects according to spectral 

and spatial characteristics such that variability is maximized between objects and 

minimized within objects (Flanders et al., 2003; Haralick and Shapiro, 1985). The 

multiresolution segmentation algorithm is a bottom-up region-merging technique that 
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starts with one-pixel objects, which are then iteratively merged into larger patches using a 

pair-wise clustering process (Baatz and Scha �pe, 2000; Benz et al., 2004).  

Several elements need to be considered to optimize segmentation results for each 

application: input layers, scale, weighting between color and shape, and weighting 

between compactness and smoothness (Benz et al., 2004). One can use original image 

layers, or layers of a transformed image, as input layers according to each application. 

Image layers that can clearly define landscape features of interest are preferable. Here 

scale is an abstract term that controls the level of heterogeneity for the resulting image 

objects (Benz et al., 2004; Definiens, 2006).  In general, a larger scale will result in larger 

objects and smaller total number of segments. Color and shape are used to control the 

homogeneity of the resulting objects (Benz et al., 2004; Definiens, 2006). The color 

criterion minimizes spectral variation of pixels within an object, while the shape criterion 

improves the shape of an object with respect to smoothness and compactness (Benz et al., 

2004; Definiens, 2006). These weighting parameters can be adjusted to optimize 

segmentation results for each application.   

4. Methods 

4.1 Procedures of Gap-filling NDTI Layers  

Our gap filling process is shown in Figure 4.1. The tasseled cap (TC) 

transformation was applied to cloud-free Landsat SLC-on imagery to reduce the 

dimensionality of the spectral data. The first three TC layers (brightness, greenness, and 

wetness), which explained more than 90% of spectral variance, were used as input layers 

for image segmentation. Segmentation maps were generated using the multiresolution 

segmentation algorithm implemented in Definiens Professional 5 software (Definiens 
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AG, Germany). We tested a range of scales and found that a scale of 10 is adequate to 

separate non-agricultural objects (including isolated farmhouses) from agricultural 

features (Figure 4.2) while minimizing over-segmentation. The weighting between color 

and shape was set to 0.9/0.1 because color plays a primary role in distinguishing different 

objects. The weighting between compactness and smoothness was set as default 0.5/0.5 

because only minor changes were observed when we adjusted the weighting. Small 

objects that are completely within the data gaps could exist in scale 10 segmentation 

maps; hence, the missing pixels within these objects could not be filled. Some of these 

small objects are caused by within-object instead of between-object variation. Thus, scale 

15 segmentation maps with larger segments were created to fill remaining unfilled pixels. 

Because missing data are assumed to have NDTI values similar to the observed NDTI 

values within each agricultural field, we can fill the missing data using the mean of the 

same-field valid pixels. We used the mean of a group of pixels instead of using nearest 

neighbor pixels to fill missing data because this approach can reduce the effect of soil 

variation and uncertainties caused by errors induced by the imaging system (such as bad 

pixels). In addition, the mean calculation is less computationally intensive than searching 

for nearest neighbor pixels.  

SLC-off images were geometrically corrected if they did not line up with the 

segmentation map properly. Pixels located at field edges and end rows often have lower 

levels of crop residue than do the center pixels. Therefore, edge pixel values are less 

representative of the whole field.  Furthermore, to address the potential of half-pixel 

misregistration between segmentation maps and SLC-off images, we applied buffers 

inside each object to exclude edge pixels from our analysis: 60-meter buffers for the scale 
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10 segmentation maps and 30-meter buffers for the scale 15 segmentation maps (Figure 

4.2). We then applied a three-step gap filling procedure to fill the gaps (Figure 4.1). A 60-

m buffer scale 10 segmentation (60-m S10) map was first applied to guide the 

interpolation. The 60-m buffer scale excluded small objects, such as roads and small 

buildings, from interpolation (Figure 4.2). Therefore, this segmentation map interpolates 

missing pixels for large objects, such as large agricultural fields. The scale 10 

segmentation (S10) maps were then used to interpolate edge pixels of large segments and 

small landscape features. Lastly, the scale 15 segmentation maps with 30-m buffer (30-m 

S15) were used to fill the rest of unfilled pixels due to over-segmentation.   

4.2 Gap-fill Validation 

We evaluated the effectiveness of our gap-filling strategy by creating artificial 

SLC-off images from Landsat 5 TM images, then comparing our estimated values to the 

actual values from the Landsat 5 TM images. Landsat 5 TM NDTI layers of two distinct 

locations were selected to validate our gap-filling procedure. One was acquired on April 

26, 2006 over Champaign (Figure 4.3a shows a NDTI image located in the upper-left 

corner of Champaign County) and Douglas Counties in IL; the other was acquired on 

March 29, 2007 over Queen Anne’s, Talbot, and Caroline Counties in MD. Agricultural 

fields are uniform in shape (rectangular) in IL, while fields in MD are irregular in shape 

and smaller compared to the IL site. A scale of 10000 was applied to both NDTI layers, 

converting float into integer values, to reduce the size of the image files. We simulated 

SLC-off gaps within SLC-on images of the IL and MD areas using a mask generated by 

an SLC-off image (Figure 4.3b). Our gap-filling procedure was applied to these two 

simulated SLC-off NDTI layers. After the gaps were filled, we randomly sampled 5% of 
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the total number of filled pixels for each step. Then, predicted accuracy was evaluated 

using the square of the correlation coefficient (R
2
)
 
and mean absolute differences between 

predicted and actual images.   

4.3 Tillage Map Generation 

All SLC-off images were gap-filled using the above techniques. Figure 4.4 shows 

the procedures for producing tillage maps. We extracted minNDTI values from time-

series NDTI imagery and applied local models (Table 4.1) developed by Zheng et al. (in 

press) to the minNDTI layers for each location to generate CRC maps. CRC maps were 

then classified into three tillage categories: non-conservation tillage (< 30% crop 

residue), conservation tillage (30% ~ 70%), and conservation tillage – no-till (70% ~ 

100%). (Note that no-till is one type of conservation tillage. For convenience purposes, 

here, conservation tillage represents 30% to 70% crop residue level for the rest of this 

paper). This classification scheme was chosen to maintain consistency with the previous 

work by Zheng et al. (in press). Conventional and reduced tillage practices were 

combined as non-conservation tillage because it is difficult to differentiate them 

accurately using optical remote sensing imagery (Daughtry et al., 2006). We used the 

Cropland Data Layer (CDL) (USDA-NASS, 2006;2007) to locate corn and soybean 

fields and to incorporate other land cover/land use information (such as wheat, hay, and 

water bodies) into our tillage map products. We assigned class values of 301 to non-

conservation tillage, 302 to conservation tillage, and 303 to no-till practices. Pixels with 

CRC larger than 100%, which often indicate that lands are green throughout the planting 

season (such as winter wheat or forest), are classified as a class value of 300. These class 

values were chosen because they are large enough to avoid replacing class values from 
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CDL data. Scale 10 segmentation maps were used to guide the cleanup process to 

produce field-level tillage maps (i.e., one tillage category for each segment). We used the 

segmentation map to generate field-level tillage data because CRC at pixel level could be 

over- or under-estimated due to soil background variations (Zheng et al., in press) and 

data noise. A majority filter was applied to assign the value that occurs most often of all 

pixels within each segment (Figure 4.4) as the output value. We then used CDLs to locate 

fields of corn (class value of 1) and soybeans (class value of 5), and assigned the tillage 

classes (class values of 300 to 303) for those fields. (Note that CDLs should be resampled 

into 30 m resolution if the spatial resolution is coarser than 30 m.)  

4.4 Tillage Map Validation 

To validate tillage maps, we conducted field-level and county-level comparisons. 

For the field-level comparison, we used the same crop residue data used in Zheng et al.’s 

(in press) study, measured using the line-point transact method (Morrison et al., 1993). 

Because there are two measurements at two different locations for each agricultural field, 

tillage status of each individual field was determined by averaging the two 

measurements. Classification accuracy was assessed using overall accuracy, kappa (��), 

and Z-scores (Congalton and Green, 2008). Accuracy assessment was based on limited 

number of field observations instead of well-distributed random samples because of the 

lack of availability of ground observations of tillage status.  

For the county-level comparisons, we compared our results to the county-level 

CTIC tillage data. Our tillage maps were clipped using county boundaries, and the 

percentage of each tillage category was calculated by dividing the number of pixels of 

each category by the total number of pixels in tillage categories. We selected counties for 
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comparison based on the availability of the CTIC tillage data and their proximity to the 

locations where Zheng et al. (in press) developed their local models. For conciseness, we 

refer the tillage data generated from remote sensing (RS) imagery as RS tillage data. To 

better understand the discrepancy between the RS and CTIC tillage data, we also sampled 

RS tillage data using the CTIC roadside survey sampling points (with GPS coordinates) 

provided by the Indiana Natural Resources Conservation Service (NRCS) in Indianapolis. 

According to the CTIC roadside transect survey procedures, field observers followed 

planned driving routes and stopped every half mile to two miles (depending on the 

number of cropland acres in each county) to observe tillage status on both sides of the 

roadway. Some counties also recorded the GPS coordinates of sampling locations. 

Because these points are superimposed on the driving routes, we shifted positions of 

these points up and down, or left and right, to fall within the field data observations on 

both sides of the routes, and thereby match to our RS assessments, and then summarized 

tillage statistics county-by-county. The comparison between the entire county sample and 

the subsample populations permits evaluation of expected differences between RS and 

CTIC tillage estimates.  

5. Results 

5.1 Segmentation Maps 

The number of objects for scale 10 segmentation ranges from 27,825 to 71,715.  

The 60-m buffer excluded 29% to 55% of the total number of objects at scale 10 

segmentation – the extent of decrease depends on the heterogeneity of the landscapes 

within each scene. In general, forests and waterways are more spectrally heterogeneous 

than cropland. Significant decreases in the number of objects after implementing a 60-m 
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buffer indicate large numbers of small objects in the scale 10 segmentation maps (Table 

4.2). The number of objects at scale 15 with 30-m buffers is on average 51% less than 

that at scale 10. The average size of objects at scale 10 ranges from 4.3 to 14 ha (Table 

4.2). The average size of farms ranges from 117 to 160 ha according to the 2007 Census 

of Agriculture County Profile (USDA-NASS, 2007). The average farm size of the MD 

site (Queen Anne’s, Talbot, & Caroline) is smaller than the other study sites, although, 

the IN site has the smallest average size of objects. Small features, such as roads, narrow 

streams, and farm buildings, were well distinguished by segment boundaries (Figures 4.2 

& 4.5).   

Image acquisition dates of SLC-on images for each study region are shown in 

Table 4.2. We found that images acquired in the late planting season (i.e., in June for 

Northern United States) are optimal for defining individual field boundaries because of 

significant contrasts between agricultural fields and narrow features, such as riparian 

buffers and streams, and because of large variations in surface conditions between fields 

due to different timings of planting. If a cloud-free image is not available during this 

time, images acquired after harvest (i.e., September to November for Northern United 

States) are the second-best option for generating cropland segmentation maps. Images 

acquired in July or August are not good candidates for segmentation because two or more 

adjacent fields with similar greenness can be easily merged into a single patch. If a patch 

is formed from two adjacent fields that have different tillage conditions, interpolation 

using the mean NDTI of the combined patch will create large errors.   

5.2 Gap-filled vs. Actual NDTI Values 
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Step 1 gap filling guided by 60-m S10 segmentation maps (Figure 4.1) yielded the 

highest R
2 

values (> 0.78) between predicted and actual NDTI values and the lowest 

mean absolute differences for both IL and MD sites (Table 4.3 & Figure 4.6). Step 2 

(S10) (see Section 4.1) resulted in slightly lower prediction accuracy (R
2 

> 0.69) than step 

1, while step 3 (30-m S15)’s prediction accuracy further decreases. Step 1 (60-m S10) 

filled 36.7% of total missing pixels for the IL site, and 13.5% for the MD site. Step 2 

filled 61.8% of total missing pixels for the IL site, and 83.8% for the MD site. Steps 1 

and 2 totally filled more than 97% of the missing pixels, with mean absolute differences 

of < 0.024. Step 3 (30-m S15) filled less than 1% of the missing pixels, while one to two 

percent of missing pixels were still unfilled. Figure 4.3c shows a visual comparison of the 

actual NDTI image to the gap-filled NDTI image. Bright agricultural fields shown in 

figure 4.3 indicate high NDTI values, while dark fields correspond to low NDTI values. 

Large prediction errors could occur at locations with poorly defined field boundaries 

(Figure 4.3c).   

5.3 County Tillage Maps 

Overall accuracies for three tillage categories range from 69% to 79%, �� from 

0.43 to 0.57, and Z-scores from 3.07 to 5.67 (Table 4.4). Z-scores demonstrate that all 

classifications are significantly better than chance alone at a 95% confidence level (z > 

1.96) (Table 4.4). For our sample of county tillage observations, tillage practices vary 

substantially from county to county (Table 4.1). Some counties have much higher 

percentages of non-conservation tillage practice than others. For example, 66% of corn 

and soybean fields were tilled using the non-conservation method for Champaign County, 

IL in 2006, in contrast, only 4% for Marshall County, IA in 2007 (Table 4.1 & Figure 
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4.7). More than 90% of the fields were reported to be under conservation tillage and no-

till practice in Marshall County, IA in 2007 and no-till appears more frequently in fields 

positioned near streams (Figure 4.7).  

For county-level comparison, the differences between RS and CTIC data range 

from 0 to 45% for all tillage categories (Table 4.1). RS tillage data of Champaign, Story, 

Polk, and Marshall Counties are, in general, consistent with the CTIC tillage data. The 

percentage of no-till agriculture is consistent with CTIC data for Jasper County, however, 

percentages of the other two tillage categories do not agree with CTIC data. For Fulton 

County, IN, the percentage of non-conservation tillage agrees with the CTIC data, but no-

till category was consistently underestimated in both years using remote sensing imagery. 

Jasper County presents the biggest discrepancy between remotely sensed and CTIC data, 

followed by Douglas, Fulton, and Pulaski Counties. One to six percent difference was 

observed when we sampled the RS tillage data using CTIC road transect survey 

technique, suggesting that a 6% difference between RS and CTIC data could be 

considered as an expected difference due to application of alternative assessment 

strategies.   

6. Discussion 

Cloud-free images acquired in June are appropriate for generation of good 

segmentation maps, while images acquired in July or August often do not provide 

adequate separation of individual fields. Although soil variation can cause subfield 

segmentation, it does not, however, significantly affect the accuracy of gap-filled pixels. 

Agricultural field boundaries are consistently placed in these regions. A high-quality 

segmentation map can be used to fill missing NDTI values for any SLC-off image, but 
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users should assure that the segmentation map is still valid using local information about 

land use land cover change or using visual assessment if the time difference between the 

segmentation map and the SLC-off image is large. The time difference in Maxwell et 

al.’s (2007) application is approximately 10 years.   

The scale 10 segmentation map (steps 1 and 2) filled the majority of missing 

pixels (>90%). Step 1 (60-m S10) resulted in the highest prediction accuracy with the 

highest R
2
 and the lowest mean absolute difference, because the 60-m buffer excludes 

heterogeneous small landscapes and pixels at the edges of fields (including mixed pixels) 

from interpolation. Step 2 (S10) mainly interpolated edge pixels of large segments and 

small landscape features – it yielded slightly less accuracy than step 1. Step 3 (30-m S15) 

provided the lowest accuracy, and only filled small numbers of missing pixels. Thus, our 

simplified gap-filling procedure worked well for homogenous features. Step 3 can be 

omitted from the procedure if users believe that this additional step will not improve the 

image significantly.  Although there are unfilled pixels after the gap-filling procedure, we 

do not suggest increasing the scale of segmentation map to fill those unfilled pixels 

because they are likely to be inaccurate. In addition, those unfilled pixels are likely to be 

non-agricultural lands, such as roads and farm houses, which can be filled during the 

tillage map generation procedure using CDL data.    

Our simplified multi-scale segmentation gap-filling procedure can predict most of 

the missing NDTI data accurately. The advantages of the method are: (1) it does not 

require an additional image acquired close to the SLC-off image date to guide 

interpolation; (2) it can fill SLC-off images repetitively once the segmentation maps are 

generated; (3) it is easy to implement. This method assumes that agricultural fields are 
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large enough to encompass the entire width of the gap. If small agricultural fields are 

entirely located in the gap (although we found these to be rare for this application), there 

is no way that we can predict the NDTI values correctly for these pixels. This problem 

applies to other currently available gap-filling methods as well, unless we assume that 

spectral values remain the same from time A to time B. Our gap-filling procedure was 

designed specifically for tillage mapping application, and is not suitable for applications 

that require a high degree of prediction accuracy for each pixel.  

Overall classification accuracies of county tillage maps are greater than 69%. The 

sample size for our accuracy assessment is small. However, these data are best available 

to us for this analysis. Table 4.1 shows the relationship between our tillage assessment 

and the CTIC surveys for the selected counties. The relationship is in high agreement for 

some counties. For example, the agreement is within 6% for non-conservation tillage for 

Champaign County, IL, and Fulton County, IN. Given that the two estimations are based 

upon different methods, they probably represent an upper limit for agreement for the two 

methods. For other counties, e.g., Jasper County, IA, and Douglas County, IL, the 

agreement is low. Disagreements of these magnitudes can be attributed to separate errors 

in the two assessment techniques. Zheng et al. (in press) have highlighted the significance 

of several soil and terrain conditions that can lead to errors in the minNDTI technique. 

Because Marshall and Jasper Counties of IA have similar soil and terrain characteristics 

(Soil Survey Staff, 2012), and because the two tillage estimations are in good agreement 

for Marshall County, we believe that soil variations are unlikely to be the source of 

disagreement for Jasper County. This conclusion also applies to Champaign and Douglas 

Counties in IL because they share similar soils. The CTIC tillage data are currently the 



68 

 

best available data for validating county tillage maps, however, the quality of the CTIC 

data may have varied over time, and from county to county, or state to state, because the 

roadside survey mainly relies on visual interpretation. We found that the CTIC sampling 

techniques have been effective in representing the tillage status of the larger population 

of fields within the counties in Indiana because subsampling results using the CTIC 

sampling points implied that < ±6% difference between RS and CTIC data. The sampling 

techniques here include the design of driving routes and sampling interval. Given the 

magnitude of the differences for Jasper and Douglas Counties, it seems likely that they 

are caused by errors introduced by human visual interpretation. In addition, the extremely 

low value (one percent) of conservation tillage reported by CTIC for Douglas County in 

2006 seems likely to be a poor estimation.   

Field observers’ experience in visual estimation of CRC could vary from year to 

year and from county to county. “Windshield observations” (side-viewing angles) is one 

of the major contributions of poor accuracy of tillage classification (Daughtry et al., 

2006). Human observers often have difficulty in differentiation of non-conservation and 

conservation tillage when CRC is near 30% (Thoma et al., 2004), and can easily 

misassign 60% CRC to no-till category. Variations in soil and sunlight conditions can 

also easily bias visual estimation.  We note also that record-keeping practices vary over 

time, and from state to state, so opportunities for retrospective analysis of CTIC data for 

validation, although possible in some situations, are fragmented in space and time.   

Given the overall classification accuracies of 69 to 79%, and the consistency 

between RS and the CTIC tillage data for some counties, we conclude that local models 

can be used to map tillage practices and our procedures to produce tillage maps are 
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effective.  However, further studies are required to assess the impact of soil variation on 

CRC estimations, so that we can improve prediction accuracy and generalize this 

methodology to a broader region. Field-level tillage maps (Figure 4.7) show coherent 

spatial patterns of tillage applications. These spatial patterns might be related to soil and 

landscape characteristics or to indirect effects of government conservation programs 

which encourage farmers to adopt conservation and no-till practices. An important 

application of an operational remote-sensing-based tillage survey system would be to 

provide inventory data to report tillage data not only by county units, but also for 

drainage basins, terrain, and soil units. Our study focuses upon landscapes in the United 

States. However, its implications reach beyond the specific areas mentioned here because 

this issue has international scope (Derpsch et al., 2010). 

7. Conclusions 

This study examined the minNDTI technique on mapping tillage practices at field 

level. Our results indicate that it is possible to use local models (Zheng et al., in press) to 

generate field-level tillage data using Landsat time-series imagery. This study also 

provided a strategy to solve the Landsat SLC-off data issue for tillage assessment 

applications, and proposed procedures to facilitate field-level tillage mapping at large 

scales. We tested the simplified multi-scale segmentation gap-filling procedure for tillage 

mapping application; results show that this procedure meets our needs for this 

application. We then incorporated the segmentation maps and CDL data to produce field-

level tillage maps using three tillage categories, evaluated classification accuracy of 

tillage maps, and compared our results to the CTIC county-level tillage data. Local 

variations in soils, terrain, and weather may prevent application of a generalized model to 
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a broad region over time (Zheng et al., in press). Future studies are needed to address 

difficulties in the transferability of empirical models developed using remotely sensed 

data from one region to another. A ground-based network that can provide CRC data for 

model calibration and accuracy assessment could be substituted for the CTIC roadside 

survey. Selection of calibration sites can be guided by knowledge of local soil and terrain 

variation. Field-level tillage maps permit evaluation of tillage spatial patterns and assist 

identification of areas subject to environmental issues, such as soil erosion and nutrient 

losses. As a result, we will be able to provide better assessment of tillage impacts on the 

environment and effective management strategies to conserve agricultural lands. We also 

strongly encourage Natural Resource Conservation Service (NRCS) office and scientists 

who have ground tillage observations test our methods, share data, and work together to 

push forward the tillage mapping effort. 
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Table 4.1. Comparison between remote sensing and CTIC tillage data at county level. 

County Local models
a
 CRC

b 
% RS

c 
% CTIC % 

Difference between 

RS and CTIC % 

 CRC = 967.1 × 

minNDTI - 3.4 

(2006) 

< 30 66 66 0 

Champaign , IL  30 - 70 26 17 9 

 
>70 8 17 9 

  < 30 47 73 26 

Douglas, IL  30 - 70 44 1 43 

  >70 9 26 17 

   < 30 44 49 5 

Story, IA  

CRC = 699.7 × 

minNDTI + 10.4 

(2007) 

30 - 70 52 44 8 

  >70 4 7 3 

  < 30 39 42 3 

Polk, IA  30 - 70 49 45 4 

  >70 12 14 2 

  < 30 4 9 5 

Marshall, IA  30 - 70 62 44 18 

  >70 34 46 12 

 
< 30 5 46 41 

Jasper, IA  30 - 70 59 14 45 

 
>70 36 30 6 

  CRC = 464.9 × < 30 33 36 3 

Fulton, IN  minNDTI + 11.5  30 - 70 59 25 34 

(2006) >70 8 39 31 
  CRC = 493.9  × 

minNDTI + 16.9  

(2007) 

< 30 41 40 1 

Fulton, IN  30 - 70 48 22 26 

  >70 11 38 27 

  < 30 42 24 18 

Pulaski, IN  30 - 70 50 41 9 

  >70 8 35 27 
a
 Local models from Zheng et al. (in press); 

b
 CRC: crop residue cover; 

c
 RS: tillage data developed from remote sensing imagery; 
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Table 4.2. Tasseled cap image dates and characteristics of segmentation maps. 

Counties (State) 
TC

a
 

image date 

Average Size (ha) Number of Objects 

object
b
 farm

c
 

Scale 10 Scale 15 

60-m buffer No buffer 30-m buffer 

Champaign & Douglas (IL) 2006/06/13 14 160 19721 27825 15978 

Queen Anne’s, Talbot,  

& Caroline (MD) 
2007/06/17 6.3 117 20230 42035 19555 

Story & Polk 
2002/06/07 

5.5 134 32522 71715 33118 

Marshall & Jasper (IA) 6.0 145 30301 64270 30251 

Fulton & Pulaski (IN) 2007/06/09 4.3 144 20043 57003 28770 
a
 TC: tasseled cap images. 

b
 average size of objects at scale 10 without buffer. 

c
 average size of farm size from 2007 Census of Agriculture data. 
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Table 4.3. Results of the gap-fill validation using the multi-scale object-based method. 

Sites Step Percentage of missing pixels R
2
 Mean absolute differences

a
 

IL 

1 36.7 0.87 133 

2 61.8 0.78 243 

3 0.6 0.42 568 

MD 

1 13.5 0.78 201 

2 83.8 0.69 213 

3 0.9 0.34 382 

a 
NDTI values were scaled by 10,000.  
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Table 4.4. Overall classification accuracy for three tillage categories. 

Counties 
Champaign & 

Douglas, IL 
Story, IA Fulton, IN 

Year 2006 2007 2006 2007 

Samples 49 41 52 68 

Overall 

Accuracy 
69% 71% 79% 72% 

Kappa 0.46 0.43 0.57 0.51 

Z-scores 4.42 3.07 5.09 5.67 
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Figure 4.1. Flow diagram of the multi-scale object based approach (*TC = first three 

layers of tasseled cap imagery).  
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Figure 4.2. Segmentation results for scales 10 and 15 with/without buffer. Segment 

boundaries (white) are overlaid on tasseled cap images in layer 1-2-3 color combination 

mode. 
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Figure 4.3. Sample NDTI layers for gap-filled validation: a) Landsat TM NDTI layer 

acquired on April 26, 2006 (location: upper-left corner of Champaign County in IL); b) 

NDTI layer with simulated data gap; c) gap-filled NDTI layer; white arrow points to 

areas with large predicted errors due to poorly defined field boundaries.  
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Figure 4.4. Flow diagram of the tillage map generation procedure.  
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Figure 4.5. NDTI SLC-off layers with overlaid segmentation maps (orange lines). Here 

the gap width is approximately ten pixels for IL site and nine pixels for MD site. Red 

circled regions show examples of small objects that are positioned completely within the 

gap.   

 



110 

 

 

 

Figure 4.6. Scatter plots of predicted and actual NDTI values. NDTI values were scaled 

by 10,000.  
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Figure 4.7. Tillage maps of Champaign County, IL (2006) and Marshall County, IA 

(2007). Non-conservation tillage practice dominated in Champaign County in 2006, but 

was rarely applied by farmers in Marshall County in 2007.     
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Chapter 5 Conclusions 

Investigations of remote sensing of crop residue cover began in 1975 by 

Gausman et al. (1975). Two decades later, van Deventer et al. (1997) conducted the first 

study to test the capability of NDTI derived from Landsat TM imagery for differentiating 

conventional tillage from conservation tillage. NDTI was later found effective in 

classifying two broad tillage categories (Gowda et al. 2003; Sullivan et al. 2008; Thoma 

et al. 2004), but failed to predict crop residue cover along a continuum (Daughtry et al. 

2006). In contast, Hyperion and ASTER data, which have finer spectral resolution than 

Landsat data, have demonstrated better ability to predict crop residue cover (Daughtry et 

al. 2006; Serbin et al. 2009). Thus, results from previous studies led to a conclusion that 

the spectral bands of Landsat imagery are too coarse to detect crop residue. These studies, 

however, all used single images for tillage obervations. While multitemporal NDVI 

analyses have been prevalent for more than two decades (Townshend et al. 1991),  

multitemporal NDTI analysis, one of the major contributions of this research, has only 

recently been introduced. The minNDTI methodogy developed in this study significantly 

improves our ability to monitor site-specific applications of crop residue management at 

broad scales.  

The first study (Chapter 2) presented a strategy that achieves improved mapping 

accuracy of crop residue cover (CRC)/tillage practices by incorporating sequential 

Landsat imagery into the analysis. The minNDTI values extracted from multi-temporal 

NDTI profiles minimize confounding effects of green vegetation (weeds or emerging 

crops), and reliably indicate the correct tillage status, if adequate numbers of satellite 

observations are available. The minNDTI was strongly correlated with CRC, with R
2
 of 
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0.89. Both the minNDTI and PC methods were able to classify CRC into three tillage 

categories with overall classification accuracies of >90%, producer’s accuracies of 83–

100%, and user’s accuracies of 75–100%.  The results indicated that multi-temporal 

Landsat (both TM and ETM+) imagery is capable of mapping CRC. The strength of the 

minNDTI method is its ease of use and the well-defined physical relationship between 

NDTI and CRC.    

The second study (Chapter 3) first tested the effectiveness of the minNDTI 

method in CRC estimation in four different locations. The minNDTI approach was able 

to estimate CRC with R
2
 of 0.66 to 0.89 for local models. The less satisfactory 

performance of the minNDTI approach for some locations was attributed to confounding 

effects of soil variation. Thus, in addition to the known impacts of emergent green 

vegetation, soil moisture and organic carbon can also confound the NDTI signal, which 

tend to cause underestimation of CRC in low-lying wet and dark areas. This study also 

compared the minNDTI technique to hyperspectral Cellulose Absorption Index (CAI) 

and the ASTER Shortwave Infrared Normalized Difference Residue Index (SINDRI) for 

tillage classification. Accuracy of the minNDTI technique is comparable to those of the 

CAI and SINDRI. We also found that USDA/NASS Crop and Weather Reports, which 

provides local field and weather information, can be used to guide selection of 

appropriate Landsat observations. Results of this study demonstrated the potential of the 

minNDTI for mapping CRC/tillage practices at broad scales using sequential Landsat TM 

and ETM+ imagery.  

While the first two studies developed and evaluated the minNDTI technique at the 

pixel level, the third study (Chapter 4) devised strategies to map tillage practices at the 
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field level and at broader scales. This study provided a strategy to solve the Landsat SLC-

off data issue for tillage assessment applications, and proposed procedures to facilitate 

field-level tillage mapping at large scales. A simplified multi-scale segmentation gap-

filling procedure was able to meet our needs for tillage application. Validation at field-

level and county-level comparisons suggested that local models are capable of mapping 

tillage practices at the field level. However, local variations in soils, terrain, and weather 

may prevent application of a generalized model to a broad region over time. We observed 

coherent spatial patterns of tillage applications on the field-level tillage maps (Figure 

4.7). These spatial patterns permit evaluation of the effects of crop residue management 

on different soil units, terrain, and drainage basins. Tillage data can also assist detection 

of “environmental hotspots” where improved conservation plans and policies may be 

warranted.  

Monitoring crop residue management across different landscapes from space is 

not a simple task. Given the spatial variation of soil moisture and organic matter, further 

studies are needed to address the confounding issues of soil variation to improve tillage 

mapping accuracy. Currently, to cope with the difficulties in the transferability of 

empirical models, we suggest building a ground-based network that can provide CRC 

data for model calibration and accuracy assessment. The ground-based network, coupled 

with geospatial techniques, will form a more systematic, efficient, and environmental-

friendly way to monitor crop residue management. Thus, it could be substituted for the 

CTIC roadside survey. Building an open-access database with crop residue data can 

accelerate the tillage mapping effort further.  
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The upcoming Landsat 8 Operational Land Imager (OLI) and ESA Sentinel-2 

sensors will provides data for monitoring crop residue management in the future. The 

eight-day and five-day revisit times of Landsat 8 and Sentinel-2 ensure that the minNDTI 

method will be useful for future monitoring applications. The proposed Hyperspectral 

Infrared Imager (HyspIRI) mission will provide another opportunity for mapping crop 

residue using CAI. It images the Earth every 19 days with 60 meter spatial resolution, but 

its 19-day revisit time may not be short enough to take snapshots of agricultural surfaces 

within the narrow time window of tillage and planting operations, due to potential cloud 

coverage issues. Optical-radar data fusion might be able to improve our ability to 

accurately estimate CRC, as radar data have better capabilities to sense soil moisture and 

standing corn stalks. Integration of optical and radar data also permits analyses of how 

crop residue management has impacts on soil moisture.   

This research, therefore, has proposed and validated, the minNDTI as a practical 

approach for site-specific, broad-scale monitoring of tillage status using multi-temporal, 

multispectral, satellite imagery.  Although further research is required to document 

effects of terrain, soil organic matter, and soil moisture upon effectiveness of the 

minNDTI technique, it is clear that it forms an effective strategy both for retrospective 

analysis of agricultural landscapes, and for use with future satellite remote sensing 

systems.  
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