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APPROXIMATION AND CONTROL
OF A THERMOVISCOELATIC SYSTEM

by

Zhuangyi Liu

Committee Chairman: John A. Burns
Mathematics

(ABSTRACT)

In this paper consider the problem of controlling a thermoviscoelastic system. We

present a semigroup setting for this system, and prove the well-posedness by applying

a gerneral theorem which is given in this paper. We also study the stability of the

system.

We give a finite element/averaging scheme to approximate the linear quadratic

regulator problem governed by the system. We prove that yields faster convergence.

We give a proof of convergence of the simulation problem for singular kernels and of

the control problem for L2 kernels.

We carry on the numerical computation to investigate the effect of heat transfer on

damping and the closed-loop system.
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_ Chapter I Introduction

1.1 Problem §tatgment.

It is well known that the design of control systems for vibration suppression in

flexible structures is highly dependent on the type and amount of internal damping

present in the structure. Since the viscoelastic properties of the material contribute

to the stability of the system similarly as internal damping, a considerable amount of

work has been done on control, identification and numerical approximation to take

advantage of the material properties [3][4][5l[6][12][13].

In this paper, we consider the control and approximation of a thermoviscoelastic

model of Boltzmann type. Our interests are to investigate the effect of heat dissipation

on damping and on the closed loop control system, and to develop an appropriate

approximation scheme.

We concentrate primarily on the axial vibrations of an elastic bar of length l whose

motion is governed by the system

pj)(t,a:) = <a§;y(t,:c) -1-
[ti

g(s)äy(t + s,:c)ds)

Ö-75é-9(t,x)+b(:v)u(t) (1.1.1)

· Ö2 Ö2
0(t,m) : —700%y(t,:z:) + 16:%;-H(t,:v) (1.1.2)

with the boundary conditions either

y(¢,0) = y(¢,1) : 9(t,0) : 0(t,1) = 0 (1.1.3)

1



or

y(t,0) = y(t,l) = 9,(t,0) = 9,(t, l) = 0. (1.1.4)

Here t represents time; ZE is the spatial varible; y is the axial displacement; p > 0 is

the mass density; cz is a positive constant; 90 > 0 is the reference temperature; 0 is

the temperature deviation from H0; and k > 0 is the heat conductivity. The delay

1* > 0 is either infinite or finite, 6 L2(0,l), u. is the control function, and 7 Z 0

is the coupling coefficient. Note that 7 = 0 decouples (1.1.1)—(1.1.2) to a viscoelastic

equation and a heat equation. We also assume that the function g : [-1*,0) —> 'R

satisfies the following conditions:

(1) y G S 0 <>¤ [-1*,0).

(2) g is absolutely continuous on [-1*,-6] for all 1* > 6 > 0 and g’(.s) f 0 for

—1~ 5 .6 < 0,

(3) There is a constant 6 > 0 such that 6 = 04 + fi g(s)ds.

The simplest case is when g(s) E 0, which yields the classical thermoelastic system

__ 62 Ö
py(t,:2) = a5;;y(t,:2) — 7%9(t, :2) + b(:2)u(t) (1.1.5)

~ 62 62
0(t,x) = -79„§2·;äy(t, :2)+ k5;9(t,:c). (1.1.6)

Note that we allow the kernel g(.s) to have a singularity at s = 0. Although the

singular kernels in viscoelasticity have been discussed at least since the 1970’s, the

current intense interest[6[[9[[12][13][14] in their qualitative properties is related to



3
.

the need to understand internal damping when designing feedback control systems.

It is known now that such a kernel gives faster energy dissipation in the system.

In Chapter 2, we formulate the system (1.1.1)-(1.1.3) as an abstract Cauchy problem

on a Hilbert space Z, and use standard techniques from semigroup theory to prove

well-posedness. Then we present a well-posedness theorem for a general class of

abstract ordinary differential equations. We also discuss the stability of the system.

In Chapter 3, we develop a finite element /averaging approximation scheme. The

convergence of the approximation systems is established by modifying the proofs

given by Ito and Fabiano[14], and Miller[15l. Under additional assumptions on g, we

establish the convergence of the approximation adjoint systems, which is crucial to

the correct approximation of the feedback gain operator for the regulator problem.

In Chapter 4, we solve the regulator problem for the system (1.1.1)-(1.1.3) numer-

ically by our approximation scheme. Some interesting phenomena are observed and

discussed.

1.2 The;moviscgglg,t;°c;°ty.

The behavior of viscoelastic materials has received widespread attention and appli-

cation in the last ten years . This is primarily due to the large scale development and

utilization of polymeric materials.

As we know, elastic bodies react to a fixed deformation with stress which remains



<

constant as time proceeds. In other words, they have a capacity to store mechanical

energy without dissipation. On the other hand, viscoelastic bodies react to a fixed

deformation with stress which decays as time proceeds. During that process, mechan-

ical energy is converted to heat. Under isothermal condition, the stress is determined

by the instantaneous strain and its past history. This is referred to as a memory

effect.

The stress-strain constitutive law for the homogeneous, isothermal viscoelastic rod

of Boltzmann type is given by

0(t,:z:) = aE(t,:l!) +
/0o

g1(.s)6(t — .s,a;)ds, (1.2.1)
o

where 0 is the shear stress, 6 is the shear strain, oz > 0. This leads to the equation

j)(t,m) : ä
<oz—Ö%y(t,:c) +

Aw
g1(s)—£y(t — .s,z)ds) (1.2.2)

where y is the displacement. We point out that (1.2.1) is a modification of a purely

elastic system by adding a convolution type integral which describes the relation

between the stress and the past strain history.

If the isothermal condition is not assumed, then we need to study heat flow and

temperature states of the viscoelastic material, which leads to the theory of thermo-

viscoelasticity. For the purpose of illustration, we concentrate on the one dimensiona.l

linear theory. The general theory can be found in [7], which is derived on two fun-

damental thermo-dynamical postulates, i.e, the balance of energy and the entropy



production inequality. The following is a one-dimensional version of the derivation in

[16] . Let’s reconsider the homogeneous viscoelastic rod of Boltzmann type with zero

initial stress and intial temperature 90. We omit the variables t;:c whenever we can

without causing confusion. The local statement of the energy balance law is given by

· · . . Ö
pv·—p(‘I!+91y+Tr;)+cr6—?iq—-:0, (1.2.3)

Sl!

where 0* is the stress; 6 is the strain; p is the mass density; r is the specific heat

supply; T is the current temperature; 9 = T — 90; i.e, the temperature deviation from

the reference tempreture 90; 1; is the specific entropy; q is the heat flux; and
‘I' is the

specific Helmholtz free energy which is given by.

1 ay
’

ay 1
'I!t=—G - -L -6-- 626*P () 2 (<><>)<öm) (<><>)öz 2PC(¤¤) 0

1 * . a a
’

— — G t — —— — — d2 [Oo ( T) T

— T ·— T ID * — "* T

+/t
L(t )(6 6( ))

8 8 (1-:1:) d

_°°

7 özy öxy 7

P ° ·
+ -—/ C(t — ·r) (6 — 6(1-, a:))2 dr,

where G(s), L(s), C'(.s) are the material properties.

Notice that the free energy
‘I! not only depends upon the strain history, but also

depends upon the temperature history.

The local entropy production inequality is given by

Ü 1 Ü6 ‘
pTi;—pr+äq—iqä 2 0. (1.2.4)
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Eliminating the heat supply function r from (1.2.3) and (1.2.4), we have

· · 1 89— ‘I! -— i
- — —- . .p pHn+<r6 Üoqöx

20, (125)

where we retained only the first order term of -%%:3. Inequality (1.2.5) must be satisfied

for all values of é(t) and Therefore, it is necessary that their coefficients equal

zero. This gives

0 = G(0)g-y — L(0)H —+—
ft

— ·r)-äy(1‘ m)d·r —~
ft

- v')0(·r a:)d·r
Üm _„ Ö:

’ _„ °
’

(1.2.6)

c c
1;

lm
L(t C(t — 1‘)9(‘r,:c)d‘r.

(1.2.7)

From F0urier’s law for the heat flux, we have the constitutive assumption

Ö— : k—6q Öa:

where constant k > 0 is the thermal conductivity.

Now, the local energy balance law (1.2.3) can be rewritten as

82
pr —+— pö -— pTiy + k———9 : 0, (1.2.8)

Öa:2

where 6, the internal dissipation, is given by

e 2 e __

pß 7*) dr C(t —- 7*) (H — H(7·,:z:))2 dr

7 '
fit

0 9( dr
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In order to satisfy the local entropy production inequality (1.2.4), 5 must be nonneg-

ative. This can be obtained under certain assumptions on the material properties

G(.s), L(s), C(s). Since 5 is a second order term and T = 90+ Hrst—order terms, for a

consistent first—order theory, we must have

. G2
pr — pÜg1] -1- köäö = 0. (1.2.9)

Assuming that there are no external forces and heat supply, and using äcr = pf;} and

(1.2.6), (1.2.9), we obtain the equations

,, Ö Ö ° · Öpy - am (G(0)g;y - L(0)9 + Lo
G(¢ — T)Ey(T-¤=)dT

e
L(t —·r)9(1‘,a:)d1·) (1.2.10)

· Ö Ö ° - Ö
C(0)0 = -52 (Ü0L(0)&y + 90

loc
L(t - ·r)ä;y(·r, :c)d·r

- ·r -—. . .+ ·r)H( 1:)d·r)+
közg

(1211)p
—x

1 ömz

REMARK: Equations (1.1.1)—(l.1.2) are special cases of above equations, where

L(.s), C(.s) are constant functions.

1-3 Ih; ßeg.....ulat¤r Lr.o.b1cm-

Let Z, Y and U be Hilbert spaces. Assume that A is the infinitesimal generator of

a Cysemigroup of bounded linear operators T(t) on Z, B E L(U, Z),C G L(Z, Y) and

R E L(U, U). Furthermore, let Q be the self-adjoint nonnegative operator defined by

Q = C‘C E L(Z, Z), and assume that R is self-adjoint and strictly positive.
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The linear quadratic regulator problem is to find a. control u 6 Lz(0, oo; U) which

minimizes a quadratic cost functional of the form

dt

=/ [(Q2,2)Z+ (’Ru.,u,)U] dt (1.3.1)
0

subject to

2(t) = .A2(t) + Bu(t), 2(O) = 20 (1.3.2)

y(t) = C2(t). (1.3.3)

Note that the mild solution of (1.3.2) is

f

z(t) : T(t)20 +f T(t — s)Bu(s)ds. (1.3.4)
0

The control space U is often taken to be
R”‘

if we use ni controllers. In that case, we

assume that 'R is an m >< m diagonal matrix where 1*;; > 0 is the weight on the ith

controller.

It is shown[11] that if the system (1.3.2)-(1.3.3) is stabilizable and detectable, then

there is an unique control 11,,,,; 6 L0(0, oo; U) such that

This control can be written in a feedback form

11;,,,, : —’R.‘1B‘Hz(t), (1.3.5)



where H is the solution of the algebraic Riccati equation

A‘1I + HA — HBR”‘B"II + Q = 0. (1.3.6)

In general, equation (1.3.6) is a non-linear partial-functional differential operator

equation. A direct solution of such a system is complex. Therefore, it has become

standard practice to approximate the entire control problem, thereby leading to an

indirect approximation of (1.3.6). We shall take this approach. For N = 1,2,...,

let Z" be subspaces of Z, P" be the orthogonal projections of Z onto Z", AN be

the generator of Co-sernigroup T"(t) on Z". Assume that ß" 6 L(U, Z" ), and

QN = ICNICN] 6 L(ZN, Z") are uniformly bounded in N. The Nth approximation

problem is to minimize

.1^'(z^',a) Z
[O

[(QN„”,z”)Z+ (7z„,„.)„] 66 (1.3.7)

subject to

#(6) Z A”z”(1) + ß^’„(6), z^'(0) Z PNZ., (1.3.8)

y"(t) Z CNzN(t). (1.3.9)

Similarly, under the assumption that (1.3.8)—(1.3.9) is stabilizable and detectable,

there is an unique optimal control ugp, E L2(0, oo; U) of the form

„Q;,(6) Z —’R—1BN”IYNzN(t), (1.3.10)

where HN is the unique solution of the algebraic (matrix) Riccati equation

A^'*17^' + HNAN Z 11^'ß^'7z·*ß”·11^' + o" Z 0. (1.3.11)
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The basic requirements are that the suboptimal control u.i(P,(t) when applied to the

infinite dimensional system (1.3.2)-(1.3.3) results in a stable closed-loop system whose

response is "close” to optimal for any initial condition and that uiVp,(t) converges to

u,,,„(t) in some appropriate sense.

To ensure these requirements, Gibson[11]] gave the following sufficient conditions:

(1) The problem must be well-posed.

(2) BNu. —> Bu, BN': ——» B':, QNPN: —> Qz, as N —+ oo for all : 6 Z and

u 6 U.

(3) TN(t),TN'(t), the semigroups generated by AN,AN', converge strongly to

T(t), T"(t), the semigroups generated by and A', respectively.

(4) The approximation systems must preserve stabilizability and detectability uni-

formly in N.

Many of these basic requirements were developed in an attempt to apply the av-

eraging approximation scheme to hereditary control problems. Banks and Burns[2]

showed the strong convergence of the approximating semigroups to the semigroup

representing the homogeneous solution of the hereditary system in 1978. Since they

only considered the open loop problem, they did not raise the question of the strong

convergence of the adjoint semigroups. Five years later, Gibson[11] established this

convergence when he considered the regulator problem for delay-diflierential systems.

In 1985, Salamon[22] proved that the approximating systems based on the averag-
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ing scheme are uniformly exponentially stable for suiliciently large N if tl1e original

system is stable. These ideas have since been refined and extended to other schemes

developed for control design for infinite dimensional systems.

1.4 Ngtgtigg.

The notation used in this paper is standard. If Y is a linear space,thenand

(·,·)Y will denote the norm and inner product on Y. For a Hilbert space

Z, the set of all square integrable functions defined on {ei, b] with values in Z will

be denoted by L2(a,b;Z). The space of all absolutely continuous functions f 6

L2(a.,b;Z) with jth derivative fi-Ü absolutely continuous for = 1,2,...,k — 1

and fi") 6 L2(a,b;Z) is denoted by H"(a,b;Z). H}j(a,b;Z) denotes the set of all

H' functions which vanish at the left end-point of the interval; i.e., H},(a,b; Z) 2

{f 6 H'(a,b; Z) | f(a) = 0}. Similarly, H},(a,b;Z) 2 {f 6 H‘(a,b;Z) \ f(b) = 0},

and H,}(a, b; Z) 2 {f 6 H'(a.,b; Z) | f(a) = f(b) = O}. Let H§(a,b;Z) = H,§(a,b;Z)¤

H’(a,
b; Z). H*"(0, l) is the dual space of Hg‘(0, l). If A is the infinitesimal generator

of a Co semigroup T(·) on a Hilbert space Z satisfying \|T(t)||Z g Meß', then we

write A 6 G(M,ß). Finally, the symbol i> means converging strongly.



Chapter II Well-Posedness and Stability

In this chapter we formulate the linear thermoviscoelastic system (1.1.1)-(1.1.2)

into the abstract Cauchy problem ä(t) = Az(t) + Bu(t), z(0) = zu on certain Hilbert

space Z. We then prove wellposedness by showing that A generates a Cysemigroup

on a Hilbert space Z. We also discuss the stability of this system.

2.1 Eormulation.

Finding an appropriate state space for an infinite demensional system is not triv·

ial. One difficulty is in clioosing the suitable topology or norm. Fortunately, the

well-accepted state space choices for the linear viscoelatic system and the linear ther-

moelastic system [23] provide considerable insight.

Let v(t,:c) : y(t,z), w(t,.s,:u) = y(t,:c) — y(t + .61,1:), then (1.1.1)-(1.1.2) can be

recast into a first order system

0
v(t,:c)

‘” [„Ä€ÜLÜl>] ’I,€§"§§’j’;j(@’i„”‘§;”)
7 8. 7 7

(2.1.1)

where we assumed that 90 : 1. g€(s) = —§g(s), and the constant 6 is defined in

section 1.1.

For simplicity of notation, we omit the variables t,:v wherever we can without

12
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causing confusion. Define the spaces Y, V, 9, W by

1 2
I 2Y = H„(0J)„ llylly = E (D„y) dw;

0
1

V = L’(0J); Ilvllt = / v’dw;
0

1
9 = L’(0J)„ Ildllé = 9’dw;

0

2 0
W= Lg(—w;0;Y); llwlliv =/ a«(w)|IwIl€»d¤—

We shall consider the state space

Z = Y >< V >< (9 >< W

with the energy related norm

I\¤|12=|I(y,v„9,w)T||E= ||yII¥»+||v||¥«+HdiIä>+I|w||€v—

Define the operator A by
(

0
E d H2 0,l ,DM): Zézl y+f.,g(¤)w(w)¤€ ¤( )

y(¢;w)0A
q;(t,x) -

6D: (y(t,a:) + f_r g,(8)'l1I(t,8,1!)d8) — ')'§;Ü(t,$)
(213)

I) v(t, :0) + Dw(t, s, :6)

where the operators D: and D are defined by

2 2 2 823/
T?(D„) = Ho(0„l); Dzy = 5;; (2-L4)

'D(D) : H;R(—r,0; Y), Dw = gw. (2.1.5)
s
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Define the operator B : U —+ Z by

Bu(t) = (0,b(m)u(t), 0,0)T. (2.1.6)

The linear thermoviscoelastic system (1.1.1)-(1.1.2) is thus formally transformed into

the abstract Cauchy problem on the Hilbert Space Z

é(t) = Az(t) + Bu(t), z(0) : zo (2.1.7)

where lg = (y0,y0,00,w0)T.

We remark here that the state space formulation is not unique. Other choices

may be appropriate if one considers different boundary conditions or if concentrated

masses are added to to structure.

2.2 Well-Posedness.

The abstract Cauchy problem (2.1.7) has an unique solution if and only if the

operator A generates a semigroup on the Hilbert space Z. In this case, we say that

it is well-posed.

Navaro[16] proved the well-posedness for the general linear thermoviscoelastic sys-

tem (1.2.10)-(1.2.11). But one of his assumptions is that the kernel g(t) 6 L1(0, 00) O

01 [0,00), which excluded the singular case. Recently, Ito and Fabiano[14[ showed

the well-posedness for a class of abstract integral-differential equations. Their result

covers a special case of system (1.1.1)-(1.1.2), i.e., 7 : 0..
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A three dimensional version of the system (1.1.1)-(1.1.2) was studied by Desch and

Grimmer[10]. They assumed that the kernel g was completely monotonic. They

provided the semigroup setting and a smoothing criterion. However, their state space

and its norm have no intuitive physical meaning (such as energy), and more general

kernels need to be considered.

We will use the following version of the Lumer~Phillips theorem[17].

THEOREM 2.2.1. Let A be a closed densely defined linear operator on a Hilbert

space H. If there exists ,6 QR such that {A:c,:v) S ß(:c,:z:) for all :1: Q ’D(A), and

R(«\0I — A) is dense in H for some A0 > ß, then, A is the im’initesimaI generator ofa

Co-semigroup T(t) on H satisfying S em.

In the next three lemmas, we check the conditions in Theorem 2.2.1 for the system

(2.1.5)—(2.1.6).

LEMMA 2.2.2. The domain of A, 'D(A), is dense in Z and A is closed.

PROOF: Clearly, H§(0,l) >< H§(0,l) >< H§(0,l) >< H;R(—1·,0;H§(0,l)) is a subset of

D(A), and dense in Z. Thus, D(A) is also dense in Z.

Let 2,, : (y,,,v,,,H,,,w,,)T Q 'D(A). Suppose that

2,, —> 2 = (y,v,Ü,w)T
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and
Un

¢

Az _ €D:(l/n + fÄ),g6w„(—¤)d¤) — 'Yäßn _, ,ß
" -7%,,, + 1,1136,, 5

v,, + Dw,,(s) h

Since v,, —> (#111 H,}(0, I) and v,, —> v in L2(0, I), we have

,6 Z ,, 6 H,§(0,l).

Since y,, —> y in H,§(0,l), w,, —> w in Lä(—1·,0;H,}(0,I)), then

o o
y,, +/ g,(.s)w,,(.s)ds —» y+/ g,(s)w(.s)d.s

in H,}(0,l). This implies that

0 0DZ (11,, +/ y€(-¤)w„(¤)d—·¤) —· @(11+/ y¢(—¤)w(¤)d~·)

in H“‘(0,l). Similarly, we know that %9,, —> ät? in H°1(0,l). Thus

° 8
6D: (y,, + [1-g,(s)w,,(s)ds) — 7%0,,

o
—> 6D; <y + Ä,

g,(s)w(.s)ds) — 7£6

in H"(0,l). But we already know that it converges to 1/1 in L2(0,l) C H"(0,I).

Therefore, it follows that

° 6
1/1 : 6D: (y +/ g,(s)w(.s)d.s) — 7FÜ

-, rv

and
0

y +/ g,(s)w(s)d.s 6 H§(0,l).
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A similar argument shows that

— Ü 14020 4 0 H2f- -75:1 + I an 6 o(0,l).

The closedness of D is established in [14], which leads to

h = v + Dw and w 6 H;R(—r,0; H,§(0,l)).

This completes the proof for the closedness of A. |

LEMMA 2.2.3. If the kernel g satisfies the conditions in section 1.1, then the operator

A is dissipative.

PROOF: For every z 6 ”D(A),

2 0 6
..p V

6 2
+ -7-11 + kDI9,0 + {11 + Dw,w)WÜ2: G
Ö Ü Ö 8

" " i V0

>®
Ö 6— k <%9, $9>® + (v,w)W + (Dw,w)W

6 6
= — — -6 D ,

k<Üz:9” Öa: >@
+< w w>W

S <Dw.w>w
o g¢(8) 8S
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For 6 > 0,R < r, consider

..51

1 1 *6

1S §y¢(—6)(w(-6).w(—6))y~

Since w(—6) = w(0) — fl Dw(s)ds = — fi)6 Dw(s)d.s, by Cauchy-Schwarz inequality,

0 ds 0
(w(-6),w(-6))y S — g¤(—¤)(Dw6 Dw)yd¤-

-6 9«(") -6

Note that

° ds ° y (-6)€(—Ö)/-1-:/—;—d $6.g
-6 gc(‘9) -6

8

It follows that
I

6 0
IM; §

5*/
gs(.s)(Dw, Dw)Yd.s § 0.

-6

If610andRTr,then

(Az,z)Z S
]5_R --6 Ü. I

LEMMA 2.2.4. If the kernel g satisfies the conditions in section 1.1, then the range

o{(Ä0] — A) is all 0fZ [or Ag = 1.

PROOF: For z : (y,v,9,w)T 6 Z, consider the equation (Ä] - A)z = (g0,¢,§,h)T,
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or equivalently,

Ay — v = cp, (2.2.1)

° 8
Av — 6D: (y 4- g,(s)w(s)d.s) 4- 7-5-9 = zb, (2.2.2)

-, ZB

A94-7-gv-kD29=§ (223)

Aw - v - Dw = h. (2.2.4)

From (2.2.1),

v = Ay — cp. (2.2.5)

Then from (2.2.4),
o

w(.s) : e)‘("°°)(v 4- h(z-))d·r

o o
: A/

e’\(’“’)yd·r
4-/ e’)(‘“"”)(h(·r) — <p)d·r. (2.2.6)

From (2.2.3),

9 = (M ·· kD2)°‘(€ — väv)
°° Öa:

= (AI — kD2)-1(§ - 72-cp) 4- (AI — kD2)—1(—-äy). (2.2.7)°’
Öa: ° Ö:

Note that the inverse (AI — kD;)’1 exists for all A > 0 since D: is dissipative.

Substitute (2.2.5)-(2.2.7) into (2.2.2), we obtain the equation

o

o o
Z zb 4- AzpÜ

-1 Ö
- — A - 2 — 2.2.7öx( I 8)
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where we have used the identity Lo Äe’\("")dr = 1 — e"'. Note that the right side of

(2.2.8) belongs to Y“. Now, let A(Ä) denote the expression

2 2 1 0
Äa 2 Ü 2 -1 Ü

A(Ä) : Ä I — 6Dx — — g„(.s)e ds — Ä7 —(ÄI —- kDz) —- (2.2.9)
6 _, Öm Ö2:

which belongs to L(Y, Y*). It follows that Ä 6 p(./1) if and only if A(Ä)“1 6 L(Y‘, Y).

Define the sesquilinear form p. on Y by

l1·(3/1,3/2)Z (A(“\)11113/2)Y•,Y

2 1
0

Än= 21 ds (y1„yz)y
E —r (2.2.1Ü)

2 _ 2 -1Ä ÄÄ7

<(ÄISince||V ||V for some constant cl > 0, and (ÄI is a bounded

operator on V for Ä > 0, we have the estimate that for Ä = oz + iß,a > 0,

I)2(111„yz)| S Gllyillyllyzlly (2-2-11)

where C is some positive constant. Moreover, we have

1Rs12(y„z1)2(¤” — ß2)||yIIv + ;HyI|y„ (2-212)

where we have used

Re (A1 - kD*)"—-qy, ig, Z R6(f (A1 - kD“)f)
° Üa: 7 Üm V ° ° V

8 8

2 0.
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Thus it follows from [Tanabe, Lemma 3.6.1] that A'1(«\) E L(Y*,Y) for «\ 2 0. Ill

particular, it is true for Ä = 1.

Now we are ready to state the main theorem of this section. This result follows

immediately from the above three lemmas and the Lumer—Phillip theorem.

THEOREM 2.2.5. Ifg satisfies the condition in section 1.1, then the operator A

generates a Co semigroup T(t) on the Hilbert space Z.

REMARK: We want to point out that the well-posedness of (2.1.4)-(2.1.5) is proved

in this section for both the finite delay (1* < oo) and the infinite delay (1*

=2.3A Genegal Theerem gn Well-Beseglneee.

In his Ph.D thesis, Miller[15] gave a general theorem on the well-posedness which

can be applied to the viscoelastic system. However, that theorem does not apply

to the thermoviscoelastic problem considered here. With slight modification, we can

generalize Miller’s result so that it can also be applied to the thermoviscoelastic

systems.

Suppose that Y, V, G), and W are Hilbert spaces, and set Z = Y X V X G) X W. Let
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S be a subspace of V, and suppose we have the following linear operators:

G}:D(G})Q®—+V, GO:D(GO)QV-—>®,

GO:D(GO)Q®—>®, C}:D(C})QW——>V,

D:D(D)QW—>W, i:Y—>W, j:S—+Y

Define A, C and G by A : AOA}, C = AOC} and G = AOG}, and define F by

y y6D(A1)96D(G1) w6D(C1)
D F = 9 Y G) W

’ ’ ’
() {(w)€ X X I A12/+G19+C¤w€7?(A¤) ’

y

w

Define A by

y y 6 S rw D(G„),9 6 D(G,,),

- U yD(A) — 9 6 Z w 0 E DU?) , (2.3.1)
w w

jy2 F ( 2)v

1.U Gzy 'I‘ G3Ü

ijy -I— Dw

Finally, suppose that is injective and for Ä 6 p(D) O p(GO), define LA : 'D(LA) Q

Y —> V by

P(L„\) = {y G RU) I E3/

LAy =
„\’j"y — F (Ä! — G¤)"GzÄJ"y -

(Ä] — D)"iÄy

We are now ready to state the main result of this chapter.
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THEOREM 2.3.1. Suppose that

(1) i andj"1 are continuous,

(2) D(A) is dense in Y, S Q D(G3) and S is dense in V, D(G) O D(G3) is dense in

G, and D(C') O D(D) is dense in W,

(3) is closed in Y,

(4) F, G3 and D are closed,

(5) {or v E S, ||G3v]|@ § c[|jv||y {or some c > 0,

(6) there exists ß E R such that (Az,z)Z $ ,ß(z,z)Z for all z 6 D(A),

(7) there exists AD > ß, AD E p(D) O p(G3), such that ’R,(L,\,,) is dense in V, and

(8) (ADI — D)[D(C) O D(D)] is dense in W, and (ADI — D)[D(G) V1D(G3)] is dense

in 9.

Then A is the infinitesimal generator ofa CD semigroup S(t) on Z satisfying §

em.

PROOF: Set D = D(A) X S X (D(G)F)D(G3)) X (D(C')¤D(D)). Then D Q D(A) and

yu

D is dense in Z, so D(A) is dense in Z. For n. : 1,2,..., let g" E D(A), and
wn

suppose g" —> and A ä" = T? —> T? as rz —> oo. Then v„ E

wi, w w„ h„ h

S and jv„ : go„ —> gc. Since is closed, there exists E E S such that jl? = cp. But

j" is bounded, so [li] — 11)] f · Hgp — <p„|| + [[11,, — vll —> 0 as n —+ oo. Therefore,
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A _ _ yu 3/¤ LV
v = v; 1.e., v 6 S and gv : go. Now, 9,, 6 D(F), 9,, —> 9 , and

w,, w,, w

V·· . . V V

w,, w w

Since jv,, —> jv and i is continuous, we have ijv,, —> ijv. We also have ijv,, + Dw,, —+

h. Thus, Dw,, —> h —ij11. But D is closed, so w 6 D(D) and Dw : h — ijy, which

implies that ijv+Dw = h. Next, 9,, —> 9, 9,, 6 ’D(G3) and G3v,,+G39,, = {,, -> By

(5% |lGz(v» — v)l|@ S k |li(v„ —v)lly = kllivn —iv|Iy —· 0, S<> Gzvn ·· GW, Whi¤h

implies that G39,, —> { — Gzy. Since G3 is closed, 9 6 D(G3) and G39 = { — G311, or

(P

{ = G312 + G39. Therefore, A is closed. Finally, let lg .L 'R.(»\0I -— A); i.e.,

h

_ 3/
(s¤,«\¤y -1v)y + 1/wlov — F 9

w v

+ (é, —‘ — G3v)@ +
·‘ — Z 0

3/
y

A ·-1

for all U 6 ’D(A). Let y 6 ’D(L,\ Then
0]

1
y

. 1 6 ’D(A), so

·'U

<1b,»\§j“‘y — F (Äol — G3)“1Gz«\¤j"y

>

= (¢,Li,,y),, = 0 for all y 6 ’D(Li„),

(ÄOI 1,

which implies 1l: = 0 by If y = 0, v = 0 and 9 = 0, then (h,(«\„I — D)w)W : 0

3./

{or all w 6 ’D(C)O'D(D), and hence h = 0 by Now for y 6 6 D(A),
0

so (ep,«\0y)1„ = 0 for all y 6 D(A). By (2) this implies that cp = 0. inally, for
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0
19 6 D(G) V7 ’D(G3), 6 D(A), so (§,(«\„I— G3)6)@ = 0, which implies that

0

{ : 0 by Therefore, ’R(6\0I — A) is dense in Z, and this completes the proof. |

We wish to apply this theorem to thermoviscoelastic systems (1.1.1) — (1.1.3). Using

the state space formulation in section 2.1, we fit this problem into the frame of

Theorem 2.3.1. Let S Q Y be given by S = H,}(0, 1). Define the following operators:

D(A,,) = H‘(0, 1), /1,,11 = 61/6 V,

’D(A,) = Y, A,y : y' 6 V,

D(G,) : o, 0,6 : $6 6 V,

D(G2) = H‘(0, 1), Gzv = -71/ 6 (9,

D(G3) : H,}(0, 1) O H2(0, 1), G30 = k0" 6 9,

D(C,) : W, Clw :
/0

g,(s)u/(s)ds 6 V,

[iy](s) E y 6 W, j : Hä = S —> Y = Hä is the identity operator.

With the above definitions, we have

’D(A) : HQ O H2, D(C) : L§(-1·,0;D(A)), ’D(G) : H‘(0, 1),

and therefore, the operator A defined by (2.1.2)-(2.1.3) is in the form (2.3.1)-(2.3.2).

We now verify the conditions of Theorem 2.3.1.

(1) Clearly, i and j’1 are continuous.
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(2) Clearly, ’D(A) is dense in Y, S Q D(G3) and S is dense in V, D(G) O D(G3) =

D(G3) is dense in G, and D(C) V) ’D(D) = H},(—r,0;'D(A)) is dense in W.

(3) Since: Y, is closed.

(4) We already know that D is closed. It is easy to see that G3 is densely de-

fined and dissipative, and for any <p 6 G, there exists 9 6 D(G3) such that

yn

(I — G3)9 : cp (see [8, p. 147]). Thus, G3 is closed. Let (9,,) 6 D(F),
wn

yn y yu yn
(9,,) -1 (9),andF 9,, :1/1,,-+1/1. Observe thatF 9,, =

w,, w w,, w,,

d
eä (yf, — g9,, 4- fB,g,(s)wf,(.·1)ds). Now, y,, —> y in Y implies that yf, —+ y'

in V, 9,, —» 9 in G implies that 9,, ——> 9 in _V, and 111,, —> w in W implies that

fi g„(s)w;,(s)ds —> fi g€(s)w’(.s)d.s in V. Thus, yl, — 19,, + fi g,(s)w:,(s)d.s
6

—> y' — 19 4-
fi), g,(s)w'(s)ds in V. Since A3 is closed, F is closed.

6
2

(5) It is easy to check that ]|G311||é : Set c = (/7; > 0.

(6) For z : (y,11,9,w)T 6 ’D(A),

1 1 d 7
0

(,Az,z) :
6/A

11'y' 4-/ (yl — E9 4- g,(s)w'(s)ds) 11
0 0 —-r

1 0 1

0 —r 0

: k (G39,9)@ 4- (Dw,u1)W § 0

since G3 and D are dissipative.

(7) We will take A3 = 1. Let y 6 'D(L,). If we set w(.s) = (1 — e')iy, then
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(I — D)w = iy, so (I — D)'1iy =(1— 6‘)iy = (1 — e')y. Note that

111-1:-6E 1: +—;( — 3) 1: + y1(¤)(1—e )yd¤

d 2
= y — EE (611/ + %(! — G3)'11/) 1

1 0 A 1 0 Awhere 6,1 = E
[6 — f_rg(s)(1— e ')ds[ = — [rx + f_r g(s)e 'ds[ > 0 for Ä >

6

0. Since Y Q V, we can think of L1 as being defined on a subspace of V.

Observe that D(L1) = [11 6 1) | 611:’ 6 H1} is dense in

V. Define the operators T1 and T2 as followsc

'D(T1) = H‘(0, 1), T11: = v',

'D(T2) = H1}(0, 1), T2v = 1:,.

Note that T1 and T2 are adjoint to each other. With this notation we can write

L1 as followsz

,,2

Since G; = G3, we have [(1 — G3)"]” : (I — G3)“‘.
Thus,

. Q „ 72 -1 * -1
L1 Z I —· ZT2 611+ G3) T1

,,2
Z I —· T2 Z
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that is, L1 is self-adjoint. Now, for v E ’D(L1),
‘ d

(11,11),, — 6Ä E)- (611/G3).

: ||1i[]f,+ ef (611/ + §(I — G3)"1/) 1/

= Ilvlli 2 Ilvllt

since I — G3 2 0 implies that (I — G3)“1
2 0. Thus, L1 is one—to-one. Hence

by Theorem 13.11 in [21], ’R(L1) is dense in Y.

(8) Since D(G3) Q D(G), we have (I - G3) [’D(G) O ’D(G3)] = (I —— G3)D(G3) =

(9 from (4). Next, for h 6 D(C), if we set w(s) = e' f_°e‘°I1(1r)d¤, then

w 6 H}1(—r,0;D(A)) = D(C) V) D(D) and (I — D)w = h. Thus, D(G) Q

(I — D) [D(G) V) D(D)], and D(C) is dense in W.

Since (1) — (8) hold, A generates a C3 semigroup on Z.

REMARK: This theorem can also be applied to the case of boundary condition (1.1.4).

The only thing that needs to be changed in the above proof is ’D(G3). Now we define

the operator G3 by

D(G3) = {0 [0 6 H’(0,l),B-0(t,0) = —Q—0(t, 1)}
6:6 61:

G3(0)=It

is easy to see that G3 is self—adjoint and dissipative. Therefore, the proof of the

well-posedness of the system (1.1.1)—(l.1.2) with the boundary condition (1.1.4) goes

through directly by following the above proof.
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2.4In

this section, we study the asymptotic behavior of the thermoviscoelastic system

(1.1.1)—(1.1.2) with the boundary condition (1.1.3) or (1.1.4). Since the existence of a

genuine memory and the heat dissipation induce a damping mechanism, asymptotic

stability is to be expected.

A general discussion of stability for infinite dimensional system can be found in[18].

Suppose that we have a linear system

d 2(O) = 20 6 Z (2.4.1)

where Z is a Hilbert space and E is the infinitesimal generator of a C'0-semigroup

S(t),t > 0.

DEFINITION 2.4.1. System (2.4.1) is said to be asymptotically stable ii, for every

initial condition 20 6 Z, the corresponding müd solution 2(t) —+ 0 as t —> oo.

DEFINITION 2.4.2. System (2.4.1) is said to be exponentially stable if for every

initial condition lg 6 Z, the corresponding mild solution 2(t) —> 0 exponentially as

t —> oo.

The next theorem is proved by S. Hansen]to appear].

THEOREM 2.4.3. The thermoelastic system (1.1.5)-(1.1.6) (i.e., g E 0 in (1.1.1)-

(1.1.2)), with the boundary condition (1.1.4), is exponentially stable, and the real

part ofits eigenvalues corresponding to (1.1.1) tends to -7; asymptotically
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The coupling coeflicient 7 is small for existing materials. For example, 7 2 0.01 for

aluminum. Therefore, the mild solution of above thermoelastic system tends to zero

very slowly. Physically, this means that the pure thermal damping is weak, although

it leads to an exponential decay rate of the vibration in the elastic bar. The system

is energy conservative, and all mechnical energy will be transfered to heat energy

eventually. At the equilibrium, y = äy = 0, 6 : 90 + C, where C > 0 is a constant.

If the boundary condition (1.1.3) is considered, the energy will be absorbed through

the end of the bar. Thus a better decay rate is expected. However, this has not been

confirmed yet.

THEOREM 2.4.4. The viscoelastic system {7 : 0,r = oo in (1.1.1)), with the bound-

ary condition (1.1.3) is asymptotically stable if the kernel g satisfies

(1) 9 S 0 90 (—<><>»0).

(2) 9' S 0 90 (—<>¤„¤)„

(3) oz + ffw g(s)ds > 0.

Pnoor: See [8].

Hannsgen and Wheeler noted in [12] that exponential stability can be achieved

under the hypotheses of above theorem and the additional condition that g is concave.

Now, we state our main theorem for this section.

THEOREM 2.4.5. The thermoviscoelastic system (1.1.1)-(1.1.2) with boundary con-
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dition (1.1.3) or (1.1.4) is asymptotically stable if in addition to the conditions in

section 1.1, the kernel g also satisfies

(1) lim,..,,,„, .s2g(s) § oo;

(2) g'(s) 76 0 in -0 < s < 0 for some 0 > 0.

We will prove this theorem later. First, assume the initial displacement and tem-

perature (y(s), 9(.s)) E C3([-v·,0]; Y) >< C3([—r,()]; 9). Then by [16, Theorem 4.3], the

mild solution (y,9) of system (1.1.1)-(1.1.2) belongs to C3([0,T];Y) >< C'3([0,T]; V)

for any T > 0.

Define the functions

1 81+1 2 öl 2 81+1 2
Z — —19 —- 2.4.2<ÖHÖTy)0

1 81+1 öl+1 2
+ 9.0) [@110) — @110 + 8)] d=·=d¤» 1= 1% 1»2·

LEMMA 2.4.6. The functions F}(t),l : 0,1,2, are nonnegative and nonincreasing.

PROOF:: The nonnegativeness of F;(t),l = 0,1,2 is clear. Define

6 6+1 6 6 6 T

for l = 0,1,2. Note that they satisfy (2.1.1). Therefore, by Lemma 2.2.3, we obtain

E(1) : 2 (2(‘),z(’))Z : 2 (Az(’),z(’))Z 5 0, 1: 0,1,2.
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PROOF OF THEOREM 2.4.5: First, we consider the boundary condition (1.1.3). We

prove that lim,..,„ F0(t) exists and equals zero. By a straightforward computation,

we have

2 1 6 6
’ 63 ’

6 2
F„(t) Z 2Ä {E + + dä!}

1* 1 6 6 6 22 T gc(·3) [E; (wu) — %?J(t + dxdß
‘ 63 6 6 63 6 63

2A {€ä*£;(ä3/)ä3/ + (ägl/)äy + (EEÜW} dw

°
‘ 63 6 6 6 6+

2ApplyingHölder’s inequality to the last two integrals yields

lFo(t)l S 2 [F10) + Fo(t) + Fz(t)i t2 0-

By Lemma 2.4.6, it follows

F„(t) 5 2[F1(0) + F„(0) + F„(0)] S G (2.4.3)

for some C > 0. Then we have

F6(*)Fo(*) S lFo(¢)llFo(t)l S —GFo(*)

and

Ä [5 (F„(t)) + CF„(t)] : F„(t)F„(t) + CF„(t) 5 0, (2.4.4)

1 . 2

E (F„(t)) + CF„(t) 2 0. (2.4.5)
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Inequalities (2.4.4)-(2.4.5) imply the existence of Sim-

ilarly, lim,..,„ F„(t) exists. Thus we obtain the existence of ]im„..„, F0(t). The last

limit must be 0 since F„(t) 2 0 and F„(t) § 0.

In the proof of Lemma 2.2.3, we can integrate by parts to obtain

0 1 Ö Ü 2 1 6
(Az,z)Z = —

[fl!
g'€(3) [%y(t) —— 5-;y(t + 3)) dmds — kl (%H)2d:z: (2.4.6)

if the integrals exist. This is guaranteed by our additional condition (1) on g. Note

that both terms on the right side of (2.4.6) are nonpositive. Thus lim,_,„ F0(t) : 0

implies
0 1 Ü Ö 2

,11,112:
ÄMÄ

g'€(.s) [%y(t) — :9;-y(t -1- 3)] dxds =

0and

1 * Z . „lm
/1( Ü 9)2d:z: 0 (2 4 8)

t——+oo 0
6];

By the Poincaré’s inequality, there is a ß > 0 such that

/1
Hzda:.

o öß
—

o

Thus (2.4.8) yields

HHHG ——> 0 a3 t —» oo. (2.4.9)

TO pgove that ||y||,, ——> 0, and Iläyllv
—> 0 as t —> oo, we use (2.4.7) and the condition

(2) on g, and follow [16] exactly. By a denseness argument, the proof is completed.

For the boundary condition (1.1.4), the limit in (2.4.8) implies ||9(|® —-+ 90 + C for

some C > 0.



Chapter III Approximation

In this chapter we present an approximation scheme for the thermoviscoelastic

system. We prove the strong convergence of the approximating semigroups TN(t).

We also prove the strong convergence of the approximating adjoint semigroups TN"(t)

under the restriction that the kernel g(6) is a L2 function.

3.1 g Approximation Scheme.

In order to approximate the system (1.1.1)-(1.1.3) by a sequence of ordinary dif-

ferential equations which can be solved numerically, we need to discretize the spatial

variable z and the delay variable 6. This suggests a two-stage approximation,

seeFirst,for each positive integer N, let YN, VN, GN be the finite dimensional sub-

spaces of Y, V,G, respectively. We shall use spaces of spline functions. Let WN =

L;(—r·,0;YN) C W, and set ZN = YN >< VN >< GN >< WN with the norm induced

from the Z—norm. We define AN : D(AN) Q ZN —> ZN by

1>(AN) E VN X VN X oN X H;„(—r,0;1·‘N), (3.1.1)

y" UN
AN vN : ¤Arlz/N vßfvß"

9N (3.1.2)
WN vN —+— D_gwN

34
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whereA1:Y—>l/Q /12:C-)-+C·), D1:C-)—>V,and D2:V-G)aredelinedby

: - — -v . .(A v)
6 6

f ll V (3 1 3)13/1 V 61: V
Or a U €

(A99) — ä9£9 f ll 9 C) 314)2,16)-
öx,öx1®

OIH.1E.Ü

(D19,v)V = — 9,——v for all v 6 V (3.1.5)Ö2: V
Ü

(D2v,9)6, = — v, -9 for all 9 6 C-). (3.1.6)Ü2: 0

Thus, we have the Cauchy problem for a differential-delay equation

z”(¢) : A^’z^’(t). (3.1.7)

For each positive integer M partition the interval [-1-, 0] into subintervals [ty, tgl],

j : 1,2,...,1tI, where

-:tß’<tß_,<·-·<t§”<t{,"=0.

There are several approximation schemes for differential-delay equations in the litera-

ture. Here we will use the averaging scheme, which approximates the history function

by a finite number of piecewise constant functions. The uniform—mesh AVE scheme,

i.e., ty = -1,% forj = 1,2, . . . , M, does not show a fast convergence. Recently, Ito and

Fabiano[14] suggested a new averaging scheme using nonuniform mesh, which is nu-

merically superior to the old one. Later, Miller[15] applied this to the approximation

of the viscoelastic system, and proved the strong convergence of the approximating

semigroups. We will show that it also works in our thermoviscoelastic case.
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Set cry E tx, — ty forj : 1, 2, . . . , M, let denote the characteristic function of

[t?',t%,) for : 2,.. . , M, and let Ey denote the characteristic function of [ty,0].

Let Bf“(t), i : 0,1,...,M be the usual linear spline functions satisfying :

6;,. Define the finite dimensional subspaces WN'M and WNM of W by

M
WN·ME{w€Wlw: Zaf”Ef”, af”€XN},

(3.1.8)
WM; {we wlw: gbgwßy,{:1

Define the operator [3N*M 2 WN·M —> wN·M by

~MM MM
’" 1 M M M

;=1
·

M _ ~
where wN·M : Zbf”Bf" and bg! : 0. Consider the isomorphism 1N*M 2 WN*M —>

i=1

w^'·M deabed by
M

;=1

New define DN·M ; w^'·M —» WN·M by DN·M E ÖNM (iN*M)—1. To complete the

apprgximatign, Set ZN·M : YN x VN x G·)N x WN·M with the norm induced from the

Z norm, and for zN·M : (yN,vN,9N,wN*M)T E ZN‘M, define

ANM MM (3 i 13)Z * —·yD3vN + kA29N _ I i {
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M
If wN·M then

i=1

UN
M vD19”

N,M 1v,M _ ‘=1
A 2 —— (3.1.11)

N M 1 M M MU ws )Ea
i=1 '

M - tx:where Z LF, g€(s)ds.

Note that

2"·M(t) Z A"·Mz”·M(t) (3.1.12)

is a linear system of ODE and {AN·M} forms an approximation sequence for A.

3.2 Convergence QL}; semigroup.

In this section we show that the operator AN·M generates a Cß- semigroup T”·M(t),

which converges to T(t). Consequently, the solution of (3.1.10) converges to the

solution of (2.1.1) with the appropriate initial data. The main idea in our proof

comes from [14],[15l.

First, we state the following version of the Trotter—Kato theorem[17]:

THEOREM 3.2.1. Let A E G(M,ß) be the infinitesimal generator ofa Co semigroup

T(t) on a Hilbert space Z. For rz : 1,2,. . . , let Z" be the finite dimensional subspace

0fZ such that P" ·i> I as n —> oo where P" is the orthogonal projection 0fZ onto
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Z". Suppose

H1. A" E G(IlI,ß) is the infinitesimal generator ofa Co semigroup T"(t) on Z" for

n = 1,2,....

H2. For all z E Z, there is a A with Re»\ > ß such that (2\I—A")_1P"z —>

(Ä] — A)—1z
as n ——+ oo.

Then for al] z E Z, T"(t)P"z ——> T(t)z as n —> oo, and the convergence is uniform on

bounded t-intervals.

We also use Miller’s assumption[15] on the partitions of [—r,0]:

A) For each positive integer Il/I let PM = = 0,1,...,M} be a partition of

[—r, 0] satisfying (3.1.3), and set AM E {1, 2, . . . , M, Then there exist positive

constants 61, 62 and C independent of ll/I such that AM = AM U Ay, where

AM Z {j 6 AM [ QM g 1·M·<*+€¤>/2}.

Ifj 6 Ay, then (g,,)y § and AM contains at most
M1’€“

elements of AM.

Furthermore, aM1(g,,)y § (g,,)M1ozy forj = 2,3,...,M, and ifj E Ay, then

1, 2,...,j - 1 6 AM.

For the remainder of this section we will assume that we have a partition which

satisfies A). The next lemma shows that our approximation sequence .AN‘M satisiies

the condition H1.

LEMMA 3.2.2. The operators ./1N*M belongs to G(1,0) for al] N, M.
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PROOF: It is sufficient to show that AN·M is dissipative in ZN·M. Let zN·M =
M

(yN,vN,9N,wN·M)T with wN·M Then
1:1

o
Z 2+- <€A1(yN

+
U/1

g€(s)wN‘Md8),T/N>

— ·y(D19^’,v”)U + (—1D,v^’ + kA,9",0”)U + (v" + DN‘MwN‘M,wN'M)w

6 6 6:NN___N____N_N,MN____NN(v ,11 )Y €<ö$3!
,62:12 )V (w ,12 )„, ·r<öx9 ,v )V

+7 UN ÄQN _k ÄQN ÄÜN + (UN wN,M> + <D1v,Mw1v,M w1v,M>’
Ö1: U Öm °Ö:c G

’ W ’ W

Z _k _?_9N ÄÜN
+Ö1:7Öx

6
’ W

< <D1v,Mw1v,M w1v,M>
; )M

16 E W(g,)M <wM1 — wM,w{">Y
;:1 *
M

(gc)? 2S Z——(,,„ [||wM1Il1·||wM1I1 —¤¤«~1‘¤1,] .
{:1 "

1
M

(ge)? 2 2S 5 Z --6,,. [1111*111. —1¤~»1“¤1,]
{:1

‘

1 MA 2 (QJM (QJM 2
5 Hwhflly · — llwülly jr? S 0

UZI 1+1 1 M

where we used the Cauchy-Schwarz Inequality and the inequahty 2ab §_ az + bz, and

(from A) the fact that (g,,)f‘i1/ozxl § (g„„)f”/6zfM for i = 1,2,...,AI —- 1. |

Let be the orthogonal projections of Y,1/,6), respectively. Assume

that each of them converges to the corresponding identity operator. Let P§·M be

the orthogonal projection of W onto WN'M. By Lemma 3.1.5 in [15], —+ h



40 ·

for all h.
€

W as N,M —> oo. If P;’M denotes the orthogonal projection of Z onto

ZN’M» then tet Z = (1/»”»9»w)T e? Z»

PSLMZP;'Mi—>I66 N,M Z- 66.

Now, for 2N*M = (yN,vN,9N,wN·M)T 6 zN·M and A = 1, consider the equation

(AI — AN‘M) zN'M = (<pN,1bN,{N, hN•M)T, Or equivalently,

yN — vN : (aN, (3.2.1)

0 vD19” (3-2-2)

6N + Up,UN Z 1UA,6N Z gN (3.2.3)

U)N~M Z vN Z DN·MU)N·M Z hN·M. (3.2.4)

From (3.2.4), wN·M = (I — DN·M)_1(hN·M + vN). The inverse exists because the

operator DN·M is dissipative. From (3.2.3), HN = (I — kA2)—1({N — 7DgUN). The

existence of the inverse is also guaranteed by the dissipativeness of the operator A2.

From (3.2.1), vN = yN — <pN. Substitute vN,HN,wN·M into (3.2.2), we obtain

0 -1 -1
[I —- 6A] (1 -1-/ g„(s)(I — DN'M) ds) —72D1(I — kA,) D2} yN

0

= nb" +
<p” — EA1 gU(—·)(! — D”‘M)_1(s¤” — h”'M(¤))d¤)

Z U0.(1 Z 14A„)·‘(gN + 1D„«p^’). (3.2.5)

On the other hand, we compute an explicit expression for fi g,,(s)(I — DN'M)_1ds.
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M M
Let wN·M and hN·M : Then (3.2.2) and (3.2.4) become

{:1 {:1

vN—6A yN+§:(g )MwM -1-72-9N:z/1N (326)1 E ‘ g 6 6

16615** - 6/* - ;„(6„5*, - 6615**) : 165** for 6: 1,2,...,M. (3.2.7)

From (3.2.7)

1+l w?":lw?"
+v”+h1”

ay 1 afpf 1-1 • 1

or

wfw : (1 -1- o6gI)—1[wg£, -1- o1f”(vN -1- for i : 1,2,...,M,

where wg! : 0. By induction, wg! : ij (1 -1- c1{")—1] o1g[(vN -1- Substitut-
16:1 1:16

ing into (3.2.6) and comparing with (3.2.5), we get

0 *1 M 6
g.(6)(1 — DM') ds :1+ Z(g.)5” 1+ H (1 + af') .

·" 6:1 16:1

6 6 _, 6 _, _ M
Here we used E (1 -1- ag!) ]oz¥ :1- H (1 + ay) . Then, since =

k:l {2:}: Ic:1 {:1

1 ° 1
‘

—; g(.s)d.·1 :
E

— 1, we define

o
AN*M(1): I — 6111-/ g(.s)eM(1,s)ds} — ·y2D1(I — kA2)'*D2, (3.2.8)

6 -7*

where
M 6 1e**(1, 6) : E (H (1 + «155*)‘ )E5**(„). (3.2.9)
6:1 16:1
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Now, (3.2.5) becomes

o

- ·y2D1(I - kA,)"(g^’ + DW")
(3.2.10)

The next two lemmas can be found in[15].

LEMMA 3.2.3. For A > 0, (AI —
DN·M)_1 P,IV‘Mh —-» (AI — D)"h for all h 6 W.

LEMMA 3.2.4. For A > 0, fi g€(.s)|e’\‘ — eM(A,.s)|d.s —+ 0 as M —+ oo.

LEMMA 3.2.5. For allzlv E V, — /cD§)—11,b — (I — kA2)—11’/iHv ——> 0 as N —»

0, where {I1 : PVV1/1.

PROOF: Let (I — kD§)‘11,b = v, (I — kA2)‘11/I:
= vN. Then

(v,r)V — k(D:v,r)V = (1b,r)V forall r E V (3.2.11)

(vN 1*N) + k —ävN -ärlv = 1·N> forall ^rN 6 VN. (3.2.12)
° VN 8:0 ° Ö1: VN

’ VN

Choosing r = rN in (3.2.11), and using the fact that (gb — 1,I1,rN)V = 0, we have

(ÜN — vN, rN)V — k(A2(UN — vN),rN)V

: — + (Ü — v,1·N)V (3.2.13)
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for all rN 6 VN, where BN = Pßrv. Pick rN = GN —— vNin (3.2.13), then

»~N N 2 k »~N N 2llv -2 llV+;H2 -2 HY
: k -— (GN — v,5N — vN),,

k A A A AS ; H2" · vlly ||2” — 2”||„» + H2" — vllv H2" ·
2”\|V

k A A AS (;l|2" — vlly + ¢1||2” — vllv) ||2" — 2”||Y·

Now it is easy to see that IIÜN — vN||Y —» 0 as N —+ oo. Therefore, Hv — vN))Y _§

Hv —— ÜNHY + IIÜN — UNHY -+ 0 as well. Since §_ C1 for some cl > 0, we also

l1aveHv—vN|IV—>0asN—>oo. I

We are now ready to prove that our approximation scheme satisfies the condition

H2) of the Trotter-Kato theorem.

LEMMA 3.2.6. For all z 6 Z, (I — AN·M)—1P;’Mz —+ (I — A)°1z as N,M —> oo.

PROOF: Define the bilinear forms and on Y by

l!·(3/1,1'J2)E<A(1)3/1»3/2)v,

12M(y1,yz) E (AN‘M(1)y1,yz),,„

where A(1) is defined by (2.2.9) with «\ = 1. Then for y1,y2 6 Y,

1 0

u(y1,yz) = <y1;y2>V + (E —/ 2°'g€(¤)d¤) (y1,yz)y

2 - 2 ·‘Ä
Ä+ 7 <(I kDx) özy1,özy2>V (3.2.14)
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and

M 1 11 M

- 6
*1** 72 Ag)

v

Thus, we have

O

IuM(y1,y2) - #(y1.y2)I S Iv' — ·=“(1.0)Id0)I1y1II3·IIy2)||y

72 - 6 -*2 1112 ‘ D1) 1%** ‘ (2 ‘ 2*1 12****116
"*’”"*‘ (3.2.16)

Moreover,

Ä! 2 1
0

M 2 2 -1 8

I1 (21.11): +7 (T—A2) Day.-11
6 _, öac V

and if (I — A2)_1D2y = f, then

v

- 2 Ä
1—llJ1llv + 2 0.

Since w : — fi g€(.·s)eM(1,s)d.s> > 0, we get

#“(z1.y)2 l|y|lÜ» +<vI|y||1· (3-217)

For z : (ep,¢,§,h)T 6 Z, let (I — .A)°2z : (y,v,9,w)T, and (I ·— AN·M)'2P;’Mz =

(yN,vN,0N,wN·M)T. Then, by (2.1.4), for all u 6 Y,

— Ä
11

1 D ‘* 11 61 Ä#(11.62) — (2/2 + sv,¤)1» + 6 (sv — (2)) 3),69:071 V

- 2 ·* Ä Ä-1- 7 <(I (3.2.18)
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and by (3.2.15),for all u.N E YN,

0
_D1v,M·1 1v_ 1v,M ÄN

+ 6
ax

g€(s) (I ) (cp h (s)) ds, öxu
—r V

+ 7 ((1 (511 (3.2.19)
V

where (<pN,¢N,§N,hN‘M)T = P;'Mz. Let
”3]N

= P{Ny. Taking u = uN in (3.2.18), it

follows that

MM (ÜN —yN„MN) = MM (ÜN„MN) —MM (y„MN) +MM (y„MN)

— M (MN) + (M — MN»MN)V + ((M — MN) »MN)V

Ö °
6

+ s(g/ ads) [UUI_,, I V

+ 7 (U U (6N + ‘vDzMN) „ÄMN> —
ÖM GM V (3.2.20)

Now, by (3.2.17), w IIÜN
— yN[[; S MM(§N — yN,§}N —yN) and setting uN : ÜN —yN

in (3.2.20) we obtain the estimate

MM(ÜN —yN„ÜN —yN) S[MM(ÜN+

[MM(y„ÜN —yN) —M(y„ÜN — yN)I

+ C1 [IM — MNIIV IIÜN — MNIIV + [IM — MNIIV [IÜN — MNIIV (3-2-21)
0

+ g.(s> [[<1 — ums — h> — (1 — D"·“>·‘P$·“(s — d>[[, ds [Id" — d”[I,„

Ü - ,„
+ gg; Hu — IMDÄYI (E + 'IEM) — U UN UNIIV
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where we have used § From (3.2.14), the first term on the right-hand

side can be estimated as

)u“(§” — 9.üN — y”)I
E C2

\I§” — y1I,·lI§” —y"IIY for some cz > 0.

From (3.2.16) we have

O
3/N) yN)I S/ 948) \@' — 8M(1,8)| d8·IIyHy·|IüN — yNH,,

*1 Ü 2 -1v

By Hölder’s Inequality it follows that

0 .
948) Hu 5 D)-l(<P · /1) — (I 5 DN’M)-1/°1$'M(<P — /1)HY </8

0 1/2

6 (f g.<2>d2) (lu — 121**62 — 1) -

0Hence,we obtain the estimate

^N N 1 ^N
0

s M

Ily — 21 HY S 5 C2 llv — yll,2 + 948) l8 — 8 <1„8)I 88 llylly

-7- 2 -1 Ö A -1 . N N+5 (1-1).) 5521%/- 2) D21) v+81(I\¢—¢ llV+|\<P—¢ IIV)
0 1/2

Hu — D)°‘(<1= — h) —(1_

6E
I v (3.2.22)

Inside the bracket of the right—handside of (3.2.22), as N, M -> 0, the first term -2 0;

the second term -2 0 by Lemma. 3.2.4; the third term -> by Lemma 3.2.5; the fourth
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term —> 0; the fifth term —+ 0 by Lemma 3.2.3; the last term —» 0 also by Lemma

3.2.5. We conclude that — yN||;, —> O. Therefore, Hy — yNHY + — yNl|Y —> 0

as N,M —> oo. Now, ifv =y—<p and vN =yN-(pN, then

Ilv — v"||V S§_
—>0 as N,M —> oo.

Next, 9 == (I — kD;)'1(§ — 7äv) and GN = (I — kA2)"(fN — ·yD2vN) implies

H9 6 "Nll® S HU U

7 (1 (1 Z ||(1 - kA,)·‘|| - H0 -» 0I Üa: Üa: 0 6 Y

as N,M —> oo, where Ü : Pévv. Finally, (I — D)w = h +v = /L-4-y — (p, and

(I — DN·M)wN·M : h.N·M + yN cp) + yN. Thus,

uw « w”·“11.„ 6 ||(I — D)“1(h — «»> — (I — II"·“>*‘P„’Z·“(h — «»>HW
0 1/2 N+ (/ g.(s>«I«·) 1I(I - I>>"II · Hy - I IIY

+ HU ‘ D)-I?/N ” U ‘ DN”M)—1PVI:”MyNl|W “’ 0

as N,M —> oo. |

The main theorem of this section, Theorem 3.2.7, is a direct consequence of Lemma

3.2.2, Lemma 3.2.6 and the Trotter-Kato theorem.

THEoREM 3.2.7. For all z E —> T(t)z as N, M —+ oo, uniformly on

bounded t~intervals.
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3-3 9.f LMAdiomtAs

we have mentioned before, for the approximation of the regulator problem the

strong convergence of the adjoint semigroup generated by A" is crucial to the right

approximation of the gain operator. In this section, we show that our approximation

scheme also gives the desired convergence (TN·M)*(t) —i> T‘(t). This is obtained under

the additional assumption Q L2(—1·,0).

First, we compute the form of the adjoint operators A" and (AN·M)‘.

THEOREM 3.2.1. The adjoint of.A with respect to the norm is given by

y o
+ d 6H’0,l, 6H‘0,l

DUV); Z
€Z‘y f_,w(¤)—¤ „( ) v „( )’

w
8 6 H§(0,l), w 6 H;L(—1·,0;Y)

—’U

+ fi w(s)ds> + 7äÜA‘
= -Ü
_

7§;'l1 + kD§9
U} —y.(¤)v — äw

PROOF: Let (y,11,9,w)T Q 'D(.A"). Then there exists (<p,¢,f,h)T Q Z such that

Ü y Ü 5,
E U - E<^6*9>r<6”<>
111 w ZE 111 h Ze

3/ ¢

for all 2 = (y,i1,Ö,1’I1)T Q D(.A), and this implies
A‘

Z = I? . Now, we write

w h
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(1p,1,b,§, h) in terms of (y,v,0,1u). From (3.3.1), we have

- , _ ° _ 6 -(v„11)y + 617, 11 + 11¢(¤)w(·¤)d¤ ,11 - 1-9,11
-, Y Ü2: V

0— <’Y£Ü,0> +/ <11 + gü1(s),w(s)> ds
0 —·· ·’

Y
o

= (1),1,6),, + (i1,1,l1),, + (19,§)® -1-/ (ü1(.s),h(.s))Yd.s. (3.3.2)

Let 11 = Ö = 111 : 0. Then (6D§1'],v),, =(17,<p)Yfora1l17 6 K = {y I (y,v,H,w) 6 'D(./1)}.

But, (1],1,6),, : 6(ääy, -,%;,6),, : - (6%;},16),, , so (6§;y,v + ,6)V = 0 for all y 6 Y].

Since {%§ I 17 6 K} is dense in V, we get

cp : -11 6 Hé((),l) (3.3.3)

Set 17 = 17 = 111 : 0 in (3.3.2), then (—·yE&Ö,v)V + (kD:Ö,9)® = (Ö,§)@ for a.11Ö 6

H§(0,l). Since (—·y£Ö,v),, = (Ö,·y§_;11)®, and (kD§Ö,0)® = (Ö,k—§;H)@+k(§£Ö)0Iß

{or all Ö 6 H§(0, l), which is dense in G, we have

Ö z19(O) = H(l) = 0, g : yägv + kD,6. (3.3.4)

By (3.3.3)

eD2 ° -I—
0

(s)111(.s)d.s vgIy
—r

gc 7
V

_r C Yöz
V

O

= (11..g¤ Y
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Substituting into (3.3.2) we get

- ° - Ü —
ds

w(s) ds
Öm Q ° G _, Üs l

Y
_ 0

= (ü.¢)v +
(9„€)®

+/ (ü>(8)1h(~*))y d·*—

Let Ö : 111 : 0. Then (11,y)Y + (—·yä‘ä11,9)V + fi_(11,w(a))Y ds == (11,1ß)Y for all

11 E H(§(0,l), which implies

0 Ö
<11, -6D: (y +/ w(s)ds> +

·y§—9> : (11,1/1),,, forall 11 E H§(0,l).

Since H(}(0,l) is dense in V, we obtain

° Ü
Ill : -6D; <y +/ w(s)ds) -l- 7ö-gd. (3.3.5)

Finally, set iz : 11 : Ö = 0 in (3.3.2) we obtain

0 _ 8 _
[(w(.s),g€(s)11 + h(s))Y — <äw(.s),w(s)> ]d.s = 0

..«r Y

for all 111
€ HgR(—r, 0; By the Fundamental Lemma of the Calculus of Variations,

1 Ü
w 6 HgL(-1*,0; Y), and h(.s) = ——g((s)11 — äw(s) (3.3.6)

Combining (3.3.3)-(3.3.6), the proof is complete.

THEOREM 3.2.2. For 2N*M : (yN,vN,9N,wN‘M)T E ZN‘M

—EA1 (11N
N N Y

·yD211 + kA29

—g„«1" — ZX. ;§w(w£" -
w£”i.)E!”
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PROOF: The proof is analogous to the proof of last theorem. Let (y", ÜN, ÜN, wN'M )T

6 ZN·M. Then, by Rietz theorem, there exists (<pN,1l2N,§N,hN·M)T 6 ZN·M such that

til yfi äii ri
<A^’·"’

äN , gw =
<

gw „ °§N
>

(3-3-7)
,ü)N,M u)N,M

Z Z

U
‘P

for all E = (Ü,Ü,Ü,Ü1)T 6 'D(.A), and this implies A' : lg) , for all

w h
2^’·M Z (y”,6N,ö”,w^'·M)T 6 Z"·M. It feuews that (A^’·M)*(y”,v",0”,w"·M)7 Z

(<pN,1/1N,§N,hN·M)T. From (3.3.7), we have
0

(ÜN,yN),, + <6A1 (ÜN +/ g6(s)ü1N*M(.s)da> ,vN> —- (·yD1ÜN,vN)V
-,•

Y

0
— (·yD2ÜN,ÜN)® +[ (ÜN + DN‘MwN'M(s),wN'M(s))V ds

0

= (i/"„«¤^’>Y + (v".w^’>,, + (9^’,£")G, , +/ (ü»"·M(¤)„h"‘“(¤))Y de
-r (3.3.8)

If ÜN : ÜN : 1T)N‘M : 0. Then 6A13)N,vN = ÜN,gpN for all ÜN 6 YN, and
V Y

<pN = —vN 6 YN (3.3.9)

Set y" Z 6N Z
w^’·^'

Z 0 in (3.3.8), then Z

(ÜN,§N)® for all ÜN 6 GN. By the definitions of D1 and A2, we have

g" Z 1D,n^' +
kA,6”.

(3.3.10)

Identity (3.3.9) yields

° 6 ° 6j Z (tg- (a”+
f_,V IC _, ZD V

0
Z- <yN+/ g¢(s)ü1N‘M(s),<pN> .

-r Y
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Substituting into (3.3.8) we obtain

0
(ÜN,yN)Y —/ g„(s) (61)N·M(s),MN)Y ds + (·yD1ÜN,vN)V

0
ds

0
Z (6N,z//"),, + (Ü^’,§")® +/ (61»N·M(s),hN·M(s))Y ds.

If ÜN Z ü1N·M Z 0, then (ÜN,yN)Y + (—·yD,6N,ÜN)V + fi <1”}N,wN·M(g)>Yd5 Z

(ÜN, 1ßN)V for all Ü E VN, which implies that (ÜN, -6Al (yN + fi wN·M(s)d.s) + 7DlÜN>
v

: (ÜN,1,bN)V, for all Ü 6 H,}(0,l). Therefore,

0
IÄIN : —6A1 <yN +/ wN'M(.s)d.s) +·yD2ÜN.

Si11ce wN‘M : Ef', it follows that

M
MN Z -6111 (yN + Zd§"w§”) +1D,0”. (3.3.11)

6:1

Finally, let ÜN = ÜN = ÜN = 0 in (3.3.8) to obtain

0
((ü1N'M(s),g€(.s)vN + hN'M(s))Y — (DN'Mü1N'M(s),wN‘M(s))Y] ds —.= 0

for all ü1N·M 6 WN·M. The definition of DN·M conbined with straightforward algebraic

munipulations, leads to the result

MM M M M 1 M M M*1 (3312)
6:1

‘

Combining (3.3.9)-(3.3.12), completes the proof.
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Let WN'M be as in (3.1.6) and define Q W by

~
Il{—lW_^'·“

6 {ui 6 W l
w: Zb§”B§", bf" 6 X").

6:0

Define zi/lv/_lV'M —> VVNM by

.., M
1

E
(bllfl—{:1

‘

M—1 ~
where wN·M = b;‘lB{l'l and bl}; : 0. Also define the isomorphism il_V*M 2 W'lV‘M —>

{:0

WN*M by
M

i{"·Mw^’·M ; Zjbflflxf",
{:1 _

and define Dl_V*M : WN·M —+ WN·M by Dl_V·M (ilV·M)—1. We can now write

(AN*M)x in the form

1v
“"N

(ANA,). Zw (3 313)
QNNM

—
’7D2'UN +

{ l i

w ’_The

proof of the convergence of the adjoint semigroup is very similar to the proof

in the previous section. Let Ze be the space Z equipped with the norm and let

PÄM be the orthogonal projections of Ze onto ZN‘M. Since and and are

equivalent norms, we have

LEMMA 3.3.3. The projections PÄM converge strongly to I with respect to the norm

||·llz„·
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Let D„ be defined by D(D.) E H_,}L(—r„0;X), D— E g' FO; z = (y,v,9,w)T 6
8

D(./1*) and Ä = 1, consider the equation («\I — A‘)
z = (<p,v,Z:,f, h)T, or equivalently

y+v =<p, (3.3.14)

° 6
v + 6D: (y +/ w(s)ds) — 7FH = ib, (3.3.15)

-, es

Ö 28 — ·y—v — kD=9 = §, (3.3.16)
Öz

w + gev —+— D,„w : h. (3.3.17)

From (3.3.17), w(6) = (I + D.)"(—g„v + h) : — fl, e"("‘)(g,„(·r)v — h(·r))d·r and

from (3.3.14), v : —y + cp. Also, (3.3.16) implies that H = (I — kD:)“1(§ + eyäv).

Substituting into (3.3.15) yields

oAmy = ab + 6 — En: (f M6
2 _, 6

+ 7g£(I * kD„) (f + 75;*P), (3-318)

where the expression A.(1) is defined by

0

A.(1)y ; y2 + 6/11 (y +/ (I6

kD§)·‘ä—:;y. (3.3.19)

For zN·M : (yN,vN,9N,wN·M)T 6 ZN·M and /\ = 1, consider the equation
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(A1 Z (A^'·M)‘) eN·M Z We have

yN + vN Z «p", (3.3.20)

vN + €A1(yN + wN·M(s)d.s> Zy0,6” Z ep", (3.3.21)

6N Z y0,e^' Z kA„0N Z g" (3.3.22)

w^'·“
+ g.e” + 0£'·Mw”·M Z 11^'·M, (3.3.23)

where n1”·M Z
äw}“03“

and 1e”·M Z äh{”Ef”. From (3.3.20),(3.3.22) and (3.3.23),

UN : __yN _,_ (PN

@^’ :11 — 1¤Ae1**<6" + nw")

wN,MSubstitutinginto (3.3.21), we have

M·M<1>y” = Zw" + «»" — A.
Z (3.3.24)

where A{"·M(1) ie denned by

AiV‘M(1)yN = yN +
€A1‘[T(yN + (I + D£v'M)°1g,(s)yNd.s)

— ·y2D1(I — kA2)—lD2yN. (3.3.25)

The next 1ennne an found in [15].

LEMMA 3.3.4. Fer A > 0, (A1 (A1 + 0.)** 11 1ee all 1e 6 W.

Now we are ready to prove the main result in this section.



56 ·

THEOREM 3.3.5.. For al] z 6 Z, e(^N'M)°‘Pä·M —» T‘(t)z as N, M —> oo, uniformly

on bounded t—i11tervals.

PROOF:: Deflne the bilinear forms )ui”(-, on Y by

#—(?!1»3/2)E (A-Ü)!/1.3/2))v

u€“(y1„yz) E (AÄV‘M(1)y1„yz))V-

For z : (cp,1/2,{, h)T 6 Z, let (I—A")’1z = (y,·u,9,w)T, and (I—(AN·M)")"1Pä’Mz =

(yN,vN,9N,wN·M)T. Then by (3.3.18), for all u 6 Y,

6 ° _, 6
#—(1/JL) = (—¢‘ + <P„¤)V + 6 — (I + D,) [g„I.s)«p — h(.s)]d.s, —u

Ürc _,. Ü2: V

- 6 6— v (I — wi) ‘(€
+ v—<p)„——¤

Ö1: Üa: V

and by (3.3.24), for all ·u.N 6 YN,

u€”(yN.¤”)
= (—¢N + <pN„¤”),,

+ ° tä
/0<1

+
D"—“>·*1g“<»»>«»” — h”·“<¤>1d» lu"

Üa: _,.
‘

° ° Ö1: V

-1 1v 1v 6 1v—v((!—kA1) (£ +7Dw )„ä—¤ ) ."’
V

where Pä'Mz = (g0N, 1/2N, {N, hN·M)’1. The rest of the proof is analogous to the proof

of Lemma 3.2.6 and Theorem 3.2.7 by observing that PV%;M(g€(s)<p) = gf”(s)<pN and

applying Lemma 3.2.4, Lemma 3.2.5, and Lemma 3.3.4.



Chapter IV Numerical Results

In this chapter we discuss the implementation of the Finite Element/Averaging

approximation scheme for our thermoviscoelastic system. We describe how to con-

struct the matrices for the open-loop problem and the closed-loop control problem.

We compare and discuss the numerical results which show the the effects of heat

dissipation and temperature state on damping and control. The computer codes were

implemented on a Vax 8800.

4.1 Dimensional Construction.

Recall that the first stage of approximation is to choose the finite dimensional

subspaces YN C Y, VN C V, oN C C. We will use both linear splines and cubic

splines . Here we provide the details for linear splines. The case of cubic splines is

completely analogous.

Divide the interval [0,l] into N subintervals with equal length. Choose the linear

hat functions

1 — lv-cc 0 § x § il,h€”(¤=) = { I N
0, otherwise

0, otherwise.

57
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N N —— 1

N
-—(]V—-1)+7-23 Lälfxfl,

h1v($) I

0, otherwise

Let YN, VN, GN be span{h;N l i = 1, . . . , N — 1}. The functions hä, hl; are discarded

because of the boundary condition (1.1.3). Choose the basis for the product space

YN><VN><GNtobe

N N
(iv

N
0

61 I 1 e(N—1)+i I hö and 62(N—1)+iZ hl},.

for i = 1,2,...,N -1. Thus, YN >< VN >< GN E span{efV | i = 1,2,...,3(N— 1)}

with the norm inherited from Y >< V >< G. Any zN E YN x VN >< GN can be written

s(N—1)
as zN = afvefv. First, we assume that g(s) E 0, and let EN = ANZN where

i:1

s(N—1)
EN : For i : 1,2,...,3(N — 1), it follows that

1:1

Z <‘ANzN·eiv>Y>«vxo>

or equivalently,

ß(N—1) :s(N—1)

j:1 j=l

Define the (N — 1) >< (N -1) matrices D,H and E by

1
Dgj Z

G/10

1
Hü Z0

'
.

Eij Zo
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for 1;,j : 1,2,...,N -1. We rewrite (4.1.1) as the 3(N -1) x 3(N -1) system

NIE : Kä where

D 0 0 0 D 0
M: 0 H 0 and F: —D 0 —·yE.

0 0 H 0 -7ET —k1J

is the mass matrix and the stiff matrix respectively. Thus, AN, the matrix represen-

tation of AN, is given by

0 I 0
AN I —H·‘D 0

—·)H·‘E
. (4.1.2)

0
—~,H·‘ET

-1.11-*12

Note that dN : ANaN is the Nth approximation ODE for the thermoelastic system

(1.1.4)- (1.1.5) with the boundary condition (1.1.3).

Now we drop the assumption that g(.s) E 0 and continue to our second stage

of approximation. We divide the interval [-1*,0] into M subintervals. Following the

above steps in the derivation of the matrix AN, we find that the matrix representation

of the operator AN·M is given by

0 I 0 0 ..... 0

—H"D 0 H;‘E -H"D1.....—H"DM

0
H;‘ET H,;11J 0 ..... 0

0 1 0 —j,„1 ..... 0
A”"”

= 0 1 0 j„1 .

. . . . -:1.%..] Q
M-1

0 1 0 ....0 jl —;}„1
M M
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where D; = (g,)§”D for i = 1,2,...,M, HQI = —7H—1,H;1 = —kH“‘. Notice that

AN·M is a square matrix of order (M—+—3)(N -1). The dimension of the approximating

system increases quickly as N, M increase. For example, if we take 16 linear splines
2

and use 16 step functions to approximate the history function, we end up with a

system of dimension 304. Therefore, the nonuniform mesh scheme greatly reduces

the computational problem.

4.2 Oper;-loop Problem.

As mentioned in the beginning of this paper, our main interests are the natural

modes and frequencies of the vibrating bar described by equation (1.1.1). Throughout

this and the next section, we always concentrate on these eigenvalues without specific

explanation. For the simplicity, we use the system parameter values of p = cx = 00 =

k = 1, delay r : 1. We also choose g(s) = —[e’5'/5\/-3]. Note that g 6 L1(-1*,0)

and has a singularity at zero. We compare the eigenvalues of matrix AN·M for the

thermoviscoelastic system (7 gé 0) and the viscoelastic system (7 : 0). We also do

the same comparison for the thermoelastic system (g = 0,7 yé 0) and the purely

elastic system (g = 0,7 = 0).

To show the convergence of our approximation numerically, we use N — 1 = 15

linear spline functions for both uniform mesh and nonuniform mesh. Figure 4.2.1

shows the eigenvalues of A1°·M using the uniform mesh with M = 16,32,64,128.
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Observe that curves connecting the eigenvalues for each value of M are getting closer

as M increases, and moving towards the right after M = 32. Figure 4.2.2 shows the

eigenvalues obtained by using the non-uniform mesh with M = 8,16,32. This time,

the curves nearly coincide, and are all on the right side of the ones in Figure 4.1.1. This

implies that with M = 8 for the non-uniform mesh, we have a better approximation

than M = 128 for the uniform mesh. Notice that the system dimension for these two

cases are 165 and 1966 respectively. Therefore, the non-uniform mesh method reduces

computational work dramatically. Ito and Fabiano[14], Miller[15] also observed this

behavior in their models.

Figure 4.2.3 compares the eigenvalues of the thermoviscoelastic system (1.1.1)-

(1.1.3) and the viscoelastic system(7 = 0), using N — 1 = 7 linear splines with

M = 8,32. We see that, as to be expected from the physics point of view, the ther-

mal damping is very light. Thus both models predict almost the same behavior. Table

4.2.1 lists these eigenvalues for M = 32. For the first seven modes, the real part of

the eigenvalues (Re«\TVEj) of the thermoviscoelastic system are smaller than the one

(Re«\VEj) of the viscoelastic system, but only by an amout of 0.0005 to 0.0038 which

is very small comparing to Re/\;/E,. This shows that the structural damping(due to

the Boltzmann damping) is much greater than the thermal damping.

Figure 4.2.4 shows the location of the eigenvalues of thermoelastic system and the

purely elastic system. We also list them in Table 4.1.2. Notice that the differences
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(Rc);-E, - Re«\pEj) of the real parts of the corresponding eigenvalues for the thermoe- .

lastic and purly elastic systems are almost equal to the ones (R€ÄTVEj - Re/\VEj) for

the thermoviscoelastic and the viscoelastic systems. This means that the damping

added to the system due to the heat loss at the ends of the bar is the same both

with the the presence of viscoelastic damping or without viscoelastic damping. We

also observe that this damping is stronger in the lower frequency modes than in the

higher frequency modes.

It is interesting to note that the numerical scheme (i.e. finite elements) predicts

that the real part of the eigenvalues of the thermoelastic system (1.1.5)-(1.1.6) with

the boundary condition (1.1.3) goes to zero as N increases. Figure 4.2.5 shows the

location of these eigenvalues, using the cubic spline for N = 32. It is unknown if this

is true or is only an numerical antifact of the finite element scheme.

We change the boundary condition (1.1.3) to (1.1.4) which means the end of the bar

is insulated. Recall that Theorem 2.4.3 implies that the real part of the eigenvalues of

this system goes to -3; asymptotically. We use the same finite element scheme, and

note that the numerical results turn out to be a contradiction of the theorem. Figure

4.2.6 shows the location of the eigenvalues using the linear splines for N = 16,32, 64.

We see that the real parts of the eigenvalues reach approximately -0.005 (for our

choice of 7 = 0.1) after the first several modes, and then start to go back to zero

monotonically. Figure 4.2.7 shows the location of the eigenvalues using cubic splines
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for N = 128. Again, the real parts are close to -0.005 after the first several modes.

But this time they remain close to -0.005 for the next 80 modes, then tend to zero.

We observed the same behavior as N increases. Comparing Figure 4.2.6 with Figure

4.2.7, we know that the cubic spline gives much more acuracy than the linear spline.

The above observations indicate that our finite element scheme does not appear to

give uniformly stable approximating systems. However, for the thermoviscoelastic

system and the kernel g we used, the numerical result shows that the real part of the

eigenvalues goes to -oo. Hence, the unifrom stability of the approximating systems

by our finite element/averaging scheme seems to be possible. This is still an open

question which we shall study in the future. °
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Table 4.1.1 The Eigenvalues of ABM for TVE, VE Systems

1- R6z\TVEZ· ITTtz\TVEl· R6z\VEl· ImÄyEz·

1 -.076590 3.196795 -.075694 3.196740
2 -.206360 6.628444 -.202587 6.626654

3 -.320412 10.375504 -.316549 10.374760

4 -.420027 14.529327 -.416604 14.528763

5 -.508636 19.109730 -.505924 19.109368

6 -.581964 23.849238 -.580385 23.849035

7 -.631847 27.825029 -.631340 27.824970

Table 4.1.2 The Eigeuvalues of A8 for TE, PE Systems

L]; —R€ÄTVEZ· I771,z\TvEz· — REÄ;/Ei ImÄvE1·

1 -.000878 3.161881 -.000000 3.161816

2 -.003685 6.447351 -.000000 6.445663

3 -.003761 9.975069 -.000000 9.974391

4 -.003359 13.857001 -.000000 13.856406

5 -.002661 18.119114 -.000000 18.118802

6 -.001574 22.517388 -.000000 22.517212

7 -.000500 26.201425 -.000000 26.201376
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4.3 Closed-lgop Qgrgggl Problem.

We turn now to a quadratic regulator problem for the system (1.1.1)-(1.1.3). Let

0 < 2:1 < :62 · -· < mg < 1 be a partition of the bar. Our goal is to drive the average

displacements and velocities at z; to zero. Thus, for 6 > 0 define the operators

M? : L2(0,1) —> R by

6 1
:;+6

Mi(<p) : —-/ Q0(1!)dZD (4.3.1)
26 :;-6

and let M6 2 L2(0, 1) -2 RI be defined by

TM°(<P) = (Mi(<P).MÄ(f).··· ,MI(<P)) - (4-3-2)

Let 0;,p; > 0,i = 1,2,--- ,l, and denote by O and P the l x l diagonal matrices

O : diag(o1,o2,· ·· ,0;) and P = dio,g(p1,p2,··· ,p1), respectively. Given zo E Z we

wish to minimize

6 °° 6 2 6 Ö 2
2J = HOM (1/(¢.·))H + PM E2/(tv) + Rl¤(*)| dt

0

where z(t) : (y(t,-), ~äy(t,·),Ü(t,·),w(t,s,-))T is the solution to (1.1.1)-(1.1.3) with

initial data z(()) = 20. It is well known that if.]6 has a minimizer u“(t), then it is

given by a state feedback; i.e., there is a bounded gain operator IC 2 Z —> R such that

u‘(t) : -ICz‘(t). We are interested in the closed-loop system

i·(t) = (A — BIC) z(t). (4.3.3)

In particular, we wish to compare the closed—loop system (4.3.3), 7 > 0, to the strictly

viscoelastic case, 7 : 0.
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The numerical results below were computed using parameter values given in the

last section. The sensor locations are at 2:1 = 0.25, :62 : 0.32, 2:3 = 0.50, 2:.1 : 0.67

with 6 := 0.01. The output weights are q; : p, = 1,i = 1,2, 3,4, and control weight is

set at R = 0.01. Since the theory does not guarantee convergence of the adjoint for

an L1 kernel, we replace g by the function gp defined by

g(,,):{ y(—1)„ f¤r -r$«¤S—1>,
"

’ 11(-B) + y’(—p)(¤ +p), fer — p S s S 0~

We will take p =
2’1°.

The operator B : R ——» Z is given by

02
B Z Q, .

0

Let B11. : Zajfj where is a basis for ZN·M. Then Za, (f,,f,)Z = (Bu.,f,)Z for
0

all i, which implies Ea, (6,,6,),,,,,,,,,9 = <(m2u) ,6;> where {6;} is a basis
0 YxVx@

0
for YN >< VN >< GN. Thus, 62 = <uH‘1B1) where (B1), Thus,

~

0BMM Z 11-1B, .
0

Take Q : C‘C where

11 OM611
C

U I P./Vlöv
9 0 ·
w 0
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In order to construct the approximation to C, we merely have to integrate the "ap-

proximate delta functions" öf defined by

Öf = LX[,,,-€,,,,+€], i=1,2,...,n
26

against each of the basis functions.

We will use Potter’s method (see [21]) to solve the finite dimensional algebraic

Riccati equation (1.3.6). The first step in Potter’s method is to form the matrix

PNyM Z
Ii

AN,MT QN,M

ÄIBN,MR—lBN,MT _AN,M ”

Next, find the eigenvalues and eigenvectors of PN·M and form the matrix
Zwherethe columns of Z are the eigenvectors of PN·M corresponding to the eigen-

values with positive real part. When eigenvalues occur in complex conjugate pairs,

so do the eigenvectors. In this case, the real and the imaginary part of the eigen-

vector each forms a column of Z. Finally, the solution to the Riccati equation is

given by H : XIXQI. Once we have found H, we can compute the “gain” matrix

KN·M : —R"BN·MTH and the "closed-loop” matrix ANM —+— BN‘MKN·M. We will

only consider the boundary condition (1.1.3) in the numerical computation in this

section.

Figure 4.3.1 compares the closed-loop eigenvalues for the thermoviscoelastic system

and the viscoelastic system, using N + 1 : 9 cubic splines and the nonuniform mesh

with M : 16. Similar to the case of open~loop eigenvalues, we again observe that the
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effect of the thermal damping is almost negligible.

Figure 4.3.2 compares the closed-loop and open~loop eigenvalues for the thermovis-

coelastic system, also using N —+— 1 = 9 cubic splines and the nonuniform mesh with

Il/I = 16. It is interesting to note that the thermal damping combined with active

control enhances the damping in lower modes much more than in the higher modes

and damping at higher frequencies is due almost entirely to the viscoelastic damping.

Since
u’“(t) : KÄz(t), by Riesz-Representation Theorem, there exist E 6 Z such

that lCz(t) : (E,z(t))Z. Let E : (K1(·),K2(-),K3(·),K4(·,·))T. We wish to find

approximations to the "functional gains” K1, K2, K3 and K4 (See [15] for the details).

In Figure 4.3.3 - 4.3.5, we show the plots of K1, K2 and K3, using nonuniform mesh

and cubic spline with N : 8. Observe that the curves for M = 8 and M = 16 are

nearly indistinguishable, which implies that to get a good approximation of the gain

functional we do not need a large M for the nonuniform mesh.

We would like to comment at this point that we haven’t proved the convergence

for the approximation of the functional gains primarily because we are unable to get

the uniform stabilizability of the final dimensional approximation systems(seeby

now, although our numerical results strongly support it.
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CONCLUSION

In this paper we have studied a thermoviscoelastic model with a singular kernel

in the strain memory term. We provided a semigroup setting, and then proved a

generalized result on well—posedness which can be applied to this model with various

boundary conditions we considered. We also gave a proof for the asymptotic stability.

We applied a finite element/averaging approicimation scheme to carry on the numeri-

cal computation. We showed the convergence of the approximating systems, and the

convergence of the approximating adjoint systems for bounded kernels. Finally, we

estimated the eigenvalues for the open-loop and closed loop problem to investigate

the effect of heat dissipation on damping and control.

There are still many related works need to be considered in the future. In particular

(1) investigating the convergence of the approximating adjoint systems for singular

kernels;

(2) investigating the uniform stabilizability of thevapproximating systems;

(3) considering the case when the stress is also depend on the temperature history.
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