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IMPROVING THE VIBRATIONAL PERFORMANCE OF
WOOD FLOOR SYSTEMS
By

Robert E. Kalkert

James D. Dolan and Frank E. Woeste, Co-Chairman
Wood Science and Forest Products
(ABSTRACT)

A displacement-based Rayleigh-Ritz finite element model is developed to simulate
the static and dvnamic behavior of stiffened plates. By comparing natural frequency;,
time-history, and power density predictions with experimental results, it is shown
that the model can be used to predict the vibratory behavior of wood floor systems
constructed with either solid-sawn joists, I-Joists, or parallel-chord-trusses. Further-
more. using the model, it is shown that appropriate structural modifications can be
used to improve the performance of wood floor systems by increasing natural fre-
quency and reducing peak time-history velocity. Using the techniques described. a

design example is included that indicates how floor acceptability can be achieved.
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Chapter 1

Introduction

1.1 Background

Wood floor systems are complex from a structural analysis standpoint. Because of
the complexity. researchers in the early 1800°s began suggesting stiffness criteria to
ensure safetyv based on personal and group experience. These criteria were based
on limiting the live-load deflection of a supporting beam to the span divided by a
suggested number (i.e. L/480). During the 1930’s, an additional reason for prescribing
a stiffness criterion was to limit plaster ceiling cracks that were a result of excessive
beam deflection. By this time. the now common L/360 criterion for floor joists had
been adopted. In the 1940’s it had become an issue that this rule-of-thumb criterion
was not supported by data. By the 1950’s. research had suggested that L/360 did
not ensure sufficient vibrational serviceabilityv?,

The 1960's saw a beginning to both static and dvnamic analyses that would ulti-
matelv challenge the legitimacy of the L /360 criterion. Research investigating static

response was prompted not only by a non-engineered design approach (as previously

'Based on Percival (1979).
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explained). but also by economics. Econoniics plaved an instrumental role in the
development of static research programs since by better predicting a wood floor’s
performance. more efficient designs could be implemented to reduce overall housing
costs. Also. the preservation movement forced researchers to look at more efficient
designs so that the current and future wood resources could be better utilized.

Taken as a whole. static response research found that the L/360 criterion and
others like it (based on experience rather than data) were overly conservative from
a safetv standpoint. This led. in many cases. to a suggested reduction in materials.
and/or an increase in allowable member strength. At the same time, engineered wood
products were heing developed. tested. and implemented in design. These products
made it possible to span greater distances with a decrease in material. and therefore
weight. In essence. these two movements combined to provide a basis for structural
design that vielded floors with decreased mass and in many cases. longer spans. As
these more “efficient” designs were being impleménted. it was found that there was
an increase in complaints due to annoying floor vibrations. This is when dvnamic
response research apparently began to blossom; in response to consumer complaints
that were a direct result of less conservative designs.

Currently. wood structures in the United States are still being designed with a
static approach that accounts for safety but does not account for vibrational service-
ability. Therefore. it is not surprising that annoying vibrations are still common and
of great concern to both building designers and building occupants. Rather than pro-
pose a design criterion. this dissertation will investigate potential ways of improving
floor performance through the use of basic construction techniques. The investigation

will be facilitated by the development of a finite element model that simulates the
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behavior of wood floor svstems.

1.2 Objectives

Regarding the vibrational performance of wood floor svstems, the objectives of this

research are to:
e Quantify the effects of potential performance improvement techniques.
e Determine the optimal performance improvement technique conditions.

e Show how the optimized performance improvement techniques can be used to

design serviceable floors.

1.3 Significance

Accounting for the vibrational response of wood floors is important from a service-
ability standpoint in that it can aid the designer in achieving a comfortable structural
environment. As the concept of “perceived quality” becomes more dominant in the
consumer psvche. it will become increasingly necessary to ensure that products per-
form at an adequate comfort level. If steps are not taken to address and design

for vibrational serviceability. further consumer complaints and lawsuits are likelv to

result.



Chapter 2

Literature Review

2.1 Introduction

This chapter reviews literature pertinent to the subject matter of wood floor svstems.
The chapter is divided into static and dyvnamic performance sections. and each of
these sections is divided further based on experimental/theoretical and numerical
analyvsis. In addition. steel and concrete issues that parallel wood systems will be

discussed.
2.2 Static Performance

2.2.1 Experimental/Theory

This part of the literature review describes important issues that pertain to the un-
derstanding of how wood floor svstems hehave when subjected to static loads. The
important issues that will be described in this section are: composite action. load

sharing. connection behavior. and the effect of bridging.
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2.2.1.1 Composite Action

Composite action can be considered the interaction between two connected materi-
als as a result of an applied force. In wood floor syvstems. composite action is most
evident between the sheathing and floor joists. and has long been recognized as a phe-
nomenon that must be taken into account to properly predict wood floor performance
(Goodman et al.. 1974: McCutcheon. 1977). The primary motivation for quantify-
ing composite action has been to account for the phenomenon in numerical models
that predict floor performance. In these instances. composite action has either been
determined explicitly or accounted for through a slip/spring/stiffness constant.

McCutcheon (1977) explicitly determined composite action through a T-beam
analvsis using basic material properties and load/slip values for the sheathing-joist
connection based on experimentally verified theoretical equations determined by Wilkin-
son (1972). The analysis also took into account the effects of sheathing gaps along
the length of the beam by assuming thev were open (discontinuities) and did not
transmit any stiffness to the svstem. Jizba (1978) later developed a way to estimate
gap stiffness. and these values were then used in at least two computer numerical
models: FEAFLO (Thompson et al.. 1977) and NONFLO (Wheat et al.. 1983).

In addition to explicit determination. composite action can be accounted for by a
slip/spring/stiffness constant. For example. Sliker (1972) determined empirically from
experimental tests that the rotational spring constant was 3370 N-m (29830 1b-in) for
nails with diameter 4.0 mm (0.159 in) and shank length of 38 mm (2-5/16 in) spaced at
200 mm (8 in) through a 16 mm (5/8 in) plvwood sheathing. Vanderbilt et al. (1974)

used a slip modulus of 5.25D6 N/m (3.0D4 Ib/in) as a “tvpical” practical value in
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their mathematical model and stated that 1.75D9 N/m (1.0D7 Ib/in) represented full
composite action whereas 0 N/m (0 Ib/in) represented zero composite action. As will
be seen later in the numerical analvsis section. composite action is shown to be a very

important feature of floor performance.
2.2.1.2 Load Sharing

Load sharing (or two-way action) in wood floor systems can be considered the transfer
of loads from one joist to the adjacent joist or joists. However, throughout the
world. many different interpretations of this basic concept have been formed. For
example. whereas the British code defines a load sharing svstem as “where four or
more members can be considered to act together to support a common load”. the
Australian Standard specifies “parallel support systems . ..comprised of two or more
elements. . . effectively connected so that all the elements are constrained to the same
deformation”™ (Levin. 1975).

In the United States of America, load sharing has been addressed and can be seen
in design where an increase of 15% is given to the allowable bending stress, Fj. if
there are three or more members spaced a maximum distance of 0.6 m (24 in) apart,
assuming adequate sheathing (or load distribution elements) (NDS 1991). Although
this is warranted since catastrophic failures in wood syvstems seldom occur. it may
have serious limitations in that it may still vield conservative values for some floors
(Bulleit. 1991). For example. Polensek et al. (1972) experimentally tested forty-four
wood-joist floor svstems and determined that two-thirds of a 1334 N (300 Ib) midspan
joist load was distributed to primarily six and sometimes eight adjacent joints. These

loads decreased as distance from the loaded joist increased. It was also concluded
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that an increase of concentrated load from 1334 N to 1868 N (300 1b to 420 1b) did
not change the number of joists that deflected. Wheat et al. (1986a) explains that
load sharing increases the floor stiffness over bare-joist stiffness due to the presence
of the sheathing.

Li (1993) experimentally tested 4.88 m x 4.88 m (16 ft x 16 ft) floors and found
that the vast majority of a 2667 N (600 Ib) load was carried by joists three or less
joist spacings away from the loaded joist. It was also found that a higher coefficient
of variation of the joist modulus of elasticity generallyv caused a higher variation in
the load sharing capacity. In comparing a 50 mm x 300 mm (2 in x 12 in) southern
pine floor. and a 50 mm x 300 mm (2 in x 12 in) I-Joist floor. the material weight
was shown to have no significant effect on the load sharing capacity. The material
weight of southern pine was taken as 250 N/m? (5.2 1b/ft?). and the material weight

of the I-Joist(s) was taken as 189 N/m? (3.9 1b/ft?).
2.2.1.3 Connection Behavior

It is well known that in the majority of cases, the connections that hold together
structural components form the weakest links in a structure. Therefore. knowledge of
the connection(s) should provide information about how the structure reacts under
load. The two primary tvpes of connections used in wood floor svstems to connect

the sheathing and joists are nails and adhesives.
2.2.1.3.1 Nails

Foschi (1974) developed a non-linear load-slip analysis that showed good agreement
when compared to experimental results. It was concluded that linear approximations

were not accurate in predicting ultimate nail loads. Foschi and Bonac (1977) then
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extended the analyvsis to include load-slip characteristics for different connections.
Between these two studies. McLain (1975) developed an empirical curvilinear equation
accounting for nail non-linearity that was based on experimental results. While each
of the before mentioned studies were based on a single tvpe of fastener. Erki (1991)
developed a non-linear model that could accept either a glulam rivet. nail. or bolt.
Relating to composite action. Wheat et al. (1986b) used McLain's (1975) equa-
tion to compare predicted nail forces based on twelve full scale test floors to NDS
allowable values. In addition. slip was measured between the sheathing and joists.
An important conclusion was that joist stiffness alone was not considered a good
predictor of relative nail slip throughout the floor system.
 Studies have shown that total floor deflection responds non-linearly to applied
loads due to the non-linear nature of the connections (Wheat et al.. 1985a; Foschi,
1985). However. both Wheat et al. and Foschi observed that floor deflection was
nearly linear in the range of loading considered for design. Whereas Foschi con-
cluded that a linear analvsis would adequately estimate floor response. Wheat et
al. remained cautious since joist responses prior to failure were extremely variable.
The complications of the linear assumption will be discussed in the numeric analvsis

section.
2.2.1.3.2 Adhesives

Serious attention to the use of adhesives in wood construction began in the early
1970°s. Both Goodman (1969) and McCutcheon (1977) observed that rigid ad-
hesives decreased the deflection of lavered beams and floor system joists respec-

tivelv. Studies by Vick (1971). Zornig and Vick (1974). Dong and Hovle {1976).
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Hovle and Hsu (1978). and Hsu and Hovle 1978) looked into the properties of elas-
tomeric construction adhesives and the validity for using them in wood construction.
While some adhesives were found to he better than others. there was a definite poten-
tial for the outstanding adhesives to be implemented in wood design. For example.
McGee and Hovle (1974) concluded that useful composite action is possible with elas-
tomeric construction adhesives. Hovle (1976) later went on to suggest that adhesives
with a shear modulus of 6.9D5 Pa (100 1b/in?) or greater have such potential. In
1988. Hovle (1988a. 1988b) developed and validated a design method to determine

the allowable properties of nail/adhesive joints.
2.2.1.4 Bridging

Bridging has long been thought to be a way to increase the performance of wood floors.
The National Association of Home Builders (NAHB) undertook an extensive studyv
of bridging and made numerous conclusions (NAHB. 1961). Important conclusions
included: 1) lateral load distribution (load sharing) in cross- and solid- bridging is
approximately the same within the 1112 N to 1557 N (250 1b to 350 Ib) concentrated
load range. 2) lateral load distribution (load sharing) increases as the depth of the
joist increased. 3) both forms of bridging when used alone (without subfloor. finish
floor. etc...) were effective in transferring lateral load: however. when a subfloor was
attached. the effect of the bridging was greatly reduced. and 4) bridging plaved a
minor role in reducing the floor joist deflection subjected to a concentrated load.
These conclusions. among others. led to the ultimate conclusion that bridging (cross
or solid) did not serve a “useful” purpose in the distribution of concentrated static

lateral loads (load sharing) or in the reduction of deflection. In addition to NAHB.
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Ohlsson (1988c) also found cross-bridging to be ineffective at increasing the stiffness
and thus performance of wood floors.

Stark (1993) experimentally investigated several varieties of bridging mechanisms
for wood floors. including: cross-bridging. solid-blocking. post-tensioning. strong-back
bracing. steel X-bracing. and bottom-chord-bracing. While the first three mechanisms
were considered for solid-sawn floors. the latter three mechanisms were considered for
parallel-chord-truss floors. Taken as a whole. it was concluded that the bridging
mechanisms were capable of enhancing the load sharing capacity of the floors inves-

tigated.

2.2.2 Numerical Analysis
2.2.2.1 FEAFLO
2.2.2.1.1 Development Of FEAFLO

The beginnings of an engineered methodology for static wood floor performance ap-
parently started with Goodman (1968, 1969). In these studies. small deflection theory
was utilized to predict the interlaver slip associated with layered beam systems. The-
oretical predictions. when compared to experimental interlayer slip results of a flat
loaded three-laver 19 mm x 286 mm (1 in x 12 in) beam, showed excellent agreement.
It was concluded that the effect of interlayer slip on deflection was significant.
Interlaver slip is generally accounted for through the idea of composite action
which is oftentimes denoted in numerical models by a slip modulus. For example.
Sliker (1972) utilized a computer program (Beam 3) to simulate joist deflections. In
this model, a slip modulus was used that represented 8d nails (4.0 mm (0.159 in)

diameter and 58 mm (2-5/16 in) length) at 200 mm (8in) nail spacings. In addi-
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tion. the plvwood floor was modeled such that horizontal force transmission could
be monitored. While some agreement was found in the results when compared to
experimental values of joist deflections. it was observed that two-way action was an
important part of floor deflection.

Utilizing the ideas of composite and two-way action. Vanderbilt et al. (1974) de-
veloped a mathemarical model based on a T-beam analvsis to predict the performance
of wood-joist floor syvstems at service loads. An important aspect of this research was
a parameter studyv that investigated the effects of varving important input variables.
For example, reducing the joist modulus of elasticity (MOE) from 13790 MPa to
6895 MPa (2.0 D6 1b/in® to 1.0 D6 l1b/in?) increased midspan deflections by 40%.

Goodman et al. (1974) used the model developed by Vanderbilt et al. (1974) to
further the parameter studies dealing specifically with composite and two-way action
based on varyving material properties. It was shown that approximately 33% of an
applied 1334 N (300 Ib) load was carried by the loaded joist with the adjacent joists
receiving most of the remaining load. It was also shown how an increase in sheathing
thickness. 19 mm to 25 mm (0.75 in to 1.0 in). caused an increase in two-way action
which resulted in the loaded joist receiving less load and the adjacent joists receiving
more load. Two-way action was suggested to be responsible for a “smoothing out™
effect that was seen for floor joist deflections (reduces variability).

Dawson and Goodman (1976) also used Vanderbilt's model. in conjunction with a
Monte Carlo simulation method. to evaluate joist deflections based on the variability
of materials. Important results from this study included the observation that hoth
the deflection distribution and maximum joist deflection increased in variability as

the joist MOE increased in variability. In addition. it was stated that as transverse
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sheathing stiffness lessens. there is greater deflection variability since there is less
composite action and load sharing present to offset the effects of joist MOE variability
(assuming similar MOE variabilities).

Utilizing the work described in this section thus far, Thompson et al. (1976)
developed a finite element model to analyze wood floor svstems (FEAFLO). The
model took into account interlaver slip. orthotropy, gaps at joints. and variability
of materials. The connections (nails) were modeled linearly and the joint gaps were

given an effective stiffness.
2.2.2.1.2 Results Of FEAFLO

Tremblay et al. (1976) developed a mathematical model based on Goodman's (1968)
work and incorporated it into a finite element solution technique based on Thomp-
son et al.’s (1976) FEAFLO work to predict joist deflections at overload conditions.
These predictions were made possible by the consideration of non-linear connection
slip moduli. variance of properties along the beam length, and the effects of sheath-
ing joints and gaps. Unfortunately, although the results were good, they were only
compared and verified against single double T-beam specimens.

Using FEAFLO as a basis. Sazinski and Vanderbilt (1979) developed two design
methodologies. The first methodologyv utilized a dimensionless chart and the sec-
ond utilized assemblyv tables. Although it was recognized that the assembly tables
would lead to the easiest implementation. certain assumptions built into the tables
showed that a designer must have a good understanding of floor behavior in order to

interpolate between table values.
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Schaefer and Vanderbilt (1983) compared FEAFLO computed deflections to those
found in twenty-two full size floor specimens that were tested during previous studies.
It was concluded that while FEAFLO produced an average error of +10%. a bare-joist
design produced an average error of +125%. These differences show the significance

of composite and two-wayv action on floor syvstem deflection.
2.2.2.2 NONFLO

NONFLO was developed by Wheat et al. (1983) on the basis of. and in response
to. FEAFLO. FEAFLO is based on the assumption of linear floor response: however.
this assumption is only valid for working load levels since non-linearity in deflections
and stresses is small. Above these levels. extending from overload to failure. the true
response of the floor is non-linear due mainly to connector deformation. Therefore.
it is the main purpose of NONFLO to provide a non-linear analvsis of wood floor
svstems. NONFLO utilizes a curvilinear load-slip equation determined by McLain
(1975) to account for this non-linearity. It was concluded that NONFLO was more
accurate than FEAFLO at near failure conditions.

In 1984. Wheat and Moody compared FEAFLO and NONFLO in order to develop
an equation relating the two models. The relation could potentially make it possible
to use FEAFLO for non-linear failure load analysis. The driving force behind this
studyv was that NONFLO was much more complex and expensive than FEAFLO. The

identified relation produced excellent results in FEAFLO. as compared to NONFLO.
2.2.2.3 FPL

FPL was developed by McCutcheon (1977) as a mathematical method for predicting

floor stiffness and thus floor deflection. The model was based on a T-beam analvsis
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and composite action was explicitly solved for: however. the model was limited to
individual beams since it did not account for two-way action. When computed de-
flections were compared to experimental mid-joist deflections. very good agreement
was found.

McCutcheon et al. (1981) essentiallv compared FEAFLO with FPL. Eleven differ-
ent floor configurations were considered and the computed deflections of both models
were compared to each other on the basis of a 1915 Pa (40 psf) uniform load. and
given material properties. For the most part. there was good agreement between
the two models. However, comparisons carried out to determine how distributions
of joist properties affect floor performance were not in agreement. Specifically. joist
variability could not be handled accurately by FPL since there was no provision in the
mode] to account for two-wayv action. As a result of both analyses. it was concluded
that composite action was sufficient enough to reduce computed deflections below
current design levels: therefore. design that does not account for composite action is

conservative from a safetv standpoint.
2.2.2.4 FAP

FAP was developed by Foschi (1982) and utilized the finite-strip method to study
wood floor behavior. While it was a linear analysis like FEAFLO, the author saw an
advantage over FEAFLO in that while FEAFLO restricted some degrees-of-freedom
(joist torsion and out-of-plane bending). FAP included them. Comparison of com-
puted deflections and experimental deflections were very good. As an application of
the model. Foschi looked at the effect of bridging on floor deflection. It was shown

that bridging did have an effect on deflection. and that the effect was an excellent
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indication that joist torsion and out-of-plane bending can not be neglected. Joist
MOE variation was also looked at. and it was concluded that bending stresses were
lower. and load was more uniform for floors with higher floor joist MOE uniformity-.

Foschi (1985) later used FAP to determine whether initial nail stiffnesses derived
from simple compression nail joint tests were representative of those derived from full
scale load/slip tests. This investigation was initiated by the author’s view that there
are experimental difficulties in measuring the small deformations at a nail location
and that an approximation mayv provide sufficient results. The simplification was
concluded to produce near optimal results for the 8d (4.0 mm (.159 in) diameter and
63.5 mm (2.5 in) length) nails tested. Other results of the study included: 1) floor
behavior was nearly linear up to first joist failure. 2) reliabilitv analvsis should be
based on first joist failure loads. and 3) first joist failure typically occurred in a joist
other than the weakest; this was due to load sharing and the relationship between

the MOE and the modulus of rupture (MOR).

2.3 Reliability

“Theoretical reliability analvsis is based on the relationship between two idealized
distributions. . . the distributions must be idealized because the computations relyv on
precise estimates of population density. .. these precise estimates come from the anal-
vsis and study of svstem behavior such as: two-way action, composite action. finite
element analvsis (linear). finite element analysis (non-linear). and multiple member
failures™ (Gromola et al.. 1991).

For ultimate reliability analvsis. it is necessary to define a failure criterion. For

example. while Foschi (1985) suggested that first joist failure loads should be used



Chapter 2. Literature Review 16

for reliability analvsis. Bulleit (1987) assumed ultimate load capacity to occur when
two adjacent members failed. The issue of whether to use tirst member failure loads
or post-first member failure loads in reliability analvsis is open to debate.

An important aspect of system reliabilityv is that analyvsis must focus on the syvstem
as a whole instead of single elements (Folz and Foschi. 1989). DeBonis (1980) stated
that simulation or numerical modeling techniques such as those by Vanderbilt et al.
(1974) and Goodman et al. (1974) could be used as an intermediate step in attaining
reliabilitv-based design.

Folz and Foschi (1989) developed a methodology for determining svstem modifi-
cation factors that when applied to a single member. would ensure reliability of the
entire svstem. The svstem factors accounted for load sharing. and were dependant
on the probability distributions of structural members and loading. as well as the
differences between single members and complete systems.

Rosowsky and Ellingwood (1991) examined Load Resistance Factor Design (LRFD)
concepts as applied to reliability-based wood design in light of duration of load effects
{DOL). It was concluded that by not including the DOL effect. “an overly optimistic

appraisal” of the syvstem would result.

2.4 Dynamic Performance

2.4.1 Experimental/Theory
2.4.1.1 Vibration Types

Vibrations can essentiallv be broken down into two categories: 1) steady-state (con-
tinuous). and 2) transient (damped). While steadyv-state vibrations are characterized

bv frequency and amplitude. transient vibrations are characterized by frequency. am-
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plitude and damping. Generally speaking. steady-state vibrations are a result of ro-
tating machinery. It has been found that transient vibrations result from the impact
of footfalls during normal walking (Wiss and Parmelle. 1984). Ohlsson (1982. 1988a)
has shown that there are two major ranges for footfall forces: a low frequency range
(0-6 Hz) and a high frequency range (6-50 Hz). Although the natural frequency for
short and medium span wood floors is in the higher range. long span wood floors mav
exhibit resonance vibrations due to the low frequency component (Ohlsson 1988a).
Murray (1991) suggests that a steel and concrete designer must be aware of the low

frequency component (below 3 Hz) to avoid resonance vibrations.
2.4.1.2 Defining Human Tolerance Levels

In order for a dynamic design criterion to have validity, it must be linked to some scale
of human perception to vibration. After all. perception is what nltimately governs the
response of annoving vibrations. Studies in this area have also led to an increase in
knowledge concerning the important characteristics of human perception of vibration.

With regard to steel and concrete floors, Reiher and Meister (1931) defined a
perception scale with six distinct thresholds based on frequency and peak deflection
from steady-state vibrations. Lenzen (1966) later used the Reiher and Meister (1931)
results and found that the peak deflection should be reduced by a factor of 10 for
transient vibrations lasting 5 cvcles or less. Allen (1974) defined a scale with the
threshold levels being dependent on the amount of critical damping.

For wood floors. Polensek (1970) reported a five step scale based on peak deflec-
tions and frequency as a result of transient vibrations lasting less than 1 second. Wiss

and Parmelle (1974) also studied human response to both steadv-state and transient
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vibrations and defined a five step scale. Atherton et al. (1976) used a scale of 1-
5 (larger annovance to smaller annovancej to evaluate human response. Last but
not least. Ohlsson (1982) defined a three step scale based on velocity response and
damping due to walking vibrations.

The qualitative results from these tests combine to show that human response
to transient vibration is dependent on frequency. amplitude. and damping. The
quantitative results from these tests are difficult to compare and evaluate. primarily
because thev have different vibration sources. different durations. and different scales.
In addition. comparison is difficult because it is well known that human response to
vibration is verv subjective (Wheeler. 1982: Irwin. 1978: Allen and Rainer. 1985).
Lack of sufficient data for studies prior to 1980 led Becker (1980) to suggest that

none of the scales had any absolute value.

2.4.1.3 Characterization Of Transient Wood Floor Vibrations
2.4.1.3.1 Frequency

Two important aspects of frequency that should be considered are fundamental fre-
quency and separation of adjacent natural frequencies. Polensek (1970) stated that
the fundamental frequency of residential wood floors built with solid wood-joists is
between 10 and 25 Hz. a sharp contrast from the common concrete and steel val-
ues of 5-8 Hz (Murray. 1991). Experimental laboratory results obtained by Ohlsson
(1982). Chui (1987). Hu (1992). and Li (1993) also show the fundamental frequency
to be in the 10-25 Hz range. Chui (1990) and Chui and Smith (1991) found that long
span I-Joist floors tended to have lower fundamental frequencies than those typically

associated with solid-sawn floors.
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Methods used in predicting wood floor natural frequencies have included grillage
models (Ohlsson. 1982). the Rayleigh-Ritz method (Smith and Chui. 1988). modal
svanthesis (Hu. 1990). and finite-strip analvsis (Filliatrault et al.. 1990). For steel
and concrete floors. fundamental frequency has been primarily predicted by T-beam
models where the corresponding fundamental frequency equation utilizes the trans-
formed moment of inertia of the T-beam (Lenzen. 1966: Allen. 1974: Nurrayv. 1991).
Frequency equations have also been developed for special loading situations such as
assembly occupancies (Allen et al.. 1983).

Determining the fundamental frequency of a floor is important since it has been
found that floor performance can be improved by raising the fundamental frequency
above a certain threshold level. For wood floors. Ohlsson (1982) and Smith and Chui
(1988) found the threshold level to be 8 Hz. and Johnson (1994) and Shue (1995)
found the threshold level to be 15 Hz. Raising the fundamental frequency above
8Hz is beneficial for two reasons: 1) humans are very sensitive to frequencies in the
4-8 Hz range. with the highest annovance occurring at approximately 5 Hz (Grether.
1971). and 2) at frequencies below 8 Hz there is a possibility of resonance due to
human activities (Ellingwood and Tallin, 1984). For steel and concrete floors. there
has been little suggestion of threshold levels for frequency, apparently due to the fact
that many of the floors are within the highest annovance frequency range (4-8 Hz).
However. for occupancy loading. Allen et al. (1985) have suggested minimum natural
frequencies for solid concrete and steel-joist concrete slab floors to he above 7 Hz and
9 Hz respectively for dance floors and gyvmnasia. and above 5 Hz and 6 Hz respectively
for stadia assuming limited peak acceleration’s.

Separation of adjacent natural frequencies is also an important way to help en-
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sure adequate vibrational serviceability. When joists are spaced to close together.
or when the width of a floor is greater than its span. a reduction in the spacing be-
tween resonance frequencies may occur (Chui. 1986). This reduction in spacing can
become a problem since closelv spaced modes of vibration can interact to produce
high amplitudes (Ohlsson, 1982; Filliatrault et al.. 1990).

Smith and Chui (1988) and Filliatrault et al. (1990) have found that both the
introduction of bridging and reduction of orthotropic stiffness of the floor increase
the separation of natural frequencies of adjacent modes and therefore improve floor
performance. Although a minimum separation has not been determined. the further
apart the frequencies. the hetter the floor performance. Ohlsson (1982) has suggested

that the frequencies should be separated by at least 5 Hz.
2.4.1.3.2 Amplitude

Amplitude has been expressed by researchers in three ways: 1) displacement. 2)
velocity. and 3) acceleration. It is an important parameter, and it is generally believed
that floor performance can be improved by reducing the amplitudes of floor response.
Atherton et al. (1976) found that deflection was the best single indicator of both
single impact and walking floor vibrations. Atherton et al. (1976) also concluded
that the static and geometric characteristics of the floor systems tested were not
good indicators of human response.

Velocity has been extensively used by Ohlsson (1982, 1984. 1988a. 1988b. 1991) to
account for amplitude. Justification for using velocity has been that it is believed to be
the parameter that best describes human disturbance above 8 Hz (Ohlsson. 1988: ISO.

1987). Other evidence by Allen (1974) suggests that from 3-8 Hz, annovance follows a
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constant acceleration criteria. while above & Hz. annovance follows a constant velocity
criteria. In other words. the acceleration needed to produce an annoving vibration
is the same at 3 Hz as it is at 8 Hz. assuming equal damping (the same follows for
velocity).

Acceleration has been used a great deal mainly because it is easily measured. and
has been found to correlate well with human tolerance to vibration. especially root
mean square acceleration (RMS). Chui {1988) has used RMS acceleration as pre-
scribed by the British Standards Institute (1984). Acceleration has been successfully
utilized in accounting for amplitude in steel and concrete structures mainlyv because
the frequency of these floors is in the 3-8 Hz range. For wood floors however. acceler-
ation may not be the best measure since as previously mentioned. it is believed that

velocity vields a better description of annovance to vibration above 8 Hz.
2.4.1.3.3 Damping

Damping is an important parameter since it is responsible for dissipating energv.
An increase in damping should improve floor performance by limiting the number
of cvcles and duration of vibration. as well as reducing peak amplitudes (Polensek.
1988). However. near optimum joint damping may result in loose joints which are
unacceptable from a structural standpoint (Ungar, 1973); thus too much damping
may be detrimental if the joints are the primary damping source.

Two major sources of damping in wood systems are slip damping (interlaver or
hvsteretic) and material damping (internal) (Yeh et al. 1971; Polensek. 1988). Since
damping in wood svstems is predominantly a result of friction. interlayer damping

comprises the vast majority of damping while internal damping playvs a greatly re-
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duced role (Ungar. 1973). Interlaver damping has generally heen quantified as an
equivalent. percent of critical. viscous damping factor.

Polensek (1975) experimentally tested thirtyv-four full size wood-joist floors under
vertical free vibration. and determined damping factors of 4 to 6% of critical. Polensek
(1988) later went on to sayv that the actual floor svstem damping factor is probably
between 5-10% because of additional damping caused by sheathing gaps.

In contrast. Ohlsson (1982) tested eight small scale floors by hammer impact and
determined the damping factor to vary between 0.5 and 1.5%. No significant difference
was found in damping values between glued connections and screwed connections.
Chui (1987) experimentally tested six wood floors bv hammer impact and found the
damping factors to be between 0.7 and 3.0%. Ohlsson (1988b) stated that since there
was no large volume of experimental damping values available. a reasonable damping
factor would be 1%.

The differences in experimentally obtained damping factors has heen suggested by
Smith and Chui (1988) to be a result of differences in floor loading and data analvsis.
For example. free vibration analysis requires the release of weight off the floor. while
a hammer impact analvsis requires the release of weight onto the floor. Also. while
time-amplitude traces may be difficult to evaluate, the spectral procedures used by
Ohlsson (1982) and Chui (1986. 1987) are straight-forward.

Determining an a-priori value for damping is very difficult and in the vast majority
of cases must be prescribed by estimation and experience. For steel and concrete
structures. Murrav (1991) sets guidelines for estimating damping that are based on
observation only. This leads to the realization that damping is not controlled by the

design engineer (Ohlsson. 1988a).



Chapter 2. Literature Review 23

Of interest is the role that human bodies plav on damping. Polensek (1975) found
that damping factors were doubled with the presence of three people on a wooden
floor. It appears as though the human body acts similar to a “shock absorber™ and
has been modelled by Foschi and Gupta (1987) as a single degree-of-freedom spring-
dashpot svstem. Results indicated that this tvpe of model has a substantial effect on
damping. However. Ohlsson (1988b) advises against such damping considerations at
the design stage because it may not be reasonable to count on the “extra” damping.

Damping is an interesting phenomenon since it mayv oftentimes be modified after
a structure has been erected. Chui (1988) found that higher damping factors resulted
from the addition of dead weights on a wooden floor. However. at the same time.
an increase in dead weight will result in a decrease in the natural frequencies of the
floor. Therefore. more is not necessarily better. and an optimum dead load should be
considered.

The main body of knowledge on the idea of “retro-fit” has been researched pri-
marily for steel and concrete structures. Allen (1974) and Allen and Swallow (1975)
looked at partitions. damping posts. and tuned dampers and found that all had ap-
plications for increasing structural damping.

Tuned dampers appear to be a verv interesting and potentially effective treatment
to annoving vibrations. Although Allen (1990) suggests that tuned dampers are
seldom effective. a recent “real world retro-fit™ was accomplished under the leadership
of Webster and Levy (1992). Although the analvsis and pre-manufacture of the tuned
dampers was somewhat extensive. the cost of the svstem was one-sixth that of a design

utilizing damping posts (columns).
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2.4.1.4 Sensitivity

This section discusses response sensitivity due to several factors. Unless otherwise
specified. the following results were obtained from experimental testing. not simula-

tion.
2.4.1.4.1 Support Conditions

Chui (1987) tested both simple. simple. simple. simple (S-S-S-S) and simple. free.
simple. free (S-F-S-F) floors with solid-sawn joists and found that when the edge
supports were removed. a reduction in both natural frequencies and damping factors
ensued. Hu's (1992) results indicated that neither of Chui’s conclusions held for the
[-Joist floors she tested. Li (1993) observed that for solid-sawn. I-Joist. and parallel-
chord-truss floors. the difference in support conditions affected the natural frequencies

above the fundamental. but had no affect on the damping factors.
2.4.1.4.2 End Fixity

Chui (1987) re-tested one floor by increasing the end condition clamp torque to twice
its approximate simple support value. Under hammer impact, the change in end fixity
increased the natural frequencies by approximately 1%, and the change in damping
factors was negligible. It was concluded that in the range of applied loads seen at the
end of the floor. the vibrational performance was not sensitive to end fixity. On the
other hand. Chui and Smith (1990) found single beams to be sensitive to end fixity
(except for beams with low slenderness ratios). It appears that the floor “svstem™ is

advantageous in that it reduces the effects of end fixity.



Chapter 2. Literature Review 25

2.4.1.4.3 Applied Dead Load

Chui (1987) placed 100 kg (220 Ib) line loads on the free edges of a S-F-S-F floor
and excited the floor with a hammer impact. The effects of the line loads were to:

1) lower the fundamental and second natural frequencies. 2) increase the spacing of
adjacent natural frequencies. 3) decrease the number of contributing modes. and 4)
increase the damping factors. Hu (1992) also found a reduction in the first two natural
frequencies. and an increase in damping factors due to an applied dead load. As a
specific example. the addition of an 80 kg (176 1b) load to the center of S-F-S-F floor
resulted in a 4 Hz reduction in the fundamental frequencv and an approximate 1%
increase in the modal damping factors. Li (1993) applied uniform loads of 957 N/m?
(20 1b/ft?). and 1914 N/m? (40 1b/ft?) on both S-S-S-S and S-F-S-F floors. and
found: 1) a reduction in natural frequencies. 2). a reduction in the spacing between
natural frequencies. 3) a reduction in the number of contributing modes. and 4) no
effect of applied uniform load on damping factors. These results indicate that while
applied dead loads tend to decrease natural frequencies, they do not necessarily tend

to influence damping factors.
2.4.1.4.4 Bridging

In terms of dvnamic response. Chui (1987) found that solid blocking had very little
effect on the first two natural frequencies. and no conclusive evidence was obtained
regarding differences in damping factors. The major effect of solid blocking was
to increase the separation between natural frequencies. Stark (1993) investigated
the effects of X-bracing and blocking on the response of wood floors constructed

with solid-sawn joists. Results indicated that neither bridging method significantly
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affected the dyvnamic characteristics of the floors tested. These results and others
indicate that conventional bridging can not be relied upon to improve the dyvnamic

response of wood floor systems constructed with solid-sawn joists.
2.4.1.4.5 Joist Modulus Of Elasticity

Li (1993) concluded from testing four floors that the joist MOE coefficient-of-variation
(COV') had a statistically significant effect on the floor fundamental frequency. Specif-
ically. changing the joist MOE COV from 9% to 30% resulted in a 0.8 Hz decrease
in the fundamental frequency. Incidentally. numerical simulation conducted by Fil-
liatrault et al. (1991) revealed that for the floors simulated. the variability in floor
fundamental frequency was five times less that the variability in single-joist stiffness

values.
2.4.1.4.6 Joist Spacing

Chui (1987) compared two floors with joist spacings of 400 mm (16 in) and 600 mm
(24 in) on-center. It was found that the fundamental frequency of the floor with 400
mim joist spacings was 8% greater then the floor with 600 mm joist spacings. However,
the frequencies for mode 3 and higher were lowered resulting in a reduction of natural

frequency separation. The overall conclusion from these results is that reducing the

joist spacing does not necessarily guarantee an improvement in floor performance.
2.4.1.4.7 Joist—To-Sheathing Connections

By comparing the results of two floors constructed with nails applied at 250 mm
(10 in) and 125 mm (5 in) intervals, Chui (1987) found a slight increase in natural

frequencies but no conclusive evidence regarding damping factors.
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2.4.1.5 Experimental Design Criteria

For wood floors. Onyvsko (1985) proposed serviceability criteria based on a field study
of human response. After one-hundred and seven applicants from around Canada
were chosen. in—house testing took place at their residences and questions were asked
of the participants as to their evaluation of floor performance. The statistical analysis
of the results led Onvsko to propose two design criteria. both of which were based on
limiting the maximum floor deflection. The first criterion is recommended for living

areas. the second for bedroom areas:

6.7

< 175 SPAN < 3.0 (2.2)
8.9

< 175 SPAN < 328 (2.4)

where: SPAN = clear span (m), and § = deflection as a result of a concentrated load
of 1 kN acting at the midspan of the floor (mm).

In response to the Onysko (1985) study and other research undertaken at Forintek
Canada Corp. (Onysko. 1975. 1988), the Canadian Wood Council developed and
initiated a design criterion for wood-joist floors. The design criterion is included in
The Span Book (1990). and the method of establishing this criterion can be found in
the National Building Code of Canada (1990). appendix A-9.23.4.1(2).

Recently. Johnson (1994) proposed. and Shue (1995) validated. a criterion based

on the results of twelve laboratory and over two-hundred in-situ floors composed of
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either solid-sawn joists. parallel-chord-trusses. or I-Joists. The criterion requires the

fundamental frequency of the joists and supporting girders to 2 the following relation:

f= 1.57\"% > 15H 2

o
t
—

where: f = fundamental frequency of the joist or girder (Hz). E = modulus of elasticity.
[ = Moment of inertia. W = total supported load. and L = joist or girder span. The
criterion also requires that the combined frequency of the joists and girders satisfv

the following:

_ fzjmst X fzgn'f[(zr
\ fZJer =+ fzgirder

Murray (1981) proposed a vibration criterion for steel and concrete floors based

f > 15H: (2.6)

on over one-hundred experimentally tested floor systems. The criterion is valid for
floors with a natural frequency below 10 Hz and is based on a heel-drop excitation.

The criterion is based on the inequality:

D > 35A,f + 2.5 (2,

o
-

where: D = damping in percent of critical. A, = maximum initial amplitude (in),
and { = first natural frequency of the floor svstem (Hz). If the inequality is satisfied

than vibrational problems for office and residential settings should be eliminated.
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2.4.2 Numerical Analysis
2.4.2.1 Numerical Models

There are four numerical models specificallv designed to predict the dvnamic response
of wood floor svstems. Each will be described in light of major features and findings.

The first numerical model to be discussed was developed by Foschi and Gupta
(1987). The model. an extension of FAP (Foschi. 1982). is based on a finite strip
representation in the along joist direction and a finite element representation in the
perpendicular to joist direction. Sheathing strain energyv expressions include both
vertical bending and in-plane action. where the orthotropic nature of the sheathing
is included. Joist strain energy relations include vertical bending. lateral bending.
axial deformation. and torsional deformation. Non-rigid sheathing-to-joist nailed
connections are accounted for with respect to lateral deformations by a strain en-
ergv representation. This study seeks to calculate the time-history response of wood
floors with two humans on the floor. where the humans are represented by single
degree-of-freedom mass-spring-damper mechanisms. The mass matrix was obtained
in a consistent framework from the kinetic energyv contributed by the sheathing and
joists. Damping coefficients were prescribed for the sheathing. joists, and connections
in quantities that led to an overall viscous damping factor of 15 %. The full damping
matrix was constructed and solution of the time-history response was achieved using
the Wilson-A numerical integration procedure. Effects of bridging were investigated
bv neglecting the torsional deformation in the joists. While a detailed reliability anal-
vsis ensued. no mention was given to how the model results compared to experimental

results.
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The second numerical model. NAFFAP (Filliatrault et al.. 1990) was also an
extension of the FAP (Foschi. 1982) static analvsis Prograni. Strain eunergy relations
and connection energyv relations used in NAFFAP are the same as those used in the
Foschi and Gupta (1987) model. From a modeling standpoint. the onlyv addition to the
formulation is the inclusion of a rotational sheathing-joist slip energv expression. The
mass matrix was consistentlv derived as in the previous model. with the additional
ability to model a uniformlyv distributed load. With the intent of predicting the
natural frequencies of wood floor svstems. the subspace iteration method was used to
solve the free vibration problem. Effects of bridging were investigated by restricting
torsional deformations. Model results were compared to experimental results obtained
bv Smith and Chui (1988). and good agreement was found between predicted and
actual natural frequencies.

Chui (1987) provided a numerical model to predict both the natural frequencies
and time-histories of wood floor systems. The analysis was based on the Rayleigh-Ritz
method where only vertical bending was included in the strain energy representations
for both orthotropic sheathing and joists. Bridging was taken into account by intro-
ducing vertical bending strain energy terms where the bridging-joist interface was
assumed to be rigid. The mass matrix. obtained from a kinetic energyv expression.
accounted for onlv the vertical inertia component of orthotropic sheathing. joists.
and bridging. The Jacobi method was used to solve the free vibration problem.
Considering solid-sawn floors. comparisons of the predicted and experimental nat-
ural frequencies showed the model to generally be within 5 % of the actual values.
With regard to the time-history. the Newmark 3 numerical integration procedure was

used where the full damping matrix was calculated based on the fundamental mode.
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stiffness proportional damping:

C=-K (2.8)

where:
=2 2.9)
W ’

where: (; is the fundamental mode viscous damping factor. and w; is the fundamen-
tal mode natural frequency (rad/sec). While model time-histories were not rigorously
compared to experimental time-histories. RMS accelerations were. The RMS accel-

eration. 4,. was calculated according to:

where: a(f) is the time-history acceleration. Comparisons of predicted and experi-
mental RMS accelerations showed that the predicted values tended to overestimate
the actual values by an average of approximately 25 %.

The final numerical model specifically designed to analyze the dvnamic response
of wood floor systems was constructed by Hu (1992). The model utilizes the free-
interface modal svnthesis method. Strain energy of the sheathing is due to vertical
bending onlyv. where orthotropic plate theory is assumed. Joist strain energy is based
on a Timoshenko beam where transverse shear is included in the formulation. No
provisions for bridging were included in the formulation. The QZ method was used
to solve the free vibration problem. Hu experimentally tested ten I-Joist floors and
concluded that in comparison to the models of Chui (1987) and Filliatrault et al.

(1990). her model significantly improved the accuracy of natural frequency predic-
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tions for light-weight wood floors with relatively deep I-Joists (principally due to the
inclusion of joist transverse shear). Time-history analysis was conducted using the
Newmark 5 numerical integration procedure where the full damping matrix was cal-
culated based on the same fundamental mode. stiffness proportional damping as used
bv Chui (1987). Unfortunately. no comparisons were made comparing the predicted
and experimental time-histories due to a point excitation. However. comparisons
were made between the predicted and experimental time-histories considering a mov-
ing load. The results indicated that while the time-historyv “trend” was not predicted

well. the predictions of peak acceleration were acceptable.
2.4.2.2 Numerical Design Criteria

This section describes design criteria that are evaluated using numerical methods.
Foschi and Gupta (1987) extended the previously mentioned static computer program
FAP (Fochi. 1982) to include a dynamic analysis. The results of the studyv vielded a
quantitative reliabilitv—based design criterion based on individual joist stiffness and
maximum deflection. The criterion proposes that for a concentrated load of 1 kN (225
Ib) acting at midspan of a joist with the average modulus of elasticity of the svstem,
the maximum static deflection should be 1 mm (0.04 in). independent of span length.

Ohlsson 11991). also developed a criterion based upon a 1 kN (225 Ib) concentrated
load. However. instead of only taking into account a bare joist. this criterion includes
the effect of joists and sheathing since the load is applied at the center of the floor.
The first stipulation of the criterion is that a maximum deflection (determined in
this case from a grillage model) should be limited to 1.5 mm (0.06 in). In addition.

independent of the previous condition. the floor’s natural frequency should be higher
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than & Hz. The third stipulation is that the maximum velocity should be less than a
value based on the coefficient of damping.

A third criterion has been proposed by Smith and Chui (1988). This criterion.
based on a Raleigh-Ritz approach. suggests that the calculated frequency-weighted
RIS acceleration for the first one second of vibration should be less than 0.45m/s?
(1.48 ft/s?). The RMS acceleration is frequency weighted since human tolerance is
greater at higher frequencies than at lower frequencies. The value of this factor. as
given in ISO 2631 (1978) for frequencies between 8 and 80 Hz. is equal to 8/ f,,. where
fn i1s the fundamental frequency of the floor system. In addition, the fundamental
frequency of the floor svstem should be above 8 Hz.

~ Allen et al. (1985) have mathematically derived a design criterion for assembly
occupancies with regard to the floor constructions of: 1) solid concrete. 2) steel-joist
concrete slab. and 3) wood. The criterion limits the floors natural frequency based
upon a limiting peak acceleration. For dance floors. limiting natural frequencies of
7 Hz. 9 Hz. and 12 Hz are recommended for solid concrete. steel-joist concrete slab.,
and wood floors respectively, assuming a limiting peak acceleration of 0.02 g. For
stadia arenas. limiting natural frequencies of 5 Hz, 6 Hz, and 8 Hz are recommended

assuming a limiting peak acceleration of 0.05 g.

2.5 Summary

Considering the information presented. wood floors are complex from a structural
analysis standpoint. If we were to take away three concepts/ideas from each perfor-

mance condition (static and dyvnamic). we may observe the following.
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Considering the static response. wood floors exhibit composite action. The com-
posite action. or ability of the sheathing and joists to act together. results from the
sheathing-joist connection behavior. Additionally. load sharing occurs via the sheath-
ing. What composite action. connection behavior. and load sharing tell us together
is that wood floors act as a system. and that a proper representation of the system
must include sheathing-joist interaction, not sheathing-joist independence.

Considering the dvnamic response. we know that vibration acceptability has been
defined by design criteria that generallv make use of different human annovance fac-
tors (e.g. frequency. RMS acceleration. unit impulse velocity response, ...). From
these results. we can conclude that there is still no established, definitive, quantita-
tive evidence regarding human annovance to wood floor vibration. Second. an a-priori
determination of viscous damping is difficult if not impossible to obtain. Finally. from
experimental evidence. we know that wood floor systems are very sensitive to modifi-

cations. Unfortunately, a numerical model that accounts for a wide range of structural

modifications is not available.
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Model Overview

3.1 Introduction

As described in the Literature Review chapter. wood floor systems are sensitive to
structural modification. Fortunately. we can use this to our advantage and investigate
wavs of improving wood floor performance through modification. Unfortunatelv. a
model is not currently available that is capable of considering a wide range of mod-
ification. In response to the lack of an appropriate model, a displacement-based.
Ravleigh-Ritz finite element model has been developed to investigate the vibratory
response of stiffened plates (e.g. wood floors). Although not essential. the interested
reader is referred to Appendix A for a short introduction regarding the general theory
of displacement based finite elements. and how they can be used to represent dvnamic
motion. Model specifics. and detailed discussions. can be found in Appendices B and
C. In all further discussions. due to the materially independent nature of the model.
the word “stiffener” has been used instead of “joist™ (in terms of wood floor svstems.

the two words are synonymous.
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3.2 Modeling Environment

The model was hand coded in a 32-bit. Windows. mixed language environment. C++.

FORTRAN. and Visual Basic were all utilized in application development.

3.3 Model Architecture

At a high level. the program can be considered to consist of three different lavers:
graphic user interface (GUI). preprocessor. and application engine. While the GUI
and preprocessor are always a work in progress. the engine (where the finite element
coding is applied) is consistent. Although the distinctions between layers may change.
and new algorithms may be developed. the engine is essentially “cut in stone” from
a procedural. finite element standpoint. Without going into code examples. the re-
mainder of this chapter provides a high-level interpretation of the model, as designed

in the application engine.

3.4 Application Engine

3.4.1 Elements

Wood floor svstems are generally composed of two structural components, sheathing
and stiffeners (i.e. joists). To account for the sheathing behavior. a quadratic. 9 node.
45 degree-of-freedom plate element is implemented. In terms of cartesian coordinates.
all nodal degrees-of-freedom are active except for rotation about the vertical axis. In
terms of stiffness. consideration has been given to vertical bending. transverse shear.
and in-plane components. In terms of mass. consideration has been given to vertical

and horizontal translational inertia, and rotary inertia.



Chapter 3. Model Overview 37

To account for the stiffener behavior. a quadratic. 3 node, 12 degree-of-freedom
beam element is implemented. In terms of cartesian coordinates all nodal degrees-
of-freedom are active except for rotation about the vertical axis, and translation
perpendicular to beam length. In terms of stiffness, consideration has been given
to vertical bending. transverse shear. axial. and torsional components. In terms of
mass. consideration has been given to vertical and axial translational inertia. and

rotary inertia.

3.4.2 System Construction

From the two “base” elements just described. the entire structure is mapped using
the direct stiffness method. However, as we know, sheathing and stiffeners do not
act independently due to sheathing-stiffener connection behavior. If we assume that
the sheathing-stiffener connections act rigidly (which is reasonable considering the
widespread use of quality elastomeric adhesives). then a coordinate transformation
can be applied such that the svstem is described by combined plate-beam elements.

where onlyv the plate degrees-of-freedom remain active.

3.4.3 System Size

As just mentioned. the direct stiffness method is used to map the entire structure.
From this method. the svstem stiffness and mass matrices are obtained. Following
the procedures found in the Appendix. a standard-form eigenvalue problem results.
Unfortunately. due to the large number of active degrees-of-freedom. solution of the
full svstem eigenvalue problem is not realistic. To remedy this concern, Ritz vectors

have been applied to the full svstem matrices so that a reduced system eigenvalue
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problem can be obtained. Results obtained from the reduced system analyvsis will be
good approximations of the full svstem values.

It is important to realize that the large size of the full system is required to provide
enough refinement so that modifications can be made to different parts of the floor
svstem. For example. a model that initiallyv generates 10 active degrees-of-freedom
will not provide enough spatial refinement to consider modifications made at several
different floor locations. However. a system that initially generates considerably more
active degrees-of-freedom will provide more locations for modifications to occur. Once
the modification information is in the full system. thanks to Ritz vectors. the svstem
can be reduced to a size more comparable to 10 degrees-of-freedom than the full size.

where the modification information is retained in the reduced syvstem.

3.4.4 Frequency Analysis

With the reduced system eigenvalue problem at hand. IMSL routine DEVCSF is used
to solve the free vibration problem. Results from the free vibration problem provide
the reduced svstem eigenvalues and eigenvectors. From the eigenvalues. the natural
frequencies can be calculated. and from the eigenvectors, the mode shapes can be

calculated.

3.4.5 Time-History Analysis

Using the eigenvalues and eigenvectors obtained from the free vibration problem.
the time-history is obtained using the modal analvsis superposition method. Modal
analvsis allows the determination of the contributions of individual modes to the

overall response. and allows modal viscous damping factors to be incorporated in the
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time-history analyvsis without the need of calculating the svstem damping matrix.

39
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Model Verification

4.1 Introduction

In verifving the finite element model. that is. making sure that the model works as
intended. both static and dynamic results will be compared to known exact plate
solutions. Series solutions representing the exact solutions can be found in Appendix
D. In the terms presented. considering the static solutions, “exact” can be consid-
ered “classical”. Only simply supported plates will be investigated. From a finite
element standpoint. simply supported conditions can be achieved in either one of two
wayvs. First. the transverse and perpendicular translation can be restricted along the
boundary lines. This is commonly referred to as a “Soft” support. Second, in addition
to the transverse and perpendicular translation being restricted along the boundary
lines. the shear rotation can be restricted along the boundary lines. This is commonly
referred to as a "Hard" support. For rectangular plates. the difference between the
two essentiallv comes down to enforcing thin plate theory. Hard supports enforce
thin plate theoryv. and soft supports do not. On the other hand. for thick plates. soft

supports are necessary. Both support conditions will be investigated in the static ver-

40
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ification section. In addition. due to potential numerical difficulties associated with
evaluating the transverse shear stiffness {See Appendix B). the following results will

consider both 2 and 3 point numerical integration.

4.2 Static Response

Five different plate scenarios will be considered that should adequately verify the
static response. The first three scenarios consider simply supported plates whose
material behavior can be characterized as either: Isotropic. Orthotropic. or Isotropic
(Transverse Shear Flexible). While the fourth scenario will consider a simply sup-
ported. Isotropic plate reinforced with equidistant stiffeners. the fifth will consider
a simplyv supported. Isotropic. dual span plate. Unless otherwise noted. Table 4.1
shows the plate material and geometric properties. and the corresponding values used
throughout this chapter. For the Isotropic plate reinforced with equidistant stiffeners.
the stiffeners will be taken as 100 mm x 300 mm (2 in x 12 in) rectangular sections
spaced at 600 mm (24 in) intervals.

Tables 4.2 through 4.6 show the model results and how they compare to the exact
solutions. considering a center-point 2225 N (500 lb) concentrated load. It is noted
that the exact solution provided for the isotropic. stiffened plate example is actually a
rough estimate of the exact solution (See Appendix D). Several different mesh lavouts
have been included so that a minimum required mesh can be determined. As a general
rule. the smaller the mesh. the faster the solution. A (2x2) mesh lavout means that
there were two elements spanning along the x-axis. and two elements spanning along

the yv-axis; thus. there were four square elements used in the analysis.
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Table 4.1 Plate Properties and Values Used Throughout This Chapter.

(See Appendix D For Property Definitions)

Property Value
E E, |[1.38D4 N/mm? (2.0D6 Ib/in?)
E, 6.89D3 N/mm? (1.0D6 1b/in?)
G 6.89D1 N/mm? (1.0D4 1b/in?)
i v 0.3
l Uy 0.2
{ vy 0.4
k] 1.2
‘ h [ 25 mm (1.0 in)
! a 2.44 m (96 in)
| b 2.44 m (96 in)

It 1s evident from Tables 4.2 through 4.6 that. for the most part. the model
solutions agree well with the exact solutions. However. it is apparent that the 2 point
integration. Hard support conditions provide the most accurate results with mesh
sizes smaller than those required by the other conditions. As we now move on to
consider the dynamic response, consideration will be given to 2 point integration.
Hard support conditions.

It should be noted that 2 point integration is equivalent to a reduced integration
state. One particular drawback of reduced integration is that there is no guarantee
of monotonic convergence in energyv (i.e. the displacements are not guaranteed to
monotonically converge to the exact solutions from below as the mesh is refined).
Considering svmmetric mesh refinement for the (2x2). (4x4), and (8x8) mesh lavouts.
the results in Tables 4.2 through 4.6 bear this out. However, other than for the

transverse shear flexible plate. the displacement results show essentially no change
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between the (4x4) and (8x8) mesh lavouts. Thus. taking convergence characteristics
into account. even though convergence in energy is lost using 2 point integration. the
results indicate good reliable agreement with the exact solutions. The relativelyv large
difference found for the transverse shear flexible plate is due to the low G value used
(6.89D1 N/mm? (1.0D4 1b/in?)). This G value was used deliberately to indicate a
lower limit value where the results are borderline acceptable. If G is assigned a lower

value. the stiffness is not adequately represented.

Table 4.2 Center-Point Displacement Results for Isotopic Plate.

(Exact = 7.42 mm)

| Mesh Soft Support Hard Support

| 2 Point | 3Point | 2Point | 3 Point

1 - | Integration | Integration | Integration | Integration

(2x2) ] 810 5.11 7.47 5.11
(4x4) 7.57 6.58 7.39 6.58
(2x8) 7.82 2.99 7.42 5.99

_ (4x8) 7.52 6.86 7.42 J 6.86

_ (8x8) 744 [ 714 742 ] 714 |

Table 4.3 Center-Point Displacement Results for Orthotropic Plate.

(Exact = 14.17 mm)

.\Ieshj Soft Support 1 Hard Support
2 Point 3 Point 2 Point 3 Point
Integration | Integration | Integration | Integration
(2x2) 14.79 9.53 14.33 953
C(4x4) | 1425 | 1257 14.16 12.57
(2x8) | 14.47 11.19 14.23 11.19
' (4x8) 14.22 1310 | 1417 | 1310 |
(8x8) 1 1419 | 1367 | 1418 [ 1367 |
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Table 4.4 Center-Point Displacement Results for Isotropic.
Transverse Shear Flexible Plate.

(Exact = 8.38 mm)

ﬁ\lesh l Soft Support Hard Support

; i 2 Point 3 Point 2 Point 3 Point

! Integration | Integration | Integration | Integration

C(2x2) 1 9.09 7.08 8.38 689 !

" (4x4) 9.09 845 865 8.15
(2x8) 8.99 ( 7.85 ' 8.38 (o7

{4x8) 9.13 { 8.65 8.70 8.31 |

(5x8) 943 | 892 9.00 [ 832

Table 4.5 Center-Point Displacement Results for Isotropic.
Stiffened Plate.

(Exact = 0.241 mm)

Mesh ] Soft Support Hard Support

2 Point 3 Point 2 Point 3 Point
| Integration | Integration | Integration | Integration

(2x2) 0183 | 0.074 0.182 0.074
C(4x4) . 0218 0178 0.218 0.178
(2x8) = 0.221 0.174 0.221 0.174
(4x8) ' 0221 | 0.206 0.221 0.206
(8x8) [ 0221 | 0214 0221 | 0214
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Table 4.6 Center-Point Displacement Results for Isotropic.
Dual Span Plare.

(Exact = -0.508 mm)

“\lesh Soft Support Hard Support
2 Point 3 Point 2 Point 3 Point
Integration | Integration | Integration | Integration

(2x2) -0.526 -0.790 -0.610 -0.790
(4x4) -0.498 -0.668 -0.503 -0.668
(2x8) -0.556 -1.003 -0.620 | -1.003
(4x8) -0.498 -0.711 -0.503 -0.711
(3x8) + -0.508 -0.544 -0.508 -0.544

4.3 Dynamic Response

A preliminary investigation of mesh sizes showed that a minimum (4x8) mesh was
needed to obtain an accurate dynamic response. This result. and the results from
the static verification. lead to considering a (4x3). 2 point integration. Hard support
condition plate for the dynamic verification. For simplicity and brevity. consideration
will be given to an Isotropic plate; therefore. in the following discussion. an Isotropic.
(4x8). 2 point integration. Hard support condition plate will be analyzed.

Table 4.7 shows a comparison between the model predictions and exact natural
frequencies. Predictions match well with the exact natural frequencies. The first ten
modes have been included since frequencies corresponding to modes higher ‘rha'n the
tenth are not particularly well predicted bv the (4x8) mesh. Table 4.7 also shows

that the square plate behavior is not modelled “exactly” by the rectangular elements
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(a (4x8) mesh leads to an element with a 2-1 aspect ratio). This can be seen by the
failure of the (4x8) mesh to reproduce the repeated frequencies associated with the

square plate.

Table 4.7 Comparison of Predicted and Exact Natural Frequencies (Hz)

for an Isotropic. Square Plate.

Mode # | Predicted (4x8) | Exact | % Difference |
1 37.7 37.7 0
2 94.2 94.2 0
3‘ 3 95.0 94.2 <1
i 4 151.5 150.7 <1
I 189.0 | 1884 <1
6 197.1 188.4 4
T 246.2 244.9 <1
8 : 253.3 244.9 3
9 [ 323.6 320.2 | 1

10 347.3 320.2 8 |

In verifving the time-histories. we will consider displacement, velocity. and accel-
eration in response to a 2225 N (500 lb) time-zero step function. Both continuous
time and discrete time representations will be discussed. As a reminder. the exact
time-history representations can be found in Appendix D.

In the following analvses. a viscous damping factor of 0.03 has been used where the
first 10 modes have been included in the time-history responses. Furthermore. in order
obtain a sufficient time-history representation. a sample rate of 1000 points/second
has been used. Figure 4.1 shows a comparison between the predicted and exact

displacement time-histories in response to the time-zero step function. A distinction
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has not been made between the predicted and exact response in Figure 4.1 since thev
are almost identical. Figure 4.2 provides a closer (zoom) look at the displacement
time-histories. where it is evident that the predicted time-history matches closelv
with the exact time-history. Similar conclusions can be drawn for the velocity time-
histories (Figures 4.3 and 4.4). and acceleration time-histories (Figures 4.5 and 4.6).

The predicted time-histories in Figures 4.1 - 4.6 were constructed using a contin-
uous time representation as described in Appendix C. While continuous time repre-
sentations are applicable for simple geometric input forces (such as step functions).
thev are not applicable for arbitrary input forces. When arbitrary input forces are
needed. a discrete time representation must be utilized. Utilizing the convolution sum
{Appendix C). Figures 4.7 - 4.9 show how the predicted time-histories compare to the
exact time-histories at a sample rate of 2000 points/second with regard to the same
tinie-zero step function as used previously. The sample rate of 2000 points/second
was determined during a preliminary investigation that found the value to be a min-
imum required for accurate response when considering a time-zero, non-zero load.
As seen from Figures 4.7 - 4.9, the discrete time implementation predicts the exact

responses well.
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Figure 4.1 Comparison of Predicted and Exact Displacement Time-Histories

for an Isotropic. Square Plate.
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Figure 4.2 Zoom Comparison of Predicted and Exact Displacement Time-Histories

for an Isotropic. Square Plate.
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Figure 4.3 Comparison of Predicted and Exact Velocity Time-Histories

for an Isotropic. Square Plate.
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Figure 4.4 Zoom Comparison of Predicted and Exact Velocity Time-Histories

for an Isotropic. Square Plate.
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Figure 4.5 Comparison of Predicted and Exact Acceleration Time-Histories
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Figure 4.6 Zoom Comparison of Predicted and Exact Acceleration Time-Histories

for an Isotropic. Square Plate.
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for an Isotropic. Square Plate. Using the Convolution Sum.

4.4 Summary

ro

The results found in this chapter have emphasized model verification, that is. making

sure that the model works as intended. By comparing both the static and dvnamic

predictions to the exact series solutions, it has been seen that the model does in-

deed produce the desired results. Going one step further. the results have indicated

minimum required model parameters such as mesh size and sample rate. From this

chapter. we can be confident that the model will provide a reliable prediction of plate

response.
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Model Validation

This chapter focuses on model validation. that is, making sure that the model ac-
curatelyv represents a chosen physical svstem. For this purpose, model (predicted)
results will be compared to experimental results obtained from selected wood floors.
The experimental results used in this chapter were part of a larger experimental study

conducted by Li (1993). Stark (1993), and Steiss (1994).

5.1 Experimental Floor Background

In experiments conducted by Li (1993). Stark (1993), and Steiss (1994). thirteen 4.88
m x 4.88 m (16 ft x 16 ft) wood floors were constructed and experimentally evaluated
for vibrational response. For each individual floor. imposed loads of 0 N/m? (0 1b/ft?).
957 N/m? (20 1b/ft?). or 1914 N/m? (40 lb/ft?) were considered where the stiffeners
were either solid-sawn joists. parallel-chord-trusses. or [-Joists. Plywood was used as

a sheathing material where the sheathing-to-stiffener connections were a combination

of common nails and elastomeric adhesive.
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Consideration will be given to the center-point displacement time-histories and
power densities under an imposed load of 957 N/m? and under the action of a center-
point drop-weight input force. Displacement time-histories have been chosen since
acceleration instrumentation problems were apparent (i.e. saturation). In addition.
since the steel frame used to support the floors had a significant effect of the floor
vibrational response at 0 N/m?. an imposed load of 957 N/m? has been chosen where

the steel frame interaction effects are believed to be minimal (Runte. 1993).

5.2 Experimental Modal Analysis

In order to determine the natural frequencies and equivalent viscous damping factors
of the experimental floors. frequency response functions (FRF's) were constructed for
each floor from the displacement time-histories and input force time-historv. If we
assume that the input is r (force). and the output is y (displacement). an FRF can

be expressed:
Y2
| X2

FRF = (5.1)

where: Y are the fourier coefficients of y, and X are the fourier coefficients of r.
The equivalent viscous damping factor at each FRF peak (natural frequency) can be

determined by the half power method:

=N .
C_f2+f1 (5:2)

where: f; and fy correspond to the frequencies that intersect the FRE at the values

of peak/2.
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5.3 Model Parameter Specifics

All material values. dimensions. etc... were obtained from the documentation notes
of Li. Stark. and Steiss. Each sheathing panel was measured for directional bending
stiffness. and each stiffener was measured for bending modulus of elasticity. Since
shear modulus was not measured for anv component. the sheathing shear modulus
used in the model was taken as the American Plvwood Association (APA) published
design value of 621 N/mm? (90000 1b/in”). Similar to Chui (1990). the shear modulus
for the solid sawn joists was taken as 1/16™ the joist modulus of elasticity. When
considering the parallel-chord-trusses. the shear modulus was taken as 276 N/mm?
(40000 1b/in?). This value was obtained by equating the displacements of a shear
flexible. and non-shear flexible center-point loaded beam with respect to a 75 percent
actual area moment of inertia. The 0.75 factor is commonly used in industry to
account for shear in parallel-chord-trusses. For the I-Joists. it has been assumed that
the oriented strand board (OSB) web material is comparable to plywood. thus a value
of 621 N /mm? (90000 1b/in?) has been used.

In order for orthotropic plate theory to hold. the following relation must be sat-
isfied:

E.v, = Eyu, (5.3)
where: E, and E,, are the directional sheathing moduli of elasticity, and v, and v, are
the directional sheathing Poisson’s ratio. Although the £, and E), were measured. v,
and v, were not. Since the Poisson’s ratios were not measured. values were assigned

such that the values centered around 0.3 (an acceptable value for wood).



Chapter 5. Model Validation 56

As previously mentioned. the sheathing-to-stiffener floor connections were a com-
bination of common nails and elastomeric adhesive. The elastomeric adhesive used in
the majority of the floor tests was Franklin Tilebond Construction Adhesive. which
1s comparable to the Scotch 3M 5230 elastomeric adhesive. Although neither of these
adhesives will produce a “truly” rigid connection. they are stiff enough to assume so
(especially when considering the small slip displacements associated with typical Hoor
vibrations). Therefore. rigid sheathing-to-stiffener connections have been assumed in
the model.

When considering transverse shear. a form (shear correction) factor must be de-
termined that is based on physical geometry (see Appendix B). Most elementary
strength of materials books show that for a rectangular section. the form factor can
be taken as 6/5. This value was used for hoth the solid-sawn joists and parallel-chord-
trusses. For the I-Joists, the form factor was taken as the area of the entire section
divided by the area of the web (which is valid if we assume that the web resists all
the shear).

With respect to the sheathing mass density, an APA equivalent value of 5498
N/m? (35 Ib/ft®) was used for the 18 mm (23/32 in) plywood sheathing. The average
stiffener mass densities were determined from the documentation notes of Li. Stark.
and Steiss. Average mass densities of the solid-sawn joists were found to be 6283
N/m? (40 1b/ft3). and average mass densities of the I-Joists were found to be 7069
N/m? (45 1b/ft3). For the parallel-chord-trusses. a value of 9425 N/m® (60 1h/ft3)
was used since an equivalent “chord-only™ representation was used in the model.

The input force was taken from a mechanical dropweight mechanism used to ex-

cite the floors during experimental testing. The mechanism had a self-weight of 650
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=1

n

N (146 1b). and a graphical representation of the force time-history can be found in
Figure 5.1. It should be noted that the force time-history shown is only an approxi-
mation with regard to what the floors actually received during a test since the force
time-historyv was measured directly by a load cell placed on a rigid floor, where the

mechanism was held tightly to the load cell by ropes.
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Figure 5.1 Mechanical Dropweight Force Time-History Recorded on Rigid Floor.

Due to the center-point experimental acquisition instrumentation being located
on the bottom of the center stiffener. load sharing was taken into account to pro-
vide the input force experienced by the center stiffener. Based on a static procedure.
Steiss (1994) reported load sharing factors for the solid-sawn and I-Joist floors. Fac-
tors for the parallel-chord-truss floors were determined from the experimental doc-

umentation of Li. Stark, and Steiss. Table 5.1 shows the load sharing factors (and
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stiffener specifics). which represent the percentage of load carried by the center stiff-
ener when a static load is applied to the center of the floor. If we assume that
dropweight forces are transmitted in quantities similar to static loads, then the load
sharing factors can be used to scale the input force to account for load sharing. Us-
ing this technique. it is assumed that the majorityv of the center-point response is a
result of the scaled input force. The later assumption seems further justified by the
difficulty involved in envisioning how to represent the loads transmitted to adjacent

jolsts.

Table 5.1 Stiffener Specifics and Experimental Load Sharing Factors.

(See Appendix E for Actual Stiffener Dimensions)

Floor Stiffener Stiffener Load Sharing Factor
Type Dimensions (Percent)
a solid-sawn 50 x 300 mm 42
b solid-sawn 90 x 300 mm 47
c parallel-chord-truss | 100 x 300 mm 47
d parallel-chord-truss | 100 x 300 mm 51
e parallel-chord-truss | 100 x 300 mm 34
f ] I-Joist 50 x 250 mm 51 |
g [-Joist 50 x 250 mm 38 J
" h [-Joist 50 x 300 mm | 44
[ I-Joist 50 x 300 mm | 39
b I-Joist 100 x 300 mm | 50
.k [-Joist 100 x 300 mm | 45
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5.4 Validation Results

Of the data associated with the thirteen floors tested. two sets were found unusable.
The first set was inadequate due to short data length, and the second set was found
unusable due to a lack of documented sheathing property values. Thus. eleven floors
will be used for direct comparison. Figure 5.2 shows a tyvpical floor configuration.
where in all cases. the stiffeners are placed at 600 mm (24 in) intervals. In modeling
terms. a (4x8) mesh has been used to represent all floor systems in this chapter. where

a plate element aspect ratio of 2:1 has been maintained. The reader is referred to

Appendix E for a quick reference regarding these floors.

A%

Figure 5.2 Typical Floor Configuration.
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Table 5.2 shows the stiffener specifics and viscous damping factors obtained from
the experimental displacement FRF's. Surprisingly, the fundamental viscous damping
factors are higher than those tvpically associated with wood floors (< 0.05). Although
1t 1s unclear why the values were so high. it is most likely the result of applied load

and connector properties.

Table 5.2 Stiffener Specifics and Experimental Viscous Damping Factors.

(See Appendix E for Actual Stiffener Dimensions)

Floor Stiffener Stiffener Damping | Damping | Damping
Type Dimensions | (Mode 1) | (Mode 2) | (Mode 3)
a | solid-sawn 50 x 300 mm 0.086 { 0.036 0.025
b |  solid-sawn 50x300mm | 0044 = 0.03 0.024
c parallel-chord-truss | 100 x 300 mm 0.061 0.033 0.023
d parallel-chord-truss | 100 x 300 mm 0.067 0.053 0.023
e parallel-chord-truss | 100 x 300 mm 0.058 0.027 0.029
f I-Joist 50x250mm | 0062 [ 0034 [ 0017
g [-Joist 90 x 250 mm 0043 | 0028 | 0.03
i h [-Joist 50 x 300 mm 0.085 0.034 0.022
g i I-Joist i 50 x 300 mm 0.073 0.045 0.021
j I-Joist 100 x 300 mm 0.115 0.021 0.018 |
k I-Joist 100 x 300 mm | 0.093 0.03 0.02 |

Table 5.3 shows how the predicted natural frequencies compare to the experimen-
tal natural frequencies obtained from the displacement FRF's. It should be kept in
mind that predicted natural frequencies are not required to participate in the re-
sponse. That is. the modal response at a particular point in the floor can be zero. On
the other hand. only those frequencies contributing to the response can be detected

experimentally. Therefore, a frequency by frequency comparison between predicted
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and experimental values will generally show discrepancies of this tvpe. In any event.
the predicted fundamental frequencies are all within 18 percent of the experimental

frequencies.

Table 5.3. Comparison of Predicted and Experimental () Natural Frequencies (Hz).

| Floor | Mode 1 | Mode 2 [ Mode 3 | Mode 4 | Mode 5 | Mode 6 |

T a | 83 9.7 10.2 12.2 13.6 7.2
L (7.8) | (12.0) | (16.1)

b | 83 96 10.0 17 128 155
(7.8) | (105) | (14.4)

c 74 | 83 838 10.2 11.6 14.6
(8.5) | (12.0) | (16.4)

d 75 83 8% 102 1.3 4.0
(83 | (1L7) | (16.1)

e 70 85 89 101 15 4.4
(8.5) | (12.0) | (16.4)

I 63 7.0 76 9.2 10.6 13.7
(6.8) | (9.3) | (13.9)

c 6.2 638 73 89 10.3 13.6
(6.8) | (9.0) | (13.4)

k78 | 88 02 10.9 12.1 5.1
(7.8)  (10.3) | (15.1)

76 87 91 10.8 121 153
O (7.8)  (10.3) | (15.4)

7 86 @ 95 10.0 11.8 13.2 16.3

- (85)  (9.8) (12.5) | (16.4)
k82 94 10.0 11.7 13.0 16.2
(9.0) \ (100) | (12.2) | (16.8)

Figures 5.3 through 5.24 show how the displacement time-histories and power den-
sities compare between the predicted and experimental representations (at a sample
rate of 1000 points/second). Out of practical necessity. in obtaining the predicted
time-history results. two assumptions were made. First. it was assumed that all fre-

quencies in the experimental frequency range contributed to the response (regardless
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of evidence suggesting otherwise). Second. since viscous damping factors were ob-
tained from experimental FRF's. it was difficult to apply these values to the model
since modes that contribute little or nothing to the response are included in the
predictions. For example. an experimental mode 2 mayv actually correspond to a pre-
dicted mode 3 since the predicted mode 2 did not contribute to the response. Due
to this concern. modal damping factors were specified in groups that surrounded the
experimental modes.

Given that the raw input force time-history is an approximation. that the load
sharing factors are dyvnamic point-equivalent approximations. that several material
properties have been specified via “book™ values. and that equivalent viscous damping
factors have been approximately specified. the displacement time-histories and power
densities indicate that the finite element model provides reasonable predictions of
experimental wood floor behavior. The qualitative visual assessment was based on
trend resemblance, peak location, and peak magnitude. A rigorous validation proce-

dure was not implemented due to the data limitations just described.
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Floor j (I-Joist Stiffeners).

8+10®

Predicted
- = = - Expenmental

6+10°°

T

4410 |

2¢10°% |

Power Density (millimeters 2/hertz)

0 5 10 15 20 25 30
Frequency (hertz)

Figure 5.22 Comparison of Predicted and Experimental Power Densities for

Floor j (I-Joist Stiffeners).



Chapter 5. Model Validation

i Predicted
: ; — = = — Expenmental
1
3
2 ~
@ /i 0
E . ‘
E ~ : A//\\\ o~ o " .
z of S A Y NN P aas
GE') l? . ) - .
[ ! L
O i v
_g -
a
2
(@] .
B
f .
0 0.2 04 0.6 08 1

Time (seconds)
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5.5 Summary

The results from this chapter have emphasized model validation, that is. making sure
the model accurately represents a chosen phyvsical system. Given the data limitations.
it was shown that the predicted natural frequencies, displacement time-histories, and

power densities were reasonable approximations of experimental wood floor behavior.



Chapter 6

Performance Improvement
Investigation

Having the Rayvleigh-Ritz finite element model verified and validated, consideration
will now be given to investigating wood floor vibration performance improvement
techniques. These techniques are passive in nature and are targeted towards imple-
mentation during construction. Active control and post construction implementations
(“retro-fits™) will not be considered.

Both single span and dual span floors will be discussed. Table 6.1 shows the floor
and stiffener dimensions used throughout this chapter for both span conditions. The
only differences between the material properties of these floors and those in the model
validation chapter. is that the stiffener moduli of elasticity will now be taken as pub-
lished design values: solid-sawn, 1.1D4 N/mm? (1.6D6 1b/in?); parallel-chord-truss,
1.1D4 N/mm? (1.6D6 1b/in?); and I-Joist, 1.38 N/mm? (2.0D6 1b/in?). Additionally.
the sheathing moduli of elasticity will now be taken as the model validation value
averages: E; = 3.7D3 N/mm? (5.4D5 Ib/in?). and E, = 4.1D3 N/mm? (5.9D5 Ib/in?).

As before. the stiffener-to-sheathing connections will be considered rigid, the stiffen-

~J

(@1
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ers will be spaced at 600 mm (24in) intervals. and the first six modes will be used in
the response. To represent a realistic occupancy (live) load. a uniform imposed load
of 240 N/m? (5 1b/ft?) has been included in the analvses. The reader is referred to
Appendix E for a quick reference regarding these floors.

To compare floor performance. the velocity resulting from a time-zero unit impulse
has been used. This is an accepted indicator of floor performance (Ohlsson. 1991). and
has the added benefit that the time-zero response is independent of viscous damping
factors. For the single span floors. where we are interested in the center-point response
to a center-point time-zero unit impulse. the peak velocity will be at time-zero. For the
dual span floors. consideration will be given to the center-point right-span response
to a center-point left-span time-zero unit impulse. For these floors. the peak velocity
will not necessarily be at time-zero: however. the time-zero response can be viewed
as an indicator of velocity transmission. In summary. by considering the time-zero
velocity response to a time-zero unit impulse. an accepted performance indicator can

be obtained that is independent of viscous damping factors.

Table 6.1 Floor and Stiffener Dimensions Used Throughout This Chapter.

(See Appendix E for Actual Stiffener Dimensions)

i [-Joist 100 x 400 mm | 4.88 x 7.32
| I-Joist 100 x 500 mm | 4.38 x 9.15 m |

" Floor | Stiffener Stiffener Floor

' | Tvpe Dimensions Dimensions J

| A | solid-sawn | 50 x 300 mm | 4.88x 4.88 m |
B | parallel-chord-truss f 100 x 300 mm | 4.88 x 4.88 m
C  parallel-chord-truss | 100 x 400 mm | 4.88 x 7.32 m |

[ D parallel-chord-truss | 100 x 500 mm | 4.88 x 9.15 m |

- E I-Joist 100 x 300 mm | 4.88 x 4.88 m

T F m
G




Chapter 6. Performance Improvement Investigation i
6.1 Single Span Floors

The performance improvement techniques that will be considered for single span floors
are: imposed mass. double stiffeners. continuous blocking. and additional sheathing.
The kev to the success of any of these techniques is how well they suppress the
responses of the contributing modes. From preliminary analyses. it was evident that
the mode shapes for the floors considered were most “flexible” in the perpendicular
to stiffener direction. approximately near the mid-span. Thus, for the first three
techniques. the greatest improvements in performance will be obtained by considering

the mid-span locations.

6.1.1 Imposed Mass

One potential way of improving the performance of wood floors is to add mass to the
svstem. As just mentioned, if we concentrate our efforts on reducing the mid-point
responses. the greatest benefits should be seen. For this investigation, masses have
been placed at the mid-span of all interior stiffeners. This is advantageous since the
“line-load”™ will affect all of the modes considered, where load sharing need not be
explicitly accounted for. Figure 6.1 shows a representation of where the masses would
be imposed in practice (the area within the dotted lines indicating the location). One
wav in which the masses could be imposed is through the use of sheet-metal bins
(Figure 6.2). Considering the practical range for these imposed weights (222 N -
445 N - 100 1b)). tvpical site soil (1.6D4 N/m? (100 1b/ft?)) could be used as a fill

material.
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Figure 6.1 Location of Imposed Mass (Area Within the Dotted Lines).

//

Figure 6.2 Hypothetical Bin Used to Impose Mass.
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Table 6.2 shows how the natural frequencies and peak velocities compare based
on imposed line-loads of 0 N. 222 N. and 445 N per bin. As expected. the natural
frequencies and peak velocities are reduced as the imposed line-load increases. Fur-
thermore. differences in peak velocity due to stiffener tvpe are essentially non-existent.
This is reasonable considering that an imposed uniform load of 240 N/m? has been
included in the analvses to account for a service load.

Considering the 222 N line-load. the results indicate that an approximate 20 per-
cent reduction in peak velocity occurs for the floors spanning 4.88 m. Similarly. 15
percent and 10 percent reductions occur for the floors spanning 7.32 m and 9.15 m
respectivelv. For the 445 N line-load. the reductions are approximately double those
of the 222 N line-load. These results indicate that imposed mass. applied along the
center-line of the floor perpendicular to stiffener length, can improve wood floor per-
formance. However. it should be noted. that the reduction in natural frequencies may

reduce these benefits due to human annoyance of low frequency vibration.

6.1.2 Double Stiffeners

In addition to adding mass to the svstem. adding stiffness to the system should also
improve the performance of wood floor svstems. To increase the floor stiffness parallel
to stiffener length. double stiffeners mayv be used. As with applied mass, we would
expect the most benefit from double stiffeners located along the center-line (in this
case. in a direction along the stiffener length rather than perpendicular to the stiffener

length). Figures 6.3 to 6.5 show the cases that have been considered.
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Table 6.2 Comparison of Natural Frequencies (Hz). and Peak Velocity

(millimeters/second) Based on Imposed Line-Load (N/bin).

[ Floor | Imposed | Mode | Mode | Mode | Mode | Mode | Mode Peak
} | Line-Load | 1 2 3 4 5 6 Velocity
A 0 154 [ 165 | 180 | 201 | 23.1 | 272 53
i 222 13.2 | 141 | 154 | 17.2 | 19.7 | 23.3 40
| 445 11.7 | 125 | 137 | 153 174 | 204 32
B 0 147 | 155 | 168 | 187 | 215 | 257 53
222 125 | 13.2 | 143 | 16.0 | 184 | 219 41
445 111 | 11.7 | 126 | 141 | 162 | 19.2 33
C 0 97 | 105 | 118 | 139 [ 173 | 221 37
| 2292 87 ' 94 | 106 124 | 154 | 19.5 31
i 445 79 86 96 ' 113 | 139 | 175 26
D 0 80 | 87 | 100 | 123 | 158 | 209 30
| 222 72 079 0 91 | 11.2 | 143 | 188 26
445 67 | 73 | 84 | 103 | 132 | 171 23
E 0 159 | 169 | 184 | 206 | 23.5 | 276 53
222 136 | 144 | 157 | 176 | 20.1 | 23.6 41
445 120 | 127 | 139 155 | 17.7 | 20.7 33
F 0 110 | 11.9 133 | 154 | 186 | 232 36
| 222 99 | 107 | 11.9 | 138 | 166 | 20.6 30
o 445 90 | 97 ! 108 | 125 151 | 186 26
- G 0 94 | 104 117 | 138 ] 171 | 218 29
222 8.6 95 | 107 = 126 | 156 | 19.8 25
445 80 | 88 | 99 , 116 143 | 181 22

A/

/)

/

Figure 6.3 Floor With No Double Stiffeners (None).
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Figure 6.4 Floor With One Double Stiffener (Center).

o/
T

Figure 6.5 Floor With Three Double Stiffeners (Adjacent).

Table 6.3 shows how the natural frequencies and peak velocities compare based
on the double stiffener locations shown in Figures 6.3 to 6.5. As expected, the natu-
ral frequencies increase, and the peak velocities decrease with the addition of double
stiffeners. Similar to the results obtained for the imposed mass. differences in peak
velocities due to stiffener tvpe are minimal. Furthermore. it is evident that the Adja-
cent condition adds little if anv performance improvement over the Center condition.
This is further evidence suggesting that off-center placement does not provide the

performance improvement benefits of on-center placement. For the Center condition.
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an approximate 20 percent reduction in peak velocity occurs for the floors spanning
4.88 m. For the floors spanning 7.32 m and 9.15 m. an approximate 15 percent reduc-
tion in peak velocity is observed. In all cases. since the natural frequencies increase.
no performance degradation is expected due to human annovance of low frequency

vibration.

6.1.3 Continuous Blocking

As discussed in the literature review. conventional blocking svstems are not effective
in improving the performance of wood floor svstems. It would seem reasonable that
the failure of these svstems is due to their non-continuous nature. It would also seem
reasonable that if the blocking systems were continuous, an improvement in floor
performance would result. If we assume that a continuous blocking svstem could be
achieved. than it would be of interest to determine the potential improvements in
floor performance.

Considering solid-sawn and I-Joist stiffened floors, a continuous blocking svstem
mav be possible through the use of a hanger/adhesive/solid blocking system. Figure
6.6 shows how the system might be implemented. In practice, the hangers could
be attached to the stiffeners first. Then. an elastomeric adhesive. or potentially rigid
adhesive. could be applied to the hanger location where the solid blocking is slid down
into place. After nailing the hanger to the solid blocking. and after the adhesive has
had time to cure. it is believed that a rigid. or near rigid connection mayx be possible.
By placing these “mechanisms™ in a coincident row. a continuous blocking svsteni

(i.e. stiffener) would result.
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Table 6.3 Comparison of Natural Frequencies (Hz). and Peak Velocity

(millimeters/second) Based on Double Stiffener Locations.

{ Floor | Double | Mode | Mode | Mode [ Mode [ Mode | NMode Peak
§ | Stiffeners 1 2 3 ’ 4 5 6 Velocity
A None | 154 | 165 | 18.0 | 201 | 231 | 272 53
Center 16.0 | 165 } 188 | 202 | 23.7 | 274 42
Adjacent | 169 | 17.8 192 | 203 | 24.4 | 28.1 43
B None | 147 | 155 | 168 | 187 | 215 | 257 53
Center | 153 | 155 | 17.7 | 187 | 223 | 258 41
' Adjacent | 16.5 | 17.1 ‘ 180 | 187 | 231 | 26.7 43
C 7 Nomne 97 | 105 | 118 | 139 | 173 | 221 37
Center 102 | 105 | 125 | 13.9 | 17.7 | 221 31
| Adjacent « 11.1 | 118 | 129 | 140 | 181 | 224 31
D | Nonme 80 | 87 100 123 158 | 209 30
. Center 84 87 106 | 123 | 161 | 209 26
| | Adjacent | 9.1 | 98 109 | 123 163 | 210 26
" E Nome | 1539 [ 169 | 184 | 206 | 235 | 276 | a3
Center | 16.6 . 169 ' 194 | 206 243 277 41
Adjacent = 18.0 | 187 : 198 207 | 251 | 28.6 42
F None | 110 | 119 | 133 | 154 186 | 232 36
Center | 11.6 | 119 140 | 154 191 | 233 29
- Adjacent + 125 © 133 | 144 | 155 | 196 | 23.7 30
G | Nome | 94 ’ 104 117 | 138 | 171 | 218 29
| | Center | 99 104 123 138 | 174 219 24
| | Adjacent | 10.6 | 11.5 | 12.7 | 13.8 | 17.8 220 24

y

A

Figure 6.6 Hypothetical Continuous Blocking System.
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Table 6.4 shows how the natural frequencies and peak velocities compare based
on the number of rows of continuous blocking. For each floor. one row of continuous
blocking corresponds to mid-span placement. perpendicular to stiffener span. For
the floors spanning 4.88 m. two rows of continuous blocking correspond to quarter-
span placement. perpendicular to stiffener span. For the floors spanning more than
4.88 m. two rows of continuous blocking correspond to an approximate third-span
placement. perpendicular to stiffener span. In all cases, it has been assumed that the

solid blocking properties are equivalent to those of the stiffeners.

Table 6.4 Comparison of Natural Frequencies (Hz). and Peak Velocity

(millimeters/second) Based on Rows of Continuous Blocking.

' Floor | Continuous | Mode | Mode | Mode | Mode | Mode | Mode Peak

i 1 Blocking 1 ‘ 2 3 | 4 ) 6 Velocity

A 0 154 [ 165 [ 180 [ 201 [ 231 | 27.2 53

| 1 180 | 31.0 | 444 | 450 | 452 | 46.1 23

| | 2 180 | 31.0 | 446 | 457 | 473 | 495 | 43

B 0 159 | 169 | 184 | 206 | 235 | 276 53

| | 1 184 | 27.6 | 35.7 | 40.7 | 409 | 422 22

2 184 | 27.7 | 35.9 | 40.9 | 42.0 | 42.6 43

F o 0 11.0 [ 119 | 133 | 154 | 186 | 232 36

| 1 143 | 22.8 | 288 | 30.6 | 316 | 32.6 13

| 2 157 | 277 | 325 | 373 | 381 | 405 27

G 0 94 [ 104 | 11.7 | 138 171 | 218 29

1 133 | 213 263 | 268 o077 | 200 | 10

| 2 154 281 302 | 306 | 362 | 39.8 27

The results in Table 6.4 indicate as expected that the natural frequencies in-
crease. and the peak velocities decrease when continuous blocking is used. As with

the techniques discussed earlier. differences in peak velocity based on stiffener tvpe
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are negligible. Although peak velocities are reduced using two off-center rows of con-
tinuous blocking. the largest reductions are apparent when using one on-center row of
continuous blocking. Specifically. for the floors spanning 4.88 m. an approximate 55
percent reduction in peak velocity is obtained using one on-cenfer row of continuous
blocking. For the floors spanning longer than 4.88 m. an approximate 65 percent
reduction in peak velocity is observed. In all cases. since the natural frequencies
increase. no performance degradation is expected due to human annovance of low

frequency vibration.

6.1.4 Additional Sheathing

While the previous three performance improvement techniques were concerned with
placement along discrete lines, additional sheathing is concerned with placement over
the entire floor. Given that the typical design calls for an 18 mm (23/32 in) thickness.
it is believed that 25 mm (1 in) and 38 mm (1.5 in) thicknesses represent reasonable
design alternatives. By evaluating the results due to these three sheathing thicknesses,
it will be possible to determine whether additional sheathing can improve wood floor
performance.

Table 6.5 shows how the natural frequencies and peak velocities compare based
on sheathing thickness. As expected. the peak velocities decrease as the sheathing
thickness increases. where differences in peak velocity based on stiffener type are
negligible. Interestingly. as the sheathing thickness increases, the fundamental fre-
quencies for the parallel-chord-truss and I-Joist floors decrease while all other natural
frequencies increase. These reductions in fundamental frequency are probably the

result of a small relative stiffness increase in the stiffener direction that is unable to
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compensate for the increase in mass associated with the sheathing.

Table 6.5 Comparison of Natural Frequencies (Hz), and Peak Velocity

(millimeters/second) Based on Sheathing Thickness (mm).

' Floor | Sheathing | Mode | Mode | NMode | Mode | Mode {Mode Peak
E ' Thickness 1 2 | 3 4 5 6 Velocity
A 18 [ 154165 | 180 [ 201 [ 231 [ 272 [ 53
25 158 | 17.0 | 192 | 227 | 28.0 | 356 49
| 38 161 | 179 | 219 | 288 392 | 523 43
B | 18 147 | 155 | 168 | 187 | 215 | 25.7 53
2 146 | 157 | 178 | 21.3 | 26.7 | 345 50
38 144 162 | 203 | 276 | 383 | 392 43
cC . Is 97 | 105 118 | 139 | 173 | 221 37
25 96 | 107 | 13.0 170 | 231 | 268 34
. 38 94 | 114 | 161 | 242  26.0 | 286 19
D = 18 80 | 87 | 100 123 15877209 30
25 7.8 | 89 | 113 | 156  21.7 | 220 | 27 |
38 77 | 98 | 148 | 210 | 232 | 234 | 15 |
E 18 | 159 ] 169 | 184 | 206 | 235 | 276 53
| 25 158 | 171 | 195 | 232 ' 286 | 36.2 49
38 155 | 177 | 221 293 @ 39.2 | 39.8 43
F 18 11.0 | 119 | 133 | 154 186 | 232 36
25 109 | 121 | 144 | 183 , 24.1 | 299 33
| 38 108 | 128 | 17.3 | 251~ 29.0 | 316 19
G | I8 94 104 T 117 138 [ 171 | 218 29
| 25 9.3 | 106 | 128 | 168 | 228 262 26
T 9.2 112 | 159 & 239 | 253 | 275 15

For the floors spanning 4.88 m, an approximate 6 percent and 20 percent reduction
in peak velocity is obtained using 25 mm and 38 mm sheathing respectivelv. For the
floors spanning longer than 4.88 m. an approximate 8 percent and 50 percent reduction
in peak velocity is obtained when using 25 mm and 38 mm sheathing respectively.

Considering the reduction in fundamental frequencies for the parallel-chord-truss and
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I-Joist floors. it is possible that performance degradation may result due to human

annovance of low frequency vibration.

6.1.5 Summary

Four performance improvements techniques have been investigated for single span
floors. The results indicate that all are effective in reducing the peak center-point
velocity in response to a center-point time-zero unit impulse. The largest improvement
in floor performance was achieved using a single row of continuous blocking placed
mid-span. perpendicular to stiffener span. This was to be expected since wood floors
are most “flexible” in the perpendicular to stiffener direction. To a lesser extent,
the use of a center double stiffener also improved the floor performance. In each of
these cases. where additional stiffness was added to the system, off-center placement
was shown to produce less desirable performance benefits than on-center placement.
This finding was also to be expected since for a center-point excitation, regions of
high modal activity will generally extend from the center-point both parallel and
perpendicular to stiffener span.

For the cases where significant mass was added to the system (imposed mass and
additional sheathing). a reduction in fundamental frequencies was evident. Since per-
formance degradation my result due to human annovance of low frequency vibration.

these two techniques should be used with caution.

6.2 Dual Span Floors

In tvpical wood construction. dual span floors are common. In general. the interior

support may arise from a beam. wall. or wall/partition. For these tvpes of floors.
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two performance improvement techniques have been considered: beam supports and
rotationally resistant supports. In all cases. it is sought to reduce the right-span
center-point response resulting from a left-span center-point unit impulse. Further-

more. in all cases. the interior support has been located at the floor mid-span.

6.2.1 Beam Supports

In manyv instances. beams provide the interior support for a dual span floor. These
supports may either be single span or part of a multi-span beam. For this investiga-
tion. only single span beam supports have been evaluated. Figure 6.7 shows how a
tvpical interior beam support might be implemented. In common practice, the sup-
porting beams generally consist of four, 50 mm x 250 mm (2 in x 10 in) or 50 mm x
300 mm (2 in x 12 in) nail laminated solid-sawn members: or equivalently, 150 mm x
250 mm (6 in x 10 in) or 150 mm x 300 mm (6 in x 12 in) sections. In evaluating the
floor response with regard to these two common supporting beam sections. it will be
possible to determined whether an increase in supporting beam section can be used
to improve the performance of dual span floors.

With regard to the floors spanning 9.15 m, Table 6.6 indicates how the natural
frequencies. time-zero velocity, and peak velocity compare based on the supporting
beam section. Since the time-zero velocities do not correspond to the peak veloci-
ties for dual span floors with interior beam supports, both velocity indicators have
been included. Differences between the velocity indicators are due to the beam-floor

interaction that enhances higher mode activity.
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Figure 6.7 View of Interior Supporting Beam.
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Table 6.6 Comparison of Natural Frequencies (Hz), Right—Span Time-Zero Velocity

(millimeters/second) and Peak Velocity (millimeters/second) Based on

Supporting Beam Section (millimeters).

Floor| Beam | Mode| Mode| Mode| Mode| Mode| Mode |l Time-Zero| Peak
. Section 1 2 3 4 5 6 Velocity | Velocity
D | 150x250] 9.8 | 19.6 | 22.2 [ 23.3 | 24.9 | 25.1 5.1 111
| 150x300| 11.0 | 21.5 | 22.2 | 233 | 249 258 47 -12.2 |
G [150x250] 11.0] 21.5] 26.8 | 27.7 | 286 [ 29.0 5.2 9.9
150x300 12.1 | 241! 26.8 | 27.7 | 290 | 207 |  -49 -10.9




Chapter 6. Performance Improvement Investigation 90

Figures 6.8 and 6.9 show the right-span center-point velocity time-histories result-
ing from left-span center-point unit impulses when a viscous damping factor of 0.06
has been specified to all modes. From these Figures, it is clear that peak velocities
increase as a result of the larger interior beam section. Thus, contrary to expectation,
increasing the supporting beam section does not necessarily improve the performance
of dual span floors. Based on these results, it is recommended that interior beam
supports continue to he designed on static a basis. since increasing the section has

not been shown to improve vibrational performance.
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Figure 6.8 Floor D Comparison of Velocity Time-Histories Based on

Supporting Beam Section Size.
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Figure 6.9 Floor G Comparison of Velocity Time-Histories Based on

Supporting Beam Section Size.

6.2.2 Rotationally Resistant Supports

In manyv cases. the interior supports used in wood construction are of the wall,
wall/partition variety. In the case of an interior supporting wall. Figure 6.10 provides
a graphical representation. Assuming that the wall has infinite vertical stiffness. the
wall can be represented in boundary condition terms as an interior simple support
(where the vertical translation is restricted). Figure 6.11 shows a graphical represen-
tation of an interior supporting wall/partition (where the arrow in Figure 6.11 refers
to the load bearing nature of the wall/partition). Given that an adequate connection
has been made between the top plate of the supporting wall and the sole plate of

the wall/partition. a rotational resistance may develop when either span is loaded.
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In boundary condition terms. this situation can be represented by restricting vertical
translation and adding a rotational spring (as viewed in Figure 6.12). In practice, the
connection may be possible through the use of tie rods (Figure 6.13). or some other

mechanism.

ANNRNRNN SN N SN RNRNNNRNNNNY

/3
% Interior Supporting Wall
/7

S

Figure 6.10 Floor with Interior Supporting Wall.

To compare the floor performance based on wall/partition rotational resistance.
three spring stiffnesses have been chosen to span a practical value range: 0 Nm/rad
(0 Ib-in/rad). 1.0D3 Nm/rad (1.75D5 lb-in/rad), and 1.0D4 Nm/rad (1.75D6 Ib-
in/rad). These values have been specified with knowledge of Chui and Smith’s (1990)
findings that end clamped wooden beams generally have rotational spring stiffnesses
between 1D3 Nm/rad and 1D6 Nm/rad. Table 6.7 compares how the natural fre-
quencies. and peak velocity compare based on the three stiffness values. As expected.

the natural frequencies increase with the addition of wall/partition spring stiffuess.
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However. the results also indicate that the rotational resistance of the wall/partition
does not enhance the performance of the dual span floors investigated. The slight
increase in peak velocity as rotational resistance is added is due to the slight increase
in natural frequencies. From these results. it is apparent that within the practical
limits of wall/partition rotational resistance. improvements in floor performance will

not be achieved.

- | Interior Wall/Partition

| Interior Supporting Wall

\\\\\\\\\\\\\\\\\\\
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Figure 6.11 Floor with Interior Wall/Partition Support.
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Figure 6.12 Boundary Condition Equivalent of Figure 6.11.
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Figure 6.13 Hyvpothetical Tie-Rod System Used to Create an Adequate

Interior Support Connection (Minus Sheathing for Clarity).
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Table 6.7 Comparison of Natural Frequencies (Hz). and Right-Span Peak Velocity

(millimeters/second) Based on Center-Support Rotational Stiffness (Nm/rad).

' Floor | Rotational | Mode | Mode | Mode | Mode | Mode | Mode ’ Peak
‘ Stlffness 1 2 3 4 5 6 Velocity
D | 222 | 233 | 241 | 249 | 253 | 26.8 -8.8
{ 1.0D3 222 | 233 | 241 | 249 | 253 | 26.8 -8.9
|| 1.0D4 | 224 | 234 | 241 | 250 | 253 | 269 | -9.0
G . 0 1268 | 277 | 290 | 295 | 304 | 3038 -8.4
| 1.0D3 26.9 ’ 27.8 29.1 29.5 30.4 30.9 -8.4
| 1.0D4 27.0 | 279 | 292 | 295 | 304 | 309 -85 |

6.2.3 Summary

Two performance improvement techniques have been investigated for dual span floors.
Within the practical limits of design, increases in beam support section and wall/ par-
tition rotational resistance do not improve floor performance. However, by replacing
an interior beam support with a wall support. improvements in performance may
result. Table 6.8 compares how the natural frequencies, and peak velocity compare
based on a 150 mm x 250 mm (6 in x 10 in) supporting beam section and an inte-
rior wall support. It is evident from Table 6.8 that reductions in peak velocity are
possible when an interior wall is substituted for an interior beam support. In all of
the cases presented for dual span floors. since the natural frequencies increase when
the techniques are applied. no performance degradation is expected due to human

annovance of low frequency vibration.
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Table 6.8 Comparison of Natural Frequencies (Hz) and Right-Span Peak Velocity
(millimeters/second) Based on Interior Support Type.

Beam: 150 mm x 250 mm (6 in x 10 in)

(F loor | Interior | Mode | Mode | Mode | Mode | Mode | Mode Peak
i Support 1 2 3 4 5 6 Velocity
- D } Beam 9.8 19.6 22.2 23.3 24.9 25.1 -11.1

- Wall 222 1233 | 241 249 | 253 | 268 -8.8
G Beam 11.0 | 21.5 | 268 | 27.7 | 286 | 29.0 -9.9
| Wall 26,8 | 27.7 | 29.0 | 295 | 304 | 308 -8.4

6.3 Summary

Six performance improvement techniques have been investigated for wood floor sys-
tems. where performance has been measured by considering peak velocity resulting
from a time-zero unit impulse. For the single span floors discussed, it was shown
that imposed mass. double stiffeners. continuous blocking, and additional sheathing
can be used to improve floor performance. However, imposed mass and additional
sheathing should be used with caution since reductions in natural frequencies may
result where performance degradation is possible due to human annovance of low
frequency vibration.

With regard to the dual span floors discussed. it was shown that within the prac-
tical limits of design. increases in beam support section and wall/partition rotational
resistance do not improve floor performance. However, substituting a wall support
for a beam support will improve floor performance. Since natural frequencies in-

crease due to the implementation of either technique, no performance degradation is

expected due to human annovance of low frequency vibration.
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Tying Research to Practice

7.1 Introduction

To bridge the gap between research results and practice, a design example will be
discussed that draws on the knowledge gained from the performance improvement
investigation. Since design acceptability is ultimately predicated on an underlving
design criterion. a design criterion must be chosen. Although there are several design

criteria to choose from. Ohlsson’s (1991) criterion has been chosen based on merit.

7.2 Design Example

In this example. a designer in the U.S.A. is responsible for ensuring the vibrational
serviceability of a 4.88 m x 4.88 m (16 ft x 16 ft) floor system. Considering a 1400
N/m? (40 1b/ft?) live load, it is found that 50 mm x 300 mm (2 in x 12 in) solid-
sawn stiffeners can be used to ensure the code requirement of limiting the live-load
deflection to SPAN/360. Unfortunately. since this requirement does not address dv-
namic response. an additional design check is desired that specifically accounts for

vibrational serviceability. In complyving with Ohlsson’s (1991) design criterion. the

97
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following must be satisfied:

1. The fundamental frequency must be greater than & Hz.

2. The static deflection resulting from a static 1 kN (225 lb) center-point concen-

trated force must be less than 1.5 mm (0.059 in).

3. The maximum impulse velocity resulting from a time-zero unit impulse must
be less than 100Y¢~Ym/s. where f is the fundamental frequency. and ¢ is a

viscous damping factor.

Although Ohlsson (1991) recommends using a viscous damping factor of 0.01. a
viscous damping factor of 0.02 appears justified considering the experimental results
obtained by Li (1993). Stark (1993). Steiss (1994), Johnson (1994). and Shue (1995).
In order to evaluate this criterion, the designer chooses to use the model developed
in this dissertation. which allows all three requirements to be addressed in the same
computer run.

Using the same base design as found in Floor A of the Performance Improvement

Investigation chapter. the model results show:
e Fundamental Frequency: 15.4 Hz
e Static Deflection: 1.13 mm
e Maximum Impulse Velocity: 0.053 m/s

Using a fundamental frequency of 15.4 Hz. and a viscous damping factor of 0.02.

the maximum allowable velocity (100¢¢~Ym /s) is 0.041 m/s. Although the first two
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design requirements are satisfied. since the calculated impulse velocity is greater than
the allowable impulse velocity. the design fails.

Fortunately. the designer knows that improvements in floor performance can be
achieved using the methods discussed in this dissertation. More importantly. he or
she knows where to properly make the modifications to maximize the performance
improvement. For completeness. the designer chooses to evaluate imposed load. dou-
ble stiffeners. continuous blocking. and additional sheathing. It should be noted that
the static deflection will only benefit from these techniques. and thus it onlv needs to
be evaluated for the base design.

Considering imposed load located along the floor center-line perpendicular to stiff-
ener length. the results indicate that for this particular design, imposed load can not

be used to satisfy the chosen design criterion.

1. 222 N (50 1b) line-load
e Fundamental Frequency: 13.2 Hz

e Maximum Impulse Velocity: 0.040 m/s

e \aximum Allowable Impulse Velocity: 0.034 m/s
2. 445 N (100 1b) line-load

e Fundamental Frequency: 11.7 Hz
e Maximum Impulse Velocity: 0.032 m/s

e Maximum Allowable Impulse Velocity: 0.029 m/s
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Considering the use of a Center double stiffener. the results indicate that for this
particular design. the use of a Center double stiffener can be used to satisfv the chosen

design criterion.
1. Center double stiffener
e Fundamental Frequency: 16.0 Hz

e Naximum Impulse Velocity: 0.042 m/s

e \Maximum Allowable Impulse Velocity: 0.044m/s

Considering the use of a single row of continuous blocking located along the floor
center-line perpendicular to stiffener length. the results indicate that for this particu-
lar design. the use of the continuous blocking can be used to satisfv the chosen design

criterion.
1. Single row of continuous Blocking

e Fundamental Frequency: 18.0 Hz
e \Maximum Impulse Velocity: 0.023 m/s

e Maximum Allowable Impulse Velocity: 0.052m/s

Considering the use of additional sheathing, the results indicate that for this
particular design. doubling the sheathing thickness can not be used to satisfy the

chosen design criterion.
1. Doubling the sheathing thickness

e Fundamental Frequency: 16.1 Hz
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e Naximum Impulse Velocity: 0.049 m/s

e Naximum Allowable Impulse Velocity: 0.044m/s

Based on these results. the designer has the choice of satisfving the chosen design
criterion through the use of either a center double stiffener or continuous blocking
svstem. It should be noted that any combination of the described methods can also

be evaluated.



Chapter 8

Conclusions and Recommendations

8.1 Conclusions

This study investigated wood floor svstems constructed with solid-sawn joists. I-
Joists. and parallel-chord-trusses. No attempt was made to consider allowable notches
or allowable holes in the joist products. Based on the information contained in this

document. the following conclusions can be drawn for the floors investigated:

1. The assumption of rigid sheathing-to-stiffener connections is justified when pre-
dicting the vibrational response of wood floor systems if an elastomeric adhesive

equivalent to Franklin Titebond is used.

[N)

For single span floors under an imposed uniform service load of 240 N/m? (5
Ib/ft?). when considering the peak center-point velocity resulting from a center-

point time-zero unit impulse:

(a) Differences in peak velocity due to stiffener type (solid-sawn. parallel-

chord-truss. and I-Joist) are negligible.
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(b)

(d)

By imposing mass along the center-line perpendicular to stiffener length.
improvements in floor performance (i.e. reductions in peak velocity) can

be achieved (Table 8.1).

By implementing a double stiffener along the center-line parallel to stiff-
ener length. improvements in floor performance (i.e. reductions in peak

velocity) can be achieved (Table 8.2).

By placing a continuous blocking svstem along the center-line perpendicu-
lar to stiffener length. improvements in floor performance (i.e. reductions

in peak velocity) can be achieved (Table 8.3).

By applying additional sheathing over the entire floor, improvements in
floor performance (i.e. reductions in peak velocity) can be achieved (Table

S.4).
Imposed mass and additional sheathing should be used with caution since

reductions in natural frequencies may result where performance degrada-

tion is possible due to human annoyance of low frequency vibration.

Considering the use of double stiffeners and continuous blocking. since
natural frequencies increase, no performance degradation is expected due

to human annovance of low frequency vibration.

Considering the use of double stiffeners and continuous blocking. off-center
placement is not as effective as on-center placement in improving floor

performance.
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3. For dual span floors under an imposed uniform service load of 240 N/m? (5
Ib/ft?). when considering the peak center-point right-span velocitv resulting

from a center-point left-span time-zero unit impulse:

(a) Performance improvements (i.e. reductions in peak velocity) should not be

expected when larger beam sections are used to center-support the floor.

(b) Performance improvements (i.e. reductions in peak velocity) should not be

expected when rotational resistance is added to a center-support wall/partition.

(c) Performance improvements (i.e. reductions in peak velocity) can be ex-
pected when a center-support wall is used in place of a center-support

beam.

(d) Considering the use of either larger beam sections or wall/partition rota-
tional resistance. since natural frequencies increase, no performance degra-

dation is expected due to human annoyance of low frequency vibration.

8.2 Recommendations

Conclusions concerning performance improvement are intended to be used by design-
ers as complimentary information. For example. current methods or criteria should
be used to obtain a base design. If it is found that the performance of the floor de-
sign is inadequate. or if enhanced performance is desired. the appropriate techniques

discussed can be implemented.
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Table &1 Approximate Percent Reductions in Peak Velocity (millimeters/second)

Based on Center-Line Imposed Line-Load.

Floor | Imposed | Approximate Reduction
Span | Line-Load | In Peak Velocity (%) J
4.88 m 222 N 20
. 445 N 40
7.32 m 222 N 15
445 N | 30
9.15m | 222N 10
. 445 N 20

Table 5.2 Approximate Percent Reductions in Peak Velocity (millimeters/second)

Based on Center-Line Double Stiffener Implementation.

Floor | Approximate Reduction
Span In Peak Velocity (%)

4.88m | 20 |
7.32m | 15 ]
[9.15m | 15 ]

Table 8.3 Approximate Percent Reductions in Peak Velocity (millimeters/second)

Based on Center-Line Continuous Blocking System Implementation.

Floor | Approximate Reduction
Span In Peak Velocity (%)

' 4.88m | 55 |
[7.32m | 65 ]
915 m | 65 W
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Table 8.4 Approximate Percent Reductions in Peak Velocity (millimeters/second)

Based on Additional Sheathing (Base Thickness: 18 mm).

Floor | Sheathing | Approximate Reduction
. Span | Thickness | In Peak Velocity (%)
| 4.88 m | 25mm 6
38 mm 20
1732m /| 25mm 8
, 38 mm 50
915m | 25 mm 8 |
| 38 mm 50 |
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Appendix A

General Theory of Displacement
Based Finite Elements

This appendix is intended to provide the reader with information concerning the
derivation and construction of the svstem equations of motion through the use of
displacement based finite elements. In the following discussion. bold letters will refer

to non-scalar quantities.

A.1 Equation of Motion Generation

In analyzing continuous systems, it is necessary to generate a representative set of
governing partial differential equations of motion. In obtaining the governing equa-
tions. two general approaches may be used: 1) direct, and 2) variational. Direct
methods establish equilibrium. follow material laws. and ensure compatibility. Varia-
tional methods provide equivalent energyv representations of the governing equations.
The primaryv advantages of variational methods are convenience. and inherent inclu-
sion of the natural boundary conditions. In general. the latter advantage increases

the possibility of determining an accurate approximate solution since fewer boundary

120
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conditions need be satisfied due to inclusion.

A.2 Variational Principles

In structural mechanics. the term “variational method™ implies a work and energv
method. By definition. work is the product of a force and displacement where both
force and displacement directions are coincident. If we let F, be a force moving

through a displacement dr. the increment of work done is:
dWV = F.dr (A1)

If energy is defined as the capacity to perform work, then the amount of work per-
formed is proportional to the change in system energy (assuming that energy is neither
created or destroved). This implies that no net work is performed in moving on a
closed path. that the work performed in the svstem is dependent on position alone.
and that the svstem is conservative. In the case of conservative svstems. di1” is an
exact differential of some functional (II). This functional must be an expression that
implicitly contains the governing equations of motion. For linear elastic structural
components or systems, the functional can be taken as the total potential energv
which corresponds to the work done in a conservative force field when moving from

a fixed position to a reference position:
n=U+U, (A.2)

where: U, = elastic strain energv. and U, = potential energy of the external forces.

This functional allows the following expression to be established:

Al = —dIl = —(dW; + d}’,) (A.3)
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where: d11, = work performed by external forces. and di1; = work performed by in-
ternal forces. Notice the substitution of work terms for energv terms. The equivalence
of work and energy terms is due to the use of an exact differential.

If we now define virtual displacements as arbitrary. infinitesimal displacements
that are compatible with svstem constraints and do not appreciably alter svstem

geometry. virtual work can be expressed as:
OW = — (615 + 611%) (A4)

where: 611, = internal virtual work, and 61, = external virtual work. For a system
in equilibrium. the virtual work is zero for all virtual displacements satisfving the
svstem constraints where the constraint forces (i.e. friction) perform no work. This

statement. the principle of virtual work. leads to the following:

S(Wi+He) =0 (A.5)
which can alternatively be written for conservative systems as:

o(U;+U) =0 (A.6)

In the vast majority of cases. linear elastic structural systems are not conservative.
The non-conservative nature arises from forces such as applied loads. damping, and
friction. These non-conservative forces are labeled as such since they do not depend
on position alone. and thus can not be derived from a functional (in this case. a
potential). This means that work terms are needed to account for the non-conservative
forces. Realizing that the non-conservative forces initiate external actions. and that

internal potential energy is conservative for a linearly elastic material. the following
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relationship can be established for non-conservative systems:
U, =) =0 (A7)

which can be written:
S(U;+Le")=0 (A.8)
where: [, is the external potential energy including non-conservative effects.

In either the conservative or non-conservative case. from calculus. we know that
the first variation of a function. when set equal to zero. produces an extreme function
value (stationary value). Evaluation of the second variation will show whether the
stationary value is a maximum. minimum. or saddle point. In considering equations
(A.6) and (A.8). we conclude that in order for equilibrium to be ensured. the total
potential energv must be stationary (this is known as the principle of stationary po-
tential energyv). Furthermore, for linear elastic components or systems in equilibrium.
changes in internal potential energy are always positive. which implies a minimum
value of the stationary point.

In the following sections. the variational framework for theoretical development
will center on seeking a minimum. stationary value of the non-conservative syvstem

potential energv:

§TL = 6(U, + U.") (A.9)

A.3 Complexity

In analvzing components or structures, only elementary configurations lend them-
selves to closed-form solutions of the governing partial differential equation (s) of

motion. For example. a uniform. arbitrarily loaded. simply supported beam can be
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analvzed in closed-form. However, it may not be possible to obtain a closed-form so-
lution for a non-uniform. arbitrarily loaded. simply supported beam. In lieu of exact
solutions. we turn to approximate solutions.

Several approximate solution methods are available. including: subdomain, coilo-
cation. least squares. galerkin. and Rayvleigh-Ritz. These solution methods are known
as trial function methods. While the Rayvleigh-Ritz method is considered a varia-
tional method. the remaining methods. in general form. fall under a class known as
weighted residual methods. In trial function methods. we seek to approximate an
unknown solution using a set of scaled basis functions that are problem dependent.
The distinct advantage of the Rayleigh-Ritz method is that it operates on the func-
tional (IT). as opposed to the weighted residual methods that operate on the direct
formulation. This means that the Ravleigh-Ritz method trial functions need only
satisfv the geometric boundary conditions, while the trial functions of the weighted
residual methods need satisfv both geometric and natural (forced) boundary condi-
tions. Since it may be difficult to find trial functions that satisfy both geometric and
natural boundary conditions. the Rayleigh-Ritz method is preferred. Furthermore.
in keeping with the spirit of variational principles, the Rayleigh-Ritz method will be
used in all subsequent analysis.

In the classical Rayleigh-Ritz analysis, we seek a spatial displacement field u(z).

This displacement field can be approximated by a linear combination represented by:
n

ulr) =Y a; 0 (A.10)
i=1

where: a, = unknown coefficients, and o; = trial functions. In this analysis. the trial

functions need only be admissible. that is. trial functions that satisfy the geometric
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boundary conditions and are differentiable half as many times as the order of the
svstem. Once the functional (IT) has been cast in terms of the assumed displacement

field. the principle of stationaryv potential energv can be utilized. so that:

on _
da,

0 1 =1,2....n (A.11)
Solving for the unknown coeflicients. substitution into the linear combination will
provide the approximated displacement field. This process has the effect of reducing
an infinite-degree-of- freedom svstem into an n-degree-of-freedom system. In other
words. a continuous problem represented by partial differential equations is replaced
with a discrete problem represented by algebraic equations. Because onlv n terms
are taken. the displacement field approximation has the effect of overestimating the
functional (II) so that a bound on the total potential energy is achieved. In the
case of an elastic material, this has the implication of increasing stiffness and natural
frequencies. As the number of terms increases, the stiffness and natural frequencies
should monotonically approach the actual values from above.

The success of the Rayleigh-Ritz method depends on how well the trial functions
represent the problem at hand. In many cases, for complex syvstems. trial functions
that adequately represent the actual continuous situation are difficult if not impossible
to determine. However. it would seem reasonable that the Rayleigh-Ritz method
could be used in situations where the trial functions were valid over some known
region of the continuous system. This is essentially what displacement-based finite
elements try to accomplish: that is. to take a continuous system. divide it into known
finite regions, and apply a Ravleigh-Ritz analvsis on each finite region where the trial

function limitation is not based on system complexity, but on how the trial function
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is represented over the finite region. By then introducing inter-region compatibility
relations. the complex svstem can be fullv characterized bv its much simpler, finite

regions.

A.4 Finite Element Formulation

A.4.1 Overview

As just mentioned, displacement-based finite elements provide a vehicle for charac-
terizing complex structural systems. The following discussion will center on finite
elements that use the Ravleigh-Ritz method to minimize the total system potential
energy. With external actions known. the ensuing analysis seeks to approximate the
arﬁplitude field (displacement. velocity, or acceleration).

Assume that we have divided a linear elastic, externally loaded, continuous system
into several finite geometric regions where we seek to approximate the displacement
field. Further assume that the finite regions are connected at locations called nodes.
Applving the Rayleigh-Ritz method, we can approximate the finite region displace-

ment field. u. by writing:

u = Nd (A.12)

where: IN are trial functions. and d are region nodal displacements. In finite ele-
ment analvsis. the trial functions are often referred to as shape functions. At this
point. for clarity. we will consider the “finite regions” to be termed “finite elements™.
where N are shape functions. and d are element nodal displacements. Continuing

the formulation, the strain-displacement relation can be taken as:

¢ = Lu (A.13)
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where: L is a problem dependent differential linear operator. Substituting equation
(A.12) into equation (A.13) gives:

¢ = LNd (A.14)

For convenience. let:

B =LN (A.15)
The strain-displacement relation can now be expressed as:

e = Bd (A.16)
Assuming no initial stress or strains, the stress-strain relation is:

o = De (A.17)

where: D is the elasticity matrix containing material properties. In a similar fashion.

the shear strain-displacement relation can be taken as:
~ = Bsd (A.18)

where: B will refer to the B shear matrix. It is noted that L will be different for €

and 7. The shear stress-strain relation can then described as:
7 = D¢y (A.19)

where: Dy is the shear elasticity matrix containing material properties. To take into
account external actions. we may consider the effects of surface forces. body forces.
concentrated nodal forces. inertial forces. and damping forces.

In summary. our basic finite element relations are:

u = Nd (A.20)
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¢ = Bd (A.21)
~ = Bud (A.22)
o = De (A.23)
7 = Dgny (A.24)

By placing virtual displacements at the element nodes, we obtain:

su=Néd (A.25)
e = Béd (A.26)
&+ = By &d (A.27)

A.4.2 Internal Potential Energy

Viewing the stress-strain diagram of Figure A.1, where it is assumed that we have a
linear elastic material free of shear deformation, the internal potential energy (elastic
strain energy) per unit volume (elastic strain energy density) generated as a result of
the virtual displacements de is:

6’ o (A.28)

where it follows that:

§U, =6’ o (A.29)

Similarly. if we include the effects of shear deformation (Figure A.2). the following

term must be included in determining the elastic strain energy density:
6~T T (A.30)

so that:

U, =6l o+ 67T 7 (A.31)
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Figure A.1 Linear Elastic Stress-Strain Diagram.
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Figure A.2 Linear Elastic Shear Stress-Strain Diagram.
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Integrating equation (A.31) over the volume of the element results in the first

variation of internal potential energyv (elastic strain energv):
U, = / / /[ 57 o dV + / / 1 5T 7 dv (A.32)
which. using the basic finite element relations. can be re-written as:
§U, = [(/ / /l B'DB dv’ + [ / /m B.”D.B. dV) d} sd” (A.33)

For convenience. let:

6U, = Kd 6d” (A.34)

where:

K= / / /, B’DB dV + / / l B.”D,.B, dV (A.35)

A.4.3 External Potential Energy

In determining the external potential energy, we will consider surface forces, body
forces. concentrated nodal forces, inertial forces, and damping forces. Furthermore.
the principle of virtual work will be used directly to obtain an equivalent external
potential. The principle will allow us to generate the external work performed per
unit volume or area byv each of the given forces through the direct relation of: virtual
work = (virtual displacement) (applied force).

Surface forces. also known as tractions, are those forces applied on a boundary in
units of stress. From our basic principle of virtual work relation, the external work

per unit area becomes:

6We (surface) = ou’ @ (A.36)
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where: @ are prescribed surface tractions. Integrating this relation over the surface

area produces:

/' / suT® dS (A.37)

Body forces are those forces that are applied over the entire element volume.
These forces may arise from gravity. rotating machinerv. magnetic fields. etc. For our
purposes. body forces are generated from the self-weight of the structure (gravitv).

The external work per unit volume associated with body forces is:
5“’0 (body) = (SUTb (A38)
where: b are bodyv forces. Integration over the volume leads to:

/ / /1 sulb dV (A.39)

Concentrated nodal forces are self-explanatory and can be used to account for
either concentrated or distributed applied element forces. Since these forces act at

the nodes. the external virtual work can simply be expressed as:
sd’f (A.40)

where: f are nodal concentrated forces.

In performing a static analysis. the external virtual work can be taken as:
5“re (static) = 5We (surface) + 6We (body) + 6de (A41)

or:

Weisaio) = [ [ ou'@ds+ [ [ / subav +5d’f (A.42)
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Making the basic finite element relation substitutions. leads to:

FWe (static) = U/ NT@ds+ [ [ | NTbavt|sd” (A.43)

When performing a dvnamic analvsis. additional terms are needed due to inertial
and damping effects. In both cases. resisting forces are generated. Inertial effects will
be divided into two components: 1) translational. and 2) rotational. The translational

inertia component can be taken as:
T o
6We(inertial—t) = —du pu <AA44)

where: p is the mass density. or inertial force per unit acceleration per unit volume
of the material. and u are the element accelerations. Integrating over the volume. we

obtain:
_ / / / sul pii dV (A.45)
J o J Jvol

The rotational inertia component mayv need more clarification. Figure A.3 shows
a representation of a differential element. Considering the sub-element dA, the force
resisting the rotation is pr, where r = —wf, and thus 7 = —wh. The resisting force
can then be written as —pw9 By integrating the moment of the inertial force over

the area dA. we obtain the inertial moment per unit length:

—/ pwl(w)dA = —pl / / w?dA = —pIf (A.46)

where: I is the area moment of inertia. Under the virtual rotation 66. the external

potential energy per unit area Is:

—60T pIf (A.A7)
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Integrating over the length of the element results in the general formulation:

5We(inertial—r) = - | 59T[)19 dl (A48)

Jlength

dA

\
\
\
]
|
|
—
fe =

= X, U

Neutral Axis

Figure A.3 Differential Element Rotation.

With respect to damping effects, although several forms of damping exist, we will

assume viscous damping where a resisting force is generated:

5We(viscous) = _6UTCﬁ (A49)

which leads to:

_‘/' / /1 suTeu dV (A.50)

where: c is the coefficient of viscous damping. and 11 are the element velocities.
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In summary. the external virtual work associated with a dvnamic analvsis that

includes the effects of inertia and viscous damping may be expressed as:

6\A/'e = 5We (static) + 5We(dynamic) (1\51)
where:
5\A/ve(dynamic) = 6We (inertial—t) + 6We(inertial—r) + 6We (viscous) (‘AE)Q)
which is equal to:
EW e (dynamic) = — / / / su” pii dV — / 567 pIéi di — / / / sulca dv
’ J o J Jvol Jlength J J Jvol
(A.53)

Using the basic finite element relations. along with:

_du

b=

OWe (dynamic) can be re-written as:

oo = [ 5 a0)a- ([ £t )

_ <///1 NT¢ N dV> a| sd” (A.55)

For convenience. let:

W e (dynamic) = —(Md + Cd)éd” (A.36)
where:
. . T ) , X d T d L
M = / // N7, N dV + ANTHIEN al (A.57)
S b el length dl dl
and:

C= ///1 NTc N dV (A58)
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Recalling that éW (static) is:
EWe (static) = [// NT® s+ [ [ [ NTb dv+f} 5d” (A.59)
. sur . J V0

The total external virtual work can be expressed as:

FW, = V [ N@as+ [ [ [ Nbav+f-mMd-cdlsd”  (A60)
J Jsur J o Jvol
From the basic work and energyv relations. we know:
W, = —6U,." (A.61)

so that the first variation of external potential energy can be taken as:
UL = [~ / / N'®ds- [ /vol NTb dV — £+ Md + Cd| 67  (A.62)
A.4.4 Principle of Stationary Potential Energy
By invoking the principle of stationary potential energy, we have:
§(U, + U ) =0 (A.63)
or:
Md + Cd + Kd — / / NT® dS — / / /l NTbdV —f|6dT =0  (A.64)

sur

Since the virtual displacements are non-zero. equality can only be achieved if
the quantity within the brackets is zero. Thus. element equations of motion can be

written:

Md+Cd+Kd=F (A.65)
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where:

M = // /1 NTpNdV 4 z;ngfh %NT;)I%N dl (A.66)
C= / / /{ N7¢ N dV (A.67)

K — / / /[ BDB d\" + / / ] B.”D.B. dV (A.68)
F:v/"/mNch dS+././../l;o{NTb dv + f (A.69)

A.5 System Construction

Similar to the element equations of motion. the system equations of motion can be
expressed svmbolically as:

Md+Cd+Kd=F (A.70)

where: M is the system mass matrix, C is the system damping matrix, K is the
svstem stiffness matrix, and F is the system loading vector. Each system matrix can
be constructed from a single element matrix by using what is sometimes called the
direct stiffness method. This method simply provides the element coordinates and
properties in a form that can be mapped globallv. By utilizing this method. the entire
element svstem can be constructed from a single element type. When more than one
element tvpe is included in the analvsis. a single element of each type is needed to
construct the entire element svstem. An informative discussion concerning the direct

stiffness method can be found in Pilkeyv and Wunderlich (1994).
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Finite Element Development

A displacement-based. Ravleigh-Ritz finite element model has been developed to in-
vestigate the vibratoryv response of stiffened plates (e.g. wood floors). The model is
Cofnprised of plate and beam elements that have been combined through appropriate
coordinate transformations. Although not essential, the interested reader is referred
to Appendix A for a short introduction regarding the general theory of displacement

based finite elements. and how they can be used to represent dynamic motion.

B.1 Preliminaries

Two tvpes of elements have been included in the analysis: 1) beam elements. and 2)
plate elements. It will be shown that a combined element can be constructed through
appropriate coordinate transformations. The combined element is advantageous in
that the system can be represented by the plate degrees-of-freedom only (thus signif-
icantly reducing the size of the syvstem). However. before discussing these issues. the
preliminary topics of shape function selection, completeness, continuity. and element

matrix evaluation will be discussed.

137
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B.1.1 Shape Functions

An important consideration in the formulation of displacement-based finite elements
is the choice of shape functions. For our purposes. each can be generated using a
Lagrangian approach. Lagrange interpolation approximates a function. sav f({) by

a polyvnomial of degree n-1:
p(¢) = _L(Q) f(G) Q- <€ <@ <G (B.1)
=1

where:
p (C"Cl)"'(g'—Q—l)(c_gz+l,)"'(v§_<n)
L{C) = - - — = - - B.2)
(< (C7 _gl)“"-\g _@.7—1/'(Q7'—<1+1>-~-k§1—Qn) ( )

In dealing with phenomena such as axial deformation. torsion. and beam bending

with shear effects. this form of Lagrange interpolation is satisfactory. and we take
Ni(¢) = L({). where N;(() represent the shape functions.

In situations where a function and its consecutive derivatives must be approxi-
mated. a generalized Lagrange interpolation known as Hermite interpolation can be
used. In the case of bending without shear effects, we are concerned with the trans-
lation and rotation at each interpolation point; thus, an approximating polvnomial

of degree 2n-1 can be expressed as:

p(C) = > [0i(Q)f(G) + WO F(G)] (B.3)

—_

-~

where:
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(€= )€ = G S = Gint) (€ = Gn)

]7' = N - ~ ~ B6
(<) (G = ¢C) (G = GG = Gigr) (G — ) (B.6)
(¢
1(C) = d(;) (B.7)
df (¢
£1(G) = % (B.8)

The shape functions N;({) can now be cast in terms of ¢;(() and ¥,(¢). In mapping
between two coordinate svstems. appropriate rotational transformations are needed.
Two-dimensional interpolation functions can be constructed as the product of
an appropriate pair of one-dimensional interpolation functions (either Lagrange or
Hermite). For example. in Lagrange interpolation. with the introduction of a second

dimension 7. a shape function could take the form: Ny = I1({)1(n).

B.1.2 Completeness and Continuity

In applving a Ra}'leigh-Rifz method to finite elements. two conditions related to shape
functions are required. First. the displacement field. u must be a complete polynomial
of degree m. Recalling that u = Nd. the degree of the polynomial is taken as the
degree of the shape function. Second. the element must have C™~! continuitv along
inter-element boundaries. C™~! continuity implies that u and its derivatives up to
the order of m — 1 are continuous. If both of these conditions are satisfied. monotonic

convergence in energyv is guaranteed.
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B.1.3 Evaluation of Element Matrices

Once the appropriate shape functions have been selected. the element matrices can be
evaluated (assuming that the elasticity matrices are known). Explicit evaluation of
the element matrices is very time consuming and prone to error. An alternative is to
evaluate the integral expressions numericallv. Although several numerical integration
methods exist. Gauss quadrature can be used effectively. An advantage of Gauss
quadrature is that it has been optimized for both position and weight. Furthermore.
a polynomial of order (2n - 1) is integrated exactly with only n function evaluations. If
a given function is not a polynomial. Gauss quadrature is inexact. although accuracy
can be increased as more evaluations are used. In a one-dimensional normalized space.

Gauss quadrature takes the general form:

n

1
I= [ fQac= YW A(Q) (B.9)
v 1=1

s

where: f(() is the function being evaluated over the normalized interval of (-1,1),
11, is the optimized weight factor. and f((;) is the value of the function evaluated at
the optimized sample point {;. Both optimized weight factors and optimized sample
point locations can be found in any standard numerical analysis or finite element
textbook. In two dimensions. Gauss quadrature is formed by successive applications
of the one-dimensional general form:

1 -1 n n
I'= _/_1 ./_1 f(CmydCdn = Y Wil f(G.my) (B.10)

1=1j=1
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B.2 Beam Element Formulation

Joists in wood floor systems are subjected to bending, shear, axial, and torsional
deformations. Bending and shear deformations arise from the direct application of
load. While axial deformations result from the joists acting as eccentric stiffeners‘to
the sheathing. torsional deformations result from the rotations of the sheathing. It is
the purpose of this section to formulate a beam element that will sufficiently model

these deformations.

B.2.1 Models and Element Selection

To begin. we will consider a continuous beam as shown in Figure B.1. By analyzing
the shaded (differential) region, it is possible to determine the strain-displacement
relations for all deformations other than those due to torsion. If for now. we neglect
shear. Figure B.2 shows a physical interpretation of the deformed shape in two—
dimensions. where: 6 is the beam rotation due to bending, w is the height above
the neutral axis. and u(x,w) and u(x.0) are deformations in the axial direction. This
idealization corresponds to the Bernoulli-Euler theory where normals remain straight.
undeformed. and normal to the neutral axis: thus. the theory models pure bending.

When shear effects are included. a different deformed shape results as seen in
Figure B.3. where: ~ is the rotation and consequently strain due to the shear de-
formation. In this case, while normals remain straight and undeformed. they do
not necessarily remain normal to the neutral axis. This model is referred to as a
Mindlin-Timoshenko beam where the effects of warping due to the shear deforma-

tion have been neglected. Based on the Mindlin-Timoshenko model. the following
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strain-displacement equations can be written:

du(r.0) _ df

e(r,w) = I w— (B.11)
and:
dz
Y(r,w)=—~40 (B.12)
dr

where it is noted that the strains are coupled through the 6 term. The corresponding

stress-strain relations are:

o = Ee (B.13)

and:

e (B.14)

T=—=G» :

K
where: E is the modulus of elasticity, G is the modulus of rigidity, and K is a section
based shear correction factor. This factor equates an assumed uniformly distributed
shear with the actual distribution. Based on the strain-displacement and stress-
strain relations. a finite element representation can be formed where the unknown

displacement fields are: z.6, and u.

t(x)
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Figure B.1 Continuous Beam Model.
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Figure B.2 Beam Deformation Model Excluding Shear and Torsion.
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Figure B.3 Beam Deformation Model Including Shear and Excluding Torsion.
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In determining the beam shape functions. we will consider the bending (z.6) and
axial displacement fields (u) separatelv. In bending. consideration is given to both
ordinate (z) and rotation (#); thus. Lagrange interpolation is used. For a standard
two-node element. Lagrange interpolation results in linear shape functions. Unfortu-
nately. for beams that include shear deformation. shallow two-node beam elements
have the tendency to exhibit exaggerated stiffness that causes element “locking” (de-
formations close to zero).

To understand the phenomena of element “locking”, consider a static system of
equations where a unique solution is obtainable only when the stiffness matrix is non-
singular (i.e. has an inverse). To ensure a non-singular matrix. numerical integration
requires that the number of independent relations at the integration points be greater
than or equal to the number of unknowns (active degrees—of-freedom). For beams that
include shear deformation. the coupled stiffness matrix is composed of true bending

and shear components:

K = K, + K, (B.15)
where:
K, = EI[] (B.16)
and:
K. = if‘[] (B.17)

where: A is the element area. and the closed brackets refer to matrices that for
now. can be considered arbitrarv. Observing these three equations. when a beam
becomes shallow. K, can become large in comparison to K,. In an uncoupled (phys-

ical) syvstem. this implies that the shear deformation is low, and that the majority of
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the deformation comes from the true bending component. However. in the coupled
svstem. the coupling admits high shear stiffness to the coupled stiffness so that exag-
gerated stiffness values result and the element “locks”. What should happen, is that
a constraint should be placed on the shear deformation so that for shallow beams. the
shear stiffness is zero. A singular K; can enforce this constraint without “locking”
the element. To ensure a singular matrix. numerical integration requires that the
number of independent relations at the integration points be less than the number
of unknowns (active degrees—of-freedom). For two-dimensional analysis. Cook et al.
(1989) explains that the near optimal ratio of active degrees—of-freedom to shear
constraints is 2-to-1.

Two ways to obtain a singular matrix are to use reduced integration. or a higher
order element. One disadvantage of reduced integration is that convergence in energy
is lost. In addition. element instability mayv occur. On the other hand, reduced inte-
gration tends to soften elements so that a more accurate element stiffness is achieved.
When using higher order elements, full integration is possible so that the convergence
in energy is maintained; however, the ratio of active degrees—of—freedom to shear con-
straints mav be lower than the optimal 2-to-1. Based on these considerations. it is
apparent that a three-node beam element with either full or reduced integration will
suffice in modelling the beam bending. Having chosen a three-node beam element.
the interpolation functions in z, and ¢ will be quadratic. It follows from the choice of a
three-node element, that in considering axial deformation, the interpolation functions
in u will also be quadratic.

In considering torsion, Figure B.4 shows a differential element and deformation

model excluding the effects of warp. where: ¢ is the rotation due to torsion. and ~
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is the shear strain due to torsion. From Figure B.4, the strain-displacement relation

can be written:

do
n e B.18
T ( )
where the stress-strain relation is:
7 =Gn (B.19)

As with the bending and axial deformation interpolation functions. the interpolation

functions in the torsional deformation field @ will be taken as quadratic.

» XU b.b* L N

Figure B.4 Torsion Differential Element and Deformation Model Excluding Warp.

In summary. a three-node element has been chosen to model the response of wood
floor joists. The element chosen takes into account pure bending deformations. shear

deformations. axial deformations. and torsional deformations. In all cases, quadratic
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shape functions will be used to approximate the displacement fields. It is noted that

the element provides completeness and continuity.

B.2.2 Beam Stiffness Matrix

Performing the required substitutions. the beam element stiffness matrix will have

the final form:

K= {Kpb + Ks} + Ka + Ktor (BQO)

where: K, Is the beam pure bending stiffness. K; is the beam shear stiffness. K, is
the beam axial stiffness. and Kj,, is the beam torsional stiffness. The curly brackets
refer to the fact that K,, and K; are coupled, thus K is coupled through these terms.

Each expression can be expanded so that:

K, = EI[] (B.21)
GA

K, = 7(—[] (B.22)

K, = FA[] (B.23)

K, =GJ[] (B.24)

where: the only new term is J, the torsional constant. The closed brackets [ ] refer
to matrices obtained by numerical integration. As described, each element stiffness
matrix will contain twelve degrees—of-freedom, thus a 12x12 matrix will result.
Although the torsional deformation model excludes the effects of warp, in calculat-
ing the torsional constant, warp must be considered. For a rectangular cross-section,

J may be taken as:

_ (2a)*(2b) 19 <(1) < 1 nmb .
J = —5 1-— ; > 7757‘,(177}7 5 (B.25)

’/TD

n=1.3.5....
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where: a is half the beam width, and b is half the beam depth (Boresi and Chong.
1987). For beam cross-sectional shapes such as I-Joists. J can be taken as a superpo-

sition of equivalent rectangular sections (Pilkev and Wunderlich. 1994).

B.2.3 Beam Mass Matrix

In a similar substituting fashion. the beam element mass matrix will also contain

twelve degrees—of-freedom where:
M=M,+M, +M, + M, (B.26)

where: M, is the beam mass associated with bending translation (z). M, is the beam
mass associated with the bending rotation (6), M, is the beam mass associated with
axial translation (u). and M,,, is the beam mass associated with torsional rotation

(o). Each expression can be expanded so that:

M, = pA] ] (B.27)
M, = pl[] (B.28)
M, = pA[ ] (B.29)
Mo = pJ| ] (B.30)

where: p is the mass density. The closed brackets | ] refer to matrices obtained by

numerical integration.
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B.3 Basic Plate Element Formulation

In the formulation of a suitable plate element. consideration will be given to pure
bending deformations. shear deformations. and in-plane deformations. By including
in—-plane deformations. it will be possible to obtain svstem solutions based only on

the plate degrees—of-freedom. Orthotropic stress-strain relations will be used in the

formulation.

B.3.1 Models and Element Selection

Figure B.5 shows a representation of a continuous plate. As with a continuous beam,
by analvzing the shaded differential regions, the deformed shapes can be envisioned.
Figure B.6 shows the plate deformed shape in the x-w plane. and Figure B.7 shows

the plate deformed shape in the v-w plane.

Figure B.5 Continuous Plate Model.
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Neutral Axis

 /
X
C

«—— x— P gy ———
e—u (x 0) —

Figure B.6 Plate Deformation Model. x-w Plane.

Neutral Axis

v

y. v

Figure B.7 Plate Deformation Model. v-w Plane.



Appendix B. Finite Element Development

151

It follows from Figures B.6 and B.7 that the strain-displacement relations can be
wTitten:

e Oug?".()) u,%‘? (B.31)
Y(r.w) = % x (B.32)
ov(y.0) 08,
€(y.1 — B.33)

. 0z
Yy.w) = g~ 0,

(B.34)
In addition to the bending strains and transverse shear strains just described,

shear strains develop in the x-v plane of the plate. Figure B.8 shows a representative

model where it is assumed for clarity that u is equal to u(z.y). and v is equal to

v(r.y). From Figure B.8. the shear deformation can be expressed as:

, Ou(r. ov(r. _
Y(ry) = ”(a; w zg; v) (B.35)

By making the necessary substitutions, the strain-displacement relation in the x-v

plane is written:

Ou(x,0) 06,
VMry) = ——

Au(y, 0) a6,
—w— + — W B.36
oy “ Ay or “or ( )
The stress-strain relations for orthotropic plates have the form:
E;

0r = 17 ljxl/y(ej + vyey) (B.37)

1, T 99

Tru = XGAIru' (B36)

o Y (€, + vr€r)
Yo l-, Y T

(B.39)
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U+ au: oxdx

‘ v+ ov/oxdx

Figure B.8 Model For x-y Plane Shear Deformation.

1
Tyw = —EG")yu' (B40)
and:
Tey = GYzy (B.41)

where: E%. E%, and v,, v, are the effective moduli of elasticity and poisson’s ratios in
the x and y directions respectively. For clarity, a svmbol such as €, refers to e(x. w).

and a symbol such as 7, refers to 7(r.y).
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More conveniently. the stress-strain relations can be written:

ET V“ Hf

Ox ( l-vrvy 1—vruy 0 0 0 €r
Ty 1 Ifulivuy 1 —lli/; Uy 0 0 0 €y
Tay | = 0 0 G 0 0 Yy (B.42)
Tru 0 0 0 %G 0 Vzw
Tyu .0 0 0 O %G | Ty
or:
ocg=De (B.43)
where € is equivalent to:
( €r 0 u a% 0 5 (7_01 g 1r z
o ! ’ o ‘u'@ (a) @ O
Ty = 0 —Uu -8(—1/_ —U’E ;9‘; é Hy (B44)
Vrw 2 -1 0 0 0 u
L Tyw L % 0 -1 0 0 JL v
or:
e=Lu (B.45)

As in the beam element formulation. caution to avoid shear locking is essential
when determining the plate element shape functions. Using the beam element ratio-
nale. a nine-node plate element will be used that can either be fully integrated, or
selectively integrated. It follows. that for each plate displacement field (z. 6,. 6,. u.
). the shape functions (IN) will be quadratic. With nine-nodes, each plate element

will contain 45 degrees—of-freedom where completeness and continuity are provided.

B.3.2 Plate Stiffness Matrix

Performing the required substitutions, the plate element stiffness matrix will have the

final form:

K = {K,+ K.} + K, (B.46)
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where: K, is the plate pure bending stiffness. Ky¢ is the plate transverse shear
stiffness. and K,, is the plate in-plane stiffniess. The curly brackets refer to the fact
that Ky, and K, are coupled. thus K is coupled through these terms. Each expression

can be expanded so that:

h3 S
Kpb: I?j[] (B‘/‘l‘)
hG | o o
A
K, — [ ] (B.49)

where: h is the plate thickness. The closed brackets [ ] refer to matrices obtained
by numerical integration. As described. each element stiffness matrix will contain

forty-five degrees—of-freedom. thus a 45x45 matrix will result.

B.3.3 Plate Mass Matrix

In a similar substituting fashion. the plate element mass matrix will also contain

fortv-five degrees—of—freedom where:

M=M,+M,+M,, (B.50)
where: M, is the plate mass associated with bending translation (z), M, is the
plate mass associated with the bending rotations () and (6,), and M,, is the plate
mass associated with the in-plane translations (u) and (v). Each expression can be

expanded so that:

M, = phl ] (B.51)
M, = p}—?i[] (B.52)

12 '
M, = phl] (B.53)

where: the closed brackets [ | refer to matrices obtained by numerical integration.
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B.4 Combined Plate-Beam Element Formulation

In formulating the combined plate-beam element, we will seek to represent the svstem
degrees—of-freedom by those of the plate only. To begin. consider Figure B.9. a typical
representation of a floor system. For clarity. further consider only the shaded region
where the beam acts as an eccentric stiffener. In two-dimensions. the shaded region.
extending along the x-axis. can be envisioned as a combined system (Figure B.10)
where further magnification shows the interior geometryv of the combined svstem

(Figure B.11). The L-slash symbol denotes the element length.

wya

’ Plate j

H/H/U/Bm

Figure B.9 Representation of Tvpical Floor System.
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Figure B.10 Combined System Model.
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~
N

Figure B.11 Combined System Geometry.
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Considering only the left end of the combined svstem in Figure B.11. the defor-

mation model can be represented by Figure B.12:

w.Z
A —»‘ ut
i Neutral Axis
1
| T
A
|
| 4
: > x.u
< x ax —»
— ua —>

Figure B.12 Combined System Deformation Model.

From the combined system deformation model, it follows that a coordinate trans-

formation equation may be written that will allow the plate to include the beam

properties and degrees—of—freedom:

Uy 1 0 A U
wy | =101 0 wy (B.54)
04, 0 0 1 01,

where it is assumed that there are no vertical gaps between elements and that both

elements experience the same rotation.

With regard to the stiffness matrix, denoting the three x three matrix as the

coordinate transformation matrix [T], and the beam stiffness matrix as [K], . the
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additional plate stiffness resulting from the beam is:

Kl ptates = [T]" Klpeqm (T] (B.55)

plate+ beam [

where the total plate stiffness is obtained by adding the basic plate stiffness and

K]

plate- In a similar manner. the additional plate stiffness in the y-direction can be
obtained. The transformation matrix [77] is similar to that described by Gupta and
Ma (1977) and Miller (1980). In all. the coordinate transformation equations allow

the plate-beam svstem to be represented by the plate degrees-of-freedom only. thus

significantly reducing the number of unknown equations and solution time.

B.5 Summary

A combined plate-beam element has been constructed to model the response of stiff-
ened plates. Since both plate and beam elements use quadratic shape functions,
completeness and continuity are maintained. The combined element accounts for

bending. transverse shear. in—plane. and torsional deformations.
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Solution Procedures

In order to obtain useful information from the finite element model, we need to extract
the unknown quantities of interest by implementing appropriate solution procedures.
Although our primary interest concerns obtaining the dvnamic response. the static
response can also easily be generated along the way. Static response results will be
useful for model verification. In the following discussion. bold letters will refer to
non-scalar quantities. In some instances. for clarity. the non-scalar quantities will
be expressed by bracket enclosure (for matrices). and by curly bracket enclosure (for

\vectors).

C.1 Full System

C.1.1 Natural Frequencies

In obtaining values for the system natural frequencies, undamped free-vibration will
be assumed. This is a reasonable assumption since the damping factors in wood
floors are generally less than 5 percent of critical. Having already assembled the

svstem mass and stiffness matrices. which in our case are known to be svmmetric and
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positive definite. the characterizing equations of the conservative system are:
Md +Kd =0 (C.1)

where: d are known as the generalized accelerations, and d are known as the gen-
eralized displacements. If we assume svnchronous motion. that is, motion where all

coordinates exhibit the same time dependence. the following solution mayv be used:
d=¢"u (C.2)
so that upon substitution. an eigenvalue problem results:
Ku = «*Mu (C.3)

or equivalently:
K- o*Mju=0 (C.4)

2 are the system eigenvalues, u are the

where: w are the system natural frequencies, w
svstem eigenvectors (natural modes/mode shapes). In order for non-trivial solutions

to exist. the determinant of the coeflicients must be zero, so that:
K —w'M| =0 (C.5)

Expanding this determinant results in a polynomial known as the characteristic equa-
tion whose roots numbering (7 = 1.2.....n) can be directly solved for. Unfortunately.
for large svstems of equations. using the characteristic equation is prohibitive and ef-

ficient eigensolutions are alternatively obtained by expressing the eigenvalue problem

in terms of a single matrix:

[A-MU=0 (C.6)
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where: I is the identity matrix. and U are the eigenvectors of the alternative problem.

The A matrix and associated eigenvalue problem can be constructed in the fol-

lowing way. First. Cholesky decomposition can be used to factor the system stiffness

matrix which is known to be both symmetric and positive definite. The decomposition
can be stated:

K =LL" (C.7)

where: L is a lower triangular matrix. Note that the static solution can be obtained

from the factored marrix and static load vector using backsubstitution:
Lx=f (C.8)

where: x represents the static solution. and f represents the static load vector.
Recognizing the ( i = 1.2,...,n) roots individually, substituting (C.7) into (C.4)
vields:
[LLT — w;?M]u; = 0 (C.9)
By premultiplyving this equation by L™}, and recognizing that I can be taken as L=7L7
we obtain:
[L'LLY — &L '"ML 7Ly, = 0 (C.10)
which can be re-written as:

1—?L'"ML7 Ly, =0 (C.11)

and finally:

[A = NIU; =0 (C.12)

where:

A=L"'ML7 (C.13)
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and;

Now that the eigenvalue problem is in standard form, we can to obtain the eigen-
values A; and eigenvectors U; (natural modes) of the system by anv standard method.
Unless repeated eigenvalues occur. the eigenvalues are unique without further modifi-
cation. In the case of the eigenvectors. uniqueness comes only from the ratio of vector
elements. where the scale is arbitrary. In other words, while the shape of the natural
modes is unique, the amplitude is not. Fortunately, the natural modes can be ad-
justed so that the amplitudes are unique by implementing some type of normalization

procedure. The following normalization procedure has been used:
U,"MU,; =1 (C.16)

where it can be shown that these normalized eigenvectors, known as normal modes

or orthonormal vectors. provide the following:
U,TKU, = ) (C.17)

C.1.2 Time History

In obtaining the time historyv. a superposition method known as modal analysis has
been used. This method sets out to describe the motion as a set n—independent. single
degree—of-freedom analogous equations. For our system of equations, which exhibit

both elastic and inertial coupling. we seek to find an alternate set of generalized
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coordinates that render both the stiffness and mass matrices diagonal: thus, the
equations uncouple. As will be explained later. the assumption of modal damping
allows us to disregard the formation of the damping matrix so that the svstem of

equations becomes:

[AM{d(t)} + [K]{d(*)} ={F(t)} (C.18)

In obtaining an alternate set of generalized coordinates, properties of the system
eigenvectors can be exploited. One property of the system eigenvectors is that they

are orthogonal: that is:

{UT[M{U;} =0 (C.19)

and:

{UTIK|{U;} =0 (C.20)

where: 1.j = 1.2....n and 7 # j. If we utilize a linear transformation to generate a
new set of generalized coordinates. then the matrix of normal modes [U] can be used
to diagonalize both the stiffness and mass matrices in terms of the new generalized

(normal) coordinates n(t):

{d()} = [Ul{n(t)} (C.21)

In addition to orthogonality, the system eigenvectors form a linearly independent
set. Thus. the motion of the svstem can be obtained as a superposition of natural

modes and appropriate constants:

{di)} = e (M {U1} + cott){Ua} + . + e () {Un} = ic,-(f){b}} (C.22)

Using the concepts of orthogonality. linear transformation, and linear indepen-

dence. the following relationship can be used to uncouple the system equations of
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motion and provide a time-history:
{d()} = n(t){U:} = [UNn(t)}
1=1

where {n(t)} are normal coordinates.

In applving the linear transformation. the original set of equations:
[M{d(n} + [K]{d(n)} = {F(1)}
can be rewritten as:

MU} + KU} = {F(1)}

where [L] are the normalized eigenvectors. Premultiplying by [U]7 yields:

UMUK} + VT IKNUKn(1} = [UITF()
which due to the use of the normalized eigenvectors, is equivalent to:
i (1) + "‘“‘72771(r) = Ni(t)

where:

N,(t) = {U}TF(t)

164

(C.23)

(C.24)

(C.26)

(C.27)

(C.28)

The resulting set of uncoupled equations have single degree—of-freedom forms.

Thus. it is possible to represent each individual mode as an independent single degree-

of-freedom svstem. such that the summation of modal responses will vield the total

response. In considering a general single degree—of-freedom system of the form:

m7i(t) + en(t) + kn(t) = N(t)

(C.29)
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or equivalently:
N{(t)

m

(C.30)

) + 2Cun(t) + win(t) =

it can be shown that the response of each mode in the uncoupled syvstem may be

expressed in normal coordinates as:

, 1 't - .
n(t) = / Ni(r)e s =) sinwy, (t —7)dr +
mwy; /0
. Wi 2 (0 S
n;(0) e ’{coswdif + = 75177u.«'d7‘f] + Me_“’“”TSZIde,-f (C.31)
Wi Wi

where: «; is the i undamped natural frequency. wg; is the " damped natural fre-
quency which is equal to w; (1—(?)3. (; is the i'" viscous damping factor. n:(0) is the
initial displacement. and 7,(0) is the initial velocity. The initial displacement. 7;(0).

and initial velocity. 7;(0), can be further expressed as:
n,(0) = {U.}7 [M]{d(0)} (C.32)

and:

7(0) = {U:}[M]{d(0)} (C.33)

Once the modal responses have been obtained in normal coordinates, nodal coordi-
nate responses can be obtained by summing the products of the normal coordinate
responses and appropriate normal modes.

The contribution due to the applied load in (C.31) is seen to be in the form of a
convolution integral. For applied loads that are characterized by simple geometries.
such as step functions. the convolution integral can be evaluated closed form and a
continuous time representation may be utilized. However. for more complex loadings,

a closed form solution is difficult if not impossible to obtain. In these instances.
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numerical evaluation of the convolution integral is required that represents the loading
in discrete time. The discrete time counterpart to the convolution integral is the

convolution sum. In general. if the convolution integral has the form:
-t
(1) = /O Fit = 7)h(r)dr (C.34)

then the convolution sum can be expressed:

k—1
T, = TZ Fk—j—lh] (C?)B)

J=o0
where: T is the reciprocal of the sample rate.

As previously mentioned. since we will be assuming modal damping. the damping
matrix need not be explicitly constructed in determining the time-history. T his
is because modal damping allows a damping factor to be assigned to each mode
independently: thus if we have obtained modal damping factors a-priori. damping

can be accounted for strictly in the single degree—of-freedom calculations.

C.1.3 Summary

Both the natural frequencies and time history can be obtained without construction
of the viscous damping matrix. In the case of natural frequencies, damping effects
should be minimal due to the small viscous damping factors associated with floor
svstems. In the time history analysis, the assumption of modal damping allows the
svstem of equations to uncouple using modal analysis so that the damping effects can
be taken into account in the single degree—of-freedom calculations.

In obtaining the syvstem natural frequencies. an eigenvalue problem results that
can be solved in standard form by anyv particular method. The resulting normal

modes can be used in a coordinate transformation that allows the system equations
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to uncouple in normal coordinates: thus a set of independent single degree—of-freedom
equations can be used to represent the response in normal coordinates. The response
in nodal coordinates can then be obtained by multiplving the normal coordinate

responses by the appropriate normal modes.

C.2 Reduced System

In finite element analysis, system equations are so numerous that solution procedures
working on the full svstem are unreasonable from a performance standpoint. Further-
more. since in most structures only a limited number of modes contribute appreciably
to the response. a reduced syvstem of equations is sought so that solution time will be
minimized. and accuracy maximized. To this end. Ritz vectors, as described by Wil-
son et al. (1982). have been used to reduce the size of the svstem to one that is more
manageable and acceptably accurate. The same eigenvalue procedures and modal
analvsis procedures used for the full svstem can be used for the reduced system.

In describing the generation of Ritz vectors. we will begin with the general equa-

tions of motion:

[M{d(t) } + [KI{d(t)} = {F ()} (C.36)

Since { F(t)} implies { F(s,t)}. that is, a time-varying load composed of space vectors

and time functions. the following can be written:
{F()} ={F(s.1)} = > _{fi(s)} gu(t) (C.37)
k

where: k is the number of vectors needed to describe the loading. {f,.(s)} is the k'

load vector. and g (#) is the k" time function. Assuming a single load. the first vector
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can be generated from:
[Kl{w™} = {fls)} (C.38)
where the first Ritz vector {u;} is found by normalizing the vector {u;*} with respect

to the system mass matrix so that:

{w "M {uy} =1 (C.39)
Additional ¢ = 2.3..... N Ritz vectors are generated by solving:
[K){u"} = [M]{ui—1} (C.40)

where the resulting vectors are orthogonalized with respect to the mass matrix:

1—1
{w™) = {w'} = 2o {u} (C.41)
where:

¢; = {u; }T[M{w"} (C.42)
and normalized with respect to the mass matrix:

From a phyvsical standpoint, the first Ritz vector represents the static response
due to the load vector {f(s)}. The dynamic forces neglected in this first step can
be considered as an error vector, which is accounted for in the loading term used for
the generation of the second Ritz vector. Similarly. the error vector associated with
the second Ritz vector can be used in the third Ritz vector generating equation. and
so on. From this description. it is evident that the Ritz vectors are load dependent.
Thus. vectors that are not excited by the given loading will not be included in the

analvsis.
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Once the V' Ritz vectors have been calculated. the equations of motion can be

written:
ALHd() } + Ia{d(D)} = {fi1(s)} 9(1) (C.44)
where the reduced N x N system matrices are:
[AL] = [U]T[AM[U] (C.45)
(K1) = [U)T[K][U] (C.46)

and the N dimensional load vector is:

{fits)} = [UTT{f(s)} (C.47)

Solving the eigenvalue problem associated with the reduced system will provide
approximate full svstem natural frequencies. In evaluating the reduced system. it
is noted that while a diagonal mass matrix results, a non-diagonal stiffness matrix
results. This is important since in using modal analysis, the stiffness matrix must
be diagonal. TUsing the exact eigenvectors of the reduced system in a coordinate
transformation will allow the stiffness matrix to become diagonal in the usual wayv

while allowing the terms in the mass matrix to be scaled accordingly. Thus. solving:
[K1 - W'12M1]Zi =0 (C.48)

where the eigenvectors are consequently normalized. the final set of Ritz vectors for

the reduced svstem can be taken as:
[Ur] = [U][Z] (C.49)

where the set of vectors [Ug| are now orthogonal with respect to the system mass and

stiffness matrices and may be good approximations of the exact system mode shapes.
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Series Solutions

This Appendix provides the series solutions representing the exact solutions in the
Model Validation chapter. Unless otherwise noted, the results provide center-point

displacements (w) of simply supported plates under the action of a center-point load

().

D.1 Static Response

D.1.1 Isotropic

where:

ER?
b= 12(1 — 12) (b-2)

where: a = Plate length. b = Plate width. £ = Plate modulus of elasticity. h = Plate

thickness. and v = Plate Poisson’s ratio.
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D.1.2 Orthotropic

4 < (mrr)z - <m)2
< oc m (ZT) sin (BF
- ,..4p[ Z Z T mé - m2n2 - nt 3
a0 135, n=135.. (0—4) D, +2 ( peTs: ) D+ (bT) DyJ
where:
D, — h3E,
12(1 = vyp)
B h3Ey
Dy = 12(1 — vyu)
D =D, +2G,
h3E.v, h*E,v,

Dy, =

Gy =

hiG
12

12(1 — very)  12(1 = vp1)
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(D.8)

where: a = Plate length, b = Plate width, E, = Plate modulus of elasticity in the

local x-direction. E, = Plate modulus of elasticity in the local v-direction. G = Plate

modulus of rigidity in the local x-v plane. v, = Plate Poisson’s ratio in the local

x-direction. and v, = Plate Poisson's ratio in the local y-direction.
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D.1.3 Isotropic (Transverse Shear Flexible)

a;y app2 a3 w P
asy QA vy p=¢0
az; sz as3 (85 0

where:

w2 11— 7\ 2]
Qoo = D (771_) + Y (L) + kGh
L J

S
4= D |} V(E) +(ﬁ) 4 kGh

2 a b
agp = ay = kGRZ
a

13 = az1 = kGhnTW

1+ 1/) mm nmw

0232032=D< 5

(D.9)

(D.10)

(D.11)

(D.12)

where: a = Plate length. b = Plate width. ¢;,19 = Shear rotations, & = Shear form

factor. G = Plate modulus of rigidity. h = Plate thickness. and D = Plate Bending

Stiffness (See D.1.1).
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D.1.4 Isotropic (Equidistant Stiffeners)

where:

C

S

D=2G,,+

173

(D.17)

(D.18)

(D.19)

(D.20)

where: a = Plate length. b = Plate width. £ = Plate modulus of elasticity, s =

Stiffener spacing. h = Stiffener width. t = Plate thickness, t; = Combined depth of

plate and stiffener. I = Area moment of inertia about the neutral axis of a T-section.

G, = Plate torsional rigidity. and C = Stiffener torsional rigidity. See Timoshenko

and Woinowskyv-Krieger (1959) or Ugural (1981) for more details. It is important to

note that this solution provides a rough estimate, more exact theories are available.
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D.1.5 Isotropic (Dual Span)

b? > A m-1y ( Bmtanh (3 \)j
= oyl (2 ) .
=55, 2w (i) b2
where:
-p mo1 Bmtanh (G,)
e T
mn cosh (( rn) (f(”)h (3"7] + coth (ﬁm) + cosh(r»;m)g N smh(z;m)g)
(D.22)
mma ;
O = = (D.23)

where: a = Plate length. b = Plate width. D = Plate Bending Stiffness (See D.1.1).
For the solution described. the plate spans are assumed to have equal length and
width. Furthermore. w represents the displacement at the center of the right span.

while the location of the concentrated load p is at the center of the left span.
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D.2 Dynamic Response

D.2.1 Isotropic

The natural frequencies can be expressed as:

5| mNe /n 2 /;ﬁ
= [(2) = (5)] 5 D24
where:
EhR® -
D = 21 =9 (D.25)

where: w,, , = Plate natural frequencies (radians/second). a = Plate length, b = Plate
width. E = Plate modulus of elasticityv. h = Plate thickness, v = Plate Poisson's ratio,
and p = Plate mass density. Plate natural frequencies can alternatively be expressed

in terms of Hertz as:

fm.n = . (D26)

27

where: f,,, » = Plate natural frequencies (Hertz).
Time-history expressions have been constructed to take into account a time-
zero step function input force (Figure D.1). In each of the following expressions:
a = Plate length. b = Plate width. p = Plate mass density. (,,, = Plate viscous

damping factors as percent of critical. and:
“dm.n = “m.n \1 - Cm,n2 (DQ?)

where: g, = Plate damped natural frequencies (radians/second).
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Force (newtons)
°

Time (seconds)

Figure D.1 Graphical Representation of Time-Zero Step Function.

Displacement time-history can be expressed:

4 S = g mn¥“mmn .
w= L > > A {1 — e~ Cminwm.nl <c05 (Wamnt) + G nm.n sin (wdm‘nf)ﬂ
pab m=123..n=123... “dm.n
(D.28)
where:
1 7\ 2 77\ 2
A= o () e (5)° 20

Velocity time history can be expressed:

4 > > “dm.n ’rn 772 — ; . -
U = P Z Z A H mn Sm. }e Cmonwmnt gin (wdm_nf)} (D.30)

pab . 153 n=laa “'m.n wdm.n
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where:
2 2
A= {S’Zn <m> sin <7777r> } (D.31)

Acceleration time-history can be expressed:

_ 2P Z Z A [e-Cm'"‘”m‘“t {B cos (wgmnt) — C sin (budmmf)}] (D.32)

pab m=1.2.3,...n=1,2,3....

where:

/mm\?  /nm\?
A= {Sm (7> sin (7> } (D.33)

[, 2
B = | Zdmr +<m.f} (D.34)

C' = Cman |-
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Quick Reference

This appendix was constructed to provide a central repository of information regard-
ing the material properties, structural geometry. and mesh geometry associated with

the analyvses found in this dissertation.

E.1 Model Validation

Actual stiffener dimensions used in the Model Validation chapter are shown in Figure
E.1. Following Figure E.1. material properties and mesh geometry are considered for

each individual floor.
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38 mm
(1.51n)

286 mm
(11.25in)

solid-sawn (50 x 300 mm)

45 mm
(1.75in)
10 mm ;
(0.375in)
241 mm
(9.5 in)
38 mm
(1.51n)

I-Joist (50 x 250 mm)

89 mm
(3.5in)

]

179

286 mm
(11.25in)
!

38 mm
(1.5in)

parallel-chord-truss (100 x 300 mm)

45 mm 89 mm
(1.75 in) (3.5in)
|| 10mm ‘ |l 10mm f
(0.375 in) (0.375in) ‘
302 mm 302 mm
(11.875 in)

(11.875 in)

I-J

[T ] | i

]

38 mm
(1.5in)

oist (50 x 300 mm)

1
38 mm
(1.5 in)

I-Joist (100 x 300 mm)

Figure E.1 Actual Stiffener Dimensions Used in Model Validation Chapter.
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Floor a
Floor Specifics:
FLOOR LENGTH: 4.88 m
FLOOR WIDTH: 4.88 m
NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION: 9

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:  600. mm

Sheathing Specifics:

THICKNESS: 18. mm

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:  3018. N/mm?
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:  5133. N/mm?
POISSON RATIO IN THE GLOBAL X-DIRECTION: 235

POISSON RATIO IN THE GLOBAL Y-DIRECTION: 400

SHEAR MODULUS IN THE GLOBAL X-Y PLANE: €21. N/mm?

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES: 621. N/mm?
SHEAR MODULUS FORM FACTOR: 1.20

DENSITY: 5498. N/m?

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) I (mm?) J(mm?) A (mm?) G (N/mm?) K DENSITY (N/m?)

1 10611. 7.40D7 4.82D6 10890. 663. 1.20 6283.
2 9853. 7.40D7 4.82D6 10890. 616. 1.20 6283.
3 10611. 7.40D7 4.82D6 10890. 663. 1.20 6283.
4 11231. 7.40D7 4.82D6 10890. 702. 1.20 6283.
5 9026. 7.40D7 4.82D6 10890. 564. 1.20 6283.
6 11162. 7.40D7 4.82D6 10890. 698. 1.20 6283.
7 10748. 7.40D7 4.82D6 10890. 672. 1.20 6283.
8 10197. 7.40D7 4.82D6 10890. 637. 1.20 6283.
9 8544. 7.40D7 4.82D6 10890. 534. 1.20 6283.
Mesh Lavout:
; 488m i
------------------------------- .
............................... 3
_____________________________ 3
SO S SR R
y
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Floor Specifics:

Sheathing Specifics:

Stiffener Specifics:

Floor b

FLOOR LENGTH: 4.88 m

FLOOR WIDTH: 4.88 m
NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION: 9
SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:  600. mm

THICKNESS:
MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:

POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:

SHEAR MODULUS FORM FACTOR:

DENSITY:

STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER  E (N/mm?)
10611.
9784.
10611.
11162.
9026.
11093.
10680.
10128.
8613.

~1OY OV ke WD

[{elNe &

Mesh Lavout:

I (mm?)

7.40D7
7.40D7
7.40D7
7.40D7
7.40D7
7.40D7
7.40D7
7.40D7
7.40D7

J (mm?) A (mm?)
4.82D6 10890.
4.82D6 10890.
4.82D6 10890.
4.82D6 10890.
4.82D6 10890.
4.82D6 10890.
4.82D6 10890.
4.82D6 10890.
4.82D6 10890.

— 488m f
T
2
3

3213.
3459.

621.
621.

18. mm
I\’/mm2
N/mm?
.279
.300
N/mm?
N/mm?
1.20

5498. N/m3

G (N/mm?) K

663.
611.
663.
698.
564.
693.
667.
633.
538.

1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20

6283

6283.
6283.
6283.
6283.
6283.
6283.

181

DENSITY (N/m3)
6283.
6283.
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Floor Specifics:

Floor ¢

FLOOR LENGTH:
FLOOR WIDTH:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

Stiffener Specifics:

STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?)
7303.
8337.
7235,
7372.
7510.
7235.
6950.
7510.
8406.

WO 00 -1 U b W R

Mesh Lavout:

I (mm?)

1.08D8
1.08D8
1.08D8
1.08D8
1.08D8
1.08D8
1.08D8
1.08D8
1.08D8

J (mm*) A (mm?)
2.39D6 6774.
2.39D6 6774.
2.39D6 6774.
2.39D6 6774.
2.39D6 6774.
2.39D6 6774.
2.39D6 6774.
2.39D6 6774.
2.39D6 6774.

I 488 m

THICKNESS:
MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:

POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:

................................

................................

________________________________

................................

................................

SHEAR MODULUS FORM FACTOR:

DENSITY:

4086
4097

621.
621.

18. mm

- N/mm?
. N/mm?
.299
300
N/mm?
N/mm?
1.20

5498. N/m?3

G (N/mm?) K

wegy

276.
276.
276.
276.
276.
276.
276.
276.
276.

1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20

4.88 m
4.88 m

600. mm

DENSITY (N/m?)
9425.
9425.
9425.
9425.
9425.
9425.
9425,
9425,
9425.
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Floor d

Floor Specifics:

FLOOR LENGTH:
FLOOR WIDTH:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

THICKNESS:

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:

POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:
SHEAR MODULUS FORM FACTOR:

DENSITY:

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) I (mm%) J(mm‘) A (mm?)

1 8130. 1.08D8 2.39D6 774.
2 8406. 1.08D3 2.39D6 6774.
3 7786. 1.08D8 2.39D6 6774.
4 T717. 1.08D8 2.39D6 6774.
5 7786. 1.08D8 2.39D6 6774.
6 8199. 1.08D8 2.39D6 6774.
7 6821. 1.08D8 2.39D6 6774.
5 7166. 1.08D8 2.39D6 6774.
9 8544. 1.08D8 2.39D6 6774.

Mesh Lavout:

3845.
3480.

621.
621.

18. mm
N/mm?
N/mm?
332
.300
N/mm?
N/mm?
1.20

5498. N/m3

G (N/mm?) K

276.

76.
276.
276.
276.
276.
276.
276.
276.

1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20

183

4.88 m
4.88 m

9

600. mm

DENSITY (N/m?3)
9425,
9425,
9425.
9425.
9425.
9425,
9495,
9425.
9425.



Appendix E. Quick Reference 184

Floor e
Floor Specifics:
FLOOR LENGTH: 4.88 m
FLOOR WIDTH: 4.86 m
NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION: 9

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:  600. mm

Sheathing Specifics:

THICKNESS: 18. mm

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION: 3542, N/mm?
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:  3824. N/mm?
POISSON RATIO IN THE GLOBAL X-DIRECTION: 278

POISSON RATIO IN THE GLOBAL Y-DIRECTION: .300

SHEAR MODULUS IN THE GLOBAL X-Y PLANE: 621. I\'/mm2

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES: 621. I\'/mm2
SHEAR MODULUS FORM FACTOR: 1.20

DENSITY: 5498. N/m?

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) I(mm?) J(mm?') A (mm?) G (N/mm?) K DENSITY (N/m?)

1 6339. 1.08D8 2.39D6 6774. 276. 1.20 9425.
2 8130. 1.08D8 2.39D6 774. 276. 1.20 9425.
3 8268. 1.08D8 2.39D6 6774. 276. 1.20 9425.
4 8681. 1.08D8 2.39D6 6774. 276. 1.20 9425.
5 5650. 1.08D8 2.39D6 6774. 276. 1.20 9425.
6 5857. 1.08D8 2.39D6 6774. 276. 1.20 9425.
7 8681. 1.08D8 2.39D6 6774. 276. 1.20 9425.
8 8130. 1.08D8 2.39D6 6774. 276. 1.20 9425.
9 8199. 1.08D8 2.39D6 6774. 276. 1.20 9425.

AMesh Lavout




Appendix E. Quick Reference

Floor f

Floor Specifics:

FLOOR LENGTH:

FLOOR WIDTH:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:
SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION: 60

Sheathing Specifics:

THICKNESS:

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:

POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:
SHEAR MODULUS FORM FACTOR:

DENSITY:

Stiffener Specifics:

STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

18. mm

3941. N/mm?
3707. N/mm?
319

.300

621. N/mm?
621. N/mm?
1.20

5498. N/m?

4.88 m
4.88 m

9
0. mm

STIFFENER E (N/mm?) I(mm%) J(mm?) A (mm?) G (N/mm?) K
1 11506. 3.89D7 8.45D5 4961. 621. 3.15
2 15020. 3.89D7 8.45D5 4961. 621. 3.15
3 12540. 3.89D7 8.45D5 4961. 621. 3.15
4 12264. 3.89D7 8.45D5 4961. 621. 3.15
3 12884. 3.89D7 8.45D5 4961. 621. 3.15
6 16398. 3.89D7 8.45D5 4961. 621. 3.15
T 11231. 3.89D7 8.45D5 4961. 621. 3.15
) 10197. 3.89D7 8.45D5 4961. 621. 3.15
9 12884 3.89D7 8.45D5 4961. 621. 3.15
Mesh Lavout:
! a88m —
_______________________________ >
3

................................

................................

DENSITY (N/m3)
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
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Floor Specifics:

Floor g

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:
POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:

Stiffener Specifics:

STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER
1

~1 O O ok WK

© o

Mesh Lavout:

E (N/mm?)
12540.

8475.

10611.
13160.
13160.
14193.
12540.
10197.
11231.

I (mm?)

3.89D7
3.89D7
3.89D7
3.89D7
3.89D7
3.89D7
3.89D7
3.89D7
3.89D7

wegy ——

186

FLOOR LENGTH: 4.88 m
FLOOR WIDTH: 4.88 m
9
600. mm
THICKNESS: 18. mm
3645. N/mm?
3865. N/mm?
.283
.300
621. N/mm?
621. N/mm?
SHEAR MODULUS FORM FACTOR: 1.20
DENSITY: 5498. N/m?
J (mm*) A (mm?) G (N/mm?) K DENSITY (N/m?)
8.45D5 4961. 621. 3.15 7069.
8.45D5 4961. 621. 3.15 7069.
8.45D5 4961. 621. 3.15 7069.
8.45D5 4961. 621. 3.15 7069.
8.45D5 4961. 621. 3.15 7069.
8.45D5 4961. 621. 3.15 7069.
8.45D5 4961. 621. 3.15 7069.
8.45D5 4961. 621. 3.15 7069.
8.45D5 4961. 621. 3.15 7069.
488m |
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Floor h

Floor Specifics:

FLOOR LENGTH:

FLOOR WIDTH:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:
SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

THICKNESS:

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:

POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:
SHEAR MODULUS FORM FACTOR:

DENSITY:

Stiff: < Specifics:

STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) I (mm?*) J(mm?) A (mm?)
1 6270. 6.83D7 8.62D5 5535.
2 11851. 6.83D7 8.62D35 53535.
3 13367. 6.83D7 8.62D5 5535.
4 12815. 6.83D7 8.62D5 5535.
3 12333. 6.83D7 8.62D5 5535.
6 18121. 6.83D7 8.62D5 5535.
7 12815. 6.83D7 8.62D5 5535.
3 11851. 6.83D7 8.62D5 5535.
9 12815. 6.83D7 8.62D5 5535.
Mesh Lavout:
! 488m i
R R S A
R S S S
, booeeens R S S

3783.
3914.

621.
621.

15. mm
N/mm?
N/mm?
.290
.300
N/mm?
N/mm?
1.20

5498. N/m?

G (N/mm?) K

wegy

621.
621.
621.
621.
621.
621.
621.
621.
621.

2.58
2.58
2.58
2.58
2.58
2.58
2.58
2.58
2.58

187

4.88 m
4.88 m

9

600. mm

DENSITY (N/m3)
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
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Floor Specifics:

Floor 1

FLOOR LENGTH:
FLOOR WIDTH:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

THICKNESS:

AMODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:

POISSON RATIO IN THE GLOBAL X-DIRECTION:
POISSON RATIO IN THE GLOBAL Y-DIRECTION:
SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:

Stiffener Specifics:

SHEAR MODULUS FORM FACTOR:

DENSITY:

STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER

1

Bl e SNGTIN SN U I N}

Nolie 4]

Mesh Lavout:

E (N/mm?)
12333.
12884,
11024.
11437.
11437.
15434.
12333.
11024.
12333.

I (mm

4)
6.83D7
6.83D7
6.83D7
6.83D7
6.83D7
6.83D7
6.83D7
6.83D7
6.83D7

J (mm?)
8.62D5
8.62D5
8.62D5
8.62D5
8.62D5
8.62D5
8.62D5
8.62D5
8.62D5

A (mm?)
5535.
5535.
5535.
5535.
5535.
5535.
5535.
5535.
5535.

3803.
4265.

621.
621.

18. mm
N/mm?
N/mm?
.268
.300
N/mm?
N/mm?
1.20

5498. N/m?3

G (N/mm?) K

weg v

621.
621.
621.
621.
621.
621.
621.
621.
621

2.58
2.58
2.58
2.58
2.58
2.58
2.58
2.58
2.58

188

4.88 m
4.88 m

9

600. mm

DENSITY (N/m?3)
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
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Floor ]

Floor Specifics

FLOOR LENGTH: 4.88 m
FLOOR WIDTH: 4.88 m
NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION: 9
SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION: 600. mm
Sheathing Specifics:
THICKNESS: 18. mm
MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:  4417. N 'mm?
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:  4596. N/mm?
POISSON RATIO IN THE GLOBAL X-DIRECTION: 288
POISSON RATIO IN THE GLOBAL Y-DIRECTION: .300
SHEAR MODULUS IN THE GLOBAL X-Y PLANE: 621. N/mm?
SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES: 621. N/mm?
SHEAR MODULUS FORM FACTOR: 1.20
DENSITY: 5498. N/m?3

Stiffener Specifics:

STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

189

K DENSITY (N/m3)

STIFFENER E (N/mm?) [ {(mm?) J(mm?*) A (mm?) G (N/mm?)
1 9922. 1.28D8 2.46D6 8923. 621. 4.16
2 8337. 1.28D8 2.46D6 8923. 621. 4.16
3 9922. 1.28D8 2.46D6 8923. 621. 4.16
4 11300. 1.28D8 2.46D6 8923. 621. 4.16
5 10611. 1.28D8 2.46D6 8923. 621. 4.16
6 11369. 1.28D8 2.46D6 8923 621. 4.16
T 9302. 1.28D8 2.46D6 8923. 621. 4.16
8 10611. 1.28D8 2.46D6 8923. 621. 4.16
9 9922. 1.28D8 2.46D6 8923. 621. 4.16

Mesh Lavout:

7069.
7069.
7069.
7069.

7069

7069.
7069.
7069.
7069.
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Floor Specifics:

Floor k

FLOOR LENGTH
FLOOR WIDTH:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

THICKNESS:
MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
AMODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:

POISSON RATIO IN THE GLOBAL X-DIRECTION:
POISSON RATIO IN THE GLOBAL Y-DIRECTION:
SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER

1

— W o

O o ~-1 WL

Mesh Lavout:

E (N/mm?)
10745.
10404.

9577.
9646.
9233.
9853.

10680.
10680.
10955.

I (mm?)

1.28D8
1.28D8
1.28D8§
1.28D8
1.28D8
1.28D8
1.28D8
1.28D8
1.28D8

J (mm?
2.46D6
2.46D6
2.46D6
2.46D6
2.46D6
2.46D6
2.46D6
2.46D6
2.46D6

) A (mm?)
8923.
8923,
8923.
8923.
8923.
8923.
8923.
8923.
8923.

488 m

SHEAR MODULUS FORM FACTOR:

DENSITY:

3631.
4479.

621.
621.

18. mm
N/mm?
N/mm?
.243
.300
N/mm?
N/mm?
1.20

5498. N/m?

G (N/mm?) K

621.
621.
621.
621.
621.
621.
621.
621.
621.

4.16
4.16
4.16
4.16
4.16
4.16
4.16
4.16
4.16

190

4.88 m
4.88 m

9

600. mm

DENSITY (N/m?)
7069.
7069.
7069.
7069.
7069.
7069
7069.
7069.
7069.
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E.2 Performance Improvement Investigation

The actual stiffener dimensions used in the Performance Improvement Investigation
chapter are shown in Figures E.2a and E.2b. Following Figures E.2a and E.2b. ma-

terial properties and mesh geometry are considered for each individual. unmodified

floor.

38 mm
(1.51n)

' 286 mm
{11.251n)

solid-sawn (50 x 300 mm)

Figure E.2a Actual Stiffener Dimensions Used in Performance Improvement

Investigation Chapter.
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286 mm
(11.25n)

83 mm
(3.51n)

406 mm
(16.01n)

38 mm
(151n)

paraliel-cnord-truss (100 x 300 mm)

38 mm
(15mn)

parallel-chord-truss (100 x 400 mm)

89 mm
(3.5}

| =

508 mm
(200 1n)

38 mm
(15mn)

paraliel-chord-truss (100 x 500 mm)

89 mm
(351n)
89 mm i [
(351in) ﬂ— E
| J 10 mm |
- — i ™ (0.375n) \
89 mm CoL ? | ’ ‘
(35mn) — [ |
. — _f - 10 mm | I
{7 (0375:m) | {
i i | '
- i ‘ ]‘ (52(');}0:7\:1)
10 mm ' U1

T (0375n) 406 mm
(160 in) .
302 mm ' |
(118751r) | |
: ; |
| i i |
X ‘ | |
- - ! S, e N 1 :
- - ; 1 — j }

38 mm 38 mm 38 H\m
(15n) (15mn) (1.51n)

I-Joist (1CO x 300 mm) I-Joist (1CO x 400 mm) l-Joist {100 x 500 mm)

Figure E.2b Actual Stiffener Dimensions Used in Performance Improvement

Investigation Chapter.
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Floor A

Floor Specifics:

FLOOR LENGTH:
FLOOR WIDTH:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

THICKNESS:

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:

POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:
SHEAR MODULUS FORM FACTOR:

DENSITY:

Stiffener Speciﬁcs:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) 1 {(mm?%) J(mm?% A (mm?)

1 11024. 7.40D7 4.82D6 10890.
2 11024. 7.40D7 4.82D6 10890.
3 11024. 7.40D7 4.82D6 10890.
4 11024. 7.40D7 4.82D6 10890.
5 11024. 7.40D7 4.82D6 10890.
6 11024. 7.40D7 4.82D6 10890.
7 11024. 7.40D7 4.82D6 10890.
8 11024 7.40D7 4.82D6 10890.
9 11024. 7.40D7 4.82D6 10890.

Mesh Lavout:

18 mm

3721. N/mm?
4072. N/mm?
274

.300

621. N/mm?
621. N/mm?
1.20

5498. N/m?

G (N/mm?) K

689. 1.20
689. 1.20
689. 1.20
689. 1.20
689. 1.20
689. 1.20
689. 1.20
689. 1.20
689. 1.20

193

4.88 m
4.88 m

9

600. mm

DENSITY (N/m3)
6283.
6283.
6283.
6283.
6283.
6283.
6283.
6283.
6283.
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Floor B

Floor Specifics:

FLOOR LENGTH: 4.88 m

FLOOR WIDTH: 4.88 m

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION: 9
SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:  600. mm

Sheathing Specifics:

THICKNESS: 18. mm

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:  3721. N/mm?
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:  4072. N/mm?
POISSON RATIO IN THE GLOBAL X-DIRECTION: 274

POISSON RATIO IN THE GLOBAL Y-DIRECTION: .300

SHEAR MODULUS IN THE GLOBAL X-Y PLANE: 621. N/mm?

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES: 621. N/mm?
SHEAR MODULUS FORM FACTOR: 1.20

DENSITY: 5498. N/m?3

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) I (mm?*) J(mm*) A (mm?) G (N/mm?) K DENSITY (N/m?3)

1 11024. 1.08D8 2.39D6 6774. 276. 1.20 9425.
2 11024. 1.08D8 2.39D6 6774. 276. 1.20 9425.
3 11024. 1.08D8 2.39D6 6774. 276. 1.20 9425.
4 11024. 1.08D8 2.39D6 6774. 276. 1.20 9425.
5 11024. 1.08D8 2.39D6 6774. 276. 1.20 9425.
6 11024. 1.08D8 2.39D6 6774. 276. 1.20 9425.
T 11024. 1.08D8 2.39D6 6774. 276. 1.20 9425
8 11024. 1.08D8 2.39D6 6774. 276. 1.20 9425.
9 11024. 1.08D8 2.39D6 6774. 276. 1.20 9425.
Mesh Lavout:
—

...............................

...............................

...............................

3
3
wegy ——

................................

................................
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Floor C

Floor Specifics:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

195

FLOOR LENGTH: 7.32 m
FLOOR WIDTH: 4.88 m
9

600. mm

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

THICKNESS:

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:

POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:
SHEAR MODULUS FORM FACTOR:

DENSITY:

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) I (mm?%) J(mm?) A (mm?)

1 11024. 2.34D8 2.39D6 6774.
2 11024. 2.34D8 2.39D6 6774.
3 11024. 2.34D8 2.39D6 6774.
4 11024. 2.34D8 2.39D6 6774.
5 11024. 2.34D8 2.39D6 6774.
6 11024. 2.34D8 2.39D6 6774.
7 11024. 2.34D8 2.39D6 6774.
8 11024. 2.34D8 2.39D6 6774.
9 11024. 2.34D8 2.39D6 6774.

Mesh Lavout:

18. mm

3721. N/mm?
4072. N/mm?
274

.300

621. N/mm?
621. N/mm?
1.20

5498. N/m?3

G (N/mm?) K

276. 1.20
276. 1.20
276. 1.20

76. 1.20
276. 1.20
276. 1.20
276. 1.20
276. 1.20
276. 1.20

weg v

DENSITY (N/m3)
9425.
9425.
9425.
9425.
9425.
9425.
9425.
9425.
9425.
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Floor D

Floor Specifics:

FLOOR LENGTH: 9.15m
FLOOR WIDTH: 4.88 m
NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION: 9

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:  600. mm

Sheathing Specifics:

THICKNESS: 18. mm

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:  3721. N/mm?
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:  4072. N/mm?
POISSON RATIO IN THE GLOBAL X-DIRECTION: 274

POISSON RATIO IN THE GLOBAL Y-DIRECTION: .300

SHEAR MODULUS IN THE GLOBAL X-Y PLANE: 621. N/mm?

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES: 621. N/mm?
SHEAR MODULUS FORM FACTOR: 1.20

DENSITY: 5498. N/m?3

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) I (mm*) J(mm?) A (mm?) G (N/mm?) K DENSITY (N/m3)

1 11024. 3.78D8 2.39D6 6774. 276. 1.20 9425.
2 11024 3.78D8 2.39D6 6774. 276. 1.20 9425.
3 11024. 3.78D8 2.39D6 6774. 276. 1.20 9425.
4 11024. 3.78D8 2.39D6 6774. 276. 1.20 9425.
) 11024 3.78D8 2.39D6 6774. 276. 1.20 9425.
6 11024. 3.78D8 2.39D6 6774. 276. 1.20 9425.
T 11024. 3.78D8 2.39D6 6774. 276. 1.20 9425.
8 11024. 3.78D8 2.39D6 6774. 276. 1.20 9425.
9 11024. 3.78D8 2.39D6 6774. 276. 1.20 9425.

Mesh Lavout:
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Floor E

Floor Specifics:

FLOOR LENGTH: 4.88 m

FLOOR WIDTH: 4.88 m

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION: 9
SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:  600. mm

Sheathing Specifics:

THICKNESS: 18. mm

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:  3721. N/mmz
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION: 4072. N/mm?
POISSON RATIO IN THE GLOBAL X-DIRECTION: 274

POISSON RATIO IN THE GLOBAL Y-DIRECTION: .300

SHEAR MODULUS IN THE GLOBAL X-Y PLANE: 621. N/mm?

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES: 621. N/mm?
SHEAR MODULUS FORM FACTOR: 1.20

DENSITY: 5498. N/m3

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION
STIFFENER E (N/mm?) I(mm*) J(mm? A (mm?) G (N/mm?) K DENSITY (N/m?3)

1 13780. 1.28D8 2.46D6 8923. 621. 4.16 7069.
2 13780. 1.28D8 2.46D6 8923. 621. 4.16 7069.
3 13780. 1.28D8 2.46D6 8923. 621. 4.16 7069.
4 13780. 1.28D8 2.46D6 8923. 621. 4.16 7069.
5 13780. 1.28D8 2.46D6 8923. 621. 4.16 7069.
6 13780. 1.28D8 2.46D6 8923. 621. 4.16 7069.
7 13780. 1.28D8 2.46D6 8923. 621. 4.16 7069.
8 13780. 1.28D8 2.46D6 8923. 621. 4.16 7069.
9 13780. 1.28D8 2.46D6 8923. 621. 4.16 7069.

Mesh Lavout:
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Floor F

Floor Specifics:

FLOOR LENGTH:
FLOOR WIDTH:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

THICKNESS:

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:

POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:
SHEAR MODULUS FORM FACTOR:

DENSITY:

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) I (mm?%) J(mm%) A (mm?)

3721.
4072.

621.
621.

18. mm
N/mm?
N/mm?2
274
.300
N/mm?
N/mm?
1.20

5498. N/m?3

G (N/mm?) K

1 13780. 2.59D8 2.49D6 9923. 621.
2 13780. 2.59D8 2.49D6 9923. 621.
3 13780. 2.59D8 2.49D6 9923. 621.
4 13780. 2.59D8 2.49D6 9923. 621.
3 13780. 2.59D8 2.49D6 9923. 621.
6 13780. 2.59D8 2.49D6 9923. 621.
7 13780. 2.59D8 2.49D6 9923. 621.
8 13780. 2.59D8 2.49D6 9923. 621.
9 13780. 2.59D8 2.49D6 9923. 621.
Mesh Lavout:

; 732m

3.15
3.15
3.15
3.15
3.15
3.15
3.15
3.15
3.15

198

7.32 m
4.88 m

9

600. mm

DENSITY (N/m?)
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
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Floor G

Floor Specifics:

FLOOR LENGTH:
FLOOR WIDTH:

NUMBER OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

SPACING OF STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION:

Sheathing Specifics:

THICKNESS:

MODULUS OF ELASTICITY IN THE GLOBAL X-DIRECTION:
MODULUS OF ELASTICITY IN THE GLOBAL Y-DIRECTION:
POISSON RATIO IN THE GLOBAL X-DIRECTION:

POISSON RATIO IN THE GLOBAL Y-DIRECTION:

SHEAR MODULUS IN THE GLOBAL X-Y PLANE:

SHEAR MODULUS IN THE GLOBAL X-Z AND Y-Z PLANES:
SHEAR MODULUS FORM FACTOR:

DENSITY:

Stiffener Specifics:
STIFFENERS SPANNING IN THE GLOBAL X-DIRECTION

STIFFENER E (N/mm?) I (mm%) J(mm%) A (mm?)

1 13780. 4.39D8 2.52D6 10890.
2 13780. 4.39D8 2.52D6 10890.
3 13780. 4.39D8 2.52D6 10890.
4 13780. 4.39D8 2.52D6 10890.
5 13780. 4.39D8 2.52D6 10890.
6 13780. 4.39D8 2.52D6 10890.
7 13780. 4.39D8 2.52D6 10890.
8 13780. 4.39D8 2.52D6 10890.
9 13780. 4.39D8 2.52D6 10890.

Mesh Lavout:

3721.
4072.

621.
621.

18. mm
N/mm?
N/mm?
274
.300
N/mm?
N/mm?
1.20

5498. N/m?

G (N/mm?) K

621.
621.
621.

621.

621.
621.
621.
621.
621.

2.65
2.65
2.65
2.65
2.65
2.65
2.65
2.65
2.65
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9.15m
4.88 m

9

600. mm

DENSITY (N/m?3)
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
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