A SUMMARY OF CONFIDENCE INTERVAL ESTIMATION OF STANDARD
AND CERTAIN NON-CENTRALITY PARAMETERS

by

Homer Thornton Hayslett, Jr.

Thesis submitted to the Graduate Faculty of the
Virginia Polytechnic Institute
in candidacy for the degree of
| MASTER OF SCIENCE
in

Statistics

May, 1961
Blacksburg, Virginia




TABLE OF CONTENTS
Chapter Page
I  INTRODUCTION « o o ; e 6 o 6 6 o o o 6 s 0 o o o

II REVIEW OF LITERATURE 4 « o ¢ o o o o ¢ o o o o o
I1I STATEMENT AND DEVELOPMENT OF FORMULAS. « ¢ + « &

3.1Parameteru,................

3.2Parameter02oco-oo-oooo-ooo

6o 8 3 N O F

3.3 Parameter By = Mg o o v o0 s oo 000 o
3.4 Parameter af/cg R 1)
3.5 Correlation Coefficient « « o« o« ¢ o o o ¢ o 10
3.6 Parameter nl/pz D T S b §
3.7 Parameter gi/o?, correlated populations . . 16
3.8 Non-centrality Parameter of t2%. « « o o o« ¢ 19
3.9 Non-centrality Parameter of F + « o & « & & 26
3.10 Non-centrality Parameter of X2. ¢« &« o « o » 33
IV NUMERICAL EXAMPLES 4 o s o o o o o o ¢ o o s o o 39
L1 Parameter f « o o« o » o o o« o o o o o o o o 39
Lo2 Parameter 02 .+ « o o s o o o o o o s o o o 4O
Le3 Parameter‘pl o P IR N R L0
Loh Parameter o£/0% . « 4 o 0 0 0 o e 000 e e L1

L.5 Parameter p, the Correlation Coefficient. . 42

26-06 Parameterﬁl/‘p,zooo e o @ o o » 000001&3
4,7 Parameter c§/02 Correlated Populations . . 44

},—,

L.8 Non-centrality Parameter of t2. + . « + o




Chapter Page
4.9 Non-centrality Parameter of F « « ¢ ¢« ¢ &« « 50

55

59

L]

L.10 Non-centrality Parameter of X2, + « + « &
V AchOWLEDGE}"IENTS ® & # & & 6 & ° 0 * ¢ & ¢ ¢ @

]

VI BIBLIOGRAPHY 4 ¢ 4 ¢ o ¢ o ¢ o o « s ¢ o o o o« & 60
VI I VITA » L ] L] . 2 [ ] L ] ] e * * [ . . L] [ ] . L] L] L] L] [ 61




I. INTRODUCTION

The area of confidence interval estimation is an
important one in applied statistics. We frequently like to
know just how confident we can be that a certain estimated
interval does, in fact, cover the true parameter.

This paper is a review of confidence interval estima-
tion on some of the familiar parameters of the normal dis-
tribution and a presentation of confidence interval
estimation of some not so familiar parameters. The
.dimension-free parameters, such as g; , are of especial
interest since they are independent of the unit of measure-
ment used in the original data.

Confidence interval estimation on the correlation
coefficient and on the non-centrality parameters in the X2,
t?, and F distributions may be obtained by interpolation in
detailed tables of the percentage points of the exact non-
central distributions. Although such tables are available,
they are quite voluminous, and may not be easily accessible.
For that reason, Fisher's z-transformation has been used
rather widely, even though tables of the exact distribution
have been available. In this thesis similar techniques will
be described based upon improved variance stabilizing trans-
formations of the non-central X2 and F distributions which

represent approximations to the exact distributions as good
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as that based upon Hotelling's improvement of Fisher's
z-transformation. They were obtained by methods analogous

to Hotelling's [4], and studied by Bargmann [1] and Hofer
[51.




II, REVIEW OF LITERATURE

A treatment of the parameters included in the first
five sections of this thesis can be found in many standard
textbooks or manuals.

Hotelling [4] has discussed improvements of the mean
and variance of the well-known Fisher z-transformation used
to put confidence bounds on the correlation coefficient.

Roy and Potthoff [6] present confidence bounds on the
parameters K,/d, and 6§/6§ for an underlying bivariate
normal distribution.

The variance-stabilizing transformation, used to put
confidence limits on the non-centrality parameter in the

non-central t2, F, and X% distribution, is discussed by

Bargmann [1].




III., STATEMENT AND DEVELOPMENT OF FORMULAS

3,1 Pgrwgez‘ He

When we have a sample of size N from a normal distri-
bution and wish to make a confidence statement about 4 when

02 is known, we use the fact that

(3.1,1) 2= WA _ v 1),

(¢]

The usual two-sided confidence statement with equal tail

proportions is

(3.1.2) Prix - g1 - PE<u<x+ gl - $Ll =1-a

where ¢'1(1 - %) is the upper % point of the standard normal
distribution.

If 02 is unknown, the statistic is

(30103) (;E - M)Vﬁ/s = tN"'l

with corresponding confidence statement

(3.1.4) Prix - tvyS_/NIN-1] <4 <X+ tvS_/N(N-1)} = 1-aq,

where t is the upper a/2 point of the t distribution with

N - 1 degrees of freedom, and S, = Zx§ - (in)B/N .




3,2 Parameter ¢Z.
For the parameter o2, when u is known, the fact that

(302.1) E(xi - U')a/dz = Xf]

is used to give the confidence statement with equal tail

proportions

(3.2.2) PriZ(x; - “)2/Xf-a/z <02 <zix; - u)a/xg/zi = 1-a,

where Xé/z denotes the lower a/2 point of the X2-distribution

with N degrees of freedom.

If u is unknown, the statistic
(3e2.3) S, /0% = Xf§ 4
is used and the confidence statement is
(3.2.4)  Pris,/*§_o/n < o? < sxx/xg/zi =1-a,

where S is defined in (3.1.4) and X2 has N - 1 degrees of

freedomn.

3.3 Parameter fl;- Moo

If we have two samples from two independent normal
populations with a known common ¢? and wish to make 2 confi-

dence statement about Ky - H,, the appropriate distribution

is




B.3.1)  [lxy = x,) = (uy = uy)Yovl/Ny + I/N, = N(O, 1),

The confidence statement is

(3.3.2)  Pr{'z -x,)- g i(1- a/2)ov1/ly +1/N, < iy - 1y

< (El -?:2) + ¢“l(1 - a/z)cwl/Nl-sv 1/N2} = 1-a.

When o® is unknown, the expression used to put confi-

dence bounds on By = Mo is

(3.3.3) [(El - 322) - (U—l - Hz)]/sp‘i/l/Nl + l/N2 = tNl-;-Nz_g

and the confidence statement is

Pr{(xl—x2)~tspvl/Nl-Pl/N2 < Hy-H, < (xl-x2)+tsp—/l/Nl l/Nz}
(303014') =m ] -

where t is the upper /2 point of the t distribution with

Nl + Nz - 2 degrees of freedom and s_ is the pooled estimate

p
of the standard deviation, given by

(3.3.5) s, = »I(SJCxl + smz)/(Nl + N, - 2),

= Ix2, - 2 = Ix2, - 2
where S ix§, - (Zxy;)2/N; and Sxx2 Ix3, - (Ex,3)3/N, .

XXy 2
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2 /42
3.4 Parameter cljaa .
Suppose we have a sauple from each of two independent

normal populations and wish to put confidence bounds on

o/0%. Then,
(30401) Sidg/sgdi =F,

where sf = Z(xy; - ul)z/Nl, s = L(xy - uz)z/ﬁz, and F has
(N, Nz) degrees of freedom if u; and u, are known, or
58 = L(xy; - X)3/(y - 1), 5 = Z(x,y; - X,)3/(N, - 1), and
F has (N;-1, N2~l) degrees of freedom if u, and u, are

unknowm, gives the coenfidence statement
2/52 2/52 2 =1 -
(3ehe2) Pr{sl/stlna/2) < o8/ < sf/(stalz)} 1- a,

vhere Fl—a/Z is the upper «/2 point of the F distribution

and Fa/z is the lower /2 pcint.

3.5 Correlation Coefiicient.

When we have a sample of size N from a bivariate normal
population and wish to put confidence bounds on the popula-
ticn correlation coefficient o, the familiar Fisher

z-transformation is used, i.e.,

(3.5.1) z=tanh * r =% In[(1 +r)/(1 - )],

where r is the sample correlation coefficient., Since
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Lo In [(1+ o)/(1 - o]

Nir

(3.5.2) E{z) = tanh”
and

(3.5.3) wvar (z) = 1/(N-3) ,
(3.5.4) [z-E(z)]/vvar(z) = A5 (tanh Ir - tanh™tp) = N(0,1)
and the confidence statement for p is

(3.5.5) Priz - ¢~ (1 - a/2)//N=3 < tanh™1p
<z+ @HL - a/2/A3IE 1 - a.

If a more exact confidence statement is desired, the
z-transformation can be imprcved. The correcticn for the
bias (the bias of z is the excess of E(z) over tanh™t p) of
z is p/{2N - 5). For var(z), 1/(l - 8/3) should be used
instead of 1/(N - 3). These corrections usually make both
the upper and lower bound in (3.5.5) smaller, but generally
the improvement is negligible.

References:
Standard textbooks
Hotelling (1953) [&41.

3.6 Parameter ul/uz.

Suppose we have two samples of size Nl and Nz,
respectively, from two independent normal populations,
Xy = N(#;, 02) and x, = N(u,, ¢?) and desire to put confidence
bounds on Y = ﬂl/uz. The common o° may be either known or

unknown, although usually o2 is not known. Introduce
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(30601) Z = xl - sz .

Since
(3.6.2) E(zZ) = E(Ei - yiz) = 0
and

(306.3) Var(;) fd Var(.x—l - Y’}Ez) = Gz/Nl + Yzczmz,

then
(3e604) E/owiﬁi;7?7$?7ﬁg = N(0, 1)
and

(3.645) 22/02(1/Nl +rE/M,) = X2 .

If 02 is unknown, then

(3.646) 'z'/sp”llNl 3Ny =ty o2

172

and

(3.6.7)  z2/sZ{I/M) + v3/N) = f 4y o= F(1,n v -2)
172 $71°7°2
where sg is the pooled mean square of the two samples, as

defined in (3.3.5). We can say

(3.6.8)  Prl(x; - vx,)2/02(1/ly + ¥3/N,) <x_ l=1-q,

where Xl~ represents the upper tail value of X? with one

a
degree of freedom for level a. If o2 is unknown, X£_, is

replaced by the upper a point of the F distribution with

(1, Ny + N, - 2) degrees of freedom. For simplicity of
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notation we will call these upper « points X2 and F,

respectively. From (3.6.8) we get

(3.6.9)  Pr{(X; - v%,)2 < x202(1/MNy + v3/N,)) =1 - @

and if one sets
22 =

(306.11) X,ﬁcz/Nz = bz,

{3.6.9) becomes

(3.6.12) Pr{(':zl - &2)2 <by + Yabzf =l - .

If o2 is unknown,
= 2
(306013) bl FuSP/Nl and

(3.60114-) b2 L Fus;/N2 »

and replace the values given in (3.6.10) and (3.6.11).
We can state the inequality in brackets in the following

form, by expanding the left-hand :ide and collecting powers

of v
%2 - - ~. % -
(3:6415) v2(x3 - by) - 2rxyx, <by - X7,

which becomes




(36.6) [y - x;%,/(%3 - b,) 1% < [bx% + byX3 = byb,1/(x3-b,)2

if x5 - b, > O.

It will now be shown that the condition x§ - b, > 0 is
equivalent to rejection of the hypothesis that By = O»in a
two-tailed test with significance level a. To this end we
will formulate the following
Theorem: A necessary and sufficient condition for the
existence of a real-valued confidence interval on y = ul/uz,
of coefficient 1 - a, is the rejection of the null hypothesis
Hys u, = O vs. the alternative p, # 0 at significance level
Qe
Proof: If o? is known, the critical region for the two-

tailed test of HO: By = O can be written as

N.x2
(3.6:17) —2g2->X3_ ,

where X2 is based upon one degree of freedom and is equal to
the Xz used in (3.6.10; and (3.6.11). Hence, if Hyi p, =0
X2g

is rejected, X% —-‘f‘;;-—- =Db, and it follows that x§ - b, > 0,

which proves the necessity of the condition.
In order to show sufficiency, we must show that the

right-hand side of (3.6.16) is positive. We can say, since

x2 > b, and bz > 0 by (3.6.11), that

(3.6.18) ble + blxz - blb > b + b b, - blb2 = b2 1 > O,
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which shows that the right-hand side of (3.6.16) is positive
and proves the theorem.

If 0% is unknown it will be estimated by s2; (3.6.10)
and (3.6.11) should be replaced by (3.6.13) and (3.6.14) and
the proof is the same as above. Note that even though the
test is made on the mean of the second sample only, a poocled
estimate of 0 from both samples is used.

Subject to the conditions in the preceding theorem we

can now find the confidence interval for y. Let us set

(3.6.19) (bii% + béi{ - blbz)ﬁ = ¢,

Now a? < k implies that -vk < a <vk ; hence we get from
(3.6.16) the interval

(3.6.20) -c/(%8 - b,) <v- X%,/ (X3 - b,) < ¢/(x§ - b,)

and the final confidence statement is

(3.6.21) Pr{(x;x, -c)/(X8 -b,)< r< (2%, +¢)/(x3 -D)} = 1 ~a.
For a bivariate nrormal population

x 2
1 K1 % %1%
2
*2 b2 ’ 033192 o2 ’

S. N. Roy and R. F. Potthoff [6] give the confidence bounds




(3.6.22)

, - — 4
wlg Do R I O 2_ (2,52 ',;_2.. ? =
. 58-8.Y i L(X].}(a ._‘.J] 321") (J{l ;sbl)( 3 1.32)] <

== T T 2_ (T2 1 a2) (T2 ka?) 13
< (xlxa-kslszr)+L(xlxz-kslszr) (xl ksl)(x% ksz)]
- - 2
“ x5 - ks3

where r is the sample correlation coefficient, si and s% are

the unbiased estinates of of and ag respectively, N is

sample size, and k = tf_a/z/N, where t1a/2 is the upper /2

point of the t distribution with N - 1 degrees of freedom.

The confidence bounds on 4 in (3.6.22) are meaningful only if

(3.6.23) §§/S§ + x8/s% 2 2§i§2r/3132 + kﬁfig(l-rz)/sisgo

When this condition is not satisfied bounds on ul/u2 should

not be attempted.

References!

3.7

say

Bliss (1935) (2]
Fieller (1940) [3]
Roy and Potthoff (1958) (6]

Paraneter o§/0§, Correlated Populations.

Suppose that we have a sample of paired observations,

xl, X.z’ esey XN

Y10 Y29 000 Ty
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frow two correlated normal populations (actually one
bivariate population, but many authors treat the paired
t-test situation and wish to put confidence bounds on 0§/c§
as if it were based upon two populations). Set

u; = xg * (ox/oy)yi and v, = x; - (cx/cy)yi. Then

u g
(3.7.1) covlu,v) = cov{x + 3=y, x - 33 y)
Y VA
s
—.:62_..:402::0
b 4 o®
Yy

and it follows that u and v are uncorrelated. Hence,

e ——

3 7 ,ﬁ_ 2 =
- =
(3.7.3) Pr{ t < ru’vvﬂ—i/V1-rg’v < t} l-a,

where t is the upper o/2 point of the t-distribution, and

(3.7.4)  r2 = [2(uy=0)(vy~¥) 13/02(u;-0) 2000wy -V)2]

Using the previously defined values of uy and v; and setting

ox/cy = ¥\, Xg = x = x] and yy - y = vis (3.7.4) becomes

[z xfz-h 12) 72
(3.7.5) rﬁav = 12 (Vié * y'v:-L )-302 12_o Ay xtv? 12
[Zx; “+2VAEx{y  +AEy§ ][)Zxi ~2/ALx;yI+ALY ] ]

Setting Ix]?/(N-1) = s3, Eyiz/(N-l) = s§ and
inYi/[(ﬁxiz)(Zyia)]% = r,, =T, we obtain




(3.7.6) = (s2 - ks;)z/[(si + 7\-5?,)2 - Wzsis?,]-

r2
u,v

Then (3.7.3) may be written

- 2_ 2 '.."_. _2 £=-3 -
(3.7.7) Pri-t < (sx ksy)VN 2/2“hsxsy“1 r f t} = 1 = a,
which gives
(3.7.3) Pri{-2vA Vl-rﬁsxsyt f Vﬁ:z(si-hsg) < Zvﬁivi-rzsxsyt}
= ] =~ Qe

Recall that -a < « < a implies that «? < a. Hence,

(3.7.9) Pr{(N-Z)(si—hsg)z < hk(l-rz)sisitz} = l-q ,
which becomzs, upon setting si/s? = k,
(3.7.10) Pr{(N-2){k=-A)2 < }A(1~-r?)kt®} = 1 - o, which gives

(3.7.11) Pri(k-n)? < KA{l - r2)kt2?/(H - 2)} =1 - a,

which may be stated és
(3.7.12) Pri{n® - 2afk + 2kt3(1 - r2)/(N - 2)] < -k?} =1 - a.
Completing the square we get
(3.7.13) Pr {A-Lk+2kt2(1-r2)/(u-2)]}2~§4k3t2(1-r2)/(N-2)
+ Lk*tH(1-r2)2/(N-2)% = 1- a.

Letting a = tvl -~ r2 we obtain

(3.7.14)
Pr{-2ekvN-2+a2/(N-2) <A=k=2a2k/(N-2) <2akvN-2+a</(N-2)} =1-qa,
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which gives the final confidence statement for A = 0%/0?,

(3.7.15) Pr{ k+ak(a-vN-2+a®)/(N-2) <A
< k+2ak(at+vN-2+a?)/(N=2)} = 1 =-a

where a, k, N, t are defined as before.
Reference?

Roy and Potthoff (1958) [61]

3.8 Non-centrality Parameter of t2.

Suppose we have a sample of N observations, Xy sXypeee s Xy
from a normal population with mean u and variance 02 and
want to test the null hypothesis that uw = 0. If HO: p =20
is true, the statistic xvN/s has a t-distribution with N = 1
degrees of freedom. If, however, i # 0 in the population,
the statistic Nx#/s? has the non-central t?-distribution
with non-centrality parameter y2 = Nu?/0®. If we desire a
confidence statement on pR/c?, we may proceed as follows:

Using the fact that

(3.8.1) (xvN/s)? =t2 =F

from the variance-stabilizing transformation of non-central F,
(3.8.2) =z = cosh'l(w/a),

where in the case with a single degree of freedom in the

numerator

(3.8.3) a=+v¥N-~-2)/(N-3) and




Be) w=1+F/(N-1),
then z is approximately normal with
(3.8.5) E(z) =¢ = (coth¢)/(N - 5} and
(3.3.6) var(z) = 2/(N - 5), where
(3.3.7) ¢ = cosh™ (v3/AT2T(N-3) + a).

Since [z - E(z)]//var(z) = N(O, 1) we can say that

(3.8.8) AN=51/2] z = € + (y3/¥N-2 + /N=2)
2 [(N-5)vl/(Ti=2) + 1 + 2¥2]} = N(O, 1),

and

(3.8.9) Prig~a/2) < VIN=51/2 [z - ¢ + (y3/V8=2 + VF=2)

= (N-5)vB/(R-2) 71 272 < ¢~H1 - a/2)} Fl-q,

where ¢'l(a/2) denotes the lower (negative) value of the
abscissa which has a/2% of the area under the normal curve to

the left of it. Setting § +(a/2) = -g~1(1 - «/2),

(308010) Ya/m =V and

(3.8.11) (v + /R=2)pA% + 1 + 2¢% = u

(3.8.9) becomes

(3.8.12) Pr{-g~3(1 - a/2)vZ/TN=5] < z - ¢ + u/(N-5)

<gH1 - o/2)Y2Z/TN5T= 1 - o,

which may be written as
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(3.8.13) Pr{zL <¢ - u/{N~5) < zU} =1 -a, where
(3.3.14) 2; = 2z - ¢—l(l - a/2)¥2/(N-5) and
(3.3.15) zy =z + g1 - «/2)vZ/(T=57 .

As a first approximation to the confidence bounds on

we may say

(3.8,16) Pr{zL <¢< zU} =1 -qa .

Setting

(3.8.17) AN - 2](N = 3) =k
we have, from (3.3.7),
(3.8.18) cosh ¢ = y®/k + a
and we may form the equations

(3.8.19) cosh z; = Yi/k + a, and

(3.8.20) cosh z; = vf/k + a,

where y§ and Yﬁ are the lower and upper limits, respectively,
of the approximate confidence interval for the non-centrality
parameter y®. Equations (3.2.19) and (3.8.20) may be

solved for Y% and vﬁ, which give our first approximate values

of the lower and upper limits of y®: v and Yﬁo, say.
0




A more exact statenent than (3.3.16) is

(3.3.21) Pr[zi <g<agfl=1-q,
where

and
(3.8.23) 2§ = z; + yy/(N - 5),
where

(3.3.‘21,) up = (vL + YN = 2)/1/vi + 1 + 27*11‘

and

(3.8.25) v = Yi/ N - 2 o

The quantities Uy and vy are defined accordingly in
terms of the upper limit of the confidence interval for y=2.

Only the lower limit will be dealt with in the
remainder of this section. The upper limit can be found in
an exactly analogous manner. In (3.8.19) the equation
cosh z; = Y%/k + a was given, from which we can find a first
anproximate value for ¥%, Yio. But a more exact lower limit
for ¢ is z§ =z + uL/(N - 5), and instead of (3.8.19) we

can form
(3.8.26) coshlz; + uL/(N - 5)]= Yi/k + a,

which yields

(3.8.27) f(Yi) = Yi/k +a - cosh[zL + uL/(N - 5)] = 0.
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“he solution of this equanticn yields the irproved value
for the lower limit of the confidence interval.

We have a first estimate of the root of equation
(3.3.27). Using the Newton Method, better approximations

to the root are given by the formula

(3.8.28) +} =3 - f(¥2 )/ (¥f) n =0, 1,2, tee s
n

nt+l n n
Differentiating f{v]) with respect to v§ we have

of/ovd = 1/k - d/0ov% coshlzy + uy/(N=5)]
= 1/k - sinhlz; + u /(N-5)] 3/2¥¢ [z
+ up/(N=5) ]
= 1/k - {sinh[z; + u;/(N=5)] ou;/ovy

¢ bVL/an}/(N’5)

where vy is defined as in (3.3.25) and

(3.3.30) up = (vL + vw-z)/¢v§+l+2yi

= (v * ﬁﬁinuwg+1+zvﬂﬁﬁé .
We have
(3.3.31) 2up/ovy = =(N=3)/(v} + 1+ 2vLVN:§)3/2 and

(3.8.32) va/byf = 1/vYN=2 .




Then

(3.8.33) duj/ovy ov,/ov2 = -(N-B)/VWZE(vg+1+2vL¢T«T2‘)3/ 2,

(3.8.34) f/2v3 = 1/k + {(N-3) sinhlz} + up/(N-5)]}

2 [(N-5)/FeZ(vE+1vavrN2)3/2]

and

(3.8.35) v _=+¥2 - (v} /k+a - coshlzp + u/(N-5)]}

n+l n n

+{1/1+[(N-3)sinhlz tu /(N-5)] /[(N-5)/N=2(v§+1+av /N-2) 3/23,

where u; and vy are functions of Yin‘ Equation (3.3.35)

yields closer approximations to the lower limit of the
confidence interval, i.e., the root of (3.8.27). As men-
tioned previously, an analogous expression gives the improved
approximations to the upper limit of the confidence interval
for v2.

Since a < b < ¢ implies that cosha<cosh b < coshc only
if a >0, b > 0, and ¢ > 0, we must impose the condition
that zi > 0 so that our confidence bounds will be valid.

The quantity u; is always positive. Hence z > 0 is
L .

certainly satisfied if zq, >0, i.e., if

(3.8.36) 1z >v3/(N=57 g1 ~ o/2) .




If we used the iniproved transformation of the non- "

central F statistic with aprroximate normality in a procedure
analogous to the use of the Fisher-z transformation for

tests concerning correlation coefficients we would have

(3.8.37) AN-5)/2 (z -¢) - N(O, 1)

and we would reject Hyt ¢= 0 if either
(3.8.38) 2z/AN=5772 > ¢~2(1 - o/2) or

(3.8.39) 2/N=51/2 < #~*(a/2)

and accept the alternative hypothesis that ¢ # O.

Statement (3.8.38) is identical to (3.8.36). Then we
can expect the above procedure to yield a valid confidence
statement of y2 if the null hypothesis (here wu/0 = 0) has
been rejected at level a. However, if the null hypothesis
is accepted the value y® = O would have to be included in
the confidence interval. But since y® can never be negative
it is meaningless to construct a confidence interval for y?
which includes zero. This limitation would not hold for a
non-central t-distribution with parameter u/o (positive or
negative), but it has a rather complex form. The non=~
central t®-distribution is more easily manageable and
contains the positive non-centrality parameter u2?/0?, on
which meaningful confidence bounds can be stated only if the

null hypothesis u2/0® = 0 is rejected.




After finding ¥f and y§ to the desired accuracy we

have the confidence statement

(3.8.40) Pr{y <y2<vf} =1 - a.

Confidence limits on u2/0% are obtained by dividing each
member of (3.8.38) by N, and the final confidence statement

is
(3.8.41) Pr{Yf‘/N < p?/02 < T%/N} =1 - a

References

Bargmann (1958) [1].

3.9 Non-centrality Parameter of F.

Suppose we have a one-way classification with k classes
and are testing the null hypothesis that there is no
difference between class means. Various procedures have
been recommended to describe departures from rejected null-
hypotheses. One method assumes the treatment effects to be
random and estimates the variance of this component. Confi-
dence bounds for this variance component are exactly solvable
only for the simplest case of equal numbers of observations
in each group. For unequal numbers of observations in each
group, or more complicated designs, exact estimation methods
and distributions of estimates are quite complicated. In

many applications, and in almost all textbooks, estimation




rocedures are recommended which are simple but may not be
L

very satisfactory. Confidence bounds based on these approxi-
mate techniques are also proposed.

As an alternative, one may retain the Model I type
analysis and express the degree of departure from the null
hypothesis by a standardized, dimension-free measure of
departure (the square of a distance function) known as the
non-centrality parameter. By comparing the expected mean
squares in Model I and in a variance component model we note
certain analogies between the ratio of variance components
and the non-centrality parameter,

The non-centrality parameter in a simple one-way

classification is
k 5)2/02
(3.9,1) 2 = iilni(ni - n)2/c

where g is the mean of the i-th population and
P = (Eniui)/(ﬂni). Here o*v? is analogous to (n - ?ng/n)ag
(where o2 denotes the variance component due to treatments)
because the expectation of the sum-of-squares between groups
in Model I is (k-1)o® + y20® as defined above; and the expec-
tation of the sum of squares between groups in Model II is
(k-1)o2 + (n - In%/n)o2, Similar analogies can be established
for more complicated designs,

If all the n; are equal (to r, say) we may obtain

confidence bound on y#/r. If the n; are unequal, we may
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consider the proportion, Py of the total number of observa-

tions contained in each class. Then
k -
(3.9.2) ye = n 1L pi(u,i - n)2/s2
i=1
and we might desire to put confidence limits on
(3.9.3)  ¥®/n =2 pi(pu; - u)2/o? .
i

If desirable, (3.9.2) may be divided by (k - 1) and (3.9.3)
may be multiplied by k/(k = 1) in order to obtain parameters
which are formally analogous to the ratio otz/a2 in Model II.
Each of these parameters is dimension free, i.e., does not
depend upon the unit of measurement used in describing the
original data.

In order to put confidence limits on y® we use the

improved variance-~stabilizing transformation

(3.9.4) z = cosh™t (w/a)
which is approximately normal with

(3.9.5) E(z) =¢ - cotht /{n - &) and

(3.9.6) var(z) = 2/(n - 4), where

(3.9.7) a=v[m+n =~ 2)/(n - 2)

The condition w > a implies, for n > 2, that F > E(F); i.e.,

rejection of Hy is sufficient to insure real values of Z.
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(3.9.9) ¢ = cosh'l[rz/V(m *+ne-2){n-2)+al,

where m and n are the degrees of freedom for F, the statistic

obtained in testing the null hypothesis. Now since

(3.9.10) [z - E(z)]/¥var (z) = N(O, 1)

we may say that

(3.9.11) v(n-4)/2(z - ¢+ {y2/vintne2 + virtn=-2)

< (n-4)vy%/{m+n<2)m+2¢2 ] = N(O, 1).
Setting

(3.9.12) y2/¥m+n-2 = v and

(3.9.13) (v + v&tn=2)/AFTmt2y? = u,

we have the confidence statement

(3.9.14) Prig~Y(a/2) < An=L)/2L2- c+u/(n-4) ] <g~1(1-0/2) }=1-a

which may be written

(3.9.15) Priz - Z/ToRIg 1 ~ o/2) < ¢- u/(n-4)
<z + Bn-hjg 1 - a/2)} =1 « a.

As an approximation to the confidence bounds on ¢ we may use

(3.9.16) Pr{zL <¢< ZU}'; 1l -a where

(309017) zL = 2 - m Q'-l(l - Q/Z) and




(3.9.12) 2y = z *+ ¥2/(n-k) g1 - o/2) .

Setting Ylutn=2)(n-2) = k, from (3.Y.9) we have

(3.9.19) cosh¢ = v8/k + a.

Then we wmay form the equations
(3.9.20) cosh z; = v§/k + a and
(3.9.21} cosh zy = Yﬁ/k + a

where Yf and Yﬁ are the approximate lower and upper limits,
respectively, of the confidence bounds on v2. Equations
(3.9.20) and (3.9.21) may be solved for Yi and y%, which
yield first approximation values of the lower and upper

limits for v?; Yio and Yﬁo, say.

Consider (3.9.15) again. The confidence statement
(3.9.22) Prizy * u/(n-h) < $< gy + u/({n-4)} =1 - ¢
may be written as
(3.9.23) Priz} < ¢<ayl =1 -0,

where zi is a function of the final Yf and zﬁ is a function
of the final y§. Given a first approximate value of Yf

( above) we may obtain a first guess for z] (z! say)
i, Y st g 1 (2}, say

and improve it by an iterative technique until we fipd a
value of yf which satisfies (3.9.22).




The derivation of the improved estimates for the lower

limit, Yf: will be given. An analogous procedure is used
to derive the improved estimates for the upper limit. From
(3.9.20) we had

(3.9.24) cosh z; = v8/k + a.

But now, instead of z; we have z; + u/(n~4), which gives us
the improved lower confidence bound. So instead of (3.9.24)

above, we have

(3.9.25) cosh [z * u/(n-4)]= v#/k + a

which yields

(3.9.26) £(vf) = v#/k + a - coshlz * u/(n-4)]= 0.

Using the Newton method, successively better approxi-

mations to the root of this equation are given by the formula

(3.9.27) v =+ -s(2)/e'(v8) . n=0,1,2, ...
n

n+l n n

Differentiating f(v%) with respect to vf we have
(3.9.28) 2f/ov = 1/k - 2/2¥% coshlz; + u/(n-4)]
= 1/k - sinhlz; + u/(n-4)J3/ov}lz; +u/(n-4)]

= 1/k - {sinhlz; + u/(n-4)Jou/ov. av/b-{i}/(n-h)




where, for simplicity of notation, u and v are written
without subscripts but are understood to be u and v as

defined in (3.9.12) and (3.9.13) with y® replaced by Yi .
L ——————— n
Then, using the fact that Yf = ywmtn-2, we have

(3.9.29) o2u/ov = 3/ovi(v + /tn=2)/(v® + m + 2vv?n+n-2)§3

(3.9.30) 2u/dv = =(n=2)/(v® + m + 2vvm+n-2)3/2 5
Also

(3.9.31) ?v/ovd = 1/+¥n-2 ,
(3.9.32) 2u/ov  av/eyd = -(n—2)/[(v2+m+2vvim)3/2m3,
(3.9.33) of/2v} = 1/k + (n-2) sinhlz; + u/(n-4) ]

2 [(n-l)/AFiZ (v& + m + 2witn2) /2],

and, from (3.9.2 ) we have

(3.9.34) v L = 'rf - {'fi/k + a - coshlz + w/(n=4)J}
n

nt

2
2+ {£+ (n-2)sinh{z;*+u/(n=4)] /U(n-b) o=z (v3m+2vviin=2)* 1}

Equation (3.9.34) yields closer approximations to the lower

bound of the confidence interval for y%. As previously
stated, the improved estimates of yﬁ are found in an exactly

analogous manner, and to find v& lsimply replace Yﬁ by
nt n
vﬁ in (3.9.34). Note that u and v will now be defined in
n

terms of vﬁ .
n




Since a < b < ¢ irplies that cosh a < cosh b < cosh ¢

only if a > 0, b > 0, and ¢ > 0, our confidence bounds are
valid only if z; + u/(n-4) > 0 and z; + w/(n-4) > 0.
After finding the lower and upper limits of y® to the

desired accuracy, we have the confidence statement
(3.9.35) Priv} <vy® <+vfl=1-c.

If the number in each class is the same, say r, the confi-

dence staterent for I (p.i--u)z/c2 is
i

(3.9.36] Privi/r <§ (g~ 1)3/62 <vR/rl =1 - a.

If the number in each class is not the same, the

confidence statement for I pi(ui— w}/o® is
i

(3.9.37) Pr{'r‘g/i'.ni < g pi(ui_n)a/gz ? Yﬁ/znlf =1 - qa,

where py represents the proportion of the total sample
contained in the i-th group.
Reference:

Bargmann (1958) [1J.

3.10 Non-centrality parameter of X2.

Suppose we perform a X% goodness-of-fit test and find
that ?(Oi - E;)3/E; = u. If the null hypothesis is true,
the statistic has approximately a central X2 distribution.




For any given alternative model we can construct ancther set
of Mexpected valuea™ which we will call "postulated values
under the alternative.® If such an alternative is true, the
statistic u defined above will have approxicately a none
central X? distridution with non-centrality paraceter

(3.10.1) +2 w; (P, - E.)3/E,

where the P, are the "postulated values.”

We would like to put confidence limits on v*. If a
statistic u has the non-central %2 distribution with v
degrees of freedor and non-centrality paraceter y2, then

{3.10.2) “V/2 - VYR T /2 + 1/2V¥R T v]2 * N(O, 1).
If we set

(3010.3} VE -~ V;Z = X and
‘31-1(:“1;) ‘{;i! + V;z - 5

the confidence statement on the gquantity in (3.10.2) is
(3.10.5) Prig~Ha/2) <x = 6 + 1/25 < @"H1 = o/2)} = 1=c.
To assure that x is real, u must be larger than v/2. Since
E{u - v/2) = v/2 under Hys and E(u - v/2) > v/2 under any
alternative, rejection of the null hypothesis is sufficient

to assure that x is real.
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Replacing Q‘l(l - a/2) by @ and Q"l(a/z) by -@, our

confidence interval becomes

(3.10.6) [-@F <x -5 + 1725 < @]

which is equivalent to

(3.10.7) [x -pP <6 -1/26 <x+ @J.

Dealing with only the lower part of this inequality we have
(3.10.8) 5 - 1/25 >x - @,

and, after multiplying both sides by 6 and completing the
square on &, we get

(3.10.9) [5 - (x-@)/212 > 1/2 + (x-@)23/4 .

Using the fact that a? > k implies that either a > vk or
a < -vk, we get from (3.10.9) the two inequalities

(3.10.10) &> (x-@)/2 + 3v2 + (x-@)? and

(3.10.11) s5< (x-@)/2 - 2v2 + (x-@)< .

Now, dealing with the upper part of (3.10.7), after multi-
plying both sides by & and completing the square in 5, we get
(3.10.12) [5 - (x+@)/2]12 < 3 + (x+P)2/4 .

Since a® < k implies that -vk < a < vk, (3.10.12) implies
that

(3.10.13) (x+p)/2 - 3v2+ (x+P)2 < 0 < (x+@)/2 + 3v2+(x+P)? .
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The confidence interval for & is thus the intersection

of the interval (3.10.13) with the union of the intervals
(3.10.10) and (3.10.11). Since & < 0 is meaningless, we
must insure that the intersection of (3.10.11) and (3.10.13)
is empty, for both the lower bound of (3.10.13) and the
interval (3.10.11) lie below zero. Thus, we must insure

that

(3.20.14) (x=f)/2 - 3v2 + (x=P)% < (x+@)/2 - 4v2 + (xtB)% .

For this inequality to hold it is sufficient that x > §
and § > O. Since for yv® = 0, E(x) > 0, rejection of the
hypothesis y® = 0 at level a is sufficient to insure that
the lower intersection is empty. Hence, the desired
confidence interval is then the intersection of (3.10.10)
and (3.10.13); i.e.,

(3.10.15) (x=§)/2 + 4v2 + (x-§)° < &6 < (x+f)/2 + 2v2 + (x1P)%,

which covers 8 with probability 1 - a. Since both
bounding quantities are positive it follows that

(3.10.16) Pril({x-@g)/2 + 3v2 + (x-f)%]1% < &%

< Ux+g)/2 + v2 + (x#f)*]} = 1 - .

Replacing 6% by y® + v/2, our final probability statement
is
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(3.10.17) Priflx - g + ¥Z + (eB123° - v/2 < y2

<'%[x + g+ v2+ (x&ﬂ)zla -v/2} =1 ~a

which gives the confidence bounds on the non-centrality
parameter of the non-central X% distribution. It may
appear as if the sample size is of no consequence in the
above confidence statement. This is due to the fact that
the sample size is implicit in y® as defined above. For
example, in a one-way classification analysis of variance

with r replications per treatment

(3.10.18) y® = r i (by = w)2/0% .

If we want confidence bounds on

(3:10.19) v*/r = Zuy - u)?/o?

we need only divide the left and right-hand sides by r,

the number of replications.
A similar situation holds in the goodness-of-fit

tests. The non-centrality parameter is

(3.10.20) ¥® = Z (P, - E,)3/E, ,

where P, is the number of items in the i-th category under
the alternative hypothesis and E; is the expected number
of items in the i-th category under HO' If we prefer

confidence bounds on a parameter consisting of oportions,




we would have to put bounds on y%/N, where N is the total
number of items, since Pi and E; represent N x{proportions).

That is, since Pi - Npi and Ei = Ne, , then
(3.10.21) v¥3/N =1/N L (Npi - Ne. )2/Ne,
i 1 1
o= - 2 .
Ly - ey)%/ey

Reference:

Hofer (1960) (5]
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IV. NUMERICAL EXAMPLES

This chapter is composed of computational procedures
with worked examples that illustrate the estimation of
confidence intervals presented in Chapter Three. Due to the
simplicity of the methods no detailed computational proce-
dures are given for the parameters presented in the first
four sections of Chapter Three. All data used in the

examples are artificial.

L.1 Parameter u; o2 Known.
Confidence Statement:
Prix - g7lo/YE <p <X+ g o/l =1-a
Data: X5 =2, 5, 75 by 7 o2 = Ly a = .05
The 95% confidence interval is thus
[5 - (1.96)2/75 < u <5 + (1.96)2/¥5], or
[3.25 < u < 6.753 . »
Parameter W, ¢2 Unknown.
Confidence Statement:
Prix - o/5 /N(N-1] <n < X + tVS_/N(N-1]} = 1 - a.
Data: Xy = 11, 7, 13, 95 a = .05

The 95% confidence interval is thus

[10 = (3.182)7/1.67 < u < 10 + (3.182)v1.67];
[5.39 < p < 14.11] .




L.2 Parameter o2; u Known.

Confidence Statement:
Pr{[Z(xi-p.)z]/Xi_a/Z < o? < [z(xi-u)zj/xg/zf = 1-a.
Data: X = 6, 8, 9, 5, 3, 63 w=17; a = .10
The 30% confidence interval is thus
[12/12.59 < 0% < 12/1.64];
[.95 < o2 < 7.32].
Parameter o2, p Unknown.
Confidence Statement: Pr{sxx/xi-a/zf:caf:sxx/xg/Z} =1 - q.
Data: Xy = 11, 12, 13, 12, 10, 14 o = .05
The 90% confidence interval is thus
{10/12.33 < 0% < 10/.831];
[.78 < 02 < 12.03].

4.3 Parameter i, - o3 Common 62 Known.

Confidence Statement:
Pri(%, - X,) - g~H1 - o/2)0VI/N] * I/N, < py - u,

<UF - Fy) + FHL - o/2)V AN FI/N,) =1 -

Datas X14 = 5,3,4,7,5,03 Xa3 = 3,6,4,3,4; 02 = 1, a = .05.

The 95% confidence interval is thus

[1-(1.96)VI/6 + 1/5 < Hy=by <1+ (1.96)¥1/6+1/51;

{-.19 < By = By < 2.19] .




-

Parameter u, - W,; Common 0% Unknown.

Confidence Statement:
Pr{(X)-%,)-8,tv1/N #1/N; <uy -, < (%)X, )+s tVI/NFI/N} =1-0
Data: X1 & 5y 3, 4, 7, 5, 63 X4 < 3, 6, 4y 3, 43 o = .01

The 99% confidence interval is thus
(1 - (3.25)(&/3)(.61) <u; - u, <(3.25)(4/3)(.61)]

[-1.64 < By = By < 3.64] .

L.l Parameter oi/cg.

Confidence Statement:

Prl(sf/sg)/Fl_a/z < o2/c% < (si/s%)/Fa/z} =1 - a.

Data: x5, = 1.3, 8.6, he2, 3.8, 5.1, 6.0, 3.9, k5, 4.0, 7.1;
Xp; = 740y 5.by 3.8, Le2, 4.6, 3.9, 5.8, 2.63
a = .10
The 90% confidence interval is thus
[(4.0428/1.8713)/3.68 < -l<(u 0428/1.8713)/.304J;
2
(.59 < o3/cd <7.11] .




4.5 Parameter p.
Data: xi=10.2, 10.1, 9.8, 10.1, 9.2, 8.6, 7.9, 8.7, 10.3, 10.4;

Yi = L}OO’ t;ol’ l;,ae’ l}oo, 2{,02, 301, 199, 2-0, 300’ 307;

a = .10

| Computational Procedure:!

1. Calculate Ix, Zy, Ix®, Ly?, and Ixy from the data.

2. Calculate r = [Nixy - IxZyJ/vINIx2 - (Zx)2][NZy2 - (Sy)2]
3. Find z = tanh™ir = } log(l+r)/(1-r)

L. Calculate 1/¥N - 3

5. Calculate @~X(1 - a/2)//FN =3 = ¢

6. Calculate z - ¢c and z + ¢

7. Find p; = tanh(z - c)

8. Find o = tanh(z + c)

9. Pripy <p<pyl=1-a

Computation?

1. Ix = 95.3, Zy = 34.0, Ex? = 915.05, %y? = 122.36,
Ixy = 328.90

2. r = ,718

3. g =.904

be /YN =73 = .378

5. ¢ = .622

6. z - ¢c = 282, z + ¢ = 1.526

7 PL = tanh( .282) = .275




8. oy = tanh{(1.526) = ,910.
The 90% confidence interval is thus

[.275 < p < .910] .

L.6 Parameter ul/uz.

Data? Xliw‘SIO, 609’ 7-0, 502, 802, 703, 5.1, lpoé, 6.3, 6.7;

Xo3 % 601y he3, 4e8y 5.0, 3.7, he9,y 5.1, bely he8, L.9,
S5¢hy 3453
a = .05

Computational Procedure:

1.

9.

Look up F(1, N+ N, - 2), for the chosen a level.

Compute sg from the two samples.

Compute x; and x% from the data.

Compute Eé and E% from the data.

- —

Compute X)X,
= Fs?
Compute by Fsp/Nl.
= Fa?
Compute b, Fsp/Nz.
Compute d = xZ - b, and note whether d > 0 or not. If

-
x5 = by

Y= “l/uz'

< 0, valid confidence bounds cannot be put on

Compute ble’

10. Compute b2§§ and biE%.




11, Calculate ¢ = v’bzif + blig - byb,
12. Compute (iliz - ¢)/d and (iliz + ¢)/d.
13. Pr Kiliz -¢c)/d < y< (ilig + c)/dl=1 - «a

If 02 is known or may be assumed known, Step 2 is

omitted, SS is replaced by the known 0%, and F is replaced

by X2,

Computation:

1, a=,05, F.O5(1,2O) = 4.35

2e Sg b 09135

3. X, = 6.230, ii = 38,8129

llvt i2 = 2}071017, ig = 2201&837

6. bl = .39715‘

7e b2 = u3311

llo c = 4065311-

12. (%%, - c)/d = 1.1235, (x1%, + c)/d = 1.5436

13, The 95% confidence interval is thus [1.12 < ¥ < 1.54].

2
4L.7. Parameter °x/a§ (x_and v are correlated).

Data: x, = 28, 18, 22, 27, 25, 30, 21, 20, 27, 21;
y; = 19, 38, k2, 25, 15, 31, 22, 37, 30, 24; a = .10



Computational Procedure:

1. Compute Ix, Iy, IZx?, ILy?, and Ixy from the data.

2. Compute r? = [NIxy - IxZy]3/[NIx? - (Ex)?][NIy? - (Zy)2]
3. Compute v1 - r?

4, Find t for the upper (positive) «/2 level with N - 2

degrees of freedom and form a = tv 1 - r<

5. Compute + N - 2 + a<

6. Compute by =a - N -2+ a® and by=a+ vy N -2+ a~
2
7. Compute k = sx/sg
8. Compute 2ak/(N - 2)
9. Compute C; = ZakbL/(N—z) and Cy = 2akbU/(N-2)
10. Compute k + CL and k + CU
2
11. Pr{k+cL<°x/o§<k+cU} =1-a
Computations
1, Ix = 239, Iy = 283, Ix2? = 5857, Iy? = 8709, Ixy = 6636
2. r2 = ,1607
3. ¥ l-—r:! s ‘9161
1&0 t.95 = 1086, a= 107039
5. v N-2a® = 3,3020
6. Dby = -1.5981, by = 5.0059
7 k = ,2070
8. 2ak/(N-2) = ,0882
9. CL = "-:ul—ogg CU = JL41h
10« k + G = «0661, k + Cy = « 648l

2
11l. The 90% confidence interval is thus [.07 < cx/c§ < .65].




LeBe

Confidence Bounds on the Non-Centrality Parameter

in the lon-Central t2 Distribution.

Computational Procedure:

Steps 1 through 8 apply to both upper and lower bounds,

but only the formulas appropriate for the lower bound are

shovm in steps 9 through 13.

1.
2e

Compute X and s? from the data.

Compute t? = F = Nx%/s?

Compute w = 1 + F/(il-1)

Compute a = v (N-2)/(N-3)

Compute w/a
Find z = cosh‘l(w/a)
For the chosen a compute ¢ = @"l(l—a/z) v 2/(N-5) and

Torm zy = z-C and Zy = z+c

Look up cosh (z;) and cosh (z)
Find ¥(N-2)(N-3) = k and compute 'rfa = k[cosh(zL) - aj

Compute
Compute
Compute
Compute
Compute
Conpute

Compute

b
v

s
u
y
d

e

v§ [k

0 —_—
rE / N-2 (Record + N=2)
5
vyve+ 1+ 2Yf ands’

Lo
(v + ¥y N=2)/s
zp + u/(N-5) and look up sinh (y) and cosh (y)
a+ b - cosh(y)
[(N-3) sinh(y)}/[(N-5)¥ T-2 s3]

Compute £ = d/(1/k + e)




18. Compute v# = yv# - f
L L
1 0

Steps 10 through 18 are reiterated using each new value
Y.€i+l , 1 =0,1,2,ses, in place of wﬂfo until the desired
accuracy for “rﬁ is obtained (usually until the quantity d
in step 15 equals zero). When finding the upper bound of Y2
use zy instead of z; in step 9 and *rﬁi instead of Y'fi
(i=0,1,2,+e+) in steps 10 through 18.

Data: 2.2, 3.1, 1.8, 1.0, 4.1, 3.5, 2.9, 2.2, 1.1, 3.2, 2.5
Computation:

Lower Limit. Iteration 1

le X = 2,509, s® = 9449
F

2. F = 73.289%

3. w= 8.3290

Lo a = 1.0607

5. 3 = 7.8524

6. z = 2.7499

7. a=.10, $~1(.95) = 1.6449, c = 9497, =z = 1.8002,
z; = 3.6996

8. cosh (zL) = 3,1081, cosh (zU) = 20,2283
9. k = 8.4853, y io = 17,3728

10. b = 2.0474

11, v = 5.,7909 (v N-2 = 3)

12, s = 8.3235, s> = 576.65

13, u = 1.,0562




1.
15.
16.

a

17. £

18,

Y

==

2
L

1.9762, sinh(y)= 3.538L, cosh(v)= 3.677C
-.5689

. 0027

~Le7172

= 22,0900
1

iteration 2.

10.
11.
12.
13.
14,
15.
16.
17.

b = 2.,6033

v = 7.3633

5 = 9.9699, s3 = 990.99

u = 1.,0395

y = 1.9735, sinh(y)= 3.5285, cosh(y)= 3.667L
d = -,0034

e = ,0016

f = -,0285

18. v ﬁ = 22,1185

2

Iteration 3.

10.
11.
12.
13.
14,
15.
16,
17.

b
v

S

o 2 < =

Hy

==

=

2.6067

7.3728

9.9797, s3> = 993.93

1.0394

1.9734, sinh(y)= 3.5281, cosh(y)= 3.6671
.0003

.0016

.0025




18, v 2 = 22,1160
3

Tteration L

llo v = 7.3720

-
b
.
[0}

i

\O
.
O
\3
(921
O

-
L4

(23]
]

993.68

13, u= 1.0394

e v = 1.9734, sinh(y) = 3.5201, cosh(y) = 3.6671
15, ¢ = 0O

Cease iterating. Y’ﬁ = 22,1160
L

Upper limit. Iteration 1l.

9 Y ﬁo = 162,6428

10, b = 19,1676

1l. v = 54.2143

12. s = 57.1443, s3 = 186,603
13, u = 1.0012

14, 2,8665, sinh(y) = 23.9033, cosh(y) = 23.9242
15. d = -3.6959

16. .0001

17. £ = -31.3212

18, ¥ 2 = 193.9640

o o« w
i ]

et \J
o

Iteration 2.

10. b = 22.8588

11l. v = 64.6547

12. s = 67.5955, s3 = 308,855




1.0009

i

13. u
lhe v = 3.8664, sinh(y) = 23.9009, cosh(y) = 23.9219
15, d = -, 0024

16, e = ,0000

17, £ = -,0204

) = 193,98L4L

i

et
3
L ]
—<

<o

Iteration 3.
10. b = 22.8612
11, v = 64,6615
12, s = $7.6024, s3 = 303,948
13 u = 1.0009
1he y = 3.866L, sinh(y) = 23.9009, cosh{y) = 23.9219
15 d = 0O
Cease iterating. ‘Y§3 = 193.9844

The 90% confidence interval is thus [22.12 < Y2 < 193.981;
or [2.011 < 12/02 < 17.635].

4e9s Confidence Bounds on the Non-Centrality Parameter in
the Non-Central F Distribution.
Steps 1 through 8 apply to both upper and lower bounds,

but only the formulas appropriate for the lower bound are
shown in steps 9 through 18.
Computational Procedures

1. Compute I from the data.




» Comute v =r"/n+ 1

3. Compute a = J{m+n - 2)/(n - 2)
L. SCenpute u/fa
5. Find gz = 3osh'l(w/a)
fe Find $"l(l—a/2) for the chosen « and compute
¢ = $7H(1-e/2) v I/ELT
7. Compute zp = z - ¢ and zy = 2z + c and look up cosh(zL)

o~

ani cosh(zU)

oy

. Compute k = yimn-2){n-2) and 1/k

O
.

Compute y£ = k[cosh(z;) - a]
: 0
10. Sompute b = vf /k

0

11, Compute v = Yﬁo / v mn-2 ; (Record v mn-2)

12, Compute s =v vZ+ m+ 2 vf and s°
0

13, Compute u = (v+ vy m+ n - 2)/s

14. Compute y = zp + u/(n-4) and look up sinh(y) and cosh(y)
15, Compute d = a + b - cosh(y)
16. Compute e = [(n-2) sinh(y)]/[(n-4) vy m + n-2 s3]
17. Compute f = d/(1/k + e)
18, Compute Y& = v# - f
1 ~0

Steps 10 through 18 are reiterated using each new value
Yfi+l (i=0,1,2,+0.) in place of YEO until the desired
aceuracy for frf is obtained (usually wntil the quantity d
in step 15 equals zero). When finding the upper bound of Y?
use 2 instead of z; in step 9 to find v§ ; and use ‘rﬁi

0
instead of v # (i=0,1,2,...) in steps 10 through 18.
i




Data (5 groups, 1l observations per group):

(1) | (2) () | (5)

b 1 6 L
1 7 1 5
2 6 10 L
2 2 3 3
3 6 7 6
1 5 4 5
2 L 9 3
1 1 6 6
L 5 1 5
3 L L 4
1 8 2 L
L 24 59 86 53 49 LI = 261
Analysis of Variance. Source A SS d‘f‘. MS

Between | 178.0728 L | 44.5182
Within | 198.3636 | 50 3.9673
Total 3764364 | 54




Computations:

Lower limit. Iteration 1.

F=11.2213

w = 1.8977

a = 1.0408

w/a = 1.8233

z = 1,2083

@ = .10, $71(.95) = 1.6449, c = .3430
z; = «8653, 32y = 1.5513

cosh(z;) = 1.3983, cosh(zy) = 2.4648
k = 49.96, 1/k = .0200

‘Yﬁo = 17.8607

b = .3575

1.
2.
3.
L.
5
6
7s

8.
9.

11.
12.
13.
1k,
15.
16.
17.

v
3

u

Y
d

4]

)

=

=%

=

==

2.4768, vm+n- 2= 7.,2111

6.7717, s = 310.52

1.4306

.896k, sinh(y) = 1.021k, cosh(y) = 1.429%
-.0311

. 0005

-1.5171

Iteration 2.

10. b = .3879

11, v = 2.6872

12. s = 7.0694, s® = 353,31



13.
14.
15.

\
T o
o

u = 11,4002
Y = +8957, sinh(y) = 1.0204, cosh(y) = 1.4287
d =20

Cecase iterating. vy § = 19.3778
2

Upper limit. TIteration 1.

9.

10.
11.
12,
13.
14,
15.
16.
17.
18,

Y& = 71.1430
0
b = 1.4240
v=29,858 vm+n-2 =7,2111
= 15,6083, s3 = 3802.5
u = 1,0941
¥y = 1.5751, sinh(y) = 2.3121, cosh(y) = 2.5191
d = -.0543
e = OOOOl
£ = -2,7015
Y % = 7308445
1

(4]

Iteration 2.

10s b = 1.4781

1l.
iz.
i3.
14.
15.

The

v = 10.2404
s = 16,0173, s = 4109.3
u = 1,0895
y = 1.5750, sinh(y) = 2.3119, cosh(y) = 2.5189
d=0
Cease iterating. 7'5? = 7348445
90% confidence interval is thus [19.38 < v? < 73.84].




L.10. Confidence Beunds on the Non-Centrality Parameter

in the Non-Central X2 Distribution.

Computational Procedure:

1. Record the statistic u = Z(0; - E;)%/E, which has
been calculated from the sample.

2. Look up @~1(1 - «/2) = ¢ for the desired a- level.

3, Calculate x =y u - v/2

L. Compute x - ¢ and (x-$)?; check that ¢ > 0 and x > ¢.

5, Compute x + ¢ and (x + ¢)2

6. Compute a =v 2+ (x - §)°
7. Compute b = 1/4 (x - ¢ + a)?
8. Compute b - v/2

9. Compute c =+ 2 + (x + §J°

10, Compute d = 1/4 (x + ¢ + ¢)?
11. Find d - v/2
12, Pr {b - V/2<Y23 <4 -V/2 |=1-a

Data: 0; = 18,10,29,11,7,23,8,13,6
B, = 13,15,23,18,13,17,13,8,5
Conmputation?
1. u= 18,012
2, a= .05, ¢ = 1.960
3¢ X = 3.7433
he x-0 =1.7833 (x-4)2 = 3.1802 (>0, x> ¢).
5. x+ ¢ =5.7033 (x+ §)2 = 32,5276




Go a = 2,2760
7« b = 4,1195
8 b - v/2 = 01195
9« ¢ = 5,8760

10. d = 33,5201
11, d - v/2 = 29,5201

{

The 95% confidence interval is thus [.12 < Y? < 29,52].
How, E{u) = Y2 +v,

Hence ¥2 =18 - 8 = 10; so we see that the confidence
interval is skewed to the right about the point estimate of Y2,
Example 2.

In this example confidence bounds for various values of
¢ will be computed, given the
Data: 0; =7, 20, 9, 12, 6, 22, 19

E; = 12, 18, 14, 10, 7, 11, 23
1. u= 16,3298
2. a=,20, ¢ =1,282
3¢ x = 3.6510
he % -0 =2,3690, (x - §)2 =5.6122 (6 >0, x> ¢)
5 x+ ¢ =14.9330, {x+ ¢)% = 24.3345
6. a = 2,7590
7. b = 6.5741
8« b -Vv/2=3.5741
9. ¢ = 5,1317




10, d = 25.32L5
11, d =V /2 = 22,3245
The 80% confidence interval is thus [3.57 < Y2 < 22.32].
1, u= 16,3298
2. @ = ,10, ¢ = 1.645
3. = 3,6510
- ¢ =2.0060 (x-¢)2=4020 (¢>0, x>4¢)
+ ¢ = 5,2060 (x+ $)2 = 28.0476
= 24541
= L.9738
v/2 = 1,9738
= 5.4816
10. d = 29,0392
11. d - v/2 = 26,0392
The 90 % confidence interval is thus [1l.97 < Y2 < 26.04].
1. u = 16,3298
2. a=,05 ¢ = 1.960
x = 3.5510
Le x - ¢ =1.6910, (x - ¢§)2=12.895 (¢6>0, x> ¢)
x+ ¢ = 5.6110, (x+ §)? = 31.4833
6. a = 2.2044
7 b = 3.7935
8¢ b -Vv/2=,7935
9., c¢ = 5,7865




1{30 d = 320‘:}’/58

11, 4 - V/? = 20.4758

The 95% confidence interval is thus

(79 < 72 < 29.48]7.
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ABSTRACT

In this thesis, confidence bounds on simple and more
complex parameters are stated along with detailed computa-
tional procedures for finding these confidence bounds from
the given data.

Confidence bounds on the more familiar parameters, i.e.,
W, o2, Wy - Ky, and Gi/d%, are briefly presented for the
sake of completeness. The confidence statements for the
less familiar parameters and combinations of parameters are
treated in more detail.

In the cases of the non-centrality parameters of the
non-central t2, F and X? distributions, a variance-
stabilizing transformation is used, a normal approximation
is utilized, and confidence bounds are put on the parameter.
In the non-central t2 and non-central F distributions
iterative procedures are used to obtain confidence bounds
on the non-centrality parameter, i.e., a first guess is
made which is improved until the desired accuracy is obtained
This procedure is unnecessary in the non-central X*® distri-
bution, since the expressions for the upper and lower limits
can be reduced to closed form.

Computational procedures and completely worked examples

are included.




