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I. INTRODUCTION 

The area of confidence interval estimation is an 

important one in applied statistics. We frequently like to 

know just how confident we can be that a certain estimated 

interval does, in fact, cover the true parameter. 

This paper is a review of confidence interval estima-

tion on some of the familiar parameters of the normal dis-

tribution and a presentation of confidence interval 

estimation of some not so familiar parameters. The 
~ dimension-free parameters, such as 2 , are of especial cr 

interest since they are independent of the unit of measure-

ment used in the original data. 

Confidence interval estimation on the correlation 

coefficient and on the non-centrality parameters in the X2 , 

t 2 , and F distributions may be obtained by interpolation in 

detailed tables of the percentage points of the exact non-

central distributions. Although such tables are available, 

they are quite voluminous, and may not be easily accessible. 

For that reason, Fisher's z-transformation has been used 

rather widely, even though tables of the exact distribution 

have been available. In this thesis similar techniques will 

be described based upon improved variance stabilizing trans-

formations of the non-central X2 and F distributions which 

represent approximations to the exact distributions as good 
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as that based upon Hotelling's improvement of Fisher*s

z—·*¤rensformat.ion. They were obbeined by methods enelogous

to Hotelling*e M], and studied by Bergmann [1] and Hofer

[5]*
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A treatment of the parameters included in the first
five sections of this thesis can be found in many standard A

textbooks or manuals.

Hotelling [L] has discussed improvements of the mean
and variance of the wel1—known Fisher z—transformation used
to put confidence bounds on the correlation coefficient.

Roy and Potthoff [6] present confidence bounds on the
parameters nl/nz and dä/eg for an underlying bivariate
normal distribution.

The variance-stabilizing transformation, used to put
confidence limits on the non—centra1ity parameter in the
non—central t2, F, and X2 distribution, is discussed by

Bergmann [1],
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III. STATEMENT AND DEVELOPMENT OF FORMULAS

3.1 Pgrameger E.
When we have a sample of size N from a normal distri-

bution and wish to make a confidence statement about M when
62 is known, we use the fact that

"‘ l)•

The usual two-sided confidence statement with equl tail
proportions is

·· -1 2 .2 —— -1 _ 2 .2. -
_(3.1.2) Pr(x - ¢ (1 u < x + gz! (1 1 a

where
¢”l(l — is the upper % point of the standard normal

distribution.

If o2 is unknown, the statistic is

with corresponding confidence statement

(3.1.l+) Pr?-JE - wsxx/N(N-1) < w < SE + wsxx/wlw-15} ¤ 1- a,

where t is the upper d/2 point of the t distribution with
N ~ l degrees of freedom, and Sxx ¤ Xx? - (zxi)2/N ,
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3.2 Parameter gf.

For the parameter o2, when n is known, the fact that

(3.2.1)Z(xiis

used to give the confidence statement with equal teil

proportions

(3.2.2) 62 < E(xi 1-a,

where Xä/2 denotes the lower a/2 point of the X2-distribution

with N degrees of freedom.
If N is unknown, the statistic

(3.2.3) sxx/s, xN__l

is used and the confidence statement is

(3.2.h) Pr{Sxx/Xl_a/2 < o < Sxx/Xä/2} 1 a,

where Sxx is defined in (3.1.h) and x2 has N · l degrees of

freedom.

3•3 Parameter
Ü

"' Lian

If we have two samples from two independent normal

populetions with a known common o2 and wish to make a confi-

dence statement about ul — M2, the appropriate distribution

is

(
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N

(3•3•1) Hxl - X2) ··· (Nil ·- +12)]/G-/1/N1 + 1/N2 == IMO, 1).

The ccnfidence statement is

·: _·· __ -1 __ *********7 _(3.3.2) P1"{’Xl 2:2) ¢ (l cr/2)o»/1/Nl+1/N2 < NJ·l +12

< (El
-”§:2) +¢“l(1

- ex/2)e„/1/Nl+ 1/N2) == 1 — cx.

When og is unknown, the expression used to put confi-

dence bounds on +11 - +12 is

and the cenfidence statement is

(30 ¤» l
•• Q

where t is the upper cz/2 point of the t distribution with

N1 + N2 —~ 2 degrees of freedom and sp is the pooled estimate

of the standard deviation, given by

(3.3.5) sp == 1/ÄSXxl + + N2 ·- 2),

este Seal e Exäi ·· es ··
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„2 23•h Parameter cl/01 •

Suppose we have a sample from each of two independent

normal populations and wish to put confidence bounds on

dä/dä. Then,

(3•h•l) sieg/säoä ¤ F ,

2 „ __ 2 " 2 „, __ —: „

Ä
where el 2(xli sl) /Nl, 62 and F has
(N1, N2) degrees of freedom if ul and nz are known, or

si 1), sg 1), and
F has (N1-l, N2-l) degrees of freedom if nl and ug are

unknown, gives the ccnfidence statement

Sä/ 1 ·· <=·

where Fl_a/2 is the upper a/2 point of the F distribution

and Fa/2 is the lower a/2 point. °

3•5 Corgglatiog Coefficien§•
When we have a sample of size N from a bivariate normal

population and wish to put confidence bounds on the popula-

tien correlation ceefficient D, the familiar Fisher

z-transformation is used, i„e.,

(3•5„l) z ¤ tanh”l r ¤ é ln[(l + r)/(l - r)],

where r is the sample correlation coefficient• Since

)
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(3.5.2) E(z) ’=¥·’ uamflp ·- lu [(1 + p)/(1 — p)] )

and
(3•5•3) var (2) Z l/(N··3) ,

(3.5.h)and
the confidence statement for p is

(3.5.5) Pr{z —- ¢‘l(1
- e/2)/«N—3 < tanh”lp

< z +
¢“l(1

- cz/2}/.»N-3}
¥·*’

1 - cz.

If a more exact confidence statement is desired, the

z~transformation can be improved. The correction for the

bias (the bias of z is the excess of E(z) over tanhel p} of

z is 0/(2N — 5). For var(z), l/(N — 8/3) should be used
instead of l/(N — 3). These corrections usually make both

the upper and lower bound in (3.5.5) smaller, but generally

the improvement is negligible.

References:
Standard textbooks

¤¤te111ng (1953) (A].

3•6

ParameterSupposewe have two samples of size N1 and N2,

respectively, from two independent normal populations,

xl ¤ N(ul, oz) and x2 ¤ N(u2, 62) and desire to put confidence
bounds on Y ¤ Hl/M2. The common oz may be either known or

unknown, although usually oz is not known. Introduce

§
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Since

and
(3.6.3) va:-(E) =·· var(3El - YSEZ) =· 62/N1 + Heß/112,
then
(3.6.k) E/ovl7Nl + y27N2 ¤ N(O, 1)

and ,
(3.6.5) xi .

If 62 is unknown, then

(3.6.6)and

where sg is the pooled mean square of the two samples, as
defined in (3.3.5). we can say

(3.6.8) Pr{(S£l -— YSEZ)2/62(1/N1 + Y2/N2) < Xäw} == 1. —— oz,

where Xä_¤ represents the upper tail value of x2 with one
degree of freedom for level d. If 62 is unknown, Xä_a is
replaced by the upper a point of the F distribution with
(1, N1 + N2 — 2) degrees of freedom. For simplicity of

I
I

I
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notation we will call these upper a points xä and Fu,

respectively. From (3.6.8) we get

(3.6.9) Pr {Gil — Y?2)2 < Xä¤2(1/Nl + vg/112)) -= 1 — ez

and if one sets

(3.6.10) xg62/Nl =· bl and

(3.6.11) Xäoz/N2 ¤ bz,

(3.6.9) becomes

(3.6.12) P1-{(3El - viiz)2 < bl + Yzbz) == 1 - e.

If 62 is ubknbwn,
“ Bild

¤ ,

and replace the values given in (3.6.10) and (3.6.11).

We can state the inequality in brackets in the following

form, by expanding the 1eft—hand side and collecting powers

of Y:

(3.6.15) #(3éä ·— b2) bl — El ,

which becomes



(
— — — * ·* *' 2(3.6 .16) [Y —- xlxz/(xä - bz)? < Kbzxä + blxä — blbzl/(ag-bz)

*2if x2 - b2 > O.
It will now be shown that the condition.}? · bz > O is

equivalent to rejection of the hypothesis that u2 “ O in a
two-tailed test with significance level d. To this end we
will formulate the following
Theorem: A necessary and suffioient condition for the
existence of a real-valued confidence interval on Y = ul/ug,
of coefficient 1 — d, is the rejection of the null hypothesis
HO: u2 ¤ O vs. the alternative u2 f O at significance level
G,•

Proof: If oa is known, the critical region for the two-

tailed test of HO: H2 ¤ O can be written as
N "2
2x2 3 Q

where xa is based upon one degree of freedom and is equal to
the xä used in (3.6i%2) and (3.6.11). Hence, if H0: u2 = O
is rejected, EQ > —~ä;~— =lb and it follows that — bz > O,
which proves the necessity of the condition.

In order to show sufficiency, w must show that the
right-hand side of (3.6.16) is positive. we can say, since
ig Ä bz and bz > O by (3.6.11), that
(3,5,13) béiä + bi}§ - blbz > bz}? + blbz - blbz = bz}? > O,
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which shows that the right~hand side of (3.6.16) is positive
and proves the theorem.

If oz is unknown it will be estimated by sg; (3.6.10)

and (3.6.11) should be replaced by (3.6.13) and (3.6.1L) and
the proof is the same as above. Note that even though the
test is made on the mean of the second sample only, a pooled
estimate ef oz from both samples is used.

Subject to the conditions in the preceding theorem we
— can now find the confidence interval for Y. Let us set

*2 * _ é „(3.6.19) (blxz + bzxä blbz) c.

Now az < k implies that -~/FE < a <1/E ; hence we get from
(3.6.16) the interval

(3.6.20) -c/(xä — bz) Y ·- ?cl3”E2/(ES -· bz) {c/(xä -· bz)

and the final confidence statement is (

(3.6.21) -11)} ··= 1 -«1.

For a bivariate normal population

X1 #1

säS.N. Roy and R. F. Potthoff [6] give the confidence bounds
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(? E —¤« 6 r‘~?£E ? -“¤ s r)2—(¥2—*s2)<ä?—%s*)]%*1*2 ””l 2
’ “ ’l‘2 “*1 2 *1 “ 1_„;g_‘ 2 < YEQ · ksä T

(3°6°22) ·—·— V —·* 2 *2 2 * 2 2<Iiälxz-ks1s2r)+L(xlx2-kslszr)—— _ 2‘ xä ksz

where r is the sample correlation coefficient, sä and sg are

the unbiased estimates of nä and eg respectively, N is

sample size, and k = tä_a/2/N, where tl_¤/2 is the upper s/2

pcint of the t distribution with N - 1 degrees of freedom.

The cenfidence bounds on Y in (3.6.22) are meaningful only if

(3.6.23) Eä/sä + EQ/sg.;Zäiizr/slszWhen

this condition is not satisfied bounds on ul/u2 shculd
not be attempted.References: _

Bliss (1935) [2]
Fieller (19tO) [3]
Roy ass asuensrr (1958) ie}

3.7 Parameter G;/G2, Correlated Eppulations.
Suppose that we have a sample of paired observations,

say
X1· X2· *‘•· xs
Y1: Y2: ·••: YN



‘frmn two correlated normal populations (actually one

bivariate population, but many authors treat the paired

t—test situation and wish to put confidence bounds on 6;/6;

as if it were based upon two populations)• Set

ui = xi + (GX/¤Y)yi and vi = xi — (GX/6y)yi• Then
6„ 6V(3•7•l) cov(u,v) ¤ cov(x + Eé y, x — g“ y)

Y Y
O2‘ ¤ 62 — «ä 62 ¤ OX 62 Y

Y
end it follows that u and v are uncorrelated• Hence,

(3.7.2) ru,vvh 2/vl ru’v tH_2 and

(3.7.3) Pri-t < 1·_ —/TE-/«/1—1~2 < 1;} = 1 - e,
Lljv ujv Y

where t is the upper 6/2 point of the t-distribution, and

Using the previously defined values of ui and vi end setting

OX/GY ¤ VX, xi - E = xi and yi
—‘§

= yä, (3•7•u) becomes

(3 7•-5 T
“u'v

[Ex;2+2¢XZxäy;+k2yä2][2x;2—2VXLx;yä+kEyä2]

Setting Zxiz/(N-l) = 6;, Zyiz/(N-1) ¤ 6; and
Zxäyä/[(Zx{2)(Zy;2)]2 “ rxy = r, we obtain
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(3.7.3) may be written

(3.7.7) Pr)-t < (si - ks§)vN-2/2/Xsxsyvl-rz f
t} = 1 - a,

which gives

-ä ~ <1/11-2 2-71.2 < vi I-"Z(3 7 3) Pr{ 2v\ vl r sxsyt 1 (sx ey) p 2 v r exsyt}
““ 1 •• On

Recall that -a < a < a implies that az < a. Hence,

(3.7.*)) == 1-c ,

which becomes, upon setting 6;/s; = k,

(3.7.10) Pr{(N-2)(k-A)2 < ¢A(1-r2)kt2} = 1 - c, which gives

(3.7.11) P1·{(k-7.)2 < 11(1 - 1·2)11·112/(11 - 12)} === 1 - CL,
which may be states as

(3.7.1z) PI‘{?\•2 - 27~.[k + 2kt2(l - rz)/(N - 2)] < -k2} ·= 1 — 11-

Completing the square we get

(3.7.13) P1-
1- e.

Letting a “ tvl — rä we obtain
(3•7•ll+)
Pr(-26.kvN-2+aä/(N-2) <7~.-k-Zaak/(N-2) <2ak1/N-2+aä/(N-2)} ==l-cx,I

1
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which gives the final confidence statement for L ¤ cä/cg,

(3.7.15) Pr)<
k+2ak(a+vN-2+a”)/(N-2)} == 1-e

8

where a, k, N, t are defined as before.
Reference:

Roy and Potthoff (1958) [6]

‘
3.8 Non—centra1itg Parameter gf gf.

Suppose we have a sample of N observations, xl,x2,...,xN,

from a normal population with mean u and variance G2 and

want to test the null hypothesis that u = O. If HO: p = O

is true, the statistic §RN7s has a t—distribution with N - l

degrees of freedom. If, however, u f O in the population,

the statistic NE?/sz has the non—central t2—distribution

with nonecentrality parameter vz = Nuz/02. If we desire a
confidence statement on ug/G2, we may proceed as follows:

Using the fact that

(3.62.1) (SEA?/S)2 =· ez ==· F
from the varianceestabilizing transformation of non~central F,

(3.8.2) 2 ¤ cosh_l(w/a),

where in the case with a single degree of freedom in the

nnmerator

(3.8.3) a = v(N — 2)7(N - 3) and
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(3.6.1) W == 1 + F/(N - 1) ,

then z ie approximately normal with

(3.8.5) E(z) =· C ·- (cothC )/(N ·- 5) and

(3.8.6) var(z) = 2/(N - 5); where

(3.8.7) C = coeh'l(¥‘/V(N·ä)(N—3) + a).

Since [z — E(z)]/vvar(z)”; N(O, l) we can say that

(3.8.8) vlü-557äI z - C + (vz/JET? + vüfä)

·P 1 + 2?]} :*6 NW. 1).
and

(3•8.9) Pr{¢°l(d/2) < ~/(N-·5)72 [z — C

+1 +2F

Iwhere
¢”l(¤/2)

denotes the lower (negative) value of the

abscisea which has d/2% of the area under the noral curve to

une left er 1:. Setting ¢*l(a/2) = -¢'l(1
- a/2),

(3.6.11) (v + vw?-E)/vv! + 1 + 2F ¤ u
(3.8.9) becoes

(3.6.12) Pr)-¢'l(1 — .1/2)v7'(""‘N-57 < Z - c + u/(N-3)

-· <x/2)~’27(N··5)}= l - oe.
which may be written ae
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I I 1 I
(3.6.13) Pr{zL‘< : - e/(m~s) < ZU} = 1 - e, where

I
(3.8.lL,) ZL ==· Z -

¢”l(1
- e/2)v2"7(N"'-"5) ehe

(3.8.15) ZU = Z + ¢“l(1 — e/2)v27(m—5) .
I

As a first approximation to the confidence bounds on

we may say

I
(3.8.16) Pr(zL < C < ZU) l -· on .

Setting

U We havag fI°ÜBl (3•8•7),

(3.8.18) cosh C = Y2/k + a

and we may form the equatiens

(3.8.19) cosh zL * 7%/k + a, and

(3.8.20) cosh zu = 7%/k + a,

where 7% and 7% are the lower and upper limits, respectively,

of the approximate confidence interval for the non—centrality

parameter 72. Equatiuns (3.8.19) and (3.8.20) may be

selved for vi and 7%, which give our first approximate values

of the lower and upper limits of 72: 7äO and 7%O, say.

Q I
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A more exact statement than (3.3.16) is

S: 1.

'*where
l

(3.3.22) zi ¤ 2L + uL/(N — 5) )

and
(3-8•23) Z6 “ Z6 + H6/(N - 5),
where

(3.3.2Z,) uL ¤ (VL i + 2FL
and

'* 2 •

The quantities uU and vU are defined accordingly in

terms of the upper limit of the confidence interval for YZ.

Only the lower limit will be dealt with in the

remainder of this section. The upper limit can be found in

an exactly analogous manner. In (3.3.19) the equation

cosh ZL = 7%/k + a was given, from which we can find a first

approximate value for Yi, Yä . But a more exact lower limit
O

for C is zi “ zL + uL/(N — 5), and instead of (3.3.19) we

can form

(3.3.26) cosh[zL + uL/(N · 5)] = yä/k + a,

which yields

(3.3.27) f(vä) = vi/k + a — cosh[zL + uL/(N — 5)] = O.

)



..23..
I

The solution of this equentien yields the improved valuefor the lower limit of the confidence interval.
we have a first estimate of the root of equation

(3.3.27). Using the Newton Method, better approximations

to the root are given by the formula

(3.6.26) vg = vä - r(vg }/r•(vg ) ¤ = 0, 1, 2, ... .
n+l n n n

Bifferentiating f(vä) with respect to yä we have

of/övä = 1/k - 6/avg ¢¤8¤[zL + ¤L/(N-5)]
= l/k - sinh[zL [2L

+ ¤L/(N··5)3
= 1/k — isihhlzg + uL/(N—5>J bug/6vL

· 6vL/avgl/(m—5)

where VL is defined as in (3.3.25) and

(3.3.30) ug = (vL + vN~2)/¢vä+1+2¥ä
== (vg + m/N-2)/vvä +1 +2vL~/N-2 .

we have

(3.3.31) öuL/BVL = —(N-3)/(vä + l + 2vLVN:§)3/2 and

(3.8.32) 6vL/avg ¤ 1/vN¤Z .

I I

I I
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Then

(3.8.33) 6uL/ML 6vL,/zwä

·=(3•8•3h)öf/övä “ l/k + {(N-3) Si¤h[zL + uL/(N—5)]}

é [(N•5)vN-2(v€+l+2vL/N—2)3/2] ,

and

(3•8•35) V2 “ vg — {vz /k + a - coshiz + u /(N·5)]}L¤+l Ln Ln L L

·:·{1/1«+£ ( N-; )sinh[zL+uL/( N-5)] /£ ( N-6 J} ,

where uL and VL are functions of vä¤_ Equation (3_8_35)

yields closer approximations to the lower limit of the

confidence interval, i.e., the root of (3.8.27). As men-

tioned previously, an analogous expression gives the improved

approximations to the upper limit of the confidence interval

forSince a < b <lc implies that cosha«<cosh b < coshc only

if a > O, b > O, and c > O, we must impose the condition

that zi > O so that our confidence bounds will be Valid.
The quantity uL is always positive. Hence zi > 0 is

certainly satisfied if zL > O, i.e., if

(3.8.36) z >·/27(N·5) ¢”l(l — o/2) .
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If we used the improved transformation of the non—’
central F statistic with approximate normality in a procedure

analogous to the use of the Fisher·z transformation for
tests concerning correlation coefficients we would havé

(3.8.37) 1/-ÜTIÖ-)72 (z ·· C) —•· N(O. l)

and we would reject HO: §¤=O if either

(3.8.38) zw/·(-Ü:-F)7-2 >
fÖ“l(l

·· @/2) OT

(3-8-39) ¤vTN'·¤3‘>7’ä < ¢"l<¤./2)
and accept the alternative hypothesis thatäf f O.

Statement (3.8.38) is identical to (3.8.36). Then we
can expect the above procedure to yield a valid confidence
statement of 72 if the null hypothesis (here u/o ¤ O) has

been rejected at level a. However, if the null hypothesis
is accepted the value Ye = O would have to be included in

the confidence interval. But since vg can never be negative

it is meaningless to construct a confidence interval for vz

which includes zero. This limitation would not hold for a

non—central g—distribution with parameter u/o (positive or
negative), but it has a rather complex form. The non—
central g2—distribution is more easily manageable and
contains the positive non—centrality parameter ug/G2, on

which meaningful confidence bounds can be stated only if the

null hypothesis ua/oz = O is rejected.

E



-26-

After finding Yf and Yö to the desired accuracy we

have the confidence statement
(3.6:.1,.0) Pr{Y€ < 1* < vg} - 1 —— ez.

Confidence limits on nz/oz are obtained by dividing each
member of (3.8,38) by N, and the final confidence statement
is

(3,8.Ll) Pr{vf‘/N < na/cz < vg/N} == 1 - ex.

Reference:
Bergmann (1958) [1].

3.9 Non-centraligy‘§gggmgge; gf E.
Suppose we have a one-way classification with k classes

and are testing the null hypothesis that there is no

difference between class means, Various procedures have
been recommended to describe departures from rejected null-

hypotheses. One method assumes the treatment effects to be
L

random and estimates the variance of this component, Confi-

dence bounds for this variance component are exactly solvable
only for the simplest case of equal numbers of observations
in each group. For unequal numbers of observations in each

group, or more complicated designs, exact estimation methods

and distributions of estimates are quite complicated. In

many applications, and in almost all textbooks, estimation

E N



N
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very satisfactory. Confidence bounds based on these approxi-
mate techniques are also proposed,

As an alternative, one may retain the Model I type
analysis and express the degree of departure from the null
hypothesis by a standardized, dimension-free measure of
departure (the square of a distance function) known as the

non—centrality parameter. By comparing the expected mean
squares in Model I and in a variance component model we note
certain analogies between the ratio of variance components
and the non—centrality parameter,

The non-centrality parameter in a simple one-way
classification is

k ...(3•9•l) 1* nihzi··1¤l
where ui is the mean of the i-th population and
K.= (Eniui)/(Zni). Here

¤“Y2
is analogous to (n — Zn?/n)¤ä

(where Gä denotes the variance component due to treätments)

because the expectation of the sum»of-squares between groups

in Model I is (k~l)62 +
vz¤’

as defined above; and the expec-
tation of the sum of squares between groups in Model II is
(k-l)cg + (n - Zn?/n)6€. Similar analogies can be established
for more complicated designs,

If all the ni are equal (to r, say) we may obtain
confidence bound on vg/r. If the ni are unequal, we may

N
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consider the proportion, pi, of the total number of observa—
tions contained in each class. Then

< ° 2 -2 I
i=l

and we might desire to put confidence limits on I

(3.9.3) vz/n 11-1; piwi -· 67)*/¤“ •1 IIf desirable, (3.9.2) may be divided by (k · 1) and (3.9.3)
may be multiplied by k/(k - l) in order to obtain parameters
which are formally analogous to the ratio cg/cz in Model II.
Each of these parameters is dimension free, i.e., does not
depend upon the unit of measurement used in describing the
original data.

In order to put confidence limits on vz we use the
improved variance—stabilizing transformation

(3.9.u) z ¤ cosh°l (W/¤)
which is approximately normal with

(3•9•5) E(¤) “ ä · ¤¤th§ /(¤ • h) and
(3.9.6) var(z) ¤ 2/(n — h). where

(3.9.7) a = ¥(m + n — 2)7(n — 2)

(3.9.8) w·= l + mF/n,
The condition w·> a implies, for n > 2, that F > E(F); i.e.,

I
rejection of HO is sufficient to insure real values of Z.

I I
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(3.9.9) 5 =· ei,
where m and n are the degrees of freedcm for F, the statistic
obtained in testing the null hypothesis. Now since

(3.9.10) [z .. E(z)]/1/var (z) '=¥ N(0, 1)

we may say that

(3 .9.11) v("'¤"-1.""')f7ä[Z .- 5 + (T2/m'+'¤"'..'“ä + ./m+¤'.."2)

·§ (n-z,)»/F?7(m+n—2)+m+2-(E2] == N(0, 1).

Setting

(3.9.12) vz/vm+n-2 “ v and

(3.9.13) (v + vm""+"'¤""ä.. )/1/vz+m+2? =· u,

we have the confidence statement

(3.9.14) Pr{¢'l(a/2)<Zv(n-1)72[z-§+u/(n—n)]‘<¢°l(l—¤/2)}=1~¤

which may be written

(3.9.16) P.-{Z — »ä7T°")‘¤-1.¢'l(1 ·- ¤/2) < 5- u/(¤-1.)
< z + Y27(n-L)¢°l(l - e/2)} ¤ l - a.

As an approximation to the confidence bounds on C we may use

(3.9.16) Pr{zL < §< zu) ';= 1 — e where

(3.9.17) ZL =· Z .. ./27(""‘z;'r:·.- ¢"l(1 - e/2) and
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(3.9.13) ZU = Z + #2/(n—k)
¢”l(1

- u/2) .

Setting v(m+n-2)(n—2) = k, from (3.9.9) we have

~

(3.9.19) cosh C = 73/k + a. 1

Then we may form the equations

(3.9.20) cosh ZL = 7%/k + a and

(3.9.21) cosh zU = 7%/k + a
where 7% and 7% are the approximate lower and upper limits,

respectively, of the confidence bounds on 72. Equations

(3.9.20) and (3.9.21) may be solved for 7% and 7%, which .

yield first approximation values of the lower and upper=

limits for 72; 7% and 7% , say.
O 0

Consider (3.9.15) again. The confidence statement

(3.9.22) arial} + u/(n-1.) < §< ZU + u/tn-1}} == .1 - ¤.

may be written as

(3.9.23) Prfzi < §·< ZÜ) ¤ 1 „ G,

where zi is a function of the final 7% and zö is afunctionof
the final 7%. Given a first approximate value of 7%

(Yäo above) we may obtain a first guess for zi (ziü, say)

and improve it by an iterative technique until we find a

value of 7i which satisfies (3.9.22). ‘

1
1 u
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The derivation of the improved estimates for the lower (

limit, Yä, will be given. An analogous procedure is used
to derive the improved estimates for the upper limit. From 1
(3.9.20) we had 1

CO3}1 ZL ° +

a•Butnow, instead of ZL we have zL + u/(H—h). which gives
ustheimproved lower confidence bound. So instead of (3.9.25) 1
above, we have

(3.9.25) cosh [zL + u/(n—5)]= vä/k + a
which yields

(3.9.26) f(yä) = yä/k + a — cosh[zL + u/(n-5)]¤ O.
Using the Newton method, successively better approxi·

mations to the root of this equation are given by the formula

(3•9•27) vf “ vä — f(‘§)/f'(v§ ) • H “ 0, l. 2, •··
n+l n n n

Differentiating f(vä) with respect to vä we have

(3.9.26) er/aeg = 1/k - 6/syä ¢¤ehLzL + u/(¤-5)J
= l/k · sinh[zL + u/(n·5)]ö/övä[zL*·u/(n-5)]

)
== 1/k - {sinh[zL + u/(n-mleu/6v· av/seg}/(¤-5)

N

E 1
1 „
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where, for simplicity of notation, u and v are written

without subscripts but are understood to be u and v as

defined in (3,9.12) and (3.9.13) with 72 replaced by yä ,_____ n
Then, using the fact that Yä = v¥m+n-2, we have

(3•9•Z9)öu/bv(3,9,30)

bu/bv = —(n-2)/(vz + m + 2vvm+n—2)3/2 ,

Also

(3,9,31) ev/bei ·= 1/¢i'“"'“+¤-2 ,

(3•9•32) ou/ov • bv/ayä ¤ —(n•2)/E(v2+m+2VyE$§:§)3/2vä:E:§]’

(3.9.33) es/eyä ¤ 1/k + (n-2) s1¤h£zL + u/(n·h)]

é [(n—h)vm+n~2 (vz + m + 2vvm+n-2)}/2],

and, from (3.9,2 ) we have

(3-9,34) vä ¤ väan+ln

l { g
-} {-1;+ J}.

Equation (3,9,3L) yielde closer approximations to the lower

bound of the confidence interval for vz, As previously

stated, the improved estimates of Yä are found in an exactly

analogous manner, and to find vä simply replace vä by
n+l n

vä in (3.9,3u). Note that u and v will now be defined in
nterms of Yä ,

n
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Since a < b < c implies that cosh e < cosh b < cosh c

only if a > O, b > O, and c > O, our confidence bounds are

valid only if 2L + u/(n—h) > O and zu + u/(n~h) > 0.

After finding the lower and upper limits of 72 to the

desired aceuracy, we have the confidence statement

If the number in each class is the same, say r, the confi-

dence statement for § (ui·-u)2/G2 is
1

== 1 · e.

If the number in each class is not the same, the

confidence statement for E pi(ui· H)/02 is
(

i

1 -· e.

where pi represents the proportion of the total sample 1

contained in the i-th group.

Reference:
Bergmann (1958) [1].

3.10 Non-centralitg paramete;_g§_§f.
Suppoee we perform a X2 gocdness-of-fit test and find

that §(Oi — Ei)2/Ei ¤ u. If the null hypothesis is true,
the statistic has approximately a central xß distribution.



I
Fer any given alternative model we can cnnetmct another set
of "expected valaes3'* which we will call *'p¤etulated values
under the altex·mtive„** If auch an alternative ie true, the

statistic a defined above will have enpmxieataly a
non-centralX2 diatributien with n0n·~central.ity parameter

~· Egg/Ei N

where the Pi are the 'boetulatedvalxws•**es
wald like to put cozxfidenee limits en 12 • If a

statistic u has the mmcentral X2 distribution with V
damees of {renden and ncmeentrality parameter V2, then I

(3•10•2) Ä ··· V7? • Y? + v7£ + l/21/F + V72 7- N(O, l)•

If hä set

VE •·“
" ·

the cexxfideuce etateazent cm the quantity in (1%,1062 )i is

(3•lG•5) Pr[¢°°l(a/ZI) < x ·-— 5 ·+· 1/25 <1 ¢$°°'l(3.
·· e./2)} ¤ l··c:.•

To wenn that ac ia real, a east be larger than v/2„ Since
Eh; ·· v/23) =- v/2 amer H0; and Eh.: ·· v/2} 3* V/2 under any
alternative, rejectien of the null hypothesia ie sufficierzt l

te ensure that 1: ie :··aa1•
'
I
I

I
I

I
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Replacing
0”l(1

· a/2) by 0 and 0”l(a/2) by -0, our
confidence interval becomes

(3.10.6) (-0 < x - 6 + l/20 < 0]
which is equivalent to

(3.10.7) [x - 0 < 6 - 1/20 < x + 0].
Dealing with only the lower part of this inequality we have

(3.10.8) 6 —— 1/26 > x — 0,

and, after multiplying both sidee by Ö and completing the
Sq\1&I°9 01'1 Ö, WG géb

(3.10.9) Kö —(x—0)/212 > 1/2 + (x—0)2/L. .
Using the fact that az > k implies that either a > VE or
a < —VE, we get from (3.10.9) the two inequalitiee

(3.10.10)(3.10.11)
6«< (x·¢)/2 — %V2f$—(§:Ü)2 .

Now, dealing with the upper part of (3.10.7), after multi-
plying both sidee by 6 and completing the equare in Ö, we get

(3.10.12) E6 · (x+0)/212 < a + (x+0)2/L. .
Since az < k impliee that -VE < a·< VE, (3.10.12) implies
that

(3.10.13) (:;+0)/2 - 3JéTTE?0Tä < ö< (:;+0)/2 + 6V2”T(”>¤T0Tä .
(
) ([ (

(
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The confidence interval for 6 is thus the intersection
of the interval (3.10.13) with the union of the intervals
(3.10.10) and (3.10.11). Since 6 < 0 is meaningless, we
’must insure that the intersection of (3.10.11) and (3.10.13)
is empty, for both the lower bound of (3.10.13) and the
interval (3.10.11) lie below zero. Thus, we must insure
that
(3.10.11+) (x—¢)/2 - H2 5 (x+¢)/2 -. H2 + (x+ö)2 .

For this inequality to hold it is sufficient that xl} 0
2

and ¢42 0. Since for Y2 ¤ 0, E(x) 2 0, rejection of the

hypothesis Y2 ¤ 0 at level e is sufficient to insure that

the lower intersection is empty. Hence, the desired

confidence interval is then the intersection of (3.10.10)
and (3.10.13); 1.e.,

Öwhichcovers 6 with probability 1 ~ a. Since both

bounding quantities are pesitive it follows that

(3.10.16) Pr{[(x-0)/2 + H2 + Ix-¢)2]2 < 62
< ((x+¢)/2 + H2 + (>¤+ö)2J2) -= 1 - ¤.

Replacing 62 by $2 + v/2, our final probability statement

is

i
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(3.10.17)<·};£x+¢+ vz+ (x+ö)“J — V/2) ·==1-e
which gives the confidence bounds on the non—centrality
parameter cf the non—central X2 distribution. It may
appear as if the sample size is of no consequence in the
above confidence statement. This is due to the fact that
the sample size is implicit in 72 as defined above. For
example, in a one—way classification analysis of variance
with r replications per treatment

(3.10.18) y2 ¤

rIfwe want confidence bounds on

(3.10.19) es/r ¤ ätui ·
u)“/¤*

we need only divide the left and right•hand sides by r,

the number of replications.
A similar situation holds in the goodness—of·fit

tests. The non·centrality parameter is
( 2(3.10.20) Y2 ¤

ä
(Pi — Ei)2/Ei ,

where Pi is the number of items in the i—th category under

the alternative hypothesis and Ei is the expected ggmggg

of items in the i-th category under HO. If we prefer

confidence bounds on a parameter consisting of pgoportions,

[
[ l



„j$•

we would have to put bounds on vz/N, where N is the total

number of items, since Pi and Ei represent N;x(proportions).

That ie, since Pi = Npi and Ei ¤ Nei, then

(3.10.21) YZ/N == 1/N 2: (Npi - Ne.)2/Ne.

= ä (pi — ei)2/ei .

Reference:
Hofer (1960) [5]

1‘ 1
1 1

1
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IV. NUIERICAL EXAMPLES

This chapter is composed of computational procedures

with worked examples that illustrate the estimation of

confidence intervals presented in Chapter Three. Due to the

simplicity of the methods no detailed computational proce-

dures are given for the parameters presented in the first

four sections of Chapter Three. All data used in the

examples are artificial.

L.l Parameter e; gf_§geyg.

Confidence Statement:
Prix ·· ¢°l6/—/E < n < SE +

¢_lO/JN}
·= 1 - 6

Data: xi % 2, 5, 7, 2,, 7.; 62% 1,; a —% .05
The 95% confidence interval is thus

E6 - <1.6·6I2/v3' < u < 6 + <1.s6I2//53, or
[3.25 < ,, < 6.759 . 2

Parameter g, gf Unknown.

Confidence Statement:

Data: xi = ll, 7, 133 9; 0 % .05
The 95% confidence interval is thus

[10 - (3.l82)»Ö.”ÜF7 < e < 10 + (3.16:12)./i.'IF'73;
[5.se < [r < ll;.ll] .

I
I



L•2 Parameter gf; E Known.
Confidence Statement:

62 < [x(xi-n)2]/Xä/2} = 1-6.
Data! xi ¤ 6, 8, 9, 5, 8, 6; a ¤ 7; 6 = .10

The 90% confidence interval ie thus
[12/12.59 < 62 < 12/1.6}.,];
[.95 < 62 < 7.32].

Parameter gf, g Unknoyg.
Confidence Statement: ¤ l - 6.
Data: xi = 11, 12, 13, 12, 10, 11; 6 = .05

The 90% confidence interval is thue
[10/12.2; < 62 < 10/.831];
[.78 < 62 < 12.03].

A.} Parameter ul · ug; Commen G2 Known.

Cenfidence Statement:

·- 322) - ¢"1(1 - 6/2)61/17111 + 17112 < 61 - 62
f<(3°Ei - 322) 17112} == 1 — 6

Dat¤= xli = 5»3•l».7-5-63 Xu “ 3-6./+,3,1+5 92 ‘” 1- ¤¤ *‘= -05-
The 95% confidence interval ie thus

[1 - (1.96)Ä7€ + 1/5 < v.l—u2<l+(1.96)Ä76+175];
[-.19 { ul — 62 { 2.19] .
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Parameter ul — M2; Common 62 Unknown.

Confidence Statement:

N2Data:X11 ° 5: 3: 4: 7: 5: 64 X21
“ 3: 6: 4: 3: 45 ü “ •Ol

The 99% confidence interval is thus
(1 - (2.2sw./2>(.61> < ul — ::2 < (3·25)(l»/3)(.61)]§
["'l•6l|· < °° < •

4.4 Parameter 61/eg.

Confidence Statement:
·= 1 — e.

(1 I: •lO

The 90% confidence interval is thus1 cg
[(I+•Ol+28/l•87l3)/3-68 < -8% <(l+•O!+28/l•87l3)/301+];

2
[.59 < 61/cg < 7.11] .

4
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A.5 Parameter_g.

Data: xi==10.2, 10.1, 9.8, 10.1, 9.2, 8.6, 7.9, 8.7, 10.3, 10.1,;

yi == L.0, L,.l, l;,.0, L.0, Z,.2, 3.1, 1.9, 2.0, 3.0, 3.7;

Cl. '=

Computational Procedure:
1. Calculate Ex, Ey, Exz, Eyz, and Exy from the data.
2. Calculate r == Lmzxy - Exäyl/{NSX? - (2:x)=J1;1~xzy= - (Zy)2]
3. Find 6 ·= u.mu"l1~ ·· ä 1¤g(1+1~>/(1-r)
4. Calculate l/JN · 3

5. Calculate
¢”l(1 — a/2)/VN - 3 ¤ c

6. Calculate z - c and z + c
7. Find pL = tanh(z — c)

8. Find ou ¤ tanh(z + c)

9• PI°{pL<p<pU} ¤l"'0·

Computation:

1. Ex = 95.3, Ey = Bb.0, Exz ¤ 915.05, Eya ¤ 122.36,
Exy ¤ 328.90

2• I"¤1,.

1/fü"?. ·== .378
5• C
“7.

pL ¤ tanh(.282) = .275

1
1
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8• DU = tanh(l.526) = .910.
The 90% confidence interval is thus

[.275 < p < .910] .

A.6 Parameter
501.,

B'7! l·**°9! 5°l3 l¥°l+) LIJS) 1+*9)

5-Ä: 3•5$
d = .05

Computational Procedure:

1. Look up F(l, N1 + N2 — 2),for the chosen a level.

2. Compute sg from the two samples.

3. Compute äl and Ei from the data.
A. Compute EU and from the data.
5.Compute6.

Compute bl = Fe;/N1.

7. Compute bz = Fe;/N2.

8. Compute d = E? — bz and note whether d > 0 or not. If
E5 — bg < O, valid confidence bounds cannot be put on

r = ul/u2-
9. Compute blbz.
l0. Compute bzää and biää.



ll. Calculate c
¤12.Compute (äliz — c)/d and (ili2 + c)/d.
13. Pr Kiliz ~ c)/d < y·< (äläz + c)/d}¤ 1 — 6

If 62 is known or may be assumed known, Step 2 is
omitted, sg is replaced by the known 62, and F is replaced
by X2.
Computation:
1. a ¤ .05, F•G5(1,20) ¤ 4.35
2. sg ¤ .9135
3. il ¤ 6.230, iä ¤ 38.8129
1.. 5:2 == 1..7417, 512 ·=· 22.1.637
5. älä2 = 29.5408
6. bl ¤ .3974
7. b2 = .3311
8. d = 22.1526 > 0
9. 6162 == .1316
10. bzää ¤ 12.8510, bliä ¤ 8.9350
ll. c = 4.6534
12. (iläz — c)/d ¤ 1.1235. (iliz + c)/d ¤ 1.5436
13. The 95% confidence interval is thus [l.l2·< Y < 1.54].

4.7. Parggeger (g and y are correlayed).
Data: xi ¤ 28, 18?—22, 27, 25, 30, 21, 20, 27, 21;

Yi ¤ 19, 38, 42, 25, 15, 31, 22, 37, 30, 24; a ¤ .10

N N

NN



I
·kÖ“

II
Computational Procedure:
l. Compute Ex, xy, Exz, Eva, and xxy from the data.
2. Compute rz ¤ [Nxxy - xxZy]z/[Nxxz — (Zx)2][NZy2 — (xy)z]

3.ComputeA.
Find t for the upper (positive) a/2 level with N · 2

degreee of freedom and form a ¤ tvrÜT1TÜFZ
6. compuze ./"Tf"-T'2°'Z~"°éL‘·'=’
6. Compute bL ¤ a — vrÜ”:-2V$7E7 and bU ¤ a + v7N”Ü_2”$—E?
7. Compute k ¤ S;/6;

8. Compute Zak/(N - 2)
9. Compute CL ¤ 2akbL/(N-2) and CU = 2akbU/(N—2)
10. Compute k + CL and k + CU
ll. Pr {k + CL CU I ¤ l — d

Computation:

1. xx ¤ 239, xy = 283, xxz ¤ 5857, Zyz ¤ 8709, Zxy ¤ 6636

2. rz ·=· .1607
3. .»°°‘1l'1i~‘¢=' ·· .9161
L. t_95 = 1.86, a ¤ 1.7039
6. ./“l*?i"2'—?é'z ==· 3.3020
6. bL ¤ —1.5981, bU ¤ 5.0059
7. k = .2070
8. 2ak/(N—2) ¤ .0882
9. CL ¤ —.lh09, CU ¤ .hu1h
10. k + 0L == .0661, 14 + cu ¤ .6484
ll. The 90% confidence interval is thus [.07 .65]. II I

I
I I



„gg„

h,8, Qggggggggg gggggg gg ggg §gg;Qgntrality Parameter

in Ehe Haaeäenääel LE Qie§§iha§iea·
Computational Procedure:

Steps l through 8 apply to both upper and lower bounds,

but only the formulas appropriate for the lower bound are

shown in steps 9 through 18,
l, Compute 2 and sz from the data,
2, Compute t2 = F = N22/S2
3, Compute w = l + F/(H~l)
A, Üompute a = vrTÜ:2T7TäT§7
5, Compute w/a
6, Find z ¤ cosh”l(w/a)
7, For the ohoeen a oompute c = ®”l(l—¤/2) Jr27TÜ:5T and

form 2L ¤ z—c and zu ¤ z+o
8, Look up coeh (zL) and coeh (ZU)
9, Find vTÜ:27TN:§7 ¤ k and compute ^YäO = k[coeh(zL) ~ a]
10, Compute b = Y äo /k
11, Compute v ¤ ^fä / vÜ:2 (Record.vrÜ:2)

12, Compute 6 ¤ /*;gj;—lT;—2?7Eg and 63
13, Compute u ¤ (v

Compute y ¤ ZL + u/(N·5) and look up einh (y) and cosh (y)
15, Compute d ¤ a + b ~oosh(y)16,

Compute e = [(N—3) einh(y)]/[(N—5)vrÜ:2 S3]
17, Compute f ¤ d/(1/k +e)[¢

1



118. Compute Yäl ¤ “f§O — f

·

Steps 10 through 18 are reiterated using each new value

^räi+l , i = 0,1,2,..., in place of Y‘äO until thedesiredaccuracy
for ^f§ is obtained (usually until the quantity d

in step 15 equals zero). Ehen finding the upper bound of YZ

use ZU instead of ZL in step 9 and ‘r§i instead of 7*äi
(i=0,l,2,...) in steps 10 through 18.
Data: 2.2, 3.1, 1.8, 1.0, #.1, 3.5, 2.9, 2.2, 1.1, 3.2, 2.5
Computation:

Lower Limit. Iteration 1
1. E ¤ 2.5091, sz ¤ .9hh9
2. F == 73.2896
3. w‘= 8.3290
#. a = 1.0607
5. ‘g== 7.6621. E
6. Z ¤ 2.7h99
7. a ¤ .10, ¢*l(.95) ¤ 1.6#h9, c = .9h97, ZL = 1.8002,

ZU ¤ 3.6996
8. cosh (ZL) ¤ 3.1081, cosh (ZU) = 20.2283
9. k ¤ 8-h853, 7*äO “ 17-3728
10. b ¤ 2.0h7h
11. v ¤ 5.7909 (vrÜ:2 ¤ 3)
12. s ¤ 8.3235. sz = 576.65
13. u ¤ 1.0562

1
1

1
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lu. y = 1.9762, 61mh(y)= 3.5364, 606h(y)= 3.6770
15. 6 = -.5689
16. 6 = .0027

17. f 6 —4.7172
18. Y Q1 6 22.0900
1t6ratiou 2.
10. b ·= 2.6033
11. v = 7.3633
12. 6 ¤ 9.9699, 63 · 990.99
13. u ¤ 1.0395
11.. y 6 1.9735, .=.1:m<y>= 3.5285, 6¤..—.h<v)= 3.6671.
15. d ¤ -.0034
16. 6 ¤ .0016
17. f = -.0285
16. 7 Q2 == 22.1165 Q
Iteratiou 3.
10. b = 2.6067
11. v = 7.3728
12. 6 ¤ 9.9797, S3 ¤ 993.93
13. u ¤ 1.039k
11.. y -· 1.9734, 61¤h<y)··· 3.5281, wshty)- 3.6671
15. d = .0003
16. 6 = .0016
17. f ¤ .0025

N



18. Y? = 22.1160 J
13

lIte?0ti0m 4.
10. 6 = 2.6064 ‘
11. v = 7.3720
12. 6 = 9.9789, 63 = 993.68
13. 0 = 1.039h
16.19 = 1.973k, 8inh(y) = 3.5231, c06h(y) = 3.6671
15. 8 = 0

Cea6e iteratiug. Y°§h ¤ 22.1160

Upper limit. Iteration 1.
9. Y go ¤ l62.6h28
10. 6 ¤ 19.1676
11. v ¤ 54.21hB
12. 6 ¤ 57.1643, sg ¤ 186,603
13. u ¤ 1.0012
14. y = 3.8665, Sinhfy) = 23.9033, 666h(y) = 23.9242
l5• 3 “ —3•6959
16. e = .0001
17. f = —31.3212
18. Y öl ¤ 193.9640

Iteratiou 2.
10. b = 22.8588
11. v ¤ 6h.6547
12. 6 6 67.5955, 63 ¤ 308,855

1
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1

13. u ¤ 1.0009
I11;,. 23.9009, cosh(Y) == 23.9219

15. cl === ·~.0024
I16. e = .0000

17. E == ——.020L.
18. Y $2 == l93•9844

Iteration 3.
10. 6 == 22.8612
11. v ¤ 64.6615
12. s == 67.6024, s3 == 308,948
13. u ¤ 1.0009
11.. y == 3.8662., sinh(y) == 23.9009, cosh(Y) =¤ 23.9219
15. 0 ¤ 0

Cease iterating. ^f$3 ¤ 193.9844

The 90% coniidence interval is thus [22.12 < YZ < 193.98];
or [2.011 <1¢2/oz < 17.635].

4.9. Gogfidegcg gggggg gg ggg Ngg-Centgggggg ggggggggg gg
ggg Hon~Cengral E Digtribution.

Steps 1 through 8 apply to both upper and lower bounds,
hut only the formulas appropriate for the lower bound are
shown in steps 9 through 18. I

Computational Procedure:
I1. Compnte F from the data. 1

I 1
1



I

I
2. Gonpute w·= nF/n + 1
3. Gomputo a = vYET;rn”:”2)7T§”Ü—§)
4. Conpute w/a
5. Find z = :esh”l(w/a)
6. Find $”l(1-d/2) for the chosen a and compute

e = ¢'l(1——c=/2) f??7T'i¤'l'T
7. Compute ZL = Z ~ c and zU e z + c and look up cosh(zL)

and coeh(zU)
3. Ccnpute k = vqE¥n:E)(5:§T and 1/kv9.·

Compute ^räO ¤ k[cosh(zL) - a]
10. Gompute b = ^räO /k

11. Gompute V = Yäo / 4—E;E:2 ; (Record vrE;5:2)

12. Üompute s =·vf;F?1V1E1;—2i?§g and s3

13. Compute u =(vlu.
Compute y = 2L + u/(n—b) and look up sinh(y) and cosh(y)

15. Compute d ¤ a + b — cosh(Y)
16. Compute e ¤ [(n—2) sinh(y)]/[(n-A) vrärxfnzä 63]
17. Compute f ¤ d/(1/k + e)
18. Compute ^V$ ¤ ^Y$ — f“1 “O

Steps 10 through 18 are reiterated using each new value
^räi+l (i=0,1,2,...) in place of ^fäO until the desired
accuracy for ffä is obtained (usually until the quantity d

in step 15 equals zero). When finding the upper bound of ‘Y2

use ZU instead of ZL in step 9 to find ^r§O ; and use ^r§i
instead of v·ä_ (i¤0,1,2,...) in steps 10 through 18.

i



Data (5 groups, 11 observations per group):

I(1) (2) (2) (A) (5)

A i 1 6 6 A II l 7 7 l 5
2 6 9 10 A
2 2 10 3 3 p
3 6 8 7 I 6
1 5 7 A 5
2 A 5 9 3
1 1 10 6 6
A , 5 8 l 5
3 A 9 A A
l 8 I 7 2 A

2 2A A9 86 53 A9 22 = 261

Analysis of Variance. Source p SS d.f. MS

Between 178.0723 A AA•5182
Within 196.3636 50 3.9673
Total 376.436A SA

I
I
I

1 1 1_____________........................................................4



Computatiouz

Lower limit. Iteration 1.
1. F ¤ 11.2213

2. w·= 1.8977
3. a = 1.0#08
#. w/a ¤ 1.8233
5. 2 ¤ 1.2083
6. a = .10,

¢‘l(.95) ¤ 1.6##9, c ¤ .3#30
7. 2L = .8653, 2U ¤ 1.5513

cosh(2L) ¤ 1.3983, c0sh(zU) ¤ 2.1618
8. k = #9.96, 1/k ¤ .0200
9. 1*fO = 17.8607
10. b ¤ .3575
11. v - 2.1766, v’E7$“§”Y”2 - 7.2111
12. 6 ¤ 6.7717, 63 ¤ 310.52
13. u ¤ 1.#306
11. y ¤ .8961, sinh(Y) ¤ 1.021#, cosh(V) = 1.1291
15. d ¤ -.0311
16. e ¤ .0005

17. E = -1.5171
18. 7*äl = 19.3778
Iteratiou 2.
10. b ¤ .3879
11. v ¤ 2.6872 7

,
12. 6 - 7.0691, 63 ¤ 353.31

[

1
,



13. u = 1.4002
14. y = .8957, s1nh(y) ¤ 1.0204, cosh(y) ¤ 1.4287
15. d = 0

Cease iterating. Y‘ä2 ¤ l9•3778
Upper limit. Iteratiou 1.
9. Y @0 =¤= 71.1430
10. b =·—= 1.4240
11. v === 9.8658, 7.2111
12. 8 = 15.6083, sa ¤ 3802.5
13. u ¤ 1.0941
14. 7 ¤ 1.5751, si¤h(y) = 2.3121, cosh(y) = 2.5191
15. 61 ¤ -.0543
16. e = .0001
17. E == -2.7015
16. Y ,%-1 == 76.61.1.6
Iueration 2.
10. b == 1.4781
ll. v ¤ 10.2404
12. s ¤ 16.0173. S3 ¤ 4109.3
13. u ¤ 1.0895
14. y ==· 1.5750, 61mh(6) ==· 2.3119, c:o6h(s') === 2.5189
15. d =·= 0

Cease iterating. Y·§? ¤ 73.8445
The 90% confidence iuterval is thus [19.38 < ~r2·< 73.84].

1
I 1

1



A.10. Confidence äggggs gn ggg Non—Centrality Parameter

Computational Procedure:
1. Record the statistic u = 2(0i — Ei)2/Ei which has

been calculated from the sample.
2. Look up

Q”l(l
~ c/2) ¤ Q for the desired a- level.

3. CalculatexA.
Compute x « Q and (x—Q)2; check that Q E 0 and x E Q.

5. Compute x + Q and (x + Q)2

6. Compute a ¤ ¥f2~$_T;—:”QTZ

7. Compute b ¤ l/Ä (x - Q + a)2
8. Compute b — v/2

9. Compute c = J”§T;—IEf;*QT2

10. Compute d ¤ 1/h (x + Q + c)2

11. Find d — V/2

12. Pr {6 — V/2 <v·’¢
< 8 -v/2 }== 1-.1

Data: Oi = 18,lO,29,1l,7,23,8,13,6

Ei ¤ 13,15,2},18,1},17,13,8,5

Computation:
1. u = 18.012
2. e =· .05, c£>==· 1.960
3. 2: === 3.7l+33
u. X-cb ·=· 1.7833 (x—¢)2 ·=· 3.1802 (0 3 0 , x g 0). Q

5. x + Q *== 5•'7033 (X + Q)2 ==32•5276°

Q
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6. 2 - 2.2760
7. b ¤ 4.1195
8. b — v/2 = 0.1195
9. c ¤ 5.8760
10. d = 33.5201
11. d - v/2 ¤ 29.5201

The 957éc0nfidence interval is thus [.12 < Y2·< 29.52].
E60, E(u) = v2·+v .

Hence $2 %=18 ~ 8 = 10; so we see that the confidence
iuterval is skewed to the right about the point estimte of Y2.

Example 2.
In this example confidence bounds for various values of

0 will he computed, given the
Data: 0i ¤ 7, 20, 9, 12, 6, 22, 19

Ei ¤ 12, 18, 14, 10, 7, 11, 23
1. u ¤ 16.3298
2. e e .20, 0 - 1.282
3. x = 3.6510
4. 2 — 0 e 2.3690, (2 — 0)2 = 5.6122 (0 > 0, 2 > 0)
6. X + 0 - 4.9330, (X + 0};* === 24-3345
6. a ¤ 2.7590
7. b ¤ 6.5741
8. b - v/2 - 3.5741
9. c ¤ 5.1317

_„__E____[____________________________.__.............._.............-----
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10. 0 ¤ 25.3245
11. 6 —‘v/2 = 22.3245
The 30% coufideuce iuterval is bhus [3.57 < ^f2·< 22.32].
1. u = 16.3298
2. 6 =· .10, 0 ·= 1.645
3. x ¤ 3.6510
2.. 6:-0==2.0060 (x-0)·’===z..02z.0 (0>0,x>0)
6. 2 + 0 =·— 6.2960 (2 + 012 = 28.0476
6. a = 2.4544
7. 6 = 1..9738
8. b ~ v/2 ¤ 1.9738
9. 0 = 5.4816
10. 6 ¤ 29.0392
11. 0 — 9/2 = 26.0392
The 90j% coufidance interval is thus [1.97 < YZ < 26.04].1. u = 16.3298 1
2. 6 ¤ .06, 0 =· 1.960
3. x ¤ 3.6510
1.. 6 — 0 = 1.6910, tx — 012 -= 2.6696 10 > 0 , x> 0)
5. x + 0 ¤ 5.6110, (x + 0)2 ¤ 31.0833
6. a ¤ 2.2044
7. b ¤ 3.7935
8. b -11/2 ¤ .7935
9. c ¤ 5.7865

1
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lCJ• {BL

=ll.d ~· v/Z2 == 29•·§»'758

*1*116 95% conf:1.d611c6 imtsrval is thus

1-79 < vg < 29.1+81
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ABSTRACT

In this thesis, confidence bounds cn simple and more

complex parameters are stated along with detailed compute-

tional procedures for finding these confidence bounds from

the given data.
Confidence bounds on the more familiar parameters, i.e.,

M, 62, Ml — M2, and di/dä, are briefly presented for the

sake of completeness. The confidence statements for the

less familiar parameters and combinations of parameters are

treated in more detail.
In the cases of the non~centrality parameters of the

non—central t2, F and x2 distributions, a variance—
stabilizing transformation is used, a normal approximation

is utilized, and confidence bounds are pub on the parameter.

In the non—central t2 and non—central F distributions
iterative procedures are used to obtain cdnfidence bounds

on the non-centrality parameter, i.e., a first guess is

made which is improved until the desired accuracy is obtained

This procedure is unnecessary in the non—central xa distri—

bution, since the expressions for the upper and lower limits

can be reduced to closed form.
Computational procedures and completely worked examples

are included.’ 111i 1


