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Robust Post-donation Blood Screening under
Limited Information

Hadi El-Amine

(ABSTRACT)

Blood products are essential components of any healthcare system, and their safety, in terms of
being free of transfusion-transmittable infections, is crucial. While the Food and Drug Administra-
tion (FDA) in the United States requires all blood donations to be tested for a set of infections, it
does not dictate which particular tests should be used by blood collection centers. Multiple FDA-
licensed blood screening tests are available for each infection, but all screening tests are imperfectly
reliable and have different costs. In addition, infection prevalence rates and several donor character-
istics are uncertain, while surveillance methods are highly resource- and time-intensive. Therefore,
only limited information is available to budget-constrained blood collection centers that need to
devise a post-donation blood screening scheme so as to minimize the risk of an infectious donation
being released into the blood supply. Our focus is on “robust” screening schemes under limited
information. Toward this goal, we consider various objectives, and characterize structural proper-
ties of the optimal solutions under each objective. This allows us to gain insight and to develop
efficient algorithms. Our research shows that using the proposed optimization-based approaches
provides robust solutions with significantly lower expected infection risk compared to other testing
schemes that satisfy the FDA requirements. Our findings have important public policy implications.



Z @
�	Q«



B@ ú



Îë



@ úÍ@




To my dear family

iii



Acknowledgments

First, I am greatly indebted to my advisors, Dr. Ebru Bish and Dr. Douglas Bish, for their support
and guidance throughout my stay at Virginia Tech. I thank Ebru, my mentor, for her patience,
kindness, and encouragement on both professional and personal levels. Her boundless enthusiasm,
wealth of ideas, work ethics, and professionalism have made working with her an invaluable expe-
rience for me, and I am deeply grateful for that. I also thank Doug for his insightful ideas and for
his clarity of thought that always steered me in the right direction.

I would also like to thank my committee members, Dr. Ran Jin and Dr. Susan Stramer, for their
support and for their constructive suggestions that have improved the quality of this work.

Special thanks go to my former advisor, Dr. Bacel Maddah, for introducing me to Operations
Research, providing me with the opportunity to come to the United States, and for his continued
support and advice throughout the years.

I am thankful for all the friends I have had at Virginia Tech and for those living abroad for their
encouragements and for making this experience enjoyable.

Finally, I am deeply thankful to my family in Lebanon for their everlasting support and uncon-
ditional love: To my parents Mohamed-Hassan and Iman, and to my siblings Nour and Hani, I
dedicate this work.

iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Cost-effectiveness of Babesiosis Screening in the United States 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Screening Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Base Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Deterministic Sensitivity Analyses . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Probabilistic Sensitivity Analysis on Key Model Inputs . . . . . . . . . . . . 14

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Base Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Deterministic Sensitivity Analysis on Transmission Probability Values . . . . 16
2.3.3 Deterministic Sensitivity Analysis on Prevalence Rates . . . . . . . . . . . . . 17
2.3.4 Probabilistic Sensitivity Analysis on Key Model Inputs . . . . . . . . . . . . 17

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Robust Post-donation Blood Screening under Prevalence Rate Uncertainty 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Notation and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2.1 The Robust Problem: Maximum Regret Minimization . . . . . . . . 33
3.2.2.2 The Expected Risk Minimization Problem . . . . . . . . . . . . . . 34

3.3 Properties of Optimal Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Structural Properties of the Optimal ERM Solution . . . . . . . . . . . . . . 35
3.3.2 Structural Properties of the Optimal RMM Solution . . . . . . . . . . . . . 36

3.3.2.1 The Optimality Conditions for RMM . . . . . . . . . . . . . . . . . 36
3.3.2.2 Further Properties of the Optimal RMM Solution . . . . . . . . . . 39

3.4 The Price of Robustness and the Price of Expectation-based Optimization . . . . . . 41
3.5 A Case Study of the United States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Case Study Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Case Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.3 Price of Robustness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



3.6 Conclusions and Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 51

4 Optimal Pooling Strategies for Nucleic Acid Testing of Donated Blood Consid-
ering Viral Load Growth Curves and Donor Characteristics 52
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Notation, Assumptions, and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Viral Load Progression, Dilution Effect, and Testing Stochasticity . . . . . . 57
4.2.2 The Blood Center’s Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Pool Strategy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3.1 The Universal Testing Problem . . . . . . . . . . . . . . . . . . . . . 61
4.2.3.2 The Non-universal Testing Problems . . . . . . . . . . . . . . . . . . 62

4.3 Structural Properties and Algorithmic Developments . . . . . . . . . . . . . . . . . . 63
4.3.1 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Algorithmic Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.1 Model Calibration and Data Sources . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Conclusions and Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . 76

5 Conclusions and Future Research Directions 78

Bibliography 81

A Appendix for Chapter 2 89

B Appendix for Chapter 3 94
B.1 Summary of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.2 Comparative Statics Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.3 Discussion on Condition (C1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.5 Prevalence Data and Fitting of Test Effectiveness Functions . . . . . . . . . . . . . . 107

B.5.1 Prevalence Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.5.2 Fitting Test Effectiveness Functions . . . . . . . . . . . . . . . . . . . . . . . 107

C Appendix for Chapter 4 110

vi



List of Figures

2.1 Decision tree model used in cost-effectiveness analysis. . . . . . . . . . . . . . . . . . 9
2.2 (a) ICERQj as a function of transmission probability from actively infected donors for

Scenario 1-Low (donor-only scenario in which blood units from donors with resolved
infection present a transmission probability of 0.3%). (b) ICERQj as a function of
transmission probability from actively infected donors for Scenario 1-High (donor-
only scenario in which blood units from donors with resolved infection present a
transmission probability of 2.9%). (c) ICERQj as a function of the prevalence of
window-period donors (donors who are Ab-negative/PCR-positive) for Scenario 1
(donor-only scenario in which blood units from donors with resolved infection present
a transmission probability of 2.9% and blood units from actively infected donors
present a transmission probability of 33.3%) . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Tornado diagram showing the sensitivity of the model to prevalence values and their
effect on ICER for (a) universal PCR strategy, (b) universal Ab/PCR strategy, (c)
universal Ab strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Cost-effectiveness acceptability curve showing the probability that each screening
strategy is the most cost-effective at each willingness-to-pay value for (a) Scenario 1
(donor-only scenario), (b) Scenario 2 (donor-recipient scenario). . . . . . . . . . . . . 21

3.1 Total budget, BT , vs. expected Risk (per 100,000 donations) for the RMM solutions
and for the strategies shown in Table 3.5. . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Joint distribution of Risk and Regret per 100,000 donations for ERM and RMM
at BT = $45 and BT = $60, with FDA-compliant strategies ((a)-(b)), and without
FDA-compliant strategies ((c)-(d)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 ΠR and its upper bound vs. BT for the numerical study in Section 3.5.2 (a) with
all five infections considered, and (b) when WNV is omitted and Condition (C1) is
satisfied. (c) RL vs. BT for the numerical study in Section 3.5.2. . . . . . . . . . . . 50

4.1 Viral load vs. post-infection time for a typical HBV-infected individual with λ = 2.6
(value taken from [12]) and c0 = 6.5 (value obtained from model calibration, see
Section 4.4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Histogram of the difference in expected number of TTI cases per 1, 000, 000 transfu-
sions between the chance-constrained non-universal strategy (NCUB) and (a) cur-
rent practice (UTUB), (b) universal strategy. . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Histogram of the difference in expected TTI cost per 1, 000, 000 transfusions be-
tween the chance-constrained non-universal strategy (NCUB) and (a) current prac-
tice (UTUB), (b) universal strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



A.1 Deterministic sensitivity analysis on the transmission probability for actively infected
donors for Scenario 2-Low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Deterministic sensitivity analysis on the transmission probability for actively infected
donors for Scenario 2-High. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.1 The optimal budget allocation for (a) ERM and (b) RMM vs. BT . . . . . . . . . . 96
B.2 Regions that satisfy Condition (C1) (shaded) for n = 2, k = (0.2, 0.2), and BT =

15, 25, 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3 Fitted exponential test effectiveness function (ki = 0.16) vs. the actual test data for

HBV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

viii



List of Tables

2.1 Base case data and the ranges used in sensitivity analysis. . . . . . . . . . . . . . . . 10
2.2 Comparison of assumptions and data between this study and prior studies. . . . . . 12
2.3 Transmission probability sensitivity analysis data for Scenarios 1 (donor-only sce-

nario) and 2 (donor- recipient scenario). . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Base case results for Scenarios 1 (donor-only scenario) and 2 (donor-recipient scenario). 14
2.5 Base case detailed TTB, waste, and cost values for Scenarios 1 (donor-only scenario)

and 2 (donor-recipient scenario). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Projected annual TTB cases averted, TTB deaths averted, total cost, testing cost,

cost of positive test results, and treatment cost of TTB for implementation of the
testing policies in seven endemic states for Scenarios 1 (donor-only scenario) and 2
(donor-recipient scenario) assuming approximately 2 million red cell transfusions are
performed per year (ARC 2014 data). . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Percent optimality gap for the RMM Heuristic with cardinality of Ωh in the order
of n2 and n3, for n = 10 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Maximum values of ΠR, ΠE(µ̂), and RL for all problem instances with n = 2 – 10
infections, and forecast error r = 10%, 35%, and 50%. . . . . . . . . . . . . . . . . . 43

3.3 Mean and uncertainty sets for prevalence rates in the United States (in %). . . . . . 44
3.4 Sensitivity (true positive probability) values (in %). . . . . . . . . . . . . . . . . . . 45
3.5 Comparison of testing solutions for various categories of screening strategies

(A: Antibody/Antigen, I: ID-NAT, M: MP-NAT). . . . . . . . . . . . . . . . . . . . 47

4.1 The expressions for functions RRbU (S) and RRbN (SF ,SR), for b ∈ {LB,UB}. . . . . 64
4.2 Prevalence rates for first-time and repeat donors (in %) and life-time treatment cost

per TTI (in $) in the United States. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Parameters for viral load growth models and test sensitivity functions. . . . . . . . . 70
4.4 NAT sensitivity (in %) for HBV-, HCV-, and HIV-infected window period donors

for various pool sizes (from [102]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Calibrated values of c0

i , i ∈ Ψ, and the corresponding RMSE values. . . . . . . . . . 71
4.6 Pool size solutions, the resulting expected number of TTIs per 1, 000, 000 transfu-

sions (with ratio of TTIs coming from first-time donors to those coming from repeat
transfusions) for all strategies considered, and the worst-case ratio (R). . . . . . . . 74

4.7 Pool size solutions, the resulting expected life-time treatment cost per 1, 000, 000
transfusions for all strategies considered, and the worst-case ratio (R). . . . . . . . . 75

A.1 Probabilistic sensitivity analysis results for Scenarios 1 (donor-only scenario) and 2
(donor-recipient scenario). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ix



A.2 Probabilistic sensitivity analysis detailed TTB, waste, and cost values for Scenarios
1 (donor-only scenario) and 2 (donor-recipient scenario). . . . . . . . . . . . . . . . . 93

B.1 The notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.2 Comparative statics results for ERM and RMM. . . . . . . . . . . . . . . . . . . . 95
B.3 Fitted parameters, ki, and coefficients of determination (R2

i ), for fi(Bi) = e−kiBi for
HIV, HBV, HCV, babesiosis, and WNV. . . . . . . . . . . . . . . . . . . . . . . . . . 109

x



Chapter 1

Introduction

1.1 Motivation

In both developing and developed countries, healthcare resources are limited, and demand exceeds

supply. It is therefore crucial to allocate the scarce resources in the most effective and efficient

way so as to improve the quality and safety of healthcare delivery. While the problem of allocating

resources in healthcare systems is complex, it can greatly benefit from the logical and systematic

methods and tools of Operations Research (OR).

One important decision is to select assays for screening the donated blood for transfusion-

transmittable infections (TTIs). Blood units constitute an essential component of any healthcare

system, and are required for patients of all age groups for a variety of treatments, including treat-

ment of cancer patients, trauma victims, pregnant women with complications, and children with

anemia; and are also needed for major surgeries. While the Food and Drug Administration (FDA)

in the United States requires all blood donations to be tested for a set of TTIs, it does not dictate

which particular test(s) should be used by blood centers. Multiple FDA-licensed blood screening

tests are available for each infection, but all screening tests are imperfectly reliable and have dif-

ferent costs. To further complicate the blood screening decision, infection prevalence rates and

several donor characteristics are uncertain, while surveillance methods are highly resource- and

time-intensive. Therefore, only limited information is available to the budget-constrained decision-

maker, who needs to devise a post-donation blood screening scheme so as to minimize the risk of

an infectious donation being released into the blood supply (Residual Risk). This decision is of

utmost importance because the consequences of transfusing infected blood are dire.

The transfusion literature studies this decision through simple cost-effectiveness (CE) studies,
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which have serious limitations when used for multiple infections. These limitations have been

acknowledged in the literature, including that CE relies only on the expected Residual Risk, it fails

to account for the dependencies among the different interventions (e.g., assays), and assumes that

interventions have constant return to scale [30]. Our research objective is to develop novel OR-

based models and algorithms that can overcome the aforementioned limitations of CE studies in

the context of the assay selection problem for donated blood. We hope that our research results will

find use in industry and assist the decision-making process at blood centers. This will consequently

benefit the society by providing a “safer” supply of blood with a lower TTI risk. This is especially

important in developing countries where budgets are even more limited and the need for effective

blood screening is even higher.

1.2 Research Overview

We first consider the assay selection problem for a single infection, babesiosis, a disease caused by the

intraerythrocytic parasite Babesia microti (B. microti) [113]. This research is in collaboration with

the American Red Cross, and is detailed in Chapter 2 of this dissertation. In particular, babesiosis is

a TTI, and donated blood units from infected donors can lead to transfusion-transmitted babesiosis

(TTB). It is the leading cause of TTIs is in the US, where an estimated 21% of babesiosis cases in

at-risk patients are fatal [74]. While it is thought that complicated babesiosis is more likely to occur

in patients with asplenia, malignancy, human immunodeficiency virus (HIV), chronic heart, lung,

and liver diseases; in patients who are taking immunosuppressive medications; or in patients with

a history of organ transplantation, not all risk factors are well-understood in the medical literature

[110]. On the other hand, babesiosis is endemic only in certain regions of the US: to date, 97% of

confirmed babesiosis cases have occurred in the states of Connecticut, Massachusetts, Minnesota,

New Jersey, New York, Rhode Island, and Wisconsin [61, 36]. Given the infection dynamics, it

is difficult to accurately estimate the prevalence of B. microti in the US population. Hence we

perform a cost-effectiveness analysis that takes into consideration this uncertainty in prevalence

rates in order to determine the optimal screening strategy for babesiosis.

Chapter 3 of this research studies “robust” screening schemes for multiple infections under

limited information on prevalence rates. When screening for multiple infections, traditional cost-

effectiveness methodology suffers from major limitations, as it fails to account for the dependencies

among the multiple assays. Consequently, we formulate the blood screening problem using a ro-
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bust formulation as well as an expectation-based formulation, and obtain structural properties of

their optimal solutions. Our analysis of the robust formulation also contributes to the literature on

the robust nonlinear knapsack problem with continuous variables, for which we develop important

structural properties. Further, we analytically characterize the price of robustness and the price

of expectation-based optimization, which respectively represent the deviation, from the minimum

possible expected Residual Risk, of the robust solution and the expectation-based solution under

forecast error. Our analysis shows that the robust formulation leads to a safe blood supply under all

prevalence rate possibilities, at the expense of a small increase in the expected Residual Risk. On

the other hand, in the presence of forecast error, the expectation-based solution might deviate sig-

nificantly from the true optimal solution, and may introduce unintended, but substantial, Residual

Risk to the blood pool for various prevalence rate possibilities. Our case study of the United States

confirms these findings, and also indicates that following the FDA guidelines is no guarantee of an

optimal testing regime – sometimes it is better to deviate from the FDA recommendations. Indeed,

our robust testing solution outperforms various testing schemes that follow the FDA guidelines, in

terms of substantially reducing both the expectation and the range of Residual Risk. These findings

have important implications on public policy.

In Chapter 4, we study screening with Nucleic Acid Testing (NAT) under uncertainty in the

donor population. Unlike serological assays that screen for antibodies and antigens, NAT assays

screen for genetic material, enabling them to detect the infection during the earlier stages. The

higher sensitivity of NAT assays comes at higher costs. Consequently, due to limited screening bud-

gets, blood centers resort to combining blood samples from multiple donors in pools and screening

each pool once. In turn, this reduction in cost is associated with reduced screening sensitivity. In

addition, the donor population is comprised of first-time and repeat donors, with quite different

characteristics, including significantly lower prevalence rates in the latter group. In this setting, the

budget-constrained blood center needs to devise a pooling strategy (testing pool sizes for various

infections) in order to minimize the risk of TTIs. Because of these properties, it may be optimal for

first-time blood donors to undergo more extensive screening than repeat donors, who donate blood

frequently. Since several donor characteristics, including the proportion of repeat donors and the

viral load, are uncertain, we develop a chance-constrained optimization model with the objective

of minimizing the TTI risk while remaining within the testing budget with a high probability. Our

findings indicate that non-universal NAT schemes, where first-time and repeat donors undergo

different testing, can substantially reduce Residual Risk and the life-time treatment cost in infected

3



transfusion recipients. Our case study of the US indicates that non-universal NAT schemes for

HBV, HCV, and HIV outperform current NAT testing practices in US blood centers.
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Chapter 2

Cost-effectiveness of Babesiosis

Screening in the United States

2.1 Introduction

Babesia microti is an intraerythrocytic parasite that causes babesiosis [113]. Babesiosis is associated

with flu-like symptoms and can lead to death in vulnerable patients, but healthy B. microti-infected

individuals are often asymptomatic [54, 63, 93, 110]. B. microti is endemic in areas of the Midwest

(Minnesota and Wisconsin) and Northeast (Connecticut, Massachusetts, New Jersey, New York,

and Rhode Island) [36]. In 2012, 96% (871/911) of reported babesiosis cases occurred in residents

of these seven states [36]. The reported incidence of babesiosis has increased over time, likely due

to enhanced awareness and geographical expansion of the disease vector; babesiosis is reportable

in 18 states and became nationally notifiable in 2011 [36].

In the United States, the most common mode of transmission to humans is through the bite of an

infected deer tick (Ixodes scapularis) [62]. However, the parasite can be transmitted to recipients of

cellular blood components via asymptomatically infected donors, leading to transfusion-transmitted

babesiosis (TTB). Between 1979 and 2009, 162 TTB cases were reported in the US, 159 caused by

B. microti. The reported TTB incidence appears to be increasing, as 122 (77%) of cases occurred

during 2000-2009 [61]. TTB cases are likely under-recognized and under-reported.

Approximately 21% of babesiosis cases in immunocompromised patients are fatal [74]; an 18%

fatality rate was noted by Herwaldt et al. [61] Traditionally, recipients at increased risk of com-

plicated babesiosis are those with asplenia, malignancy, HIV infection, chronic heart, lung, and
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liver diseases; patients taking immunosuppressive medications; or patients with a history of organ

transplantation [110]. However, careful study of the medical histories of TTB patients suggests

that attempting to accurately define and identify high-risk patients based on medical conditions is

complex and error-prone [61].

The US Food and Drug Administration (FDA) has not licensed B. microti blood donor screening

tests. The only intervention is a question asking donors at presentation if they have ever had

babesiosis, followed by indefinite deferral of those responding “yes”. This method has low sensitivity

and results in the current risk of TTB. It also leads to the deferral of donors who are no longer

infectious. In 2010, the FDA’s Blood Products Advisory Committee recommended that additional

strategies were needed to reduce TTB [46]. With high uncertainty around B. microti prevalence

and its infection dynamics over time, studies are needed to determine the feasibility of B. microti

blood donation screening.

In June 2012, the American Red Cross (ARC) began real-time screening of blood donors report-

ing to drives in targeted counties in CT, MA, MN, and WI [81]. The screening protocol consists of

an arrayed fluorescence immunoassay (AFIA) and polymerase chain reaction (PCR) run in tandem

to detect B. microti antibodies (Ab) and DNA, respectively, and is described in detail elsewhere

[84].

The eventual availability of licensed assays leads to questions surrounding the optimal strategy

to approach systematic blood donation screening, as screening all donations is unnecessary and

cost-prohibitive. Potential strategies in endemic regions include: universal screening; screening only

during certain months (e.g., May through October); risk-targeted screening, in which B. microti-

tested negative units are provided only to recipients at greatest risk of clinical infection; or some

combination of these strategies. While the ARC’s screening protocol includes both Ab and parasite

DNA tests, using only one assay (i.e., either AFIA or PCR) is also possible. Cost-effectiveness

modeling is necessary to estimate each strategy’s financial implications and TTB risk.

Comparative- and cost-effectiveness analyses published thus far have limitations. Simon et al.

[99] concluded that Ab screening in endemic areas was most appropriate; this strategy avoided 3.39

cases of TTB/100,000 red blood cell (RBC) transfusions at an incremental cost-effectiveness ratio

(ICER) of $760,000 compared to a recipient-risk-targeted strategy. However, this analysis assumed

that transmission probability was static, regardless of the donor’s stage of infection (i.e., Ab- versus

PCR-positive), when data suggest that clinical babesiosis is more likely to occur in recipients of

units from PCR-positive donors than PCR-negative/Ab-positive donors (33.3% versus 2.9%) [66].
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In addition, Simon [99] did not consider the predicted amount of blood wasted; i.e., the number

of B. microti-free blood units incorrectly discarded due to resolved infections in donors or false-

positive antibody test results. Finally, the Simon analysis did not consider a PCR-only screening

strategy, which remains a viable option.

More recently, Goodell et al. studied the cost-effectiveness of screening in different geographical

areas using combinations of two Ab detection assays and PCR [53]. The Goodell model demon-

strated that none of the screening scenarios considered was cost-effective at the implicit $50,000

per QALY or $1,000,000 per intervention thresholds. This could have been as a result of the lower

transmission probabilities, lower probability of complicated babesiosis after transmission, different

test performance characteristics, and higher testing cost estimates than used in Simon’s model.

In this analysis, we consider the comparative- and cost-effectiveness of four blood donation

screening strategies for B. microti in endemic areas compared to the status quo (questioning the

donor about history of babesiosis). Sensitivity analyses were performed to examine the effects of

uncertainty in transmission probability, prevalence rates, and other key model inputs.

2.2 Materials and Methods

2.2.1 Screening Strategies

We modeled four screening strategies, including universal Ab testing, universal PCR testing, uni-

versal Ab/PCR testing in parallel, and risk-targeted-Ab/PCR screening. In this context, universal

refers to screening all donors who present to blood drives in CT, MA, MN, and WI. The risk-

targeted-Ab/PCR strategy was described in Simon et al. [99] and involves screening only a pre-

determined portion of the blood supply, targeted for transfusion recipients identified as high-risk.

In this strategy, the remainder of the blood, used for transfusion recipients identified as low-risk,

comes from donors who only answered the standard questionnaire including a negative response to

the babesiosis question.

2.2.2 Model Overview

We developed a decision tree model (Figure 2.1) to predict the health and economic consequences of

various blood donation screening B. microti strategies. The model was coded and implemented in

Microsoft Excel using the data reported in Table 2.1. All deterministic and probabilistic sensitivity

analysis results were generated by an Excel Macro.
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The decision tree model projected both health and economic outcomes. Health outcomes in-

cluded the expected number of (1) complicated TTB cases, (2) uncomplicated TTB cases, (3) TTB

cases averted in blood product recipients, and (4) quality-adjusted life years (QALY) per transfu-

sion recipient. Economic outcomes included (1) each strategy’s per donation unit cost, including

testing cost, cost of positive test results (blood center costs for handling and discarding Babesia-

reactive units), and TTB treatment cost; and, (2) waste (the number of infection-free blood units

incorrectly discarded due to false-positive test results). We also calculated a “waste index”; i.e.,

the ratio of the number of wasted blood units to the number of true positives.

We combined health and economic outcomes to determine the cost-effectiveness ratio (CER)

and the incremental CER (ICER) of each strategy. ICERQj measures the cost of the additional

benefit of adopting strategy “j” over the status quo (questionnaire, Q), while ICERj measures

that over the next most effective alternative. We used one-way deterministic sensitivity analyses to

assess the individual effect of donor Ab and/or DNA prevalence and transmission probabilities on

each strategy’s cost-effectiveness. In the probabilistic sensitivity analysis, we estimated the joint

effect of overall input uncertainty on each strategy’s cost-effectiveness.

2.2.3 Data

We use the following notation to distinguish between donors in different infectious stages:

PropW : Proportion of Ab-negative/PCR-positive, i.e., window-period donors,

PropA: Proportion of Ab-positive/PCR-positive, i.e., actively infected donors,

PropR: Proportion of Ab-positive/PCR-negative, i.e., donors with resolved infections.

Table 2.1 provides the parameter values for the base case, ranges (lower and upper limits) for

the sensitivity analyses, and for comparison, the parameter values used in Simon et al.13 and Good-

ell et al [53], further summarized in Table 2.2. We assumed 100% PCR specificity based on ARC

experience using investigational PCR [84]. We considered 99.5% PCR sensitivity, defined as the

ability to detect DNA-positive units expected to cause babesiosis in recipients, in our base case and

varied it in the probabilistic sensitivity analysis [82, 83]. For prevalence values, we used data from

ongoing investigational studies conducted by the ARC including detection of eight window-period

donors, 52 actively infected donors and 261 with resolved infection [83]. One-way deterministic sen-

sitivity analysis was performed on transmission probabilities and prevalence rates, and probabilistic
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sensitivity analysis was performed on all key model inputs within the sensitivity ranges provided

in Table 2.1. To address the uncertainty of transmission based on the donor’s stage of infection

and the health state of the recipient, we considered two scenarios: a donor-only scenario (Scenario

1), in which the transmission probability from infected blood depends only on the donor’s stage of

infection (active versus resolved infection); and a donor-recipient scenario (Scenario 2), in which the

transmission probability depends on both the donor’s stage of infection and the recipient’s health

status (high-risk versus low-risk) (Table 2.1).

Transfusion recipient

Low risk

Screen positive

Screen negative

True negative

Window period
donor

TTB

Complicated

Fatality

Survival

Uncomplicated

Fatality

Survival

No TTB

Actively infected
donor

No TTB

TTB

Complicated

Fatality

Survival

Uncomplicated

Fatality

Survival

Donor with
resolved infection

No TTB

TTB

Complicated

Fatality

Survival

Uncomplicated

Fatality

Survival

High risk

Screen positive

Screen negative

True negative

Window period
donor

TTB

Complicated

Fatality

Survival

Uncomplicated

Fatality

Survival

No TTB

Actively infected
donor

No TTB

TTB

Complicated

Fatality

Survival

Uncomplicated

Fatality

Survival

Donor with
resolved infection

No TTB

TTB

Complicated

Fatality

Survival

Uncomplicated

Fatality

Survival

Figure 2.1: Decision tree model used in cost-effectiveness analysis.
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Table 2.1: Base case data and the ranges used in sensitivity analysis.

Parameter Base case data Sensitivity range References
Data and ranges

used in Simon et al. [99]
Data and ranges

used in Goodell et al. [53]

Screening test characteristics
Questionnaire [69, 120] N/A

Sensitivity 0.125%a (0.1-5%) 0.5% (0.1-5%)
Specificity 99.97%a (90-100%) 99.90% (90-100%)

Antibody
(arrayed fluorescence immunoassay)

AFIA AFIA Manual IFA

Sensitivity 90.4% (85-95%) [84] 94.0% (80-100%)
Manual IFA:

91.8%b (87.7-95.7%)

Specificity 99.98% (80-100%) [84] 97.7% (80-100%)
Manual IFA:

95% (90-100%)
PCR (polymerase chain reaction)

Sensitivity 99.5% (98 - 100%) [99] 99.5% 100%b

Specificity 100% (99-100%) [84] 100% 100% (99-100%)
Antibody/PCR in parallel

Sensitivity 100% (90-100%) [84] 99.9% (90-100%)
Manual

IFA/PCR:
93% (90-100%)

Specificity 99.98% (80-100%) [84] 97.7% (80-100%)
Manual IFA/PCR:
100% (99-100%)

Prevalence valuesc d

PropW = Ab-negative/PCR-positive
0.0096%

(8/83,330)
(0.0050-0.0100%) [84] 0.0360% (0.01-0.09%)

4-statee: 0.0204%
7-state: 0.0162%
20-state: 0.0072%
50-state: 0.0054%

PropA = Ab-positive/PCR-positive
0.0624%

(52/83,330)
(0.0500-0.0800%) [84]

0.9%=
PropA + PropR

(0.1-2.0%)

4-statee: 0.0612%
7-state: 0.0486%
20-state: 0.0216%
50-state: 0.0162%

PropR = Ab-positive/PCR-negative
0.3132%

(261/83,330)
(0.2000-0.4000%) [84]

4-statee: 0.5984%
7-state: 0.4752%
20-state: 0.2112%
50-state: 0.1584%

Proportion of patient population at
high-risk

29.3% (25-75%) [99] 29.3% (25-75%) 54%

Probability of complicated babesiosis
Overall:

7% (4.8-33.0%)
High-risk patient 57% (20-80%) [74] 57% (20-80%) 9.0%
Low-risk patient 32% (10-50%) [116] 32% (10-50%) 4.5%

Babesiosis case fatality rate (for recipients
developing complicated babesiosis)

High-risk patient 21% (6-28%) [57, 74, 104] 21% (6-28%) 19.2%
Low-risk patient 6% (1-10%) [67, 116] 6% (1-10%) 19.2%

All-cause mortality after RBC transfusion [72, 99]
Year 1

High-risk patient 38% 38% (27-49%)
Low-risk patient 27% 27% (19-35%)

Year 2
High-risk patient 19% 19% (13-25%)

Low-risk patient 11% 11% (5-15%)
Year 3+
High-risk patient 15% 15% (10-20%)
Low-risk patient 8% 8% (4-12%)

Utility values
Baseline transfusion recipient 0.90 [1, 40] 0.90 (0.60-0.90) 0.90 (0.90-1.00)
Uncomplicated babesiosis 0.87 [78] 0.87 (0.80-0.89) 0.85 (0.83-0.93)
Complicated babesiosis 0.67 [8] 0.67 (0.40-0.80) 0.67 (0.00-0.67)
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Table 2.1 continued.

Parameter Base case data Sensitivity range References
Data and ranges

used in Simon et al. [99]
Data and ranges

used in Goodell et al. [53]

Costs
Screening cost per donation
Universal Ab $12.5f ARC internal data $15.0 ($8-23) $21 ($15-27)
Universal PCR $12.5f ARC internal data $22.50 ($20-25)
Universal Ab/PCR $25.0f ARC internal data $30.0 ($15-45) $43.50 ($35-52)
Risk-targeted-Ab/PCR $50.0f,g ARC internal data $33.0 ($30-39)
Unit societal cost of a positive Ab or
PCR test result

$625h ($417-938) [99] $625h ($417-938) $427i ($213-853)

Unit societal cost of a positive questionnaire $103j ($69-155) [99] $103j ($69-155)

Unit cost of symptomatic TTB case $22,000k ($14,667-33,000) [2, 99, 105]
$22,000k

($14,667-33,000)

Moderate:
$28,707
Severe:
$72,968l

Transmission probability, given that Babesia
-infected blood is transfused to the patient

Overall:
0.4% (0.1-2.2%)

Overall:
0.98%

(0.40- 12.70%)m

Scenario 1 (Donor-only scenario)
Low-risk patient, actively
infected donor

33.3%n [66] 0.3% 5.1%

Low-risk patient, donor with
resolved infection

2.9%n [66] 0.3% 0.4%

High-risk patient, actively
infected donor

33.3%n 0.6% 5.1%

High-risk patient, donor with
resolved infection

2.9%n 0.6% 0.4%

Scenario 2 (Donor-recipient scenario)
Low-risk patient, actively
infected donor

33.3%n

Low-risk patient, donor with
resolved infection

2.9%n

High-risk patient, actively
infected donor

66.6%n

High-risk patient, donor with
resolved infection

5.8%n

a Based on data from Rhode Island and New York; see Appendix A for the calculations.
b Goodell et al. [53] reports the “effective sensitivity” of Ab and PCR. For comparison, we derive the sensitivity

values from Goodell’s effective sensitivity values: PCR sensitivity=12%/12%=100%; Ab sensitivity=89%/97% =

91.8%.
c The ranges for prevalence values in the third column were calculated using the binomial 95% confidence intervals.
d Goodell et al. [53] splits the infected donors into infection stages assuming that 3% of all infected donors are

Ab-negative/PCR-positive, 9% of all infected donors are Ab-positive/PCR-positive, and 88% are Ab-positive/PCR-

negative.
e Goodell et al. [53] considers 4 variations of the universal strategy: (a) 4-state: Connecticut, Massachusetts,

New York, Rhode Island; (b) 7-state: includes all states in (a) with the addition of New Jersey, Minnesota, and

Wisconsin; (c) 20-state: all states in (b) with the addition of Maryland, Virginia, Vermont, New Hampshire, Maine,

Delaware, Pennsylvania, California, Ohio, Florida, Texas, Michigan, and the District of Columbia; and (d) 50-state.
f The testing cost for each strategy includes equipment, reagents, materials/consumables, direct labor, and fringe

benefits.
g For the risk-targeted strategy, unit cost is double the price of testing, based on the need to keep twice as much

inventory in stock (ARC internal data).
h Includes specimen collection, processing, donor recruitment and destruction of positive units.
i Consists of the cost of discarding a false-positive unit.
j Lower than that for Ab and PCR assays, as screening and handling/destruction of the blood unit is not involved.
k We use estimates that include sub-acute rehabilitation care after complicated babesiosis, medication costs [105],

and hospitalization costs [2].
l Moderate: 7 days × $4,101 = $28,707. Severe: 14 days × $5,212 = $72,968.
m There is a discrepancy in the values reported in Goodell et al. [99], where this value is reported as 0.98% in the

text and 9.8% in Table 1.
n Refer to Table 2.3 for the ranges used in sensitivity analysis.
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Table 2.2: Comparison of assumptions and data between this study and prior studies.

This study Goodell et al [53] Simon et al [99]

Strategies analyzed

Universal Aba

Universal PCR
Universal Ab/PCR

Risk-targeted- Ab/PCR
Ab refers to AFIA

Universal Abb

Universal Ab/PCR
Universal ELISA

Universal ELISA/ PCR
Universal PCR

Ab refers to Manual IFA

Universal Abc

Universal Ab/PCR
Risk-targeted- Ab/PCR

Ab refers to AFIA

Testing costs Ab $12.50 $21.00 $15.00
PCR $12.50 $22.50 N/A

Ab/PCR $25.00 $43.50 $30.00
Risk-targeted- Ab/PCR $50.00 N/A $33.00

Sensitivity Ab 90.4% 91.8% 94.0%
PCR 99.5% 100% 99.5%

Ab/PCR 100% 93% 99.9%
Questionnaire 0.125% N/A 0.5%

Prevalence rates Ab-negative/PCR-positive 0.0096%a 4-state: 0.0204%d 0.0360%
Ab-positive /PCR- positive 0.0624%a 4-state: 0.0612%d 0.9000%, Ab+
Ab-positive/PCR- negative 0.3132%a 4-state: 0.5984%d

Transmission probability
Donor-based?

(PCR-positive vs.
Ab-positive/PCR-negative)

YES
(33.3% vs. 2.9%)

YES
(5.1% vs. 0.4%)

NO

Recipient-based?
(High-risk versus low-risk)

YES
(66.6% vs. 33.3%; and

5.8% vs. 2.9%)
NO

YES
Overall: 0.4%

(0.6% vs. 0.3%)

Fatality rates High-risk recipients 21% 19.2% 21%
Low-risk recipients 6% 19.2% 6%

a We consider screening in 4 endemic states: Minnesota, Wisconsin, Connecticut, Massachusetts. Our prevalence

rates come from ongoing investigational studies conducted by the ARC in these 4 states (Appendix A).
b Goodell et al. [53] considers 4 variations of the universal strategy: (a) 4-state: Connecticut, Massachusetts,

New York, Rhode Island; (b) 7-state: includes all states in (a) with the addition of New Jersey, Minnesota, and

Wisconsin; (c) 20-state: all states in (b) with the addition of Maryland, Virginia, Vermont, New Hampshire, Maine,

Delaware, Pennsylvania, California, Ohio, Florida, Texas, Michigan, and the District of Columbia; and (d) 50-state.
c Simon et al.[99] considers screening in 7 endemic states: Minnesota, Wisconsin, Connecticut, Massachusetts, New

Jersey, New York, and Rhode Island.
d Goodell et al. [53] splits the infected donors into various stages as follows: 3% of all infected donors are

Ab-negative/PCR-positive, 9% of all infected donors are Ab-positive/PCR-positive, and 88% of all infected donors

are Ab-positive/PCR-negative.

2.2.4 Base Case

The base case used data reported in Table 2.1, considering two variations of transmission proba-

bility: donor-only scenario (transmission probabilities are 33.3% for patients receiving blood from

PCR-positive donors and 2.9% for patients receiving blood from Ab-positive/PCR-negative donors)

[66] and donor-recipient scenario (the transmission probability in low-risk patients remains the same

as above, but is 66.6% for high-risk patients receiving blood from PCR-positive donors and 5.8%

for high-risk patients receiving blood from Ab-positive/PCR-negative donors) (Table 2.1).
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2.2.5 Deterministic Sensitivity Analyses

We performed one-way deterministic sensitivity analyses on transmission probabilities and preva-

lence rates to study how each strategy’s effectiveness changes with possible variations in data

values:

1. Deterministic sensitivity analysis on transmission probabilities: For each case in Table 2.3,

we varied transmission probability within the ranges given in Table 2.3.

2. Deterministic sensitivity analysis on prevalence rates: We varied PropW , PropA, and PropR

within the ranges given in Table 2.1.

Table 2.3: Transmission probability sensitivity analysis data for Scenarios 1 (donor-only scenario)
and 2 (donor- recipient scenario).

Scenario 1
(donor only scenario)

Scenario 2
(donor-recipient scenario)

Transmission
probability values

Scenario 1-Lowa Scenario 1-Highb Scenario 2-Lowc Scenario 2-Highd

Low risk patient,
actively infected donor

Varied in
[0.3%− 50.0%]

Varied in
[2.9%− 50.0%]

Varied in
[0.3%− 50.0%]

Varied in
[2.9%− 50.0%]

Low risk patient, donor
with resolved infection

0.3% 2.9% 0.3% 2.9%

High risk patient,
actively infected donor

Varied in
[0.3%− 50.0%]

Varied in
[2.9%− 50.0%]

Varied in
[0.6%− 50.0%]

Varied in
[5.8%− 50.0%]

High risk patient, donor
with resolved infection

0.3% 2.9% 0.6% 5.8%

a Scenario 1-Low: Probability of transmission to high-risk patients is equal to the probability of transmission to

low-risk patients. Blood units from donors with resolved infection present a transmission probability of 0.3%.

Transmission probability for blood units from actively infected donors is varied in [0.3%-50.0%].
b Scenario 1-High: Probability of transmission to high-risk patients is equal to the probability of transmission

to low-risk patients. Blood units from donors with resolved infection present a transmission probability of 2.9%.

Transmission probability for blood units from actively infected donors is varied in [2.9%-50.0%].
c Scenario 2-Low: Probability of transmission to high-risk patients is double the probability of transmission to

low-risk patients. Blood units from donors with resolved infection present a transmission probability of 0.3% for

low-risk patients and 0.6% for high-risk patients. Transmission probability for blood units from actively infected

donors is varied in [0.3%-50.0%] for low-risk patients, and varied in [0.6%-100.0%] for high-risk patients.
d Scenario 2-High: Probability of transmission to high-risk patients is double the probability of transmission to

low-risk patients. Blood units from donors with resolved infection present a transmission probability of 2.9% for

low-risk patients and 5.8% for high-risk patients. Transmission probability for blood units from actively infected

donors is varied in [2.9%-50.0%] for low-risk patients, and varied in [5.8%-100.0%] for high-risk patients.
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2.2.6 Probabilistic Sensitivity Analysis on Key Model Inputs

For both donor-only and donor-recipient scenarios (Table 2.1), we performed a comprehensive

probabilistic sensitivity analysis on all key model inputs to assess the impact of overall input

uncertainty on each strategy’s effectiveness. As in Simon et al. [99], we assume that all variables

followed triangular distributions, with ranges reported in Table 2.1 (third column), and with mode

of the distribution matching the value used in the base case (Table 2.1, second column). Triangular

distribution is a reasonable and commonly used approximation in the absence of information on

probability distributions. We ran 10,000 replications of the Monte Carlo simulation. For each

replication, we simultaneously generated a value for each variable using its probability distribution

function and calculated the cost-effectiveness ratio of each strategy.

2.3 Results

2.3.1 Base Case

Table 2.4 contains the results for Scenarios 1 and 2. The lowest predicted number of TTB cases

averted occurred with the questionnaire and risk-targeted screening strategies, regardless of trans-

mission probability. The predicted number of TTB cases averted was highest for universal Ab/PCR

(32.75 and 42.35/100,000 units transfused [pht, per hundred thousand units transfused], for Scenar-

ios 1 and 2, respectively), but this strategy was also the most costly at $27.39 unit cost/transfusion.

The ICER values over the questionnaire were highest for risk-targeted-Ab/PCR ($148,065/QALY-

Scenario 1 and $62,226/QALY-Scenario 2), and lowest for universal PCR ($43,931/QALY-Scenario

1 and $25,801/QALY-Scenario 2).

Table 2.4: Base case results for Scenarios 1 (donor-only scenario) and 2 (donor-recipient scenario).

Testing Strategy
TTB cases

averted
pht

Total unit
cost (per

transfusion)
($)

Incremental
cost pht ($)

QALY per
transfusion
recipient

Incremental
QALY pht

CER
($/QALY)

ICER
($/QALY)

ICER over
questionnaire

($/QALY)

Results for Scenario 1

No Screening 0.00 7.21 5.9141637 1.22
questionnaire (status quo) 0.02 7.23 2,694 5.9141638 0.01 1.22 201,309
Risk-targeted Ab/PCR 9.61 20.46 1,323,058 5.9142532 8.94 3.46 148,065 148,065
Universal PCR 23.64 14.95 -23,522 5.9143396 0.80 2.53 -63,567 43,931
Universal Ab 26.74 16.15 122,129 5.9143627 2.22 2.73 51,027 44,842
Universal Ab/PCR 32.75 27.39 1,123,841 5.9144074 4.47 4.63 251,424 82,756

Results for Scenario 2

No Screening 0.00 9.32 5.9140743 1.58
questionnaire (status quo) 0.03 9.34 2,578 5.9140745 0.02 1.58 140,938
Risk-targeted Ab/PCR 19.21 20.46 1,112,067 5.9142532 17.87 3.46 62,226 62,226
Universal PCR 30.57 15.54 -30,414 5.9143147 1.09 2.63 -80,968 25,801
Universal Ab 34.58 16.54 102,902 5.9143463 3.03 2.80 33,920 26,469
Universal Ab/PCR 42.35 27.39 1,085,118 5.9144074 6.11 4.63 177,602 54,206

CER = cost-effectiveness ratio.
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Table 2.5 contains waste and additional cost results. The questionnaire had the most waste

(99.62 units of blood wasted pht; 208.62 waste index), followed by risk-targeted-Ab/PCR (76.27

wasted units pht; 0.68 waste index). Universal PCR had a waste index of zero. The model

predicted zero TTB and complicated TTB cases with the universal Ab/PCR strategy (versus 32.75

and 12.88 pht for Scenario 1, and 42.35 and 18.35 pht for Scenario 2, respectively [no screening]),

but universal Ab/PCR had the highest testing cost and positive test-result cost ($25.00+$2.39/unit,

respectively). Excluding the questionnaire (status quo), TTB cases pht (total and complicated)

for the remaining strategies for Scenario 1 ranged from 6.01 and 2.36 (universal Ab) to 23.14 and

7.41 (risk-targeted-Ab/PCR), and for Scenario 2, ranged from 7.77 and 3.37 (universal Ab) to

no change for the risk-targeted strategy. The remaining testing costs and positive test-result costs

were $14.65+$0.72/unit (risk-targeted-Ab/PCR), $12.50+$0.45 (universal PCR), and $12.50+$2.33

(universal Ab).

Table 2.6 projects the annual number of TTB cases averted, number of TTB deaths averted,

and total implementation cost, comprised of testing costs, costs of positive test results, and TTB

treatment costs for Scenarios 1 and 2 if screening were implemented in the seven endemic US

states. Assumptions include year-round donor prevalence rates in the seven states to be consistent

with those reported here for four states [83], and approximately 2 million red cell transfusions

in the seven states (ARC internal data). These estimates project 652-843 TTB cases and 54-77

TTB-related fatalities averted per year with universal Ab/PCR.

Table 2.5: Base case detailed TTB, waste, and cost values for Scenarios 1 (donor-only scenario)
and 2 (donor-recipient scenario).

Testing Strategy
TTB
cases
pht

Complicated
TTB cases

pht

Waste
(number of blood
units wasted) pht

Waste index
(ratio of the number

of wasted blood
units to the

number of true
positives)

Testing
cost per

transfusion
($)∗

Cost of
positive test
results per
transfusion

($)∗

Treatment
cost

of TTB per
transfusion

($)∗

Results for Scenario 1

No Screening 32.75 12.88 0.00 0.00 0.00 0.00 7.21
questionnaire (status quo) 32.73 12.88 99.62 208.62 0.00 0.03 7.20
Risk-targeted Ab/PCR 23.14 7.41 76.27 0.68 14.65 0.72 5.09
Universal PCR 9.11 3.58 0.00 0.00 12.50 0.45 2.00
Universal Ab 6.01 2.36 19.92 0.06 12.50 2.33 1.32
Universal Ab/PCR 0.00 0.00 19.92 0.05 25.00 2.39 0.00

Results for Scenario 2

No Screening 42.35 18.35 0.00 0.00 0.00 0.00 9.32
questionnaire (status quo) 42.32 18.34 99.62 208.62 0.00 0.03 9.31
Risk-targeted Ab/PCR 23.14 7.41 76.27 0.68 14.65 0.72 5.09
Universal PCR 11.78 5.10 0.00 0.00 12.50 0.45 2.59
Universal Ab 7.77 3.37 19.92 0.06 12.50 2.33 1.71
Universal Ab/PCR 0.00 0.00 19.92 0.05 25.00 2.39 0.00
∗ The sum of the last three columns equals column 3 in Table 2.4 (total unit cost per transfusion).
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Table 2.6: Projected annual TTB cases averted, TTB deaths averted, total cost, testing cost, cost of
positive test results, and treatment cost of TTB for implementation of the testing policies in seven
endemic states for Scenarios 1 (donor-only scenario) and 2 (donor-recipient scenario) assuming
approximately 2 million red cell transfusions are performed per year (ARC 2014 data).

Testing Strategy∗
TTB

cases averted
per year

TTB
deaths averted

per year

Total cost
per year ($)

Testing cost
per year ($)

Cost of positive
test results
per year ($)

Treatment
cost of TTB
per year($)

Scenario 1

No Screening 2,885,760 0 0 2,885,760
questionnaire (status quo) 0.20 0.00 2,945,465 0 59,705 2,885,760
Risk-targeted Ab/PCR 38.41 4.60 31,524,435 29,156,122 318,429 2,049,884
Universal PCR 94.73 7.82 28,852,425 24,877,238 179,116 796,072
Universal Ab 107.27 8.82 26,349,970 24,877,238 935,384 537,348
Universal Ab/PCR 131.35 10.82 50,709,761 49,754,475 955,286 0

Scenario 2

No Screening 3,741,537 0 0 3,741,537
questionnaire (status quo) 0.20 0.00 3,781,340 0 59,705 3,721,635
Risk-targeted Ab/PCR 76.82 9.19 31,524,435 29,156,122 318,429 2,049,884
Universal PCR 122.20 11.12 26,091,247 24,877,238 179,116 1,034,893
Universal Ab 138.52 12.58 26,489,282 24,877,238 935,384 676,661
Universal Ab/PCR 169.56 15.42 50,709,761 49,754,475 955,286 0
∗ Risk in 10 highly endemic counties of Connecticut and Massachusetts during this study was 1 confirmed TTB case

per 19,500 untested donations versus 1 confirmed TTB case per 100,000 for all seven states, or approximately 5-fold

lower. This 5-fold difference was used to adjust the prevalence data used for this table.

2.3.2 Deterministic Sensitivity Analysis on Transmission Probability Values

Figures 2.2(a) and 2.2(b) plot each strategy’s ICER over the questionnaire (ICERQj) versus trans-

mission probability from actively infected donors for donor-only scenarios (Scenario 1-Low and

Scenario 1-High; Table 2.3). The only difference between Scenario 1-Low and Scenario 1-High is

the value of transmission probability from donors with resolved infection, which is assumed 0.3%

in Scenario 1-Low and 2.9% in Scenario 1-High. In particular, in each scenario, we only vary the

transmission probability from actively infected donors (0.3-50% for Scenario 1-Low and 2.9-50% for

Scenario 1-High), while keeping the transmission probability from donors with resolved infection

constant (0.3% for Scenario 1-Low and 2.9% for Scenario 1-High).

When blood units from donors with resolved infection present a 0.3% transmission probability

(Scenario 1-Low, Figure 2.2(a)) and the transmission probability from actively infected donors is

above 3%, the universal PCR strategy is the most cost-effective in terms of ICER, followed by

universal Ab, universal Ab/PCR, and the risk-targeted strategy. However, when units from donors

with resolved infection present a transmission probability of 2.9% (Scenario 1-High, Figure 2.2(b))

and transmission probability from actively infected donors is below approximately 30%, universal

Ab screening is the most cost-effective. Universal Ab and universal PCR strategies approach the
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same ICER values at higher probabilities. The same patterns are observed for donor-recipient

scenarios (Scenario 2-Low and Scenario 2-High), which assume transmission probabilities for high-

risk patients are twice that for low-risk patients (Appendix A).

2.3.3 Deterministic Sensitivity Analysis on Prevalence Rates

Figure 2.2(c) plots each strategy’s ICER over the questionnaire (ICERQj) versus window-period

donor prevalence (Ab-negative/PCR-positive donors) for Scenario 1, in which the transmission

probabilities equal 2.9% for donors with resolved infections and 33.3% for actively infected donors.

The universal PCR strategy is the most cost-effective for all window-period donor prevalence values,

followed by universal Ab. The risk-targeted strategy is the least cost-effective.

The sensitivity of ICER for universal PCR, universal Ab/PCR, and universal Ab to various

prevalence values are shown in Figures 2.3(a)-(c) for Scenario 1, where the range of ICER is plotted

for each strategy as the prevalence values are varied within their sensitivity ranges (Table 2.1).

ICER for universal PCR and universal Ab/PCR are the least sensitive to prevalence of donors

with resolved infection, while ICER for universal Ab is the least sensitive to window-period donor

prevalence. Under all universal strategies, ICER is the most sensitive to the prevalence of actively

infected donors, with respective ranges of [$30,000-$57,000/QALY], [$90,000-$147,000/QALY], and

[$51,000-$96,000/QALY] for universal PCR, universal Ab/PCR, and universal Ab. For Scenario 2,

not shown, the ICER ranges are respectively [$15,000-$36,000/QALY], [$60,000-$102,000/QALY],

and [$31,000-$64,000/QALY].

2.3.4 Probabilistic Sensitivity Analysis on Key Model Inputs

The average for each output measure over 10,000 replications shows that the expected number of

TTB cases averted was highest in all cases with universal Ab/PCR, ranging from 31-41 cases pht,

depending on the scenario (Appendix A). The risk-targeted strategy resulted in the fewest TTB

cases averted (9-18 cases pht). The ICER over the questionnaire for both scenarios are the lowest

for universal PCR, followed by universal Ab strategy. Universal PCR strategy presents lower total

costs/unit transfused than universal Ab or universal Ab/PCR strategies under both scenarios.

Considering a cost-effectiveness threshold of $1 million/QALY, the implicit threshold of society’s

willingness to pay for transfusion-transmitted infectious agent mitigation, Figures 2.4(a) and 2.4(b),

which respectively correspond to Scenario 1 and Scenario 2, indicate that universal PCR was

the preferred strategy in 85% of the 10,000 simulations, while universal Ab was preferred in the
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remaining 15%. The same proportions continue to hold at a threshold of $100,000/QALY cited

by Simon [99]. At a lower cost-effectiveness threshold of $50,000/QALY cited by Goodell [53], any

laboratory-based screening was preferred over the status quo in 6% of the simulations for Scenario 1

and in 98% of the simulations for Scenario 2; universal PCR in 58% of the simulations for Scenario

1 and in 83% for Scenario 2; and universal Ab in 9% of the simulations for Scenario 1 and in 15%

for Scenario 2.
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Figure 2.2: (a) ICERQj as a function of transmission probability from actively infected donors
for Scenario 1-Low (donor-only scenario in which blood units from donors with resolved infection
present a transmission probability of 0.3%). (b) ICERQj as a function of transmission probability
from actively infected donors for Scenario 1-High (donor-only scenario in which blood units from
donors with resolved infection present a transmission probability of 2.9%). (c) ICERQj as a function
of the prevalence of window-period donors (donors who are Ab-negative/PCR-positive) for Scenario
1 (donor-only scenario in which blood units from donors with resolved infection present a trans-
mission probability of 2.9% and blood units from actively infected donors present a transmission
probability of 33.3%)

.
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effect on ICER for (a) universal PCR strategy, (b) universal Ab/PCR strategy, (c) universal Ab
strategy.
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2.4 Discussion

B. microti is a transfusion-transmitted intraerythrocytic parasite; however, no blood donation

screening requirements exist. Using prevalence and test performance data collected from ARC’s

investigational screening, along with published parameters, we conducted cost-effectiveness mod-

eling on four proposed B. microti donation screening strategies: Ab-only, PCR-only, Ab/PCR in

parallel, and recipient-risk-targeted-Ab/PCR.

The base case model determined that universal Ab/PCR is the most effective in preventing

TTB. This strategy, however, was also the most costly, although ICERQj values of $82,756/QALY-

Scenario 1 and $54,206/QALY-Scenario 2 (Table 2.4) are below the $1 million/QALY threshold.

Universal PCR was the most cost-effective: $25,801-43,931/QALY, depending on recipient risk,

and lower than the $50,000/QALY threshold cited by Goodell [53]. The number of units wasted

pht was highest with the current donor history question (99.62 pht), followed by risk-targeted-

Ab/PCR (76.27 pht), with universal Ab/PCR being equal to universal Ab (19.92 pht). Universal

PCR wasted zero units pht (Table 2.5).

Similar to the findings in Simon and Goodell [53, 99], our deterministic sensitivity analysis

suggests that the cost-effectiveness of screening is highly sensitive to the probability of B. microti

transmission to a recipient. When the probability of transmission to a high-risk and low-risk patient

are equal and transmission probability from a donor with a resolved infection is 0.3%, universal Ab

screening is most cost-effective when transmission probability from actively-infected donors is low

(≤3%). However, at higher transmission probabilities from actively-infected donors (>3%), which

is more likely, the ICER ($/QALY) drops dramatically and universal PCR is the most cost-effective

(Figure 2.2(a)). However, when donors with resolved infection present a transmission probability of

2.9%, universal Ab screening is the most cost-effective until transmission probability from actively

infected donors reaches ∼ 30%, at which point universal Ab and universal PCR achieve the same

cost-effectiveness (Figure 2.2(b)).

Our model results differ from those of Simon where universal Ab screening in endemic areas

was shown to avert the most TTB cases while carrying an ICER of less than $1 million/QALY.

Goodell [53] concluded that none of the screening strategies they considered was cost-effective at

the $1 million threshold, even within highly endemic areas. The lowest ICER value in their model,

$2.6 million, was for an Ab-only strategy in four endemic states.

These differences are likely due to several factors (Tables 2.1 and 2.2 compare the data and
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assumptions used here versus prior studies [53, 99]). The ARC has been using investigational

AFIA and PCR, not assessed in prior manuscripts. Many differences (such as different assay

performance characteristics and other variables), exist that, while individually may play a small

role, are unlikely the sole reason for the discrepant findings amongst the three studies. Our testing

costs ($12.50 for Ab or PCR, and $25.00 for Ab/PCR) are lower than those used in Simon ($15.00

for Ab and $30.00 for Ab/PCR) and Goodell [53] ($21.00 for manual-IFA and $22.50 for PCR),

which have a substantial impact on cost-effectiveness and make our strategies more favorable. The

testing cost we used for risk-targeted-Ab/PCR ($50.00) is higher than the $33.00 used by Simon

[99], but was validated in our prospective testing experience. It would be expected that testing

costs will decrease with test licensure and greater economies of scale associated with adoption.

As noted above, all three models are sensitive to transmission probability variation. Simon

did not differentiate infectivity between PCR-positive and PCR-negative units in their base case

and used an overall transmission probability of 0.4% [99]. Goodell used weighted transmission

probabilities (5.1% for PCR-positive and 0.4% for PCR-negative/Ab-positive donors; Tables 2.1

and 2.2) that were lower than those used in our modeling (33.3% for PCR-positive donors and 2.9%

for PCR-negative/Ab-positive donors) [53]. According to hamster infectivity data collected as part

of the ARC investigational study, 58% of PCR-positive donors and 6% of PCR-negative/Ab-positive

donors provided donations that were infectious to hamsters [82], suggesting that transmissibility

is higher than assumed in Goodell [53]. There are limitations when comparing animal models to

humans; refining transmission probability estimates is necessary.

Finally, our study uses the same case fatality rates from complicated babesiosis (21% for high-

risk patients and 6% for low-risk patients) as Simon, which are higher than those used by Goodell

for high-risk recipients (19.2%). As with lower transmission probabilities, lower fatality rates result

in lower testing cost benefits, and therefore decreased cost-effectiveness.

Screening blood units that are designated for high-risk patients (i.e., risk-targeted) has been

proposed to decrease the monetary burden associated with screening [53, 99, 120]. This strategy

has many limitations, including difficulty in correctly defining and identifying high-risk patients,

additional resources/logistics associated with testing and maintaining two blood product invento-

ries, and resultant increased potential for errors, as well as the liability assumed when transfusing

patients who are deemed low-risk with untested, infectious units [85]. Simon considered this strat-

egy when modeling cost-effectiveness and concluded that “risk-targeted transfusion policy for TTB

prevention in endemic regions is unlikely to offer greater value compared to universal Ab screen-
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ing” [99]. Our analyses likewise suggest that a risk-targeted strategy performs poorly; it resulted

in the lowest number of TTB cases averted and the highest ICER values compared to the status

quo, regardless of transmission probability scenario, and was never the most cost-effective strategy

(Table 2.4; Figures 2.2(a)-(c)). Given the substantial limitations and poor cost-effectiveness, a

risk-targeted strategy should not be considered a viable TTB intervention.

A major advantage to our model is the fact that it uses parameters based on blood donation

screening data (i.e., ARC’s prospective investigational studies), rather than clinical data. Data

collected in a screening environment has the advantage of using results and drawing conclusions

that are more generalizable to the blood industry and removes the uncertainty present in prior

publications. Our analyses also include a detailed description of waste associated with screening,

accounting for the number of disposed units and positive test-result costs. Such parameters are

important for assessing cost-effectiveness.

Our analysis is not without limitations. We only considered donors presenting to drives in four

endemic states when building our model; using this strategy, TTB cases would continue to occur

in other areas of the country, as shown by the ARC [82, 83]. The inclusion of other endemic states

would have an unknown impact on cost-effectiveness, particularly due to variations in prevalence

among the remaining Babesia-endemic states. Finally, as noted in both Simon and Goodell [53, 99],

compared to other transfusion-transmissible agents, empirical data for B. microti, particularly

regarding transmissibility and mortality, are lacking, thus introducing variability into any modeling

effort.

Not only did we find that the cost of universal screening using any of the screening methods

assessed was less than the $1 million/QALY threshold, our analyses of waste suggest that the

current method of screening by questionnaire is not only ineffective, but is also highly wasteful

(i.e., the number of blood units wasted due to donor deferral pht was higher than any screening

strategy). This finding serves as a reminder that improved B. microti mitigation strategies are

needed to reduce/prevent TTB and replace ineffective polices.

In conclusion, while the lack of robust data makes cost-effectiveness modeling an inexact science

and highly sensitive to variations in transmission probabilities, we suggest that universal PCR in

four endemic states is an effective blood donation screening strategy. Accordingly, such a strategy

would prevent 24-31 TTB cases pht at an ICER of $26,000-44,000/QALY and a waste index of zero

(Tables 2.4 and 2.5). Universal PCR offers the dual benefits of identifying and removing the most

infectious blood products from the blood supply, as well as mitigating donor loss due to resolved
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(Ab-positive/PCR-negative) B. microti infections. Using a higher cost-effectiveness threshold, the

universal Ab/PCR strategy is the most effective blood donation screening strategy, as this would

prevent 33-42 TTB cases pht at an ICER of $54,000-83,000/QALY, and a waste index of 0.05.
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Chapter 3

Robust Post-donation Blood

Screening under Prevalence Rate

Uncertainty

3.1 Introduction

Blood products are essential for a variety of medical treatments that apply to people of all ages, in-

cluding organ transplants, heart surgeries, resuscitation of trauma victims; and treatment of cancer

patients, premature infants, and pregnant women with complications, among others. Consequently,

the availability and safety of blood is of utmost importance for a well-functioning healthcare system,

hence, for the well-being of the society. Unfortunately, various infectious diseases can be transmitted

through the use of blood products, including the human immunodeficiency virus (HIV), hepatitis

viruses, human T-cell lymphotropic virus (HTLV), syphilis, West Nile virus (WNV), babesiosis,

Chagas’ disease, Dengue virus; and new infections can be expected (e.g., the Dengue virus was

discovered to be transmittable through transfusion only in 2002 [68]). Consequently, post-donation

screening of the blood for transfusion-transmittable infections (TTIs) is essential before the blood

can be released for transfusion.

Several characteristics complicate the goal of providing safe blood: (1) the demand for blood

products is high worldwide,1 and blood products are highly perishable (e.g., the life-time of red

1 It is estimated that 40-70% of the US population will need blood transfusion at some point in their lives [58]. The
scarcity and safety of blood supply is a much bigger problem in certain parts of the world, e.g., sub-Saharan Africa

[76].
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blood cells is 21 days). Therefore, a well-functioning healthcare system requires a high and constant

flow of donations, leading to a high testing cost, while healthcare resources are limited; (2) mul-

tiple Food and Drug Administration (FDA)-licensed blood screening tests are available for blood

collection centers to choose from, and all screening tests are imperfectly reliable and come with dif-

ferent costs because they measure different markers in the body (e.g., antibodies, antigens, genetic

material); and (3) the FDA requires blood collection centers to screen for a given set of infections,

but remains silent on which particular tests should be used. Therefore, it is an important societal

service to design an effective and efficient blood screening scheme that reduces the risk of TTIs in

a resource-constrained setting.

What makes this decision even more challenging is the fact that infection prevalence rates in

the donor population are highly uncertain. For emerging infections, such as babesiosis and WNV,

not much is known on their dynamics and prevalence rates. Babesiosis and WNV are also highly

seasonal and endemic only in certain regions, and their prevalence rates in any given year can vary

significantly depending on various factors, including the climate and the intensity of the mosquito

and tick populations [5, 59, 73, 84, 100]. Consequently, for such infections, it is practically very

difficult to obtain accurate estimates of current prevalence rates. In addition, the uncertainty for

established infections remains high even in countries with well-functioning surveillance systems

(e.g., the HIV prevalence in the United States has a range of [0.5%− 1%], with a estimated mean

of 0.7% [106], with the range corresponding to 71% of its mean prevalence rate). This is because

surveillance methods (e.g., population-based studies, sero-prevalence surveys, sentinel surveillances)

are resource- and time-extensive, and often study, due to data availability and resource limitations,

sub-populations whose prevalence rates may be significantly different from the prevalence rates of

the donor population [11, 34, 39, 55, 111].2 Further, some infections go undiagnosed or under-

reported. On the other hand, it is difficult to change the testing scheme in the short-term (e.g., on

a yearly basis) due to the huge set up involved with the new testing equipment, testing protocol,

and contracts with testing laboratories.

In this setting, the budget-constrained blood collection center needs to allocate its testing budget

to the various infections under uncertainty on prevalence rates and with limited information (i.e.,

unknown prevalence distribution and moments). The objective is to determine a “robust” post-

donation blood screening scheme that performs well under most prevalence rate possibilities, in

2 Major blood collection centers, such as the American Red Cross, complement these surveillance studies with analysis
of their own screening data of repeat donors, adjusting up the repeat donor prevalence rate by a certain factor to

approximate that in first-time donors, further adding to the level of uncertainty (e.g., [65]).
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terms of achieving a low TTI risk in blood cleared for transfusion (“Residual Risk”). This is the

research problem we study in this paper.

The transfusion literature approaches this problem through simple cost-effectiveness studies,

which consider only the expectation of the Residual Risk and fail to account for dependencies

among the different infections (e.g., common resource constraints). Further, these studies rely on

various restrictive assumptions, including that interventions are perfectly divisible, have constant

returns to scale, and are independent [30, 40, 65, 96, 109]. In our previous research, we study the

testing problem within an optimization framework that can alleviate most of these limitations, but

still with the objective of minimizing the expected Residual Risk [24, 26, 118]. In this paper, we

expand upon this earlier work to study robust post-donation blood screening schemes, explicitly

accounting for the fact that prevalence rates in the donor population are uncertain and the decision-

maker has limited information.

Our contributions are summarized as follows. To our knowledge, this is the first paper that mod-

els and studies the robust post-donation blood screening problem under prevalence rate uncertainty.

We formulate the blood screening problem using a robust formulation as well as an expectation-

based formulation, and obtain structural properties of their optimal solutions. Our analysis of the

robust formulation also contributes to the literature on the robust nonlinear knapsack problem

with continuous variables, for which we develop important structural properties. Further, we ana-

lytically characterize the price of robustness and the price of expectation-based optimization, which

respectively represent the deviation, from the minimum possible expected Residual Risk, of the ro-

bust solution and the expectation-based solution under forecast error. Our analysis shows that the

robust formulation leads to a safe blood supply under all prevalence rate possibilities, at the expense

of a small increase in the expected Residual Risk. On the other hand, in the presence of forecast

error, the expectation-based solution might deviate significantly from the true optimal solution, and

may introduce unintended, but substantial, Residual Risk to the blood pool for various prevalence

rate possibilities. Our case study of the United States confirms these findings, and also indicates

that following the FDA guidelines is no guarantee of an optimal testing regime - sometimes it is

better to deviate from the FDA recommendations. Indeed, our robust testing solution outperforms

various testing schemes that follow the FDA guidelines, in terms of substantially reducing both the

expectation and the range of Residual Risk. These findings have important implications on public

policy.

The remainder of this paper is organized as follows. In Section 3.2, we introduce the notation,
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decision problem, and objective functions. In Section 3.3, we study structural properties of the test

selection problem under various objective functions. In Section 3.4, we analytically characterize the

price of robustness and the price of expectation-based optimization. In Section 3.5, we present a

case study of the United States using realistic data and discuss our findings. Finally, we conclude,

in Section 3.6, with a summary of our findings and suggestions for future research. To improve the

presentation, all proofs are relegated to the Appendix.

3.2 The Model

3.2.1 Notation and Assumptions

Throughout, we use boldface letters to represent vectors, and upper- and lower-case letters to

respectively represent random variables and their realizations.

Let Ψ = {1, 2, · · · , n} denote the set of infections that require (or are recommended for) screen-

ing. Let Pi, i ∈ Ψ, denote the prevalence of infection i in the donor population, which is unknown

to the decision-maker. The random vector P = (Pi)i=1,...,n follows an arbitrary continuous dis-

tribution with some mean µ ≥ 0 and support (uncertainty set) Ω = ([li, ui])i=1,··· ,n, and may be

correlated.3 We assume that the only information available to the decision-maker on P is its sup-

port; neither the distribution nor the moments of P are known to the decision-maker, who only has

an estimate, µ̂, of the mean. Indeed, it is very difficult to reliably estimate the actual distribution

and mean of P , especially for emerging infections. We also assume that the probability that a

donor is co-infected with multiple infections in set Ψ is negligible. This assumption is common

in the transfusion literature (e.g., [34, 65, 108, 115]), and is reasonable, especially in developed

countries, where systematic pre-donation screening procedures make the co-infection possibility in

donors extremely unlikely. The no co-infection assumption implies that
∑

i∈Ψ ui ≤ 1, which is

satisfied in practice as prevalence rates of all TTIs are rather low (e.g., in the order of less than 2%

in the US).

Our modeling of the uncertainty set of P as a box (interval) uncertainty set (e.g., [17, 22]) offers

several advantages in the blood screening setting. A box uncertainty set requires information only

on the support of each prevalence rate; and it ensures that no prevalence realization, no matter

how extreme, is discarded, thus providing a guarantee that all constraints in the robust model

3 Correlation may occur due to common risk factors for the different infections. For example, climate change may
affect tick and mosquito populations in a similar way, which in turn affect prevalence of babesiosis and WNV,

respectively [89, 117].

29



(see Section 3.2.2.1) are satisfied (see [18, 19, 20, 22] for discussion on constraint violation). This

is highly desirable in blood screening, as there exist infections that can be a hit or a miss in a

given year, such as the WNV, whose prevalence depends on the mosquito population. Prevalence

rates of such infections may follow U-shaped distributions, with boundary points of their supports

having the highest probabilities. Therefore, using uncertainty sets that discard the vertices of the

box (e.g., ellipsoidal) is undesirable, as mismatches between testing schemes and actual prevalence

rates lead to unnecessary infections, resulting in high social cost and suffering, and force blood

centers to revise their testing schemes, leading to high set up cost. Further, we show, in Section

3.3.2, that any such adjustment to the shape of the uncertainty set is not needed in our setting,

because, in the worst case, the solution to our robust model is not very conservative. Moreover,

we show, in Remark 1, that utilizing a more general, distributional uncertainty set, which allows

for known support and/or known moments [88, 97], becomes equivalent to a box uncertainty set in

our setting.

The budget-constrained decision-maker needs to allocate her total testing budget per donation,

of BT , to the n infections that require screening under uncertainty on the distribution and moments

of prevalence rates. Toward this end, the decision variables include Bi, i ∈ Ψ, the per-donation

testing budget allocated to infection i.4 Let F ≡ {B :
∑

i∈ΨBi ≤ BT , Bi ≥ 0, i ∈ Ψ} denote the set

of feasible allocations of the total budget BT to the infections in set Ψ. Note that we represent a

testing solution by its budget allocation vector B = (B1, B2, ..., Bn), as the corresponding optimal

test set for each infection can then be determined by solving a linear programming problem (LP)

that maximizes the sensitivity (true positive probability) of the test set (see Appendix B.5). In

particular, similar to [23], we consider a general class of testing schemes that we refer to as non-

universal testing schemes, which may involve multiple test sets, each applied to a certain proportion

of the donated blood units, randomly selected. That is, the decision-maker is not limited to

universal testing schemes in which each and every unit of donated blood undergoes screening with

the same test set. An example of a non-universal testing scheme is the solution to our case study

(see Section 3.5): at a total budget level of $45, $9.4 is allocated for HIV testing per donation on

average, with 90.57% of blood units (randomly selected) tested with the HIV Multi-pool Nucleic

Acid Testing (MP-NAT) and the remaining 9.43% with the HIV antibody assay (Ab). Non-universal

testing schemes provide the decision-maker with flexibility and have the potential to significantly

4 For non-universal testing schemes, Bi, i ∈ Ψ, represents the average testing budget per donation, as we discuss

subsequently.
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reduce the Residual Risk; and are equitable from a societal perspective, as blood product recipients

could have blood screened by any of the test sets administered (see [23] for further discussion

and examples; and Appendix B.5 for the formulation of the non-universal testing problem in our

setting).

Screening tests are imperfect, and may provide inaccurate results. A major threat to blood

safety comes from false negative testing errors, i.e., failure to detect infected blood units, which

mainly occur due to donations made during the window period5 of an infection. Therefore, similar

to the transfusion literature (e.g., [34, 65, 108, 115]), we assume that all testing errors come from

false negative errors.6

Consider a random unit of donated blood. We define the following events.

Events:

Ai+ : event that the blood unit is infected by infection i, i ∈ Ψ.

Ti−(Bi) : event that the blood unit is classified as free of infection i when using

a testing budget of Bi, i ∈ Ψ.

We define T − (B) ≡
⋂
i∈Ψ Ti− (Bi) as the event that the blood unit is classified as free of

all infections in set Ψ (hence released into the blood pool reserved for transfusion). Let fi (Bi) ≡

Pr(Ti−(Bi)|Ai+) denote the false negative probability (1− sensitivity) of the test set corresponding

to a budget of Bi ≥ 0 for infection i ∈ Ψ, which is decreasing in Bi. In reality, function fi(.)

exhibits diminishing returns to scale, as is typical of many resource allocation problems (e.g., [87]).

Therefore, we make the following assumptions.

Assumption (A1). Function fi(Bi) = Pr(Ti− (Bi)|Ai+) is strictly convex decreasing and differ-

entiable in Bi, with fi(0) = 1 and lim
Bi→+∞

fi(Bi) = 0.

Assumption (A2). The test outcome for infection i ∈ Ψ depends only on the prevalence of

infection i in the blood unit, and not on the prevalence of other infections and/or other health

conditions the donor may have.

Note that lim
Bi→+∞

fi(Bi) = 0 is a reasonable assumption, since there exists a gold-standard

test, having a sensitivity of around 1, for most infections considered in this paper. Gold-standard

tests, however, are used for confirmatory testing, and not for screening, due to their high costs and

5 The time between the development of infectious viremia and reactivity by serological or nucleic acid technology
donor screening tests [34].
6 False positive errors, i.e., misclassification of uninfected blood units as infected, are much smaller in magnitude

[47], and do not significantly impact the Residual Risk [26].
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processing times [86, 103]. Assumption (A2) can be considered valid based on a number of studies

that investigate the relationship between HIV and the hepatitis virus infections, and their test

outcomes (e.g., [28, 92, 122]). In reality, it is extremely difficult to quantify the impact (if any) of

other patient level factors on the test outcome. Hence, given the current level of medical knowledge,

this assumption is considered reasonable and is commonly used in the transfusion literature.

The blood center’s objective is to minimize a function of the Residual Risk (hereafter referred to

as Risk) random variable, i.e., the probability that an infected blood unit is classified as infection-

free by the administered test set (e.g., [26, 34, 65, 108]). The mathematical expression for Risk for

a given budget allocation vector, B ≥ 0, denoted by R(B), follows:

R(B) = Pr

(⋃
i∈Ψ

Ai+, T−(B)

)

=
∑
i∈Ψ

Pr(Ai+)Pr (T−(B) |Ai+)

=
∑
i∈Ψ

Pi Pr
(
T1−(B1), T2−(B2), · · · , Tn−(Bn) |A1−, · · · , Ai+, · · ·An−

)


by the no

co-infection

assumption

=
∑
i∈Ψ

Pi Pr (Ti−(Bi)|Ai+)
∏
j∈Ψ:
j 6=i

Pr (Tj−(Bj)|Aj−) , by Assumption (A2)

=
∑
i∈Ψ

Pi fi(Bi). (3.1)

Thus, for a given B, Risk can be expressed as a function of the prevalence vector, P , and

fi(Bi), i ∈ Ψ, where the latter represents the reduction fraction in the original prevalence (of Pi)

due to post-donation screening. Therefore, in what follows, we refer to function fi(.) as the test

effectiveness function, and denote its first-order derivative with respect to Bi as f
′
i (.).

3.2.2 Objective Functions

The goal is to allocate the total testing budget to the infections in set Ψ so as to achieve a robust

performance (in terms of a minimum Risk) under uncertainty on the prevalence vector. Toward

this goal, we consider a regret-based measure commonly used for robust decision-making under

uncertainty (e.g., [3, 13, 80, 88, 94, 121]), and compare its performance with the traditional objective

of minimizing the expected Risk.
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3.2.2.1 The Robust Problem: Maximum Regret Minimization

Similar to the literature, we define the Regret corresponding to a budget allocation vector B and a

prevalence vector realization p as follows:

Regret (B,p) = R (B,p)−R (B∗ (p) ,p) , (3.2)

where B∗ (p) is the optimal budget vector that minimizes Risk in the deterministic problem in

which p is given, that is, B∗ (p) = argmin
B∈F

{R (B,p)} — the deterministic problem is a convex

optimization problem that can be computed efficiently for any p.

The objective is to find a feasible budget vector, B, that minimizes the maximum Regret over

all possible realizations of the random vector P , that is,

minimize
B∈F

{
max
p∈Ω
{Regret (B,p)}

}
. (3.3)

The mathematical formulation of the Maximum Regret Minimization Problem follows:

Maximum Regret Minimization Problem (RMM):

minimize
B, Regretmax

Regretmax Dual variables

subject to Regret (B,p) ≤ Regretmax, ∀p ∈ Ω ← αp (3.4)∑
i∈Ψ

Bi ≤ BT ← θ (3.5)

Bi ≥ 0, ∀i ∈ Ψ. ← δi (3.6)

Denote the optimal budget solution to RMM as B∗R, with I∗R = {i ∈ Ψ : B∗Ri > 0} denoting

the set of infections that are allocated non-zero budget (the allocation set) and Regretmax∗ =

max
p∈Ω

{
Regret

(
B∗R,p

)}
. Let αp, p ∈ Ω, θ, and δi, i ∈ Ψ, denote the dual variables respectively

corresponding to Constraints (3.4)-(3.6) in RMM.

Because P is a continuous random vector, the number of constraints in (3.4) is uncountable.

Therefore, RMM, i.e., the minmax Regret version of a nonlinear knapsack problem with contin-

uous variables, is a semi-infinite programming problem with a linear objective function and an

uncountable number of constraints, each of which is jointly convex in the decision variable vector

B. Hence, in its current form, RMM is intractable. In general, the minmax Regret version of most

polynomially solvable problems is NP-hard (e.g., [3, 14, 80]).

The minmax Regret criterion has been used for decision problems under uncertainty (e.g., [13,
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50, 90, 124]), including the newsvendor problem (e.g., [88, 107]). In particular, Perakis et al. [88]

study the minmax Regret version of the newsvendor problem under a distributional uncertainty set,

which is a convex set of distributions that satisfy a number of known moments and/or support. A

similar, distributionally robust, minmax Regret formulation in our setting becomes equivalent to the

original RMM (i.e., with interval uncertainty), as we discuss in Remark 1. In addition, the results

in [88] are specific to the newsvendor problem with a single-dimensional decision variable (the order

quantity), and the analysis crucially depends on the closed-form expression for the optimal order

quantity. As opposed to this, RMM is the Regret version of a nonlinear knapsack problem with

a multi-dimensional decision variable vector; and hence, in general its optimal solution cannot be

expressed in closed-form. Therefore, our problem necessitates new analysis that is tailored to the

blood screening setting, as we discuss subsequently.

In general, robust optimization problems are solved by developing their computationally tractable

counter-parts. Such robust counter-parts have been developed for certain classes of problems, in-

cluding LP, quadratic programming, and semi-definite programming problems, considering specific

types of uncertainty sets (e.g., [18, 19, 20, 21, 22]). Finding a computationally tractable, equivalent

formulation of RMM critically depends on studying structural properties of the deterministic Risk

minimization problem and of RMM. This involves studying how Constraint set (3.4) behaves in p

so that an equivalent RMM formulation can be constructed, and we pursue this avenue in Section

3.3.2.

3.2.2.2 The Expected Risk Minimization Problem

For an estimate, µ̂, of the mean prevalence vector, the mathematical formulation of the Expected

Risk Minimization Problem follows:

Expected Risk Minimization Problem (ERM):

minimize
B

E [R (B, µ̂)] =
∑
i∈Ψ

µ̂ifi(Bi) Dual variables

subject to (3.5) ← λ

(3.6). ← γi

Let B∗E(µ̂) and I∗E(µ̂) = {i ∈ Ψ : B∗Ei (µ̂) > 0} respectively denote the optimal budget

allocation vector and the allocation set for ERM with a prevalence vector estimate, µ̂. Also, let λ
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and γi, i ∈ Ψ, denote the dual variables respectively corresponding to Constraints (3.5) and (3.6)

in ERM. Note that the deterministic Risk minimization problem with a given p ∈ Ω (see Section

3.2.2.1) corresponds to ERM, with µ̂ replaced by p.

3.3 Properties of Optimal Solutions

We provide important structural properties of ERM and RMM optimal solutions in Sections 3.3.1

and 3.3.2, respectively.

3.3.1 Structural Properties of the Optimal ERM Solution

Lemma 1. For any µ̂ ≥ 0, ERM objective function, E [R (B, µ̂)], is strictly jointly convex in

B. Then, a feasible budget allocation vector B ∈ F is optimal for ERM if and only if there exist

non-negative KKT multipliers λ and γi, i ∈ Ψ, such that:

µ̂if
′
i(Bi) + λ− γi = 0, i ∈ Ψ (3.7)

γiBi = 0, i ∈ Ψ. (3.8)

Lemma 1 allows us to establish important structural properties of an optimal ERM solution.

For this purpose, we order the infections in set Ψ in non-decreasing order of µ̂if
′
i(0) and relabel

such that:
µ̂1f

′
1(0) ≤ µ̂2f

′
2(0) ≤ · · · ≤ µ̂nf ′n(0). (3.9)

That is, infections are ordered according to their highest initial “return” to scale, i.e., noting that

f ′i(.) < 0, i ∈ Ψ, when no budget is allocated to any infection, an initial allocation to infection

1 will result in the highest reduction in the expected Risk, followed by infection 2, and so on.

This is similar to the concept of cost-effectiveness (see, for example, [30]). In order to simplify the

subsequent presentation, throughout this section we adopt the notation that infections are relabeled

such that {1, 2, · · · , n} is an ordered set following (3.9).

Theorem 1. The optimal allocation set, I∗E(µ̂), follows a threshold policy, that is, infections enter

set I∗E(µ̂) in the order given by (3.9) as BT increases:

I∗E(µ̂) =


{1, · · · , i}, if TH i ≤ BT < TH i+1, for i = 1, · · · , n− 1

{1, · · · , n}, if BT ≥ THn,

(3.10)

where TH1 = 0, TH i =
∑i−1

j=1 B̃
i
j , i = 2, · · · , n, and B̃i

j , j = 1, · · · , i − 1, is the solution to:
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µ̂j f
′
j(B̃

i
j) = µ̂i f

′
i(0). Further, the optimal budget allocation vector, B∗E(µ̂), is the unique solution

to:

f ′i(B
∗E
i (µ̂))

f ′j(B
∗E
j (µ̂))

=
µ̂j
µ̂i
, ∀i, j ∈ I∗E(µ̂) (3.11)

B∗Ei (µ̂) = 0, i ∈ Ψ \ I∗E(µ̂).

Thus, finding an optimal solution to ERM is simple: Once set I∗E(µ̂) is identified for a budget

level BT , B∗E(µ̂) is the solution to a set of nonlinear equations. The optimality condition in (3.11)

indicates that the optimal non-zero budget allocation for infections in set I∗E(µ̂) is the one for which

the incremental benefit of additional screening is equal for all infections. Similarly, the thresholds,

TH1, ..., THn, in (3.10) imply that infection i ∈ Ψ enters the allocation set I∗E(µ̂) only when the

incremental benefit of screening for infection i equals the incremental benefit of additional screening

for every infection that is already in I∗E(µ̂). Further, Theorem 1 indicates that the optimal ERM

allocation set does not fluctuate much as the total testing budget, BT , changes over time, which

occurs commonly in practice. For example, if BT increases over time, infections that are already in

the allocation set will continue to be screened for, with possible addition of new infections to the

allocation set. This stability is a desirable property of the optimal allocation set.

3.3.2 Structural Properties of the Optimal RMM Solution

We first derive the optimality conditions for RMM in Section 3.3.2.1. Then, in Section 3.3.2.2, we

analyze the structural properties of the optimal RMM solution.

3.3.2.1 The Optimality Conditions for RMM

Recall that RMM, in its current form, is intractable because the number of constraints in (3.4) is

uncountable. In what follows, we first reduce, without loss of optimality, the number of constraints

in (3.4) to a countable set.

Definition 1. A prevalence vector realization p is a boundary vector if for each i ∈ Ψ, either pi = li

or pi = ui. Let Ωb ≡ {p ∈ Ω : pi = li or pi = ui, ∀i ∈ Ψ}.

Theorem 2. For any given B ≥ 0, the maximum Regret occurs at a boundary vector in set Ωb,

that is,
max
p∈Ω
{Regret (B,p)} = max

p∈Ωb
{Regret (B,p)} .
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Then, an equivalent RMM formulation follows by replacing Constraint (3.4) with (2.4′):

Regret (B,p) ≤ Regretmax, ∀p ∈ Ωb. (2.4′)

Thus, to solve RMM to optimality, it is sufficient to consider a finite set of 2n boundary vectors.

We will use this equivalent formulation of RMM in the remainder of the paper. In practice, the

number of infections that require screening is less than ten [23]; hence, the number of constraints

in (2.4′) is computationally manageable in our setting. However, from a theoretical perspective, we

also discuss below the effectiveness of a polynomial-time heuristic for RMM.

Our numerical study of RMM leads to the following interesting observation: when prevalence

vectors in Ωb are arranged in non-decreasing order of their Regret values at the optimal RMM

solution, B∗R, those with the highest Regret values are “balanced,” with almost half of the compo-

nents of p at their upper bound and the remainder at their lower bound. We use this observation

to develop a polynomial-time heuristic for RMM, which involves selecting, out of 2n vectors in Ωb,

a subset, Ωh, with polynomial cardinality, and solving RMM with Ωb in (2.4′) replaced with Ωh.

Specifically, the RMM Heuristic randomly selects nd, d ∈ Z+, vectors from the set of balanced

vectors defined as
{
p ∈ Ωb : dn/2e − 1 ≤

∑
i∈Ψ I(pi=ui) ≤ bn/2c+ 1

}
, where Icond denotes the in-

dicator variable, which equals 1 if cond is satisfied, and 0 otherwise. Note that the total number of

balanced vectors in Ωb is n!

[(n−1
2 )!]

2

(
4

n+1

)
if n is odd, and n!

[(n
2 )!]

2

(
3n+2
n+2

)
if n is even.

To study the effectiveness of the RMM Heuristic, we consider two variations of it comprised

of n2 and n3 vectors in set Ωh, respectively. For a given n, we randomly generate 400 problem

instances, comprised of Ω = ([li, ui])i∈Ψ, k, and BT , and determine the average (over 400 in-

stances) optimality gap between the optimal RMM solution and the RMM Heuristic solution,

i.e., Regretmax∗−RegretmaxH(nd)
Regretmax∗ , see Table 3.1.

Table 3.1: Percent optimality gap for the RMM Heuristic with cardinality of Ωh in the order of
n2 and n3, for n = 10 – 18.

Order n 10 11 12 13 14 15 16 17 18

O(n2) 0.44 0.64 0.42 0.80 0.45 1.02 0.57 0.97 0.56
O(n3) 0.03 0.42 0.08 0.65 0.17 0.90 0.33 0.86 0.35

For n = 10 – 18, the RMM Heuristic results in optimality gaps that are less than 1.02%

and 0.90%, respectively for O(n2) and O(n3). Thus, the RMM Heuristic performs well in our

setting. Moreover, its performance can be further improved through, for example, a Benders-type
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decomposition scheme in which a slave problem is solved to generate the violated constraints in

the master problem, which, in turn, is solved again with augmented constraints, and so on (see,

for example, [50]). In addition, the subsequent Theorem 3 provides another effective way to solve

RMM under certain conditions.

We next provide insights on the optimal RMM solution under a more general form of the

uncertainty set.

Remark 1. The distributionally robust version of RMM is defined as (similar to [41, 88, 97]):

minimize
B∈F

{
max
D∈D

Regret(B, D) =

{
ED [R(B)]− min

Z∈F
ED [R(Z)]

}}
, (3.12)

where the random vector P follows an unknown distribution that belongs to a convex set of distri-

butions D , each satisfying a set of known moments and/or support. Hence, the objective is to find

a feasible budget allocation vector that minimizes the maximum Regret over all distributions in set

D .7

(i) If only the first moment (mean, µ) of P is known, then all distributions in D have the same

µ and (3.12) reduces to ERM, that is, B∗R(µ) = B∗E(µ).

(ii) If only the support (Ω) of P is known, then (3.12) reduces to RMM, with R(B,p) replaced

by ED[R(B)] (see (2.4′)-(3.6)), and the distribution that yields the maximum Regret is a two-

point distribution with weights on the boundaries of its support, li and ui, i ∈ Ψ. (This result

can be proven in a similar way to Theorem 2.)

To obtain further properties of RMM, note that for any given µ, we can represent, without

loss of generality, the uncertainty set of Pi as [li, ui] = [µi(1 − ali), µi(1 + aui )], i ∈ Ψ, by finding

appropriate vectors al = (ali)i=1,...,n and au = (aui )i=1,...,n, for some 0 ≤ ali, aui ≤ 1, i = 1, ..., n. We

refer to al and au as support multiplier vectors. Since this can be done for any µ, we do not require

a-priori knowledge of the true mean µ, but only knowledge of the uncertainty set Ω. As it will

become clear later, we choose to represent the uncertainty set Ω using the (µ,al,au) notation, as

this will allow us to study structural properties of RMM and subsequently characterize its price

of robustness in Section 3.4.

7 Observe that, as opposed to the definition of Regret in (3.2), which is defined as a function of the realizations in
Ω, Regret is defined in (3.12) as a function of the distributions in D , and hence, as a function of the expected Risk,

as is common in literature; see for e.g., [41, 88, 97].
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We label the prevalence vectors in Ωb as Ωb = {p1, ...,p|Ωb|}, where |Ωb| = 2n, and let Z =

{1, ..., 2n} denote the index set. Let Ui = {z : pz ∈ Ωb and (pz)i = ui}, for i ∈ Ψ, that is, Ui is

the index set of p vectors in Ωb for which the ith component, pi, equals its upper bound, ui. Let

Ai ≡ 1 + aui
∑
z∈Ui

αz − ali
∑

z∈Z\Ui

αz, ∀i ∈ Ψ, where αz, z ∈ Z, are the dual variables corresponding

to Constraint (2.4′).

Lemma 2. A feasible budget allocation vector B ∈ F and a Regretmax value are optimal for

RMM if and only if there exist non-negative KKT multipliers θ, δi, i ∈ Ψ, and αz, z ∈ Z, such

that:

µif
′
i(Bi)Ai − δi + θ = 0, i ∈ Ψ (3.13)

αz [Regret(B,pz)−Regretmax] = 0, z ∈ Z (3.14)

δiBi = 0, i ∈ Ψ (3.15)∑
z∈Z

αz = 1. (3.16)

3.3.2.2 Further Properties of the Optimal RMM Solution

In order to obtain closed-form expressions for the optimal budget vector in the deterministic Risk

minimization problem, we next impose the following assumption, which is motivated by the effi-

cacy data for all FDA-licensed blood screening tests. In particular, we find that test effectiveness

functions can be approximated reasonably well by exponential functions, resulting in coefficients of

determination of R2 ≥ 0.94 for all infections considered in the case study (see Appendix B.5).

Assumption (A3). The test effectiveness function, fi(.), i ∈ Ψ, is exponential, i.e., fi(Bi) =

e−kiBi, with some ki > 0, for Bi ≥ 0, i ∈ Ψ.

Let S(I) ≡
∑

i∈I
1
ki

, for I ⊆ Ψ, and denote S(Ψ) simply by S. We also let ci ≡ 1/ki
S , i ∈ Ψ;

then
∑

i∈Ψ ci = 1.

Definition 2. For any given n and k, all problem instances that share common support multiplier

vectors, al =
(
ali
)
i=1,...,n

and au = (aui )i=1,...,n, are said to be in the same “family.”

For any given n and k, we represent a problem instance by al, au, µ, and BT . In the following,

we are able to show that all problem instances within the same family share common properties,

which we exploit in detail in the remainder of Sections 3.3.2.2 and 3.4. These properties allow us

to: (i) utilize ERM, an easier problem to solve, to determine the optimal RMM solution for all
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instances of the family, given the optimal RMM solution for any one instance of the family; and

(ii) derive analytical expressions on the price of robustness ratio and the price of expectation-based

optimization ratio.

To facilitate the subsequent analysis, in the remainder of Sections 3.3.2.2 and 3.4, we impose

the following technical condition, which ensures that each infection is allocated some budget in the

optimal solution to the deterministic Risk minimization problem for each p ∈ Ωb.

Condition (C1): B∗i (p) > 0, ∀i ∈ Ψ,∀p ∈ Ωb.

We note that Condition (C1), under Assumption (A3), is almost always satisfied when the

total testing budget, BT , is not unrealistically low (see Section 3.5 for discussion on real data), and

becomes less restrictive for higher values of k (see Appendix B.3). All subsequent results of this

section and Section 3.4 rely on Assumption (A3) and Condition (C1).

Lemma 3. For RMM, the optimal dual variable vector, α, corresponding to Constraint (2.4′) is

solely a function of the support multiplier vectors, al and au, and is independent of µ and BT .

Interestingly, Lemma 3 states that the dual variable vector α, which indicates the set of preva-

lence vectors that achieve the maximum Regret value, remains the same for the entire family of

problem instances.

Theorem 3. Consider any family of problem instances. The optimal RMM solution can be found

by either:

(i) Solving a modified ERM, with the mean prevalence vector modified as µ∗A, that is B∗R (µ) =

B∗E (µ ∗A), where ∗ denotes the component-wise vector product operator; or

(ii) Solving a regular ERM, where

B∗R (µ) = B∗E (µ) + ∆∗b

(
al,au

)
, (3.17)

where ∆∗b
(
al,au

)
is the optimal solution to:

minimize
∆b

∑
i∈Ψ

Ai
ki
e−ki∆bi (3.18)

subject to
∑
i∈Ψ

∆bi = 0.

The second part of Theorem 3 indicates that for the entire family of problem instances, their

corresponding ERM and RMM optimal solutions differ by a constant vector ∆∗b
(
al,au

)
, which

solely depends on the support multiplier vectors, al and au. Note that the determination of

40



∆∗b
(
al,au

)
requires the knowledge of A (equivalently, of α) for any one instance in the family.

Consequently, determining the optimal RMM solution for all problem instances in one family

(which, without Theorem 3, would require solving 2n deterministic Risk minimization problems for

all p ∈ Ωb and an additional RMM for each problem instance) now reduces to solving RMM for

any one instance in the family and using ERM to find the optimal RMM solution for all other

instances in the family. Finally, Theorem 9, presented in Appendix B.4, characterizes how Regret

functions, and hence the maximum Regret value, shift as parameters µ and BT are perturbed,

greatly facilitating sensitivity analyses.

3.4 The Price of Robustness and the Price of Expectation-based

Optimization

RMM provides a robust solution that may be sub-optimal for minimizing the expected Risk. On

the other hand, the ERM solution, by relying on an estimate, µ̂, of the mean prevalence vector,

µ, may also deviate from the expected Risk minimizing solution, B∗E(µ). Then, an important

question is whether the decision-maker would be better off using the robust formulation, RMM,

or the expected risk minimizing formulation, ERM, with the estimated µ̂ vector? To answer this

question, we quantify the loss of optimality in the expected Risk coming from the RMM and ERM

solutions, as well as the robustness of the ERM solution.

Definition 3. The price of robustness ratio, ΠR ([18]), the price of expectation-based optimization

ratio, ΠE(µ̂), and the ERM Regret deviation, R, are respectively defined as:

ΠR =
E[R(B∗R,µ)]

E[R(B∗E(µ),µ)]
, ΠE(µ̂) =

E[R(B∗E(µ̂),µ)]

E[R(B∗E(µ),µ)]
, and R = max

p∈Ω

{
Regret

(
B∗E(µ),p

)
Regret

(
B∗R,p

) }
.

Thus, higher values of ΠR and ΠE(µ̂) respectively indicate that RMM and ERM solutions

deviate further from the minimum possible expected Risk, while a higher value of R indicates that

the ERM solution deviates further in Regret from the optimal RMM solution. In order to study

the robustness of the ERM solution due to prevalence uncertainty only (and not due to forecast

error), we express R as a function of the true mean, µ.

In the remainder of this section, we restrict our attention to cases where Condition (C1)

and Assumption (A3) are satisfied. Recall that Theorem 3 indicates that in these cases the

optimal ERM and RMM solutions are linked with an additive expression, which involves function
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∆∗b
(
al,au

)
that remains constant within each family. Thus, Theorem 3 allows us to express

E[R(B∗R,µ)] as a function of B∗E(µ), leading to exact expressions on ΠR and ΠE(µ̂).

Theorem 4. We have:

ΠR =
∑
i∈Ψ

cie
−ki∆∗bi =

∑
i∈Ψ ci/Ai∏

i∈Ψ (1/Ai)
ci and ΠE(µ̂) =

∑
i∈Ψ ci (µi/µ̂i)∏
i∈Ψ (µi/µ̂i)

ci ,

where ∆∗b
(
al,au

)
and A

(
al,au

)
are as defined in (3.18). Further,

R ≥ RL ≡ max
p∈Ωb

{ ∑
i∈Ψ cihi(p)−

∏
i∈Ψ (hi(p))ci∑

i∈Ψ cihi(p)e−ki∆
∗
bi −

∏
i∈Ψ (hi(p))ci

}
,

where, for p ∈ Ωb, hi(p) ≡


1− ali, if pi = li

1 + aui , if pi = ui

, ∀i ∈ Ψ.

Interestingly, both ΠR and ΠE(µ̂) can be expressed as ratios of the weighted arithmetic mean

to the weighted geometric mean, with weights c, of 1/Ai, and µi/µ̂i, i ∈ Ψ, respectively. This

follows due to the equivalence between ERM and RMM solutions, stated in Theorem 3.

Corollary 1. ΠR and RL remain constant for all problem instances of the same family.

Lemma 4. If the mean prevalence estimate, µ̂, has a forecast error (rl, ru), i.e., µi ∈ [µ̂i(1 −

rli), µ̂i(1 + rui )], i ∈ Ψ, then ΠE(µ̂) is maximized when µi = µ̂i(1 − rli) or µi = µ̂i(1 + rui ), for all

i ∈ Ψ.

As Theorem 4 and Lemma 4 show, the price of robustness ratio, ΠR, and the lower bound on

the ERM Regret deviation, RL, are independent of the mean prevalence vector, µ, and the total

budget, BT , and only depend on the support multiplier vectors, al and au, while ΠE(µ̂) only

depends on the magnitude of the forecast error, rl and ru. These results greatly facilitate the

derivation of the maximum values of ΠR, ΠE(µ̂), and RL by reducing the search over k, µ, BT ,

al, au, and r to a search over k, al, au, and r only.

We next utilize Theorem 4 and Lemma 4 to compute ΠR, ΠE(µ̂), and RL for problem instances

having n = 2 – 10 infections, see Table 3.2. Specifically, we discretize k, al, and au, and perform

an exhaustive search in ali ∈ [0, 0.75] and aui ∈ [0, 2.00], i ∈ Ψ,8 to determine the maximum values

of ΠR and RL for each n. We also determine the maximum value of ΠE(µ̂) at various levels of

8 The maximum allowable value for ali is 1 since µi(1− ali) ≥ 0, while aui can take values higher than 1 if µi < 0.5.
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forecast error, considering rli = rui = r, i ∈ Ψ, with r = 10%, 35%, and 50%. Table 3.2 indicates

that the expected Risk of all RMM solutions deviates by no more than 6.64% from the minimum

possible expected Risk (i.e., ERM solution with known µ). On the other hand, ERM solutions

may deviate significantly (by more than 105.39%) from the minimum possible Regret value. Further,

under forecast error, ERM expected Risk may deviate from the minimum possible expected Risk

by around 0.50%, 6%, and 15% for all n values, for r = 10%, 35%, and 50%, respectively.

The estimation of the mean prevalence vector is resource- and time-consuming, and in practice,

r can be higher than 50% [6], resulting in ΠE(µ̂) values that are significantly higher than ΠR.

This has important implications: For realistic values of the forecast error, r, RMM outperforms

ERM not only in terms of the Regret objective, but also in terms of the expected Risk, suggesting

that RMM would be a safer approach to use. In addition, for all values of r, ERM exhibits

significantly higher Regret values, further emphasizing the importance of using a robust approach.

Finally, the values of ΠR, ΠE(µ̂), and RL, do not fluctuate significantly with n, indicating that

RMM outperforms ERM independently of the number of infections.

From a theoretical perspective, the next question is whether there exists a family of problem

instances for which the price of robustness ratio equals one.

Corollary 2. Under Condition (C1) and Assumption (A3), ΠR = 1, equivalently, B∗R =

B∗E(µ), for any family of problem instances with identical test effectiveness functions, symmetric

uncertainty sets, and identical support multiplier vectors, i.e., k = (k, ..., k) for some k > 0, and

al = au = (a, ..., a), for some a ∈ [0, 1].

Table 3.2: Maximum values of ΠR, ΠE(µ̂), and RL for all problem instances with n = 2 – 10
infections, and forecast error r = 10%, 35%, and 50%.

ΠE(µ̂) ΠR RL

n r = 10% r = 35% r = 50%

2 0.48% 6.55% 15.32% 6.64% 105.39%
3 0.48% 6.72% 15.79% 6.49% 146.78%
4 0.50% 6.72% 15.79% 6.32% 140.62%
5 0.50% 6.83% 15.92% 6.24% 150.02%
6 0.50% 6.82% 15.92% 6.17% 148.90%
7 0.50% 6.84% 15.97% 6.19% 152.77%
8 0.50% 6.84% 15.98% 6.16% 155.00%
9 0.50% 6.85% 15.98% 6.16% 158.61%
10 0.50% 6.85% 15.99% 6.16% 163.25%
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3.5 A Case Study of the United States

In this section, we perform a case study for the United States. Our objectives are three-fold: (i)

to compare the optimization-based testing schemes with FDA-compliant schemes; (ii) to compare

ERM and RMM testing schemes; and (iii) to derive the price of robustness ratio for RMM.

The FDA requires screening of donated blood for HIV, hepatitis viruses B and C (HBV and

HCV), HTLV, and syphilis; recommends testing for WNV; and neither requires nor recommends

testing for babesiosis [47]. In our case study, we consider HIV, HBV, HCV, WNV, and babesiosis.

(Syphilis and HTLV are omitted due to a lack of reliable data.)

3.5.1 Case Study Data

Table 3.3 presents the prevalence in the United States for the infections considered in our study.

The uncertainty sets were constructed from published lower and upper bounds on prevalence rates.

Additional information on the data is provided in Appendix B.5.1. In order to focus on the

robustness of ERM and not on the forecast error, we assume that the mean prevalence rates

presented in Table 3.3 are the true means.

Table 3.3: Mean and uncertainty sets for prevalence rates in the United States (in %).

Infection Mean (%) Uncertainty set(%) Source

HIV 0.7 (0.5, 1.0) [106]
HBV 0.345 (0.250, 0.440) [38]
HCV 1.6 (1.3, 1.9) [10]
Babesiosis 0.385 (0.255, 0.490) [25, 84]
WNV 0.0495 (0.0044, 0.1500) [33, 100]

Screening tests typically look for an infection specific bio-marker. In blood screening, tests are

either serological, which look for antibody (Ab) or antigen (Ag) bio-markers, or genetic nucleic

acids tests (NAT), which look for infection specific nucleic acids. NAT offers higher efficacy than

serological tests because the nucleic acid bio-markers directly measure the infection (e.g., viral load)

and thus are at a detectable concentration earlier than antibodies or antigens, which are based on

the immune response (thus NAT has a shorter window period). NAT also has pooling flexibility,

thus it can be performed on individual donations (ID-NAT), or on mini-pools (MP-NAT) of samples

from multiple donations, but, due to dilution, pooling reduces the test’s efficacy [16, 65, 101, 115].

Depending on the infection, pairing an antibody or an antigen test with an NAT increases the
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overall sensitivity. Therefore, we consider both individual and paired tests in our study.

Specifically, FDA-licensed tests include ID-NAT, MP-NAT, and Ab/Ag for each of HIV, HBV,

and HCV; and ID-NAT and MP-NAT for WNV. Currently there are no FDA-licensed tests for

babesiosis, but an Ab test and an ID-NAT test are undergoing the FDA approval process and are

currently used by the American Red Cross in a pilot study [84]. Therefore, we also consider the

Ab and ID-NAT tests for babesiosis in our case study. Table 3.4 reports test sensitivity values,

which come from published or publicly available data when available; when not available, they are

derived using the methodology described in [26]. Unit testing costs are $4 for each of HIV Ab, HCV

Ab, and HBV Ag tests [65]; and $15 and $10 respectively for ID-NAT and MP-NAT per infection

[26, 65].

Table 3.4: Sensitivity (true positive probability) values (in %).

Single Tests Paired Tests

Infection ID-NAT MP-NAT a Ab/Agb ID-NAT+Ab/Ag MP-NAT+Ab/Ag

HIV 99.90 [102] 99.70 [102] 70.96 99.97c 99.91c

HBV 93.30 [47] 82.90 [47] 45.00d 96.32e 90.60e

HCV 97.74 [47] 81.31 [47] 16.70d 98.12c 84.43c

Babesiosis [25] 99.50 – 90.40 100.00c –
WNV [45] 99.98 97.50 – – –

a Pool size of 16 for HIV, HBV, and HCV, and 6 for WNV.
b Derived using the methodology in [26].
c NAT+Ab paired test.
d The sensitivity values are low as these tests do not perform well when used individually (e.g., [64]).
e NAT+Ag paired test.

Given the FDA requirements and recommendations, blood centers need to devise a FDA-

compliant testing scheme. For example, the American Red Cross routinely screens for HIV (MP-

NAT&Ab), HBV (MP-NAT&Ag), HCV (MP-NAT&Ab), and WNV (MP-NAT) [6]. This testing

scheme corresponds to a total testing budget of $52 using the cost data given above.

3.5.2 Case Study Results

We compare our optimization results with seven FDA-compliant testing schemes. The schemes

belong to one of three categories: (i) FDA-required, which only screens for HIV, HBV, and HCV;

(ii) FDA-required and -recommended, which additionally screens for WNV; and (iii) FDA-required

and -recommended with babesiosis, which screens for all five infections considered. For each of these

categories, we consider the following two methods for test selection: (1) min-cost, which chooses
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the lowest cost test for each infection, and (2) min-risk, which chooses the most sensitive test for

each infection. Additionally, we consider another FDA-required and -recommended test scheme

currently employed by some blood centers [6], which we refer to as current, which screens for HIV,

HBV, and HCV with MP-NAT&Ab/Ag; and for WNV with MP-NAT. For each of these schemes,

we evaluate the testing cost, which we use to set the various budget-levels for the optimization. We

do not restrict the optimization models to FDA-compliant solutions and always allow the model to

choose from screening tests for all five infections.

Table 3.5 reports the testing solution for each of the FDA-compliant schemes, along with the

total budget required, the corresponding ERM and RMM solutions at that budget level, and the

resulting E[R] and Regretmax values per 100,000 donations for each solution (we assume that each

donor supplies blood to a single transfusion recipient). Notice that the optimization-based solutions

(ERM and RMM) perform better in terms of the expected Risk and Regretmax compared to the

seven FDA-compliant schemes. For example, at BT = $45 (FDA-required, min-risk), ERM reduces

the expected Risk from 673 to 310 TTIs per 100,000 donations, while RMM reduces Regretmax∗

from 487 to 21, a 25-fold reduction. The fact that these significant reductions come not from a

higher budget but from a better allocation of the total budget is important to note. Specifically,

out of the 673 TTIs per 100,000 donations, 31 are due to HBV while 642 are due to HIV, HCV,

babesiosis, and WNV combined; on the other hand, with RMM there are 315 TTIs per 100,000

donations, of which 87 are due to HBV (corresponding to an increase of 56), and 228 are due

to HIV, HCV, babesiosis, and WNV combined (corresponding to a decrease of 414). Figure 3.1

provides a comparison between each strategy in Table 3.5 and the solution of RMM for budget

levels between $1 and $75. The vertical (horizontal) distance between each point and the curve

represents the reduction in cost (expected Risk) achieved by using RMM. For example, for the $52

budget of the current strategy, RMM solution provides a 65% reduction in expected Risk (from

669 to 236 TTIs per 100,000 donations). Alternatively, RMM solution achieves the same expected

Risk as the current strategy using a significantly 46% lower budget ($28 vs. $52). It is important to

note that all the optimization-based solutions (ERM and RMM) are FDA-compliant except for

BT = $12, where, due to the very limited testing budget, RMM and ERM substitute screening

for HBV with screening with Babesiosis, resulting in a 16% reduction in expected Risk (from 1759

to 1474 TTIs per 100,000 donations).
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Figure 3.1: Total budget, BT , vs. expected Risk
(per 100,000 donations) for the RMM solutions
and for the strategies shown in Table 3.5.

Table 3.5: Comparison of testing solutions for various categories of screening strategies
(A: Antibody/Antigen, I: ID-NAT, M: MP-NAT).

Tests Selected
Objective Function Values

(per 100,000 donations)

Policy BT HIV HBV HCV Babesiosis WNV E[R] Regretmax ΠR RL

FDA-required

min-cost 12 A-100% A-100% A-100% - - 1,759 413
RMM A-78.9% - M-73.8% A-36.7% - 1,474 32 0.01% 58.30%
ERM A-79% - M-72.8% A-39% - 1,474 36

min-risk 45 I-100% I-100% I-100% - - 673 487
RMM M-90.6%, A-9.43% M-76.6%, A-23.4% I-100%, A-100% I-18.8%, A-81.2% M-9.44% 315 21 1.62% 86.82%
ERM M-93.5%, A-6.48% M-81.7%, A-18.3% I-100%, A-100% I-21%, A-79% - 310 34

FDA-required and -recommended

min-cost 22 A-100% A-100% A-100% - M-100% 1,718 1,039
RMM M-24.1%, A-75.9% A-39.2% I-37.1%, M-62.9% A-78.2% - 892 28 0.01% 34.89%
ERM M-23.7%, A-76.3% A-39.1% I-35.8%, M-64.2% A-80.6% - 892 30

current 52 M-100%, A-100% M-100%, A-100% M-100%, A-100% - M-100% 669 583
RMM M-100%, A-14% I-11.4%, M-88.6% I-100%, A-100% I-26.5%, A-73.5% M-17.7% 236 23 1.72% 167.35%
ERM M-100%, A-22.2% I-22.6%, M-77.4% I-100%, A-100% I-29.6%, A-70.4% - 232 49

min-risk 60 I-100% I-100% I-100% - I-100% 626 613
RMM M-100%, A-44.6% I-57%, M-43% I-100%, A-100% I-34.6%, A-65.4% M-28.8% 170 23 0.60% 99.97%
ERM M-100%, A-51.4% I-63.6%, M-36.4% I-100%, A-100% I-37.4%, A-62.6% M-15.8% 169 40

FDA-required and -recommended with babesiosis

min-cost 26 A-100% A-100% A-100% A-100% M-100% 1,418 856
RMM M-36.3%, A-63.7% A-71.1% I-66.3%, M-33.7% A-91.6% - 736 23 0.01% 32.29%
ERM M-35.8%, A-64.2% A-71% I-65%, M-35% A-94% - 736 24

min-risk 75 I-100% I-100% I-100% I-100% I-100% 243 211
RMM I-3.34%, M-96.7%, A-100% I-100%, A-46.4% I-100%, A-100% I-50.9%, A-49.1% M-52.7% 93 19 0.06% 20.06%
ERM I-3.73%, M-96.3%, A-100% I-100%, A-47.7%% I-100%, A-100% I-51.7%, A-58.3% M-49% 93 22

In order to further examine the various solutions, we randomly generate 10,000 realizations of

the prevalence vector and evaluate, at each realization, the Risk and Regret incurred by ERM and

RMM solutions at the same budget levels presented in Table 3.5. We assume, in a similar fashion

to [25], that the prevalence rates of HIV, HBV, HCV, and babesiosis, each follow an independent

triangular distribution with the upper bound, lower bound, and mean given in Table 3.3. We

also assume that the prevalence of WNV follows a scaled and shifted U-Shaped beta distribution
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with range and means presented in Table 3.3. Figure 3.2 presents Risk versus Regret (both per

100,000 donations) for total budget levels of $45 (FDA-required, min-risk) and $60 (FDA-required,

min-risk). Notice that for all budget levels, ERM and RMM significantly outperform the FDA-

compliant strategies, where the Risk and Regret values and ranges are orders of magnitude smaller.

For example, from Figure 3.2(a), which corresponds to a total testing budget of $45, the Risk range

for the optimization-based strategies is between [200, 450] per 100,000 donations, while this range

is between [500, 900] per 100,000 donations for the FDA min-risk policy.

Next, we focus on the differences between ERM and RMM solutions. First, it is important

to note that ERM and RMM solutions differ mostly for moderate to high budget levels ($45 to

$60 in Table 3.5). This is because when BT is low, the number of feasible test sets are limited due

to the extremely tight budget. In reality testing budgets are moderate in the United States, and

it is for this case that ERM and RMM solutions differ. To give an idea on how these solutions

generally differ, consider a budget level of $45: ERM does not screen for WNV, while RMM

screens 9.44% of blood units for WNV, and screens for HIV, HBV, and babesiosis with the NAT

test (MP- or ID-NAT) on a lower proportion of blood units, and with the Ab/Ag test on a higher

proportion of blood units than ERM. Thus, unlike the ERM solution that screens for only four

infections, RMM screens for five infections, increasing the robustness of the solution significantly

by decreasing the Regretmax (34 vs 21 corresponding to a 38% decrease), and at a minuscule

increase in expected Risk (315 vs 310, corresponding to a 1.62% increase). Note that, among the

budget levels presented in Table 3.5, the highest price of robustness ratio, ΠR, is 1.72%, which

is incurred at a budget level of $45. For all budget levels between $12 and $59, the minimum,

maximum, and average values of ΠR are given by 0.0004%, 1.8150%, and 0.5504%, respectively.

In order to further study the differences between ERM and RMM solutions, we omit the FDA

data points from Figures 3.2(a) and 3.2(b), and present Figures 3.2(c) and 3.2(d) for total budget

levels of $45 and $60, respectively. Notice that for both ERM and RMM, Risk is bi-modal, as it

takes values in either [225, 325] or [375, 450] for BT = $45 (Figure 3.2(c)) and [112, 166] or [197, 261]

for BT = $60 (Figure 3.2(d)). For both budget levels, RMM generates Regret values that are less

variable when compared to ERM, which generates Regret values that are significantly higher when

the Risk values are high. Also note that the maximum Regret values that are incurred by ERM

are significantly higher than RMM. Therefore, we see that RMM yields a more robust solution

that: (1) generates a smaller maximum Regret value, and (2) a more balanced Regret that does not

fluctuate and that is significantly lower than that of ERM when the Risk values are high. This
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increase in robustness over ERM comes at a negligible price, where the increase in expected Risk

is respectively 1.62% and 0.60% for $45 and $60, corresponding to an increase of 5 (315 vs. 310)

and 1 (170 vs. 169) TTIs per 100,000 donations, respectively.
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Figure 3.2: Joint distribution of Risk and Regret per 100,000 donations for ERM and RMM at
BT = $45 and BT = $60, with FDA-compliant strategies ((a)-(b)), and without FDA-compliant
strategies ((c)-(d)).

3.5.3 Price of Robustness Results

First, we provide an upper bound on ΠR that does not require Condition (C1) and Assumption

(A3).
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Theorem 5. For any problem instance, an upper bound on ΠR is given by:

ΠR ≤ 1 +

max
p∈Ωb

{R (B,p)−R (B∗ (p) ,p)}

R
(
B∗E ,µ

) , ∀B ∈ F .

Thus, any feasible budget vector, B ∈ F , can be used to generate the upper bound on ΠR.

Figure 3.3(a) plots the price of robustness ratio, ΠR, as a function of BT for the case study. An

upper bound on ΠR is constructed using Theorem 5 with B = 1
|Ωb|

∑
p∈ΩbB∗ (p). Notice that the

upper bound on ΠR is less than 13% in general, and less than 10% for BT ≤ $52. Furthermore, for

the data in our case study, the maximum ΠR value is around 1.8% for BT = $48, translating into

an increase in expected Risk of 5 (278 vs. 273) TTIs per 100,000 donations.
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Figure 3.3: ΠR and its upper bound vs. BT for the numerical study in Section 3.5.2 (a) with all
five infections considered, and (b) when WNV is omitted and Condition (C1) is satisfied. (c) RL
vs. BT for the numerical study in Section 3.5.2.

Next, we consider a case where we omit screening for WNV due to its high seasonality, as its

prevalence can be either low or high with non-zero probabilities. That is, we only consider screening

for HIV, HBV, HCV, and babesiosis; solve ERM and RMM for total budget levels ranging from

$12 to $57; and evaluate the corresponding price of robustness ratio, ΠR. In Figure 3.3(b), we plot

ΠR vs BT and show that for BT ≥ $21, Condition (C1) holds, which implies, by Theorem 4, that

ΠR remains constant, and that the bounds computed in Table 3.2 apply.

Figure 3.3(c) plots the ERM Regret deviation lower bound, RL, as a function of BT for this

case study. Notice that RL is greater than 10% in general, and reaches a maximum value of 175.4%

for BT = $53, corresponding to an increase in Regret increase of at least 23 (36 vs. 13) TTIs per

100,000 donations.
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3.6 Conclusions and Future Research Directions

The decision of how to allocate the testing budget to each TTI is of utmost importance for blood

collection centers, and in turn, for the society, as poorly designed post-donation testing schemes

may lead to a high number of TTIs. All infections considered in this study can lead to serious

health outcomes, resulting in high healthcare costs and significant reduction in quality of life and

even fatality in patients.

We show that the expected Risk minimizing testing solution that is based only on point preva-

lence rate estimates can lead to sub-optimal testing schemes that may introduce significant, and

unintended, Risk to the blood pool. Further, under forecast error, the robust testing solution out-

performs the expected Risk minimizing solution not only in terms of Regret, but also in terms of

the expected Risk. Our case study of the United States suggests that robust testing solutions can

significantly reduce the maximum Regret values at a very low price of robustness. We also find

that following the FDA guidelines is no guarantee of an optimal testing regime - sometimes it is

better to deviate from the FDA recommendations. Indeed, our robust testing solution outperforms

several policies that follow the FDA guidelines.

Various extensions of this work are worthy of future research. It is important to expand our

models to the case where forecast error is a function of the budget or effort allocated by the blood

collection center to forecasting efforts. Other important directions include considering a dynamic,

multi-period version of this problem, where infection dynamics change stochastically over time; and

expanding our models to increase model realism, such as considering the different societal cost of

each infection. We hope that our study, which shows that robust blood screening strategies can

offer significant safety benefits to the society, motivates the research community and practitioners

to study and consider robust testing schemes, because the consequences of transferring infected

blood are dire, while prevalence rates are highly uncertain.
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Chapter 4

Optimal Pooling Strategies for

Nucleic Acid Testing of Donated

Blood Considering Viral Load Growth

Curves and Donor Characteristics

4.1 Introduction

Blood products are essential for a variety of medical procedures, including heart surgeries, cancer

treatments, organ transplantations, and resuscitation of trauma victims. Unfortunately, there exist

many transfusion-transmittable infections (TTIs), including the human immunodeficiency virus

(HIV), hepatitis B and C viruses (HBV and HCV), West Nile virus (WNV), babesiosis, Chagas

disease, and Dengue virus. Consequently, the screening of donated blood for TTIs is crucial before

it is released for transfusion.

Nucleic Acid Testing (NAT) technology for HIV, HBV, HCV, and WNV screening in donated

blood has been recently licensed in the United States (US) by the Food and Drug Administration

(FDA)1. Unlike serological assays that rely on antibodies and antigens, NAT assays screen for

genetic material (DNA or RNA) from the infectious agent, enabling the detection of the infection

during its earlier stages, when serological screening may fail due to low levels of antibodies and/or

antigens. The much higher sensitivity (true positive probability) of NAT comes at a higher cost

1 Respectively in 2005, 2001, 1999, and 2005 [47].
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than serological screening. Consequently, due to limited testing budgets, it is common practice for

blood centers to perform NAT (if any) on pools of samples from multiple donors [7, 9, 114, 115].

Due to the low prevalence rates of TTIs, pooled testing substantially reduces the number of tests

required, hence the testing cost. However, pooling results in a dilution effect, i.e., as the number

of blood units in the pool increases, the viral concentration (load) in an infected blood unit is

diluted by the infection-free units in the pool to the point that it may no longer be detectable by

the pooled NAT [112, 114, 115]. Thus, pooling reduces the sensitivity of the NAT, and in turn,

increases the Residual Risk of TTIs, i.e., the probability of releasing an infected blood unit into

the blood supply. Therefore, the NAT pool size for each infection should be carefully selected

considering the infection dynamics (i.e., how the viral load varies over time following an infection),

dilution effect, and prevalence rates within the donor population. Indeed, TTI prevalence rates

of first-time donors and repeat donors, i.e., donors who donate frequently, differ, and sometimes

substantially. For example, a study of around six million donations collected by the American Red

Cross in the year 2008 indicates that HBV, HCV, and HIV prevalence rates among repeat donors

are respectively 112-, 35-, and 7-fold lower than those for first-time donors [125].

The current practice in US blood centers is to use NAT to screen for each of HBV, HCV, and

HIV in pools of 16 for all donors [6]; this corresponds to a “universal” testing scheme, which does

not differentiate between first-time and repeat donors, and hence utilizes common pool sizes for

both donor groups. Currently, the use of donor group-specific (“non-universal”) testing strategies

in US blood centers is limited to antibody testing for Chagas disease, which is administered only

to first-time donors [7]. Thus, a natural question that arises is whether it would be beneficial to

extend donor group-based differentiation to NAT testing for HBV, HCV, and HIV. Consequently,

our research goal is to study the benefits of infection-specific universal testing schemes, and of

donor group- and infection-specific non-universal testing schemes, considering HBV, HCV, and

HIV testing. The objective is to derive NAT pooling schemes (universal and non-universal) that

may reduce the current Residual Risk (or related treatment cost) of TTIs, while maintaining or

reducing the current testing cost. Along the same lines as Chagas testing, in order to keep the

logistics manageable, we restrict donor-based differentiation to first-time and repeat donor groups

only, as this has been feasible to implement for Chagas testing. We also note that under the

current testing processes in the US, multiple blood samples, extracted from each donated blood

unit, simultaneously undergo testing for the different infections. Hence, infection-specific testing

(with different pool sizes) remains a viable strategy.
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The split between first-time and repeat donors varies from year to year (first-time donors con-

stitute between 10% to 30% of all US donors in a given year [42, 65]). As a result, any non-universal

strategy that screens the two donor groups with different NAT pool sizes will incur a random testing

cost that varies with the proportion of first-time donors in a given year, making its implementation

somewhat challenging for the blood center with respect to their testing budget constraint. Due to

the set up involved with establishing new testing protocols and contracts with testing laboratories,

it is difficult for blood centers to alter their testing scheme in the short-term (e.g., on a yearly ba-

sis). Hence, this uncertainty in the total testing cost needs to be taken into account while devising

donor group-specific pool sizes.

In this setting, the budget-constrained decision-maker needs to allocate the testing budget

among the various TTIs. The objective is to determine optimal infection- and/or donor group-

specific (i.e., first-time vs. repeat donor) NAT pool sizes so as to minimize the risk (or life-time

treatment cost of transfusion recipients) of TTIs, while ensuring that the testing budget remains

feasible with a given probability. We also aim to quantify the benefits of donor group-based (non-

universal) NAT testing schemes over universal schemes and over the current practice.

Our research provides a bridge between the transfusion literature and the statistics literature.

In particular, transfusion researchers develop and utilize post-infection viral load growth models in

order to estimate the impact of pool size and dilution effect on the Residual Risk [31, 49, 52, 114,

115]. Statisticians, on the other hand, derive expressions for the relevant metrics in pooled testing,

including Residual Risk and expected number of tests, considering various pooling structures that

apply in various contexts [4, 9, 43, 56, 70]. However, none of these studies consider pool size

optimization nor non-universal pooled testing as we do in this paper. Wein and Zenios [112] is a

notable exception that studies the dilution effect for various pool sizes, but for a single infection

(HIV) and considering universal testing schemes for serological screening only. As such, their study

does not consider viral load models that apply to NAT. Our contribution is to formulate and solve

novel pool size optimization models for both universal and non-universal NAT testing schemes

that consider viral load growth characteristics for the different infections and the dilution effect of

pooling, under uncertainty on the proportion of first-time donors. Our findings indicate that non-

universal NAT schemes can substantially reduce Residual Risk and the life-time treatment cost in

infected transfusion recipients. For example, our case study of the US indicates that non-universal

NAT schemes for HBV, HCV, and HIV infections may lead to a reduction of around 5.8 expected

TTI cases per 1, 000, 000 transfusions, and around a 1.7-fold reduction in the treatment cost for
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infected recipients over current NAT testing practices in US blood centers.

The remainder of this paper is organized as follows. In Section 4.2, we introduce the notation and

assumptions, and provide some preliminaries. In Section 4.3, we study universal and non-universal

pool size optimization models, characterize their structural properties, and develop effective solution

methodologies. In Section 4.4, we present a case study of the US using published or publicly

available data. Finally, we conclude, in Section 4.5, with a summary of our findings and suggestions

for future research.

4.2 Notation, Assumptions, and Preliminaries

We use bold-face letters to represent vectors, and upper- and lower-case letters to respectively

represent random variables and their realizations. We respectively denote by FY (.), F−1
Y (.), and

fY (.) the cumulative distribution function (CDF), inverse of CDF, and probability density function

(pdf) of random variable Y . We also respectively denote by Φ(.) and φ(.) the CDF and pdf of the

standard normal distribution.

Let Ψ = {1, 2, · · · , n} denote the set of TTIs to which NAT is to be administered2, and let pFi

and pRi respectively denote the prevalence rate of infection i, i ∈ Ψ, for first-time and repeat donor

populations. We let Γ (with support in [0, 1]) denote the random proportion of first-time donors

among all donors in a given year,3 with mean µΓ and standard deviation σΓ. The transfusion

literature provides estimates on µΓ and σΓ (e.g., [42, 65, 125]), which we use to calibrate our model

in Section 4.4.1. Let µpi ≡ µΓ p
F
i +(1−µΓ) pRi , i ∈ Ψ. We assume that the probability that a blood

donor is co-infected with multiple infections in set Ψ is negligible. This assumption is common in

the transfusion literature (e.g., [34, 44, 65, 108, 115, 118]), and is reasonable, especially in developed

countries where systematic pre-donation questionnaires and health screening procedures are highly

effective in deferring co-infected donors, who are likely to be symptomatic.

For each infection i, i ∈ Ψ, the decision-maker (blood center) needs to determine the NAT pool

size of Si (∈ {1, ..., Smaxi }), where Smaxi denotes the maximum NAT pool size possible for infection

i (due, for example, to technology availability or FDA regulations [47]) and Si = 1 represents

individual NAT testing (i.e., NAT administered separately to each blood unit). The transfusion

2 We consider that NAT is to be administered for all infections in set Ψ; this applies when set Ψ contains infections
for which post-donation NAT screening has been shown to be cost-effective over serological testing (e.g., HBV, HCV,
and HIV) (e.g., [37, 79]).
3 Residual Risk is a weighted average of the Residual Risk from first-time donors (with weight Γ) and repeat donors
(with weight 1 − Γ). Hence, only the randomness in the split between donor groups, and not the total number of

donors, is relevant for our derivations; see Section 4.2.2.
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literature studies pooled NAT tests of up to 24 units in the US (e.g., [101]), and hence, we use

Smaxi = 24, ∀i ∈ Ψ.

The decision-maker’s objective is to determine an optimal pooling strategy, which we represent

by S = (Si)i∈Ψ, that minimizes the Residual Risk (or life-time treatment cost of infected transfusion

recipients) for the TTIs in set Ψ, subject to a per-donation testing budget constraint, of B. In

universal testing schemes, the decision-maker needs to select a common pool size vector, S, that

applies to all donors, while in non-universal testing schemes, the decision-maker has the flexibility

to choose different pool size vectors, SF and SR, which respectively apply to first-time and repeat

donors.

Let C (S) denote the per-donation testing cost of pooling strategy S. We consider a general

cost function C(.) that is strictly, jointly convex decreasing in S, i.e., as the pool size increases, the

testing cost per unit reduces, but at a diminishing rate. This type of a cost function applies not

only in the context of blood screening (e.g., [26, 65]), but for many resource allocation problems in

general (e.g., [30]). Tests provide binary outcomes, with a negative result indicating that all units

in the pool are infection-free, and a positive result indicating otherwise.

We define the following events.

Events:

Ii+(Si) : event that a blood unit, randomly chosen from a pool of size Si, is infected by

infection i, Si ∈ Z+, i ∈ Ψ (with complement Ii−(Si))

Ti−(Si) : event that the pooled test outcome for a random pool of size Si is negative for

infection i, indicating that all units in the pool are free of infection i, Si ∈ Z+,

i ∈ Ψ (with complement Ti+(Si)).

We also define Ai+(Si) as the event that a random pool of size Si contains at least one blood

unit with infection i, Si ∈ Z+, i ∈ Ψ (with complement Ai−(Si)), that is {Ii +(Si)} ⇒ {Ai+(Si)},

and define T −(S) ≡ ∩i∈ΨTi−(Si) as the event that a random blood unit is classified as free of

all infections in set Ψ based on pooling strategy S (hence released for transfusion). Let βi (Si) ≡

Pr(Ti−(Si)|Ai+(Si)) denote the false negative probability (1− sensitivity) of the test for infection

i when it is administered to a pool of size Si, for Si ∈ Z+, i ∈ Ψ.

Assumption (A4). (i) Any pool of size Si ∈ {1, ..., Smaxi } contains at most one unit with infection

i, i ∈ Ψ. (ii) For universal testing schemes, Pr
(
Ai+(Si)

)
≈ Siµpi; and for non-universal testing

schemes, Pr
(
Ai+(Si)

)
≈ Sip

F
i (Sip

R
i ) for pools comprised of units from first-time (repeat) donors
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only, for Si ∈ {1, ..., Smaxi }, i ∈ Ψ.

The first part of Assumption (A4) is common in the transfusion literature [34, 65, 108, 114, 115],

and is reasonable due to the low TTI prevalence rates and small NAT pool sizes (of at most 24 units).

To motivate the second part of (A4), let Ni(Si) denote the random number of blood units with

infection i, i ∈ Ψ, in a pool of size Si, Si ∈ Z+. Then, for universal testing schemes, the conditional

random variable, Ni(Si)|Γ, is binomial with parameters (Si, p
inf
i ), where pinfi ≡ Γ pFi + (1−Γ) pRi .

In order not to substantially alter the prevalence rates with Assumption (A4), we re-distribute the

expected number of infections of type i, i ∈ Ψ, among all the pools so that each pool receives at

most one infection of type i, that is, considering a total of k pools, each with size Si, for some

k ∈ Z+, we write:

Pr
(
Ai+(Si)|Γ

)
≈ E [Ni (kSi) |Γ]

k
= Sip

inf
i

⇒Pr
(
Ai+(Si)

)
=

∫ 1

0
Pr
(
Ai+(Si)|Γ = γ

)
fΓ(γ) dγ ≈ Siµpi .

Similarly, for non-universal testing, where pools contain units only from the same donor group, the

probability of event {Ai+(Si)} is approximated by Sip
F
i for pools from first-time donors and by

Sip
R
i for pools from repeat donors.

In the next section, we discuss our modeling of infection progression (in terms of variations in

viral load) in an infected individual, the dilution effect in pooled testing, and the stochasticity in

test outcomes.

4.2.1 Viral Load Progression, Dilution Effect, and Testing Stochasticity

NAT measures the viral load in the blood unit, which is then classified as infected or infection-

free based on comparison of its viral load with a pre-determined threshold value. Therefore, an

accurate modeling of post-infection viral load progression is crucial for deriving the test’s sensitivity

for different pool sizes, which will be input to the optimization models in Section 4.2.3. For this

purpose, we define TDi as the donation time, from time of infection, of a random donor with

infection i, i ∈ Ψ. Similar to the transfusion literature, we model TDi as a uniform random

variable in [0, τ ], where τ denotes the minimum allowable inter-donation period (i.e., minimum

time between two successive donations of a repeat donor) [34, 108, 114, 119]4. We denote by twi

the window period of infection i, i ∈ Ψ [34, 114, 115], i.e., the time needed for the viral load of

4 In the US, the minimum allowable inter-donation time for whole blood is 56 days [48].
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an infected individual to reach a level that is detectable with a high probability (a probability of

0.999 is typically used in the literature to determine the window period). For all the infections

considered in the case study, twi ≤ τ , i ∈ Ψ (see Section 4.4.1).

The viral load growth for an infected individual during the ramp-up phase, which covers the

window period, is commonly modeled in the transfusion and infectious disease literature using the

doubling time viral load model, characterized by a doubling time, λ, i.e., the number of days it

typically takes the viral load (number of viral copies per one mL of blood) to double (e.g., [31,

114, 115]); this model is validated by clinical data from HBV-, HCV-, and HIV-infected individuals

[27, 49, 51, 60]. According to this model, the viral load of an individual with infection i, i ∈ Ψ, at

time t post-infection, denoted by vi(t), is given by vi(t) = c0
i 2t/λi , t ∈ [0, twi ], where c0

i denotes the

starting viral load at time of infection; see Figure 4.1 for an illustration of the typical viral load

growth for an HBV-infected donor within the window period.
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Figure 4.1: Viral load vs. post-infection time for a typical HBV-infected individual with λ = 2.6
(value taken from [12]) and c0 = 6.5 (value obtained from model calibration, see Section 4.4.1).

We also model the dilution effect of pooling and the stochasticity in test outcomes (i.e., within

sample variability), where the latter refers to the possibility that the same test may stochastically

produce different outcomes when used repetitively on the same unit due to measurement errors

(e.g., [112, 123]). In particular, in order to capture these aspects of testing, we model the test’s

sensitivity using a probit model, adopted from the transfusion literature (e.g., [114, 115]). Then,

the conditional probability that a pool of size Si tests positive for infection i, indicating that the

pool contains an infected unit, given that it actually contains an infected unit from a donor with

donation time t, follows:

Pr
(
Ti+ (Si)|Ai+(Si), TDi = t

)
= Φ

(
gi(Si) + t

bi
λi

log 2

)
, (4.1)
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where gi(Si) ≡ ai + bi log
(
c0i
Si

)
, ai ≡ −

z log(x1
i )

log(x2
i /x

1
i )

, bi ≡ z
log(x2

i /x
1
i )

, x1
i and x2

i are parameters reported

in the literature for NAT for infection i, i ∈ Ψ, and z = Φ−1(0.95).

Assumption (A5). Each test has perfect sensitivity outside of the infected donor’s window period,

and has perfect specificity (true negative probability).

Assumption (A5) follows by definition of the window period, which indicates that infected units

outside of the window period have a viral load sufficient for a probability of detection of at least

0.999. Further, the literature suggests that false positive testing errors, i.e., misclassification of

infection-free blood units as infected, are very small in magnitude (e.g., [26, 34, 108]), and do not

substantially impact the Residual Risk [26, 34, 65, 108, 115].

With this background, we are ready to derive the test’s (unconditional) sensitivity for any pool

size.

Lemma 5. For a given pool size Si, Si ∈ Z+, the false negative probability (1−sensitivity) of NAT

for infection i, i ∈ Ψ, follows:

βi(Si) = Pr(Ti−(Si)|Ai+(Si)) ≈
twi
τ

+
λi

τbi log 2

[
H
(
gi(Si)

)
− gi(Si)− twi

bi
λi

log 2

]
,

where H(x) ≡ xΦ(x) + φ(x).

Proof. Using the conditional sensitivity given in Eq. (4.1), the test’s sensitivity as a function of

pool size follows:

1− βi(Si) = Pr

(
Ti+ (Si)|Ai+(Si)

)
=

∫ τ

0
Pr

(
Ti+ (Si)|Ai+(Si), TDi = t

)
1

τ
dt, since TDi ∼ U [0, τ ]

=
1

τ

∫ twi

0
Pr

(
Ti+ (Si)|Ai+(Si), TDi = t

)
dt+

1

τ

∫ τ

twi

1 dt, by Assumption (A5)

= 1− twi
τ

+
λi

τbi log 2

[
H
(
Ki(Si)

)
−H

(
gi(Si)

)]
,

where Ki(Si) ≡ gi(Si)+twi
bi
λi

log 2. Then, the approximation in the lemma follows since Φ
(
Ki(Si)

)
≥

0.999 and φ
(
Ki(Si)

)
≈ 0, leading to H

(
Ki(Si)

)
≈ Ki(Si).

Note that lim
Si→+∞

βi(Si) = 1, that is, screening with an extremely large pool size becomes

equivalent to no screening.

4.2.2 The Blood Center’s Objective

The blood center’s objective is to minimize the expectation of the Residual Risk random variable,

i.e., the probability of releasing an infected blood unit into the blood supply, which is a commonly
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used measure in the transfusion literature (e.g., [26, 34, 65, 71, 75, 95, 108]).

Lemma 6. The Residual Risk for universal and non-universal testing schemes, respectively denoted

by RRU and RRN , follows:

(i) For a universal testing scheme with a pool size vector S, RRU (S) ≡
∑

i∈Ψ µpi βi(Si) δ
U
i (S),

where δUi (S) ≡
∫ 1

0

∏
j∈Ψ\{i}

[
1− (Sj − 1)

(
γ pFi + (1− γ) pRi

) (
1− βj(Sj)

)]
fΓ(γ) dγ, i ∈ Ψ.

(ii) For a non-universal testing scheme with pool size vectors SF and SR, which respectively apply

to first-time donors and repeat donors,

RRN (SF ,SR) ≡ Γ
∑
i∈Ψ

pFi βi(S
F
i ) δFi (SF ) + (1− Γ)

∑
i∈Ψ

pRi βi(S
R
i ) δRi (SR),

where δXi (SX) ≡
∏

j∈Ψ\{i}

[
1− (Sj − 1)pXi

(
1− βj(Sj)

)]
, for X ∈ {F,R}, i ∈ Ψ.

Proof. By definition, Residual Risk is the probability that an infected blood unit will not be

detected. Then, for universal testing schemes, we can write:

RRU (S) = Pr
(
T−(S) ,

⋃
i∈Ψ

Ii+(Si)
)

= Pr

( ⋃
i∈Ψ

(
T−(S) , Ii+(Si)

))

=
∑
i∈Ψ

Pr
(
T−(S) |Ii+(Si)

)
Pr
(
Ii+(Si)

)
, by no co-infection assumption

=
∑
i∈Ψ

Pr
(
T−(S) |Ii+(Si)

)


Pr
(
Ii+(Si)|Ai+(Si)

)
Pr
(
Ai+(Si)

)
+

Pr
(
Ii+(Si)|Ai−(Si)

)︸ ︷︷ ︸
=0 (by (A5))

Pr
(
Ai−(Si)

)


=
∑
i∈Ψ

Pr
(
T1−(S1), · · · , Tn−(Sn) | I1−(S1), · · · , Ii+(Si), · · · In− (Sn)︸ ︷︷ ︸

by no co-infection assumption

) 1

Si
Siµpi︸ ︷︷ ︸

by (A4)

=
∑
i∈Ψ

µpi Pr
(
Ti−(Si)|Ii+(Si)

) ∫ 1

0

∏
j∈Ψ\{i}

Pr
(
Tj−(Sj)|Ij−(Sj),Γ = γ

)
fΓ(γ) dγ

︸ ︷︷ ︸
≡δUi (S)

=
∑
i∈Ψ

µpi βi(Si) δ
U
i (S). (4.2)

The event, {Tj−(Sj)|Ij−(Sj)}, j ∈ Ψ\{i}, in the expression of δUi (S) in Eq. (4.2), is the event that

pool Sj , which contains the particular blood unit not infected with infection j, tests negative for

infection j, which further depends on the presence or absence of infection j within the remaining

Sj − 1 units in the pool. Then,
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Pr
(
Tj−(Sj)|Ij−(Sj),Γ

)
= Pr

(
Tj−(Sj)|Ij−(Sj), Aj−(Sj),Γ

)
Pr
(
Aj−(Sj)|Ij−(Sj),Γ

)
+ Pr

(
Tj−(Sj)|Ij−(Sj), Aj+(Sj),Γ

)
Pr
(
Aj+(Sj)|Ij−(Sj),Γ

)
= 1︸︷︷︸

by (A5)

×Pr
(
Aj−(Sj − 1)|Γ

)
+ βj(Sj) Pr

(
Aj+(Sj − 1)|Γ

)
= 1− (Sj − 1) pinfj

(
1− βj(Sj)

)
, (4.3)

and substituting (4.3) in the expression for δUi (S), i ∈ Ψ, completes the proof of part (i).

For part (ii), the Residual Risk expression in the lemma follows becauseRRN (SF ,SR) = ΓRRU (SF ,pF )+

(1 − Γ) RRU (SR,pR), where RRU (SF ,pF ) and RRU (SR,pR) can be obtained by replacing µpi ,

∀i ∈ Ψ, by pFi and pRi , respectively, in the expression of RRU (.) in Eq. (4.2).

Remark 2. Using Lemma 6, the life-time TTI treatment cost of infected transfusion recipients,

which we denote by C-RR, follows:

Universal schemes: C-RRU (S) ≡
∑
i∈Ψ

wi µpiβi(Si) δ
U
i (S),

Non-universal schemes:

C-RRN (SF ,SR) ≡ Γ
∑
i∈Ψ

wi p
F
i βi(S

F
i ) δFi (SF ) + (1− Γ)

∑
i∈Ψ

wi p
R
i βi(S

R
i ) δRi (SR),

where wi, i ∈ Ψ, represents the life-time hospitalization and medication cost for infection i, and

δUi (S) and δXi (S), X ∈ {F,R}, are as defined in Lemma 6.

4.2.3 Pool Strategy Optimization

We provide the formulations for the universal and non-universal testing problems respectively in

Sections 4.2.3.1 and 4.2.3.2, considering the objective of minimizing the expected Residual Risk.

The corresponding formulations that minimize the life-time TTI treatment cost can be obtained

by simply replacing RR(.) with C-RR(.) in the objective function (see Remark 2); and we consider

both objective functions in the case study of Section 4.4.

4.2.3.1 The Universal Testing Problem

In universal testing schemes, blood from all donors is screened using a common pool size vector,

S. The current practice in US blood centers, which typically use a pool size of 16 for each of HBV,

HCV, and HIV [6], is an example of a universal testing scheme. The mathematical formulation of

the Universal Testing Problem (UT) follows:
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Universal Testing Problem (UT):

minimize
S

E[RRU (S)] =
∑
i∈Ψ

µpi βi(Si) δ
U
i (S)

subject to C(S) ≤ B (4.4)

1 ≤ S ≤ Smax (4.5)

S integer, (4.6)

where δUi (S) =

∫ 1

0

∏
j∈Ψ\{i}

[
1 − (Sj − 1)

(
γ pFi + (1− γ) pRi

) (
1 − βj(Sj)

)]
fΓ(γ) dγ, i ∈ Ψ, as

defined in Lemma 6, and C(.) is a jointly, strictly convex decreasing function in S. Note that

since the universal testing Residual Risk function does not depend on random variable Γ, we have

E[RRU (S)] = RRU (S), but we keep the expectation of Residual Risk in the formulation for UT in

order to be consistent with the formulation of the non-universal testing problem, and to simplify

the presentation in Section 4.3.

4.2.3.2 The Non-universal Testing Problems

In non-universal testing schemes, the goal is to determine a flexible pooling strategy, which may

involve different pool sizes for first-time and repeat donors, respectively denoted by SF and SR,

so as to minimize the expected risk (or the life-time treatment cost) of TTIs. For non-universal

strategies, the total testing cost incurred by the blood center is given by Γ C(SF ) + (1−Γ) C(SR),

which is a random variable. Consequently, the average testing budget, of B per donation, may be

exceeded depending on the realization of Γ, i.e., the proportion of first-time donors in a given year.

As discussed in Section 4.1, it may be difficult for blood centers to alter their testing scheme in the

short-term (e.g., on a yearly basis). Therefore, it is important for the decision-maker to have some

control over the proportion of time the testing budget is exceeded in a given year. For this purpose,

we formulate the blood center’s problem as a chance-constrained problem (see, for example, [98]),

with the objective of finding an optimal non-universal pooling scheme for which the testing budget

remains feasible with a probability of at least α, for some given α. The mathematical formulation

of the Chance-constrained Non-universal Testing Problem (NC) follows:

62



Chance-constrained Non-universal Testing Problem (NC):

minimize
SF , SR

E
[
RRN (SF ,SR)

]
= µΓ

∑
i∈Ψ

pFi βi(S
F
i ) δFi (SF ) + (1− µΓ)

∑
i∈Ψ

pRi βi(S
R
i ) δRi (SR)

subject to Pr
(

Γ C(SF ) + (1− Γ) C(SR) ≤ B
)
≥ α (CC(α))

1 ≤ SF ,SR ≤ Smax (4.7)

SF ,SR integer, (4.8)

where δXi (SX) ≡
∏

j∈Ψ\{i}

[
1− (Sj − 1)pXi

(
1− βj(Sj)

)]
, for X ∈ {F,R}, i ∈ Ψ, as defined in Lemma

6. Constraint (CC(α)) ensures that the per-donation budget constraint remains feasible with a

probability of at least α.

For comparison purposes, we also study a non-universal strategy obtained by ensuring compli-

ance to the testing budget only on average, i.e., with no probabilistic guarantee in general. This is

done by replacing Γ in the budget constraint by its mean value, µΓ (see Constraint (4.9)). Then,

when Γ follows a symmetric distribution, for example, the budget constraint in (4.9) will be feasible

with a probability of only 0.5. The resulting problem, which we refer to as the Expectation-based

Non-universal Testing Problem (ERM), reflects the behavior of a decision-maker who considers

only the expected values of the random variables.

Expection-based Non-universal Testing Problem (NE):

minimize
SF , SR

E
[
RRN (SF ,SR)

]
= µΓ

∑
i∈Ψ

pFi βi(S
F
i ) δFi (SF ) + (1− µΓ)

∑
i∈Ψ

pRi βi(S
R
i ) δRi (SR)

subject to µΓ C(SF ) + (1− µΓ) C(SR) ≤ B (4.9)

(4.7), (4.8).

In the following, we respectively denote the optimal solutions to UT, NC, and ERM as S∗U ,(
SF ,SR

)∗C
, and

(
SF ,SR

)∗E
.

4.3 Structural Properties and Algorithmic Developments

Problems UT, NC, and ERM are integer programming problems with non-convex and non-

separable objective functions (see Lemma 6), and are difficult to solve in their current form. There-

fore, in this section we study structural properties of these problems and derive tight lower and

63



upper bounds on their objective functions in order to facilitate the solution procedure. This al-

lows us to perform a change of variable that ensures the convexity of the derived lower and upper

bounds. We then show that under this change of variable, the feasible regions of UT, NC, and

ERM remain convex for a large family of testing cost functions, which include functions of practi-

cal interest. These results enable us to develop an efficient and effective solution procedure with a

worst-case performance guarantee, in terms of the maximum ratio of the Residual Risk generated

by the heuristic to the optimal Residual Risk.

4.3.1 Structural Properties

To bound the Residual Risk, we first introduce some new notation. For universal strategies,

RRLBU (S) and RRUBU (S) correspond to RRU (S) (see Lemma 6), with δUi (.), i ∈ Ψ, replaced by

δmin,Ui and 1, respectively, where δmin,Ui ≡ δUi (Smax). For non-universal strategies, similar defi-

nitions apply for RRLBN (SF ,SR) and RRUBN (SF ,SR), with δmin,Xi ≡ δXi (Smax), X ∈ {F,R}; see

Table 4.1.

Table 4.1: The expressions for functions RRbU (S) and RRbN (SF ,SR), for b ∈ {LB,UB}.

Bound (b) Lower Bound (LB) Upper Bound (UB)

RRbU (S)
∑

i∈Ψ δ
min,U
i µpiβi(Si)

∑
i∈Ψ µpiβi(Si)

RRbN (SF ,SR) Γ
∑

i∈Ψ δ
min,F
i pFi βi(S

F
i ) + (1− Γ)

∑
i∈Ψ δ

min,R
i pRi βi(S

R
i ) Γ

∑
i∈Ψ p

F
i βi(S

F
i ) + (1− Γ)

∑
i∈Ψ p

R
i βi(S

R
i )

Lemma 7. The Residual Risk can be bounded as follows:

(i) For a universal testing scheme with a pool size vector S,

RRLBU (S) ≤ RRU (S) ≤ RRUBU (S).

(ii) For a non-universal testing scheme with pool size vectors SF and SR, which respectively apply

to first-time donors and repeat donors,

RRLBN (SF ,SR) ≤ RRN (SF ,SR) ≤ RRUBN (SF ,SR).

Proof. We only prove part (i), as the proof of part (ii) is similar. For universal schemes, using

δUi (S) =

∫ 1

0

∏
j∈Ψ\{i}

[
1− (Sj − 1)

(
γ pFi + (1− γ) pRi

) (
1− βj(Sj)

)]
fΓ(γ) dγ, i ∈ Ψ (see Lemma 6,

part (i)), we derive
∂δUi (S)
∂Si

= 0, i ∈ Ψ, and

∂δUi (S)

∂Sj
=

∫ 1

0
PjQijfΓ(γ)dγ ≤ 0, j ∈ Ψ \ {i},
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where Pj ≡ −
(
γ pFj + (1− γ) pRj

) (
1− βj(Sj)− (Sj − 1)β′j(Sj)

)
≤ 0, and

Qij ≡
∏

k∈Ψ\{i,j}

[
1− (Sk − 1)

(
γ pFk + (1− γ) pRk

) (
1− βk(Sk)

)]
≥ 0.

Hence, δmin,Ui , the minimum of δUi (.), is achieved at S = Smax. Hence, 0 ≤ δmin,Ui ≤ δi(S) ≤ 1,

i ∈ Ψ, and the result follows.

Lemma 7 proves to be useful in developing an effective heuristic for Problems UT, NC, and

ERM, and in establishing a performance guarantee for the heuristic. In particular, for each prob-

lem, the heuristic, which we refer to as the “Upper Bound Heuristic” (UBH), solves an approximate

problem, which is derived from its counter-part by substituting RRU (S) or RRN (SF ,SR) in their

objective function by RRUBU (S) or RRUBN (SF ,SR). Further, in order to derive the worst-case per-

formance ratio of the heuristic solution with respect to the optimal solution (R), we solve another

approximate problem by substituting RRU (S) or RRN (SF ,SR) in the corresponding objective

function by RRLBU (S) or RRLBN (SF ,SR). We refer to the corresponding upper and lower bound

problems as Problems UTb, NCb, and NEb, for b ∈ {LB,UB}. All subsequent results in this sec-

tion hold for all problems, UT, NC, and ERM. Therefore, in the remainder of this section, we drop

the problem index and simply denote the optimal pool vector (i.e., minimizer of the exact Residual

Risk expression in the corresponding problem) as S∗, and the minimizer of the corresponding upper

or lower bound problem as S∗b, b ∈ {LB,UB}.

We first bound the loss in optimality in the expected Residual Risk obtained by the upper bound

problem, and then develop a solution methodology for exactly solving the upper and lower bound

problems.

Theorem 6. For each Problem, UT, NC, and ERM, the worst-case ratio of the expected Residual

Risk obtained by respectively solving UTUB, NCUB, and NEUB to the optimal expected Residual

Risk is bounded from above by R:

E
[
RR
(
S∗UB

)]
E
[
RR
(
S∗
)] ≤

E
[
RRUB

(
S∗UB

)]
E
[
RRLB

(
S∗LB

)] ≡ R ≤ 1

δmin
,

where δmin ≡


min
i∈Ψ

{
δmin,Ui

}
, for Problem UT

min
i∈Ψ, X∈{F,R}

{
δmin,Xi

}
, for Problems NC and ERM

.

Proof. We can write, E
[
RR
(
S∗
)]
≥ E

[
RRLB

(
S∗
)]
≥ E

[
RRLB

(
S∗LB

)]
, where the first in-

equality follows by Lemma 7 and the second inequality follows by definition of S∗LB. Further,
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by Lemma 7, we have E
[
RR
(
S∗UB

)]
≤ E

[
RRUB

(
S∗UB

)]
, and hence R is an upper bound on

the worst-case performance ratio of the UBH. Next, to prove that R ≤ 1
δmin , by definition of

δmin, we can write,
∑

i∈Ψ δ
minµpiβi(Si) ≤

∑
i∈Ψ δ

min,U
i µpiβi(Si) for universal testing schemes; and

Γ
∑

i∈Ψ δ
minpFi βi(S

F
i )+(1−Γ)

∑
i∈Ψ δ

minpRi βi(S
R
i ) ≤ Γ

∑
i∈Ψ δ

min,F
i pFi βi(S

F
i )+(1−Γ)

∑
i∈Ψ δ

min,R
i pRi βi(S

R
i )

for non-universal testing schemes. Hence, E
[
RRLB(S∗LB)

]
≥ δminE

[
RRUB(S∗LB)

]
≥ δminE

[
RRUB(S∗UB)

]
,

where the second inequality follows by definition of S∗UB, and the proof follows.

Note that in order to determine R, one needs to solve both the upper bound and lower bound

problems; hence Theorem 6 also provides an upper bound on R, which depends only on problem

parameters.

4.3.2 Algorithmic Development

Next, we develop a solution methodology for efficiently finding the optimal solutions to the upper

and lower bound problems, UTb, NCb, and NEb, b ∈ {LB,UB}. In the remainder of the paper,

we restrict our attention to a family of cost functions that satisfy the following technical condition:

Condition (C2): The testing cost function, C(S), is separable in Si, i ∈ Ψ, and satisfies:

Si
∂2C (S)

∂S2
i

+
∂C (S)

∂Si
> 0, ∀i ∈ Ψ.

Condition (C2) ensures that function C(S), which is strictly, jointly convex in S, remains

strictly, jointly convex in log(S). Many cost functions that are practically relevant in the blood

screening setting satisfy Condition (C2), e.g., C(S) =
∑

i∈Ψ

(
Ki + ci

Si

)
, for Ki, ci > 0, i ∈ Ψ, which

considers a fixed preparation cost per blood unit (Ki) and a variable cost (ci/Si) that depends on

the size of the pool. In what follows, we let Li ≡ log(Si), i ∈ Ψ.

Lemma 8.

(i) Function E
[
RRb(S)

]
, b ∈ {LB,UB}, is strictly, jointly convex in log (S), for S ≥ 1.

(ii) All cost functions, C(S), that satisfy Condition (C2), are strictly, jointly convex in log (S),

for S ≥ 1.

Proof. For the first part, we present the proof for universal schemes and for the upper bound

problem, as the proof for non-universal schemes and the lower bound problem is similar (see Lemma

7 for the objective functions of the upper and lower bound problems). Recall that for universal

schemes, E
[
RRUBU (S)

]
=
∑

i∈Ψ µpiβi(Si). Function βi(Si) is convex if and only if
[
H
(
gi(Si)

)
−
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gi(Si)− twi
bi
λi

log 2
]

is convex (see Lemma 5). For all i ∈ Ψ, function g(Si) = ai + bi log(c0
i )− biLi is

affine in Li. Furthermore, function H(x) is strictly convex in x, since H ′′(x) = φ(x) > 0. Therefore,

H
(
gi(Si)

)
, the composition of a strictly convex function with an affine function, is strictly convex

in Li [29]. Since the summation of strictly convex and affine functions remains strictly convex [29],

H
(
gi(Si)

)
− g(Si) is strictly convex in Li, which, in turn, implies that function βi(Si) is strictly

convex in Li. Then, the proof of the first part follows by noting that E
[
RRUBU (S)

]
is separable

in Si, i ∈ Ψ (equivalently, in Li, i ∈ Ψ), and is a weighted sum of strictly convex functions with

positive weights (µpi , i ∈ Ψ), and hence is strictly, jointly convex in L = log(S).

To prove the second part, note that:

∂C(S)

∂Li
=
∑
j∈Ψ

∂C(S)

∂Sj

∂Sj
∂Li

=
∂C(S)

∂Si

∂Si
∂Li

, ∀i ∈ Ψ, since C(S) is separable in Si, i ∈ Ψ, by (C2).

Therefore, we have ∂2C(S)
∂Li∂Lj

= 0, ∀i, j ∈ Ψ, i 6= j, and

∂2C(S)

∂L2
i

=
∂2C(S)

∂S2
i

(
∂Si
∂Li

)2

+
∂2Si
∂L2

i

∂C(S)

∂Si
=
∂2C(S)

∂S2
i

(
ln(10)Si

)2
+
(

ln(10)
)2
Si

∂C(S)

∂Si
, ∀i ∈ Ψ.

Noting that Condition (C2) is equivalent to ∂2C(S)
∂L2

i
> 0, ∀i ∈ Ψ, the Hessian of C(S) is positive-

definite, and hence C(S) is strictly, jointly convex in log (S), completing the proof.

We are ready to provide an equivalent formulation for the chance constraint (CC(α)).

Lemma 9. For a non-universal testing scheme scheme with pool size vectors SF and SR, which

respectively apply to first-time donors and repeat donors, the chance constraint (CC(α)) can be

equivalently written as the following set of constraints, for any α ≥ 0.5:
F−1

Γ (α) C(SF ) +
(
1− F−1

Γ (α)
)
C(SR) ≤ B,

F−1
Γ (1− α) C(SF ) +

(
1− F−1

Γ (1− α)
)
C(SR) ≤ B.

(D(α))

Proof. For the case where C(SF ) = C(SR), Constraint (D(α)) reduces to
{
C(SF ) = C(SR) ≤ B

}
,

which always satisfies Constraint (CC(α)), since Pr
(
C(SR) ≤ B

)
= 1 ≥ α, ∀α ∈ [0, 1]. For the
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case where C(SF ) > C(SR), we have the following:

Pr
(

ΓC(SF ) + (1− Γ)C(SR) ≤ B
)
≥ α

⇔Pr

(
Γ ≤ B − C(SR)

C(SF )− C(SR)

)
≥ α⇔ F−1

Γ (α)C(SF ) +
(
1− F−1

Γ (α)
)
C(SR) ≤ B. (4.10)

Similarly, for the case where C(SF ) < C(SR), we can write:

Pr
(

ΓC(SF ) + (1− Γ)C(SR) ≤ B
)
≥ α⇔ F−1

Γ (1− α)C(SF ) +
(
1− F−1

Γ (1− α)
)
C(SR) ≤ B. (4.11)

For α ≥ 0.5, we have F−1
Γ (α) ≥ F−1

Γ (1− α). Then, for C(SF ) > C(SR), we have that:

F−1
Γ (1− α)C(SF ) +

(
1− F−1

Γ (1− α)
)
C(SR) ≤ F−1

Γ (α)C(SF ) +
(
1− F−1

Γ (α)
)
C(SR),

implying that in the feasible region where all (SF ,SR) satisfy C(SF ) > C(SR), Constraint (4.11) is

redundant. Similarly, in the feasible region where C(SF ) < C(SR), Constraint (4.10) is redundant.

Therefore, for α ≥ 0.5, (CC(α)) is equivalent to (D(α)).

Note that since α refers to the probability of satisfying the budget constraint, cases of interest

to us are those with α ≥ 0.5, as stated in the lemma. Lemma 9 allows us to replace the chance

constraint (CC(α)) with constraint set (D(α)) in order to obtain an equivalent formulation for

Problem NCb, as formally stated below.

Theorem 7. An equivalent formulation for Problem NCb, b ∈ {LB,UB}, follows:

Equivalent Chance-constrained Non-universal Testing Problem (E-NCUB):

minimize
LF , LR

E
[
RRUB

N

(
10L

F

, 10L
R
)]

= µΓ

∑
i∈Ψ

pFi βi(10L
F
i ) δFi (10L

F

) + (1− µΓ)
∑
i∈Ψ

pRi βi(10L
R
i ) δRi (10L

R

)

subject to F−1
Γ (α) C

(
10L

F
)

+
(
1− F−1

Γ (α)
)
C
(

10L
R
)
≤ B (4.12)

F−1
Γ (1− α) C

(
10L

F
)

+
(
1− F−1

Γ (1− α)
)
C
(

10L
R
)
≤ B (4.13)

0 ≤ LF ,LR ≤ log(Smax) (4.14)

10L
F

, 10L
R

integer. (4.15)

The equivalent formulation for E-NCLB is similar, with the objective function replaced by RRLBN

(
10L

F
, 10L

R
)

.

Further, relaxing Constraint (4.15) in E-NCb, b ∈ {LB,UB}, results in a convex programming

problem.

Proof. Consider b ∈ {LB,UB}. The proof follows from Lemma 9 and by noting thatRRbN (10L
F
, 10L

R
) =
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RRbN (SF ,SR), and that Constraint (4.14) can be obtained by taking the logarithm of each side

of Constraint (4.7). Further, from Lemma 8, the objective function of E-NCb is strictly, jointly

convex in (LF ,LR), and the left hand side of each of Constraints (4.12) and (4.13), which are

the sum of strictly convex functions, is strictly convex in (LF ,LR). Therefore E-NCb is a convex

integer programming problem; and if Constraint (4.15) is relaxed, then E-NCb becomes a convex

programming problem.

Theorem 7 provides an equivalent formulation for NCb, b ∈ {LB,UB}, by replacing decision

variables (SF ,SR) with (LF ,LR) = log(SF ,SR). This change of variable leads to convex integer

programming problems for both upper and lower bound problems, which can be solved to optimality

using an efficient algorithm, such as branch and bound. Similarly, using the same change of variable,

UTb and NEb can be converted into convex integer programming problems.

The following result provides a linear cut for Problem UTb, b ∈ {LB,UB}, which leads to a

substantial reduction in its solution space, as we discuss in Section 4.4.

Lemma 10. Let V i ≡ (Smax1 , ..., Smini , ..., Smaxn ), where Smini ≡ inf {Si ≥ 1 : C (Smax1 , ..., Si, ..., S
max
n ) = B},

i ∈ Ψ, and let a denote a solution to the following system of linear equations:{
aTV i = B, i ∈ Ψ

}
.

Then, the following cut is valid for UTb, b ∈ {LB,UB}, for any given S:

aTS ≤ B +
√
n ||a||2, (Cut)

where ||a||2 ≡
√∑n

i=1 a
2
i .

Proof. See Appendix C.

4.4 Numerical Results

We calibrate our model using clinical data on viral load growth rates, prevalence rates, and test

sensitivity data published in the literature. We then perform a case study of the United States

considering NAT screening for HBV, HCV, and HIV infections and NAT pool sizes of up to 24. We

do not consider WNV screening, as WNV is an acute, seasonal infection and its disease progression

does not follow the viral load growth models considered in this study. In Section 4.4.1, we discuss

model calibration, and in Section 4.4.2, we discuss our findings.
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4.4.1 Model Calibration and Data Sources

Table 4.2 reports, for each of HBV, HCV, and HIV, prevalence rates for first-time donors and

repeat donors based on data from around 6 million donations collected by the American Red Cross

in the year 2008 [125]. Table 4.2 also reports an average life-time treatment cost, which includes

estimated average hospitalization and medication cost in the United States over the life-time of the

infected individual (adjusted for inflation to 2015 US dollars).

Table 4.2: Prevalence rates for first-time and repeat donors (in %) and life-time treatment cost per
TTI (in $) in the United States.

Prevalence Rates [125] Life-time
Infection (i) First-time Donor (pFi ) (%) Repeat Donor (pRi ) (%) Treatment Cost (wi) ($)

HBV 0.0413 0.0004 59, 112 [77]
HCV 0.1634 0.0046 68, 118 [91]
HIV 0.0095 0.0013 413, 838 [37]

The literature suggests that the average proportion of first-time donor in the US in a given year

(Γ) is around 20%, with a range of [10%, 30%] [42, 65, 125]. Therefore, we model Γ as truncated

normal distribution with mean µΓ = 0.2, standard deviation σΓ = 0.2µΓ, and range [0.1, 0.3]. The

minimum allowable inter-donation time for whole blood, τ , is 56 days in the US[48]. For the NAT

testing cost function, we consider C(S) =
∑

i∈Ψ
ci
Si

, where ci (= $14 [65]) represents the cost of

individual NAT for infection i, and ci
Si

is the per-unit testing cost for a pool size of Si, i ∈ Ψ. Table

4.3 presents the parameters for NAT sensitivity and viral load growth functions used in the case

study.

Table 4.3: Parameters for viral load growth models and test sensitivity functions.

NAT Sensitivity
Parameters [114]

Viral Load Growth
Parameters (in days)

Infection (i) x1
i x2

i λi [32] twi [12]

HBV 2.5 26.7 2.600 30.0
HCV 2.3 20.2 0.621 7.4
HIV 2.7 18.4 0.854 9.1

Model Calibration

For each infection i ∈ Ψ, we calibrate the sensitivity function for pooled NAT (see Lemma 5)
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using the data reported in the literature. Specifically, based on studies of 48, 460, and 69 blood

samples from window period donors respectively screened for HBV, HCV, and HIV, Stramer et al.

[102] provides the window period sensitivity for pool sizes of 1, 6, 8, and 16; see Table 4.4. In order

to calibrate the test sensitivity function given in Lemma 5 so that it applies to all pool sizes in [1

– 24], we use the following expression for window period sensitivity of NAT for infection i, i ∈ Ψ:

Pr
(
Ti+ (Si)|Ai+(Si), TDi ≤ twi

)
=

1

Pr (TDi ≤ twi )

∫ twi

0
Pr (Ti+ (Si)|Ai+(Si), TDi = t)

1

τ
dt

=
λi

twi bi log 2

[
H

(
gi(Si) + twi

bi
λi

log 2

)
−H

(
gi(Si)

)]
. (4.16)

Table 4.4: NAT sensitivity (in %) for HBV-, HCV-, and HIV-infected window period donors for
various pool sizes (from [102]).

Pool size HBV HCV HIV

1 93.75 99.57 100.00
6 89.58 99.14 100.00
8 83.33 N/A N/A
16 75.00 98.93 88.40

N/A: Not studied in [102].

For each infection i ∈ Ψ, we then calibrate the test’s window period sensitivity function in Eq.

(4.16) through parameter c0
i so that the function in (4.16) provides the best fit to the data in Table

4.4. This is done by minimizing the root mean square error (RMSE)5. The fitted c0
i values and the

corresponding RMSE values are provided in Table 4.5, which reports an RMSE value of at most

2.47%.

Table 4.5: Calibrated values of c0
i , i ∈ Ψ, and the corresponding RMSE values.

Infection (i) HBV HCV HIV

c0
i (viral copies

per mL)
6.5 146.5 27.5

RMSE (%) 2.47 0.44 2.19

5 RMSE =

√∑N
i=1(ŷi−yi)2

N
, where yi and ŷi, i = 1, ..., N , respectively correspond to the actual data and fitted

values.
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4.4.2 Case Study

In our case study, we consider three types of pooling strategies:

1. The current practice in use by most US blood centers, which is a universal strategy having

an NAT pool size of 16 for each of HBV, HCV, and HIV [6].

2. The universal strategy (the solution to Problem UTUB), which allows different pool sizes for

the different infections, but does not differentiate based on donor group.

3. The non-universal strategy, which has the flexibility to screen first-time and repeat donors

using different pool sizes for each infection. We study two variations of this strategy: (i) the

solution to the chance-constrained formulation, NCUB, with a budget violation probability

of at most 0.05 (=1− α), and (ii) the solution to the expectation-based formulation, NEUB,

which ensures compliance with the testing budget only on average, i.e., with no probabilistic

guarantee.

Using our cost data, the corresponding per unit testing budget for the current practice is Bcurrent =

C(16, 16, 16) = 14
16 + 14

16 + 14
16 = $2.625, and we use this budget level in our study of the universal

and non-universal strategies.

Using Theorem 6, for the data used in the case study, the worst-case performance ratio of the

Upper Bound Heuristic, UBH, is bounded from above by 1/δmin = 4.71% and 2.38%, respectively,

for the non-universal and universal strategies. In addition, using the cut in Lemma 10 results in

around a 16.67% reduction in the solution space for Problem UTUB.

Table 4.6 reports the pool sizes and the expected number of TTIs per 1, 000, 000 transfusions

for current practice, universal, and non-universal strategies. We also report, for each strategy, the

ratio of the expected number of TTIs generated by first-time donors to that generated by repeat

donors. First, notice that among all strategies considered, the current practice leads to the highest

expected number of TTIs, in the order of 11.85 TTIs per 1, 000, 000 transfusions. Further, since the

highest dilution effect occurs for HBV NAT (e.g., a sensitivity of 75% for HBV NAT vs. 88.40%

for HIV NAT for a pool size of 16; see Table 4.4), our universal strategy screens for HBV with a

smaller pool size of 10 (vs. 16 in the current practice), leading to a reduction of 1.82 TTIs per

1, 000, 000 transfusions.

Also, with the flexibility of screening first-time and repeat donors with different pool sizes, non-

universal strategies outperform the universal strategy, by further decreasing (by more than 1.6-
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fold) the expected number of TTIs per 1, 000, 000 transfusions by 3.96 (NCUB) and 4.76 (NEUB).

Finally, among non-universal strategies, not surprisingly, NEUB outperforms NCUB with a differ-

ence of 0.77 expected TTIs per 1, 000, 000 transfusions, but with a significantly higher probability

of budget violation (0.5 for NEUB vs. 0.05 for NCUB).

Since the infection prevalence rates of first-time donors are higher than those of repeat donors

(see Table 4.2), the non-universal strategies screen first-time donors more extensively. This leads

to a significant reduction in the ratio of TTIs from first-time donors to that from repeat donors

in 1, 000, 000 transfusions, which decreases from 17.9:1 and 14.7:1 (respectively for the current

practice and universal strategy) to 6.4:1 and 5.4:1 (for the non-universal strategies, NCUB and

NEUB, respectively). Note also that among all the strategies, the highest worst-case ratio for

UBH is 3.404% for NCUB, which translates into 0.21 expected TTIs per 1, 000, 000 transfusions,

implying that the solutions for the upper bound problems are close to optimality.

In order to estimate the distribution of the number of TTIs that occur in each strategy, we next

perform a Monte Carlo simulation by generating 10, 000 realizations of the random variable Γ, the

proportion of first-time donors. Figure 4.2 plots the histogram of the difference in the expected

number of TTI cases per 1, 000, 000 transfusions between the chance-constrained non-universal

strategy and the current practice (Figure 4.2(a)) and the universal strategy (Figure 4.2(b)). Note

that the non-universal strategy outperforms both the universal strategy and the current practice

in all scenarios, with maximum deviations of 6.05 and 10.29 TTIs per 1, 000, 000 transfusions,

respectively.
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Table 4.6: Pool size solutions, the resulting expected number of TTIs per 1, 000, 000 transfusions
(with ratio of TTIs coming from first-time donors to those coming from repeat transfusions) for all
strategies considered, and the worst-case ratio (R).

Pool Sizes for First-time Donors Pool Sizes for Repeat Donors
Expected Number of TTIs
per 1,000,000 Transfusions

Strategy HBV HCV HIV HBV HCV HIV
E[RR]× 1, 000, 000

(First-time : Repeat)
R (%)

Current practice 16 16 16 16 16 16
11.8494
(17.9:1)

—

Universal
(UTUB) 10 22 24 10 22 24

10.0282
(14.7:1)

1.962

Non-universal
Chance-constrained

(NCUB)
4 13 23 24 24 24

6.0332
(6.4:1)

3.404

Non-universal
Expectation-based

(NEUB)
3 16 24 24 24 24

5.2679
(5.4:1)

3.222
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Figure 4.2: Histogram of the difference in expected number of TTI cases per 1, 000, 000 transfusions
between the chance-constrained non-universal strategy (NCUB) and (a) current practice (UTUB),
(b) universal strategy.

Next, we incorporate the life-time treatment cost of TTIs (see the data Table 4.2) in our

formulations; see Table 4.7, which indicates that the pool size solutions vary substantially from

those of Table 4.6. Both universal and non-universal strategies now screen for HIV with smaller

pool sizes due to the high treatment cost of HIV compared to HBV and HCV (see Table 4.2). The

non-universal strategies significantly reduce the life-time treatment cost by almost 1.6- to 1.8-fold

compared to the current practice and universal strategy. Interestingly, among the two non-universal

strategies, the chance-constrained strategy remains within the testing budget with probability 0.95
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(vs. 0.5 for NEUB) at the expense of a relatively small increase, of 11.7%, in the expected TTI

treatment cost. Similar to Table 4.6, the non-universal strategies screen first-time donors more

extensively, leading to a significant reduction in the ratio of TTI treatment cost coming from first-

time donors to those from repeat donors, that is, from 8.1:1 and 7.5:1 (for the current practice and

universal strategy, respectively) to 3.1:1 and 2.7:1 (for the non-universal strategies, NCUB and

NEUB, respectively). In addition, the solutions to the upper bound problem are near-optimal in

terms of the expected life-time treatment cost, where the highest worst-case ratio, R, is 2.993%,

translating into a cost $16,333 per 1,000,000 transfusions.

Table 4.7: Pool size solutions, the resulting expected life-time treatment cost per 1, 000, 000 trans-
fusions for all strategies considered, and the worst-case ratio (R).

Pool Sizes for First-time Donors Pool Sizes for Repeat Donors
Expected Life-time
Treatment Cost per

1,000,000 transfusions ($)

Strategy HBV HCV HIV HBV HCV HIV
E[C-RR]× 1, 000, 000
(First-time : Repeat)

R (%)

Current practice 16 16 16 16 16 16
841, 508
(8.1:1)

—

Universal
(UTUB) 12 24 16 12 24 16

814, 378
(7.5:1)

2.021

Non-universal
Chance-constrained

(NCUB)
5 17 9 24 24 24

545, 715
(3.1:1)

2.993

Non-universal
Expectation-based

(NEUB)
4 16 8 24 24 24

488, 421
(2.7:1)

2.871

Figure 4.3 plots the histogram of the difference in the expected life-time treatment cost per

1, 000, 000 transfusions between the chance-constrained non-universal strategy and the current

practice (Figure 4.3(a)) and the universal strategy (Figure 4.3(b)). The non-universal strategy

outperforms both the universal strategy and the current practice in all scenarios, with maximum

expected cost deviations of $415, 000 and $501, 000 per 1, 000, 000 transfusions, respectively.
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Figure 4.3: Histogram of the difference in expected TTI cost per 1, 000, 000 transfusions between the
chance-constrained non-universal strategy (NCUB) and (a) current practice (UTUB), (b) universal
strategy.

4.5 Conclusions and Suggestions for Future Research

In this study, we propose a methodology for determining optimal pooling strategies under uncer-

tainty, while taking into account the viral load growth, the dilution effect, and the stochasticity

in test outcomes. We study the value of non-universal pooling strategies, which provide the blood

center with the flexibility to screen first-time and repeat donors with different pool sizes. Our

case study of the United States indicates that non-universal screening schemes result in lower

Residual Risk and TTI treatment cost. This is important, as all the infections considered in this

study may lead to severe health outcomes, including fatality, reduction in quality of life, and high

cost to society. In addition, our treatment of the non-universal screening scheme ensures that the

blood center’s testing budget remains feasible with a high probability, which is specified by the

decision-maker. This is important, since blood centers cannot afford to change their testing scheme

frequently. Non-universal testing strategies are likely to increase the complexity of post-donation

blood screening, and may require additional training and set up. However, non-universal testing

strategies are not uncommon in US blood centers, but are currently limited to Chagas testing. We

show in this paper that the benefits of such strategies, in terms of Residual Risk and cost reduction,

may justify the additional complexity.

Various extensions of this work are worthy of future investigation. The viral load growth may

vary from one infected individual to another (e.g., [27, 49, 52]), and hence, it is important to model

NAT screening sensitivity with this additional stochasticity. Another important research direction
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is to expand our models to the case where prevalence rates need to be estimated, and the blood

center needs to allocate its budget among surveillance and screening activities. We hope that

our study, which indicates that flexible non-universal screening strategies can benefit the society,

motivates further studies of such strategies by the transfusion community and practitioners.
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Chapter 5

Conclusions and Future Research

Directions

The decision of how to allocate the testing budget to each TTI is of utmost importance for blood

collection centers, and in turn, for the society, as poorly designed post-donation testing schemes

may lead to a high number of TTIs. All infections considered in this study can lead to serious

health outcomes, resulting in high healthcare costs and significant reduction in quality of life and

even fatality in patients.

In Chapter 2, we consider the assay selection problem for a single infection, babesiosis, which can

be fatal and is the leading cause of TTIs is in the US. We perform a cost-effectiveness analysis that

takes into consideration uncertainty in prevalence rates and variations in transmission probabilities

in order to determine the optimal screening strategy for babesiosis. We suggest that universal PCR

in four endemic states is an effective blood donation screening strategy, as it offers the dual benefits

of identifying and removing the most infectious blood products from the blood supply, as well as

mitigating donor loss due to resolved B. microti infections.

In Chapter 3, we a study robust screening scheme for multiple infections under limited infor-

mation on prevalence rates. We formulate the blood screening problem using a robust formulation

as well as an expectation-based formulation, and obtain structural properties of their optimal solu-

tions. Further, we analytically characterize the price of robustness and the price of expectation-based

optimization, which respectively represent the deviation, from the minimum possible expected Risk,

of the robust solution and the expectation-based solution under forecast error. We show that the

expected Risk minimizing testing solution that is based only on point prevalence rate estimates
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can lead to sub-optimal testing schemes that may introduce significant, and unintended, Risk to

the blood pool. Further, under forecast error, the robust testing solution outperforms the expected

Risk minimizing solution not only in terms of Regret, but also in terms of the expected Risk. Our

case study of the United States suggests that robust testing solutions can significantly reduce the

maximum Regret values at a very low price of robustness. We also find that following the FDA

guidelines is no guarantee of an optimal testing regime - sometimes it is better to deviate from the

FDA recommendations. Indeed, our robust testing solution outperforms several policies that follow

the FDA guidelines.

In Chapter 4, we propose a methodology for determining optimal pooling strategies under

uncertainty, while taking into account the viral load growth, the dilution effect, and the stochasticity

in test outcomes. We study the value of non-universal pooling strategies, which provide the blood

center with the flexibility to screen first-time and repeat donors with different pool sizes. Our

case study of the United States indicates that non-universal screening schemes result in lower Risk

and TTI treatment cost. This is important, as all the infections considered in this study may

lead to severe health outcomes, including fatality, reduction in quality of life, and high cost to

society. In addition, our treatment of the non-universal screening scheme ensures that the blood

center’s testing budget remains feasible with a high probability, which is specified by the decision-

maker. Non-universal testing strategies are likely to increase the complexity of post-donation blood

screening, but we show in this paper that the benefits of such strategies, in terms of Risk and cost

reduction, may justify the additional complexity.

Various extensions of this work are worthy of future research. It is important to expand our

models to the case where prevalence rates need to be estimated, and the blood center needs to

allocate its budget among surveillance and screening activities. It is also important to consider a

dynamic, multi-period version of this problem, where infection dynamics change stochastically over

time, and optimal screening strategies under this additional stochasticity need to be determined.

Further, this work can be extended to customized screening, where donors are classified into different

categories based on various characteristics (e.g., age, gender, racial group, first-time/repeat donors),

and each category is screened with a customized strategy. In addition to blood screening, this work

can be extended to organ and tissue screening, a significantly more constrained setting in which

resources are more scarce, organs need to be transplanted much quicker, and organs from a single

donor are transplanted to multiple recipients.

An important extension of this work is concerned with public health screening (e.g., screening
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of newborns) and genetic testing, where screening for (potential) diseases is performed by searching

for specific DNA sequences and mutations that match the profile of known conditions. Since the

detection of possible future conditions has the potential to impact the lifestyle of individuals, this

research could have important public policy implications.
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Appendix A

Appendix for Chapter 2

Performance of the Questionnaire

1. From Rhode Island Blood Centers data [120], 0.03% of donors answered “yes” to the question

on babesiosis history in the questionnaire.

2. Using IFA as the gold standard, the prevalence of babesiosis in Rhode Island was estimated

as 1.4% [120].

3. Using data from New York Blood Center [69], it can be deduced that 94.2% of donors who pre-

viously answered “yes” to the question of babesiosis history in the questionnaire were actually

not infected with babesiosis (i.e., not IFA/ELISA reactive). Equivalently, only 5.8% of donors

who previously answered “yes” to the question of babesiosis history in the questionnaire were

IFA/ELISA reactive.

Therefore, applying the Bayes rule, we get the following probabilities:

Questionnaire sensitivity = Probability of positive result given donor is actually infected

=
Probability of positive result and actual infection

Prevalence

=
Probability of actual infection given a positive result× Probability of positive result

Prevalence

=
0.058× 0.0003

0.014
≈ 0.00125 = 0.125%.
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Questionnaire specificity = Probability of negative result given donor is actually not infected

= 100%− Probability of positive result given no infection

= 1− Probability of no infection given a positive result× Probability of positive result

1− Prevalence

= 1− 0.942× 0.0003

1− 0.014
≈ 0.9997 = 99.97%.

Babesia microti prevalence rates

All prevalence rates were based on ongoing investigational studies conducted by the ARC [83].

Donors were categorized into three categories: window-period donors, actively infected donors, and

donors with resolved infection. The prevalence values were calculated based on a population of

83,330 donors with 8, 52, and 261 donors in each respective category. The population considered

was in endemic regions of the US (Connecticut, Massachusetts, Minnesota, and Wisconsin). The

ranges used in the sensitivity analysis were chosen so that they cover the 95% binomial confidence

interval.

Cost parameters

The total unit cost ($ per transfusion) of each screening strategy is composed of three components:

The unit cost of administering the test(s), the cost of a positive test result (i.e., donor notification,

counseling and follow-up, product quarantine/withdrawal and recipient tracing), and the treatment

cost of a symptomatic TTB case (cost of hospitalization, medication, etc.). We used the following

formula to calculate the total cost of each screening strategy:

Total unit cost of screening strategy (per transfusion) = Unit test administering cost +

cost of positive test result× (proportion of donors who test positive under this strategy) +

treatment cost of a positive TTB case× (probability of a TTB case when using this strategy).
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Deriving the QALY for each strategy

In QALY calculations, we used a time horizon of 40 years after transfusion, based on life table

statistics in the US and in accordance with Simon et al. [99].

Supplementary material for one-way deterministic sensitivity analysis on the trans-

mission probability for actively infected donors

Figures A.1 and A.2 present the results for the deterministic sensitivity analysis on the transmis-

sion probability from actively infected donors for Scenario 2-Low (donor-recipient ‘cenario when

the transmission probability from donors with resolved infections to low-risk recipients is 0.3% and

to high-risk recipients is 0.6%) and scenario 2-high (donor-recipient scenario when the transmis-

sion probability from donors with resolved infections to low-risk donors is 2.9% and to high-risk

recipients is 5.8%). The figures demonstrate that when donors with resolved infections present a

transmission probability of 0.3% to low-risk recipients and 0.6% to high-risk recipients, universal-

Ab screening is the most cost-effective only when transmission probability from actively infected

donors to low-risk recipients is ≤ 3% and to high-risk recipients is ≤ 6%, at which point universal-

Ab and universal-PCR achieve the same cost-effectiveness. At higher transmission probabilities, the

ICER ($/QALY) drops dramatically and universal-PCR is the most cost-effective option (Figure

A.1). When donors with resolved infection present a transmission probability of 2.9% to low-risk

recipients and 5.8% to high-risk recipients, universal Ab screening is the most cost-effective until

transmission probability from actively infected donors reaches ∼ 30% for low-risk recipients and

∼ 60% to high-risk recipients, at which point universal-Ab and universal-PCR achieve the same

cost-effectiveness (Figure 2.2).
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Figure A.1: ICERQj as a function of transmission probability from actively infected donors to
low-risk recipients for Scenario 2-Low (donor-recipient scenario) in which blood units from donors
with resolved infection present a transmission probability of 0.3% to low-risk recipients and 0.6%
to high-risk recipients.
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Results of one-way deterministic sensitivity analysis on prevalence rates

The sensitivity analysis on the prevalence rates of window-period donors, actively infected donors,

and donors with resolved infections indicate that the universal-PCR strategy is the most cost-

effective under all scenarios.

Results of probabilistic sensitivity analysis

Table A.1: Probabilistic sensitivity analysis results for Scenarios 1 (donor-only scenario) and 2
(donor-recipient scenario).

Testing Strategy
TTB cases

averted
pht

Total unit
cost (per

transfusion)
($)

QALY per
transfusion
recipient

CER
($/QALY)

ICER
($/QALY)

ICER over
questionnaire

($/QALY)

Results for Scenario 1

No Screening 0.00 7.69 5.91417946 1.30
questionnaire (status quo) 0.58 7.59 5.91418341 1.28 -17,444
Risk-targeted Ab/PCR 9.21 20.78 5.91425882 3.51 187,935 187,935
Universal PCR 22.24 14.93 5.91435017 2.52 -60,075 46,454
Universal Ab 26.00 16.30 5.91436231 2.76 105,129 51,171
Universal Ab/PCR 31.44 27.61 5.91439975 4.67 341,171 97,026

Results for Scenario 2

No Screening 0.00 9.94 5.91410001 1.68
questionnaire (status quo) 0.74 9.80 5.91410534 1.66 -20,423
Risk-targeted Ab/PCR 18.43 20.86 5.91425616 3.53 78,839 78,839
Universal PCR 31.34 15.50 5.91433023 2.62 -69,448 26,678
Universal Ab 33.61 16.74 5.91434660 2.83 70,529 30,159
Universal Ab/PCR 40.66 27.69 5.91439708 4.68 243,918 63,970

CER = cost-effectiveness ratio.

Table A.2: Probabilistic sensitivity analysis detailed TTB, waste, and cost values for Scenarios 1
(donor-only scenario) and 2 (donor-recipient scenario).

Testing Strategy
TTB
cases
pht

Complicated
TTB cases

pht

Waste
(number of blood
units wasted) pht

Waste index
(ratio of the number

of wasted blood
units to the

number of true
positives)

Testing
cost per

transfusion
($)

Cost of
positive test
results per
transfusion

($)

Treatment
cost

of TTB per
transfusion

($)

Results for Scenario 1

No Screening 33.13 12.25 0.00 0.00 0.00 0.00 7.69
questionnaire (status quo) 32.55 12.04 332.21 1098.71 0.00 0.03 7.56
Risk-targeted Ab/PCR 23.34 7.22 4301.32 50.88 14.65 0.71 5.42
Universal PCR 8.31 3.08 334.11 4.40 12.50 0.50 1.93
Universal Ab 6.55 2.42 6588.87 21.40 12.50 2.28 1.52
Universal Ab/PCR 1.11 0.41 6587.53 19.21 25.00 2.35 0.26

Results for Scenario 2

No Screening 42.83 17.33 0.00 0.00 0.00 0.00 9.94
questionnaire (status quo) 42.09 17.03 3332.21 1098.71 0.00 0.03 9.77
Risk-targeted Ab/PCR 23.66 7.39 4301.32 50.88 14.65 0.71 5.49
Universal PCR 10.75 4.35 334.11 4.40 12.50 0.50 2.49
Universal Ab 8.47 3.43 6588.87 21.40 12.50 2.28 1.97
Universal Ab/PCR 1.43 0.58 6587.53 19.21 25.00 2.35 0.33
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Appendix B

Appendix for Chapter 3

B.1 Summary of Notation

Table B.1: The notation.

Parameters
Ψ = {1, 2, · · · , n} Set of infections that require (or are recommended for) screening

BT Total testing budget per donation

Under Assumption (A3), i.e., fi(Bi) = e−kiBi , i ∈ Ψ:

ki Testing effectiveness parameter for infection i ∈ Ψ
S =

∑
i∈Ψ

1
ki

ci = 1/ki
S , i ∈ Ψ

Random variables and related parameters
P = (Pi)i∈Ψ Prevalence vector, with mean µ and uncertainty set (support) Ω = ([li, ui])i∈Ψ

Ωb = {p ∈ Ω : pi = li or pi = ui, ∀i ∈ Ψ}, set of boundary vectors
Ωh ⊆

{
p ∈ Ωb : dn/2e − 1 ≤

∑
i∈Ψ I(pi=ui) ≤ bn/2c+ 1

}
, set of “balanced” vectors

µ̂ Mean prevalence estimate

Z = {1, ..., |Ωb|}, index set of all vectors in Ωb

Ui ⊆ Z Index set of vectors in Ωb for which the ith component is at its upper bound, i ∈ Ψ
Decision variables

B∗X The optimal budget allocation vector, with X = E denoting the ERM optimal
solution and X = R denoting the RMM optimal solution

I∗X The optimal allocation set, with X = E denoting the ERM optimal solution and
X = R denoting the RMM optimal solution

Dual variables:
αp, p ∈ Ω, θ, δi, i ∈ Ψ Dual variables for RMM

λ, γi, i ∈ Ψ Dual variables for ERM
Ai = 1 + aui

∑
z∈Ui

αz − ali
∑

z∈Z\Ui

αz, i ∈ Ψ
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B.2 Comparative Statics Analysis

Theorem 8. As the estimated mean prevalence vector (µ̂), support multiplier vectors (al and au),

and the testing budget (BT ) vary, optimal ERM and RMM solutions change as in Table B.2.

Next, Example 1 illustrates that the ordering of ERM and RMM budget allocations does not

necessarily follow the ordering with which infections enter the corresponding allocation set as BT

increases (see Theorem 1).

Table B.2: Comparative statics results for ERM and RMM
(—: remains the same, ↗: increases, ↘: decreases).

Parameter† ERM RMM

µ̂i ↗‡
(a) THj:


—, j = 1, ..., i− 1

↘, j = i

↗, j = i+ 1, ..., n

(b) B∗Ei (µ̂):

{
↗, if i ∈ I∗E(µ̂)

— or ↗, o/w

B∗Ej (µ̂)↘, j ∈ I∗E(µ̂) \ {i}

—§

(1− ali) or
(1 + aui ) ↗ — (c) B∗Ri ↗

BT ↗ (d) B∗Ei (µ̂) :

{
↗, if i ∈ I∗E(µ̂)

— or ↗, o/w (e) B∗Ri :

{
↗, if i ∈ I∗R

— or ↗, o/w

† When all other parameter values remain the same.
‡ In a way that the ranking in (3.9) does not change.
§ As long as [li, ui] remains the same.

Example 1. Consider n = 4, with µ = (0.40%, 0.15%, 0.10%, 0.05%) (with no forecast error),

respective uncertainty sets [0.20%, 0.45%], [0.10%, 0.20%], [0.05%, 0.15%], and [0.02%, 0.20%], and

fi(Bi) = e−0.1Bi, for i = 1, 3, 4, and f2(B2) = e−0.2B2.

For ERM, from the ordering of infections according to (3.9), we have that µ1 > µ2 > µ3 >

µ4, with budget thresholds (TH1, TH2, TH3, TH4) = (0.000, 2.175, 19.575, 36.975), that is, as BT

increases, infections enter set I∗E in this order at their corresponding thresholds. Figure B.1(a)

shows that the ordering of budget allocations need not follow the ordering in (3.9). (A similar result

holds for the optimal RMM solution, see Figure B.1(b).) For example, at BT = $60, B∗E2 < B∗E3

despite the fact that infection 2 enters set I∗E before infection 3. This happens because f2(.), the

test effectiveness function for infection 2, brings in a larger marginal return at any budget allocation
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than that for the other three infections. Once the total budget reaches a certain level, infection 2

does not require as much budget.
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Figure B.1: The optimal budget allocation for (a) ERM and (b) RMM vs. BT .

B.3 Discussion on Condition (C1)

Under Assumption (A3), Condition (C1) can be equivalently expressed as:

(kipi)
S− 1

ki ≥ e−BT
∏

j∈Ψ\{i}

(kjpj)
1
kj , ∀i ∈ Ψ,∀p ∈ Ωb.

As an example, Figure B.2 depicts the p-space that satisfies Condition (C1) for n = 2 and realistic

parameter values; see Section 3.5 and Appendix B.5. (Similar results hold for n ≥ 3.)

Figure B.2: Regions that satisfy Condition (C1) (shaded) for n = 2, k = (0.2, 0.2), and BT =
15, 25, 35.
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B.4 Proofs

Recall that for p ∈ Ωb, function hi(p) is defined as:

hi(p) =


1− ali, if pi = li

1 + aui , if pi = ui

, ∀i ∈ Ψ.

Also, recall that S(I) =
∑

i∈I
1
ki

, for I ⊆ Ψ, with S denoting S(Ψ). We denote the inverse of a

function by the superscript −1.

Proof of Lemma 1: The proof trivially follows by Assumption (A1) since the function E[R (B, µ̂)] =∑
i∈Ψ

µ̂ifi(Bi) is strictly jointly convex in B. Then, the first-order KKT conditions are necessary and

sufficient for optimality and Eqn.s (3.7)-(3.8) follow. Finally, since Constraint (3.5) is tight in an

optimal solution (because fi(.) is strictly decreasing in Bi and vector B is continuous), the com-

plementary slackness condition, λ(
∑

i∈ΨBi −BT ) = 0, is redundant.

Proof of Theorem 1: For ease of notation, we write B∗E(µ̂) and I∗E(µ̂) as B∗E and I∗E ,

respectively. Consider any i ∈ I∗E and j ∈ Ψ \ I∗E . By definition, we have that B∗Ei > 0 and

B∗Ej = 0, which, along with (3.8), imply that γi = 0 and γj ≥ 0. From (3.7), we can write:

λ = γj − µ̂jf ′j(0) = −µ̂if ′i(Bi)

⇒γj = µ̂j f
′
j(0)− µ̂i f ′i(Bi) (since fj(0) = 1 by definition)

⇒µ̂i [−f ′i(Bi)] ≥ µ̂j [−f ′j(0)] (since γj ≥ 0)

⇒µ̂i [−f ′i(0)] ≥ µ̂j [−f ′j(0)] (since fi(.) is strictly decreasing).

We can therefore deduce that the ranking in (3.9) implies that infections enter set I∗E in this order.

By definition, TH i is the total budget level, BT , at which infection i enters set I∗E . In other

words, for BT ≤ TH i, B∗Ei = 0; and for BT > TH i, B∗Ei > 0. Obviously TH1 = 0 because

Constraint (3.5) is tight in an optimal solution and therefore for any BT < TH2, we must have∑
i∈I∗E B

∗E
i = B∗E1 = BT . The expressions for all other thresholds, TH i, i = 2, · · · , n, directly

follow from the first-order KKT conditions in Eqn.s (3.7)-(3.8) at BT = TH i. Note that the
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solution to µ̂j f
′
j(B̃

i
j) = µ̂i f

′
i(0) is unique since f ′j(.) is strictly increasing.

To prove the optimality condition in (3.11), consider any i, j ∈ I∗E , i 6= j. Since, by definition,

B∗Ei > 0 and B∗Ej > 0, the complementary slackness conditions in (3.8) imply that γi = 0 and

γj = 0, and the result follows from (3.7).

The Optimal ERM Solution and Threshold Values: For exponential test-effectiveness func-

tions of the form fi(Bi) = e−kiBi , ki > 0, Bi ≥ 0, i ∈ Ψ, from Eq. (3.11), we have:

B∗Ei (µ̂) =
1

kiS(I∗E(µ̂))
BT +

1

ki

ln(kiµ̂i)− ln

 ∏
j∈I∗E(µ̂)

(kjµ̂j)
1

kjS(I∗E(µ̂) )

 , ∀i ∈ I∗E(µ̂) (B.1)

TH i = ln

 ∏
j∈I∗E(µ̂)

(kjµ̂j)
1
kj

− S(I∗E(µ̂)) ln(kiµ̂i), for i = 2, ..., n. (B.2)

Similarly, the optimal solution (B∗(p)) and threshold values for the deterministic Risk minimiza-

tion problem with a given p can be derived by replacing µ̂ with p in Eqn.s (B.1) and (B.2).

Proof of Theorem 2: We have:

min
B∈F

max
p∈Ω

{
Regret(B,p)

}
= min
B∈F

max
p∈Ω

{
R(B,p)− min

Z∈F
R(Z,p)

}
= min
B∈F

max
p∈Ω

max
Z∈F

{
R(B,p)−R(Z,p)

}
= min
B∈F

max
Z∈F

max
p∈Ω
{R(B,p)−R(Z,p)} = min

B∈F
max
Z∈F

max
p∈Ω

{∑
i∈Ψ

pifi(Bi)−
∑
i∈Ψ

pifi(Zi)

}

= min
B∈F

max
Z∈F

max
p∈Ω

{∑
i∈Ψ

pi

(
fi(Bi)− fi(Zi)

)}

Let p∗ ≡ argmaxp∈Ω

{∑
i∈Ψ pi

(
fi(Bi)− fi(Zi)

)}
. By noting that the maximization is of a linear

function in p, we have:

p∗i =


ui, if fi(Bi) ≥ fi(Zi)

li, if fi(Bi) < fi(Zi)

, i ∈ Ψ.

Therefore, we have:

max
p∈Ω

{∑
i∈Ψ

pi
(
fi(Bi)− fi(Zi)

)}
= max
p∈Ωb

{∑
i∈Ψ

pi
(
fi(Bi)− fi(Zi)

)}
.
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The following result will be used in the proof of Lemma 2.

Lemma 11. For any p ∈ Ω, Regret(B,p) is strictly jointly convex in B.

Proof: By definition, Regret(B,p) =
∑

i∈Ψ pifi(Bi) − R(B∗(p),p). By Assumption (A1), the

first term is strictly jointly convex in B, and the second term is a constant, and the result follows.

Proof of Lemma 2: RMM minimizes a linear objective function over a convex set (see Lemma

11). Hence, the first-order KKT conditions are necessary and sufficient for optimality. Finally, since

Constraint (3.5) is tight in an optimal solution (because fi(.) is strictly decreasing in Bi and vec-

tor B is continuous), the complementary slackness condition, θ(
∑

i∈ΨBi−BT ) = 0, is redundant.

The next result allows us to characterize how Regret functions, and hence the maximum Regret

value, shift as parameters µ and BT are perturbed, greatly facilitating sensitivity analyses.

Theorem 9. Consider a family of problem instances. When BT and µ are perturbed to some B
′T

and µ′, the following holds:

Regret
(
B∗R(µ′, B

′T ),p′
)

Regret
(
B∗R(µ, BT ),p

) = e

(
BT−B

′T
S

)∏
i∈Ψ

(
µ′i
µi

) 1
kiS

, ∀p ∈ Ωb,

where for each p ∈ Ωb, the corresponding p′ ∈ Ω
′b is constructed such that if pi = µi(1 + aui ), then

p′i = µ′i(1 + aui ), and if pi = µi(1− ali), then p′i = µ′i(1− ali), ∀i ∈ Ψ.

Proofs of Lemma 3, Theorem 3, and Theorem 9: Assume that B∗R (> 0) denotes the

optimal solution to RMM for a problem instance with some µ and BT . In what follows, we

perturb µ and BT, and construct a new RMM solution in which A remains the same. We first

prove Theorems 3 and 9 under the assumption that the constructed solution is optimal for RMM,

and then show that this new solution satisfies the first-order KKT conditions with the perturbed

(µ, BT ) values, and hence, must indeed be the optimal solution under the perturbed (µ, BT ) values.

Assume that A does not change when µ and BT are perturbed, that is, A is not a function of

µ and BT . We first show that this assumption implies that ∆∗b is independent of µ and BT . By
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Lemma 2, we can write:

µiAif
′
i(B

∗R
i ) = −µikiAie−kiB

∗R
i = −µikiAie−kiB

∗E
i (µ)e−ki∆

∗
bi = −θ, ∀i ∈ Ψ. (B.3)

Note that by Condition (C1), I∗E(µ) = Ψ. Therefore, by Theorem 1, it follows that µikie
−kiB∗Ei (µ) =

µjkje
−kjB∗Ej (µ),∀i, j ∈ Ψ. Hence, from (B.3), we can write:

Aie
−ki∆∗bi = Aje

−kj∆∗bj , ∀i, j ∈ Ψ. (B.4)

Note that (B.4) implies that ∆∗b is the optimal solution to (3.18). Since A is independent of µ and

BT , it follows that ∆∗b is also independent of µ and BT . Then Theorem 3 holds.

Next, we show that under the assumption that A is independent of µ and BT , Theorem 9 holds.

Consider two problem instances with parameters (µ, BT ) and (µ′, B
′T ), and respectively denote

their optimal solutions to ERM (RMM) as B∗E(µ) (B∗R) and B∗E(µ′) (B∗
′R). From (B.1),

we have:

B∗Ei (µ′) = B∗Ei (µ) +
1

ki

ln

(
µi
µ′i

)
− ln

∏
j∈Ψ

(
µ′j
µj

) 1
Skj

+
1

Ski
(B
′T −BT ), ∀i ∈ Ψ. (B.5)

Then, by definition of ∆∗b , we have:

B∗
′R
i = B∗Ei (µ′)+∆∗bi = B∗Ei (µ)+

1

ki

ln

(
µi
µ′i

)
− ln

∏
j∈Ψ

(
µ′j
µj

) 1
Skj

+
1

Ski
(B
′T−BT )+∆∗bi, ∀i ∈ Ψ.

(B.6)

Then, for a given p ∈ Ωb:

Regret(µ′, B
′T ) =

∑
i∈Ψ

µ′i(hi(p))e−kiB
∗′R
i −

∑
i∈Ψ

µ′i(hi(p))e−kiB
∗
i (p)

=
∑
i∈Ψ

µ′i(hi(p))e−kiB
∗E
i (µ′)e−ki∆

∗
bi −

∑
i∈Ψ

µ′i(hi(p))e−kiB
∗
i (p)

=

(∑
i∈Ψ

µi(hi(p))e−kiB
∗E
i (µ)e−ki∆

∗
bi −

∑
i∈Ψ

µi(hi(p))e−kiB
∗
i (p)

)
e

(
BT−B

′T
S

)∏
i∈Ψ

(
µ′i
µi

) 1
kiS

= Regret(µ, BT )e

(
BT−B

′T
S

)∏
i∈Ψ

(
µ′i
µi

) 1
kiS

,

which proves Theorem 9.
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To complete the proof, it suffices to show that the constructed solution satisfies the first-order

KKT conditions in (3.13)-(3.16). Note that all Regret functions are scaled by the same factor when

the parameters change from (µ, BT ) to (µ′, B
′T ). This implies that as (µ, BT ) varies, the binding

Regret functions will remain the same. Therefore, under the assumption that A does not change as

BT and µ change, αz, z ∈ Z, remains constant, implying that Lemma 3 holds. This also implies

that the complementary slackness conditions in (3.14) are satisfied. Finally note that by chang-

ing µ and BT and keeping A the same, we have found a solution B∗
′R
i = B∗Ei (µ′) + ∆∗bi, with

∆∗bi = BR
i −BE

i (µ), that satisfies (3.13) in the first-order KKT conditions, and hence, this solution

must be optimal for RMM under (µ′, B
′T ). This completes the proof.

Proof of Theorem 4: We first derive the price of robustness ratio, ΠR:

ΠR =
E
[
R
(
B∗R,µ

)]
E
[
R
(
B∗E(µ),µ

)]
=

∑
i∈Ψ µie

−kiB∗Ri∑
i∈Ψ µie

−kiB∗Ei
=

∑
i∈Ψ µie

−kiB∗Ei e−ki∆
∗
bi∑

i∈Ψ µie
−kiB∗Ei

(by Theorem 3)

=

∑
i∈Ψ

1
ki
kiµie

−kiB∗Ei e−ki∆
∗
bi∑

i∈Ψ
1
ki
kiµie

−kiB∗Ei
=
k1µ1e

−k1B∗E1
∑

i∈Ψ
1
ki
e−ki∆

∗
bi

k1µ1e−k1B∗E1
∑

i∈Ψ
1
ki

(by Theorem 1)

=

∑
i∈Ψ

1
ki
e−ki∆

∗
bi

S
. (B.7)

Since ∆∗b is a solution to (3.18), we can write (using (B.1)):

∆∗bi =
1

ki

ln(Ai)− ln

∏
j∈Ψ

A
cj
j

 , i ∈ Ψ, (B.8)

and substituting (B.8) into (B.7), we obtain:

ΠR =

∑
i∈Ψ ci/Ai∏

i∈Ψ (1/Ai)
ci .

101



Next, we derive the price of expectation-based optimization ratio, ΠE(µ̂):

ΠE(µ̂) =
E
[
R
(
B∗E(µ̂),µ

)]
E
[
R
(
B∗E(µ),µ

)] =

∑
i∈Ψ µie

−kiB∗Ei (µ̂)∑
i∈Ψ µie

−kiB∗Ei (µ)

=

∑
i∈Ψ µi

∏
j∈Ψ(kj µ̂j)cj

kiµ̂i∑
i∈Ψ µi

∏
j∈Ψ(kjµj)cj

kiµi

=

∑
i∈Ψ

(µi/µ̂i)
ki∏

i∈Ψ (µi/µ̂i)
ci
∑

i∈Ψ
1
ki

=

∑
i∈Ψ ci (µi/µ̂i)∏
i∈Ψ (µi/µ̂i)

ci (by (B.1)).

Finally, we derive the lower bound, RL, on the ERM Regret deviation, R:

R = max
p∈Ω

Regret
(
B∗E(µ),p

)
Regret

(
B∗R,p

)
= max
p∈Ω

∑
i∈Ψ pie

−kiB∗Ei −
∑

i∈Ψ pie
−kiB∗i (p)∑

i∈Ψ pie
−kiB∗Ei e−ki∆

∗
bi −

∑
i∈Ψ pie

−kiB∗i (p)
(by Theorem 3)

= max
p∈Ω

e−
BT

S
∑

i∈Ψ
pi
kiµi
×
∏
i∈Ψ (kiµi)

1
kiS − e−

BT

S S ×
∏
i∈Ψ (kipi)

1
kiS

e−
BT

S
∑

i∈Ψ
pi
kiµi

e−ki∆
∗
bi ×

∏
i∈Ψ (kiµi)

1
kiS − e−

BT

S S ×
∏
i∈Ψ (kipi)

1
kiS

(by Eq. (B.2))

≥ max
p∈Ωb

∑
i∈Ψ

pi
kiµi
×
∏
i∈Ψ (kiµi)

1
kiS − S ×

∏
i∈Ψ (kipi)

1
kiS∑

i∈Ψ
pi
kiµi

e−ki∆
∗
bi ×

∏
i∈Ψ (kiµi)

1
kiS − S ×

∏
i∈Ψ (kipi)

1
kiS

(since Ωb ⊆ Ω)

= max
p∈Ωb

∑
i∈Ψ

pi/µi
ki
− S

∏
i∈Ψ (pi/µi)

1
kiS∑

i∈Ψ
pi/µi
ki

e−ki∆
∗
bi − S

∏
i∈Ψ (pi/µi)

1
kiS

= max
p∈Ωb

∑
i∈Ψ

hi(p)
ki
− S

∏
i∈Ψ (hi(p))

1
kiS∑

i∈Ψ
hi(p)
ki

e−ki∆
∗
bi − S

∏
i∈Ψ (hi(p))

1
kiS

(since pi/µi = hi(p), ∀p ∈ Ωb).

Proof of Lemma 4: We have ln ΠE(µ̂) = ln
(∑

i∈Ψ ciqi
)
−
∑

i∈Ψ ci ln qi, where qi ≡ µi/µ̂i. Using

the change of variable qi = eyi , we get ln ΠE(µ̂) = ln
(∑

i∈Ψ cie
yi
)
−
∑

i∈Ψ ciyi. Hence ln ΠE(µ̂) is

the sum of the weighted log-sum-exp function [29] and a linear function, and hence is jointly convex

in yi = ln (µi/µ̂i), i ∈ Ψ. Since the ln(.) function is strictly increasing, ΠE(µ̂) is maximized on the

boundary, i.e., when µ̂i = µi(1 + ri) or µ̂i = µi(1− ri), which completes the proof.

Proof of Corollary 2: From (B.1), Regret incurred by the optimal ERM solution, B∗E(µ), at

prevalence vector p ∈ Ωb can be written as:

Regret(B∗E(µ),p) =
∑
i∈Ψ

µi(hi(p))e−B
T /n

n
√
µ1...µn

µi
− ne−BT /n n

√
µ1(hi(p))...µn(hn(p). (B.9)

Denote by x the number of infections whose prevalence realizations are at their upper bounds (i.e.,
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pi = ui). Then, (B.9) can be rewritten as follows:

Regret(B∗E(µ),p) = Regret(x) = e−B
T /n n
√
µ1...µn

(
n+ a(2x− n)−

(
1 + a

1− a

)x/n
(1− a)

)
.

(B.10)

Clearly, (B.10) is strictly concave in x with a maximizer:

xmax =
n

ln
(

1+a
1−a

) ln

 2an

(1− a) ln
(

1+a
1−a

)
 . (B.11)

Note also the following:

1. Prevalence vectors with the same value of x exhibit the same value of Regret, and

2. The value of x that maximizes Regret is independent of the mean prevalence vector µ.

Hence, Regret(x) is maximized at either bxmaxc or dxmaxe. Denote by X ⊂ Z the index set of

prevalence vectors (scenarios) that maximize Regret (i.e., that have x = bxmaxc or x = dxmaxe).

For B∗E(µ) to be the optimal solution for RMM, there must exist a set of KKT multipliers αz,

z ∈ Z, and γi, i ∈ Ψ, that, along with B∗E(µ), satisfy the first-order KKT conditions in Lemma 2.

Since Regret is maximized for all scenarios in X , setting αz = 0, ∀z /∈ X , satisfies the the first-order

KKT condition in (3.14). Also, under Condition (C1), KKT condition in (3.15) will hold by setting

γi = 0, ∀i ∈ Ψ. Note that by (3.11), we have µ̂1f
′
1(B∗E1 ) = ... = µ̂nf

′
n(B∗En ). Therefore, from the

first-order KKT condition in (3.13), we need:

a

 ∑
z∈Ui∩X

αz −
∑

z∈(Z\Ui)∩X

αz

 = a

 ∑
z∈Uj∩X

αz −
∑

z∈(Z\Uj)∩X

αz

 , ∀i, j ∈ Ψ. (B.12)

Note that by symmetry, for all scenarios in X , each infection is at its upper bound in an equal

number of scenarios. Hence |Ui∩X | = |Uj ∩X |, ∀i, j ∈ Ψ. Similarly, |(Z \Ui)∩X | = |(Z \Uj)∩X |,

∀i, j ∈ Ψ. Therefore, αz1 = αz2 , ∀z1, z2 ∈ X is a solution to (B.12), which implies that B∗E(µ)

satisfies the first-order KKT conditions in Lemma 2 and must be optimal for RMM.

Proof of Theorem 5: We can write:

Regret(B∗R,µ) ≤ max
p∈Ωb

{
Regret(B∗R,p)

}
≤ max
p∈Ωb

{
Regret(B,p)

}
, ∀B ∈ F ,

where the upper bound follows by the optimality of B∗R for RMM, and the lower bound follows
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by Theorem 2, as µ ∈ Ω \Ωb. Hence, we can write:

R(B∗R,µ)−R(B∗E(µ),µ) ≤ max
p∈Ωb

{
R(B,p)−R(B∗(p),p)

}
, ∀B ∈ F . (B.13)

By dividing both sides of (B.13) by R(B∗E(µ),µ) and rearranging the terms, the proof follows.

Proof of Theorem 8:

Part (a): For j = 1, ..., i−1, the expression for THj does not depend on the parameters of infection

i. Then, if µ̂i changes in such a way that the ranking of infections (according to (3.9)) is preserved,

then THj , j = 1, ..., i − 1, does not change. On the other hand, we have that TH i =
∑i−1

j=1 B̃
i
j ,

where B̃i
j is the solution to:

µ̂j f
′
j(B̃

i
j) = µ̂i f

′
i(0). (B.14)

(Note that Eq. (B.14) has a unique solution since f ′j(.) is strictly increasing.) Notice that when µ̂i

increases, the RHS of (B.14) decreases since f ′i(0) < 0. Now assume that B̃i
j increases, which implies

that f ′j(B̃
i
j) increases. Since f ′j(B̃

i
j) < 0, the LHS of (B.14) increases, which is a contradiction.

Hence we conclude that B̃i
j decreases as µ̂i increases. This implies that TH i =

∑i−1
j=1 B̃

i
j decreases

as µ̂i increases. For j /∈ I∗E , we can write:

THj =
i−1∑
k=1

B̃j
k + B̃j

i +

j−1∑
k=i+1

B̃j
k, (B.15)

where B̃j
i is the solution to:

µ̂i f
′
i(B̃

j
i ) = µ̂j f

′
j(0). (B.16)

Notice that the RHS of (B.16) does not depend on µ̂i. Therefore, as µ̂i increases, B̃j
i must vary in a

way that the LHS of (B.16) remains constant. Since If B̃j
i decreases, then f ′i(B̃

j
i ) decreases, which

implies that the LHS of (B.16) decreases since f ′i(B̃
j
i ) < 0, which is a contradiction. Therefore,

we conclude that B̃j
i must increase as µ̂i increases and hence, from (B.15), THj increases as µ̂i

increases.

Part (b): For ease of notation, we write B∗E(µ̂) and I∗E(µ̂) as B∗E and I∗E , respectively.

If i /∈ I∗E , then B∗Ei = 0 and the result trivially holds. Next consider the case where i ∈ I∗E . As

proven in part (a), if µ̂i increases, then TH i decreases, which implies that i remains in set I∗E as
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µ̂i increases. From the first-order KKT conditions in (3.7), we can write λ = µ̂i(−f ′i(B∗Ei )). To

simplify the notation, we let Li ≡ µ̂ifi(B
∗E
i ), ∀i ∈ I∗E . Thus, we can write λ = Li(−f ′i(B∗Ei )),

∀i ∈ I∗E . We first prove, by contradiction, that B∗Ei increases in µ̂i. Assume, to the contrary,

that B∗Ei decreases as µ̂i increases. This implies that Li and −f ′i(B∗Ei ) both increase, which in

turn imply that λ increases. Assume that B∗Ej , j ∈ I∗E \ {i}, increases. Hence Lj and −f ′j(B∗Ej )

both decrease, which imply that λ decreases, which is a contradiction. Hence B∗Ej decreases, and

since BT =
∑

k∈I∗E
B∗Ek is a constant, B∗Ej cannot decrease. We therefore conclude that B∗Ei must

increase. Next, we will prove that as µ̂i increases, λ increases. Assume, to the contrary, that λ

decreases. If B∗Ej , j ∈ I∗E \ {i}, decreases, then Lj and −f ′j(B∗Ej ) both decrease, which imply that

λ increases. This contradicts with the assumption that λ is decreasing. Hence, B∗Ej must increase.

Since BT =
∑

k∈I∗E
B∗Ek is a constant, this is a contradiction and λ must increase with µ̂i. Finally,

using a similar argument, we can show that if λ increases, then B∗Ej , ∀j ∈ I∗E \ {i}, decreases.

This completes the proof.

Part (c): By definition, Regret(B,p) =
∑

i∈Ψ pifi(Bi) −
∑

i∈Ψ pifi(B
∗
i (p)), for p ∈ Ωb. As-

sume that for some i ∈ Ψ, pi increases to p′i = pi + ε, for some ε > 0, while pj , j 6= i, remain

the same. Let p′ represent the new prevalence vector. Assume that Regret at p is binding, i.e.,

Regretmax∗ = Regret(B∗R,p). Also assume that Regret(B∗R,p) increases as p changes to p′,

i.e., Regret(B∗R,p) < Regret(B∗R,p′) (the case where Regret(B∗R,p) ≥ Regret(B∗R,p′) is not

of interest since it implies that p′ is not binding). Hence, we can write:

Regret(B∗R,p′)−Regret(B∗R,p) = fi(B
∗R
i )(p′i − pi)−

∑
j∈Ψ\{i}

pj
[
fj
(
B∗j (p′)

)
− fj

(
B∗j (p)

)]
> 0.

(B.17)

Note that the summation term in (B.17) does not depend on B∗R. Also, since B∗R is no longer

optimal for the new problem with p′, it needs to change in a way to decrease the LHS in (B.17).

Noting that p′i − pi > 0 and fi(.) is strictly decreasing, B
′∗R, the optimal solution for the problem

with p′ satisfies B∗
′R
i ≥ B∗Ri . This completes the proof.

Part (d): For ease of notation, we write B∗E(µ̂) and I∗E(µ̂) as B∗E and I∗E , respectively.

First assume that BT increases in such a way that set I∗E does not change, that is, the increase in

BT does not change the threshold interval it belongs to (see Theorem 1). Since for i ∈ I∗E , γi = 0,
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from (3.7) with w = 0, we can write:

B∗Ei = f
′−1
i

(
− λ
µ̂i

)
, i ∈ I∗E . (B.18)

Since
∑

i∈I∗E B
∗E
i = BT in an optimal solution, we have:

∑
i∈I∗E

f
′−1
i

(
− λ
µ̂i

)
= BT . (B.19)

Note that since fi(.) is strictly decreasing and convex, f ′i(.) is strictly increasing, which also implies

that f
′−1
i (.) is strictly increasing. In what follows, we will first prove that λ is decreasing in BT .

Assume, to the contrary, that λ increases as BT increases. Then
(
− λ
µ̂i

)
decreases, which in turn

implies that f
′−1
i

(
− λ
µ̂i

)
decreases, ∀i ∈ I∗E . Hence, the LHS of (B.19) decreases, which is a

contradiction. Therefore λ must decrease in BT . Then, from (B.18), it follows that B∗Ei increases,

∀i ∈ I∗E , when BT increases in such a way that set I∗E does not change.

Next assume that BT increases in such a way that a new infection, say infection k, enters

set I∗E . Hence, it is sufficient to show that B∗Ei is continuous in BT at the threshold points,

THj , j = 2, 3, · · · , n, that is, at points where set I∗E is incremented by one new infection. Consider,

without loss of generality, that BT = THk and define THk− ≡ lim
ε→0

(
THk − ε

)
. To simplify the

notation, let B∗Ei (THk−) = B∗−i and B∗Ei (THk) = B∗i , and similarly, let λ(THk−) = λ− and

λ(THk) = λ, that is, from (B.18), we have that f
′−1
i

(
−λ−

µ̂i

)
= B∗−i and f

′−1
i

(
− λ
µ̂i

)
= B∗i , where

f
′−1
i

(
− λ
µ̂i

)
is continuous and strictly decreasing in λ. Define function gk−1(λ) ≡

∑k−1
j=1 f

′−1
j

(
− λ
µ̂j

)
.

Clearly g(.) is continuous and strictly decreasing in λ. By definition of a threshold, we have that

B∗k(THk) = B∗k(THk−) = 0. Hence, we can write:

gk−1(λ−) =
k−1∑
j=1

f
′−1
j

(
−λ
−

µ̂j

)
= THk− (B.20)

gk−1(λ) =
k−1∑
j=1

f
′−1
j

(
− λ

µ̂j

)
= THk. (B.21)

Hence, from the monotonicity and continuity of g(.), we have that λ− = λ. Hence, we deduce that

B∗−i = B∗i , and consequently B∗i is continuous in BT . Therefore, we conclude that B∗Ei is strictly

increasing in BT , ∀i ∈ I∗E , and is non-decreasing in BT , ∀i ∈ Ψ \ I∗E .
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Part (e): This result trivially follows from Theorems 3 and 8 part (d), which imply that for

any i ∈ Ψ, B∗Ri = B∗Ei (µ)+∆∗bi, where ∆∗bi is independent of BT , and B∗Ei (µ) is increasing in BT .

B.5 Prevalence Data and Fitting of Test Effectiveness Functions

B.5.1 Prevalence Data

All prevalence estimates are specifically for the United States. [106] and [38] respectively estimate

HIV and HBV prevalence based on data for the United States in 2012, provided by the Center for

Disease Control and Prevention. Sample size information has not been provided. [10] estimates

HCV prevalence as 1.6% (95% CI, 1.3% to 1.9%), based on a sample size of 17,548 from 1999 to

2002. [84] estimates the babesiosis prevalence using data from an ongoing investigational study by

the American Red Cross in four endemic states (CT, WI, MN, MA) using a sample size of 83,330

from 2012 to 2015. Finally, [33] and [100] estimate the WNV prevalence based on a sample size of

5,370,499 from 2002 to 2004.

B.5.2 Fitting Test Effectiveness Functions

Let Ωi denote the set of all FDA-licensed tests for infection i, i ∈ Ψ. For each test-set St ⊆ Ωi, let

C(St) denote the unit cost of administering all tests in set St. Let T i−(St) denote the event that

the blood unit is classified as free of infection i when test-set St is administered. Decision variables

for infection i’s problem include Propit, t = 1, ..., 2|Ω
i|, the proportion of blood units screened by

test-set St, ∀St ⊆ Ωi, i ∈ Ψ.

For each infection i, i ∈ Ψ, we vary Bi, its possible budget allocation, within the range [0− 19]

($19 corresponds to the cost of the most sensitive paired test), in step sizes of 0.5, and solve the

following LP to determine fi(Bi), i ∈ Ψ:

107



fi(Bi) = minimize
(Propit)t=1,...,2|Ωi|

∑
St⊆Ωi

Pr(T i−(Bi)|Ai+) Propit

subject to
∑
St⊆Ωi

Propit C(St) ≤ Bi (B.22)

∑
St⊆Ωi

Propit = 1 (B.23)

Propit ≥ 0, t = 1, ..., 2|Ω
i|. (B.24)

Thus, function fi(Bi), ∀Bi ≥ 0, i ∈ Ψ, is derived considering non-universal testing schemes (i.e.,

fractional values of Propti variables are allowed). Observe that an optimal non-universal testing

scheme uses all the allocated budget, Bi, for all Bi ≥ 0, i ∈ Ψ. From LP theory, as Bi, the RHS of

Constraint (B.22), increases, the objective function value, fi(Bi), decreases in a piece-wise convex

manner (e.g., [15], p. 273-275).

For each infection i ∈ Ψ, given the values of the function fi(Bi), ∀Bi ∈ [0 − 19], i ∈ Ψ, we fit

an exponential function of the form fi(Bi) = e−kiBi , where parameter ki is the value that provides

the best fit, i.e., the minimum coefficient of determination (R2
i ).

1 Table B.3 reports the values of ki

and R2
i for each infection i considered in Section 3.5. As an example, Figure B.3 depicts the curve

fitted for HBV.

1 R2 = 1−
∑

k(Yk−Fk)2∑
k(Yk−Y )2

, where Yk are the actual test data points, Fk are the fitted curve data points, and Y is the

mean of Yk; see [35], p. 556.
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Figure B.3: Fitted exponential test effectiveness
function (ki = 0.16) vs. the actual test data for
HBV.

Table B.3: Fitted parameters, ki, and coefficients
of determination (R2

i ), for fi(Bi) = e−kiBi for
HIV, HBV, HCV, babesiosis, and WNV.

Infection (i) ki R2
i

HIV 0.28 99%
HBV 0.16 99%
HCV 0.14 95%
Babesiosis 0.38 97%
WNV 0.185 94%
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Appendix C

Appendix for Chapter 4

Proof of Lemma 10: First, we show that any vector S that satisfies {aTS ≥ B and S ≤ Smax}

also satisfies the budget constraint, {C(S) ≤ B}. We first write S as a convex combination of V i,

i ∈ Ψ, and Smax as follows: S =
∑n

i=1 αiV i +αn+1S
max, with

∑n+1
i=1 αi = 1. By convexity of C(.),

and by noting that C (V i) = B, i ∈ Ψ, we get:

C(S) = C

(
n∑
i=1

αiV i + αn+1S
max

)
≤

n∑
i=1

αiC (V i) + αn+1C (Smax) ≤
n+1∑
i=1

αiB = B.

In order to prove the validity of (Cut), given by aTS ≤ B +
√
n ||a||2, it is sufficient to show that

for every integer vector S that lies on the boundary of (Cut), i.e., aTS = B+
√
n||a||2, there exists

an integer vector S′ that satisfies {aTS′ ≥ B}, with S′ = S − ei for some i ∈ Ψ, where ei denotes

the ith unit vector in Rn. In other words, S′ “dominates” S since: (1) S′ is feasible (it satisfies

aTS′ ≥ B, hence C (S′) ≤ B), and (2) S′ incurs less Residual Risk, since Sj = S′j , j 6= i, and

S′i < Si, for some i ∈ Ψ. We prove this by contradiction. Assume that aTS′ < B, ∀i ∈ Ψ. Hence:

aT (S − ei) < B, ∀i ∈ Ψ ⇔ aTS − aT ei < B, ∀i ∈ Ψ

⇔B +
√
n||a||2 − aT ei < B, ∀i ∈ Ψ ⇔

√
n||a||2 < aT ei, ∀i ∈ Ψ

⇔n < a2
i

||a||22
∀i ∈ Ψ ⇔

n∑
i=1

n <
n∑
i=1

a2
i

||a||22
⇔ n2 < 1,

which is a contradiction. Hence (Cut) is valid.
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