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Improved Reduced Order Modeling Strategies for
Coupled and Parametric Systems

Daniel J. Sutton

(ABSTRACT)

This thesis uses Proper Orthogonal Decomposition to model paramet-
ric and coupled systems. First, Proper Orthogonal Decomposition and its
properties are introduced as well as how to numerically compute the decom-
position. Next, a test case was used to show how well POD can be used to
simulate and control a system. Finally, techniques for modeling a parametric
system over a given range and a coupled system split into subdomains were
explored, as well as numerical results.



Dedication

for Diddy

il



Contents

1 Introduction 1
2 Background 3
2.1 Motivation of Reduced Order Modeling . . . . . .. .. .. .. 3
2.2 Motivation of Coupled Systems . . . . .. ... .. ... ... 4
2.3 Introduction to POD . . . . . ... ... ... .. ... ... . 5
2.4 Computation of the Proper Orthogonal Decomposition . . .. 9

3 Demonstration of the Usefulness of POD: A Control Appli-
cation 12
3.1 Problem Description . . . . . ... .. ... .. 12
3.2 Control Law Design . . . . . . . .. .. ... ... ... ... 14
3.3 Snapshot Generation and Pod Modes . . . . .. .. ... ... 16
3.4 Open Loop Testing . . . . ... .. ... ... ... .. .... 17
3.5 Closed Loop Tracking . . . . . ... .. ... ... ... .... 19
4 Numerical Results 29
4.1 Partial Differential Equations with Parameters . . . . . . . .. 29
4.1.1 The One Dimensional Heat Equation . . . . . . . . .. 30

4.1.2 The One Dimensional Heat Equation with a Gradient

Term . . . . . . 35
4.2 Approximation by Subdomains . . . ... ... ... ... 37
5 Conclusions and Future Work 45

v



List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9

3.10

3.11
3.12

4.1

4.2
4.3

4.4

4.5

4.6

First eight POD modes for the sinusoidal snapshots . . . . . . 17
Steady-state (initial condition) for the full order solution . . . 18
Initial condition for the sinusoidal snapshots . . . . . . . . .. 19
Full order response to a sinusoidal input . . . .. ... .. .. 20
Reduced order response to a sinusoidal input for the sinusoidal

snapshots . . . . . . ..o 21
POD mode and projected coefficients as a function of time for

the sinusoidal snapshots . . . . . . . .. ... ... ... ... 22
Full order and reduced order controls as a function of time for

the sinusoidal snapshots . . . . . . .. . ... ... ... ... 23
Full order reference function . . . . . . . ... ... ... ... 24
Metric of how close the full order model is to the reference

function for a range of input values . . . . . .. ... .. ... 25
Reduced order tracking solution for the sinusoidal snapshots . 26
Full order tracking solution for the sinusoidal snapshots . . . . 27
Full order and reduced order controls for the tracking problem

with the sinusoidal snapshots . . . . . .. ... ... ... .. 28

Maximum error of the Midpoint rule and Gaussian Quadrature
PODmodels . . . . . . . . . .. . . 31
First POD modes for different values of epsilon . . . . . . .. 32
Maximum error of the five point Midpoint rule, Midpoint rule
with Gaussian spacing, and Gaussian Quadrature POD models 33
Maximum error of the Midpoint rule with Gaussian spacing
and double integral Gaussian Quadrature POD models . . . . 34
Maximum error of the double integral Gaussian Quadrature,
singular rule, and double integral mixed singular/Gaussian
Quadrature POD models . . . . . . .. ... ... ... .... 35
First POD modes for different values of epsilon . . . . . . .. 37



4.7 Maximum error of the Midpoint rule and Gaussian Quadrature
PODmodels . . . . . . . . . .. .. 38
4.8 Maximum error of the five point Midpoint rule, Midpoint rule
with Gaussian spacing, and Gaussian Quadrature POD models 39
4.9 Maximum error of the Midpoint rule with Gaussian spacing,
Gaussian Quadrature, and double integral Gaussian Quadra-
ture POD models . . . . .. .. .. ... ... .. ... ... 40
4.10 Maximum error of the double integral Gaussian Quadrature,
singular rule, and double integral mixed singular/Gaussian
Quadrature POD models . . . . . . .. ... ... ... .... 41
4.11 Illustration of the chosen domain decomposition . . . . . . . . 42

vi



List of Tables

4.1 The maximum error in the reduced order model for the heat
equation using different forcing functions . . . . . . . .. . ..

4.2 The maximum error in the reduced order model for the wave
equation using different forcing functions . . . . . . . .. . ..

vil



Chapter 1

Introduction

Reduced order models have a number of practical uses including building
feedback control laws for complex systems and fast predictions. A popular ap-
proach is to use the Proper Orthogonal Decomposition (POD) [9], also known
as the Karhunen-Loeve Expansion [18]. This decomposition has a number
of different origins due to its independent formulation in diverse fields, such
as statistics (Karhunen-Loeve Expansion)[18, 21], controls (Principle Com-
ponent Analysis)[24], fluids (Proper Orthogonal Decomposition)[23, 27], and
weather forecasting (Empirical Eigenfunctions)[22]. These approaches have
seen a wide range of applications including the design of feedback control
systems [2, 3, 7, 8, 15, 19, 25], dynamic compensators [6, 11], optimal design
[16, 17], and identification of fundamental mechanisms in physical phenom-
ena (e.g., Langmuir circulations on the ocean surface [20]). Using a few basis
vectors from this decomposition, one can construct very good low dimen-
sional dynamical systems (usually by Galerkin projection) to model complex
phenomena such as flow transition [2], turbulence [9, 27], and large circuit
simulations [4].

This decomposition is derived from a set of simulation data. The quality
of the resulting reduced order model depends on how well this data can
represent the dynamics. Strategies for producing good data (known as an
“input collection”) are needed. Currently, this is an “art” guided by physical
intuition and in the control setting, by a closed-loop response [7]. Methods
which have been tried either for parametric systems or in more specific but
generalizable situations involved an approach to pick the best parameters
from an already given larger set [5], discretizing the parameter range and
weighting the parameters [26], creating a larger parameter set from a smaller



Daniel Sutton Chapter 1. Introduction 2

one by interpolation [10], and picking your parameters randomly from the
range and then using some kind of convergence scheme to know when you
have enough snapshots. In this monograph we study a systematic approach
to guide the generation of a suitable input collection for parametric systems
based on numerically approximating an integral.

In many cases, it is desirable to produce a reduced order model for a
coupled system. These systems, such as aero-elasticity or combustion, are
modeled using two (or more) separate systems where outputs of either system
are inputs to the other. In some cases, reduced order models may be avail-
able for the subsystems, or software may only be available for the individual
certain classes of coupled systems. These are systems where the coupling
occurs through a spatial boundary. This covers the case of domain decom-
position and may lead to algorithms which have good parallel efficiency. To
our knowledge POD has not been tried on subsystems which are then cou-
pled together with the desire of having the POD modes accurately predict
the entire system, and without ever having simulation data from the entire
system, which is done in this monograph.

This work contributes to the scientific community by demonstrating that
POD can be used equally well on systems which are dependent on parameters
without drastically increasing the number of necessary POD modes. Also
it shows that POD can be used on coupled systems to produce a model
for the entire system without every having to simulate the computationally
expensive entire system.

The remainder of this thesis is organized as follows. In Chapter 2, we
give an overview of POD and provide motivation for our study. An exam-
ple of POD for prediction as well as for constructing feedback control laws
is developed in Chapter 3. We then present our main results in Chapter 4
in which we describe our strategy for choosing a good input collection for
systems with parameters. Our initial results led us to try natural extensions
which placed more samples in regions (in parameter space) where the dy-
namics of the original system are more difficult to predict. Also, we outline a
strategy to treat coupled systems. A numerical example shows that this can
be effective. Finally, in Chapter 5, we present our conclusions and outline
some areas for future work.



Chapter 2

Background

2.1 Motivation of Reduced Order Modeling

Many of today’s problems in engineering and science are described by partial
differential equations (PDE’s), of which only the most simple have known
analytic solutions. In order to have any kind of solution it is thus necessary to
numerically approximate the solution. However; partial differential equations
are infinite-dimensional and hence cannot be solved exactly, no matter how
much time is spent or how large the computing power available.

To circumvent this handicap, the partial differential equation is projected
onto a finite-dimensional subspace. Although this subspace cannot represent
the PDE exactly, by enlarging the subspace the PDE can be solved within any
error bound, no matter how small. Reduced order modeling is precisely this,
using some suitable subspace on which to solve the PDE, which must also
be simplified, usually into a finite number of ordinary differential equations.

Two of the many different reduced order modeling methods are finite
differences and finite elements. The former uses previously chosen points in
the domain of interest and an approximation of the PDE (usually obtained
through Taylor series expansions) to obtain ordinary differential equations.
These equations are then prescribed some suitable initial values, and the
differential equations are solved numerically. The error from this method is
controlled by the number of points used and their placement, the order of
the approximation to the PDE, and the order of the differential equation
numerical solver. However; no information about the PDE is used in picking
any of these parameters, and there is no guarantee that, for example, the
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points are chosen in an optimal way.

The other method mentioned, finite elements, splits the domain into pair-
wise disjoint subdomains, whose union is the original domain. On these sub-
domains the PDE is assumed to be approximated by a linear combination
of previously chosen basis functions. Next, a linear system of equations is
obtained, usually by multiplying by a test function and integrating over the
entire domain. This system is then solved numerically as above. In this
method the error is controlled by the subdomains chosen, basis functions,
test functions, and the order of the differential equation numerical solver.
Again, no information about the PDE is used in choosing these parameters,
and the model is not optimized.

Although many problems can be solved by either of the two methods
above to suitable tolerances in an acceptable amount of time on today’s
computers, the harder problems, such as Navier-Stokes, cannot be solved
well enough by today’s methods. Because of this it is necessary to improve
today’s methods; one way to do this is to use information from the PDE;,
such as is done by the Proper Orthogonal Decomposition (POD).

2.2 Motivation of Coupled Systems

The physical systems considered may not be very large, and sometimes may
be normalized to be inside a square or cube of unit length. However; to obtain
a solution to within specified tolerances it is usually necessary to specify
thousands of points in the finite difference method or thousands of elements in
the finite element method. Each of these may represent multiple variables to
be solved, and in setting up the system of equations to be solved, the matrix
involved is usually proportional to n?, where n is the number of unknowns.
It is therefore easily possible to have a matrix with over one million entries.
One way to reduce the number of computations necessary is to split up
the domain into disjoint subdomains and couple the subdomains by passing
the boundary information across the boundaries of adjacent subdomains,
i.e. prescribe boundary conditions on a subdomain to match its neighbor,
so that the solution is continuous. If the amount of information passed
across the boundaries is large enough, the tolerance of the coupled system
may still be relatively low. The main advantage comes from the decrease in
computational time. Consider, for example, splitting up the domain into two
equally sized subdomains. Before the computational effort was proportional
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to n?, but now each subdomain only has 5 unknowns, for a computational

effort proportional to ”72, for a total effort over the entire domain proportional
to %2, or half the effort.

Another reason to use coupled systems is when the entire system cannot
be modeled with the same equations. It is usually obvious that this is neces-
sary, for example with a vibrating beam that is surrounded by a fluid. The
beam is forced by the pressure from the fluid, and the fluid’s velocity must
agree with the velocity of the beam on the boundary of the beam. Also these
two systems adhere to different PDE’s inside their respective domains and
hence only affect each other on their mutual boundaries.

2.3 Introduction to the Proper Orthogonal
Decomposition

The Proper Orthogonal Decomposition seeks to use information from a solu-
tion to the PDE, such as a numerical solution or experimental data, to find
N functions, called POD modes, which will best represent the solution of the
partial differential equation in a time-averaged sense. To be more precise,
if S(Z,t) is the solution defined on some spatial domain §2 and a temporal
interval of length T, the first POD mode ¢(Z) is defined to be

iz [ S} e

Here, (,) denotes the L? inner product over ; the second POD mode can
be computed by using equation (2.1) with S(Z,t) replaced by S(Z,t) —
(S(7,t), ¢1(x))p1(Z), and subsequent POD modes can be found iteratively
in a similar manner. From this it can be seen that the first POD mode
is the direction in state-space on which the solution S(Z,t) is largest, in a
time-averaged sense. Correspondingly, another way of viewing the first POD
mode is

win{ 7 [ 1800 - ve@Pa o@l =1} @2

The solution is then assumed to be a linear combination of the POD
modes. One of the consequences of this formulation is that given the first
N POD modes, these functions give the best representation of the solution
out of any set of N orthogonal functions, in a time-averaged sense. In other
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words, if Sy is the approximation of the first N POD modes to the solution,

i.e.
N

Sy (T, t) = Z bi ()¢ (Z) (2.3)

where 1;(t) is the projection of the solution onto ¢;(Z), or

bi(t) = (S(Z,1), ¢i(T)) (2.4)

then

1 ) o 1
. _ < =

where {f;(Z)} is any set of N orthonormal functions.

Viewing Sy (Z,t) as the projection of S(Z,t) onto the N-dimensional sub-
space with basis given by {¢y}, Sn(Z,t) = P(S(Z,t)), where P is the operator
that projects onto the subspace. Due to the identity

dt (2.5)

5@7 t) - Z Oéi(t)fi(f)

IS1* =11 = PS)II* + [|1P(S)]? (2.6)

which is true for any orthogonal projection, it is also true that

win{ 7 [ 1560 - s@olParh —max{ 3 [Isx@oraf @)

where the max and min are taken over the set of all N*"-order orthonormal
approximations.
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Writing out the Sy in terms of the basis functions:

1 / 1Sx (. )2 dt

— 7 [ (530, 5wl ) a

-1/ <Z<s<f,t>,¢i<f>>¢i<f>,z< (@.0).6,(2)5,(7 >>
/ z <¢z<f>,;<< 0. 0;(d >>¢j<f>> .

I
M =
oo
©
I
=
SH

where E(+) is defined by

—%ﬂjﬁ (2.9)

and E((S(Z,t), $;(Z))?) is a measure of the “energy” of the solution in the
i'" POD mode. Now we have a variational problem: Maximize

> (S 1), 6:(D)?) (2.10)

subject to the constraints ||¢;(Z)|| = 1. Therefore the POD modes are the
extremals of the function

J[o(@)] = E(S(Z,1),6(2))*) — A(lle(@)|* — 1) (2.11)

A necessary condition for a function to be an extremal is that the functional
derivative must vanish for all variations ¢(Z) + e(Z), € € R:

d
—Jo+e] =0 (2.12)

e=0
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Expanding (2.12) we obtain:

7 | [ s@ne@ +eo@)as [ saowem -+ ) dya
(/@¢<m+%m>¢<>+8w%awm—1) -
—//S:ct T) + ep(T dx/Sy, W(y)d
=+Lﬂ%mmwﬂm»y4&mmwMﬁ
—A/éwmwm+aw%am y
7 | [s@ne@ s [ s@.oum i
- /Q S(7,D)6(7) dy /Q S(&, () der dt
1 /Q 26(7)1(F) da =
7| [ s@oomay [ s@ou@ dea=x [ o@e e o
(213)

Changing the order of integration produces

/V /S )Y(2) dt dy — Ao(2 )m(f)] dr=0 (2.14)

Since the variation (&) is arbitrary, this implies that the integrand of the
outermost integral is identically zero, or

‘/ /Sf 7.0 () dt dy = A(Z)u(@)

=Y(7 / / y) dtdy =

/ /hxt ﬁ@—émamw@mwm@
LR@yw(ﬁ@—Aw)

(2.15)
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Therefore the POD modes are the eigenfunctions of the integral operator with
kernel R(Z,y) given in (2.15), and since R(Z, 7)) is self-adjoint, the eigenvalues
are real and the eigenfunctions are orthogonal, and hence can be chosen to
be orthonormal. Also note that by taking the inner product of (2.15) with ¢
we obtain

A= (A, 6) = < | R@mota i ¢><f>>

_ / / % / S(#,1)S(7, 1) dto (i) dy(@) da

=7 [ | | s nsme) dyde

. / / S(F, 1)6(7) da / S(5.0)6() dy dt = B((S(,1), 6(7))?)

so the eigenvalue is a measure of how much “energy” is captured by the
corresponding eigenfunction, or POD mode.

(2.16)

2.4 Computation of the Proper Orthogonal
Decomposition

In most applications a known solution is not available, and therefore there
is no R(Z,y) that can be used to solve (2.15). Instead, an approximation
to R(Z,7), R(Z,7), can be obtained by using the solution values at different
points, or snapshots, from an approximation to the PDE:
. s RPN
RET) =1 [ SEOSG &~ 53 a@t)u(z.t) = BE.g) (217
i=1

where u(Z, t;) is the approximation to the PDE at ¢; and N is the number of
snapshots, or the number of times at which the solution is known, assumed
to be spaced at equal intervals.

Plugging our approximation R(Z,#) into (2.15) we obtain

1

= (2.18)
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According to (2.15) this is equal to A¢(Z), which implies that the POD modes
are linear combinations of the snapshots, or

N
F) =Y au(F ;) (2.19)
=1

Returning to (2.15) and plugging in (2.19) for the POD mode:

[ ot St
1 z; N N
:—Z Za]/ ) t) dy = A3 agu(@, 1)
i=1 j=1 k=1

This can be written in the form (Ca)"U = Ma”U where U is the matrix with
components U; ; = u(x;,t;) where x;,1 = 1,2,...,m is a discretization of €,

and [14, 7]
iy = — / (@, t)ul@, 1;) da (2.21)
N Jo

and if the snapshots are linearly independent, i.e. U has maximal rank,
then this is equivalent to solving C'a = Aa, a matrix eigenvector problem.
Substituting the components of each eigenvector as the constants into (2.19)
gives the N POD modes, ranked according to the size of their corresponding
eigenvalue.

Another method of computing the POD Modes is by approximating the
POD modes by an M* order approximation: ¢(&) ~ ¢ () = 2™, ¢shy(T)
where h;(T) is an M order basis to approximate functions on . Using this
basis the approximate solution to the PDE can be projected onto the basis
by w(Z,t) = uM(Z,t) = S0 wi(t)hy(T). Similarly to (2.17)

(2.20)

R(Z,7) = %/ S(&,t)S(i,t) dt ~ %Zu(z,tk)u(gj, t)
N M ' M = (2.22)
~ 30> il ha(@) D us(te)h ()

k=

,_.
.
I

—
<
I

—

and therefore approximating Jo R(Z,9)0(7) and Ap(Z) by vectors from eval-
uation at the points x;,7 = 1,2, ...M, assumed to be equally spaced, equation
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(2.15) becomes
HUUTHT"H¢ = \H¢ (2.23)

where U; ; = w;(t;), H;; = h;(z;) and the i component of the vector ¢ is
¢;; this is again an eigenvector problem (for H ¢, which is the vector approx-
imation to ¢(Z)).



Chapter 3

Demonstration of the
Usefulness of POD: A Control
Application

To show some of the applications of using Proper Orthogonal Decomposition,
a test problem was investigated. This involved numerically solving a PDE on
a domain with an obstacle in order to get an approximation to S(Z,t), and
using this to derive the POD modes. Then the reduced order model from the
POD modes was used to control the full order model by forcing the PDE on
the boundary of the obstacle and its effectiveness was studied.

3.1 Problem Description

In this section, we develop a partial differential equation model for the system
under consideration. To that end, let ; C R? be the open rectangle given
by (a,b) x (¢,d). Let Qs C R? be the rectangle given by [ay,as] X [by, bo]
where a < a1 < as < band ¢ < by < by < d, i.e., Q9 C ;. The problem
domain, €, is given by = Q; \ Q. In this configuration, €2, is the obstacle
on which we implement Dirichlet boundary control.

The dynamics of the system are given by the two-dimensional Burgers’
equation

1, 1
EW(I,y,t) + (KhKQ) ' va (ZL’,y,t) - EAw(xai%t) (31>

12
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(the V and A operators are with respect to the spatial variables only) for
t > 0and (z,y) € Q. Behaviors described by Burgers’ equation include shock
formation, shock propagation, and rarefaction wave formation. In (3.1), K;
and K, are constants used to scale the nonlinear terms; Ky will be zero
for simplicity, and K; will henceforth be known as K. The quantity Re is
a nonnegative constant, and is analogous to the Reynolds number in the
Navier-Stokes equations; it will be equal to 300 in all simulations.

In order to fully specify the model, we need to enumerate conditions
on 0 and 0€)y, as well as an initial condition. As we are interested in
implementing control on 02, denote the sides of 0§2, as

Fl:{(x7b1) - S.TL'SCLQ}, FZ:{(ahy) :bl §y§b2}7

I3 ={(x,b) : a1 < x < ay}, Ty = {(as,y) : by <y < by} (3.2)

For simplicity, we assume that the controls on 0€)y are separable, i.e., they
are the product of a function of time and a function of the spatial variables.
With this assumption, we specify conditions on 0€)y of the form

(3.3)

Only u,(t) and us(t) will be nonzero; the function W,(+) is a function describ-
ing the influence of the i** control on T};.

To complete the model, we specify conditions on 0€2;. Analogous to the
no-slip conditions enforced in many flow configurations, we specify that

w(x,c,t) =0, w(z,d, t) =0 (3.4)
also, 5
w(a, Y, t) = f(y)7 %wa)a Y, t) =0 (35)

In (3.5), f(y) is a parabolic inlet condition on the left, and is analogous to
the inflow condition specified in many channel flow problems. To complete
the model, we specify an initial condition of the form

w(z,y,0) = wy(z,y) € L*(Q) (3.6)
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3.2 Control Law Design

By substituting the approximation for w(x,y, t) from the POD modes (of the
form in (2.3)) into (3.1), taking an inner product with ¢;(x,y), posing the
equation weakly, and substituting forward and backward difference approx-
imations for the partial derivatives, equations for @Z}j (t) are obtained of the

form 1) (t) = Ay 4+ Bu(t) + F + N(i,t) [13] where

1 / (052, b — B)6u(, br) + 652, bs + B)i(, by)) da+

d
[ osa+ hpotaydy+h [ Vo Vo0

1,3

[ W) g, i) % Wy ()5 (., by) (3.7)
R_M?_E;T_M A S
/ —@ a,y) dy, and (3.9)

K/w—@M+K/ ()60 9) — w?(b.4)61(b.) dy
(3.10)
The initial conditions are found by projecting the initial condition for w(zx, y, t)
onto the POD basis.
In this subsection we are concerned with constructing boundary feedback
control laws for finite dimensional system models with state-space equations
of the form

& = Aa+ Bu(t)+ F + N(a,t), t >0, (3.11)

a(0) = ap(2) (3.12)

We consider the tracking control problem for (3.11)-(3.12). A fixed refer-
ence signal z(7) is specified, and we desire that solutions of (3.11)-(3.12) track

z(#) as time evolves. As the tracking signal is time-invariant, the dynamics
of the system under tracking control are given by

e R e R ]

=AX+Bu+F+ N
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where we have defined the augmented state X as X = [« z]T. The initial
data of the system under tracking control is given by

Xo = {O;O(g)} (3.14)

To formulate the control problem, we consider the w-shifted linear quadratic
regulator (w-LQR) cost functional

Jo(o,u) = /000 (= 2)"Q(a — 2) + u" Ru) e*" dt (3.15)

In (3.15) @ is a diagonal, positive semi-definite matrix consisting of state
weights and R is a diagonal, positive definite matrix of control weights. The
optimal control problem we consider is to minimize (3.15) over all controls
u € L?(0,00) subject to the constraints (3.13)-(3.14).

For an w-controllable linear system, the tracking LQR problem has a
unique solution of the form [12, 13]

uopt = - [RilBTHI RilBTHQ] X (316)

where II; is the unique symmetric, non-negative solution of the algebraic
Riccati equation

(A4+wD™L + (A +wl) —ILBRBTIL, +Q =0 (3.17)
The matrix Il in (3.16) satisfies the equation
(A+wl)” —IBR'B") 1, = Q (3.18)

Once the gain matrix K is obtained, the feedback control law is placed
into the augmented state-space equation. The resulting closed-loop system
is of the form

X=(A-BK)X+F+N (3.19)

The tracking w-LQR formulation discussed above can be utilized to con-
trol the full order model of the system as well as the reduced order POD
model with explicit control input. In the reduced order case the reference
signal z(x) is projected onto the POD modes to obtain reference coefficients
{a;}7L,. The resulting reduced order tracking problem is constructed in
exactly the same way as for the full order case.
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3.3 Snapshot Generation and Pod Modes

The desired outcome of this section is to control a full order model using
only information from some POD modes. For a given solution S(x,t) there
are well-defined POD modes with properties as in Chapter 2, however these
POD modes are for a given solution. We desire to control the solution of
the PDE to be an arbitrary smooth reference function by forcing it on the
boundary, and since we do not already know what the forcing function will be
we cannot accurately simulate the forced solution without prior knowledge
of the POD modes. This then defines the best POD modes implicitly, and
to overcome this difficulty the solution is simulated with different forcing
functions and then the POD modes used are those from the combination
of the simulations (i.e. if two solutions are found for two different forcing
functions, then the POD modes taken are those from adding the beginning
of the second simulation to the end of the first and effectively doubling the
simulation time). It is then assumed that with the proper choice of forcing
functions the reference function will be in the span of the POD modes. The
forcing functions chosen were sinusoidal inputs since they include polynomials
of all positive integer orders and therefore assumed to excite most of the
dynamics of the PDE, which will then be captured in the POD modes. The
inputs were of the form

39210

_os 3 3.20
356.1.6 ) (3.20)

uy(t) = sin( ug(t) = sin(

502 -3
This along with a run with u; and ug switched were each simulated for 50
seconds. The controls were chosen so that one would start off slower than
the other, catch up at 35 seconds, and then for the remainder of the time
be faster than the other. Also, the range of the frequency of the inputs was
from 0 to 8 rad/s, a run from the zero initial condition to steady state was
included, and all of the forcing function snapshots started from steady state
with no controls.

The first eight pod modes are plotted in Figure 3.1. The initial condition
is plotted in Figure 3.2 and the projected initial conditions using the first
20 POD modes are plotted in Figure 3.3 to compare how well the projected
space captures the actual solution space.
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Figure 3.1: First eight POD modes for the sinusoidal snapshots

3.4 Open Loop Testing

To test the validity of the POD model, open loop controls were used on the
full order model of the form

uy (t) = us(t) = sin(3t) (3.21)

This input was chosen since it is not explicitly in the snapshots, but is com-
plicated enough to excite an adequate amount of the dynamics. Figure 3.4
shows the full order response at 2 second intervals, and Figure 3.5 shows
the reduced order response for the sinusoidal snapshots. Unless otherwise
specified, all reduced order plots from here on in this section used 20 POD
modes.

To see how well the reduced order model compared with the full order



Daniel Sutton Chapter 3. A Control Application 18

os 085 07 08 09

=
=
=
k-
=
(1]
[ ]
=

Figure 3.2: Steady-state (initial condition) for the full order solution

model it was compared with the best possible simulation when confined to the
POD basis. This was done by plotting the first five POD mode coefficients
versus the coefficients obtained by projecting the full order solution onto the
POD basis. Figure 3.6 shows this comparison as a function of time for the
sinusoidal snapshots. The projected coefficients are plotted in blue and the
POD mode coefficients are plotted as red dashes.

Also compared was how well the POD modes capture the controls. Fig-
ure 3.7 shows the full order controls versus the reduced order controls as a
function of time for the sinusoidal snapshots. Again, the full order control is
plotted in blue and the reduced order control is plotted as red dashes.
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Figure 3.3: Initial condition for the sinusoidal snapshots

3.5 Closed Loop Tracking

Next, the POD model was used to track the full order model to a reference
function. The reference function chosen was the steady-state solution with
no controls and Re = 50. Figure 3.8 shows the reference function.

To see how well the closed loop system works, the assumed optimal so-
lution was found by running the full order system with controls between 0
and -2. The controls were changed slowly enough so the the system was
in quasi-equilibrium. Then the solution for each value of the control was
subtracted from the reference function, which was squared and integrated
over the domain. Figure 3.9 shows the values of the integrals for the range
of controls previously specified. From this plot it appears that the optimal
open-loop controls are u; = uz = —1.135.
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Figure 3.4: Full order response to a sinusoidal input

In order to track the reference function w-LQR was used. The values
used in the w-LQR were the identity for R, 10001 for ), and w was chosen
the largest possible so that A + wl had all negative eigenvalues. For the
sinusoidal snapshots w = .17. To see how well the tracking was achieved the
reduced order solution was plotted in Figure 3.10, and the full order solution
was plotted in Figure 3.11.

As another comparison the reduced order controls were plotted versus the
full order controls for the tracking problem in Figure 3.12. Again, the full
order controls are plotted in blue and the reduced order controls are plotted
as red dashes.

From these plots it can be seen that the POD modes do a decent job
of controlling the full order solution, and of course the values of the R and
() matrices place limitations on how well the full order solution can be con-
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Figure 3.5: Reduced order response to a sinusoidal input for the sinusoidal
snapshots

trolled, i.e. by keeping the controls from getting too big, which may be
required to perfectly control the full order solution.
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Figure 3.6: POD mode and projected coefficients as a function of time for
the sinusoidal snapshots
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Figure 3.7: Full order and reduced order controls as a function of time for
the sinusoidal snapshots
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Figure 3.10: Reduced order tracking solution for the sinusoidal snapshots
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Figure 3.11: Full order tracking solution for the sinusoidal snapshots
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Figure 3.12: Full order and reduced order controls for the tracking problem
with the sinusoidal snapshots



Chapter 4

Numerical Results

4.1 Partial Differential Equations with Para-
meters

In a previous chapter the spatial POD modes were found from the solution
of a PDE that depended only on space and time. In many applications the
PDE that describes a process may be dependent on other parameters, and
POD modes that work independently of the parameter values given may be
desired. Suppose that the PDE is dependent on one parameter, €, which is
within [e1, €2], then returning to equation (2.7) and generalizing yields the

problem
max L[l 1SN (%, t,€)||* dt d (4.1)
S% Ae T Jr N5 € ¢ '

€1

This then becomes the generalized form of equation (2.15):

/ § / R(Z,§,)8(7) dy de = \}() (42)

where R(Z, ¥, €) is defined as R(Z,y) with S(,t) replaced by S(Z,t,€).
Since the solution to the PDE is not known, solutions to equation (4.2)
must be approximated by a numerical approximation for fe 612 f(Z,e)de ~
Sor wif(Z,€). The main problem in this section is investigating how to
choose the weights and evaluation points of the numerical approximation.

29
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4.1.1 The One Dimensional Heat Equation

To start, a test case was chosen: the one-dimensional heat equation on [0, 1]
with one end fixed and the other given a sinusoidal displacement, or

0 0
w(0,t) = sin(t) (4.4)
w(1,t) =0 (4.5)

Next, different numerical schemes were compared starting with the Midpoint
rule with one point and Gaussian Quadrature, using five points. To measure
the error of the different approximations they were compared with the full
order solution as given by a finite difference method. Figure 4.1 shows the
error of the POD modes over the interval [.01, 1] along with the error of the
POD modes evaluated by using only the data from the given e, which barring
numerical error should be the best possible error.

The Midpoint rule was chosen because it is the simplest rule possible and
amounts to assuming that if only one set of POD modes can be used for
different epsilons then perhaps the one corresponding to the epsilon in the
middle of the interval would be best. The error involved in the Midpoint
rule is %h?’ where £ is some number in [e, €5]. The Gaussian Quadrature
method is a popular, accurate, and easily used method which is of O(e!'Y).
The Gaussian Quadrature method was compared with the Midpoint rule and
the POD modes from the given epsilon to compare how well a simple rule
and an accurate rule can capture the dominant system characteristics over a
given range. From Figure 4.1 it can be seen that the Gaussian Quadrature
method is notably better than the Midpoint rule as would be expected from
normal integration, but there is no noticeable difference for epsilons larger
than three tenths and both of them show growing error as epsilon gets closer
to one hundredth. The error from the POD modes from the given epsilon,
assumed to be the best possible, also shows this trend of growing error near
epsilon equal to one hundredth but it is not as sharp and hence also shows
that improvement is possible.

This trend is intuitive from a physical perspective as for large epsilon an
arbitrary point inside the domain is affected locally by points farther away
than for small epsilons. Thus for large epsilon the solution is much closer
to linear which can be very easily captured by one POD mode and hence
the error is not expected to be large. As the value of epsilon is decreased
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Figure 4.1: Maximum error of the Midpoint rule and Gaussian Quadrature
POD models

an arbitrary point is only affected by points which are close by, which allows
a solution to have much more curvature. Added to this is the fact that the
forcing function on the left boundary is sinusoidal, which generates traveling
waves, and since the points on the right side are not affected by those on the
left, which is where the action is, for smaller epsilon the right side is essen-
tially zero. This kind of solution is not easily captured by POD modes which
are close to linear, which are the kind generated when epsilon is larger than
approximately three tenths, or over seventy percent of the desired epsilon
range. Figure 4.2 shows the first POD modes at different values of epsilon,
which reaffirms the fact that for larger values of epsilon the dominant motion
is linear whereas for smaller epsilons the motion has more curvature. Based
on this analysis, only a few POD modes are needed when epsilon is large, but
many more are needed when epsilon is small, so the points used to gather
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Figure 4.2: First POD modes for different values of epsilon

data for the POD modes should be clustered closer to epsilon equals one
hundredth.

Continuing in our search for a better numerical integration method, since
the dependence of the solution of the PDE on € is not known and from figure
4.1 the error is largest near ¢ = .01, different numerical integration methods
were tried. One method for comparison with the Gaussian Quadrature using
five points was the midpoint rule with five points. This is only O(€?), but
again since the dependence of the PDE on epsilon is not known this is a way
of seeing how the error depends on the number of points used to evaluate the
integral. Also, to see how the error depends on the distribution of the points
used, a second midpoint type method was used, except with the points chosen
from those used in Gaussian Quadrature (i.e. both the second midpoint rule
and Gaussian Quadrature were of the form > " | w; f(Z,¢;) with the same
e.s but with different w]s, or weights). The error for these three methods is
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Figure 4.3: Maximum error of the five point Midpoint rule, Midpoint rule
with Gaussian spacing, and Gaussian Quadrature POD models

shown in Figure 4.3, which shows that they all have almost identical errors
throughout the entire range. This signifies that perhaps the weighting is not
the most important but the distribution of the points is.

In an attempt to use our knowledge that the solution is hardest to capture
when epsilon is small, a second Gaussian Quadrature method was tried, this
time breaking the integral into two, one on the range [.01,.11] with three
points and the other on the range [.11, 1] with two points. This effectively
clusters the data closer to epsilon equals one hundredth, which was previously
argued to intuitively be a better approximation. Upon closer examination of
Figure 4.3 the Midpoint rule with Gaussian spacing is seen to be the best out
of those methods tried in Figure 4.3, and the best so far, so it was compared
with our new Gaussian Quadrature rule, which can be seen in Figure 4.4.
This shows a drastic improvement over previous methods tried and the error
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Figure 4.4: Maximum error of the Midpoint rule with Gaussian spacing and
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is close to the best possible over the entire range.

For one last attempt an integration method was tried which is meant for
functions with a singularity at one end, since the error appears to be blowing
up as epsilon approaches one hundredth This method is meant for functions

with a singularity of the order == f and has an error of 314”:11 { iz :}z (&) where
n is the number of points used and ¢ is some point inside the interval[l]. For
the given case of five points this error is 8.1 x 10713 f(19)(¢). To try to most
accurately compare with the Gaussian method of two integrals, a second sin-
gular method was tried, this time breaking the integral into two exactly as
before, using the singular method for the first and Gaussian Quadrature for
the second. These are shown in Figure 4.5 which shows that the singular
method is not as good as the double Gaussian, but the double singular is

slightly better than the double Gaussian, as might be expected. For com-
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Figure 4.5: Maximum error of the double integral Gaussian Quadrature,
singular rule, and double integral mixed singular/Gaussian Quadrature POD
models

parison the singular method is slightly better than the Midpoint rule with
Gaussian spacing.

4.1.2 The One Dimensional Heat Equation with a Gra-
dient Term

In an attempt to see how robust this method is at representing the solution
to a PDE over a range of parameter values, another, harder, test case was
tried. This was the same as the PDE in the last subsection except that a
gradient term was added, which has the affect of adding convection to the
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system. The PDE and boundary conditions were

2

0

0
Ew(x,t) + 6%1’1(% t) = 0-1@10(%@ (4.6)
w(0,t) = sin(t) .
w(1,t) =0 (4.8)

This time the value of the coefficient of the laplacian term was kept fixed at
0.1 which is approximately 10% from the left of the range of values used in
the previous subsection, for reference. The parameter was identified with the
coefficient of the gradient term, and the range of values was again [.01,1]. To
see how the gradient term changes the POD modes, the first POD modes for
different values of epsilon are shown in Figure 4.6, which shows that dominant
motion has been changed and the linearity of the solution for larger epsilons
has been lost.

Preceding as before the Midpoint rule with one point and Gaussian Quadra-
ture were compared with the POD modes using only the data from the given
€, which can be seen in Figure 4.7. As expected and as before the Midpoint
rule is better at the middle of the interval but Gaussian Quadrature is bet-
ter for all values except those very close to the middle. Contrary to before,
the error does not appear to be blowing up anywhere although the error for
Gaussian Quadrature does appear to be linear with the most error towards
epsilon equals one hundredth.

As before the five point Midpoint rule and the Midpoint rule with Gaussian
spacing were tried. These can be seen in Figure 4.8, which shows that they
are almost identical, having the same shape and the difference between each
appearing almost constant.

Since the last POD models had the largest error towards epsilon equals
one hundredth, a double integral was again tried, using three points on
[.01,.11] and two points on [.11,1]. The results can be seen in Figure 4.9.
This time the double integral method is not the best one and is the worst
out of the five point methods.

As a comparison the singular method and double integral mixed singu-
lar/Gaussian Quadrature were again tried, although they were not expected
to perform as well as before since the error does not display the same behav-
ior for small epsilons. Figure 4.10 shows the errors from which it can be seen
that although the double integral method is better than the single integral,
the singular method is not an improvement.
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Figure 4.6: First POD modes for different values of epsilon

4.2 Approximation by Subdomains

In Section 2.2 we discussed the computational advantages that can be ob-
tained by splitting a system up into subdomains. This raises the question of
whether or not the solutions on the subdomains converge to the solution on
the entire domain. If the solution is known on suitable surfaces inside the
domain that can be used as boundaries for subdomains, then the solution can
be approximated by some full order approximation (or some other method
of generating the solution data), and this data can be used to generate POD
modes for each subdomain. Next the POD modes can be used to generate
a reduced order model of each subdomain and the accuracy of this model
can be checked versus some solution of the entire domain restricted to the
subdomain. However; since the boundary data is already known and pre-
scribed into the reduced order model, assuming that the solution to the PDE
is unique, this amounts to the usual question of whether or not the POD
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modes of a domain can accurately describe the solution, and the fact that
the POD modes are defined on a subdomain really does not matter. Also, in
most cases the reason for using domain decomposition is to avoid having to
solve the PDE on the entire domain at once, which may be computationally
impossible.

A more reasonable problem with actual convergence issues would be one
which never simulates the full order method over the entire domain. One
such problem was investigated, namely to split the domain into some arbi-
trary, well chosen subdomains, and prescribe arbitrary POD modes to each
subdomain (in this case the initial POD modes were all zero functions). Next,
some sort of Red-Black scheme was used to divide the subdomains into two
disjoint groups; in the cases chosen to investigate, the subdomains were capa-
ble of being split into two groups such that each subdomain in one group was
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surrounded completely by subdomains in the other group. This is intuitively
the best type of separation for the iterative procedure described below as at
each iteration it passes along the most information to the next iterate. Then
the solutions on the red subdomains were simulated with full order solutions
while the solutions on the black subdomains were simulated with reduced
order models using their respective POD modes. The boundary data on the
red subdomains was prescribed to be the boundary data from the black sub-
domains and the boundary data on the black subdomains was prescribed to
be the boundary data from the red subdomains. This created small disconti-
nuities on the boundaries between the red and black subdomains but helped
keep the solution over the entire domain relatively continuous. The data that
was obtained from the full order simulations of the red subdomains was then
used to obtain new POD modes for the red subdomains, and then the process
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was reversed so that the full order simulations were on the black subdomains
and the reduced order models were on the red subdomains (using the newly
found POD modes), with the end result of new POD modes on each black
subdomain. This process was then iterated except that each time the full
order model was run on a subdomain the data obtained was combined with
the data obtained on all the previous runs using the full order model and this
combination of data was used to generate the next sequence of POD modes.

Two test cases were chosen: the first was the two dimensional heat equa-
tion on [0,1] x [0,1] = Q C R? with the left, right, and top boundaries fixed
at zero for all time and the bottom boundary given a forcing function. This



Daniel Sutton Chapter 4. Numerical Results 41

x 107 Maximum Error of the POD Model
7 T T T

T T T

—— POD from the given Epsilon
Gaussian with two integrals
Singular

6l — - Singular with two integrals

Error

|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Epsilon

Figure 4.10: Maximum error of the double integral Gaussian Quadrature,
singular rule, and double integral mixed singular/Gaussian Quadrature POD
models

corresponds to

%w(x,y,t) =€ (%w(w, y,t) + aa—gﬂw(x,y, t)) (4.9)
w(z,0,t) = f(x,t) = csin(wt) (4.10)
w(z,1,t) = w(0,y,t) = w(l,y,t) =0 (4.11)

fort > 0 and (x,y) € (0,1) x (0,1), where €, ¢, and w were positive constants
and a zero initial condition was given. () was divided into €2; ¢ = 1,2,...,9,
each with % of the total area and with €2; ¢+ = 1,2, 3 on the x-axis, {2; at the
origin, and €2; ¢ = 7,8,9 on the line y = 1 as shown in Figure 4.11. Then
the Red-Black iteration method was implemented with the odd numbered
domains as one color and the even numbered domains as the other.
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Figure 4.11: Illustration of the chosen domain decomposition

The second test case was the wave equation on 2 = [0, 1] with the left
boundary given a forcing function and the right boundary given conditions
to simulate the string being attached to a spring on the right end. This
corresponds to

p%w(m,t) = %T%M(l’,ﬂ (4.12)

w(0,t) = f(t) = csin(wt) (4.13)

ma—Qw(l t) = —Tﬁw(l t) — kw(1,t) (4.14)
otz ox 7 ’ '

fort > 0and x € (0,1), where p, 7, ¢, w, m, and k were positive constants and
a zero initial condition was given. 2 was divided into four equal partitions
Q; i =1,2,3,4 with )y at the origin and €4 at z = 1. Then the Red-Black
iteration method was implemented with the odd numbered domains as one
color and the even numbered domains as the other.
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Table 4.1: The maximum error in the reduced order model for the heat
equation using different forcing functions

Heat equation | Test one | Test two | Test three

1% iteration 0.5900 589.82 0.6889

2nd 0.0473 47.245 0.0638
3rd 0.0186 18.639 0.0563
4th 0.0118 11.815 0.0583
5ih 0.0098 9.795 0.0585

To check the convergence of the POD modes, after each iteration a simula-
tion of the PDE over ) was run with all the §2s using their latest POD modes.
This simulation was then compared with the simulation with all the {2s us-
ing a full order model. For the heat equation three different tests were run,
each with ¢; (the length of the simulation) equal to 10 seconds and a different
forcing function. They were fi(z,t) = 10sin(3t), fo(z,t) = 10,000sin(3t),
and f3(x,t) = 10; also, for all cases ¢ = 2. Table 4.1 shows the results
for each of the three cases by displaying the maximum absolute value of the
difference between the reduced order model and the full order model. For
the wave equation three different test were run, each with ¢; equal to 30
seconds and a different forcing function, f;(¢) i = 1,2,3 the same as above;
also p=1,7=1,m =1, and k = 10. Table 4.2 shows the results for each
of the three cases.

From the tables it can be seen that the amount of error in the reduced
order model appears to be proportional to the magnitude of the forcing func-
tion. Also, the convergence at first is rapid and monotonic, but after the error
has “bottomed out” it rises and falls slowly, and appears to converge as the
number of iterations increases due to the large number of snapshots.
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Table 4.2: The maximum error in the reduced order model for the wave

equation using different forcing functions

Wave equation | Test one | Test two | Test three
1% iteration 50.139 50151 18.096
2nd 8.484 8490.2 4.6030
3rd 0.0134 13.556 0.3841
4th 0.0134 13.594 0.3701
5t 0.0135 | 13.527 0.4179




Chapter 5

Conclusions and Future Work

Proper Orthogonal Decomposition is a decomposition which seeks a speci-
fied number of orthogonal functions that best represent a solution in a time-
averaged sense. To find these functions an approximation to the solution
was used which had values at discrete points in time, known as snapshots,
of discrete points in space. Proper Orthogonal Decomposition was used as a
reduced order modeling scheme to control a system and to simulate a para-
metric and a coupled system. The controlled system showed that POD can
accurately and cheaply keep a system close to its desired state. The para-
metric system showed that with a proper choice of approximations in the
desired interval the system can be well represented over its range, without
drastically increasing the number of necessary POD modes, and it was seen
that the choice of approximations may be more important then the weighting
values used. The coupled system showed that POD can be used on subdo-
mains with no prior knowledge of the complete system, and without ever fully
simulating the system, the POD modes can converge to the POD modes on
the subdomains.

Problems which remain are estimating error bounds in all cases and devel-
oping a convergence theory for the coupled system. A more systematic and
less intuitive approach to picking the approximation points to the paramet-
ric system is desired, such as a statistical sampling technique. Also, systems
with higher order parameters should be investigated as well as ways to in-
corporate the PDE into the selection process of picking the approximation
points. Finally, all of these methods should be tried on more complicated
problems.
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