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CHAPTER ONE 

Introduction 

The use of high bypass turbofan engines has resulted in the reduction 

of noise associated with the jet exhaust and has enhanced the fuel economy 

of the engine. But noise emissions from the inlet nacelles produced by 

the fan are of such a level as to raise objections from communities 

near airports. Hence much attention has been devoted to reducing the 

inlet noise. Reduction of upstream noise can be accomplished with the 

use of a choked inlet!>2 although such designs can have a negative effect 

on compressor efficiency. Therefore using a near sonic inlet, or 

partially~-choked inlet, along with an acoustic duct liner is one method 

that has received considerable attention in the reduction of inlet noise. 

In order to develop an appropriate mathematical model for the 

analysis of sound propagation in near sonic flows two problems must be 

considered: 1) acoustic theory is well developed for the study of sound 

propagation in parallel ducts but it is not fully developed for 

nonuniform ducts that carry mean flows with strong axial and transverse 

gradients, and 2) linear acoustic equations will not provide an accurate 

solution for near sonic mean flows. In this study an analysis of the 

first problem is performed using the wave-envelope technique >> * based on 

the method of variation of parameters. A nonlinear model is developed 

for the second problem. 

A survey of the methods used for the analysis of acoustic propagation 

in uniform and nonuniform ducts was made by Nayfeh, Kaiser, and Telionis?, 

Nayfeh®, Vaidya and Dean’, and Nayfeh, Kaiser, and Shaker?. A review of



numerical techniques employed in linear duct acoustics was performed 

by Baumeister®. 

For nonuniform ducts with mean flows the methods employed include 

quasi-one~dimensional approximations, multiple-scales solutions, 

solutions for weak wall undulations, weighted residual methods, and 

direct numerical integration. Only the lowest mode is studied in the 

quasi-one-dimensional method?~!3 which assumes a slowly varying cross 

section and ignores the effects of transverse mean flow gradients or 

14-16 can determine large liner admittances. The multiple-scales analysis 

the transmission and attenuation for all modes without ignoring transverse 

and axial gradients but it is limited to slow variations of the duct 

cross section. Also, the expansion needs to be carried out to second 

order to obtain reflections of the acoustic signal and intermodal coupling 

in transmission. A perturbation solution is determined in the weak-wall- 

undulation method!’ for ducts whose walls deviate only slightly from the 

uniform case. 

For uniform source inputs in nonuniform ducts, finite-difference 

schemes! ®*? 3 have been employed. At high frequencies a large number of 

grid points are needed to resolve the smallest wavelength which leads to 

large computational requirements. Also, in order to obtain transmission 

and reflection characteristics of the duct modes requires a transverse 

step size to be small enough to resolve the highest mode. To reduce 

the computational requirements, Baumeister29 used an estimate of the 

wavelength of the fundamental mode to explicitly express the fast axial 

variation and solved only for the envelope of the acoustic disturbance.



Eversman*! used the method of weighted residuals, or Galerkin method, 

which represents the acoustic signal as a linear superposition of basis 

functions. This approach can determine reflection and transmission 

coefficients but the short axial wavelengths at high frequencies will 

demand a small step size in the axial direction which increases the 

computational time. 

Several finite-element models have been developed for the analysis 

of acoustic propagation in nonuniform ducts with compressible mean flows. 

Sigman, Majjigi and Zinn? applied a finite-element approach to the 

governing equations which were expressed in terms of a velocity-potential; 

thus their analysis is limited to irrotational mean flows. Majjigi, 

Sigman, and Zinn23 expanded their method so that soft-wall ducts can be 

analyzed. Tag and Lumsdaine** also developed a finite-element scheme 

for irrotational flow. 

Since the introduction of these finite-element models several finite- 

element approaches were employed which consider rotational mean flows. 

Quinn? investigated the use of various interpolation functions and 

finite-element methods on some relatively simple cases to check the 

theory. A general compressible mean flow is considered in the finite- 

element model of Abrahamson®® but the results presented are for an 

incompressible case. Results from the wave-envelope method were 

compared with this finite element scheme for cases of low speed mean 

flows3>4, Acoustic pressure profiles were compared and the agreement 

is very good. Abrahamson2’ studied the possibility of reducing the 

computational effort associated with the finite-element analysis.



A comparison of the transmission and reflection coefficients evaluated 

using a finite-element scheme with those from the method of weighted 

residuals was performed by Eversman, Astley, and Thanh2® in which 

good agreement was observed. Astley and Eversman?? extended their 

original finite-element procedure. Also, Astley, Walkington, and 

Eversman?? applied a finite-element analysis to ducts with a 

peripherally varying liner. In these studies the mean flow model is 

rotational but it appears that the refractive effect of a finite 

boundary-layer thickness at the duct walls was ignored. 

The wave-envelope technique was developed for the analysis of sound 

transmission and attenuation in an infinite, hard-walled or lined 

circular duct carrying a compressible, sheared mean flow and having a 

variable-area cross section. The evaluation of transmission and 

reflection coefficients is aided by expressing the acoustic disturbance 

as a superposition of the quasiparallel duct modes. An explicit 

description of the fast axial variation of the acoustic disturbance is 

given and only the slower variations of the mode amplitudes and phases 

are calculated. The method is valid for large as well as small axial 

variations as long as the mean flow does not separate. Previously, 

Nayfeh?! used the wave-envelope technique to analyze acoustic propagation 

in partially choked converging ducts for the case of axisymmetric flow. 

Several changes have been made to the original numerical procedure in the 

present study. These changes facilitate the computational efficiency of 

the wave-envelope model and also enhance the accuracy of the solution. 

The significance of the nonlinear terms was presented in a 

number of studies. Numerical investigations of linear acoustic theory



by Eisenberg and Kaol3 and Hersh and Liu?* show it to be not valid for 

near sonic flow. An analysis by Callegari and Myers? using matched 

asymptotic expansions to examine the region where 1 - || = 0(e) 

explicitly confirms the singular behavior of the linear theory. From 

matching considerations the nonlinear effects are inferred to be important 

when the strength of the acoustic disturbance is the order of (1-|m|)2, 

but no nonlinear results are reported. Several investigations incorpora- 

ting nonlinear effects into a study of sound propagation through a 

near sonic flow region have been developed to date. One such attempt 24 

treats the nonlinear terms as a source disturbance to the basic linear 

propagation process. Such an approach cannot succeed since it does not 

remove the mathematical singularity from the differential operator in 

the governing physical equations. 

Callegari and Myers3* applied matched asymptotic expansions to the 

nonlinear problem for upstream propagation of an acoustic source located 

at the throat of a converging-diverging duct. This theory was’ extended 

by Myers and Callegari?5 for a source located downstream of the throat. 

The results of these studies indicate the generation of superharmonics 

by a single frequency acoustic source and the formation of shocks if 

the source strengths or frequencies are sufficiently high. This analysis 

was extended for a source upstream of the throat25 and for shock fitting 

in a flow containing a shock?”, 

In this study the behavior of numerical solutions of the nonlinear, 

one-dimensional equations of motion are examined to gain insight into 

the mechanisms that operate in the near sonic region and to determine



the mathematical techniques required to analyze these mechanisms. The 

one~dimensional model contains all the essential elements of the linear 

singularity and of the nonlinear harmonic interactions without the 

purely computational difficulties of the full two-dimensional problen. 

The acoustic disturbance is represented as a sum of a basic frequency 

and a finite number of higher harmonics, and the nonlinear interaction 

among the harmonics and their complex conjugates are calculated. A 

preliminary version of the above model was reported by Nayfeh et a138, 

In Chapter 2 a linear analysis is developed using the wave-envelope 

method. Results are presented for a converging duct and then for a 

converging-diverging duct. The nonlinear model is described and its 

results are shown in Chapter 3.



CHAPTER TWO 

The Linear Problem 

2.1 Axisymmetric and Spinning Mode Linear Propagation 

The analysis of the transmission and attenuation of sound in hard 

and lined nonuniform circular ducts carrying viscous or inviscid com- 

pressible mean flows is presented in this section. The mean Mach number 

in the throat is subsonic and the axial and radial gradients of the mean 

flow are not necessarily small. The cross section of the duct is an 

arbitrary function of the axial distance. 

The nondimensional form of the governing equations for the unsteady 

viscous flow in a duct are?9: 

Conservation of Mass 
  

2497+ (pv) = 0 (2.1) 

Conservation of Momentum 

ov, = -, | 1 
eG +v-« Vv) = -Vp + R V 

e 

(2.2) IA
 

Conservation of Energy 
  

i 

  

oT us, ~(v-1) (S22 4 3. = ig. _ oe + ¥ + WM-G-DGE+¥ + Vp) = ge [gE T+ (eVT)+(y-1) 8] (2.3) 

Equation of State (perfect gas) 

yp = eT (2.4) 

Here, v is the velocity vector, t is the time, y is the ratio of the gas 

specific heats, Pr = Hyon! Ky is the Prandtl number, C, is the gas specific 

heat at constant pressure, and Re = PacaR/H: Conditions at the duct wall 

are denoted by the subscript w, t is the viscous stress tensor and ¢ is



the dissipation function. The reference quantities for these equations 

are: for velocity, the speed of sound c. from some convenient reference 

point; for length, the duct radius in the uniform section Ro (Fig. 1); 

for time, Ri/c.: The reference pressure is pc. and the reference 

density and temperature are again evaluated at a convenient reference 

point. Reference values for the viscosity uw and thermal conductivity k 

are their wall values in the uniform section. 

In the linear analysis considered in this section the duct carries 

a steady, sheared, subsonic mean flow that satisfies Eqs. (2.1)-(2.4). 

The presence of sound in the duct creates a perturbation of the flow 

variables so that 

q(r,t) = a.(r) + 4, (x,t) (2.5) 

where q is any flow variable, r is the position vector, dg is the mean 

flow, and qy is the acoustic disturbance. The substitution of Eq. (2.5) 

into Eqs. (2.1)-(2.4) results in the following acoustic equations after 

the mean-flow terms are eliminated: 

Q > > 
= +V-. (egvy + P1VQ) = NL (2.6) 

> 

ov > > > > > > 
00 Gr + vo ° Vvy tvi° Vv) + 01V9 ° Vvo = 

= io. > Ypi + 35 Ve t) + NL (2.7) 

> > > 3 
00 (eb + vo * VI] + vy °* VIg) + p1VqQ * VTg - (y-1) GPL 

tk Vie (kgVTy + «19Tq) 
> > 1 

+vq ° Vpi t vi °* VYpq) = Re [Se 

+ (y-1) $1] + NL (2.8)



where t; and $, are linear in the acoustic quantities and NL stands 

for the nonlinear terms in the acoustic quantities. 

The solution of the problem described by Eqs. (2.6)-(2.9) subject 

to general initial and boundary conditions has not been determined to 

date. Therefore simplifying assumptions are made in order to obtain 

reasonable solutions for the propagation of sound in ducts. The acoustic 

disturbance is assumed to be inviscid and the nonlinear terms are 

neglected. Again one must emphasize the importance of the nonlinear 

terms when the mean flow is transonic (i.e., near the throat). Also 

the assumption that the mean flow is a function of the axial and radial 

coordinates only is made so that the possibility of swirling mean flows 

is eliminated. The cylindrical coordinate system (r,6,x) shown in 

Fig. 1 is the appropriate reference frame to use. Assuming no swirling 

flow and that the time variation is sinusoidal implies that each flow 

variable qi(r,x,9,t) can be expressed as 

-i(wt-mé) 
qi(r,x,8,t) = } 4, (z,x)e (2.10) 

m=0 

where w is the dimensionless frequency. With the assumptions that are 

stated above Eqs. (2.6)-(2.9) can be expressed in cylindrical coordi- 

  

nates as 

. q iP om 
-lwo) + Ox (p guytugp)) + r wi t+ r 5p (re oVitrvop)) = 0 (2.11) 

; 9 guy duo dug dug, _ 
Og[-iwu, + ox (ug) + VQ ar + Vi ae + P1[ug x + Vo ar = 

3 
_ PL (2.12)
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; + 3 ov) dVq dVQ IVo 
0g [-iwv; or (vov1) + ug x + uy} x! + oilvo or + uo Tx = 

oP} 

~ or (2.13) 

Ow Vow] ow * 

pg[-iww, + vo a + ug 1 = = = Pl (2.14) 

. dT} oT} 3To oT 9g dT 
pol-iwT; t+ vp FO + ua Zo tvigrtu x! + eilvo FE- 

aT oP] oP} 8Po 
+ ug 3 - (y-1) [-iwp, + ug F- + Vo GE tH A 

+ V1 ar = 0 
(2.15) 

t= ily (2.16) 

where uj, v,, and w, are the velocities in the axial, radial, and 

azimuthal directions, respectively, and the subscript m has been 

suppressed. 

The initial and boundary conditions must be specified in order to 

determine the solution to this problem. The duct wall is assumed to be 

lined with a point-reacting acoustic material whose specific acoustic 

admittance 8 may vary along the duct. This implies that for no-slip 

mean flows the particle displacements at the interface of the wall-fluid 

boundary must be continuous. Mathematically this boundary condition can 

be written as 

vi, ~ Riu, = ae pi Yl + (R')4 at r=R (2.17) 
wow 

  

where R' is the slope of the wall and the subscript w refers to values 

at the wall. For a given duct section we want to calculate transmission 

and reflection matrices. Therefore the initial conditions consist of 

the successive input of each acoustic mode at the duct entrance.



ll 

An approximate solution to Eqs. (2.11)-(2.17), based on the method 

of variation of parameters, is sought in the form 

N ~ ~ ~ 

pit {A Gx) UR (r,x) exp (isk dx) + A. (x) ¥P (r,x) exp (isk, (x) dx) }(2-18) 

N ~ ~ ~ 

ui 2 (A(x) UL (ex) exp (ik, dx) + A(x) vo (r,x)exp (isk, (x) dx) }(2.19) 

with analogous expressions for v}, w,, T,, amd p,}. The tilde denotes 

upstream propagation, the Y (FX) functions are the quasiparallel mode 

shapes corresponding to the quasiparallel wavenumbers ko), and the 

A. (x) are complex functions whose moduli and arguments represent, in 

some sense, the amplitudes and phases of the (m,n) modes. The circum- 

ferential (spinning) mode number is specified and the corresponding 

subscript on A, #, and k is not explicitly stated. Each acoustic variable 

consists of a summation over a finite number of radial modes N, with 

n = 1 referring to the fundamental radial mode rather than the 

conventional n= 0. Since KO is complex, the quasiparallel wavenumber 

represents an estimate of the attenuation of the (m,n) mode and also 

the axial oscillations of the acoustic modes. 

The vy? being the quasiparallel mode shapes, satisfy the following 

problem: 

~ iw? + ikp + ium yy + 4+ 2-(r0 0") = 0 (2.20) 

- ip gu? + og au wy” + ikyP = 0 (2.21) 

~ ipgwi” + aye = 0 (2.22) 

ippuw” + = wP = 0 (2.23)
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4 3 . - - ipguy™ + og Se2 vY + i(y-L)ayP = 0 (2.24) 

Pp oo oT 
peobyh (2.25) 
Po Pq To 

yY - = ywP=Oatr=R (2.26) 
ww 

where 

w= w - kug (2.27) 

A well known problem for parallel duct eigenfunctions can be derived 

from Eqs. (2.20)-(2.27) in the form 

32yP 1 T! Ikuh syP “9 2 set pe Bs ah Be -e - E = c 2.28) 
aye . WB op a Ct EY TO at r=R (2.29) 

T 
W 

Solving Eqs. (2.28) and (2.29) will determine uP (cx) at each axial 

location and its corresponding wavenumber kG). Because the basis 

functions vary in the axial direction they must be normalized to provide 

significance to the axial variations of the mode amplitudes. For the 

model implemented in this study the normalization procedure is the same 

as that defined by Zorumski*t®; that is, 

R 
| r [yi (r,x) ] 2dr = (2.30) 

0 

The quasiparallel eigenfunctions of the other acoustic variables can be 

expressed in terms of ye and ko with the use of Eqs. (2.20)-(2.25). 

Since the transverse dependence in the assumed solutions, Eqs. (2.18) 

and (2.19), is chosen a priori, it cannot satisfy Eqs. (2.11)-(2.17) or. 

a solvability condition exactly. Thus, the assumed solution is
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constrained by the solvability condition. Instead of using the usual 

method of weighted residuals which constrains the residuals in each of 

the Eqs. (2.11)-(2.17) to be orthogonal to some a priori chosen functions, 

the approach taken in this study is to require the deviations from the 

quasiparallel solution to be orthogonal to every solution of the 

adjoint quasiparallel problem'!, 

The problem adjoint to the quasiparallel problem must be defined 

in order to enforce the constraints. This is determined by multiplying 

each of Eqs. (2.20)~-(2.25) by the functions $1, ¢2, ¢35 ¢y, $5, and ¢¢, 

respectively, which are the solutions of the adjoint problem, and adding 

the resulting equations. Integration of this equation by parts from 

r = 0 to r = R transfers the r derivatives from the p's to the ¢'s with 

the result being 

R R R 

| v” [-iwd, - dg/ogl]dr + | iogw [- woo + kd, ]dr + | pov [- iwd3 - 
0 0 0 

R 

0 ) 3 . * 
+ so d2 -fr < 2b + soo dsjdr + Al io” [- Woy 

R 

+2 oi]dr + | WP liken - $23 + 2B 5, + i(y-L)wds + O6/poldr 
0 

R 

+ | W" [ip ques - $¢/Toldr + [og¥"o, + vPosln = 0 (2.31) 
0 

Equating each of the brackets in the integrands of Eq. (2.31) to zero 

determines the adjoint equations. The adjoint equations permit each of 

the bn to be expressed as a function of 9, according to 

$2 = (k/w) 1 (2.32)
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= irTg 9 (wor $3 = 7" oe Ge) (2.33) 

dy = ooh (2.34) 

ds = $t (2.35) 

6 = -ip9wdy (2.36) 

Equations (2.32)-(2.36) can be substituted into the remaining adjoint 

equation to obtain the following governing equation for $$): 

13 ,rTo on Tok2 Tom?, _ 
roe (Ge jg] + (LL - “Gr - Pagzin = 0 (2.37) 

where 

n = $10/rTq (2.38) 
Equation (2.37) will reduce to the same equation wP satisfies, 

i.e., Eq. (2.28). Dropping the adjoint equations in Eq. (2.31) and 

using Eqs. (2.22), (2.33), and (2.38) in the boundary terms results in 

an ee NTO arr R | (2.39) 

W 

This is the same boundary condition (2.29); thus the conclusion is that 

n= we, Therefore solving the quasiparallel problem for ye will also 

determine ein from 

_ rT oye 
>. = - (2.40) 
in Ww 

  

and the remaining o's are evaluated from Eqs. (2.32)-(2.36). 

After the adjoint functions have been determined, the constraint 

conditions then are found. By multiplying Eqs. (2.11)-(2.16) by 

Pi Po? seey Pen? respectively, adding the resulting equations,
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integrating this equation by parts from r = 0 to r = R to transfer the 

r derivatives to the o's, and using the adjoint equations and Eq. (2.17) 

produces the following constraint: 

R 2 
f {in{-duok, P12 ~ ik pour + 35 Ceour + uoe1)] - rvoe1 S a3 
0 

. . 9 (4041) dug dug 
+o, [ - iuok pour - ikip1 + 09 “37 + e140 BE + Vo BE) 

dp} dV 
+ a ~ Uy < (povod,,) + dan[- dugk oov1 + eoug s+ 

ov ov dvQ 3 

+ pour 3g t 91(V0 Bett Yo Bg )] - vow BE (P0%5q) 

. Vqw OW a + dun [-ikeouowi + earowl + pgug a ~ W1 95 (0vVo0bun) 

, , aT oT 
+ o, [-iuok,o0T1 + (y-1)iugk pi + poug 3+ + pour 

aT aT opi opo Pa + pi(vo 3 +u 0 54) - (y-1) (ug 3x + ul dx 1 Yl Or )] 

3 3 ~ T, 3 Covod..) + Cy-1)P1 3E (v6.9 dr + Podin[R' uy 

B V ed -_ = 

* Pc. Pi (VR 1) lap = (2.41) 

Upon substitution of the assumed solution, Eqs. (2.18) and (2.19) into 

Eq. (2.41) one obtains the following N equations for the A's: 

dA N 
n —= p fon dx oy Sona (2.42) 

where m = 1,2,3,...,N and N designates the total number of modes 

considered so that the A's denote both left and right propagating 

modes. The coefficients, fon and San? in these equations are evaluated 

from the following equations:
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if {oim( ov, + ug?) + b2m (0 quod +yP) + d3mo oval, 
0 

  

w 7 isk dx 

+ $, (equod,) + >, (equov, - (y-L)uo¥h) ldrle (2.43) 

R 

=| fi $5, 0 cout + apy] - evov? OB) 46 foo & 4 Im‘ox *°0 “0 vor” xr r Pmt? 0 Bx 

p 

Uy p(y, BUD 4 ye Oto) 4 vn (ugh) + v0 a5 + Yo gE + x - ve 3, (P0vod2m) 

av, 0 OV 

+ $3,, 19 ovo Ox + Po OV, oe = + Ya (vo eo + v0 tx)! 

pavon aye 5 
- vovn < (Po¢3m) + dum[—=— + Pou0 ay —*] - Va oz 68 0%0bu.) 

T 

avn aT aT + o, looug so + pove Seo + WP(vy SD + uy SEM) - (y-1) * 

aye , 
(ap ao + yh S20 + yy SPO] - TS (oqvodsm + GDR 

(vod, td, pik, - kK) Coovy + woh) + o, i(k, - ki) CE 

* Vv : W + pouov,) + dami(k, - k)oouov, + dumi(k, - k )oquod, 

> T 1 + o i(k, - k)uoeo, - (y-1) uP) } dr + 09, , [RVD 

wP (vTsR'Z - 1)] eam | (2.44) n e 

Ow WwW r=R 

  

Equation (2.42) can be written in matrix form as 

dA _ FR 7 GA (2.45) 

where A is a column vector whose elements are the AW and both F and G
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are NxN matrices whose elements are the fn and Sun? respectively. 

Under certain conditions there exists the possibility that two distinct 

quasiparallel wavenumbers, kw will approach each other as the numerical 

procedure progresses down the duct until they coincide at a particular 

axial location, and they will coincide only at this particular point. 

If this happens, the matrix F will be singular and the assumed solution, 

Eqs. (2.18) and (2.19), must be modified at this axial location. If 

K, = ke? the contributions by the j] and s modes to Eq. (2.18) take the 

form? 

Pp . 
[A (xx) + xA_(x)] v5 (r,x) exp (ivi, dx) 

with a similar expression for Eq. (2.19). Using this form in the 

solvability constraint Eq. (2.41) will change the row denoting the s 

mode in both the F and G matrices. These rows, for the case of a double 

root, become 

R 

f° | {ois(eov, + ube) + d2g(o quod, + ¥E) + $35 (0 ouod,) 

w r isk, dx 
+ ,,Coouov,) + >, Coouab, - (y-L) ug?) Jdr]xe (2.46)
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R 

Son 7 7 | {915 [5g (xp ov, txug yh )] - xrvov) So — (-$) + besleo = 

u QO du du ot 
(xugy) + xp (uo = + Vo 32D) +—.—] - xv ar (Povoe, 3 

+ $35 [Pouo (xv) + xpgb- 2Yo 4 xv" (vo 20 + ug 20) | 
ox n ox 

xp ovo. a (xy) 
- Voy. Sx ee (00¢,,) + 9, [-—>— + Povo RZ! xy Sr 2 (2 0V0%,,.) 

T 

+ ¢ LP ovo an x0 gy? S20 + xyP (vo oo + 0 =) - (y-1) x 

a (xy?) 
(ag + ev SE eo + Va = 3B] - xy" Se (Povoess) + (y-1)xvE = = x 

(vods,) + >, ix(k - kj) (pov, + unde) +o, ix(K - kj) Ce 

u | : Vv : Ww 
+ pquol.) + d3gix(k, - kl)oouob, + dugix(k, - kK )oouob, 

+ oo ix(k, - k,)uo(o ov, - (y-1) ub) } dr + xp od, [R'YD 

. ifk_dx 
sa TR - 1) e " (2.47) 
ww r=R 

  

2.2 Numerical Procedures 
  

The coefficients fon and gan in Eq. (2.42) require the specification 

of all mean flow quantities, ug, P9, To, Po» Vo, and their first partial 

derivatives with respect to both x and r. As can be seen Son also 

requires some second derivatives in its present form. In the computer 

routine integration by parts has been performed on the expressions 

which contain second derivatives so that only first derivatives of the 

mean flow are required for Son’ Therefore the computer model must be
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supplied with the mean flow variables and their first derivatives and 

also the mean flow velocity profile has to satisfy the no-slip boundary 

condition at the wall. 

Calculation of a steady, compressible mean flow requires a 

considerable computational effort; therefore one-dimensional gas 

dynamics theory is assumed to be sufficient to model the mean flow 

in the inviscid core in order that the calculation of the mean flow 

does not lead to an excessive amount of computer storage and time. 

This theory requires that ug, Pg, To, and po be constant across the 

duct section except in the region of the wall boundary layer. There 

are two options for the radial velocity Vo in the program. It can 

either be set equal to zero, which is consistent with the one-dimensional 

theory, or it can be calculated as a linear function of r, which is 

consistent with the mean-continuity equation and the flow-tangency 

condition at the wall. For the cases presented in this study a 

quadratic velocity profile in the boundary layer was used which has 

the following form: 

u - 2 
S =1- -F) for r > R-é 

c (2.48) 

= 1 for r < R-6 

co 

The temperature profile is evaluated by 39 

Ty y-1 4,2 Yo. 2 1, 7 Tad Mo 
7 = 1+ TO Me [1 - Gra] ] + + i - a (2.49) 

c Cc c Cc 

Tad y-1 Yt = j= w2 7 1+ 13 Me (2.50)
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where the subscript c denotes values in the inviscid core, TT is the 

wall temperature, T , is the adiabatic wall temperature, 6 is the 
ad 

boundary-layer thickness, r, is the recovery factor, and y = 1.4 is the 
1 

ratio of the gas specific heats. Equations (2.49) and (2.50) are re- 

garded as rough approximations only for variable-area ducts. The 

computer model contains three input options in order to determine the 

wall temperature. A constant value can be input for the wall temperature, 

it can be set equal to the inviscid core temperature Ths or it can be 

set equal to the adiabatic wall temperature tT. For the cases analyzed q° 

in this study, the boundary-layer displacement thickness 6* is assumed 

to be a known function of the axial location. At x = 0, the mean flow 

Mach number is input which allows § and M. to be calculated at each 

axial station from the definition of displacement thickness and from 

mass flow considerations. The inviscid core variables T > Po uns etc. 

are evaluated from one-dimensional gas-dynamics theory and the boundary- 

layer profiles are computed from Eqs. (2.48), (2.49), and (2.50). 

Also, the sign convention used is that the mean Mach number is negative 

or positive if the flow is from right to left or left to right, 

respectively. 

Two options are provided for the wall admittance of the duct liner. 

One choice is that the liner is point-reacting with constant properties 

whose specific admittance is described by 

g= [R (1 - 24% +4 cot @45)77 (2.51) 
8 iE 

where R, is the resistance of the facing sheet, wo is the characteristic
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frequency of the facing sheet, and d is the depth of the backing 

cavities in the liner. The other option is a continuously varying 

admittance given by 

2 

B= 8) + (8, - 89)(3- )® (2.52) 

so that the admittance varies from a specified value 8) at x = O toa 

specified value 8) at x= lL. 

In the inviscid core Eq. (2.28) reduces to Bessel's equation 

52yP Lay? “2 2 eet pies e-Bay =o 2.53 
so that we can be expressed as 

vP (rx) = A, COIL Gan r) + BLK n r) (2.54) 
> 

at each axial station where Jn and Yn are the Bessel functions of order 

m of the first and second kinds, respectively and Koon is the quasi- 
? 

parallel eigenvalue and is related to the wavenumber by the following 

equation: 

2 2 wy 
K = 7 k * (2.55) 
m,n 0 m,n 

For ve to be bounded at r = 0, B(x) must be zero since ¥ 69) is unbounded. 

Using the above facts, we implemented the following scheme to determine 

the quasiparallel wavenumbers and eigenfunctions. First an initial 

guess is made for the wavenumber so that in the inviscid core 

Pe - v= Ja “an r) O<r<R-6 (2.56) 

aye 
Now the values of ye and ar evaluated at r = R - 6, are used as 

initial conditions to integrate Eq. (2.28) to the duct wall. Once at
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r = R an iteration procedure is begun on Eq. (2.29) to determine the 

correct wavenumber. 

The specific numerical methods used are a fourth-order Runge-Kutta 

integration routine and a modification of the Levenberg-Marquardt 

algorithm*3»*4 (see Appendix A). The Levenberg-Marquardt algorithm 

minimizes the sum of the squares of M functions in N variables. With 

the initial wavenumber the integration is implemented on Eq. (2.28), 

  

which is 

a2yP ayP “9 2 n 1, Th , 2ku§ n we 42 _ mt PL 
ar + [= + T + * ] x + ITS k pale 0, (2.28) 

with the initial conditions 

Po = - va Ja “aon r), rx R 6 (2.57) 

ave . 
— = ' = - or nya Ja “an rm), r=R-6 . (2.58) 

where Kn n is a function of the wavenumber k n’ Now at the duct wall 
3 > 

the boundary condition is evaluated, and here the complex function 

F(k ) is defined as 
m,n > 

ove 
_-_n_., wh DP F(ky a) “= i : VE (2.59)   

z 
we

e 

Since F and Kaen are complex, Eq. (2.59) can be separated into two 

real equations in two real unknowns. [Fk 4) 1? is minimized using 

the Levenberg-Marquardt algorithm. This procedure is done iteratively 

until IF(k, | ~ 0. A subroutine that is able to evaluate Bessel 

functions of a complex argument is supplied to the model. Therefore, 

the need to integrate Eq. (2.28) across the inviscid core is eliminated.
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This method also provides consistent initial conditions, Eqs. (2.57) 

and (2.58), for the integration of Eq. (2.28). If m= 0 the flow is 

axisymmetric (no 6 dependence) and if m # 0, then a particular spinning 

mode is analyzed. A note of caution is emphasized here concerning the 

wavenumbers. They should be examined throughout the duct to eliminate 

the possibility of any exponentially amplifying modes developing. This 

would violate the basic idea that the quasiparallel wavenumbers, Kn? 

are the wavenumbers that would exist in an infinite parallel duct, since 

they would become unbounded. If this does occur then that particular 

mode should be dropped in Eqs. (2.18), (2.19), etc. 

Evaluation of the axial derivatives of the wavenumber k and the 

eigenfunctions Ya must be performed in order that the coefficients 

San of Eq. (2.42) can be determined. These axial gradients are obtained 

by using a finite-difference quotient such as 

dk . KtAx ~ K Ax 

dx > ix 2.60) 
The adjoint functions are obtained from the quasiparallel flow 

variables vP, aye and k by use of Eqs. (2.40) and (2.32)-(2.36). 

Equations (2.43) and (2.44) provide the coefficients fn and gan where 

the integrals across the duct in these relations are obtained from 

Simpson's rule. For the axial integrals | k dx, the trapezoid rule 

is used. 

Solving for Sin Eq. (2.45) results in 

Ch = gr loa (2.61)
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and A is determined at each axial location by the integration of 

Eq. (2.61) using a fourth-order Runge-Kutta scheme. This problem is 

linear. Thus the solution for any problem subject to general boundary 

conditions at both ends of the duct can be obtained by a linear 

combination of N linear independent solutions. These linearly indepen- 

dent solutions are achieved by setting all mode amplitudes except one 

(which is set equal to unity) equal to zero at x = 0 and integrating 

Eq. (2.61) to x = L. Integrating each of the N modes in this fashion 

permits the introduction of the transfer matrices TR,, TR, TR3, TRy 

which satisfy (see Appendix B) 

BY (x) = TR,(x)B’(0) + TR» (x)B (0) (2.62) 

B(x) = TR3(x)B'(0) + TR,(x)B (0) (2.63) 
isk dx 

+ . 
where B (x) is a column vector whose elements are the values Ae 

of the right-running modes and B (x) is a column vector whose elements 

~ ifsfk_dx 
are the values Ave "of the left-running modes, let Np denote the 

number of right-running modes and let N, denote the number of left- 

running modes. The dimensions of the transfer matrices are: 

TR, - N, x Np; TRo - N, <x N R L? TR3 - N x Np; and TR, - N. x N.. From 
L L L 

Eqs. (2.62) and (2.63) it is seen that the complex mode amplitudes at 

x = L can be determined from those at x = 0, that is, 

B’(L) = TR|(L)B*(0) + TRo(L)B (0) 

TR3(L)B’(0) + TR,(L)B (0). B (L) 

Following reference 40, transmission and reflection coefficients are 

sought for the nonuniform ducts of this study. The transmission and
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reflection coefficients relate the complex magnitudes of the outgoing 

modes to those of the incoming modes, according to 

L, Bt(n) = TH %Bt (oy + Reb ¢z) (2.64) 

pooh 0, B(0) = BT(L) + RO? [Bf (Q) (2.65) 

which are evaluated from the transfer matrices by 

pork - rr! 

p2>9 = _orz irr; 
(2.66) 

gio = pro tr,! 

eo = TR); + TR>RO?? 

0,L 0,0 _L,L _L,0 
where T » R » R > iT are Np x Nps Np x Np» N, x No N, x N, 

L,0O 
matrices respectively. The (m,n).element of T~’” represents the 

transmission of the mth radial mode at x = L due to the nth radial 

mode being incident at x = 0, etc. 

+ _ 

If the values of B (0) and B (L) are input, which are the amplitudes 

of the right-running modes that are incident on the duct section at x = 0 

and the left-running modes that are incident on the duct section at x L, 

respectively then acoustic pressure profiles are calculated. Equation 

(2.65) determines B (0) and therefore the mode amplitudes can be 

calculated throughout the duct by using Eqs. (2.62) and (2.63). At 

each axial position acoustic pressure profiles can now be computed across 

the duct by using Eqs. (2.10) and (2.18) and the definition of Br and 

B:
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NR + Pp ‘L - “p i (mé-wt) 
pi(r,x,6,t) = [ ) BG) 0) x) + ) B fs) v2 (x) Je (2.67) 

n=1 n=] 

where the bracketed terms describe the spatial distribution of interest. 

2.3 Initial Mode Identification 

Equation (2.29) has an infinite number of roots and for the wave- 

envelope method to succeed the evaluation of the roots is quite 

critical. The approach adopted for the determination of the roots is 

to first determine a specified number of roots for the uniform duct 

section (which correspond to the left and right-running waves to be 

analyzed). These modes are the initial guess values at x = 0 for the 

computer model and Lagrangian interpolation is used for the initial 

guess of the wavenumbers, which are supplied to the Levenberg-Marquardt 

algorithm, as the solution scheme proceeds down the duct. It is 

apparent that achieving an accurate solution to the problem depends on 

the successful evaluation of the input modes at x = 0. 

The determination of the input modes is accomplished by numerically 

integrating from the known hard-wall wavenumbers (8 = 0) to the 

specified value of the liner admittance 8. In the integration method, 

the initial conditions are the hard-wall wavenumbers and it is assumed 

that all soft-wall modes have a one-to-one correspondence with the 

hard-wall modes. The differential equations to be integrated are derived 

by considering a circular, parallel duct. which is carrying an inviscid 

mean flow with uniform properties. For this situation the soft-wall 

boundary condition becomes 

2 

cI'(k) = i8w(1 - Me) I(x) = 0 (2.68)
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where M is the mean flow Mach number. Also, the eigenvalue « and the 

complex wavenumber k are related by 

K* = (Mk-w)? - k?, (2.69) 

Differentiating Eqs. (2.68) and (2.69) with respect to 8 will yield 

    

dx? _ 240° 
dB (1 = yy + 220MB Bt Be (2.70) 

OM+K WwW Ke 

_ dk? 
de dB (2.71) 
dg 2(&M + k) 

where 6 w-kM. 

Integration of Eqs. (2.70) and (2.71) determines the soft-wall 

eigenvalues and wavenumbers. The initial conditions are 

  

K = Kg where J fk 0) =O at p = 0 

and 

—wM + Vo2 — (1-M2)uq k = wM + vw (1-M4)& (2.72) 
L - M2 

In Eq. (2.72) the sign on the radical determines which family of modes 

(right-running or left-running) is being considered. Equation (2.72) 

is used only to compute the initial value of k and the successive 

values of k are obtained from Eq. (2.71). For dx*/dB, the initial values 

at 8 = 0 are 

(2.73) 

cu
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{ 

;
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and 

if Kyo = 0 (2.74)
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The reason that Eq. (2.72) is used only for the initial value is that 

the complex quantity ¥w2=(1-M2)«K2 can approach and cross a branch 

cut depending on the definition of the principal value in the computer 

routine. If this happens, the routine will then compute identical 

wavenumbers for both families of modes which is incorrect. 

2.4 Results for a Converging Duct 
  

All the results presented here are for the converging circular 

duct shown in Fig. 1. The duct radius is assumed to vary with axial 

distance according to 

R=1+ .15(-1 + cos oT) (2.75) 

where L/2 is the length of the duct. Thus, the radius-of the duct 

decreases sinusoidally from 1 in the uniform section to 0.7 at the 

throat. The wall temperature is assumed to be equal to the adiabatic 

temperature so that Eq. (2.49) reduces to 

et yapen - W024 2.76 T. x Fity-l)Me T ] (2.76) 

Also, the radial velocity V5 is calculated to be a linear function of 

r consistent with the mean-continuity equation and the flow tangency 

condition at the wall. 

Figures 2 and 3 compare the acoustic pressure profiles for an 

axisymmetric mode and three spinning modes (m= 1, 2, 3) in a hard-wall 

duct. The input for these cases is the same except for the circum- 

ferential (spinning) mode number. The profiles for three axial 

stations are presented (x = 0, .5, 1). Im all the results presented
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the throat of the converging duct is at x = 1. The throat mean Mach 

number is -.883, the inlet displacement thickness is .001, the 

frequency is 9 and four modes are considered. At x = 0 the lowest 

right-running mode is incident and it has the same value in all cases 

so that the acoustic signal propagates upstream. As is expected the 

maximum pressure amplitude in the axisymmetric case occurs at the 

centerline of the throat. With increasing spinning mode number one 

sees that the maximum amplitude decreases and shifts toward the duct 

wall at the throat. This indicates that whereas the refractive effect 

of the axial gradients is still present the focusing and intensification 

is weakened by the asymmetries. 

Figures 4 and 5 depict the same cases except for the fact that the 

number of modes has been increased to seven. The decrease in amplitude 

and its shift toward the wall at the throat are still present. But 

there is a noticeable difference between the pressure profiles for the 

cases of m = 0 and m = 1 as compared to the cases using four modes. For 

m= 2 and m = 3 the profiles are little changed by considering seven 

modes. These differences can be explained by examining the quasi- 

parallel wavenumbers. The first four wavenumbers in each case are 

cut-on throughout the duct, but the next three can contain modes that 

are initially cut-off. In the axisymmetric case only one cut-off mode 

is added, for m = 1 two are added and for both m = 2 and m = 3 all 

three modes are cut-off. Also as the spinning mode number increases 

the attenuation factors increase. Therefore for the cases of m= 2 

and m = 3 these modes are greatly attenuated as compared to m = 0 and
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m= 1. It can also be seen that for each case the inclusion of seven 

modes results in a greater peak pressure at the throat. 

Figures 6 and 7 show the effect of the mean Mach number at the 

throat. The input parameters are the same as those used to construct 

the previous figures except for the Mach number variations. Figure 6 

depicts the case for m= 2 and Fig. 7 for m= 3. Seven modes were 

included in each of these cases. They show the increase in the acoustic 

pressure amplitude as the throat Mach number increases toward unity. 

For partially-choked flows one should be aware of the limitations in 

using a linear model. As the mean Mach number increases the wavenumbers 

of the right-running (upstream) modes become very large. Consider the 

case for uniform flow where the wavenumber is given by 

  

—wM + Yw2 = (1 - M2)K2 
C c 

k = : (=) 
  (2.77) 

Here M. is the Mach number and K is the eigenvalue. As M. > 1, one of 

the values of k approaches infinity, whereas the other remains bounded. 

This unusual behavior of the solution is due to linearization of the 

acoustic equations, as demonstrated numerically by Eisenberg and Kao 13 

and Hersh and Liu? and analytically by Myers and Callegari?: for the 

one-dimensional case. Thus, the inclusion of the nonlinear terms 

becomes necessary at high Mach numbers. 

The effect of the liner admittance, 8, is demonstrated in Figs. 8 

and 9 for m= 2 and m= 3. The acoustic pressure profiles at the 

throat are shown for four values of the admittance for each spinning 

mode. The throat Mach number is -.883, the inlet displacement thickness
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is .001, the frequency is 9 and seven modes are considered. The real 

part of the admittance is varied and the lowest right-running mode is 

input at x = 0 so that upstream propagation takes place. As is shown 

there is a significant reduction in the amplitude of the acoustic signal 

if the duct is lined, especially for m= 2. No definite trend in the 

amplitude reduction as a function of the real part of the liner 

admittance is apparent in contrast to the axisymmetric case?!, 

The effect of transverse velocity (shear layers) and temperature 

gradients of the mean flow on the propagation and attenuation of sound 

waves in hard-walled as well as lined rectangular, circular, and annular 

ducts have been investigated in several studies>. In general, the shear 

layers refract the axisymmetric modes toward the wall for downstream 

propagation and away from the wall for upstream propagation. _ The degree 

of refraction tends to increase with increasing frequency and increasing 

boundary-layer thickness. Cooling the wall of a duct tends to refract 

the sound toward the wall for both upstream and downstream propagation, 

whereas heating the wall tends to refract the sound away from the wall. 

Figure 10 shows the effect of boundary-layer thickness for m = 3 

in a hard-wali duct. The acoustic pressure profiles presented were 

calculated at the throat and the relevant physical parameters are mean 

throat Mach number = ~.883, frequency = 9, and four modes. The lowest 

right-running mode is incident at x = 0 so that the acoustic signal 

propagates upstream. As the inlet displacement thickness increases the 

peak acoustic pressure amplitude increases and the wall value decreases. 

Therefore it appears that the boundary-layer thickness has a strong
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refractive effect for spinning modes as well as axisymmetric modes. But 

as noted before the signal is not focused along the duct centerline. 

The dependence on the frequency of the acoustic pressure is shown 

in Fig. 11. The input values for this case are the same as the previous 

case except that the inlet displacement thickness is set at .001 and the 

frequency is varied. Again the plots are constructed at the throat and 

four modes are included. The lowest right-running mode is incident at 

x = 0 which implies that upstream propagation takes place. Increasing 

the frequency results in an increase in the amplitude of the maximum 

acoustic pressure. 

Figure 12 represents a case where the acoustic signal propagates 

downstream in a hard-wall duct. The lowest left-running mode is 

incident at x = 1 and seven modes are considered. The mean throat Mach 

number is -.883, m= 3, the frequency is 9 and the inlet displacement 

thickness is .001. Acoustic pressure profiles are shown at the three 

axial stations x = 0, .5 and 1. Notice that there is only a slight 

increase in the maximum acoustic pressure as the signal propagates 

downstream. It also appears that at x = 0 the signal has undergone 

Significant refraction toward the wall where the maximum amplitude 

occurs in spite of the rather small bounday-layer thickness. Since 

there is no appreciable growth in the acoustic pressure here, resulting 

in the solution becoming unstable, one suspects that the linear theory 

is applicable to cases of waves propagating with the flow even if the 

mean Mach number is high.
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2.5 Results for a Converging-Diverging Duct 
  

Results for the converging-diverging duct depicted in Fig. 13 are 

presented in this section. The duct radius obeys Eq. (2.75) so that 

the converging portion of the duct is identical to the duct of the 

previous section and the diverging portion increases sinusoidally from 

0.7 at the throat to 1 in the uniform section. For all cases presented 

the length of the duct is L = 2. The temperature profile is the same 

as in the previous section, i.e., Eq. (2.76) and the radial velocity 

Vy is a linear function of r. 

Figure 14 shows the variation of the centerline acoustic pressure 

for the case of an axisymmetric acoustic wave in a hard-wall duct and 

the effect of the number of modes considered. The throat mean Mach 

number is -.883, the inlet displacement thickness is .02, the frequency 

is 9 and for the three cases presented the number of modes are 2, 4, 

and 6. At x = 0 the lowest right-running mode is incident and it has 

the same value in all cases. As can be seen the throat centerline 

pressure increases with an increase in the number of modes considered, 

which was also true in the analysis of the converging duct. At x = L 

the minimum centerline pressure is for the case of six modes but for 

fcur modes the pressure is greater than that produced by considering 

two modes. Figure 15 shows the acoustic pressure profiles across the 

duct radius at the three axial locations x = 0, L/2, L for the case of 

six modes. The peak acoustic pressure is greatly reduced at x = L 

as compared to the profile at the throat and this maximum value is 

shifted from the duct centerline. The continuous mode reflections that
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occur in the diverging section of the duct reduces the exit acoustic 

signal and refracts the sound to an annulus at about half the radius 

of the duct. 

In Fig. 16 the effect of varying the mean flow Mach number on the 

centerline acoustic pressure is shown. The input data is the same as 

that used to produce the previous figures and six modes are considered. 

For a near sonic flow (M, = -.883) the growth in the amplitude of the 
h 

pressure at the throat contrasts sharply to those of the two lower speed 

flows. Also, at x = L the centerline pressure decreases with increasing 

Mach number. For Mey = -.449 and -.65 the maximum centerline pressure 

occurs upstream of the throat region. 

Figure 17 is obtained by varying the liner admittance and the 

relevant physical parameters are the same as those in the previous 

cases. The centerline acoustic pressure for a hard-wall duct is 

compared to those for two soft-wall values. In the soft-wall cases 

the centerline acoustic pressure is significantly reduced but their 

values are greater at x = L than the hard-wall value. For 8 = (1., .1) 

the peak centerline pressure occurs noticeably upstream of the throat. 

The radial pressure variations for these cases, at x = 0, L/2, L, are 

shown in Fig. 18. At the throat the presence of a liner does reduce 

the acoustic signal but at x = L the peak acoustic pressure is greater 

for 8 = (1., .1) than that produced by the hard-wall duct. For 

parallel ducts carrying uniform mean flows where | 8 | < < 1 the 

attenuation factor increases when the real part of the admittance 

increases. From Figs. 17 and 18 it appears that a lined duct does
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not necessarily reduce the maximum amplitude of the acoustic signal in 

a converging-diverging duct. The inclusion of more modes in the 

analysis will probably affect the hard-wall pressure profiles more than 

the soft-wall profiles. Generally the soft-wall wavenumbers have 

higher attenuation rates and more hard-wall wavenumbers are cut-on and 

therefore are attenuated less. Also an initially cut-off hard-wall 

mode is more likely to cut-on in the vicinity of the throat. Thus if 

all modes that are cut-on throughout the hard-wall duct are included 

the resulting acoustic signal at x = L might well be greater than that 

produced by a lined duct. 

Figure 19 shows the effect of the boundary layer thickness on the 

centerline acoustic pressure for an axisymmetric flow case. For all 

cases shown in Fig. 19, the throat mean Mach number is -.883, the 

acoustic frequency is 9, the number of modes is 6 and the lowest 

right-running mode is incident at x = 0. It is seen that increasing 

the inlet displacement thickness does not necessarily increase the 

centerline pressure. Figures 20 and 21 show the development of the 

acoustic pressure profiles at x = 0, L/2, L for the cases depicted in 

Fig. 19. There is no apparent general trend in the acoustic pressure 

profiles as the inlet displacement thickness is increased. In fact the 

peak amplitude at the throat is obtained from or = ,01 in contrast to 

the results achieved in the converging duct analysis of the previous 

section. At x = L the maximum acoustic pressure occurs for 6° = .001. 

Figure 22 represents the variation of the acoustic pressure 

amplitude across the duct radius for a spinning mode case. The throat
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mean Mach number is -.883, ox = .02, w = 9, m = 2, and 4 modes are 

considered. At x = 0 the lowest right-running mode is input so that 

upstream propagation takes place. For this particular case the 

acoustic signal is relatively undistorted at x = L as compared to the 

profile at x = 0. As in the converging duct results the peak amplitude 

at the throat is not at the duct centerline. 

Figures 23 and 24 represent a case when the lowest left-running 

mode is incident at x = L and thus the acoustic disturbance propagates 

downstream. The physical parameters are the same as those that were 

used to obtain Fig. 14 for the case of six modes except that the signal 

is input at x = L. In Fig. 23 the axial variation of the centerline 

acoustic pressure amplitude is shown. There is no appreciable growth 

in the amplitude which is in marked contrast to Fig. 14 which depicts 

upstream propagation. Figure 24 shows the radial variation of the 

acoustic pressure amplitude. There is only a slight increase in the 

maximum pressure amplitude at the throat and the peak amplitude at 

x = 0 is greater than that at the throat.



CHAPTER THREE 

Nonlinear Propagation in Near Sonic Flows 

3.1 Problem Formulation and Method of Solution 

The wave-~envelope technique used in the previous chapter to study 

linear acoustic propagation, in which the linear acoustic disturbance 

is represented as a superposition of quasiparallel duct modes whose fast 

axial variation is explicitly given, will not be used in this chapter 

because of the singular behavior of the linear model in the region of 

interest. The singular behavior of the linear model as the Mach number 

approaches unity is illustrated in Fig. 25. 

We consider a one-dimensional, inviscid, nonlinear flow in a hard- 

walled duct (Fig. 26). All flow quantities are expressed in non-dimen- 

sional form using the speed of sound c. evaluated at some convenient 

point as a reference velocity, the radius Ry of the duct in the uniform 

: 2 region as the reference length, and Ri/ca: pce oO» and T. as the 

reference time, pressure, density, and temperature, respectively. The 

one-dimensional equations of motion are 

Mass 

op 3 
ASE + Jq feuAd = 0 (3.1) 

where A is the cross-sectional area of the duct. 

Momentum 

oft tu sty+2=-0 | (3.2) 

Energy 

ofse tu sel - (y - 1) GE +u BB = 0 (3.3) 

37
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and, state 

yp = eT (3.4) 

where y is the ratio of specific heats of the gas. The energy and state 

equations, (3.3) and (3.4), can be replaced with the isentropic state 

equation p «= oY. However, the use of this apparently simpler equation 

would lead to difficulties in separating the effects of the several 

harmonics in the analysis which follows; therefore, the basic forms of 

the energy and state equations are used. 

The flow variables are represented as the sum of a steady streaming 

term plus higher harmonics due to the acoustic disturbance?®: 

N . . 

u(x,t) = ujg(x) + d (ue + we) (3.5) 
n=1 

N -~inwt — inwt. o(x,t) = o79(x) t+ ) (eine + pine) (3.6) 
n=1 

N -inwt —_ inwt T(x,t) = Tio(x) + } (T Le + Te ) (3.7) 
n=1 

with the pressure being eliminated with Eq. (3.4). The steady 

streaming terms are not solutions of the steady form of Eqs. (3.1)- 

(3.4). Reference conditions are chosen to be the mean-flow quantities 

in the straight duct section so that T}9(0) = pj9(0) = 1, uyg(0) = M(O), 

and pj} 9(0) = 1/y. The acoustic disturbance ia Eqs. (3.5)-(3.7) is 

represented as a finite sum of harmonics, including steady-streaming 

terms ujg (which also include the effects of the mean flow), etc., and 

the complex conjugates must be explicitly stated since nonlinear 

interactions are considered. No assumptions about the relative sizes 

of the terms in Eqs. (3.5)-(3.7) are made, and no assumption about the
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axial variation of the acoustic quantities is made. Although the wave- 

lengths of upstream propagating signals become small and thus a 

technique similar to the wave-envelope procedure would be very 

advantageous, no a priori assumption about that variation can be made. 

Before proceeding with the nonlinear analysis let us consider the 

linear theory as it applies to a uniform duct. Linear theory will be 

used to relate the flow variables at the entrance of the nonuniform 

duct section in order to insure consistent impedance conditions for the 

nonlinear problem. Assume that the mean flow in the straight duct is 

uniform, that is us? T5° Py and Py are constant. The flow variables are 

assumed to consist of a constant part due to the mean flow and a 

perturbed part due to the acoustic disturbance, that is, 

p=pe,t 0, (x,t) 

u=ul + u; (x,t) (3.8) 

T= To + T) (x,t) 

Substituting Eq. (3.8) into Eqs. (3.1)-(3.3) and ignoring nonlinear 

terms results in the following equations: 

a0 30 du 
1 1 1_ 

dt + “o Ox * ar an 0 (3-9) 

du du OP) 

Po ft * Poo Ox + x 0 (3.10) 

oT oT dp op 
1 1, _ 1 1 

09 SE t Yo Ox y= G-D GE t “o ox (3-11) 

The pressure is eliminated from these equations by using the isentropic 

state equation 

p = Ap’ (3.12) |
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This can be rewritten as, 

Y Y Pl , Pot Py = AGO, + 9,) = AO Gi t+ 3. (3.13) 

p 
where \—| << l, 

ae) 

Expanding Eq. (3.13) and retaining terms through first-order yields 

  

0 
= Y y _l P+ Py = APG + Aon °, (3.14) 

but, 

p_ = Ao” (3.15) 
°O Oo 

so that 

P_P,Y -~_o1l _ 2 
Py _ Coney (3.16) 

- oye = 7. where co YP 4/4 vT 
¢ 

Using Eq. (3.16) one can write the governing Eqs., (3.9)-(3.11) as 

3p dp du 
1 1 1_ 

dt O Ox + °o Ox 0 (3.17) 

du ou dQ 
ep, _1 —i,2 i 1. OF + P64) Dx + Co Os 0 (3.18) 

oT, oT, oP, 30, 

°o SEF Mo Te? TSG” F Yo Te G19) 

Assuming harmonic traveling waves for the uniform duct and letting 

q, (x,t) represent any of the flow variables of the acoustic disturbance 

allows the following form for the disturbance: 

N 

q,@.t) = 2 [q 
n=1 a 

in(k x-wt) 
R© ke + qa eee) + complex conjugate] 

(3.20)
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In this expression the complex quantities qaR and qa represent the 

amplitude and phase of the nth right and left-running waves, respectively, 

and are constants. Here, nk, and nk, are the wavenumbers for the right- 

and left-running waves, respectively, and they are also constant. Since 

the above discussion deals with linear theory we can superpose solutions 

and therefore analyze only one component of Eq. (3.20) which will be 

expressed as 

i(k x-w t) 

q, (x,t) = qe (3.21) 

where 

KO = nk — (3.22) 

w= aw (3.23) 

The phase speed of the waves will be determined by substituting 

i(k x-wt) 

p, (x,t) = ple (3.24) 

i(k x-w_t) 
u, (x,t) = ue (3.25) 

into Eqs. (3.17) and (3.18). This results in the following system of 

equations: 

(-wtu_k) ok Q 

°. ° 4 = 0 (3.26) 
2 - co k ( p wtp ou) uy 

The determinant of the matrix must be zero for non-trivial solutions 

to exist. This implies that 

(-w + uk)? = cf ke (3.27) 

or
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—-w~t+uk=+ecek (3.28) 
° — “o 

Choosing the positive sign will give 

a (3.29) 
ko ° ° 

which corresponds to the left-running waves. Choosing the negative sign 

& 

ee + 3 3 

which corresponds to the right-running waves. Looking at the first 

equation (the mass equation) in Eq. (3.26) results in 

(-w + ujke, + p ku, = 0 (3.31) 

so that, 

= (= - ) on | (3.32) uy kK US eo : 

Now Eqs. (3.20) and (3.30) are substituted into Eq. (3.32) so that we 

arrive at 

Cc 
- _2 UR 5 PUR (3.33) 

oO 

So 
WIL = = 25 OuL (3.34) 

Replacing the acoustic temperature and density by their respective 

harmonic wave representations in the energy equation, Eq. (3.19), 

relates the temperature coefficients to the density coefficients 

according to 

T 
= _ 2 T = (y-l) 5 om nk (3.35) 

° 
R
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T 
—2 
Py nL 

TAL = (y~-1) (3.36) 

With these relations from the linear theory for a uniform duct the 

impedance conditions at the duct entrance can be formulated. The 

assumption here is that the linear theory is valid at the duct entrance 

so that it should approach the nonlinear expressions at x = 0. 

Therefore Eqs. (3.8) are equated to Eqs. (3.5)-(3.7) respectively 

at x = 0, with the use of Eq. (3.20) also. For the density, this becomes 

N 
-inwt -inwt , —- inwt , —- _inwt] = 

Po + 2 [ope + Pate + Par + Pal 

N , _ . 
py +P [o, (Oe MOF + 5, (Ope Or) (3.37) 

n= 

Equating coefficients of equal powers of exp (+ inuwt) results in the 

following equations 

P4969) = 9, (3.38) 

4,69 = 0p +o (3.39) 

4,69) = 0p t Par (3.40) 

By matching the velocity one obtains the following expressions: 

Uy 9 9) =u, (3.41) 

4,69) = UR + WIL (3.42) 

uy, 60) = Up + UL (3.43) 

Using Eqs. (3.33) and (3.34) in Eq. (3.42) relates the velocity to the 

density according to 

Cc 

= 2 _ . U4, 6% = a (01R 7 Par? (3.44)
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Finally, matching the temperature results in 

Ty 9 69) = Ty (3.45) 

Ts, 69 = TAR + TAL (3.46) 

T) 69 = TUR +T (3.47) 

and using Eqs. (3.35) and (3.36) in Eq. (3.46) implies that 

T 
Oo 

T, 69 Orne ar + 0 al? (3.48) 

Equations (3.39), (3.44) and (3.48) establish the impedance 

conditions for the velocity and temperature in terms of the density 

at x = 0 for the nonlinear problem. The next step now is to establish 

the impedance condition for the nonlinear problem at the duct exit 

(x = L). This is accomplished by again matching the nonlinear problem 

to the linear problem at x = L. For x > L it is assumed that the duct 

has an infinite uniform termination. This is equivalent to having only 

right-running waves in the uniform section of the duct for x > L. 

Since the linear theory holds for x > L the following relations can be 

written 

N in(k,x-wt) _ ~in(k,x-wt) 

u(x,t) = Uy + ) [une + URE ] (3.49) 
n=1 

N in (k,x-wt) _ ~in(k,x-wt) 

o(x,t) =p + } [one + pe ] (3.50) 
n=1 

N in (k,x-wt) _ ~in(k,x-wt) 

T(x,t) = T+ sy [T Re + Te ] (3.51) 

Equating Eq. (3.6) to Eq. (3.50) at x = L implies that
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op. = Pig) (3.52) 
Oo 

ink,L 

4,6) = 2 Re (3.53) 

Similar relations are obtained by equating Eq. (3.5) to Eq. (3.49), that 

is, 

(L) (3.54) 

ink,L 

us) = u pe | (3.55) 

4 ~ “Yo 

Recalling the linear relation, Eq. (3.33), one can write Eq. (3.55) as 

cy ink, L Cy 

4, "30 P Re = 6, Pin (3.56) 

but, 

co = YT, (ZL) (3.57) 

P, = P49) (3.58) 

so that 

— YT fh) 
uy, 62) = P19) P41, 0) (3.59) 

Equation (3.59) is the impedance condition at x = L for an infinite duct. 

With the impedance conditions established let us now derive the 

differential equations for the nonlinear region (0 < x < L). 

Substituting the expansion of the flow variables, Eqs. (3.5)-(3.7), 

into the governing Eqs. (3.1)-(3.4), and equating coefficients of equal 

powers of exp(inwt) for n = 0,1,2,... to zero, one obtains a set of 

coupled, nonlinear ordinary-differential equations of the form 

AGcy) = Boxy) (3.60)
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where y is a column vector of the unknowns. The coefficient matrix 

A(x,y) and the inhomogeneous vector B(x,y) are given in Appendix C. 

We choose to solve Eq. (3.60) in real form. To accomplish this 

we rewrite Eq. (3.60) as 

. dy. . dy; _ . 
(A, + iA) GS +i a = (B. + iB, ) (3.61) 

Separation of the real and imaginary parts leads to 

dy dy, 
r i. 

Ay dk 7 Ai ae 7 Br (3-62) 
dy dy, 

r i. 

Avge TAP ae 7 By (3-83) 
Since the steady streaming is always real, its imaginary part in Eqs. 

(3.62) and (3.63) is discarded. This manipulation reduces Eqs. (3.60) 

to 

Ax(x,y*) GE = Be (x,y) (3.64) 

where A* is a 3(2N + 1) x 3(2N + 1) real matrix and y* and B* are real 

3(2N + 1) column vectors with



  

410 

Re(u,,) 

Im(u 1) 

Ra 412) 

Im(u, 5) 

Im(u, ,) 

°10 

Re(p, 4) 

Im(p4,) 

Im(o, ) 

Tio 

Re(T, 1) 

Im(T,,) 

Im(T, .) 
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With the appropriate impedance boundary conditions specified at both 

ends of the duct, Eqs. (3.39), 

can be numerically solved. 

(3.44), (3.48) and (3.59), Eqs. (3.64)
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The numerical results that will be presented are for the case of a 

fundamental wave entering a duct at its left end when its right end is 

infinite in length. 

The initial conditions at the duct entrance are specified in terms 

of reflection coefficients. Conditions in the straight duct section are 

assumed to be such that linear theory is adequate. Thus the acoustic 

signal at the duct entrance is resolved into left-and-right running 

waves. The magnitude of the input signal, of the density disturbance, 

for the fundamental frequency and a reflection coefficient for each 

harmonic are specified as input at x = 0. By matching the linear and 

nonlinear expressions at x = 0, the initial conditions for the non- 

linear problem are determined in terms of the right-running and 

left-running waves at x = Q. 

The density disturbance specified represents the right-running wave 

of the fundamental frequency and a reflection coefficient, which is 

input, determines the left-running wave. For the higher modes, it was 

assumed that only left-running waves would exist and these were assumed 

to be a product of the right-running fundamental wave. Therefore the 

acoustic disturbance will be specified by the right-running complex 

coefficient of the fundamental mode (n = 1), so that if op. represents 
I 

the acoustic signal then 

Pip ~ tr (3.65) 

and Pat is determined from the reflection coefficient Ch by 

Pay = Sr? tr (3.66)
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Substituting Eqs. (3.65) and (3.66) into Eq. (3.39) implies that 

P4 69) = (1 + Co) Pr (3.67) 

Making use of Eq. (3.44) implies that 

c 

=- 2 - = - 
4, 1 09) = om (1 Coy) ry (1 CoP yz (3.68) 

since co =P 1. The temperature is determined from Eq. (3.48) to be ° 

T 

T,,(0) = ODP), = (y-1) (te, )0; (3.69) 

For n > 2 

04,69) = cLiPy (3.70) 

4, 69) = cy (3.71) 

T) 60) = Cy-le_ es (3.72) 

and Eqs. (3.70)-(3.72) are a statement of the fact that the incident 

acoustic disturbance at x = 0 is the fundamental wave and therefore for 

n > 2 only left-running waves are present for x < 0. 

Here, u are determined from the mean-flow values. 10° P10? 42¢ Ty, 
With these conditions set, the program then integrates through the duct 

to determine the corresponding conditions at x = L. Determination of 

the transmission and reflection characteristics of the duct section then 

would require an iteration on the assumed values of the reflection 

coefficients until the desired impedance conditions at x = L are achieved. 

In the results presented here, we consider the case in which the duct has 

an infinite uniform termination. This is equivalent to having only 

right-running waves in the uniform section of the duct for x > L.
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Mathematically Eq. (3.59) must be satisfied at x = L to guarantee 

this situation and a complex vector F(c_) is defined as 

_ "Ti 9D) 
F(c_) = U4, 6h) - Pryce) P14) (3.73) 

Separating the real and imaginary parts of Eq. (3.73) results in 2N 

equations to be solved. The scheme followed then is to initially 

assume values for the reflection coefficients (there will be 2N of 

these since they are complex) and iterate on these assumed values by 

integrating to x = L. An optimization routine is used to determine 

updated values of the reflection coefficients until F(c = 0. 

In a previous analysis?® the system represented by Eq. (3.64) was 

solved by using matrix inversion and a fourth-order Runge-Kutta 

integration routine. It was determined that if the strength of the 

input signal and/or the throat Mach number was increased, the numerical 

procedure produces either a strong oscillation or abrupt jumps in the 

acoustic signal. These irregular results are not a consequence of the 

physical occurrence of a shock. Refinement of the numerical step size 

produces no qualitative change. Except for these isolated jumps, the 

results appear entirely plausible. Examination of a large number of 

cases indicates that the difficulty results from a combination of the 

basic properties of the coefficient matrix and numerical error. Since 

the linear problem is singular as || >i, the determinant of matrix A* 

is non-zero only as a result of the nonlinear terms, which are small. 

Since the matrix A* becomes nearly singular, it is very ill-conditioned 

with a very small determinant; the addition of more harmonics makes the



51 

situation more critical and under certain conditions the numerical 

round-off errors eliminate the possibility of proper resolution of the 

terms of the equations. In fact, cases are calculated in which a 

doubling of the number of harmonics causes a discontinuity to develop. 

Previously the size of the determinant was used to monitor the singularity 

of A*. This is not done in the present analysis because a well 

conditioned matrix A* may still have a very small determinant. 

The integration routine that will be employed is an Adams-PECE 

(Predictor Evaluate Corrector Evaluate) variable step-variable order 

method*®, To avoid the problems associated with matrix inversion, the 

singular value decomposition (SVD) *” of A* is performed at each axial 

step. The numerical problems encountered in the original analysis are 

due to the fact that the Runge-Kutta, because of its fixed step size, 

cannot detect when a singularity is occurring in the system 

represented by Eq. (3.64). ‘The reflection coefficients determine the 

initial conditions and it is found that there is only a certain range 

of values for the reflection coefficients that will produce a non- 

singular system. Since the Runge-Kutta routine cannot recognize the 

presence of a singularity, it will integrate across a singular 

component as if it were continuous. The result of this is rapid 

fluctuations in the amplitudes of the harmonics and in some cases this 

is accompanied by unstable growth in one or more of the harmonics, 

which will result in the termination of the program. 

To summarize, in the region of the duct throat for near sonic flows 

two extremely critical numerical problems are occurring in the solution
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of the system of equations represented by Eq. (3.64). In order to 

. . dy* . oe . 
integrate this system dx must be solved for explicitly and supplied to 

the integration routine. This normally is done by inverting A*, but in 

this case A* is nearly singular and hence numerically inverting it is 

quite unstable. By using the SVD routine this particular problem is 

es +e . dy* . 
eliminated and an explicit expression for de Can be obtained. Now after 

, dy* . . . . 
computing dx care must be taken in the choice of the integration scheme. 

If a fixed step method (such as Runge-Kutta) is used it is more than 

likely that it will not recognize the presence of a singularity. For 

the Runge-Kutta methods highly accurate local discretization error 

estimates are somewhat difficult to obtain which would help to determine 

‘the step size. Also, in the Runge-Kutta methods the solution at y* +l 

depends only on the solution y* at the previous point x and the step 

size ho Multistep methods (such as the Adams methods) are based on 

the idea that more accuracy might be obtained by using information at 

dy* 
n-1 n-2 e ° de * 

previous points, such as y mel? Y*n-2? °° and ax > ax ’ 

The multistep methods usually are more efficient than one-step methods 

and an estimate of the local discretization error is, in general, readily 

obtained. The order of a numerical integration scheme is the power of 

the step size that appears in the local error estimate, ey which can 

be written as 

_ ptl 
1” Oho ) (3.74) 

where the integer p is then said to be the order of the method. 

From this expression it can be seen that the discretization error 

estimate can be decreased by either increasing the order (if ho <1) or
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decreasing the step size. Therefore by monitoring the local discreti- 

zation error estimate, multistep methods provide the capability of 

automatically changing the order or step size to insure the accuracy 

of the solution. An example of a multistep scheme is the fourth-order 

    

    

Adams predictor-corrector method'®; 

dy* dy*_ dy*_ dy*_ 

predictor: vee =y +2, (55 x - 59 ix I + 37 es - 9 ix 3) 

dy dy dy* dy h n+1 n n-1 n-2 
° * = —_—_ ——— o corrector: y* = ys + oh (9 q + 19 q 5 dx + dx ) 

These are fourth order formulas, but the order can be increased by 

dyr-4 VWi-s5 
dx > dx ; 
    including more terms in these relations corresponding to 

etc. The Adams-PECE routine for calculating yr is as follows: 

  

1. Use the predictor to calculate ya, an initial approximation 

* 
to Yat’ 

ays? dy (yx 69) 
2. Evaluate the derivative function and set = = B41, Sat? 

3. Calculate a more accurate approximation ya using the corrector 

(0) * * 
. dy rel dyn 

formula with >. 
dx dx 

4, Evaluate the derivative function using ys(y obtained in step 3 

(from the corrector formula) for the next integration step. 

If a singularity exists in the solution to Eq. (3.64), the Adams- 

PECE scheme is much more likely to discover this fact than a Runge-Kutta 

method. 

The SVD procedure decomposes the matrix A* into the following form: 

A* = usv (3.75)
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T . . . . 
where U and V' are orthogonal matrices and S is a diagonal matrix that 

shows if 

elements 

diagonal 

by first 

form and 

by using 

shows if 

A* is singular (see Appendix D). If one or more of the diagonal 

of S is zero then A* is singular. Also the number of non-zero 

elements of S is the rank of A*. The SVD of A* is accomplished 

using Householder transformations to reduce A* to bidiagonal 

then the singular values of the bidiagonal matrix are determined 

a variant of the QR algorithm. This decomposition explicitly 

A* is singular and monitoring S will show if a singularity 

is encountered. The fact that the SVD is based on orthogonal matrices 

makes it numerically stable, which is essential in a neighborhood of a 

numerical singularity. 

Substituting this decomposition for A* produces a very simple method 

* 
for determining when a component of a is unbounded. This procedure is 

shown by expressing Eq. (3.64) as 

T dy* _ 
USV dx B* (3.76) 

which implies that 

*& 

svi SY" = ylge = (3.77) 
dx 

Now since S is a diagonal matrix, then
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where the o, are the diagonal elements of S. The vector H determines if 

any of the derivatives is unbounded. There is no need to solve 

explicitly for se to realize that the system is singular because V 

is orthogonal. Pre-multiplying H by V might shift the singularity to 

another component but it will not eliminate the singularity from Eq. 

(3.64). By examining a number of cases it was found that a tolerance 

could be set on the components of H when the system is singular. The 

singularity always occurs at the throat and when the Adams-PECE routine 

encounters this singular behavior it will not be able to integrate 

further. But it is quite inefficient to discover the singularity in 

this manner, since the integration routine will keep trying to integrate 

across the singularity until it runs out of time. Therefore, if 

[G,/o,| > 100 the program stops since this indicates that a is 

becoming too large for the integration routine to handle. If this is 

the case then incorrect reflection coefficients have been chosen. 

Now, with a systematic procedure for integrating to x = L, the 

iteration on Eq. (3.73) can be implemented. For a particular case, the
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only variables in Eq. (3.73) are the reflection coefficients. The 

reflection coefficients that satisfy Eq. (3.73) are determined by 

iteration. This is accomplished by using a subroutine that tries to 

minimize the sum of the squares of 2N nonlinear functions in 2N 

variables by a modification of the Levenberg-Marquardt algorithm? >'4 

(see Appendix A). The algorithm calculates corrected reflection 

coefficients which are then passed to the integration routine. This 

is done successively until F(c_) = 0 is satisfied to within a certain 

tolerance. 

3.2 Numerical Results 
  

The numerical procedure has been applied to examine acoustic 

propagation through a simple converging-diverging duct section. The 

radius of the duct wall in the variable-area section is given by 

- tae 27x R=1 i0 (1 cos = } 

and the duct connects to straight sections at x = 0 and x = L, see 

Fig. 26. 

In order to implement the iteration procedure, reflection coefficients 

that will permit Eq. (3.64) to be integrated to the right-end of the duct 

without encountering a singularity are first determined. To begin with, 

we consider only one reflection coefficient Coy and assume the other 

coefficients to be zero. This is equivalent to setting the boundary 

conditions at x = 0 for the higher harmonics to be zero. By varying 

Chi we obtain the plot in Fig. 27 showing the region of admissible 

reflection coefficients Co The region is determined using two
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harmonics. Cases using four and ten harmonics indicate that the region 

does not shrink appreciably. Using these values for oat and the other 

Coy = 0 as initial values, we start the iteration to determine all the 

coefficients c ,. 
ri 

Equation (3.5) can be written in real form as 

N 

u(x,t) = U1 9) + a D(x) cos [nwt - o, 00] (3.78) 

where the amplitude functions D(x) are related to the complex co- 

efficients by 

  

= 2 2 = D(x) = 2 ¥[Re(u,)]? + [Im(u,,)] 2 ju | (3.79) 

and the phase angle o, (&) can be determined from 

-1 Im(u,) 
o, = tan (3.80) 

Re(u, ) 

In the following figures ju, [/ [4,4 (0) | represents the development 

of the amplitude of the nth harmonic as compared to the fundamental 

wave at the duct entrance. 

In Figures 28, 29, and 30 the original Runge-Kutta version of 

the program is compared with the version using the Adams-PECE and SVD 

routines. The figures represent plots of the velocity amplitudes versus 

the axial distance through the duct. They are determined using the 

above mentioned procedure (i.e., Chi = O for n > 2). Figure 28 

demonstrates the weakness of the original numerical procedure. In the 

case depicted in Fig. 28, Cry = 0. But from Fig. 27 it is seen that this 

value for Ch is not in the region of admissible Chat Therefore the 

Runge-Kutta scheme, as shown in Fig. 28, has integrated to x = L



58 

without realizing that the solution is singular near the throat. In 

Fig. 29 the same case is shown except here four harmonics are used. The 

unstable growth of the amplitudes near the throat, which resulted in the 

termination of the program, indicates that the results in Fig. 28 are 

incorrect. Using the Adams-PECE and SVD methods shows that c., = 0 is 

incorrect for the case of two harmonics. The program will terminate at 

the throat and not integrate to x = L as the Runge-Kutta does. Figure 30 

is obtained from the Adams-PECE and SVD schemes. There are no unstable 

growth patterns or large jumps in the amplitudes near the throat both of 

which develop in the Runge-Kutta method. 

The successful integration to the right end of the duct allows the 

iteration to begin on the impedance conditions at x = L. Figures 31-34 

depict the variation of the velocity amplitude of each harmonic through 

the duct for a case where the impedance conditions at x = L are 

satisfied by the iteration. Several cases were calculated using different 

reflection coefficients to initiate the iteration. In each case the 

iteration converged to the same solution. Also, the flow in the vicinity 

of the throat is in the near sonic region. The parameters for each case 

are identical except for the number of harmonics. These figures 

“illustrate the dominance of the fundamental signal. The fundamental 

signal in Fig. 34 computed using four harmonics is not appreciably 

different from that in Fig. 31 using one harmonic. Also shown is the 

rapid increase in the intensity of the disturbance near the throat 

region. The higher harmonics do not become significant until the throat 

is approached. For the fundamental signal there is a reduction of its
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amplitude at the exit. Including higher harmonics reduces the amplitude 

of the fundamental signal to a still lower value at the exit, thus the 

increased intensity near the throat appears to transfer energy from the 

fundamental to the higher harmonics. The results of the case using 

four harmonics were used as input for a case using ten harmonics. No 

iteration was performed on this case due to the large computation time 

that would have been required for ten harmonics. Integration to the 

exit would be performed to determine if a singularity would appear that 

was undetected by using four harmonics. Also the impedance conditions 

at x = L were evaluated to determine if they were still satisfied. This 

example confirms the results of Fig. 34. For the first two harmonics the 

results are essentially the same as that obtained by using four harmonics 

in the computation of the solution. The only significant result of this 

case not shown in Fig. 34 is the reduction of the third and fourth 

harmonics at the exit due to their interaction with the higher harmonics. 

Since this case has a high maximum Mach number (-.983 for N = 4) at the 

throat (which implies significant nonlinear effects), it should serve 

as a limiting case to guarantee a subsonic flow eliminating the 

possibility of shocks being formed. Therefore in less severe flows 

(i.e., lower Mach numbers), the use of four harmonics is probably 

sufficient to analyze the problem. 

Figures 35 and 36 illustrate the growth in the intensity of the 

fundamental signal at the throat that develops by increasing the density 

disturbance o_ and the mean flow Mach number Mj, respectively. Each 
I
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case is computed using three harmonics and the last point plotted 

approximately locates where the problem becomes singular. 

Figures 37 and 38 are similar to the two previous figures, but 

here the reduction in the intensity of the fundamental signal at the 

duct exit by increasing p, and Mg, respectively, is shown. Input 
I 

values for these figures are identical to those used to compute the 

cases in Figs. 35 and 36. 

Investigating a number of cases where the derivatives become 

unbounded indicates that the singularity is due to shock formation. 

That is, if the input parameters which determine the flow produce a 

singularity, then these parameters are not consistent for an 

isentropic solution to the governing equations. In each singular 

case analyzed (also, these cases will not converge in the iteration 

scheme) the Mach number exceeds unity at certain values of time. In 

all of the singular cases, the singularity is encountered downstream of 

the throat. A particular case is taken for three harmonics and what 

occurs for a singular case by varying 0, is shown in Fig. 39. The 
I 

is varied between .0049 < 0. < .008 while the density disturbance op I— I 

mean flow Mach number is held constant, Mp = -.4. For these particular 

values the problem is singular. Figure 39 shows that as the density 

disturbance is increased, the singularity occurs farther downstream of 

the throat. A similar result would be expected by varying the mean flow 

Mach number. Therefore it appears that Py and Mo affect the location 

of the shock and that the shock approaches the duct entrance if either 

value is increased or both are increased.
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In Fig. 40, the Mach number variation with time is plotted for two 

cases. These curves are periodic in time with period 27. Each curve is 

determined using three harmonics and the same mean flow Mach number. For 

the case Pp, = .0049, a singularity is produced just downstream of the 

throat and this is where the Mach number is computed (x = .98851). As 

is seen, this Mach number curve exceeds unity in its time variation 

which is a necessary condition for a shock to appear. In the case where 

op. = .0045 no singularity is encountered and the iteration scheme 
I 

converges. The Mach number plot for this value is computed at the 

throat (x = 1). Throughout its time variation it is subsonic.



CHAPTER FOUR 

Conclusions 

Acoustic propagation in nonuniform circular ducts carrying 

partially choked mean flows is studied using two models. The wave- 

envelope technique is employed to analyze axisymmetric and spinning 

mode linear propagation. In the second model a one-dimensional 

nonlinear analysis is developed since for near sonic flows it is known 

that nonlinear effects become important. Linearization was performed 

in the first problem because the number of physical parameters included 

in the analysis would lead to extreme mathematical and computational 

complexity if the nonlinear terms were retained. 

Computer codes were developed for both theories and results were 

obtained. The linear analysis investigates the effects of such physical 

variables as the liner admittance, boundary-layer thickness, acoustic 

frequency, spinning mode number, and mean Mach number. 

Two duct geometries were investigated in the linear analysis: a 

converging duct and a converging-diverging duct. The numerical results 

indicate that the diverging portion of the duct can have a strong 

reflective effect for near sonic flows. For a converging duct it appears 

that with increasing inlet boundary layer displacement thickness the 

maximum pressure amplitude increased while the refractive effect of 

the axial gradients is strongest for axisymmetric disturbances. Also, 

the largest peak pressure occurrs for axisymmetric disturbances. The 

presence of a liner reduces the acoustic signal for a converging duct. 

62
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In the converging-diverging duct study no general trend was found 

in the acoustic pressure profiles by varying the boundary-layer 

thickness or liner admittance for axisymmetric disturbances. The 

wave-envelope technique is probably more accurate for lined ducts and 

spinning mode propagation, since in these cases the modes are more 

cut-off initially and therefore are less likely to cut-on. Hence, they 

are greatly attenuated in the duct. 

A numerical procedure for analysis of nonlinear acoustic propagation 

through nearly sonic mean flows, which is stable for cases of strong 

interaction, has been developed. This procedure is a combination of 

the Adams-PECE integration scheme and the SVD scheme. It does not 

develop the numerical instability associated with the Runge-Kutta and 

matrix inversion methods for nearly sonic duct flows. The numerical 

results show that an impedance condition can be satisfied at the duct 

exit and a corresponding solution can be obtained. The numerical 

results confirm that the nonlinearity intensifies the acoustic 

disturbance in the throat region, reduces the intensity of the 

fundamental frequency at the duct exit, and increases the reflections. 

This implies that the mode conversion properties of variable area 

ducts can refract and focus the acoustic signal to the vicinity of 

the throat in high subsonic flows. Also the numerical results indicate 

that a shock develops if certain limits on the input parameters are 

exceeded.
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Figure 26 Duct geometry.
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Appendix A 

Nonlinear Least-Squares Optimization 

A scalar function ¢(x) in n variables where 

can be expanded about an arbitrary point, a, by Taylor's theorem 

according to 

o(x) = (a) + (ara) g(a) +> (x-a)"Bla)(xra) +... (AL) 

In this formula g is the gradient of 4 and B is the Hessian matrix of ¢ 

where g and B are 

= 2b. 
bi” Ox, (A2) 

L 

2 
.. = ae (A3) 
ij OX, 

Suppose the local minimum of ¢ is desired and this minimum occurs at 

a. Then g(a) = 0 and the Hessian matrix, B(a), must be positive 

4) definite For quadratic » Eq. (Al) becomes 

d(x) = oa) + > (xa) "B(w-a) (A4) 

Therefore the gradient g at x is given by 

g(x) = B(x-a) (A5) 

so that for an arbitrary point x, the value of a can be evaluated from 

a= x - B g(x) (a6) 

110



lil 

From this it is apparent that the minimum of a quadratic 9 can be 

obtained by knowing the gradient direction g at x and Bt. Define the 

matrix H as 

H=B! (A7) 

One can now view the matrix H as an operator which turns the local 

direction of steepest descent -g at x into the true direction from x to 

the minimum point of 6. Replacing Bt by H in Eq. (A6) results in 

a= x — Hg(x) (A8) 

Equation (A8) can be considered as the Newton method for solving the 

system of equations g(x) = 0. Using the form of Eq. (A8) an iteration 

procedure can be formulated to find the minimum of any function 978. 

The iteration equation is of the following form 

Heer > He 7 By (A9) 

in which 

&. = g(x, ) (A10) 

and Hy is a kth approximation to the inverse H of the Hessian matrix B 

of the function ¢ at a, the minimum. Also Oy is a positive scalar 

which is determined at each step of the iteration in order that a local 

minimum of ¢ is achieved along the direction ~H, 2. from X,° This 

iteration scheme attempts to achieve the minimum point a and the 

inverse Hessian matrix H simultaneously. 

Let us now consider the case where ¢ is the sum of squares of m 

nonlinear functions in n variables that is, 

m 

b@) =£8=) [£1 (A11) 
i=l
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where 

T 
x (Xj Xo oee2-X,) (A12) 

£ = (£,,f,,---sf,) n (A13) WP? 

and assume for convenience that m >n. For our purposes the column 

vector f represents the residuals of the boundary conditions so that 

minimizing ¢ will minimize the residuals in a least-squares sense. The 

gradient and Hessian matrix of ¢ will now be determined by expressing 

¢ in index notation 

> = fee (A14) 

which implies that 

BG) =o = yf eg = fat + Ff (Al5) 

so that 

g(x) = 20°£ (A16) 

In Eq. (Al6) J is the m x n Jacobian matrix of f which has the form 

aE 
y=5. -—2 (A17) 

The Hessian matrix B is given by 

Pog ~ *pq 

= (Ey £1) o5q = (2f, Fog 

= 2(f) park + typ kg or 

B= 2(C + J’J) (A18) 

where 

f Cc = f, , (A19) 
Pq k,pq k
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an Xn matrix. 

If the Hessian matrix of second derivatives, B, can be calculated 

90 then Newton’s method, Eq. (A9), can be used. This scheme constructs 

a sequence of vectors {x,} such that 

Bett 7 Me FM Px (420) 
Comparing Eq. (A20) with Eq. (A9) shows that Py» the direction of search, 

satisfies 

B(x, )Py = ~g (x) (A21) 

where the Hessian matrix is approximated by evaluating it at x If 6 

is a sum of squares of nonlinear functions then the special form of 

the Hessian matrix and gradient vector, Eqs. (A18) and (Al6) respectively, 

can be substituted into Eq. (A21) so that, 

[C(x,) + I(x) IG) Tye = I" Gy, £ GK) (422) 

Neglecting the second-derivative matrix C(x, ) in Eq. (A22) results 

in 

37 (x, )J(x,)p, = -I'(x,)£(x,) (A23) Ay? YG / Py y/o 

This is known as the Gauss-Newton method and is intended for problems 

where ||C(x)]|| is small compared to | |a7 (x) I(x) | |. 

43 generates a sequence of The Levenberg-Marquardt iteration 

approximations to the minimum point by 

_ T -1 T 
Xe 7 3 7 HLH, + OIG T  I&,) f(x) (A24) 

where Hp» % are positive scalars. Consider the approximation M to the 

Hessian matrix B(x, ) in Eq. (A24), 

M= ut + D(x,) (A25)
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where 

D(x) = J'Gy) IC) (A26) 

In Eq. (A25) one sees that the eigenvalues of M are Hy + Ayo j = 1,2,..,n, 

so that choosing Wy, > -nin A, guarantees that the eigenvalues of M are 

positive and thus M is positive definite>!. ‘This then guarantees that 

for some Oy. > 0 

dX) < (x) (A27) 

Note that the Py in Eq. (A424) is somewhere between the Gauss-Newton 

direction (uy = 0) and the gradient direction (uy = oo), 

The numerical scheme that was employed in the computer program 

approximates J(x,) by the corresponding matrix of difference quotients. 

This matrix of difference quotients is denoted by AF(x,h) whose m-th, 

n-th element is 

AF(x,h) = £ (x + hu) - £, 0x) (A28) 

where h is a scalar and ue is the n-th unit vector. The finite 

difference analogue of the Levenberg-Marquardt algorithm (f£.d.L.M.)*9 

is 

1 Xp4y = Xe 7 ele, t + ny? AF” (x oh, AF (a, 5h.) ]7 “hy AF” (xy, 5h.) £(x,) 

(A29) 

= x, - ah [hyu,t + OF" (x, sh) OF Ge, 5h,)]7 OF (x, shy) £(%,) (30) 

If bh. = 0 then the finite difference analogue of the Gauss-Newton method 

is obtained. The convergence of the £.d.L.M. algorithm to a local 

minimum point for sufficiently small h is proven in reference 43.



Appendix B 

Transfer Matrices 

Since the system of ordinary differential equations represented by 

Eq. (2.61) is linear its solution can be determined by a linear combination 

of N linear independent solutions. With this fact, the general solution 

can be written as 

A(x) = cra) (x) + cpa?) 4... + AO Ge) (B1) 

(1) am) 
where the column vectors A > 2 © © 9 are the linearly independent 

solutions whose numerical determination is described in the text and the 

C's are arbitrary constants. The right-running modes are the first Np 

components of the A's and the remaining Ny components are the left-running 

modes. 

Equation (Bl) leads to the following: 

B(x) = T(x) +t. . . . + ot) (xy (B2) 

where 

. ifk,dx 
A Me ] 

to) (4) = .k=1,2,..,N (B3) 

“as dx (x) 1 *y 
[Aye |     

and 

B(x) = (B4) 
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At x = 0, Eq. (B2) reduces to 

1 0 

0 0 

B(O) = Cy ]-] +... +O]. 

0 1 

T Ai (0) | Cy | 

Az (0) Co 

= (B5) 

Aas 60? Cy         
so that the constants in Eq. (B2) are equal to the mode amplitudes at 

x = 0. Following the notation already introduced in the text Eq. (B5) 

can be rewritten as 

    

cy | ] 

Co BY (0) 
. = ----- (BS) 
. B (0) 

Cy     
Also, Eq. (B2) can be expressed in matrix form as 

4 
PO 72) 2222 2 Cy 

rs) 2?) 7s) Co 

B(x) = |. : . (B7) 

Q) 2) (N) 
T T T C 

JN UN NU LN         
The above equation will now be written in partitioned form as
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BY (x) TR} 1 TRo BY (0) 
_— — = = ~ wf. — -— — = (B8) 

B (x) TR31 TR, | |B (0) 

so that we arrive at Eqs. (2.62) and (2.63) 

BY (x) TR) (x)B*(0) + TRo(x)B (0) (B9) 

- + - 
B (x) TR3(x)B (0) + TRy(x)B (0) (B10) 

With Eqs. (B9) and (B10) transmission and reflection matrices can be 

determined in terms of the transfer matrices. The transmission and 

reflection matrices obey 

BY(L) = TH[Rf (gy) + REobB7 (ZL) (B11) 

B-(0) = TO? *B7 (Ly + RO? Bt) (B12) 

Solving for B (0) in Eq. (B10) and then substituting the result into 

Eq. (B9) yields 

+ -1 + -l.- 
B (L) = [TR]- TRoTR, TR3]B (0) + TRoTR, B (L) (B13) 

where x = L. Comparing Eq. (B13) with Eq. (B11) implies that 

re>9 . rR, - TRoTR, TR; (B14) 

giol TRoTR,. (B15) 

Also, by directly comparing Eqs. (B10) and (B12) yields 

0,L T TRL (B16) 

0,0 R -TR, TR3 (B17)



Pw 

where 

where 

If y is the column vector of the unknowns u 

Tiyet: 

A(x,y) = 

Oss 
iJ 

E11 (0) 

E,1(n) 

E21(0) 

E23(0) 

E22(n) 

E31 (0) 

E33 (0) 

E32(n) 

-T 

are 

Appendix C 

The Nonlinear Differential Equation 

  

the coefficients of Eq. 

Invert? Uw Panett? 

(3.60) take the following forms: 

  

1N 

O11 012 13 

421 22 023 

031 032 433 

(2N + 1) x (2N + 1) submatrices defined as 

Em Bam‘) Em S2) 

Em)? Em Em) wee 

Eam‘2? Em‘) Em 

= — 

Pio» E,2(0) = ujyg, E13(0) = 0, 

= Pin,» Ej2(m) = ujn, E13(m) = 0, 

F1(0), E2(0) = F19, 

4, Ep1(n) = F,(n), 

in Eo3(n) = Pjn 
Y > ~y_ > 

0, E32(0) = (l-y) [F2(0)], 

E21(0), E3,(n) = 0, 

(1-y) (F2(n)), E33(n) = E2;(n). 
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N 

F,(0) = b u .p.., where () 
j=-N 19°13 l,-n = ¢ dion 

" _ 

F,(1) = O,.U.. 
j=-N 1j 1j+1 

N-2 
F, (2) = p11u + Oo .u. 1 (2) 11411] jae ij +2 

Fo(n) has the same form as F,(n) but with o being replaced by T. 

By (n) 

B= Bo (n) > n = -N,...,0,...,N 

B3(n) 

where 

By,(n) = - finwe |. + Fid@)Al] 

Bo(n) = - F5(n) 

B3(n) = -[F3(n) + (1 - y)Fy(n)] 

_idaA 
A ~ A dx 

' _ 
F3(0) = o.,iwjT_,. 

je-N lj 1j 

N-1 _ 
F3(1) = . ) p, ,toG + 1)T s41 

j=-N 

etc. 

F,(n) has the same form as F3(n) but with op, T being replaced by T, 

o respectively. 

Fs(n) has the same form as F3(n) with T being replaced by u.



Appendix D 

The Singular Value Decomposition 

If the elements in a set of vectors cannot be expressed as a 

linear combination of the other elements then the vectors are said 

to be independent. In the following we shall develop a quantitative 

approach to the idea of linear independence. For example the vectors, 

1 0 0 

0 1 and 0 

O/1,| 0], 1 

are very independent while the vectors 

1.01 1.00 1.00 

1.00 1.01 and 1.00 

1.00jJ , L1.004 , 1.01 

are almost dependent. It will be shown that a numerical value can be 

associated with the concept of independence'®, 

Two vectors are dependent if they are parallel and are very 

independent if they are orthogonal. Two vectors u and v are orthogonal 

if their inner product is zero, uty = 0. 

Also, if 

uu= l 

the vector u is said to have length 1. An orthogonal matrix is defined 

to be a square matrix whose columns are mutually orthogonal vectors 

each of length 1. Therefore a matrix U is orthogonal if 

Since ut = ut an orthogonal matrix will always be nonsingular. In 

what follows the concept that an orthogonal matrix is very nonsingular 
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and that its columns are very independent will become apparent. 

The length of a vector and the angle between two vectors are 

invariant under multiplication by orthogonal matrices. Since they do 

not magnify errors, orthogonal matrices are quite useful in 

computational analysis. 

The singular value decomposition of an m <x n real matrix A is 

of the form 

A= urve 

where U is an m X m orthogonal matrix, V is an n x n orthogonal matrix, 

and Z is an m X n diagonal matrix where g,, =o, > 0Q. The o's are 
LL Ln 

referred to as the singular values of A. It is shown in texts on 

linear algebra? that this decomposition is always possible for any 

matrix A. The columns of U and V are called the left and right 

Singular vectors. 

It is also shown in linear algebra>* that the matrices aal and 

ata have the same nonzero eigenvalues and that the singular values of 

A are the positive square roots of these eigenvalues. Also, the left 

and right singular vectors can be constructed from the eigenvectors 

of aat and Ata, respectively. 

Two simple examples are presented now to illustrate the above 

procedure for determining the SVD.
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EXAMPLE 1: 

“fo 
First compute Ata and determine its eigenvalues, 

2 3 
ATA = 

3 5 

The eigenvalues of ata are 

1,2 = 6.854, .146. 

Now using the following equations compute the eigenvectors 

(2-2) va + 3V, = 0 
2 

2 2 = Vr +V5=1 

So that, 

526 851 

v= 
.851 -.526 

where the first column of V is the eigenvector corresponding to Aj 

and the second column is the eigenvector of A>. In this example 

U = V since A is symmetric. The singular values are 2.618 and .382 so 

} | ees ‘| 

Lo Vid 0 . 382 

that
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EXAMPLE 2: 

Consider the singular matrix 

“Tod 
As before, form 

5 5 
A‘A = | 

5 5 

whose eigenvalues are 

A1,2 = 10, 0 

Determining the eigenvectors give us 

i i 
v2 v2 

V= 

i Lk 
v2 v2 

Now then 

T 2 4 
AA” = » whose eigenvalues are A, 2=10,0 as expected. 

4 8 ° 

. . T : 
Evaluating the eigenvectors of AA determines U as 

Rok 
12 | 6 8 

20k 
5 

Finally the singular values are Yi0 and 0 so that 

Y10 0 

0 0
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We see that one of the singular values is zero which is to be expected 

since A is singular. 

The rank of a matrix is another basic concept of linear algebra. 

This is defined as the maximal number of independent columns or the 

order of the maximal nonzero subdeterminant in the matrix. For a 

particular matrix it can be quite difficult to determine its rank using 

this definition. If a matrix is diagonal it is simple to determine its 

rank since it is the number of nonzero elements in the matrix. The 

set resulting from the multiplication of a set of independent vectors 

by an orthogonal matrix is still independent. Therefore the rank of 

a general matrix A is equal to the rank of the diagonal matrix © in 

its SVD. Hence the rank of a matrix can be determined by the number of 

nonzero singular values that it has. 

Now let k represent the rank and consider an mx no matrix with 

m>n. The matrix is called full rank if k = n or rank deficient if 

k <n. In the case of a square matrix nonsingular and singular are 

used instead of full rank and rank deficient, respectively. In computing 

the SVD of a rank-deficient matrix all of its singular values can turn 

out to be nonzero due to roundoff errors, indicating a matrix of full 

rank. Usually in determining the SVD, an effective rank is used, which 

is the number of singular values greater than some prescribed tolerance 

so that the significance of single numbers, the small singular values, 

and not sets of vectors can be used to determine the rank of a matrix. 

A numerical value can now be associated with the idea of linear 

independence. Suppose oa and o_, are the largest and smallest 
max min
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singular values of a matrix A of full rank, then the condition number 

of A is defined to be 

  

o 
cond(A) = mex 

Oo 
min 

Cond(A) is said to be infinite if A is rank deficient (0 vin = 0). 

From this definition it is apparent that cond(A) > 1. The columns 

of A are very independent if cond({A) is close to 1. The columns of 

A are nearly dependent if cond(A) is large. We can say far from singular 

or nearly singular if A is square. If cond(A) > cond(B), then A is 

considered to be more singular than B. For an orthogonal matrix A, 

cond(A) = 1 and its columns are as independent as possible. Also, if 

A is an arbitrary matrix and cond(A) = 1 then A must be a scalar 

multiple of an orthogonal matrix. 

The advantage in using the SVD to solve a system of equations is 

now presented. To begin with suppose we want to solve the following 

systen, 

Ax = b 

where A is anm xX n matrix (m > n) and b is a given m vector. Then 

vector x is the solution vector to be determined. Note that A can be 

square and possibly singular. There are some fundamental properties of 

the system that must be examined. Questions about the consistency of 

the equations, existence of solutions, uniqueness and the possibility 

that Ax = 0 has nonzero solutions arise. 

In theory there are a number of algorithms that can determine 

these properties. Considering the inexact data and the imprecise
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arithmetic involved in the numerical solution of the problem indicates 

that the only reliable numerical method is the SVD. 

Now replacing A by its SVD implies that 

UEV'x = b 

and 

“tz = d, 

where z = vix and d = ub. The above system (Zz = d) is diagonal and 

depending on the dimensions m and n and the rank k, the number of 

nonzero singular values, it can be analyzed in three cases: 

Q N { =d., if j < nando, 0 j j< n 37 

O.z. = d., if j < nando, = 0 
J - J 

0 = qd, if j >n. 

If k = n, the second set of equations is empty. If n = m, the third 

set of equations is empty. The equations are consistent and a solution 

exists if and only if d. = Q whenever o; = Qorjon. If k <n, then 

the z, associated with a zero o, can be given an arbitrary value and still 

yield a solution to the system. 

So far nothing has been said about how the decomposition is actually 

performed in the computer routine. We will now consider the numerical 

procedure used by first looking at the following problem. Suppose we 

want to transform a real arbitrary vector u into a second real vector v 

of the same length by using the following transformation 

v= Pu 

where P is a square matrix and is a function of u and v (refer to Fig. 

D.1) *
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Fig. D.l 

To implement this note that 

O¢ = OA + 2AB 

where B is the midpoint of AC. Therefore OB is perpendicular to AC and 

AB is minus the projection of OA on AC. This equation can be rewritten 

as: . | , 

—- 

+ 2AB. I<
 Hl & 

Let w be a unit vector along AC so that 

vru 

= T2lT 
Since AB is minus the projection of u on AC then 

—> 

AB = -(w Tow 

Also 

(w'u)w = ww'u) = wwu 

so that 

vtu- Qwwu= (I - 2w)u 

Now we have the form of P, which is 

P=1-2w', ||w|| =
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and this is called a Householder transformation. One can substitute 

} 
for P and algebraically verify that this is the correct form, that is 

_ 2(v-u) (y-u)? T 
Pu = (I - 2ww ju = u 

a | |e] |? 
u 

T 
=eu-20 2 

v-ul [2 “ew 

But 

| |v-u]|2 = (eu) *@w-u) = viv - uv - vu tue 

= 2utu . oviu 

= -2(v-u) u 

so that 

Pu =u + (v-u) =v 
It is apparent that P depends only on w, the direction of v-u. Therefore 

for any two vectors u' and v' for which ||u'|| = ||v'||{ and v'-u' is in 

the same direction as v-u the transformation Pu' = v' holds. The 

implication here is that P reflects each point u' through a plane that 

is perpendicular to v-u and which contains the line through the origin 

and %(utv). Since it appears that a Householder transformation is 

merely a reflection one would expect that lengths and angles will be 

preserved and hence it is an orthogonal transformation. 

First note that, 

pp =I - 2(ww)' = 1 - 2! =P 

so that P is symmetric. Moreover, 

T pip = (I = 2ww')? Taw I - bran + 4ww ww 

I - aww? + buna 

=I
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Hence P is indeed an orthogonal matrix. Householder transformations are 

a fundamental part of the SVD routine. 

The QR algorithm®? is also associated with the SVD. In the QR 

algorithm a square matrix, say H,, can be decomposed as follows: 

Hy = Q)R) 

where Q; is an orthogonal matrix and R; is an upper triangular matrix. 

Interchanging the order of multiplication results in 

Ha = R1Q1 = QT HQ = Q7H1Q) 

and since Q) is orthogonal the eigenvalues of Hy are preserved. For 

most matrices the QR algorithm is convergent and Hy as k + », is block 

upper triangular (diagonal if the original matrix is symmetric). The 

eigenvalues of the original matrix will be the eigenvalues of the 2 x 2 

blocks on the diagonal. 

For computational efficiency a matrix is first reduced to upper 

Hessenberg form by using similarity transformations (which preserve 

the eigenvalues) before applying the QR algorithm. An upper Hessenberg 

form is a square matrix which consists of an upper triangular form with 

an additional band of elements adjacent to the main diagonal. The 

reduction of a matrix to upper Hessenberg form is accomplished by using 

Householder transformations. This is done successively until the upper 

Hessenberg form is obtained and can be represented mathematically as 

Phi 
hn x

i
x
 

ta
 | | | | = = 

iw
 

tw
 ba
 

| 
a 

=
 

bs | | | | | (n) (n)T L 22 -Q — — — —_— — 
(Dy ght Que’ ...Q07H, 
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k) where the a' "s are Householder transformations. 

The convergence of the QR method can be accelerated by employing 

shifts. Instead of decomposing Hy the algorithm is modified so that 

the decomposition is now done on 

He 7 mt = QR, 

and the reverse multiplication is changed to 

Ber ~ Be & + FT: 

The value Me is called the shift parameter. It has been shown?" that 

an excellent choice of Ne is the eigenvalue of the 2 x 2 submatrix at 

the bottom right corner of (the upper Hessenberg) Hy which is closest 

to ni? (the last entry on the main diagonal). 

The SVD computer program first uses Householder transformations 

to reduce the given matrix to a bidiagonal form and then a variant of 

the tridiagonal QR algorithm is used to find the singular values of 

the bidiagonal matrix. 

Let A be an m x n matrix, withm > nm, and let the SVD form 

A = UIV" 

to be computed by the computer routine. 

The reduction to bidiagonal form is accomplished by constructing 

two sequences of Householder transformations +’ 

pf) 2 7 - oy) CT Ge 2 1, 2, ..., 2) 

and 

O) 27 L gyG) COT | Q 1, 2, ..., n=2) 

(x0 TC) = y WOT, Ox) = 1) such that
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qi eo O...490 

q2 e3 0 

(a) 4(1),,.01) (ea) _ | ? 0 (0) P oe oP AQ 22.Q = = J 

e 
n 

qn 

0 \ (m—n) xn 

an upper bidiagonal matrix. 

1 
Let af ) = A and define 

aletl/2) 2 eG) s(E) 2 a 2, 0... a) 

AVL) 2 a (et1/2)0(K) (2, 2, 22, m2) 

then p(k) is determined such that 

(k+1/2) _ 8 
aay = 0 (i = ktl, ..., m) 

and g() such that. 

(k+1) _ 
j O (j = kt2, ..., n) 

A variant of the QR algorithm diagonalizes 69) | This is done 

iteratively so that 

(0), 5) J we ee E 

where Jottl) . g()T, (4), (4) 

and g(t), rot) are orthogonal. The matrices rt) are chosen so that 

the sequence yt) = zy T GQ) 

(i) 

converges to a diagonal matrix while the 

i). ae 
Matrices § are chosen so that x ) is bidiagonal.
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The following notation will now be adopted to explain the second 

phase of the SVD: 

t= gD | = Gt) | 

w= sy, t= F5. 

Givens rotations”? are applied alternately from the right and the left 

to J to accomplish the transition J > J. Therefore 

-~ TT T 

! j 1 a | 

st T 

where the Givens rotation Sy is 

    

(k=1) (k) _ 

1 0 0 

0 

Sy = 1 cos OL -sin OL 

sin a cos an 

1 

0 1 
= od 

and Ty is also a Givens rotation with o, instead of Oh. 

The angle ¢> can be arbitrary but all the other angles are chosen 

such that J has the same form as J. So that, 

To annihilates nothing, generates an entry {J}o1 

st annihilates {J}>.1, generates an entry {J} 3 

T3 annihilates {J}13, generates an entry {J}32
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until s* annihilates {Sb neL? and generates nothing. It is shown in 

reference 47 that $2 can be chosen so that the transition M > Misa 

QR transformation with a given shift s. This is true if the first 

column of T> is constructed so that it is proportional to the first 

column of M- sI. The shift parameter s is set equal to the eigenvalue 

of the lower 2 x 2 submatrix of M that is closest to Don’ These Givens 

rotations are applied iteratively until the super-diagonal elements 

converge to zero (computationally a numerical tolerance is preset in 

the program). 

To demonstrate this algorithm let us apply it to the following 

example. 

Example 3: 

1 1 2 

A= 1 2 2 

1 2 3 

Since n = 3 we need to apply two Householder transformations to 

the left of A and one to the right of A to reduce it to bidiagonal 

form. Let A; = A and consider introducing zeros into a), the first 

column of A;. This is done by adding | {az || to the first component 

of aj. Therefore 

1+ 73 2.73205 

ul) = 1 = 1 

1 1 

and from this the Householder matrix can be evaluated which will be, 

2 
Uy B, = eu = ula, = 4.73205
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U,; = I- By uyur (w = uy/| juz! | in the earlier notation) 

The transformed matrix A> is actually computed column by column from 

Ag = U}A) 

which implies that 

~] T 

Ujai (I -8, ujyuy)ay 

-1 T 
= ai - (87 uta})u4 

= a) ~ Uj 

-~1.73205 

0 

0 

-1,T 
Ujap = ap - By (ujyao)u) 

= ay - (1.42265)u; 

~2.88675 

= 37735 

~597735 

-i1,T 
Uya3 = a3 - 8, Cuja3)uy 

-4.04145 

= - .21132 

- 78868 

Therefore, 

-1.73205 -2.88675 ~4.04145 

Ao = 0 ~57735 - .21132 

0 ~57735 . 78868 

The right Householder transformation, denoted by V,, is derived from 

the first row of A>. This is done by constructing the following vector
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Vv, = 0 

vo = -2.88675 - ¥(2.88675)2 + (-4.04145) 2 

V3 = -4.04145 

therefore 

vi = [0  -7.8533 4.04145] 

so that 

vivi 
eee * Ta 

The transformed matrix A3 is computed row by row, that is 

A3 = AgV) 

implies that 

aivy = aj - vy 

= [-1.73205 4.96655 0] 

alv; = [0  -.16362  -.59264] 

alv, = [0 ~.97735 ~.01140] 

Therefore 

~1.73205 4.96655 0 

A3 = 0 - 16362 -.59264 

| 0 ~ 97735 ~.01140 

The final left Householder transformation is derived from the second 

column of A3 according to 

0 
up = | -1.15457 

- .97735
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so that 

T 
u2Uuz 

and the desired bidiagonal form 

-1.73205 4.96655 0 

Ay = UpA3 = 0 99095 .10910 

0 0 . 58262 

To implement the Givens' rotations the matrix M is formed 

according to 

3 - 8.60231 0 

m= Aza, = | -8.60231 25.64860 10811 

0 .10811 35135 

The eigenvalues of the lower 2 x 2 submatrix are: 

At 2 = 25.64906, .35089 

Since Ao is closer to m33, it will be the value chosen for the shift 

parameter s. 

The first right Givens’ rotation is 

cos $9 —~sin $9 

T2 = sin $9 cos $92 

0 0 1 

and the first column of T» is proportional to the first column of M-sI 

so that 

a cos $2 = 2.64911 

a sin $2 = -8.60231 

which implies



- 29431 cos $9 

sin $5 = -.95571 
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Post-multiplying A, by Tz produces 

-5. 25634 

As = AyTo = “Te 94706 

0 

-.19363 0 

~ 29165 - 1091 

0 ~ 58262 

Now the left Givens' rotation, S5, is applied to annihilate {As}>. 

The matrix So, 

p=l1 q = 2 

cos 85 ~ sin 99 

So = sin 69 cos 69 

0 0 

0 

1 

is determined from the following equations: 

7 4 _ (k) 
sin o Oat 

_ (k) 
cos oF Fd 

where 

-1 
Oy = (lap 1? + [a 1)? 

In this case p = 1, q = 2, and i= 1 (since {As}5; is to be annihilated) 

and the aon ® are the elements of As. 

Therefore 

sin 85 = -.17732 

cos 65 = -—.98415 

so that
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5.34096 13885 -.01935 

Ag = SsAs = 0 ~.32136 -.10737 

0 0 58262 

Continuing the process 

p = 2 q = 3 

1 0 0 

T3 = 0 cos $3 -sin $3 

0 sin 63 cos $3 

where 

, . (k) 
sin , = Fig 

= (k) cos o = Ftp 

1 

Oy = {fa 1]? + fa, 1°) 2 

Here p = 2, q = 3, and i= 1 (since {Ag} ]3 is to be annihilated) which 

implies that 

3 
sin $3 = a3a$3? -.13803 

3 
cos $3 a3a>) - 99043 

thus 

5.34096 14019 0 

A7 = AgT3 = 0 -.30346 -.15070 

0 -~.08042 57704 

The elements of $3 are 

(3) -. 25617 sin 83 

cos 63 = azas?) -. 96663
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which results in 

5.34096 .14019 0 

Ag = SuA7 = 0 31393 -.00215 

0 0 -.59639 

After one iteration it is seen that the off-diagonal terms have been 

reduced in magnitude (on each successive iteration they are always 

reduced in a least-squares sense). Following the above procedure, 

the off-diagonal terms will converge to zero with the singular values 

on the diagonal.
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ACOUSTIC PROPAGATION IN NONUNIFORM CIRCULAR DUCTS 

CARRYING NEAR SONIC MEAN FLOWS 

Jeffrey J. Kelly 

(ABSTRACT) 

A linear model based on the wave-envelope technique is used to 

study the propagation of axisymmetric and spinning acoustic modes in 

hard-walled and lined nonuniform circular ducts carrying near sonic 

mean flows. This method is valid for large as well as small axial 

variations, as long as the mean flow does not separate. 

The wave~envelope technique is based on solving for the envelopes 

of the quasiparallel acoustic modes that exist in the duct instead of. 

solving for the actual wave, thereby reducing the computational time 

and the round-off error encountered in purely numerical techniques. 

The influence of the throat Mach number, frequency, boundary-layer 

thickness and liner admittance on both upstream and downstream 

propagation of acoustic modes is considered. 

A numerical procedure, which is stable for cases of strong 

interaction, for analysis of nonlinear acoustic propagation through 

nearly sonic mean flows is also developed. This procedure is a 

combination of the Adams-PECE integration scheme and the singular 

value decomposition scheme. It does not develop the numerical in- 

stability associated with the Runge-Kutta and matrix inversion 

methods for nearly sonic duct flows. The numerical results show that 

an impedance condition can be satisfied at the duct exit and a



corresponding solution obtained. The numerical results confirm that 

the nonlinearity intensifies the acoustic disturbance in the throat 

region, reduces the intensity of the fundamental frequency at the 

duct exit, and increases the reflections. This implies that the mode 

conversion properties of variable area ducts can reflect and focus the 

acoustic signal to the vicinity of the throat in high subsonic flows. 

Also the numerical results indicate that a shock develops if certain 

limits on the input parameters are exceeded,


