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CONTINUOUS BEAMS BY VIBRATION ANALYSIS

by
Thomas P. Boggs
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Civil Engineering

(ABSTRACT)

Three models are presented which predict frequencies and mode shapes of transverse
vibration for a continuous prismatic Bernoulli-Euler beam on elastic supports, subjected
to a compressive axial load. The first model, which approximates support stiffnesses by
an equivalent elastic foundation, is found to be inaccurate for wave lengths close to the
support spacing. A discrete mass model is formulated which accounts for axial load by
stability functions which modify the element stiffness matrices. A continuous model is
formulated which yields an exact solution for Bernoulli-Euler beam theory. The
frequencies predicted by the discrete mass model and continuous model are in excellent
agreement. A method of predicting axial compressive load and support stiffness based on
measured frequency and phase data is presented which can be used for either the discrete
mass model or the continuous model. A frequency reduction factor is derived which
accounts for the effects of shear deformation and rotatory inertia. Tests are performed on
an eight span beam with compressive axial load. Test results show that the models
accurately predict frequencies and mode shapes of vibration. Results indicate that the
method formulated can be used to determine compressive axial load and support stiffness.
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Chapter 1

Introduction

1.1 Objective

The primary objective of this thesis is to determine whether the compressive axial
load and support stiffness of a prismatic Euler beam can be estimated from measurements
of transverse vibrations. The method requires a model which can accurately predict
modal frequencies for arbitrary combinations of axial load and support stiffness. The
method developed applies to beams on multiple, evenly spaced elastic supports of
identical linear stiffness. The method developed will be verified by comparison of
predicted and applied loads for a test beam.

The first model presented approximates the stiffness of supports as a uniform
stiffness distributed over a continuous foundation. This model applies to waves
propagated in an infinite beam as well as standing waves in a finite beam. The second
model is a finite element model which represents a finite beam on discrete elastic
supports. The third model gives the exact solution for a finite Euler beam on discrete

elastic supports.



1.2 Literature Review

The method developed in this thesis is directly applicable to the determination of
compressive axial forces in the rails of railroad tracks. From a neutral stress state, a
temperature increase of AT causes a continuous welded rail (CWR) to experience an axial
load increase of

AP = EAa - AT (1.1)
where E is the elastic modulus of the rail, A is the cross-sectional area of the rail, and o is
the coefficient of thermal expansion. If the temperature increase becomes great enough
(usually in the early afternoon on hot summer days), the increase in axial load is
sufficient to cause lateral or vertical buckling of the track. To anticipate buckling, it is
necessary not only to know the buckling load or maximum temperature increase of the
track, but also to have an estimate of the current load state.

Railroad track mechanics dates back to the 1800’s when Winkler (1867, 1875)
modeled track as a beam on a uniform elastic foundation. Timoshenko (1915, 1926,
1932) successfully applied Winkler’s model to track laid on transverse ties (ak.a.
sleepers). According to Kerr (1974), vertical track buckling analyses by Corini (1936),
Huber (1941), and Engel (1960) extended the Winkler model to include the effect of axial

load. Much work has been presented by Kerr (1974, 1975, 1976, 1978, 1979, 1980,



1986) on the mechanics of lateral and vertical track buckling including the effects of rail-
tie interaction, bilinear lateral stiffness of ballast, and rail-vehicle interaction.

Grassie et al. (1982) investigated the dynamic response of track to lateral
excitation in the 50-1500 Hz range. Measurement showed the presence of a ‘pinned-
pinned’ mode of vibration around 350 Hz for which the wavelength of vibration is equal
to twice the support spacing. This mode is not predicted by modeling the supports as an
elastic foundation because the mode is due to the discrete nature of the supports. It was
determined that wooden sleepered track is adequately modeled using an elastic
foundation except near the pinned-pinned resonance. At frequencies above 300 Hz, the
rail head was found to vibrate laterally on the flexibility of the rail web.

Grassie et al. (1982) also investigate the response of track to vertical excitation in
the 50-1500 Hz range. The pinned-pinned mode of vertical vibration was measured at
about 700 Hz. The elastic foundation model was found to be accurate for vertical
vibration of wooden sleepered track, except around the pinned-pinned resonance. The
elastic foundation model was found to be inaccurate for concrete sleepered track because
of the flexibility of the rail pad.

Knothe and Grassie (1993) identify a number of sub-systems for the dynamic
modeling of track and vehicle-track interaction:

Vehicle, including car body, bogie, and wheel set.
Wheel-rail contact and representation of excitation.
Rail.

Fastening system, including rail fastening and rail pad.

Sleeper (tie).
Sleeper support, including ballast and substrate.

A



For this thesis, systems 1-2 are not relevant since it is the free vibration response that is of
interest. Knothe and Grassie claim that rail responses due to vertical excitation can be
adequately represented by Bernoulli beam theory for frequencies less than about 500 Hz.
Above 500 Hz, Timoshenko theory is required and above 2.5 kHz a simple Timoshenko
beam is inaccurate because significant warping of the rail cross-section occurs. Knothe et
al. (1994) compare various one, two, and three dimensional rail models including finite
element models for the beam cross-section. They conclude that a finite element model is
the best for the high frequency vibration of a rail on discrete supports.

Lusignea et al. (1979) perform tests in the high frequency range (500-20,000 Hz)
on a free segment of rail. They claim that the high frequency range is best for the
determination of axial load because frequencies in this range are less dependent on the
rail fastener, tie, ballast, and subgrade. Measurements in the 1-10 kHz range showed
significant warping of the rail cross-section.

Livingston (1993) develops a parameter estimation technique for determining the
axial load and support stiffness of an Euler beam supported at both ends and subjected to
a tensile axial load. The method developed in this thesis is similar to that of Livingston,

but formulated for a member with intermediate elastic supports.



Chapter 2

Winkler Foundation Model

;< o e ~ E|I

8 = - = = = = = !

7 G 7777
/ _—t

S

Fig.(2.1) Infinite Beam on Elastic Supports

2.1 Governing Equation

Consider a beam resting on equally spaced elastic supports of identical stiffness as
in Fig.(2.1). If one considers wavelengths of vibration which are large compared to
support spacings then the stiffnesses of the discrete supports can be modeled by an
equivalent stiffness per unit length of beam. The beam is then referred to as resting on an
elastic foundation or a Winkler foundation (Winkler, 1867). The distributed stiffness of

the foundation is given by

sz% @2.1)



where k is the support stiffness, s is the support spacing, and K is the stiffness per unit

length of the elastic foundation.

M
’ M+ _a;dx
A
........ )
....................... Ev
P e
v
ov
v+ o dx
V
Kv-dx
v
L N|
" dX ']

Fig.(2.2) Free Body Diagram of Winkler Model Beam Segment

If the effects of shear deformation and rotatory inertia are considered negligible,

then the summation of vertical forces for the differential beam segment of Fig.(2.1) gives

o*v

ov
m?dx=V—(V+5;dx)—Kv~dx (2.2)

where m is the mass per unit length of beam, v is the transverse deflection of the element,
and V is the vertical force on the end of the element. (Note that V is not properly called a
shearing force since it does not act perpendicular to the neutral axis of the element.)

Simplifying gives



Oy N kveo 23
5t =0. .
M5 Tk Y (2.3)

Summing moments about the right end of the element at the centroid gives

2

, 0% M dx
mr 3 =O=(M+§X—dx)—M—V-dx+Kv-dx-7+P-dv (2.4)

As dx—0, this gives

V=""4tP—. 2.5)

82
Substituting equation (2.5) into equation (2.3) and using M = EI ax_:] results in

v o'v v
m_ +EI6X4 +Paxz +Kv=0. (2.6)

Equation (2.6) is the differential equation of motion for the free transverse vibration of an

axially loaded Euler beam on a Winkler foundation.

2.2 Infinite Beam

If a sinusoidal displacement of the form
v(x,t) =[Asin(Ax) + Bcos(Ax)]sin(wt) 2.7
is assumed, where o is frequency and A=27/X is the wave number, then substitution into

equation (2.6) gives the dispersion relation

1

12

) :{l(EIA“ - PA’ +K) [ (2.8)
m



Equation (2.8) describes the relation between the frequency and wave length of vibration
for an infinite beam. If E, I, and m are known, then P and K can be determined from the
measurement of ® vs. A. By differentiating equation (2.8) with respect to A and solving
for the lowest frequency (®,,,) and corresponding wave number (A.;), the following

equations for P and K can be derived:

P = 2EIA?

crit

(2.9)

K = mw>. +EIA!

min crit

(2.10)
Buckling of the infinite beam occurs when the lowest frequency of vibration becomes
zero. By sefting o, =0 in equation (2.10) the buckling load of the infinite beam is

determined to be

P, =2VKEI (2.11)
with a corresponding wave number of
1
A ( KJ4 2.12
b EI ( . )

Fig.(2.3) depicts the dispersion relation of an infinite S4x7.7 beam for various axial loads.
The elastic foundation corresponds to 2.7 kip/in. elastic supports spaced at 2 ft. intervals.
It can be seen that the presence of axial load has little effect on frequencies corresponding
to small wave numbers (i.e., large wave lengths). In fact, the frequency corresponding to

A=0 is independent of axial load. The A=0 mode of vibration



Frequency vs. Wave Number for Various Axial Loads
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Fig.(2.3) Dispersion Plot for Various Axial Loads



corresponds to an infinite wave length which implies that the entire beam undergoes a
rigid body motion on the elastic foundation. Thus, as Fig.(2.3) implies, to observe the
effect of axial load, frequency measurements must be taken for wave lengths for which

bending is significant.

2.3 Finite Beam

In examining the vibrations of a finite beam on a Winkler foundation, the present
investigation will use the case of a pinned-pinned beam. For a pinned-pinned beam,

equation (2.7) must satisfy the following boundary conditions:

v(0,1) = 0
V(L,1) = 0
0?v
M(O.0 = El=5 =0 2.13)
x=0
M(L.t) = EI12 Vg
N = 2 =
aX x=L

Applying the first boundary condition to equation (2.7) requires that B=0. Rejecting the

trivial cases of A=0 and ot=0 leaves the condition that

sin(AL)=0 (2.14)
which can occur only for
nmn
A=— 2.15
. @.15)

where n is an integer. The transverse displacement of the beam is then given by

10
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Fig.(2.4) Finite Beam on Elastic Supports
. | AT .
v(x,t)=A s1n(T x) sin(ot) (2.16)

which also satisfies the last two boundary conditions of equation (2.13). Equation (2.15)
implies that the only possible wave lengths of vibration are those satisfying

2L
=2 n=123,... 2.17)

Substituting equation (2.15) into equation (2.8) gives the dispersion relation for a pinned-

pinned beam on a Winkler foundation:

\s

o, = {i{EI(%T - P(—I{i)z 4 Kh n=123,. (2.18)

An equivalent form of equation (2.18) was derived by Lusignea et al. (1979).

Fig.(2.5) shows frequency vs. axial load for the first 8 modes of a 16 ft. S4x7.7

beam with 2.7 kip/in. springs at 2 ft. spacings (Fig.(2.4)). The frequencies correspond

11
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Fig.(2.5) Winkler Model Frequencies vs. Axial Load
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to weak axis, transverse vibrations. The given springs and spacings correspond to a
foundation stiffness of K=0.113 ksi. For no axial load the mode shapes are ranked in
ascending order (i.e., first mode corresponds to lowest frequency, second mode
corresponds to second lowest frequency, etc.). However, when sufficient axial load is
present, the modal frequencies will cross. This phenomenon makes it no longer possible
to distinguish modes by the order of the frequencies. The mode shapes must be measured

to distinguish the frequencies of different modes.

2.4 Limitations of Model

Several factors limit the applicability of the Winkler foundation model for the
determination of axial loads. As previously mentioned, the lower modes of vibration are
affected very little by the presence of axial load. Deflections corresponding to these
lower modes involve mostly elastic support displacements and very little beam flexure
which makes these modes most suitable for determining support stiffnesses. To
determine axial load it is better, if not necessary, to measure frequencies of higher modes
where beam flexure becomes significant.

While higher modes of vibration are more strongly affected by axial load, there is
also the possibility that the Winkler foundation model assumptions are no longer
accurate. As the mode number increases, the wave length of vibration decreases. As the

wave length approaches the elastic support spacing, the assumption of an elastic
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Fig.(2.6) Pinned-Pinned Mode of Vibration

foundation becomes less accurate. A clear example of this phenomenon can be given by
considering the n=8 mode of vibration for the beam of Fig.(2.4). For this mode the mode
shape has a node (i.e., no displacement) at each of the intermediate supports (Fig.(2.6))
(Hereafter, this mode will be referred to as the “pinned-pinned” mode). Since there are
no displacements at any of the elastic supports, the support stiffnesses should have no
effect on the frequency of the pinned-pinned mode; however, according to equation
(2.18), the frequency of the n=8 mode is a function of the foundation stiffness (K). For
the pinned-pinned mode, equation (2.18) would only give the correct frequency if K were
equal to zero.

Another limit on the applicability of the Winkler foundation model is the
possibility of shear deformation and rotatory inertia. When the wave length of vibration
becomes sufficiently short, shear deformation contributes significantly to the beam

deflection. Also, differential segments of the beam will have not only transverse inertia,

14



but also rotational inertia in the plane of vibration. Both of these effects will reduce the
frequency of transverse vibration. When these effects are significant, Bernoulli-Euler
beam theory is no longer adequate to describe the vibration of the beam; the beam must
instead be modeled using Timoshenko beam theory (Timoshenko et al., 1990).

The number of modes which can accurately be described by the Winkler
foundation model and which of the above described factors will limit its applicability are
functions of several parameters. Bending stiffness, support stiffness, support spacing,
and radius of gyration are all variables which determine the applicability of the model.
Consequently, these factors will also limit the accuracy with which the Winkler

foundation model can be used to determine axial load.

15



Chapter 3

Discrete Mass Model of Beam on Elastic Supports

3.1 Eigenvalue Equation

An alternative to the Winkler foundation modelll is to model the beam as a series
of discrete or “lumped” masses connected by beam elements. Although a discrete mass
model can be used only for the case of a finite beam, it has an advantage over the Winkler
foundation model in that it does not need to approximate the elastic supports by an elastic
foundation. Thus, a discrete mass model can be more accurate for higher modes of
vibration.

The frequencies and mode shapes of the discrete mass system are determined by
solving for the eigenvalues and eigenvectors of the system. The natural frequencies are
found by solving the matrix equation

det(K —»*M)=0 3.1)
where K and M are the system stiffness and system mass matrices, respectively, and o is
the natural frequency of vibration. If K and M are nxn matrices, then equation (3.1) will

yield n values of ®. The mode shapes of vibration are then determined by solving

16



KX = o’MX (3.2)
for X, which is an nx1 vector of mass displacements. The displacements of X are not
unique displacements; rather, they are displacements relative to one another which

describe the shape, but not magnitude, of vibration corresponding to a given value of ®.

3.2 Mass Matrix

The mass matrix of equation (3.1) is assembled from the mass matrices of each of
the discrete beam elements. These element mass matrices can be either lumped mass
matrices or consistent mass matrices. The mass influence coefficients of a consistent

mass matrix are given by

m; = ]].m(x)‘l’i (x)¥(x)-dx (3.3)

0

where m(x) is the mass per unit length of the beam and ¥, (x) and Wi(x) are interpolation

functions for beam degrees of freedom i and j (Clough and Penzien, 1975). A lumped

mass matrix typically ignores rotatory inertia and can be written as

1
|
I
I

o

0
0 (3.4)

0

where m is the mass per unit length of the element and 1 is the element length. Although

S O O O
S = O O

the consistent mass matrix generally yields more accurate results, the lumped mass matrix

will be used for two reasons: (1) rotatory inertia will be neglected in the discrete mass

17



model and (2) the lumped mass matrix can be reduced to eliminate rotational degrees of
freedom.

Once the element mass matrices are assembled into a system mass matrix, it is
convenient to reduce the matrix such that it only contains degrees of freedom
corresponding to transverse displacements. Since the lumped mass matrix does not have
mass coupling, reduction requires only the removal of all rows and columns
corresponding to rotational degrees of freedom. For the example of a beam consisting of

three equal beam elements, the reduced system mass matrix, M, is given by

[1 0 0 0]
M L}O 2 0 O{ 3s
~61]0 0 2 O] (3-5)
o 0 0 1]
where L is the total length of the beam.
3.3 Stiffness Matrix
Z
9 /

Fig.(3.1) Degrees of Freedom of Beam Element
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Consider the beam element of Fig.3.1). To account for the effect of a
compressive axial load, the beam element stiffness matrix can be modified by stability

functions so that

[12. 6 12 6
PO Th e 76
6
EIl -
ko Ht 4, -7 20, (3.6)
! 12 6
1_2¢1 _Td)z
| sym. 49, |
where
_ (yD)’sinyl
¢, = —12¢C (3.7a)
(yD* (1 - cosyl)
— 3.7b
¢, & (3.70)
_ yl(sinyl - ylcosyl)
¢, = . (3.7¢)
_ vyl = sinyl)
o, = —Zd)c (3.7d)
6, =2—-2cosyl—ylsinyl (3.7¢)
P

(Ellyin, 1983). Each stability function is a function of the compressive axial load. It can
be shown, by use of L” Hopital’s Rule, that in the limit as the axial load approaches zero,
the stability functions approach unity and the beam element stiffness matrix returns to its

unmodified form.
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The modified stiffness matrices can be assembled into a global stiffness matrix.
The intermediate support stiffnesses can then be added to the diagonal elements of the
stiffness matrix which correspond to the appropriate degrees of freedom (this assumes
that the number of elements has been chosen such that degrees of freedom lie at the
support locations). Pinned or fixed beam supports can be accounted for by conditions of
compatibility or by modeling the supports as very stiff transverse or rotational springs.
Unlike the mass matrix, the global stiffness matrix requires a more detailed
reduction procedure because the translational and rotational stiffness coefficients are
coupled. Using a flexibility method, we first consider a set of forces
f=K,D, (3.8)
where K, is the global stiffness matrix and D, is the matrix of displacements

corresponding to f. Using again the example of a three element beam, let

100 0
0000
0100
g0 090 (3.9
0010
0000
0001
00 0 0
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Note that each column of f represents a unit force vector acting on a single transverse

. . . n . .
degree of freedom. If K, is an nxn matrix, then f is an nx~2* matrix. The displacements

corresponding to f are

D =K''f (3.10)

2

where D, and f have the same dimensions. If all rotational displacements are now
removed from D, (i.e., all even numbered rows), the remaining matrix is the reduced

flexibility matrix, D, which relates only transverse forces and displacements. To get the
reduced stiffness matrix, K, one need only invert D to get

K=D" (3.11)
where K is a square matrix containing stiffness coefficients relating transverse forces and

displacements.

3.4 Frequencies and Mode Shapes

Having calculated both M and K, equations (3.1) and (3.2) can be solved for the
natural frequencies and mode shapes of the system. Caution must be taken, however, in
choosing the number of elements with which to model the beam. The element stiffness
matrix used in this discrete mass model is based on static deflection of the beam; it is not
a dynamic stiffness matrix. Thus, in order to achieve accurate frequencies and mode
shapes, the element length should be chosen such that it is significantly shorter than the

shortest wavelength of vibration which is of interest.
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Fig.(2.3) Mode 2 Eigenvector for Discrete Mass Model
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Fig.(2.4) Mode 3 Eigenvector for Discrete Mass Model
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Fig.(2.5) Mode 4 Eigenvector for Discrete Mass Model

23



Relative Displacement

Relative Displacement

f=121.8 Hz

0.75

050 < o
0.25 -
0.00 Do

0.25 —
0.50 —
0.75

48 96 144 192

Distance from End Support of Beam (in.)

Fig.(2.6) Mode 5 Eigenvector for Discrete Mass Model
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Fig.(2.8) Mode 7 Eigenvector for Discrete Mass Model
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Fig.(2.9) Mode 8 Eigenvector for Discrete Mass Model
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For the S4x7.7 section of Fig.(2.4) with an intermediate support stiffness of 2.7
kip/in. and axial load of 20 kips, the mode shapes of the first eight natural frequencies are
plotted in Fig.(3.2) through Fig.(3.9). The model used divides the beam into 32 discrete
beam elements. The mode shapes are plotted together with the sinusoidal mode shapes of

the Winkler foundation model. The mode shapes of the two models are nearly identical.

3.5 Load and Stiffness Determination

If equations (3.1) and (3.2) are solved for a number of different axial loads,
frequency vs. axial load curves can be plotted as in Fig.(3.10). For comparison, f vs. P is
also plotted for the Winkler foundation model. For a support stiffness of 2.7 kip/in., the
difference in the frequencies of the two models is very small except for the pinned-pinned
mode. As expected, the frequencies for the pinned-pinned mode of vibration are the same
as for the Winkler foundation frequencies when K=0 in equation (2.18).

If the frequency-load relationship is determined for a number of different support
stiffnesses, then the frequency can be plotted versus both support stiffness and axial load
as in Fig.(3.11) through Fig.(3.18). Each plot shows frequencies for a particular mode of
vibration. A frequency of zero indicates buckling of the particular mode for the
corresponding combination of P and k.. Buckling of the beam occurs if any modal
frequency for a particular combination of P and k, is zero. Note again that the

frequencies for the 8th mode of vibration are independent of k..

26



DM(-) and WM(--) Frequencies for Modes 1-8
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Fig.(3.10) Frequency vs. Axial Load for Discrete Model and Winkler Model
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Frequency (Hz)

Fig.(3.11) Mode 1 Mesh Plot
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Fig.(3.12) Mode 2 Mesh Plot
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Fig.(3.13) Mode 3 Mesh Plot
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Frequency (Fz)

Fig.(3.14) Mode 4 Mesh Plot
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Frequency (Hz)

Fig.(3.15) Mode 5 Mesh Plot
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Frequency (Hz)

Fig.(3.16) Mode 6 Mesh Plot
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(zH) Kouanbaij

Fig.(3.17) Mode 7 Mesh Plot
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(zH) Kouanbar

Fig.(3.18) Mode 8 Mesh Plot
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For a beam with specific values of P and k,, frequencies can be measured for the
various modes. When the frequency corresponding to the first mode has been measured,
Fig.(3.11) can be used to create a contour line which represents all combinations of P and
k¢ which would produce the measured frequency for the first mode. Similar contour lines
for other measured modal frequencies can be superimposed on the same plot. For ideal
measurement and interpolation, there will exist one point on the contour plot at which all
the contour lines intersect. This point of intersection corresponds to the actual axial load
and support stiffness of the beam. For example, suppose the S4x7.7 section of Fig.(2.4)
has an intermediate support stiffness of 2.7 kip/in. and an axial load of 20 kips. The
corresponding contour lines for modes 1 through 8 of the beam are shown in Fig.(3.19).
As expected, the point of intersection of the contour lines corresponds to P=20 kips and
k=2.7 kip/in..

Fig.(3.19) confirms the implication of the Winkler foundation model that lower
modes are better for determining support stiffness whereas higher modes are better for
determining axial load. For example, if a small error in measurement causes the contour
line for mode 1 to be slightly displaced, then the intersection of modes 1 and 2 would
result in a large error in the axial load; however, there would be a relatively small error in
the support stiffness. On the other hand, a small displacement of the mode 8 contour line
would cause the intersection of the mode 7 and mode 8 lines to give a large error in the

support stiffness and a small error in the axial load.

36



Support Stiffness (kip/in.)

Contour Lines for Modes 1-8

10

i

P=20 kips
k=2.7 kip/in.

0 10 20 30
Axial Load (kips)

T
40

Fig.(3.19) Contour Plot for Load and Stiffness Determination
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3.6 Effect of Shear and Rotatory Inertia

If the effects of shear deformation and rotatory inertia are considered, the

vibration of a pinned-pinned beam subject to an axial load is given by

0, =@ {i{m[%]‘l _ P(EITJ“—]Z }2 (3.12)

where

@, ={1+[n’£r]2[1+ ki}ﬂ ' (3.13)

is a frequency reduction factor which accounts for shear deformation and rotatory inertia

(see Appendix A). In equation (3.13), n is the mode number of vibration, r is the radius
of gyration of the beam section, G is the shear modulus, and k' is a shear factor dependent
on the beam cross-section. The bracketed part of equation (3.12) represents the frequency
of a pinned-pinned Bernoulli-Euler beam with an axial load (compare to equation (2.18)
with K=0).  As equation (3.13) indicates, the effect of shear and rotatory inertia
increases with the mode number of vibration. Table (3.1) shows the effect for the weak
axis vibration of a 16 ft. S4x7.7 with a 20 kip axial load. Values in the tables are based
on a shear area factor of k'=0.850 (Cowper, 1966).

Solving equation (3.12) for P, letting ®,=1, and differentiating with respect to ®,

gives

- 4{—)2 mo, (3.14)
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Table (3.1) Error in Frequency and Predicted Load due to Shear and Rotatory Inertia

Mode Euler Freq. (Hz) D, Af (Hz) AP (kips)
2 7.804 0.999 -0.006 0.01
3 35.04 0.998 -0.058 0.11
4 69.97 0.997 -0.204 0.44
5 114.5 0.995 -0.521 1.17
6 168.7 0.993 -1.10 2.53
7 232.8 0.991 -2.06 4.81
8 306.6 0.988 -3.54 8.32

Using the Euler beam frequency given for mode 8 in Table (3.1), equation (3.14) gives

5P_ 0375—l§i—p = 235@ (3.15)
do,  “rad 7 Hz '

If shear and rotatory inertia are not considered, then based on Table (3.1) and equation
(3.15), an axial load predicted from the 8th mode frequency using Euler beam theory will
have a corresponding error of

P
-—— = —(—3.54)(-2.35) = 8.32 kips (3.16)
G0N

AP = — Af
The error is significant considering that the applied load was only 20 kips. The error due
to shear deformation and rotatory inertia decreases with decreasing mode number as is

indicated in Table (3.1); however, this should not be interpreted as an indication that

lower modes are better for predicting axial load. Since the frequencies of the lower
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modes are less sensitive to axial load, other errors associated with their measurement will
cause significant errors in axial load predictions.

Since the 8th mode of vibration is unaffected by the intermediate supports, it
behaves the same as the 8th mode of a pinned-pinned beam. Thus, the frequencies of this
mode can be corrected for shear and rotatory inertia simply by multiplying by ®, . The
mode 6 and mode 7 frequencies are affected by the presence of the intermediate supports;

however, since the effect is small (see Fig.(3.16) and Fig.(3.17)), it is a reasonable

approximation for many cases to also modify these higher frequencies by @ .
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Chapter 4

Continuous Model of Finite Beam on Elastic Supports

A general equation of motion can be derived for a beam subject to axial load with
arbitrary end conditions. With the use of boundary conditions, an exact model can be
formulated for a finite Bernoulli-Euler beam on elastic supports. By using a general
equation of motion for the section of the continuous beam between each pair of supports
and by applying the appropriate boundary conditions, a set of equations can be

determined which exactly describes the mode shapes of the beam.

4.1 General Equation of Motion

Considering a differential segment of a beam similar to that of Fig.(2.2) without

the presence of an elastic foundation, summation of moments and vertical forces and use

2
\%
of M=EI Pl leads to the following equations:

Fv v
V=EI@X—Z+P& (4.1)
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6 v 84\/ azv
aﬁ +EI ax“ 6x2

=0
If a displacement of the form
v(X,t) = A -exp(iot + Ax)
is assumed, where i = v/—1, then equation (4.2) gives
[-mo” + EIA* + PA’JA - exp(iot + Ax) = 0

Using the quadratic equation and solving for A* gives

2EI( P+P? +4mEle’ )

This allows four possible roots for A:

A, = 2EI( P++/P? + 4mElo’ )
Ay, = 2EI( P—/P? +4mElo’ )

Taking into account all four roots of A, v can be written in a general form as

4.2)

4.3)

(4.4)

4.5)

(4.6)

v, (x,t) = [Ai exp(A;x) + B, exp(A,x) + C, exp(A,x) + D, exp(A4x)]exp(icot) 4.7

where the subscript i signifies the ith segment of the beam and A;,B,,C,, and D,are

constants to be determined by boundary conditions. The coordinate x is measured from

the left end support of the beam.
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Vi(a,t) I Via(a,t)
k;vi(a,t)
k,
7
X Z“él

Fig.(4.1) Free Body Diagram of Beam Segment at an Intermediate Support

4.2 Characteristic Matrix

At an interior support, as in Fig.(4.1), four boundary conditions can be imposed:

D vi@t)-vy,@nH=0 (4.82)
2) AT (4.8b)
a}( X=a ax X=a B .
3) V.(a,t) -V, (at) -kv(at)=0 (4.8¢)
here V = E163—V p
where = 8X3 + ox
4 M(a.t)-M_(a,)=0 (4.8d)
o'v
where M = EI pve
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If end supports are also modeled as springs, shear and moment boundary conditions can
be imposed at each end support. If end supports are modeled as pinned supports,
displacement and moment boundary conditions can be imposed.

If there are a total of s supports on the beam, there will be n=s-1 beam segments
along the length of the beam. By applying four boundary conditions at each intermediate
support and two at each end support, there will be a total of 4n equations of compatibility.
These equations of compatibility can be arranged in matrix form as

CM-C=0 (4.9)

where
CT:{Al B, ¢, D A, B, C, e« e e B C D (4.10)

C is the matrix of coefficients and CM is the 4n by 4n characteristic matrix of the system.

4.3 Natural Frequencies and Mode Shapes

Equation (4.9) is satisfied when C=0 or
det(CM) = 0 (4.11)
If all beam and support properties are known and the applied axial load is specified, then
CM is a function only of ®. Each natural frequency of the system, ®, , is a value of © for
which equation (4.11) is satisfied. Thus, natural frequencies of the beam can be
determined through an iterative process by calculating det{(CM) for incremental values of

o until equation (4.11) is satisfied. Unlike the discrete mass model, the continuous
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beam model yields an infinite number of eigenfrequencies and is limited only by the
limits of Bernoulli-Euler beam theory.

For each natural frequency, the corresponding mode shape is determined by
solving equation (4.9) for C. Similar to the eigenvalue solution of the discrete mass
model, the constants of C are only defined relative to each other. By assuming a value
for one constant, the corresponding values of the other constants can then be determined.
Once the constants have been determined, each consecutive set of four constants will
describe the mode shape of the beam over a corresponding beam segment, using equation
4.7).

The first 8 mode shapes of the S4x7.7 section of Fig.(2.4) with 2.7 kip/in.
intermediate supports and a 20 kip axial load are plotted in Fig.(4.2) through Fig.(4.9)
along with the discrete mass model and Winkler foundation model mode shapes. The
mode shapes of the continuous model are nearly identical to the sinusoidal mode shapes
of the Winkler foundation model.

The predicted frequencies of the continuous beam model are compared to the
discrete mass model in Fig.(4.10) for various axial loads. For the parameters and modes
chosen for the plot, the frequencies of the two models are in excellent agreement. The
maximum discrepancy is approximately 0.1 Hz, which occurs for the 8th mode with low
axial load. The discrepancy decreases with decreasing mode number and with increasing

axial load.
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Fig.(4.10) Frequency vs. Axial Load for Continuous Model and Discrete Model
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The frequencies and mode shapes predicted by the continuous model and the
discrete model are in close agreement. By determining the continuous beam model
frequencies for various axial loads and intermediate support stiffnesses, the load and
stiffness of an actual beam can be predicted in the same manner as for the discrete mass
model (Chapter 3). Given the agreement of the two models, the axial load and lateral

stiffness predicted by the two models will be nearly the same.
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Chapter 5

Experiment and Analysis

5.1 Introduction

Modal impact tests were performed on a 16 ft. S4x7.7 section to determine mode
shapes and natural frequencies for various axial loads. The beam was supported by two
end supports and seven elastic intermediate supports spaced evenly at 2 ft. intervals along
the length of the beam. The beam was excited with an impact hammer equipped with a
load transducer and the vibration of the beam was measured with an accelerometer.
Hammer and accelerometer measurements were used to determine the frequency response
of the beam.

The objective of the tests was to verify the frequency-load relationships and mode
shapes predicted by the analytical models. A second objective was to estimate the applied
axial load and support stiffness based on modal data and to compare the estimates to the

actual values.
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Fig.(5.1) End of Test Beam

1.2 Test Setup

The specimen tested was a 16ft A36 steel S4x7.7 section with 1 in. diameter steel
rods welded along the web at each end (Fig.(5.1)). The rods were rounded on one end to
provide minimal friction due to gravity loading against the reaction floor. Each of the
rods was supported by two thrust bearings - one below the bottom flange and the other
above the top flange of the beam. The thrust bearings were used to allow the application
of axial load with minimal moment resistance at the end supports of the beam. Figs. (5.2)
and (5.3) show the two end supports of the beam. All supports were bolted to the top

flange of a reaction beam which is embedded in a concrete floor slab. Bolts were wedged
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between the reaction beam flange and floor slab so as to prevent transverse or rotational
vibration of the reaction beam flange on its web.

The intermediate supports were designed to hold compression springs against the
web of the beam. Each intermediate support consisted of C6x10.5 channel sections
welded to a 3/4 in. plate. Each channel had two holes threaded through its web so that
bolts could be screwed through to compress springs against the web of the test beam
(Fig.(5.4)). The channels were chosen such that the lateral stiffness of the support was
governed by the stiffness of the springs alone. The springs were compressed against each
side of the web so that the lateral stiffness of the support was equal to twice the stiffness
of the individual sides.

The springs used were Century Springs stock #B17-189 compression springs,
which have a nominal stiffness of 1.469 kip/in. 2-1/8 in. free length, 1.84 in. solid height,
and an outer diameter of 1.00 in.. Load-deflection tests were performed on four springs
to determine the spring stiffness. The average stiffness was determined to be
approximately 1.35 kip/in.. Tests were performed for two support stiffnesses. The first
test used four springs at each intermediate support (k,=5.4 kip/in) and the second used
two springs at each intermediate support (k,=2.7 kip/in). During the first test, springs
were compressed against the beam web just beneath the top flange and just above the
bottom flange on each side of the web. During the second test, a single spring was
compressed against each side of the web at the centroid. The springs were compressed

between the
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Fig.(5.5) Hammer Impact Locations

beam web and 4x11/2x3/8 in. plates which spanned between the ends of the compressing

bolts.

5.3 Data Acquisition

Data were recorded using a Hewlett Packard 35660A Dynamic Signal Analyzer.
Channel 1 of the analyzer recorded the hammer impact and channel 2 recorded the
accelerometer response. Channel 1 and channel 2 ranges were both set to 1.998 V. The
frequency range of the analyzer was set to 400 Hz. The time records were 1 second and
the frequency resolution was 1 Hz. The channel 2 window was set to Force Exponential.
The frequency responses recorded are averages of three impact responses.

The accelerometer used was a PCB 308b accelerometer which was magnetically

attached to the web of the beam at the centroid midway along the third span. The
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accelerometer was connected to a PCB Model 480D06 Power Unit which was connected
to channel 2 of the analyzer. The gain of the power unit was set to 1.

The beam was excited with a PCB 205M08 impact hammer. The impact hammer
had four removable heads of various stiffnesses which could be used. The second to
stiffest head (the red one) was chosen for the test because the spectrum response of
impacts with this head began to die off around 400 Hz (the highest frequency of interest
was about 315 Hz). The hammer was connected to a PCB Model 480D06 Power Unit,
set to a gain of 10, which was connected to channel 1 of the analyzer.

For each of the two support stiffnesses tested, frequency responses were recorded
for hammer impacts at 16 locations along the length of the beam (Fig.(5.5)). Impacts
were made at midspan, between each pair of supports, and 5 in. to the right of each
support. Impacts were made at the centroid of the web on the side of the beam opposite
the accelerometer.

Before collecting data for either of the support stiffnesses, several cyclic loads
between 0 and 26 kips were applied to the beam to seat the supports. It was necessary
several times to adjust the positions of some of the springs because of slippage and

because of compression of the beam as the load was applied.

5.4 Results

Figures (5.6) through (5.9) show a typical hammer impact, hammer impact

spectrum, accelerometer response, and accelerometer frequency response function (FRF),
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respectively. Fig.(5.6) represents the acceleration of the hammer over the time of impact.
The response spectrum of the accelerometer is an FFT of the accelerometer time response
which is then normalized by the hammer impact spectrum.

To determine the mode shape corresponding to each natural frequency of the
beam, it is necessary to examine the phase of the frequency responses. Ideally, for a
given mode, the phase for an excitation at a given location is equal to, or 180° different
than, the phase at any other location. Equal phases imply that deflections at the two
locations for the given mode occur in the same transverse direction; a 180° phase
difference implies that the two deflections occur in opposite directions. The frequency
response and phase define the relative amplitude and relative direction of the mode shape,
respectively. By calculating the response amplitude and phase for a series of excitations
along the length of the beam, the mode shape of a natural frequency can be determined.

Table (5.1) lists the phase and magnitude of the frequency response for
measurements taken with k=2.7 kip/in. and P=20 kips. The data in the table correspond
to modes 1, 4, 5, 7, and 8, respectively. The frequencies listed in the table are the
frequencies for the driving point FRF (excitation at accelerometer location). The
frequencies corresponding to resonant peaks shifted approximately + 2 Hz depending on
the excitation location. This phenomenon generally did not occur for the 8th mode.

Mode 2 was not measured because its frequency was so close to the mode 1 frequency
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that it was not discernible. Modes 3 and 6 were not used because the accelerometer
location was near a node for these modes, which made data for these modes inaccurate.
For the higher modes, phase shifts were near 180° whereas phase shifts for the
lower modes tended to vary more. Figures (5.10) through (5.14) show mode shapes
plotted from the data in Table (5.1). The mode shape of Fig.(5.10) appears to be a
combination of the Mode 1 and Mode 2 eigenvectors. Phase shifts for this lowest
resonance generally were not near 180°. This phenomenon is due to the small difference
in the Mode 1 and Mode 2 frequencies and is also due to the frequency resolution of the

spectrum analyzer (1 Hz). Eigenvectors for modes 4, 5,7, and 8 are all very similar to

Table (5.1) Magnitude and Phase of Driving Point FRF for k=2.7 kip/in., P=20 kips

f=45Hz f=85Hz f=122 Hz f=234 Hz f=298 Hz
Loc. | Mag. | Phase | Mag. | Phase | Mag. | Phase | Mag. Phase | Mag. | Phase

43 ]-126 11.8 | -144 382 | 171 121 5 532 -11

791 -90 23.3 | -142 65.3 | 171 218 1 772 -13

18.1 | -81 30.2 | -146 47.0 | 177 40 140 460 159

185 -42 26.6 | -136 19.6 [ -137 | 166 |-174 | 743 167

25.7| -53 12.0 | -55 72.8 | -22 79 |-122 | 419 -22

2511 -32 229 | -42 75.9 | -20 110 -30 700 -11

245 | -54 32.7 | -55 21.8 | -91 148 -40 478 175

19.5 | -46 289 | -54 46.9 | -152 31 -143 762 168

129 | -59 123 |-127 | 60.1] 162 186 148 477 -14

11.3 ]| -83 20.8 | 179 36.5 | 178 57 133 764 -12

12.7 | -143 26.2 | 141 60.6 | 15 207 -33 483 174

16.3 | -158 21.3 | 138 79.2 9 134 -32 774 170

17.8 | -167 83 -8 28.0 | -32 199 152 411 -8

15.6 | -173 213 | -21 20.6 | -141 176 163 743 -9

14.1 | 159 27.1 | -42 72.3 | 180 155 -29 418 170

11.5 | -161 18.8 | -52 58.1 | 172 202 -28 744 170

31zl =l Bl =2 5] || <] 2w+« -
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Fig.(5.15) Measured Frequencies vs. Axial Load for k=2.7 kip/in.
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Fig.(5.16) Measured Frequencies vs. Axial Load for k=5.4 kip/in.
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the analytically predicted mode shapes. Fig.(5.15) and Fig.(5.16) show the measured
frequencies of the different modes vs. axial load for both spring stiffnesses used. The
frequencies are compared to the analytic frequencies of the discrete mass model which
include the shear factors in Table (4.1).

Axial loads and support stiffnesses were estimated from contour plots generated
using the discrete mass model. Frequencies generated from the discrete model were
modified by the shear factors given in Table (3.1). The loads and stiffnesses were
estimated based on the intersection of mode 1 and mode 8 contour lines. Figures (5.17)
to (5.26) show the contour lines for all five axial loads and for both stiffnesses. Table
(5.2) lists the loads and stiffnesses estimated from the contour plots. Estimated loads are

plotted vs. applied loads in Figures (5.27) and (5.28).

Table (5.2) Estimated Loads and Stiffnesses

Support Stiffness Applied Load Estimated Stiffness Estimated Load
(kip/in.) (kips) (kips/in.) (kips)
2.7 5 3.7 18.0
2.7 10 3.6 25.1
2.7 15 3.6 27.5
2.7 20 3.4 32.1
2.7 25 3.3 36.8
5.4 5 5.9 18.0
5.4 10 6.0 27.5
5.4 15 6.1 32.1
5.4 20 5.7 29.8
5.4 25 5.7 39.1

69




Support Stiffness (kip/in.)

Contour Lines for Modes 1-8

; — 1 — i
10 20 30 40
Axial Load (kips)

Fig.(5.17) Contour Plot for k&=2.7 kips/in. , P=5 kips
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Fig.(5.18) Contour Plot for k=2.7 kip/in. , P=10 kips
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Fig.(5.19) Contour Plot for k=2.7 kip/in. , P=15 kips
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Fig.(5.20) Contour Plot for k.=2.7 kip/in. , P=20 kips
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Support Stiffness (kip/in.)

Contour Lines for Modes 1-8
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Axial Load (kips)

Fig.(5.21) Contour Plot for k=2.7 kip/in. , P=25 kips
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Support Stiffness (kip/in.)
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Fig.(5.22) Contour Plot for k=5.4 kip/in. , P=5 kips
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Fig.(5.23) Contour Plot for k=5.4 kip/in. , P=10 kips
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Fig.(5.24) Contour Plot for k=5.4 kip/in. , P=15 kips
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Fig.(5.25) Contour Plot for k=5.4 kip/in. , P=20 kips
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Fig.(5.26) Contour Plot for k=5.4 kip/in. , P=25 kips
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Fig.(5.27) Estimated vs. Applied Axial Load for k=2.7 kips/in.
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Fig.(5.28) Estimated vs. Applied Axial Load for k=5.4 kips/in.
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5.5 Possible Effect of End Support Stiffness

The deviations between the estimated and applied axial loads are all around 12-15
kips. The estimated loads plotted in Figures (5.27) and (5.28) lie along lines having
nearly the same slope as the ideal curves with a 12-15 kip offset. Referring to Figures
(5.15) and (5.16), the errors in the estimated loads are equal to the horizontal distances
between the measured 8th mode frequencies and the theoretical 8th mode curves.

A possible source of error could be that the lateral stiffness of the end support at
the hydraulic ram may have been significantly lower than expected. A low end support
stiffness would have little effect on lower modes of vibration, but would have an
increasing effect for higher modes. Fig.(5.29) shows the effect that the stiffness of one
end support has on the frequency of the 8th mode for an axial load of 21 kips. The figure
assumes that the other end support has an infinite stiffness and that the intermediate
supports have 2.7 kip/in. stiffness. For stiffnesses above 300 kip/in., the support acts
similarly to a pinned support; however, for stiffnesses less than 300 kip/in., the Mode 8
frequency is greatly affected by the end support.

If it were assumed that a low end support stiffness was the cause of the error in
estimated axial loads, the stiffness of the support could be estimated using the known
values of axial load and intermediate support stiftness. If a plot as in Fig.(5.29) were
created for an applied axial load, the estimated end support stiffness would be the

stiffness corresponding to the measured mode 8 frequency. The average end support
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stiffness which would result in the measured mode 7 and mode 8 frequencies for all ten
tests performed is 110 kip/in. Supposing that 110 kip/in. is the stiffness of the support,
the stiffness can be included in the discrete model to see its effect on the estimated loads.
Figures (5.30) to (5.39) show contour plots for the measured data using an end support
stiffness of 110 kip/in.. Table (5.3) shows the loads and intermediate support stiffnesses

estimated based on these contour plots.

Table (5.3) Estimated Loads and Stiffnesses for Assumed End Support Stiffness

Support Stiffness Applied Load Estimated Stiffness Estimated Load
(kip/in.) (kips) (kips/in.) (kips)
2.7 5 3.6 3.4
2.7 10 3.5 11.1
2.7 15 3.5 13.6
2.7 20 3.3 18.6
2.7 25 3.2 23.7
5.4 5 5.9 3.6
5.4 10 5.9 13.8
5.4 15 6.0 18.8
5.4 20 5.6 16.3
5.4 25 5.6 26.3
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Modified Model Contour Lines for Modes 1-8
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Fig.(5.30) Modified Model Contour Plot for k,=2.7 kip/in. , P=5 kips
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Fig.(5.31) Modified Model Contour Plot for k=2.7 kip/in. , P=10 kips
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Fig.(5.32) Modified Model Contour Plot for k=2.7 kip/in. , P=15 Kips
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Fig.(5.33) Modified Model Contour Plot for k;=2.7 kip/in. , P=20 kips
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Support Stiffness (kip/in.)

Modified Model Contour Lines for Modes 1-8
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Fig.(5.34) Modified Model Contour Plot for k=2.7 kip/in. , P=25 kips
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Fig.(5.35) Modified Model Contour Plot for k=5.4 kip/in. , P=5 kips
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Modified Model Contour Lines for Modes 1-8

Support Stiffness (kip/in.)

20 30 40 50
Axial Load (kips)

Fig.(5.36) Modified Model Contour Plot for k;=5.4 kip/in. , P=10 kips
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Fig.(5.37) Modified Model Contour Plot for k=5.4 kip/in. , P=15 kips
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Fig.(5.38) Modified Model Contour Plot for k=5.4 kip/in. , P=20 kips
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Fig.(5.39) Modified Model Contour Plot for k=5.4 kip/in. , P=25 kips
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Fig.(5.40) Estimated vs. Applied Load for k=2.7 k/in. using Assumed End Stiffness
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Fig.(5.41) Estimated vs. Applied Load for k=5.4 k/in. using Assumed End Stiffness
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Measured and Analytical Frequencies vs. Axial Load
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Fig.(5.42) Measured Frequencies Compared to Modified Frequencies for k;=2.7 kip/in.
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Fig.(5.43) Measured Frequencies Compared to Modified Frequencies for k=>5.4 kip/in.
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As figures (5.40) and (5.41) illustrate, the use of the assumed end support stiffness
considerably decreased the discrepancy between the estimated and applied axial loads;
however, the determination of the end support stiffness assumed that there were no other
sources of error present, and therefore should not be assumed to be correct. The
improvement of the results does suggest the possibility that the support stiffness was a
cause of error. Comparing Figures (5.42) and (5.43) with Figures (5.15) and (5.16), the
finite support stiffness had a noticeable effect on the mode 7 and mode 8 frequencies, but

almost no effect on the lower modes.

99



Chapter 6

Conclusion

The discrete mass model and continuous model predict nearly identical
frequencies for various axial loads and lateral stiffnesses. Both models confirm that the
pinned-pinned mode of vibration is independent of the intermediate support stiffness.
While the continuous model predicts more accurately the mode shapes of a beam, the
discrete mass model is computationally more efficient.

Analysis of vibration measurements shows that the mode shapes of a beam on
multiple elastic supports are clearly identifiable. The closeness of the first two natural
frequencies of the beam resulted in measurement of a mixed mode shape. Both phase and
magnitude of the higher modes compared well with theoretical mode shapes.

The effect of axial load on natural frequencies was determined experimentally and
found to compare well to theoretical frequencies. Although measured frequencies were
close to theoretical values, the small change in frequencies with increased axial load led

to an average error of 13.6 kips in estimated loads. The estimated loads were consistently
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higher than the applied loads since the theoretical frequencies for the 8th mode were
consistently higher than the measured frequencies. The effect of a finite end support
stiffness was considered, and determined to be a possible source of error. Another source
of error is the 1 Hz frequency resolution of the spectrum analyzer which was necessary
for the 400 Hz frequency range to be measured.

The effects of shear and rotatory inertia were investigated and found to be
significant for the higher modes of vibration. A shear factor was derived which is
multiplied with the frequencies of a pinned-pinned Bernoulli-Euler beam subject to axial
load. For both the discrete and continuous models, the shear factor derived is exact only
for the pinned-pinned mode of vibration, and can be considered only an approximation
for other modes. Shear effects are even more significant for track rails, which have larger
radii of gyration than the beam tested in this experiment .It is recommended that future
research use Timoshenko beam theory in the development of a discrete or continuous
model. A discrete model could also use a dynamic stiffness matrix instead of one based
on static deflections.

Future experiments can account for the effects of end support conditions by either
using experimentally determined stiffnesses in the beam model or by using longer beams
so that the end support stiffness has less effect on beam vibrations.

It is also recommended that the analyzer used in future experiments be capable of
fine frequency resolution due to the small change in frequency with respect to increased

axial load.
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Appendix A

Derivation of Shear Factor

dx

Fig.(A1.1) Differential Beam Segment Including Shear Deformation

The following derivation is similar to that given by Clough and Penzien (1975),

but extended to include the effect of axial load. Consider the differential beam segment

of Fig.(A1.1) which is subject to bending deformation and shear deformation. The angles
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o and B represent the rotation due to bending and the shear distortion of the segment,

respectively. o and P are related by

ov
p=a-— (A1.1)

ov
where — is the slope of the elastic axis. Summation of vertical forces gives

ox
o’v oV
mydxzv—(v+gdx) (Al1.2)
or
a7 T (AL3)
Letting
V=K'AGp , (Al.4)

where k’A is the shear area of the section and G is the shear modulus, substitution into

equation (A1.3) gives

TV eac® ALS)

Taking the partial derivative of equation (Al1.1) with respect to x and using equation
(A1.5) gives

a  0'v m o°v
& _ ox’ KAG at? (AL6)

Summing moments about the left end of the segment at the centroid gives
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220 e M- v Dgoax+ X a AL7
mr’ —-dx =— —dx) - — — i
atZ X aX X) ( aX X) X+ a X , ( )

which is equivalent, as dx—0, to

o' , 000 v
EI¥=V+mr E;—P& (A1.8)
where
M=E A19
- ax ( M )

and r is the radius of gyration of the cross-section. Taking the partial derivative of

equation (A1.8) with respect to x and substituting equations (A1.5) and (A1.6) gives

"k (62V m ava_ av, Zi(azv m ava AR
ol wac ) "a ™ alad kacar) Tac A0
Rearranging and simplifying terms gives
o'v. v _oév ,, 8v Elm o'v m’r’d'v
EI P it 0 (AL1D)

ax M T ax X KAGacal  KAG &
The first two terms in equation (A1.11) represent the basic case of transverse vibration for
a Bernoulli-Euler beam. The third term represents the effect of axial load. The fourth
and fifth terms represent the effects of rotatory inertia and shear deformation,
respectively, and the last term represents a combined effect of shear deformation and

rotatory inertia.

For the case of a pinned-pinned beam, we assume a displacement of the form

V(x,t) = A sin[% x) sin(ot) (A1.12)
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which is identical to equation (2.16) which was derived for a pinned-pinned beam on a

Winkler foundation. Substituting equation (A1.12) into equation (A1.11) gives

nmw 4 P {nm 2 nm E E
A _ 4___ _ 4_2 2 4 2 4_ 2 =0 '1
[L) a EI(L) ar(LJ[”k'Gj”r(m k‘G] (AL13)

where
4 l‘n(Dn2
- Al.14
4T (AL.14)
Since
nm )
Y| — Al.15
a [Lj . (ALL5)

which is a small number for the cases under consideration, the last term in equation

(A1.13) is much smaller that the other terms, and can be ignored. Omitting this term and

solving equation (A1.13) for a* gives

1 (A1.16)
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Equation (A1.17) represents the natural frequency of a pinned-pinned beam subject to an
axial load, including the effects of shear deformation and rotatory inertia. Equation

(A1.17) can be rewritten as

(A1.18)

e
I
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—N
g | —
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)
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k]
~—
|
e
=
| §
~—
| |
o] —

where

[ A
D, :L1+r2(£§j (1+ kjEG]J (A1.19)

The bracketed expression in equation (A1.18) represents the frequency of a pinned-
pinned Bernoulli-Euler beam with axial load. @, is a frequency reduction factor which
accounts for the effects of shear deformation and rotatory inertia. The shear factor, @,
is a function of the beam cross-section properties as well as the mode of vibration. As
equation (A1.19) indicates, the effect of shear and rotatory inertia increases with mode

number.
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Appendix B

Discrete Mass Model Code

The computer program, discrete.m, contained in this appendix was written for
MATLAB. The program determines frequencies and eigenvectors for a continuous
Bernoulli-Euler beam with a compressive axial load on equally spaced elastic supports.
The program assembles mass and stiffness matrices for the discretized system. The
stiffness matrix is reduced to include only transverse degrees of freedom. Frequencies
and eigenvectors are sorted according to mode number. Frequencies are calculated for
various axial loads. Discrete mass model frequencies are plotted vs. axial load and
compared to Winkler foundation model frequencies. Data for mesh plots in Fig.(3.11) to
Fig.(3.18) are generated by using the program, discrete.m, in this appendix with various

intermediate support stiffnesses.
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% discrete.m - THIS MATLAB PROGRAM CALCULATES NATURAL

% FREQUENCIES FOR A CONTINUOUS BEAM WITH A COMPRESSIVE AXIAL
% LOAD AND EQUALLY SPACED LATERAL SUPPORTS USING A DISCRETE
% MASS APPROXIMATION

numsprings = 9 : % NUMBER OF SPRINGS (INCLUDING END SPRINGS)
L=192 ;% LENGTH OF MEMBER (inches)

[=0.764 % MOMENT OF INERTIA OF SECTION (in."4)

A=226 ;% AREA OF CROSS-SECTION (in."2)

E =29000. : % ELASTIC MODULUS OF MEMBER (ksi)

rho =.000283 . % WEIGHT DENSITY OF STEEL (k/in."3)

g =386 % ACCELERATION DUE TO GRAVITY (in./s"2)
kdefault = 5.4 : % DEFAULT SPRING STIFFNESS (k/in.)

springs = kdefault*ones(numsprings, 1);

% SPECIFY SPECIFIC SPRING STIFFNESSES AFTER THIS LINE #*#sxicksdoocik
springs(1) = 10000000; %*
springs(numsprings) = 10000000; %*

%**********************************************************************

n = 8*(numsprings-1)+2; % DEG. OF FREEDOM OF INITIAL SYSTEM

numelements = n/2-1; % NUMBER OF BEAM ELEMENTS TO BE
% ASSEMBLED
dof = numelements+1; % DEG. OF FREEDOM OF REDUCED SYSTEM
1 = L/numelements; % LENGTH OF ELEMENTS BETWEEN MASSES
kspacing= L/(numsprings-1); % DISTANCE BETWEEN SPRINGS
num_modes = §; % NUMBER OF MODES TO RANK
Pmin = 0.01; % SMALLEST LOAD TO APPLY TO SYSTEM
Pmax = 2*sqrt(kdefault*E*I/kspacing; % LARGEST LOAD TO APPLY TO SYSTEM
num_loads = 30; % TOTAL NUMBER OF LOADS TO APPLY TO
% SYSTEM

P = linspace(Pmin,Pmax,num_loads);
% INITIALIZE MATRICES
WFREQ = zeros(num_modes, num_loads);

DMFREQ = zeros(num_modes, num_loads);

for c=1:num_loads
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Kel = zeros(4,4);

k = sqrt(P(c)/(E*D);

% STABILITY FUNCTIONS

phic = 2-2*cos(k*1)-k*1*sin(k*1);

phil = (k*1)"3*sin(k*1)/(12*phic);

phi2 = (k*1)"2*(1-cos(k*1))/(6*phic);

phi3 = k*I*(sin(k*1)-k*1*cos(k*1))/(4*phic);
phi4 = k*1*(k*1-sin(k*1))/(2*phic);

alpha = E*I/1"3;

Kel(1,1) = alpha*12*phil;
Kel(1,2) = alpha*6*1*phi2;
Kel(1,3) = -alpha*12*phil;
Kel(1,4) = alpha*6*1*phi2;
Kel(2,2) = alpha*4*1"2*phi3;
Kel(2,3) = -alpha*6*1*phi2;
Kel(2,4) = alpha*2*1"2*phi4;
Kel(3,3) = alpha*12*phil;
Kel(3,4) = -alpha*6*1*phi2;
Kel(4.,4) = alpha*4*]"2*phi3;
Kel(2,1)=Kel(1,2);

Kel(3,1) =Kel(1,3);

Kel(3,2) = Kel(2,3);

Kel(4,1) = Kel(1,4);

Kel(4,2) = Kel(2,4);

Kel(4,3) = Kel(3,4);

Kglobal = zeros(n,n);
for a=1:numelements

b=2*a-1;

Kglobal(b:b+3,b:b+3) = Kglobal(b:b+3,b:b+3)+Kel;
end

% ADD SPRING STIFFNESSES TO STIFFNESS MATRIX * ki ikodokdokdokododokokokokodod
for a=1:8:n-1
% THE FOLLOWING LINE MUST BE MODIFIED IF NUMBER OF SPRINGS OR
% BEAM ELEMENTS IS CHANGED
Kglobal(a,a) = Kglobal(a,a) + springs((a+7)/8);
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end

% REDUCE KglObal ok sk sk ok ok ok ke sk ok sk sk sk sk st sk ok sk ke sk ok sk ok ok sk sk sk sk sk ok sk sk ok ok ok ok ok sk sk s ok e ke ke ke sk sk skosk sk ks sk ke k

F = zeros(n,dof);
for a=1:dof

F(2*a-1,a) = 1;
end

Dglobal = Kglobal\F;
D = Dglobal(1:2:n-1,:);
K = inv(D);

% CREATE REDUCED MASS MATRIX %% % s sk s st sho e sk o s ok kol s ook s sk oo o koo o
M = diag(ones(dof, 1));

M(dof.dof) = 0.5;

M = (A*rho*1/g)*M;

[x,values] = eig(K,M);
omega?2 = diag(values);

% RANK FREQENCIES ACCORDING TO MODE SHAPE ###3 ¥k s dksok s koo
for a=1:dof
count=1;
for b=2:dof-2
if x(b,a)*x(b+1,a)<=0
if x(b,a)~=0
count = count + 1;
end
end
end
mode(a) = count;
end

[dummy,rank] = sort(mode);
freq = sqrt(omega2(rank))/(2*pi);

% ADD SORTED FREQUENCIES TO DMFREQ
DMFREQ(:,c) = real(freq(1:num_modes));

% GENERATE FREQENCIES FOR WINKLER FOUNDATION MODEL ###*#skk x4k
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for d=1:num_modes
WFREQ(d,c)=sqrt((E*I*(d*pi/L)4-
P(c)*(d*pi/L)"2+kdefault/kspacing)*g/(A*rho))/(2*pi);
end

end

plot (P, WFREQ(1:4,:),'b--',P,DMFREQ(1:4,:),’k-")

title("Winkler(--) and Discrete Mass(-) Frequencies vs. Load for n=1-4)
xlabel(' Axial Load (kips)')

ylabel('Frequency (Hz)")

grid

pause

plot (P, WFREQ(5:8,:),'b--',PL, DMFREQ(5:8,:),’k-")

title('Winkler(--) and Discrete Mass(-) Frequencies vs. Load for n=5-8")
xlabel("Axial Load (kips)")

ylabel('Frequency (Hz)")

grid
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Appendix C

Continuous Model Code

The computer program, contin.m, contained in this appendix was written for
MATLAB. The program determines frequencies and eigenvectors for a continuous
Bernoulli-Euler beam with a compressive axial load on equally spaced elastic supports.
The program uses a continuous model which yields an exact solution for Bernoulli-Euler
beam theory. The program assembles a characteristic matrix, CM, the determinant of
which is zero for natural frequencies of vibration. Natural frequencies are determined
through an iterative process by calculating det(CM) for incremental values of frequency,
o, until the determinant experiences a sign change. The method requires a very small
frequency increment. To significantly reduce the run time of the program, initial values
for frequency iteration are determined based on discrete mass model frequencies
calculated with the program discrete.m (Appendix 2). contin.m requires the variables P
(applied axial loads) and DMFREQ (discrete model frequencies) which are calculated in
discrete.m. Frequencies and eigenvectors are sorted according to mode number.
Frequencies are calculated for various axial loads. Continuous model frequencies are
stored in the matrix CMFREQ. The program plots the mode shape for each natural

frequency determined.
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% contin.m - THIS PROGRAM CALCULATES NATURAL FREQUENCIES OF A
% CONTINUOUS BEAM WITH A COMPRESSIVE AXIAL LOAD ON EQUALLY
% SPACED ELASTIC SUPPORTS. THE PROGRAM USES A CONTINUOUS

% MODEL WHICH GIVES AN EXACT SOLUTION FOR BERNOULLI-EULER
% BEAM THEORY

% INPUT VARIABLES

s sk se sk 3 5k ok ok % oK ok 3k ok sk sk sk s ok ok e ok ok ok ok ok sk ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk ko ok stk ok sk sk sk ok sk sk skok sk skok ok sk skok ok kok ok k ok ok ok
numsprings=9; % NUMBER OF SPRINGS (INCLUDING END SPRINGS)
L=192; % LENGTH OF MEMBER (inches)

1=0.764; % MOMENT OF INERTIA OF SECTION (in"4)

A=226; % AREA OF CROSS-SECTION (in"2)

E =29000.; % ELASTIC MODULUS OF MEMBER (ksi)

tho = .000283; % WEIGHT DENSITY OF MEMBER (k/in"3)

g = 386; % ACCELERATION DUE TO GRAVITY (in/s"2)

kdefault = 2.7; % DEFAULT SPRING STIFFNESS (K/in)

krotdefault = 0; % DEFAULT ROTATIONAL SPRING STIFFNESS (k-in/in)

num_modes = §; % NUMBER OF MODES TO EVALUATE
k = kdefault*ones(numsprings,1);
% DESIGNATE SPECIFIC SUPPORT STIFFNESSES AFTER THIS LINE ## s

k(1) = 10000000; %*
k(numsprings) = 10000000; %*

%*********************************************************************

krot = krotdefault*ones(numsprings,1);

% DESIGNATE SPECIFIC ROTATIONAL STIFFNESSES AFTER THIS LINE

numelements = numsprings-1; % NUMBER OF BEAM ELEMENTS

1 = L/numelements; % LENGTH OF EACH ELEMENT

m = A*rho/g; % MASS OF BEAM PER UNIT LENGTH
El = E*I;

n4 = 4*numelements;
deltaf=.01; % INCREMENT OF f

% INITIALIZE FREQUENCIES
CMFREQ=zeros(size(DMFREQ));

96**********************************************************************

for p=1:num_loads
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figure(1)
hold
grid

flag = 0;
mode_count = 0;
test = -1;

while mode count < num_modes
fmin = (DMFREQ(mode_count+1,p)-.2)*2*pi; % SMALLEST FREQUENCY TO
% EVALUATE
flag2 = mode _count;
if flag==20
f= fmin;
end

rootl = (-P(p) + sqrt(P(p)*2 + 4*EI*m*f"2))/2/EI;
root2 = (-P(p) - sqrt(P(p)*2 + 4*EI*m*£"2))/2/El;

% FOUR WAVE NUMBERS
lambdal = sqrt(rootl);
lambda2 = -sqrt(rootl);
lambda3 = sqrt(root2);
lambda4 = -sqrt(root2);

CM = zeros(4*numelements,4*numelements);

% SHEAR B.C.

shear(1) = k(1) + EI*lambdal”3 + P(p)*lambdal;
shear(2) = k(1) + EI*lambda2"3 + P(p)*lambda2;
shear(3) = k(1) + EI*lambda3"3 + P(p)*lambda3;
shear(4) = k(1) + EI*lambda4"3 + P(p)*lambda4;
CM(1,1:4) = shear(1:4);

% MOMENT B.C.

moment(1) = krot(1)*lambdal - E[*lambdal”2;
moment(2) = krot(1)*lambda2 - EI*lambda2"2;
moment(3) = krot(1)*lambda3 - EI*lambda3"2;
moment(4) = krot(1)*lambda4 - EI*lambda4/2;
CM(2,1:4) = moment(1:4);
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for spring = 2:numsprings-1
x = [*(spring-1);
cl = exp(lambdal *x);
c2 = exp(lambda2*x);
c3 = exp(lambda3*x);
c4 = exp(lambda4*x);

% SHEAR B.C.

shear(1) = (-EI*lambdal”3 +k(spring))*cl;

shear(2) = (-EI*lambda2"3 +k(spring))*c2;

shear(3) = (-EI*lambda3"3 +k(spring))*c3;

shear(4) = (-EI*lambda4"3 +k(spring))*c4;

shear(5) = EI*lambdal”3*cl;

shear(6) = EI*lambda2"3*c2;

shear(7) = EI[*lambda3"3*c3;

shear(8) = EI*lambda4"3*c4;
CM(4*(spring-1)-1,(spring-2)*4+1:(spring-2)*4+8) = shear;

% MOMENT B.C.

moment(1) = (E[*lambdal”2 + krot(spring))*cl;

moment(2) = (EI*lambda2/2 + krot(spring))*c2;

moment(3) = (EI*lambda3”2 + krot(spring))*c3;

moment(4) = (EI*lambda4”2 + krot(spring))*c4;

moment(5) = -El*lambdal”2*c1;

moment(6) = -El*lambda2"2*c2;

moment(7) = -EI*lambda3"2*c3;

moment(8) = -EI*lambda4"2*c4;
CM(4*(spring-1),(spring-2)*4+1:(spring-2)*4+8) = moment;

% DEFLECTION B.C.
def = [cl ¢2 ¢3 ¢4 -cl -c2 -c3 -c4];
CM(4*(spring-1)+1, (spring-2)*4+1:(spring-2)*4+8) = def;

% SLOPE B.C.

slopel = [lambdal*cl lambda2*c2 lambda3*c3 lambdad*c4];

slope = [slopel -slopel];

CM(4*(spring-1)+2,(spring-2)*4+1:(spring-2)*4+8) = slope;
end

x=L;
¢l = exp(lambdal *x);
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c2 = exp(lambda2*x);
c3 = exp(lambda3*x);
¢4 = exp(lambda4*x);

% SHEAR B.C.

shear(1) = (-k(numsprings) + EI*lambdal”3 + P(p)*lambdal)*cl;
shear(2) = (-k(numsprings) + EI*lambda2"3 + P(p)*lambda2)*c2;
shear(3) = (-k(numsprings) + E[*lambda3"3 + P(p)*lambda3)*c3;
shear(4) = (-k(numsprings) + EI*lambda4"3 + P(p)*lambda4)*c4;
CM(4*numelements-1,4*numelements-3:4*numelements) = shear(1:4);

% MOMENT B.C.

moment(1) = (krot(numsprings)*lambdal + El*lambdal”2)*cl;
moment(2) = (krot(numsprings)*lambda2 + EI*lambda2"2)*c2;
moment(3) = (krot(numsprings)*lambda3 + EI*lambda3"2)*c3;
moment(4) = (krot(numsprings)*lambda4 + EI*lambda4”2)*c4;
CM(4*numelements,4*numelements-3:4*numelements) = moment(1:4);

% CALCULATE DETERMINANT OF CHARACTERISTIC MATRIX
dete = det(CM);

deter = sign(real(dete))*log(abs(real(dete)));

dem = [dem deter];

% CHECK IF DETERMINANT PASSES THROUGH ZERO
if deter*test <=0
if flag ==
CMsub = CM(2:n4, 2:n4);
rowl = -CM(2:n4,1);
C = CMsub\rowl;
C=[1;C};
for el=1:numelements
x = linspace((el-1)*1, el*1, 13);
if el == numelements
smax = 13;
else
smax = 12;
end
for s = 1:smax
shape((el-1)*12+s) = C((el-1)*4+1)*exp(lambdal *x(s)) + C((el-
D*4+2)*exp(lambda2*x(s)) + C((el-1)*4+3)*exp(lambda3*x(s)) + C((el-
1)*4+4)*exp(lambda4*x(s));
end
beam = linspace(0, L, 12*numelements+1);
end
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% PLOT MODE SHAPE
shape=real(shape./max(abs(shape)));
plot(beam, shape,'d")

axis([0 L -1.1 1.1])
title(num?2str(f/2/pi))

freq = [freq 1/2/pi];
test = deter;
fre =t/2/pi;
mode count =mode count + 1;
CMFREQ(mode count,p)=fre;
[p mode_count]
flag=0;
else
test= -test;
end
end

if flag2 < mode_count
flag = 0;

else
flag=1;

end

hz = [hz {/2/pi];
f = f+deltaf;
end

%pause

%clf

end
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Appendix D

Data for Mode Shape Determination in Section 5.4

Data contained in this section were used for the sample mode shapes determined
in section 5.4 . These data were recorded for a 20 kip axial load and an intermediate
support stiffness of 2.7 kip/in. . Each page contains a coherence, FRF, and phase trace
for measurements taken at one of the 16 measurement positions along the length of the
test beam. Odd numbered positions were 5 in. to the right of a support and even
numbered positions were midspan between supports. FRE’s are plotted on a logarithmic
scale. Each FRF is an average of 3 measurements. The coherence plots are a measure of
the correlation between the 3 measurements where a coherence of 1 indicates a perfect

correlation and a coherence of 0 indicates no correlation.
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Appendix E

Driving Point FRF’s

Data contained in this section correspond to the driving point FRF’s (FRF’s for
which excitation is at the same position as the response measurement). These data were
used to determine axial loads and support stiffnesses. FRF’s are plotted on a logarithmic
scale. Fach FRF is an average of 3 measurements. The coherence plots are a measure of
the correlation between the 3 measurements where a coherence of 1 indicates a perfect

correlation and a coherence of 0 indicates no correlation.

137



Driving Point Measurements for k =2.7 kip/in.
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Driving Point Measurements for k =2.7 kip/in. ,P=15 kips
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