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CHAPTER ONE

Introduction

The use of high bypass turbofan engines has resulted in the reduction
of noise associated with the jet exhaust and has enhanced the fuel economy
of the engine. But noise emissions from the inlet nacelles produced by
the fan are of such a level as to raise objections from communities
near aigports. Hence much attention has been devoted to reducing the
inlet noise. Reduction of upstream noise can be accomplished with the
use of a choked inlet!»? although such designs can have a negative effect
on compressor efficiency. Therefore using a near sonic inlet, or
partially-choked inlet, along with an acoustic duct liner is one method
that has received considerable attention in the reduction of inlet noise.

In order to develop an appropriate mathematical model for the
analysis of sound propagation in near sonic flows two pgoblems must be
considered: 1) acoustic theory is well developed for the study of sound
propagation in parallel ducts but it is not fully developed for
ﬁonuniform ducts that carry mean flows with strong axial and transverse
gradients, and 2) linear acoustic equations will not provide an accurate
solution for near sonic mean flows. In this study an analysis of the
first problem is performed using the wave-envelope te.c:hn:i.que3sl+ based on
the method of variation of parameters. A nonlinear model is developed
for the second problem.

A survey of the methods used for the analysis of acoustic propagation
in uniform and nonuniform ducts was made by Nayfeh, Kaiser, and Telionis5,

Nayfehs, Vaidya and Dean7, and Nayfeh, Kaiser, and Shaker3. A review of



numerical techniques employed in linear duct acoustics was performed
by Baumeister8.

For nonuniform ducts with mean flows the methods employed include
quasi-one—~dimensional approximations, multiple-scales solutioms,
solutions for weak wall undulations, weighted residual methods, and
direct numerical integration. Only the lowest mode is studied in the
quasi-one-dimensional method®~13 which assumes a slowly varying cross
section and ignores the effects of transverse mean flow gradients or

14=18 can determine

large liner admittances. The multiple-scales analysis
the transmission and attenuation for all modes without ignoring transverse
and axial gradients but it is limited to slow variations of the duct

cross section. Also, the expansion needs to be carrigd out to second
order to obtain reflections of the acoustic signal and intermodal coupling
in transmission. A perturbation solution is determined in the weak-wall-
undulation methodl? for ducts whose walls deviate only slightly from the
uniform case.

For uniform source inputs in nonuniform ducts, finite-difference
schemesle’19 have been employed. At high frequencies a large number of
grid points are needed to resolve the smallest wavelength which leads to
large computational requirements. Also, in order to obtain transmission
and reflection characteristics of the duct modes requires a transverse
step size to be small enough to resolve the highest mode. To reduce
the computational requirements, Baumeister?® used an estimate of the

wavelength of the fundamental mode to explicitly express the fast axial

variation and solved only for the envelope of the acoustic disturbance.



Eversman?l

used the method of weighted residuals, or Galerkin method,
which represents the acoustic signal as a linear superposition of basis
functions. This approach can determine reflection and transmission
coefficients but the short axial wavelengths at high frequencies will
demand a small step size in the axial direction which increases the
computational time.

Several finite-element models have been developed for the analysis
of acoustic propagation in nonuniform ducts with compressible mean flows.
Sigman, Majjigi and Zinn22 applied a finite-element approach to the
governing equations which were expressed in terms of a velocity-potential;
thus their amalysis is limited to irrotational mean flows. Majjigi,
Sigman, and Zinn23 expanded their method so that soft-wall ducts can be
analyzed. Tag and Lumsdaine?* also developed a finite-element scheme
for irrotational flow.

Since the introduction of these finite-element models several finite-
element approaches were employed which consider rotational mean flows.
Quinn?3 investigated the use of various interpolation functions and
finite~element methods on some relatively simble cases to check the
theory. A general compressible mean flow is considered in the finite-
element model of Abrahamson?® but the results presented are for an
incompressible case. Results from the wave-envelope method were
compared with this finite element scheme for cases of low speed mean
flows3s*. Acoustic pressure profiles were compared and the agreement
is very good. Abrahamson27 studied the possibility of reducing the

computational effort associated with the finite-element analysis.



A comparison of the transmission and reflection coefficients evaluated
using a finite-element scheme with those from the method of weighted
residuals was performed by Eversman, Astley, and Thanh?® in which

good agreement was observed. Astley and Eversman?? extended their
original finite-element procedure. Also, Astley, Walkington, and
Eversman30 applied a finite-element analysis to ducts with a
peripherally varying liner. 1In these studies the mean flow model is
rota;ional but it appears that the refractive effect of a finite
boundary-layer thickness at the duct walls was ignored.

The wave-envelope technique was developed for the analysis of sound
transmission and attenuation in an infinite, hard-walled or lined
circular duct carrying a compressible, sheared mean flow and having a
variable—area cross section. The evaluation of transmission and
reflection coefficients is aided by expressing the acoustic disturbance
as a superposition of the quasiparallel duct modes. An explicit
description of the fast axial variation of the acoustic disturbance is
given and only the slower variations of the mode amplitudes and phases
are calculated. The method is valid for large as well as small axial
variations as long as the mean flow does not separate. Previously,
Nayfeh31 used the wave-envelope technique to analyze acoustic propagation
in partially choked converging ducts for the case of axisymmetric flow.
Several changes have been made to the original numerical procedure in the
present study. These changes facilitate the computational efficiency of
the wave-envelope model and also enhance the accuracy of the solution.

The significance of the nonlinear terms was presented in a

number of studies. Numerical investigations of linear acoustic theory



by Eisenberg and Kaol3 and Hersh and Liu32? show it to be not valid for
near sonic flow. An analysis by Callegari and Myers33 using matched
asymptotic expansions to examine the region where 1 - ]M| = 0(e)
explicitly confirms the singular behavior of the linear theory. From
matching considerations the nonlinear effects are inferred to be important
when the strength of the acoustic disturbance is the order of (I—EM[)Z,
but no nonlinear results are reported. Several investigations incorpora-
ting nonlinear effects into a study of sound propagation through a

near sonic flow region have been developed to date. One such attempt32
treats the nonlinear terms as a source disturbance to the basic linear
propagation process. Such an approach cannot succeed since it does not
remove the mathematical singularity from the differential operator in

the governing physical equations.

Callegari and Miyers3l+ applied matched asymptotic expansions to the
nonlinear problem for upstream propagation of an acoustic source located
at the throat of a converging-~diverging duct. This theory was extended
by Myers and Callegari35 for a source located downstream of the throat.
The results of these studies indicate the generation of superharmonics
by a single frequency acoustic source and the formation of shocks if
the source strengths or frequencies are sufficiently high. This analysis
was extended for a source upstream of the throat3® and for shock fitting
in a flow containing a shock37.

In this study the behavior of numerical solutions of the nonlinear,
one~dimensional equations of motion are examined to gain insight into

the mechanisms that operate in the near sonic region and to determine



the mathematical techniques required to analyze these mechanisms. The
one~dimensional model contains all the essential elements of the linear
singularity and of the nonlinear harmonic interactions without the
purely computational difficulties of the full two-dimensional problem.
The acoustic disturbance is represented as a sum of a basic frequency
and a finite number of higher harmonics, and the nonlinear interaction
among the harmonics and their complex conjugates are calculated. A
preliminary version of the above model was reported by Nayfeh et al38,
In Chapter 2 a linear amnalysis is developed using the wave-envelope
method. Results are presented for a converging duct and then for a
converging-diverging duct. The nonlinear model is described and its

results are shown in Chapter 3.



CHAPTER TWO -

The Linear Problem

2.1 Axisymmetric and Spinning Mode Linear Propagation

The analysis of the transmission and attenuation of sound in hard
and lined nonuniform circular ducts carrying viscous or inviscid com-
pressible mean flows is presented in this section. The mean Mach number
in the throat is subsonic and the axial and radial gradients of the mean
flow are not necessérily small. The cross section of the duct is an
arbitrary function of the axial distance.

The nondimensional form of the governing equations for the unsteady
viscous flow in a duct are33:

Conservation of Mass

30 Ly . (%) =0 - (2.1)

Conservation of Momentum

(2.2)

=

W, = o= 1
p(at + v Vv) = -Vp + Re v

Conservation of Energy

9T 5. (-1 (R 4+ 5. =1 1 5. -
pGe TV s VD-(-LGE v - Vp) =37 5V 0 (kWDH(y-1)2](2.3)
Equation of State (perfect gas)
yp = pT (2.4)

Here,'; is the velocity vector, t is the time, vy is the ratio of the gas
specific heats, Pr = uwpp/Kw is the Prandtl number, cP is the gas specific
heat at constant pressure, and Re = pacaRO/pw. Conditions at the duct wall

are denoted by the subscript w, 1 is the viscous stress tensor and ¢ is



the dissipation function. The reference quantities for these equations
are: for velocity, the speed of sound c, from some convenient reference
point; for length, the duct radius in the uniform section Ro (Fig. 1);
for time, Ro/ca. The reference pressure is pacza and the reference
density and temperature are again evaluated at a convenient reference
point. Reference values for the viscosity 1 and thermal conductivity k
are their wall values in the uniform sectiom.

' In the linear analysis considered in this section the duct carries
a steady, sheared, subsonic mean flow that satisfies Eqs. (2.1)-(2.4).
The presence of sound in the duct creates a perturbation of the flow
variables so that

qa(r,t) = q_(r) + q(T,t) (2.5)

where q is any flow variable, r is the position vector, q, is the mean
flow, and q is the acoustic disturbance. The substitution of Eq. (2.5)
into Egqs. (2.1)-(2.4) results in the following acoustic equations after

the mean-flow terms are eliminated:

%i—l- + V . (9031 + pl\-;o) = NL (2.6)

->
oV - -> -> -> - -
pocgfl + vg ¢ Vvy + vy ¢ Vvg) + po1vg ¢ Vvg =

- 1
- Vpp + Re v I + NL (2-7)

T > - > 3
poC§El + vg * VT] + vy ¢+ VTg) + p1vg * VI - (Y—l)(g%i
+vg * Vpy + vy ¢ Vpg) = Re ["rfr' ¥V ¢ (kqVT; + x1VTq)

+ (y-1)@1] + NL (2.8)



e

P1.P1 411 2.9
Po pPo Tg (2.9)

where T; and ¢; are linear in the acoustic quantities and NL stands
for the nonlinear terms in the acoustic quantities.

The solution of the problem described by Eqs. (2.6)-(2.9) subject
to general initial and boundary conditions has not been determined to
date. Therefore simplifying assumptions are made in order to obtain
reasonable solutions for the propagation of sound in ducts. The acoustic
disturbance is assumed to be inviscid and the nonlinear terms are
neglected. Again one must emphasize the importance of the nonlinear
terms when the mean flow is transonic (i.e., near the throat). Also
the assumption that the mean flow is a function of the axial and radial
coordinates only is made so that the possibility of swirling mean flows
is eliminated. The cylindrical coordinate system (r,6,x) shown in
Fig. 1 is the appropriate reference frame to use. Assuming no swirling
flow and that the»time variation is sinusoidal implies that each flow
variable q;(r,x,9,t) can be expressed as

q1(r,x,8,t) = ) qlm(r,x)e—i(wt—me) (2.10)

m=0
where w is the dimensionless frequency. With the assumptions that are

stated above Eqs. (2.6)-(2.9) can be expressed in cylindrical coordi-

nates as
. 3 ipom
-iwpy + 5;-(pou1+uop1) + = w1 +-;'§;(rpovl+rv0p1) =0 (2.11)
) 9 duy dug dug dug
pol-twuy + == (wouy) + vo 57— + v1 571 + e1lug 5~ +vo 3] =

- = (2.12)
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. + 3 3Vl avo BV[) 9‘70
pol[-iwvy 5;-(v0v1) +ug g + Ul 5;—] + p1lvo 57 T uo 3% 1=

0P
T or (2.13)
ow Vow] ow
pol-dwwy + vg oo+ —— + ug =11 = - I (2.14)
3T, 3T, 3T 3T, 3T,
pol- 1wT1+Voa—-+uo—a——-+V1T+ul —-] +01[V0 3T

T
+ ug ‘BX—O] = (v=1)[-iwpy + ug 3~ + vo r*‘ Ul 3%

P P T
Po ro To ( )

where u;, v], and w; are the velocities in the axial, radial, and
azimuthal directions, respectively, and the subscript m has been
suppressed.

The initial and boundary conditions must be specified in order to
determine the solution to this problem. The duct wall is assumed to be
lined with a point-reacting acoustic material whose specific acoustic
admittance B may vary along the duct. This implies that for no-slip
mean flows the particle displacements at the interface of the wall-fluid
boundary must be continuous. Mathematically this boundary condition can

be written as

1+ (R")? =R (2.17)

vy - R'uj = 8
pc
wow

where R' is the slope of the wall and the subscript w refers to values
at the wall. For a given duct section we want to calculate transmission
and reflection matrices. Therefore the initial conditions consist of

the successive input of each acoustic mode at the duct entrance.
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An approximate solution to Eqs. (2.11)-(2.17), based on the method

of variation of parameters, is sought in the form

N ~ ~ ~
P13 L (A (W (r,x)exp(i/k dx) + A_(x)¥P (r,x)exp(i/k_(x)dx) }(2.18)

n=1
x u N Tu iy
st LA e () + A ()Y, (rox) exp (LK, (x) 4) ) (2.19)

with analogous expressions for vj, w;, T;, and p;. The tilde denotes
upstream propagation, the wn(r,x) functions are the quasiparallel mode
shapes corresponding to the quasiparallel wavenumbers kn(x), and the
An(x) are complex functions whose moduli and arguments represent, in
some sense, the amplitudes and phases of the (m,n) modes. The circum-~
ferential (spinning) mode number is specified and the corresponding
subscript on A, ¥, and k is not explicitly stated. Each acoustic variable
consists of a summation over a finite number of radial modes N, with
n = 1 referring to the fundamental radial mode rather than the
conventional n = Q. Since kn is complex, the quasiparallel wavenumber
represents an estimate of the attenuation of the (m,n) mode and also
the axial oscillations of the acoustic modes.

The wn, being the quasiparallel mode shapes, satisfy the following

problem:
- 1o + ko g%+ 2208 ¥ L L 2y 4y = 0 (2.20)
- 100wy + pg 220 4V + 1kyP = 0 (2.21)
~ ipguy’ + %{3 =0 (2.22)

1pquy” + %m— WP = 0 (2.23)
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- 00w + 0g 222 47 + 1(y-Dat® = (2.24)
P o T

Yoo oL¥ (2.25)
Po rPo To

- Bc WP =0atr==Rr (2.26)

pW w
where
®=w - kug (2.27)

A well known problem for parallel duct eigenfunctions can be derived

from Eqs. (2.20)-(2.27) in the form

32yP 1 2kuh, P 02 2
ek +?1 —-—‘*-ngf—+[-°§—o-k2-%z]wp=0 (2.28)
BQP wB P _
e~ 1 —g y* = 0 at r = R (2.29)
T
w

Solving Egqs. (2.28) and (2.29) will determine wi(r,x) at each axial
location and its corresponding wavenumber kn(x). Because the basis
functions vary in the axial direction they must be normalized to provide
significance to the axial variations of the mode amplitudes. For the
model implemented in this study the normalization procedure is the same
as that defined by Zorumski“o; that is,

R
J r[¢§(r,X)]zdr =1 (2.30)
0

The quasiparallel eigenfunctions of the other acoustic variables can be
expressed in terms of wﬁ and kn with the use of Egs. (2.20)-(2.25).

Since the transverse dependence in the assumed solutions, Eqs. (2.18)
and (2.19), is chosen a priori, it cannot satisfy Egqs. (2.11)-(2.17) or

a solvability condition exactly. Thus, the assumed solution is
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constrained by the solvability condition. Instead of using the usual
method of weighted residuals which constrains the residuals in each of
the Eqs. (2.11)-(2.17) to be orthogonal to some a priori chosen functions,
the approach taken in this study is to require the deviations from the
quasiparallel solution to be orthogonal to every solution of the
adjoint quasiparallel problem"“!l.

The problem adjoint to the quasiparallel problem must be defined
in order to enforce the comstraints. This is determined by multiplying
each of Egqs. (2.20)-(2.25) by the functions ¢;, ¢, ¢35, du, ¢5, and o¢g,
respectively, which are the solutions of the adjoint problem, and adding
the resulting equations. Integration of this equation by parts from
r =0 tor =R transfers the r derivatives from the y's to the ¢'s with

the result being

R R R
j y° [-iwé; - og/poldr + [ ipgp"[- wop + k¢yldr + J oo [~ iwps -
0 0 0
. R
3 3 3T ) -
+ 8—;& o2 =t 3= (—El) + B—I.‘_Q $5]dr + OJ 109" [~ woy

R
+ 7 o1ldr + J WPlike, - 223 + B 4, + 1(v-1)uss + bg/poldr
0
R

+ f o [-1pguds = ¢g/Tpldr + [pgu'e; + wp¢3]§ =0 (2.31)
0

Equating each of the brackets in the integrands of Eq. (2.31) to zero
determines the adjoint equations. The adjoint equations permit each of

the ¢n to be expressed as a function of ¢; according to

b2 = (k/0)é (2.32)
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. irTg 3 woy
¢3 = Y37 57 Gop,p) (2.33)
by = ZEL (2.34)
¢5 = %é‘ (2.35)
¢6 = -ipowd] (2.36)

Equations (2.32)-(2.36) can be substituted into the remaining adjoint

equation to obtain the following governing equation for ¢;:

13 ,rTp om Tok?  Tom?, _

T 57 [Ezﬂ'ggﬂ + [1 - —%z— - ;Qaz]n =0 (2.37)
where

n = $10/rTg (2.38)

Equation (2.37) will reduce to the same equation wp satisfies,
i.e., Eq. (2.28). Dropping the adjoint equations in Eq. (2.31) and
using Eqs. (2.22), (2.33), and (2.38) in the boundary terms results in

o _ 1wl _garr=gr O (2.39)
or T%

w
This is the same boundary condition (2.29); thus the conclusion is that
n= wp. Therefore solving the quasiparallel problem for wi will also

determine ¢1n from

P
rToy
¢ = = o ’ (2.40)

in )

and the remaining ¢'s are evaluated from Egqs. (2.32)-(2.36).
After the adjoint functions have been determined, the constraint
conditions then are found. By multiplying Eqs. (2.11)-(2.16) by

d. 5 O, s sasy 9., respectively, adding the resulting equatioms,
In 2n 6n g
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integrating this equation by parts from r = 0 to r = R to transfer the
r derivatives to the ¢'s, and using the adjoint equations and Eq. (2.17)

produces the following constraint:

R o)
. d 3 in
{ {¢1n[-1uoknpl = ik pouy + 3¢ (pouy + upp1)] - rvoe: 3t (—r—)

t o, [ = dugkpour = ik p1 + e =5~ + p1(up 5 + Vo 30

3p1 3 v
+ 3%‘] - uj 3 (poV0¢2n) + ¢3nl[- iUanpovl + pogug g{l
vy Ivg dvg _ i
+ooouy 5t e1lvo g+ ug 5 )] - vovy 5 (eod,)

. vow w d
+ dunl-ik pouowy + EQ;_:'Q—L + poup 5,1 - w1 57 (PoVodun)

. . 3T oT
.+ ¢5n[—1u0knp0T1 + (Y—l)luoknpl + poug B_X—L + pguy E-X—Q

5T 3T 31 3pg 2pn

+ p1(vo 3;ﬂ + ug EEQQ - (v-1) (up 3% +u; ax + V1 or )]
3 9

- T1 37 (Poved ) + (v-Dp1 57 (vo¢5n)} dr + pgé1nl[R'u;

+E ) (IRZ-DI_ =0 (2.41)

(o4
wa

Upon substitution of the assumed solution, Egqs. (2.18) and (2.19) into
Eq. (2.41) one obtains the following N equations for the A's:

dA

N " N
Z fmn _dx_ = Z gmnAn (2.42)
n=1 n=1

wherem = 1,2,3,...,N and N designates the total number of modes
considered so that the An's denote both left and right propagating

modes. The coefficients, fmn and 8on® in these equations are evaluated

from the following equations:
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E/. {¢1m(powz + uo¢g) + ¢2m(00uow§+¢i) + ¢3mpouowz
0

w T ifkndx
+ ¢, (Pough ) + ¢, (Pougd = (y-L)ugyl)ldrle (2.43)

R
S {#1mleg Govh + ugy] - rvoud & Ay 6,100 o=
0

awp

(aop) + ¥ (ug 220 + vo 280y 4 —B) - 48 L (5 0v00sm)
v

Y
v L)
+ 0, looug 2 + 0oul 0+ 4P (vg 20 4 uy 2U0)]

W w
ooVolbn 3y 3

n W
+ poup 53 ] - Yy 5% (poVo¢4m)

- Vow (pod3m) + duml

n Br

awT

n u oT 9T
+ ¢5m[oouo T oPov, 3;9'+ w (vo ——ﬂ + ug ggﬂ) - (y=-1) x

awp

(ag 52+ o2 2RO 4 o7 2R0yy = T 2 (o pvpesg) + (v-1)if 4o

(Voog)+e ik = k) (oouy + uovl) + ¢, 1Ck, = k) (WD
u v . \
+ oouoy ) + d3milk, - k Joouoy, + dumi(k - k Joouoy,

, T
+ ¢5m1(kn - km)uo(pown - (Y—l)W§)} dr + po¢1m[R'w§
8 i/k dx
+ wfl (VIFR'Z - 1)] e (2.44)

pwcw _ r=R

Equation (2.42) can be written in matrix form as

da _
F = GA (2.45)

where A is a column vector whose elements are the Ah’ and both F and G
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are NxN matrices whose elements are the fmn and 8an® respectively.

Under certain conditions there exists the possibility that two distinct
quasiparallel wavenumbers, kn’ will approach each other as the numerical
procedure progresses down the duct until they coincide at a particular
axial location, and they will éoincide only at this particular point.

If this happens, the matrix F will be singular and the assumed solution,
Eqs. (2.18) and (2.19), must be modified at this axial location. If

kj = ks’ the contributions by the j and s modes to Eq. (2.18) take the

form"?

[A,G0) + xA (0] W] (r,%) exp (ifk;dx)

with a similar expression for Eq. (2.19). Using this form in the
solvability constraint Eq. (2.41) will change the row denoting the s
mode in both the F and G matrices. These rows, for the case of a double

root, become

R
£ = [i {o15(povy + ugwl) + d25(pouovy + V) + ¢35(pouoyy)

w T i/k dx
+ 0,5 (ouovy) + 6 _(pougyy = (y=1)ugy}) Jrlxe (2.46)



18

R
8sn T T I {¢IS[ (XQow +xuow )1 - erown Br (—__9 *+ ¢2sleo gx
au 3 (xwp)
(Xuow Y+ Xw (ug ——ﬂ'+ Vo O) + ] - Xw (poVo¢ S)

B(va) u 9vg vo EAA
+ ¢3slpoup _~"'n” + xpoy + xw (vo ug 5]

3 n ox Br
X
XP Vg IPZ 9 (xwz)
- Xvown ar (Do¢3s) + 9, ['——;T-'+ Poug ——EE__] - an ar (OoVo¢ )
3 (xy )
9T 9T
+ ¢ sioouo '_axa'* X w§ B_X_Q xwp(vo —Q+ %Q) - (y-1) x
P
3(xy’)
) T d
(ug __322_ + »xw: siﬂ ¥n Br =1 - = ¥n 37 (povodss) + (Y—l)an Br *

(Vobg) + ¢ dx(k - k) (pou, + ugvl) + ¢, ix(k - k) (¥2

u . v . \2
+ pguown) + ¢3slx(kn - ks)p0u0¢n + ¢qslx(kn - ks)pouown

+ ¢g ix(k - ks)uo(pod}f1 - (Y'l)wﬁ)} dr + xoocblS[R'!b;l
i/k_dx
P (/IRZ - D] e (2.47)
Puw r=R

2.2 Numerical Procedures

The coefficients fmn and &mn in Eq. (2.42) require the specification
of all mean flow quantities, ug, epgs, Tg, Pg» Vg, and their first partial
derivatives with respect to both x and r. As can be seen &mn also
requires some second derivatives in its present form. In the computer
routine integration by parts has been performed on the expressions
which contain second derivatives so that only first derivatives of the

mean flow are required for &mn* Therefore the computer model must be
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supplied with the mean flow variables and their first derivatives and
also the mean flow velocity profile has to satisfy the no~-slip boundary
condition at the wall.

Calculation of a steady, compressible mean flow requires a
considerable computational effort; therefore one—-dimensional gas
dynamics theory is assumed to be sufficient to model the mean flow
in the inviscid core in order that the calculation of the mean flow
does not lead to an excessive amount of computer storage and time.

This theory requires that ug, pg, Tg, and pg be constant across the

duct section except in the region of the wall boundary layer. There

are two optioms for the radial velocity v, in the program. It can

either be set equal to zero, which is consistent with the one-dimensional
theory, or it can be calculated as a linear function of r, which is
consistent with the mean-continuity equation and the flow-tangency
condition at the wall. For the cases presented in this study a

quadratic velocity profile in the boundary layer was used which has

the following form:

u
2

u

- 2
1 - [1-E5] for ¢ » B
¢ (2.48)
=1 for r < R-§

The temperature prbfile is evaluated by39

. e Bl 1o (%) 4 S Tad [1 - -2 (2.49)
T 172 % u T a :

o (o Cc c

Tad vy=-1

— =1l+r = M2 (2.50)
C
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where the subscript ¢ denotes values in the inviscid core, Tw is the

wall temperature, Tad is the adiabatic wall temperature, ¢ is the
boundary~layer thickness, rl is the recovery factor, and v = 1.4 is the
ratio of the gas specific heats. Equations (2.49) and (2.50) are re-
garded as rough approximations only for variable-area ducts. The
computer model contains three input options in order to determine the
wall temperature. A constant value can be input for the wall temperature,
it can be set equal to the inviscid core temperature Tc’ or it can be

set equal to the adiabatic wall temperature Ta For the cases analyzed

4
in this study, the boundary-layer displacement thickness §* is assumed
to be a known function of the axial location. At x = 0, the mean flow
Mach number is input which allows &§ and Mc to be cglculated at each
axial station from the definition of displgcement thickness and from
mass flow considerations. The inviscid core variables Tc’ pc, u.» etc.
are evaluated from one-dimensional gas-dynamics theory and the boundary-
layer profiles are computed from Eqs. (2.48), (2.49), and (2.50).
Also, the sign convention used is that the mean Mach number is negative
or positive if the flow is from right to left or left to right,
respectively.

Two options are provided for the wall admittance of the duct liner.

One choice is that the liner is point-reacting with constant properties

whose specific admittance is described by

8= [R (L -39 +icot @yt (2.51)
e wo /T—w

where Re is the resistance of the facing sheet, wp is the characteristic
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frequency of the facing sheet, and d is the depth of the backing
cavities in the liner. The other option is a continuously varying

admittance given by

2
B =80+ (B - 803 - D (2.52)

so that the admittance varies from a specified value By at x = 0 to a
specified value BL.at x = L.

In the inviscid core Eq. (2.28) reduces to Bessel's equation

~

BZP lap 2 2
ah S o 75 - k% - 22lv" = 0 (2.33)

so that wp can be expressed as

wg(r,x) = A G G T B GY (e T) (2.54)

at each axial station where Jm and Ym are the Bessel functions of order
m of the first and second kinds, respectively and Koo is the quasi-
]

parallel eigenvalue and is related to the wavenumber by the following

equation:
2 ‘32 2
K =— -k . (2.55)
m,n 0 m,n

For wi to be bounded at r = 0, B(x) must be zero since Ym(O) is unbounded.
Using the above facts, we implemented the following scheme to determine
the quasiparallel wavenumbers and eigenfunctions. First an initial

guess is made for the wavenumber so that in the inviscid core

P . -
wn = Jm(Km,n r) 0<r<R 8 (2.56)
syP
Now the values of wg and 3;3, evaluated at r = R - §, are used as

initial conditions to integrate Eq. (2.28) to the duct wall. Once at
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r = R an iteration procedure is begun on Eq. (2.29) to determine the
correct wavenumber.

The specific numerical methods used are a fourth—order Runge-Kutta
integration routine and a modification of the Levenberg-Marquardt
algorithm"*3:4% (see Appendix A). The Levenberg-Marquardt algorithm
minimizes the sum of the squares of M functions in N variables. With

the initial wavenumber the integration is implemented on Eq. (2.28),

which is

az\pp alpp AZ

n 1 TH . 2kup n w2 o _m? p _

T [r + Ty + R ] TR [To k ;Z]wn =0, (2.28)
with the initial conditions

P = -

wn Jm(Km,n r), r=R -6 (2.57)

azpi :

—— ' = -

3T Km,n Jm(Km,n r), r=R-39§ . (2.58)

where Km n is a function of the wavenumber km g Now at the duct wall
9 ’

the boundary condition is evaluated, and here the complex function

F(k ) is defined as
m,n >
Bwn

__n . w P
F(km,n = 35 i . > vy (2.59)

W
Since F and km,n are complex, Eq. (2.59) can be separated into two
real equations in two real unknowns. [F(km,n)lz is minimized using
the Levenberg-Marquardt algorithm. This procedure is done iteratively
until lF(km,n)l 2 0. A subroutine that is able to evaluate Bessel

functions of a complex argument is supplied to the model. Therefore,

the need to integrate Eq. (2.28) across the inviscid core is eliminated.
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This method also provides consistent initial conditions, Eqs. (2.57)
and (2.58), for the integration of Eq. (2.28). If m = 0 the flow is
axisymmetric (no 6 dependence) and if m # 0, then a particular spinning
mode is analyzed. A note of caution is emphasized here concerning the
wavenumbers. They should be examined throughout the duct to eliminate
the possibility of any exponentially amplifying modes developing. This
would violate the basic idea that the quasiparallel wavenumbers, km,n’
are the wavenumbers that would exist in an infinite parallel duct, since
they would become unbounded. If this does occur then that particular
mode should be dropped in Eqs. (2.18), (2.19), etec.

Evaluation of the axial derivatives of the wavenumber k and the
eigenfunctions wn must be performed in order that the coefficients
8mn of Eq. (2.42) can be determined. These axial gradients are obtained

by using a finite-difference quotient such as

dk . Sxtax T Fx-ax

dx ~ 2Ax

(2.60)
The adjoint functions are obtained from the quasiparallel flow

variables wp, %%E, and k by use of Egs. (2.40) and (2.32)-(2.36).
Equations (2.43) and (2.44) provide the coefficients fmn and 8mn where
the integrals across the duct inkthese relations are obtained from
Simpson's rule. For the axial integrals f kndx, the trapezoid rule

is used.

Solving for %% in Eq. (2.45) results in

€2 _ riga (2.61)
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and A is determined at each axial location by the integration of

Eq. (2.61) using a fourth~order Runge-~Kutta scheme. This problem is
linear. Thus the solution for any problem subject to general boundary
conditions at both ends of the duct can be obtained by a linear
combination of N linear independent solutions. These linearly indepen-
dent solutions are achieved by setting all mode amplitudes except one
(which is set equal to unity) equal to zero at x = 0 and integrating
Eq. (2.61l) to x = L. Integrating each of the N modes in this fashion
permits the introduction of the transfer matrices TR;, TRy, TR3, TRy

which satisfy (see Appendix B)

BT (x) = TR;(x)BT(0) + TR, (x)B™(0) (2.62)
B™(x) = TR3(x)BT(0) + TR, (x)B(0) (2.63)
ifkndx

+ .
where B (x) is a column vector whose elements are the values Ane
of the right-running modes and B_(x) is a column vector whose elements

. 1Sk _dx

are the values Ahe n of the left-running modes, let NR denote the

number of right-running modes and let NL‘denote the number of left-

running modes. The dimensions of the transfer matrices are:

TRy - Np x Np; TRy = Np x Np; TRg - N x Npj and TRy - N} x N;. From

Eqs. (2.62) and (2.63) it is seen that the complex mode amplitudes at
X = L can be determined from those at x = 0, that is,

B' (L)

TRl(L)B+(O) + TRy (L)B™ (0)

I

BT(L) = TR3(L)BT(0) + TR,(L)B™(0).

Following reference 40, transmission and reflection coefficients are

sought for the nonuniform ducts of this study. The transmission and
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reflection coefficients relate the complex magnitudes of the outgoing
modes to those of the incoming modes, according to

L,

sty = ™% ) + - I (2.64)

0,L o,

870) = t9°I37 ) + &% %% (0) (2.65)

which are evaluated from the transfer matrices by"“5

TO,L - TR:I
R%°0 = _1ril1R,
(2.66)
RML = 1R TRS?
TL’O = TR; + TR.zRO’O
o,L 0,0 L,L L,0
where T 7, R s, R, T’ are NL X NL’ NL X NR’ NR X NL, NR x NR

matrices respectively. The (m,n).element of TL’0 represents the

transmission of the mth radial mode at x = L due to the nth radial
mode being incident at x = 0, etc.

+ -
If the values of B (0) and B (L) are input, which are the amplitudes

of the right-running modes that are incident on the duct section at x = 0

and the left-running modes that are incident on the duct section at x = L,
respectively then acoustic pressure profiles are calculated. Equation
(2.65) determines B (0) and therefore the mode amplitudes can be
calculated throughout the duct by using Egs. (2.62) and (2.63). At

eaéh axial position acoustic pressure profiles can now be computed across
the duct by using Eqs. (2.10) and (2.18) and the definition of B+ and

B :
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NR + P NL - ) i(mb-wt)
P1(r,x,8,8) = [} B (x)y (r,x) + } B (0 (r,x)]e (2.67)
n=1 n=1

where the bracketed terms describe the spatial distribution of interest.

2.3 Initial Mode Identification

Equation (2.29) has an infinite number of roots and for the wave-
envelope method to succeed the evaluation of the roots is quite
critical. The approach adopted for the determinatibn of the roots is
to first determine a specified number of roots for the uniform duct

section (which correspond to the left and right-running waves to be

analyzed). These modes are the initial guess values at x = 0 for the
computer model and Lagrangian interpolation is used for the initial
guess of the wavenumbers, which are supplied to the Levenberg-Marquardt
algorithm, as the solution scheme proceeds down the duct. It is
apparent that achieving an accurate solution to the problem depends on
the successful evaluation of the input modes at x = O.

The determination of the input modes is accomplished by numerically
integrating from the known hard-wall wavenumbers (8 = 0) to the
specified value of the liner admittance B. In the integration method,
the initial conditions are the hard-wall wavenumbers and it is assumed
that all soft-wall modes have a one-to-one correspondence with the
hard-wall modes. The differential equations to be integrated are derived
by considering a circular, parallel duct which is carrying an inviscid
mean flow with uniform properties. For this situation the soft-wall
boundary condition becomes

2
€31 (<) - 1Bu(l - Mli) 3 () =0 (2.68)



27

where M is the mean flow Mach number. Also, the eigenvalue « and the
complex wavenumber k are related by
k2 = (Mk-w)? - k2, (2.69)

Differentiating Eqs. (2.68) and (2.69) with respect to B will yield

dc? -2ig°
dg (1 - By, 4 2i0MB _ Qt B (2.70)
OM+k w k2
_ dk?
d . d@ (2.71)

dg  2(aM + k)
where @ = w-kM.
Integration of Eqs. (2.70) and (2.71) determines the soft-wall

eigenvalues and wavenumbers. The initial conditions are

K = kg where J&(KQ) =0at B =20
and
- A ~M2
K = oM * /@l = éé M2) (2.72)

In Eq. (2.72) the sign on the radical determines which family of modes
(right-running or left-running) is beiﬁg considered. Equation (2.72)

is used only to compute the initial value of k and the successive

values of k are obtained from Eq. (2371)' For dx2/dB, the initial values

at B = 0 are

2 Y vi
gg 210 e 340 (2.73)
1--"w
o
and
2 -4
de” , -2iuw if kg = 0 (2.74)

g~ @ +m2
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The reason that Eq. (2.72) is used only for the initial value is that
the complex quantity Yw2-(1-M2)«2 can approach and cross a branch

cut depending on the definition of the principal value in the computer
routine. If this happens, the routine will then compute identical

wavenumbers for both families of modes which is incorrect.

2.4 Results for a Converging Duct

All the results presented here are for the converging circular
duct shown in Fig. 1. The duct radius is assumed to vary with axial
distance according to

R=1+ .15(-1 + cos 2—2’5) (2.75)

where L/2 is the length of the duct. Thus, the radius-of the duct
decreases sinuséidally from 1 in the uniform section to 0.7 at the
throat. The wall temperature is assumed to be equal to the adiabatic
temperature so that Eq. (2.49) reduces to

T u
o]

1
7= 1+ 5 ri(r-DM2[1 - (

T )21 (2.76)

c U
Also, the radial velocity v, is calculated to be a linear function of
r consistent with the mean-continuity equation and the flow tangency
condition at the wall.

Figures 2 and 3 compare the acoustic pressure profiles for an
axisymmetric mode and three spinning modes (m = 1, 2, 3) in a hard-wall
duct. The input for these cases is the same except for the circum-

ferential (spinning) mode number. The profiles for three axial

stations are presented (x = 0, .5, 1). In all the results presented
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the throat of the converging duct is at x = 1. The throat mean Mach
number is -.883, the inlet displacement thickness is .001l, the
frequency is 9 and four modes are considered. At x = 0 the lowest
right-running mode is incident and it has the same value in all cases
so that the acoustic signal propagates upstream. As is expected the
maximum pressure amplitude in the axisymmetric case occurs at the
centerline of the throat. With increasing spinning mode number one
sees that the maximum amplitude decreases and shifts toward the duct
wall at the throat. This indicates that whereas the refractive effect
of the axial gradients is still present the focusing and intensification
is weakened by the asymmetries.

Figures 4 and 5 depict the same cases except for the fact that the
number of modes has been increased to seven. The decrease in amplitude
and its shift toward the wall at the throat are still present. But
there is a noticeable difference between the pressure profiles for the
cases of m = 0 and m = 1 as compared to the cases using four modes. For
m = 2 and m = 3 the profiles are little changed by considering seven
modes. These differences can be explained by examining the quasi-
parallel wavenumbers. The first four wavenumbers in each case are
cut-on throughout the duct; but the next three can contain modes that
are initially cut-off. In the axisymmetric case only one cut-off mode
is added, for m = 1 two are added and for bothm = 2 and m = 3 all
three modes are cut-off. Also as the spinning mode number increases
the attenuation factors increase. Therefore for the cases of m = 2

and m = 3 these modes are greatly attenuated as compared to m = 0 and
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m = 1. It can also be seen that for each case the inclusion of seven
modes results in a greater peak pressure at the throat.

Figures 6 and 7 show the effect of the mean Mach number at the
throat. The input parameters are the same as those used to construct
the previous figures except for the Mach number variations. Figure 6
depicts the case for m = 2 and Fig. 7 for m = 3. Seven modes were
included in each of these cases. They show the increase in the acoustic
pressure amplitude as the throat Mach number increases toward unity.

For partially-choked flows one should be aware of the limitatiomns in
using a linear model. As the mean Mach number increases the wavenumbers
of the right-running (upstream) modes become very large. Consider the

case for uniform flow where the wavenumber is given by

oM+ Vw2 - (1 - M2)k2
C [}

k = .
(1 - M2)

(2.77)

Here Mc is the Mach number anq K is the eigenvalue. As Mc + 1, one of
the values of k approaches infinity, whereas the other remains bounded.
This unusual behavior of the solution is due to linearization of the
acoustic equations, as demonstrated numerically by Eisenberg and Kaol3
and Hersh and Liu3? and analytically by Myers and Callegari33 for the
one—dimensional‘case. Thus, the inclusion of the nonlinear terms
becomes necessary at high Mach numbers.

The effect of the liner admittance, 8, is demonstrated in Figs. 8
and 9 for m = 2 and m = 3. The acoustic pressure profiles at the
throat are shown for four values of the admittance for each spinning

mode. The throat Mach number is -.883, the inlet displacement thickness



31

is .001, the frequency is 9 and seven modes are considered. The real
part of the admittance is varied and the lowest right-running mode is
input at x = 0 so that upstream propagation takes place. As is shown
there is a significant reduction in the amplitude of the acoustic signal
if the duct is lined, especially for m = 2. No definite trend in the
amplitude reduction as a function of the real part of the liner
admittance is apparent in contrast to the axisymmetric case3dl,

The effect of transverse velocity (shear layers) and temperature
gradients of the mean flow on the propagation and attenuation of sound
waves in hard-walled as well as lined rectangular, circular, and annular
ducts have been investigated in several studies®. In general, the shear
layers refract the axisymmetric modes toward the wall for downstream
propagation and away from the wall for upstream propagation. _The degree
of refraction tends to increase with increasing frequency and increasing
boundary-layer thickness. Cooling the wall of a duct tends to refract
the sound toward the wall for both upstream and downstream propagation,
whereas heating the wall tends to refract the sound away from the wall.

Figure 10 shows the effect of boundary-layer thickness for m = 3
in a hard-wall duct. The acoustic pressure profiles presented were
calculated at the throat and the relevant physical parameters are mean
throat Mach number = -,883, frequency = 9, and four modes. The lowest
right-running mode is incident at x = 0 so that the acoustic signal
propagates upstream. As the inlet displacement thickness increases the
peak acoustic pressure amplitude increases and the wall value decreases.

Therefore it appears that the boundary-layer thickness has a strong
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refractive effect for spinning modes as well as axisymmetric modes. But
as noted before the signal is not focused along the duct centerline.

The dependence on the frequency of the acoustic pressure is shown
in Fig. 11. The input values for this case are the same as the previous
case except that the inlet displacement thickness is set at .00l and the
frequency is varied. Again the plots are constructed at the throat and
four modes are included. The lowest right-running mode is incident at
x = 0 which implies that upstream propagation takes place. Increasing
the frequency results in an increase in the amplitude of the maximum
acoustic pressure.

Figure 12 represents a case where the acoustic signal propagates
downstream in a hard-wall duct. The lowest left-running mode is
incident at x = 1 and seven modes are considered. The mean throat Mach
number is -.883, m = 3, the frequency is 9 and the inlet displacement
thickness is .001l. Acoustic pressure profiles are shown at the three
axial stations x = 0, .5 and 1. Notice that there is only a slight
increase in the maximum acoustic pressure as the signal propagates
downstream. It also appears that at x = 0 the signal has undergone
significant refraction toward the wall where the maximum amplitude
occurs in spite of the rather small bounday-layer thickness. Since
there is no appreciable growth in the acoustic pressure here, resulting
in the solution becoming unstable, one suspects that the linear theory
is applicable to cases of waves propagating with the flow even if the

mean Mach number is high.



33

2.5 Results for a Converging-Diverging Duct

Results for the converging-diverging duct depicted in Fig. 13 are
presented in this section. The duct radius obeys Eq. (2.75) so that
the converging portion of the duct is identical to the duct of the
previous section and the diverging portion increases sinusoidally from
0.7 at the throat to 1 in the uniform section. For all cases presented
the length of the duct is L = 2. The temperature profile is the same
as in the previous section, i.e., Eq. (2.76) and the radial velocity
v is a linear function of r.

Figure 14 shows the variation of the centerline acoustic pressure
for the case of an axisymmetric acoustic wave in a hard-wall duct and
the effect of the number of modes considered. The throat mean Mach
number is -.883, the inlet displacement thickness is .02, the frequency
is 9 and for the three cases presented the number of modes are 2, 4,
and 6. At x = 0 the lowest right-running mode is incident and it has
the same value in all cases. As can be seen the throat centerline
pressure increases with an increase in the number of modes considered,
which was also true in the analysis of the converging duct. At x =L
the minimum centerline pressure is for the case of six modes but for
fcur modes the pressure is greater than that produced by considering
two modes. Figure 15 shows the acoustic pressure profiles across the
duct radius at the three axial locations x = 0, L/2, L for the case of
six modes. The peak acoustic pressure is greatly reduced at x = L
as compared to the profile at the throat and this maximum value is

shifted from the duct centerline. The continuous mode reflections that
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occur in the diverging section of the duct reduces the exit acoustic
signal and refracts the sound to an annulus at about half the radius
of the duct.

In Fig. 16 the effect of varying the mean flow Mach number on the
centerline acoustic pressure is shown. The input data is the same as
that used to produce the previous figures and six modes are considered.

For a near sonic flow (Mt = -,.883) the growth in the amplitude of the

h
pressure at the throat contrasts sharply to those of the two lower speed
flows. Also, at x = L the centerline pressure decreases with increasing

Mach number. For Mt = -.449 and -.65 the maximum centerline pressure

h
occurs upstream of the throat region.

Figure 17 is obtained by varying the liner admittance and the
relevant physical parameters are the same as those in the previous
cases. The centerline acoustic pressure for a hard-wall duct is
compared to those for two soft-wall values. In the soft-wall cases
the centerline acoustic pressure is significantly reduced but their
values are greater at x = L than the hard-wall value. For B = (1., .1)
the peak centerline pressure occurs noticeably upstream of the throat.
The radial pressure variations for these cases, at x = 0, L/2, L, are
shown in Fig. 18. At the throat the preseﬁce of a liner does reduce-
the acoustic signal but at x = L the peak acoustic pressure is greater
for g = (1., .l1) than that pfoduced by the hard-wall duct. For
parallel ducts carrying uniform mean flows where |B| < < 1 the

attenuation factor increases when the real part of the admittance

increases. From Figs. 17 and 18 it appears that a lined duct does
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not necessarily reduce the maximum amplitude of the acoustic signal in
a converging-diverging duct. The inclusion of more modes in the
analysis will probably affect the hard-wall pressure profiles more than
the soft-wall profiles. Generally the soft-wall wavenumbers have
higher attenuation rates and more hard-wall wavenumbers are cut-on and
therefore are attenuated less. Also an initially cut-off hard-wall
mode is more likely to cut-on in the vicinity of the throat. Thus if
all modes that are cut-on throughout the hard-wall duct are included
the resulting acoustic signal at x = L might well be greater than that
produced by a lined duct.

Figure 19 shows the effect of the boundary layer thickness on the
centerline acoustic pressure for an axisymmetric flow case. For all
cases shown in Fig. 19, the ghroat mean Mach number is -.883, the
acoustic frequency is 9, the number of modes is 6 and the lowest
right-running mode is incident at x = 0. It is seen that increasing
the inlet displacement thickness does not necessarily increase the
centerline pressure. Figures 20 and 21 show the development of the
acoustic pressure profiles at x = 0, L/2, L for the cases depicted in
Fig. 19. There is no apparent general trend in the acoustic pressure
profiles as the inlet displacement thickness is increased; In fact the
peak amplitude at the throat is obtained from 6: = ,01 in contrast to
the results achieved in the converging duct analysis of the previous
section. At x = L the maximum acoustic pressure occurs for 6: = .001.

Figure 22 represents the variation of the acoustic pressure

amplitude across the duct radius for a spinning mode case. The throat
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mean Mach number is -.883, 63 = .02, w =9, m= 2, and 4 modes are
considered. At x = 0 the lowest right-running mode is input so that
upstream propaggtion takes place. For this particular case the
acoustic signal is relatively undistorted at x = L as compared to the
profile at x = 0. As in the converging duct results the peak amplitude
at the throat is not at the duct centerline.

Figures 23 and 24 represent a case when the lowest left-running
mode is incident at x =L and thus the acoustic disturbance propagates
downstream. The physical parameters are the same as those that were
used to obtain Fig. 14 for the case of six modes except that the signal
is inpug at x = L. In Fig. 23 the axial variation of the centerline
acoustic pressure amplitude is shown. There is no appreciable growth
in the amplitude which is in marked contrast to Fig. 14 which depicts
upstream propagation. Figure 24 shows the radial variation of the
acoustic pressure amplitude. There is only a slight increase in the
maximum pressuré amplitude at the throat and the peak amplitude at

x = 0 is greater than that at the throat.



CHAPTER THREE

Nonlinear Propagation in Near Sonic Flows

3.1 Problem Formulation and Method of Solution

The wave-envelope technique used in the previous chapter to study
linear acoustic propagation, in which the linear acoustic disturbance
is represented as a superposition of quasiparallel duct modes whose fast
axial variation is explicitly given, will not be used in this chapter
because of the singular behavior of the linear model in the region of
interest. The singular behavior of the linear model as the Mach number
vapproaches unity is illustrated in Fig. 25.

We consider a one-dimensional, inviscid, nonlinear flow in a hard-
walled duct (Fig. 26). All flow quantities are expressed in non-dimen-
sional form using the speed of sound <, evaluated at some convenient
point as a reference velocity, the radius Ro of the duct in the uniform

: 2
region as the reference length, and RO/ca, 0.C5 Pao and Ta as the

reference time, pressure, density, and temperature, respectively. The
one-dimensional equations of motion are
Mass

3P

d
A Y +-§; (puA) = 0 (3.1)

where A is the cross-sectional area of the duct.

Momentum

o2 udy 4R (3.2)
Energy

Pl +uss] - (v - DEE+udd) =0 (3.3)

37
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and, state

Yp = oT (3.4)
where y is the ratio of specific heats of the gas. The energy and state
equations, (3.3) and (3.4), can be replaced with the isentropic state
equation p « QY. However, the use of this apparently simpler equation
would lead to difficulties in separating the effects of the several
harmonics in the analysis which follows; therefore, the basic forms of
the energy and state equations are used.

The flow variables are represented as the sum of a steady streaming

term plus higher harmonics due to the acoustic disturbance38:

N , )
u(x,t) = ujg(x) + Z (ume—lnwt + ulnelnwt) (3.5)
n=1
N -inwt - inwt'
o(x,t) = 019(x) + ) (pine + o1pe "0 (3.6)
n=1 :
N -inwt — inwt
T(x,t) = Tio(x) + | (T,.e +T e ) (3.7)
n=1

with the pressure being eliminated with Eq. (3.4). The steady
streaming terms are not solutions of the steady form of Egqs. (3.1)-
(3.4). Reference conditions are chosen to be the mean-flow quantities
in the straight duct section so that T3;g(0) = p;0(0) = 1, uyg(0) = M(0),
and p;o(0) = 1/y. The acoustic disturbance ia Eqs. (3.5)-(3.7) is
represented as a finite sum of harmonics, including steady-streaming
terms ujg (which also include the effects of the mean flow), etc., and
the complex conjugates must be explicitly stated since nonlinear
interactions are considered. No assumptions about the relative sizes

of the terms in Eqs. (3.5)-(3.7) are made, and no assumption about the
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axial variation of the acoustic quantities is made. Although the wave-
lengths of upstream propagating signals become small and thus a
technique similar to the wave-envelope procedure would be very
advantageous, no a priori assumption about that variation can be made.
Before proceeding with the nonlinear analysis let us consider the
linear theory as it applies to a uniform duct. Linear theory will be
used to relate the flow variables at the entrance of the nonuniform
duct section in order to insure consistent impedance conditions for the
nonlinear problem. Assume that the mean flow in the straight duct is
uniform, that is ug» To, ey and p, are constant. The flow variables are

assumed to consist of a constant part due to the mean flow and a

perturbed part due to the acoustic disturbance, that is,

p=op,t p1(x,t)
u=u + u;(x,t) (3.8)
'I'=

TO + T1(x,t)

Substituting Eq. (3.8) into Egs. (3.1)-(3.3) and ignoring nonlinear

terms results in the following equations:

3p 3p du
1 1 1 _
ot + Yo ax + o 3x 0 (3.9
Jdu Ju ap
1 1 1 _
°o 3t + Pol Bx + x 0 (3.10)
oT; 3T 3p; op,

l = ——
0GE T ) T DGt (3.11)
The pressure is eliminated from these equations by using the isentropic
state equation

p=ApY (3.12) -
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This can be rewritten as,

Y Y °1 !
P, t Py = Al +opy) = Ao (1+E) (3.13)
P
where |—l| << 1.
o

Expanding Eq. (3.13) and retaining terms through first-order yields

Y v 1
P, T Py = Ao + Ao ;;Y (3.14)
but,
- Y
P, ApO (3.15)
so that
P _Oo,Y
=91 _ 2
Py o c,Py (3.16)

where ¢ = Vyp /p_= VT .
o . "o'%o o

-

Using Eq. (3.16) one can write the governing Egs., (3.9)-(3.1l1) as

ap ap Ju .
1 1 1
3t 0 9x + °0 3 0 (3.17)
Ju Ju 3p
P 1 2 _1_
°o 3 + Pl Tx + ¢S = 0 (3.18)
oT 3T 3p ap
1 1, _ 1 1
po(at + Y5 Bx ) = (Y-l)To(Bt + Yo Bx (3.19)

Assuming harmonic traveling waves for the uniform duct and letting
q1(x,t) represent any of the flow variables of the acoustic disturbance

allows the following form for the disturbance:

N
q, (x,t) = } g

eln(ka-wt)+ q Leln(ka—wt) + complex conjugate]
n=1

nR n
(3.20)
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In this expression the complex quantities 4R and QL represent the
amplitude and phase of the nth right and left-running waves, respectively,
and are constants. Here, nkR and nkL are the wavenumbers for the right-
and left-running waves, respectively, and they are also constant. Since
the above discussion deals with linear theory we can superpose solutions
and therefore analyze only one component of Eq. (3.20) which will be

expressed as

i(knx—wnt) ,

ql(x,t) =q.e (3.21)
where

kn = nk : o (3.22)

w = oW . (3.23)

The phase speed of the waves will be determined by substituting

1(knx-wnt)

ol(x,t) =p_e (3.24)

i(knx-wnt)
ul(x,t) =ue (3.25)

into Egs. (3.17) and (3.18). This results in the following system of

equations:
("UJ+U k) o] k o}
°, ° n =0 (3.26)
2 -
cg k ( pow+p°uok) u

The determinant of the matrix must be zero for non-trivial solutions
to exist. This implies that
(~w + uok)z = c20k2 (3.27)

or
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-w+uk=+ck (3.28)
o — 0

Choosing the positive sign will give

w _ (3.29)
kL - Y% o

which corresponds to the left-running waves. Choosing the negative sign

will give
w
=i =u, tec, (3.30)

which corresponds to the right-running waves. Looking at the first

equation (the mass equation) in Eq. (3.26) results in

(~w + uok)pn + pokun =0 (3.31)
so that,

e =@ _yy | (3.32)

n kY Po *

Now Eqs. (3.20) and (3.30) are substituted into Eq. (3.32) so that we

arrive at

c .
= 2
unR = 5 an ’ (3.33)
o
o
unL = - 5: Al (3.34)

Replacing the acoustic temperature and density by their respective
harmonic wave representations in the energy equation, Eq. (3.19),
relates the temperature coefficients to the density coefficients
according to

T

= -1y =2
TR~™ (y=1) o °aR (3.35)
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T
(o)
T L (vy-1) o PoL

(3.36)

With these relations from the linear theory for a uniform duct the
impedance conditions at the duct entrance can be formulated. The
assumption here is that the linear theory is wvalid at the duct entrance
so that it should approach the nonlinear expressions at x = 0.
Therefore Eqs. (3.8) are equated to Egqs. (3.5)-(3.7) respectively

at x = 0, with the use of Eq. (3.20) also. For the density, this becomes

N
~inwt -inwt , — _inwt , — inwt] =
+
o F nZl [ane + PaL® Pnr® * PnL®

N ) _ .
210 + 1 [0, (0774 + 5 (0)e™™F) (3.37)

Equating coefficients of equal powers of exp (+ inwt) results in the

following equations

olO(O) =P, (3.38)
oln(O) =peptPr (3.39)
ch (0) = °ar T PnL (3.40)

By matching the velocity one obtains the following expressions:

ulO(O) = u (3.41)
uln(O) = ue +u o (3.42)
uln(O) =u.e + U (3.43)

Using Eqs. (3.33) and (3.34) in Eq. (3.42) relates the velocity to the

density according to

(o)
= 9 - .
uln(O) = o (an onL) (3.44)
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Finally, matching the temperature results in

TlO(O) = To (3.45)
Tln(O) = TnR + TnL (3.46)
Tln(o) = TnR + T 1 (3.47)

and using Egqs. (3.35) and (3.36) in Eq. (3.46) implies that
T

T, (0) = (Y-l)i (b g + Ppop) (3.48)

Equations (3.39), (3.44) and (3.48) establish the impedance
conditions for the velocity and temperature in terms of the density
at x = 0 for the nonlinear problem. The next step now is to establish
the impedance condition for the nonlinear problem at the duct exit
(x = L). This is accomplished by again matching the nonlinear problem
to the linear problem at x = L. For x > L it is assumed that the duct
has an infinite uniform termination. This is equivalent to having only

right-running waves in the uniform section of the duct for x > L.

Since the linear theory holds for x > L the following relations can be

written

N in(k x-wt) _ <—in( X-wt)

u(x,t) = u_ + ¥ [uge “® +u e “x ] (3.49)
n=1
N in(ka—wt) _ —in(ka-mt)

plx,t) =p_+ ) [o e + 0 e ] (3.50)
n=1
N in(ka—wtj _ —in(ka—wt)

T(x,t) = T+ ngl [T e + T ge 1 (3.51)

Equating Eq. (3.6) to Eq. (3.50) at x = L implies that
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Py = P10 (3.52)

inkRL

nRe (3.53)

Pip{l) =0
Similar relations are obtained by equating Eq. (3.5) to.Eq. (3.49), that
is,

u = u, (L) (3.54)

o 10
inkRL
uln(L) = unR? (3.55)

Recalling the linear relation, Eq. (3.33), one can write Eq. (3.55) as

co inkRL SR

e AT (3.56)
but,

¢, = VTlo(L) (3.57)

0y = plO(L) (3.58)
so that

VT
uln(L) = —Ezaffy Dln(L) (3.59)

Equation (3.59) is the impedance condition at x = L for an infinite duct.
With the impedance conditions established let us now derive the
differential equations for the nonlinear region (0 < x < L).

Substituting the expansion of the flow variables, Eqs. (3.5)-(3.7),
into the governing Eqs. (3.1)-(3.4), and equating coefficients of equal
powers of exp(inwt) for mn = 0,1,2,... to zero, one obtains a set of

coupled, nonlinear ordinary-differential equations of the form

AGLy) S = BGx,y) (3.60)
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where y is a column vector of the unknowns. The coefficient matrix
A(x,y) and the inhomogeneous vector B(x,y) are given in Appendix C.

We choose to solve Eq. (3.60) in real form. To accomplish this
we rewrite Eq. (3.60) as

dyr dyi
(Ar + lAi)(EE— + i H;—) = (Br + 1Bi) (3.61)

Separation of the real and imaginary parts leads to

dy. dy.
AT oM T TR (3-62)
dy dy,
r i_
Mo thE T (3.63)

Since the steady streaming is always real, its imaginary part in Egs.
(3.62) and (3.63) is discarded. This manipulation reduces Egs. (3.60)
to

A*(x,y%) %ﬁi = B*(x,y*) (3.64)

where A* is a 3(2N + 1) x 3(2N + 1) real matrix and y* and B* are real

3(2N + 1) column vectors with
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10
Re(ull)
Im(ull)

Re(ulz)

Im(ulz)

Im(uln)
°10
Re(pll)

Im(pll)

Im(pln)

TlO

Re(Tll)

Im(Tll)

L Ikaln)

With the appropriate impedance boundary conditions specified at both
ends of the duct, Eqs. (3.39), (3.44), (3.48) and (3.59), Egqs. (3.64)

can be numerically solved.
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The numerical results that will be presented are for the case of a
fundamental wave entering a duct at its left end when its right end is
infinite in length.

The initial conditions at the duct entrance are specified in terms
of reflection coefficients. Conditions in the straight duct section are
assumed to be such that linear theory is adequate. Thus the acoustic
signal at the duct entrance is resolved into left-and-right running
waves. The magnitude of the input signal, of the density disturbance,
for the fundamental frequency and a reflection coefficient for each
harmonic are specified as input at x = 0. By matching the linear and
nonlinear expressions at x = 0, the initial conditions for the non-
linear problem are determined in terms of the right-running and
left-running waves at x = Q.

The density disturbance specified represents the right-running wave
of the fundamental frequency and a reflection coefficient, which is
input, determines the left-running wave. For the higher modes, it was
assumed that only left~running waves would exist and these were assumed
to be a product of the right-running fundamental wave. Therefore the
acoustic disturbance will be specified by the right-running complex
coefficient of the fundamental mode (n = 1), so that if P represents

the acoustic signal then

CETY (3.65)

and 011 is determined from the reflection coefficient c1 by

P11 T ©r1°1 (3.66)
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Substituting Eqs. (3.65) and (3.66) into Eq. (3.39) implies that
01700 = (X +c e (3.67)

Making use of Eq. (3.44) implies that

c
¢}

u,(0) = 5;-(1 -c ey = (L -c ydeg (3.68)

since Cy = Py = 1. The temperature is determined from Eq. (3.48) to be
T

T,,(0) = “‘Uf‘“‘:ﬂ’pz = (y=1) (I#e_)e; (3.69)
For n > 2 )

01n€0) = c_o; (3.705

uln(O) = -cfr (3.71)

T,€0) = (y=De_o; (3.72)

and Eqs. (3.70)-(3.72) are a statement of the fact that the incident
acoustic disturbance at x = 0 is the fundamental wave and therefore for
n > 2 only left-running waves are present for x < 0.

Here, U1gs Pige and TlO are determined from the mean-flow values.

With these conditions set, the program then integrates through the duct

L. Determination of

to determine the corresponding conditions at x
the transmission and reflection characteristics of the duct section then
would require an iteration on the assumed values of the reflection
coefficients until the desired impedance conditions at x = L are achieved.
In the results presented here, we consider the case in which the duct has
an infinite uniform termination. This is equivalent to having only

right-running waves in the uniform section of the duct for x > L.
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Mathematically Eq. (3.59) must be satisfied at x = L to guarantee

this situation and a complex vector F(crn) is defined as

TlO(L)

) = YW - TO(L)- P1, (W (3.73)

F(c

Separating the real and imaginary parts of Eq. (3.73) results in 2N
equations to be solved. The scheme followed then is to initially
assume values for the reflection coefficients (there will be 2N of
these since they are complex) and iterate on these assumed values by
integrating to x = L. An optimization routine is used to determine
updated valueé of the reflection coefficients until F(crn) z 0.

In a previous analysis3® the system represented by Eq. (3.64) was
solved by using matrix inversion and a fourth-order Runge-Kutta
integration routine. It was determined that if the strength of the
inbut signal and/or the throat Mach number was increased, the numerical
procedure produces either a strong oscillation or abrupt jumps in the
acoustic signal. These irregular results are not a consequence of the
physical occurrence of a shock. Refinement of the numerical step size
produces no quaiitative change. Except for these isolated jumps, the
results appear entirely plausible. Examination of a large number of
cases indicates that the difficulty results from a combination of the
basic properties of the coefficient matrix and numerical error. Since
the linear problem is singular as [M| - 1, the'determinant of matrix A%
is non-zero only as a result of the nonlinear terms, which are small.
Since the matrix A* becomes nearly singular, it is very ill-conditioned

with a very small determinant; the addition of more harmonics makes the
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situation more critical and under certain conditions the numerical
round-off errors eliminate the possibility of proper resolution of the
terms of the equations. 1In fact, cases are calculated in which a

doubling of the number of harmonics causes a discontinuity to develop.
Previously the size of the determinant was used to monitor the singularity
of A*, This is not done in the present analysis because a well
conditioned matrix A* may still have a very small determinant.

The integration routine that will be employed is an Adams-PECE
(E;edictor Evaluate Corrector Eyaluate) variable step-variable order
method“®. To avoid the problems associated with matrix inversion, the
singular value decomposition (SVD)“7 of A* is performed at each axial
step. The numerical problems encountered in the original analysis are
due to the fact that the Runge-Kutta, because 6f its fixed step size,
cannot detect when a singularity is- occurring in the system
represented by Eq. (3.64). -The reflection coefficients determine the
initial conditions and it is found that there is only a certain range
of values for the reflection coefficients that will produce a non-
singular system. Since the Runge-Kutta routine cannot recognize the
presence of a singularity, it will integrate across a singular
component as if it were continuous. The result of this is rapid
fluctuations in the amplitudes of the harmonics and in some cases this
is accompanied by unstable growth in one or more of the harmonics,
which will result in the termination of the program.

To summarize, in the region of the duct throat for near sonic flows

two extremely critical numerical problems are occurring in the solution
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of the system of equations represented by Eq. (3.64). In order to

*
integrate this system gﬁ-'must be solved for explicitly and supplied to

the integration routine. This normally is done by inverting A*, but in
this case A* is nearly singular and hence numerically inverting it is
quite unstable. By using the SVD routine this particular problem is

. . s . dy* .
eliminated and an explicit expression for can be obtained. Now after

dx

. dy* . . . .
computing Ei— care must be taken in the choice of the integration scheme.

If a fixed step method (such as Runge-Kutta) is used it is more than
likely that it will not recognize the presence of a singularity. For
the Runge-Kutta methods highly accurate local discretization error
estimates are somewhat difficult to obtain which would help to determine
‘the step size. Also, in the Runge-Kutta methods the solution at y*n+1
depends only on the solution y*n at the previous point X and the step
size hn' Multistep methods (such as the Adams methods) are based on
the idea that more accuracy might be obtained by using information at
dy* dy*

n-1 n-2
: . * *
previous points, such as y a-1® Y n-27 * * - and e » Td= s v e

The multistep methods usually are more efficient than one-step methods
and an estimate of the local discretization error is, in general, readily
obtained. The order of a numerical integration scheme is the power of
the step size that appears in the local error estimate, € which can

be written as
" p+l
€l O(hn ) (3.74)
where the integer p is then said to be the order of the method.

From this expression it can be seen that the discretization error

estimate can be decreased by either increasing the order (if hn < 1) or
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decreasing the step size. Therefore by monitoring the local discreti-
zation error estimate, multistep methods provide the capability of
automatically changing the order or step size to insure the accuracy
of the solution. An example of a multistep scheme is the fourth-order

Adams predictor-corrector method“8:

dy* dy* dy* dy*
h n n-1 n-2 n-3
{ e * = * — —— — —
predictor: vEa v* + 2% (55 n 59 Ix + 37 ix 9 ix )
dy* dy* dy* dy*
h n+l n n-1 n-2
. * = * —_— —_— — -
corrector: yX,. = vX + % (9 Ix + 19 = 5 3 + Tx )

These are fourth order formulas, but the order can be increased by

dyls Yis
dx > dx ’

including more terms in these relations corresponding to

etc. The Adams-PECE routine for calculating y +1 is as follows:

1. Use the predictor to calculate y*( ), an initial approximation
to yn+l (0)
yr,;+l * Py )
2. Evaluate the derivative function and set = E%— yrr+l n+1
3. Calculate a more accurate approximation y*( ) using the corrector
(0)
* *
. dyn+l dyn+l
formula with = .
dx dx

(1)

4, Evaluate the derivative function using y* obtained in step 3
(from the corrector formula) for the next integration step.

If a singularity exists in the solution to Eq. (3.64), the Adams-
PECE scheme is much more likely to discover this fact than a Runge-Kutta
method.

The SVD procedure decomposes the matrix A* into the following form:

A% = USVY (3.75)
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where U and VT are orthogonal matrices and S is a diagonal matrix that
shows if A* is singular (see Appendix D). If one or more of the diagonal
elements of S is zero then A* is singular. Also the number of non~zero
diagonal elements of S is the rank of A*. The SVD of A* is accomplished
by first using Householder transformations to reduce A* to bidiagomnal
form and then the singular values of the bidiagonal matrix are determined
by using a variant of the QR algorithm. This decomposition explicitly
shows if A* is singular and monitoring S will show if a singularity
is encountered. The fact that the SVD is based on orthogonal matrices
makes it numerically stable, which is essential in a neighborhood of a
numerical singularity.

Substituting this decomposition for A* produces a very simple‘method
for determining when a component of %%i is unbounded. This procedure is

shown by expressing Eq. (3.64) as
usvT 92% - g (3.76)
dx
which implies that

syl 9¥* _ yTpx = ¢ (3.77)

Now since S is a diagonal matrix, then
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ngn

L 0
where the o, are the diagonal elements of S. The vector H determines if
any of the derivatives is unbounded. There is no need to solve

. s dy* , \ .
explicitly for ax to realize that the system is singular because V
is orthogonal. Pre-multiplying H by V might shift the singularity to
another component but it will not eliminate the singularity from Eq.
(3.64). By examining a number of cases it was found that a tolerance
could be set on the components of H when the system is singular. The
singularity always occurs at the throat and when the Adams-PECE routine
encounters this singular behavior it will not be able to integrate
further. But it is quite inefficient to discover the singularity in
this manner, since the integration routine will keep trying to integrate
across the singularity until it runs out of time. Therefore, if

R dy* .

> 100 the program stops since this indicates that is

dx

becoming too large for the integration routine to handle. If this is

o
the case then incorrect reflection coefficients have been chosen.
Now, with a systematic procedure for integrating to x = L, the

iteration on Eq. (3.73) can be implemented. For a particular case, the
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only variables in Eq. (3.73) are the reflection coefficients. The
reflection coefficients that satisfy Eq. (3.73) are determined by
iteration. This is accomplished by using a subroutine that tries to
minimize the sum of the squares of 2N nonlinear functions in 2N
variables by a modification of the Levenberg-Marquardt algorithm”3’“”
(see Appendix A). The algorithm calculates corrected reflection
coefficients which are then passed to the integration routine. This
is done successively until F(Crn) * 0 is satisfied to within a certain

tolerance.

3.2 Numerical Results

The numerical procedure has been applied to examine acoustic
propagation through a simple converging-diverging duct section. The
radius of the duct wall in the variable-area section is given by

- 1 _ 21X
R=1 10 (1 cos T )

and the duct connects to straight sections at x = O.and x = L, see
Fig. 26.

In order to implement the iteration procedure, reflection coefficients
that will permit Eq. (3.64) to be integrated t; the right-end of the duct
without encountering a singularity are first determined. To begin with,
we consider only one reflection coefficient c and assume the other
coefficients to be zero. This is equivalent to setting the boundary
conditions at x = 0 for the higher harmonics to be zero. By varying

C. > we obtain the plot in Fig. 27 showing the region of admissible

reflection coefficients Ci The region is determined using two
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harmonics. Cases using four and ten harmonics indicate that the region
does not shrink appreciably. TUsing these values for crl and the other
cri = (0 as initial values, we start the iteration to determine all the

coefficients c
ri

Equation (3.5) can be written in real form as

N
ux,t) = uy(x) + ngl D_(x) cos [nwt = ¢_(x)] (3.78)

where the amplitude functions Dn(x) are related to the complex co-

efficients by

D (x) = 2 Y[Re(u; )12 + [Im(u; )12 = 2 Iuln(x)l (3.79)
and the phase angle ¢n(x) can be determined from

-1 Im(uln)

¢n(x) = tan (3.80)

Re(uln)

In the following figures Iuln(x)|/|ull(0)| represents the development
of the amplitude of the nth harmonic as compared to the fundamental
wave at the duct entrance.

In Figures 28, 29, and 30 the original Runge-Kutta version of
the program is compared with the version using the Adams-PECE and SVD
routines. The figures represent plots of the velocity amplitudes versus
the axial distance through the duct. They are determined using the
above mentioned procedure (i.e., c ;= 0 for n > 2). Figure 28
demonstrates the weakness of the original numerical procedure. 1In the
case depicted in Fig. 28, crl = 0. But from Fig. 27 it is seen that this
value for crl is not in the region of admissible Cpy Therefore the

Runge-Kutta scheme, as shown in Fig. 28, has integrated to x = L
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without realizing that the solution is singular near the throat. 1In

Fig. 29 the same case is shown except here four harmonics are used. The
unstable growth of the amplitudes near the throat, which resulted in the
termination of the program, indicatés that the results in Fig. 28 are
incorrect. Using the Adams-PECE and SVD methods shows that crl = 0 is
incorrect for the case of two harmonics. The program will terminate at
the throat and not integrate to x = L as the Runge-Kutta does. Figure 30
is obtained from the Adams-PECE and SVD schemes. There are no unstable
growth patterns or large jumps in the amplitudes near the throat both of
which develop in the Runge-Kutta method.

The successful integration to the right end of the duct allows the
iteration to begin on the impedance conditions at x = L. Figures 31-34
depict the wvariation of the velocity amplitude of each harmonic through
the duct for a case where the impedance conditions at x = L are
satisfied by the iteration. Several cases were calculated using different
reflection coefficients to initiate the iteration. In each case the
iteration converged to the same solution. Also, the flow in the vicinity
of the throat is in the near sonic region. The parameters for each case
are identical except for the number of harmonics. These figures
‘illustrate the dominance of the fundamental signal. The fundamental
signal in Fig. 34 computed using four harmonics is not appreciably
different from that in Fig. 31 using one harmonic. Also shown is the
rapid increase in the intensity of the disturbance near the throat
region. The higher harmonics do not become significant until the throat

is approached. For the fundamental signal there is a reduction of its
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amplitude at the exit. 1Including higher harmonics reduces the amplitude
of the fundamental signal to a still lower value at the exit, thus the
increased intensity near the throat appears to transfer energy from the
fundamental to the higher harmonics. The results of the case using
four harmonics were used as input for a case using ten harmonics. No
iteration was performed on this case due to the large computation time
that would have been required for ten harmonics. Integration to the
exit would be performed to determine if a singularity would appear that
was undetected by using four harmonics. Also the impedance conditions
at x = L were evaluated to determine if they were still satisfied. This
example confirms the results of Fig. 34. For the first two harmonics the
results are essentially the same as that obtained by using four harmonics
in the computation of the solution. The only significant result of this
case not shown in Fig. 34 is the reduction of thé third and fourth
harmonics at the exit due to th;ir interaction with the higher harmonics.
Siﬁce this case has a high maximum Mach number (-.983 for N = 4) at the
throat (which implies significant nonlinear effects), it should serve
as a limiting case to guarantee a subsonic flow eliminating the
possibility of shocks being formed. Therefore in less severe flows
(i.e., lower Mach numbers), the use of four harmonics is probably
sufficient to analyze the problem.

Figures 35 and 36 illustrate the growth in the intensity of the
fundamental signal at the throat that develops by increasing the density

disturbance p_ and the mean flow Mach number M;, respectively. Each

I
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case is computed using three harmonics and the last point plotted
approximately locates where the problem becomes singular.

Figures 37 and 38 are similar to the two previous figures, but
here the reduction in the intensity of the fundamental signal at the

duct exit by increasing p. and My, respectively, is shown. Input

I
values for these figures are identical to those used to compute the
cases in Figs. 35 and 36.

Investigatiﬁg a number of cases where the derivatives become
unbounded indicates that the singularity is due to shock formation.
That is, if the input parameters which determine the flow produce a
singularity, then these parameters are not consistent for an
isentropic solution to the governing equations. In each singular
case analyzed (also, these cases will not converge in the iteration
scheme) the Mach number exceeds unity at certain values of time. In
all of the singular cases, the singularity is encountered downstream of
the throat. A particular case is taken for three harmonics and what

occurs for a singular case by varying p. is shown in Fig. 39. The

1
is varied between .0049 < pI < .008 while the

density disturbance o1
mean flow Mach number is held comstant, Mg = -.4. For these particular
values the problem is singular. Figure 39 shows that as the density
disturbance is increaséd, the singularity occurs farther downstream of
the throat. A similar result would be expected by varying the mean flow
Mach number. Therefore it appears that OI and Mg affecg the location

of the shock and that the shock approaches the duct entrance if either

value is increased or both are increased.
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In Fig. 40, the Mach number variation with time is plotted for two
cases. These curves are periodic in time with period 2w. Each curve is
determined using three harmonics and the same mean flow Mach number. For
the case Pr = .0049, a singularity is produced just downstream of the
throat and this is where the Mach number is computed (x = .98851). As
is seen, this Mach number curve exceeds unity in its time variation
which is a necessary condition for a shock to appear. In the case where

ol .0045 no singularity is encountered and the iteration scheme

I=

converges. The Mach number plot for this value is computed at the

throat (x = 1). Throughout its time variation it is subsonic.



CHAPTER FOUR

Conclusions

Acoustic propagation in nonuniform circular ducts carrying
partially choked mean flows is studied using two models. The wave-
envelope technique is employed to analyze axisymmetric and spinning
mode linear propagation. In the second model a one-dimensional
nonlinear analysis is developed since for near sonic flows it is known
that nonlinear effects become important. Linearization was performed
in the first problem because the number of physical parameters included
in the analysis would lead to extreme mathematical and computational
complexity if the nonlinear terms were retained.

Computer codes were developed for both theories and results were
obtained. The linear analysis investigates the effects of such physical
variables as the liner admittance, boundary-layer thickness, acoustic
frequency, spinning mode number, and mean Mach number.

Two duct geometries were investigated in the linear analysis: a
converging duct and a converging-diverging duct. The numerical results
indicate that the diverging portion of the duct can have a strong
reflective effect for near sonic flows. For a coﬁverging duct it appears
that with increasing inlet boundary layer displacement thickness the
maximum pressure amplitude increased while the refractive effect of
the axial gradients is strongest for axisymmetric disturbances. Also,
the largest peak pressure occurrs for axisymmetric disturbances. The

presence of a liner reduces the acoustic signal for a converging duct.

62
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In the converging-diverging duct study no general trend was found
in the acoustic pressure profiles by varying the boundary-layer
thickness or liner admittance for axisymmetric disturbances. The
wave-envelope technique is probably more accurate for lined ducts and
spinning mode propagation, since in these cases the modes are more
cut-off initially and therefore are less likely to cut-on. Hence, they
are greatly attenuated in the duct.

A numerical procedure for analysis of nonlinear acoustic propagation
through nearly sonic mean flows, which is stable for cases of strong
interaction, has been developed. This procedure is a combination of
the Adams-PECE integration scheme and the SVD scheme. It does not
develop the numerical instability associated with the Runge-Kutta and
matrix inversion methods for nearly sonic duct flows. The numerical
results show that an impedance condition can be satisfied at the duct
exit and a corresponding solution can be obtained. The numerical
results confirm that the nonlinearity intensifies the acoustic
disturbance in the throat region, reduces the intensity of the
fundamental frequency at the duct exit, and increases the reflections.
This implies that the mode conversion properties of variable area
ducts can refrac; and focus the acoustic éignal to the vicinity of
the throat in high subsonic flows. Also the numerical results indicate
that a shock develops if certain limits on the input parameters are

exceeded.
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Figure 6 Effect of mean Mach number on the acoustic

préssure profile at the throat for m

2 when the

first upstream mode is incident at x

0, 8=20,

w=9, 63 = .001 and N = 7.
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Figure 7 Effect of mean Mach number on the acoustic

pressure profile at the throat for m 3 when the
first upstream mode is incident at x = 0, 8 = 0,

w=9, 8§ = .001 and N = 7,
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.Figure 8 Effect of admittance on the acoustic pressure
profile at the throat of a lined duct for m = 2 when
the first upstream mode is incident at x = 0, Mt = -.883,
w=9, 6§ = .00l and N = 7.
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6% = 001 and N = 7.
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acoustic pressure profile at the throat for m = 3
where the first upstream mode is incident at x = 0,

B = 0, Mt = -.883, w=9 and N = 4.
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RELATIVE ACOUSTIC AMPLITUDE
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Figure 25 Increase of linear acoustic amplitude with mean-flow

Mach number, w = 1.
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Figure 27 Region of admissible reflection coefficients using
two harmonics and one reflection coefficient, w = 1,

op = .005, My = -.4.
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Figure 28 Development of harmonic amplitudes (Runge-Kutta

method), w = 1, My = -.4, or = .005, N = 2, CR = 0.
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Figure 29 Development of harmonic amplitudes (Runge-Kutta

method), w =1, Mg = =.4, p; = .005, N = 4, C, = O.
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Figure 30 Development of harmonic amplitudes (Adams-PECE and
SVD methods), w = 1, Mg = -.4, o1 = .005, N = 4,

C_=-.5- 3.34i.
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Figure 31 Development of harmonic amplitudes,

w=1, Mg = -.4, p; = .0045, N = 1.
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Figure 32 Development of harmonic amplitudes,

w=1, Mg = =.4, p_ = .0045, N = 2.
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Figure 33 Development of harmonic amplitudes,

w=1, Mg = -.4, P = .0045, N = 3.
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Figure 34 Development of harmonic amplitudes,

w=1, My = ~.4, p_ = .0045, N = 4.
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Figure 36 Growth of the fundamental harmonic at the throat as
the mean flow Mach number increases, w =1, N = 3,

Pr = . 0045,
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Figure 37 Reduction of the fundamental harmonic at the exit as

the density disturbance increases, w = 1, N = 3, My = -.4.
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Appendix A

Nonlinear Least-Squares Optimization

A scalar function ¢(x) in n variables where

X"T

)

X
e 11 __J

can be expanded about an arbitrary point, a, by Taylor's theorem

according to
6@ = 0@ + (xa)g@ +3 @aB@Ea) +. .. @AD

In this formula g is the gradient of ¢ and B is the Hessian matrix of ¢

where g and B are

L)
8; = 7% (A2)
i
- % |
ij Bxixj (43)

Suppose the local minimum of ¢ is desired and this minimum occurs at
a. Then g(a) = 0 and the Hessian matrix, B(a), must be positive

definite“?. TFor quadratic ¢ Eq. (Al) becomes
1 T
0® =9 + 3 (x-a) "B(x-a) (A4)

Therefore the gradient g at x is given by
g(x) = B(x-a) (A5)

so that for an arbitrary point x, the value of a can be evaluated from

a=x-B g (46)
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From this it is apparent that the minimum of a quadratic ¢ can be
obtained by knowing the gradient direction g at x and B_l. Define the
matrix H as

B =381 (A7)

One can now view the matrix H as an operator which turms the local
direction of steepest descent -g at x into the true direction from x to
the minimum point of ¢. Replacing B—l by H in Eq. (A6) results in

a=x - Hg(x) (a8)
Equation (A8) can be considered as the Newton metﬁod for solving the
system of equations g(x) = 0. Using the form of Eq. (A8) an iteration

procedure can be formulated to find the minimum of any function ¢“8.

The iteration equation is of the following form

Ber 7 % - A O
in which
g = 8(x) (A10)

and Hk is a kth approximation to the inverse H of the Hessian matrix B
of the function ¢ at a, the minimum. ’Also oy is a positive scalar
which is determined at each step of the iteration in order that a local
minimum of ¢ is achieved along the direction -Hkgk from Xy This
iteration scheme attempts to achieve the minimum point a and the
inverse Hessian matrix H simultaneously.

Let us now consider the case where ¢ is the sum of squares of m
nonlinear functions in n variables that is,

m

b = £7F =] [£,1° (a11)
i=1
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where

T
X (xl,xz,..,.xn) (Al12)

£= (£sfy,eeenf)

(A13)
and assume for convenience that m > n. For our purposes the column
vector f represents the residuals of the boundary conditions so that
minimizing ¢ will minimize the residuals in a least-squares sense. The
gradient and Hessian matrix of ¢ will now be determined by expressing

¢ in index notation

¢ = fkfk (A14)

which implies that

g8 =0 ;= (Bfdy = B sfie Y Rt (A15)
so that
g = 23 (A16)

In Eq. (Al6) J is the m x n Jacobian matrix of f which has the form

3f
=3 =_2R (A17)

The Hessian matrix B is given by

Ppq T Ppq
= Efidipg = @y pfid g
= 2(fk,quk + fk,pfk,q) or
B = 2(C + JJ) (A18)
where

£

pq = fk,pqfK (419)
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a n X n matrix.

If the Hessian matrix of second derivatives, B, can be calculated

then Newton's method, Eq. (A9), can be used. This scheme®? constructs
a sequence of vectors {gk} such that

Terl T H T % By (420)
Comparing Eq. (A20) with Eq. (A9) shows that By the direction of search,‘
satisfies

B(x,)p, = -g2(x,) (A21)

where the Hessian matrix is approximated by evaluating it at Xy If ¢
is a sum of squares of nonlinear functions then the special form of
the Hessian matrix and gradient vector, Eqs. (Al18) and (Al6) respectively,
can be substituted into Eq. (A2l) so that,
[CG) + IT) TG Ip, = -3 (xE(x) (422)
Neglecting the second-derivative matrix C(Ek) in Eq. (A22) results
in
3T, )3, )p, = -0 (x, ) E(x,) (A23)
Ko/ SN By SRERR
This is known as the Gauss~Newton method and is intended for problems
where ||C(x)]|| is small compared to ||JT(§)J(§)||.

43

The Levenberg-Marquardt iteration'° generates a sequence of

appfoximations to the minimum point by
T -1 T
Ky = &~ o T+ ITEIIEI] T ) L) (A24)

where Hps oy are positive scalars. Consider the approximation M to the

k
Hessian matrix B(gk) in Eq. (A24),

M= ukI + D(gk) (A25)
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where

D) = TG IG) (426)

In Eq. (A25) one sees that the eigenvalues of M are My + Aj, j=1,2,..

so that choosing By > -min Aj guarantees that the eigenvalues of M are
positive and thus M is positive definiteS!. This then guarantees that

for some ak >0

0 ,p) < 0Gx) (A27)
Note that the Py in Eq. (A24) is somewhere between the Gauss-Newton

direction (uk = 0) and the gradient direction (uk = «),

The numerical scheme that was employed in the computer program

approximates J(gk) by the corresponding matrix of difference quotients.

This matrix of difference quotients is denoted by AF(x,h) whose m-th,
n~-th element is

AF(x,h) = fm(§_+ hgﬂ) - fm(E) (A28)

where h is a scalar and u is the n-th unit vector. The finite
difference analogue of the Levenberg-Marquardt algorithm (f.d.L.M.)"%3
is

1

By ™ 3 = o Dad 0T (gl 08 G ) 1T O Gy £ )

(A29)

= x - o [h2n T+ AF (o0 )R (e o0 ) 1T AF Gy b B (A30)

’n’

If B = 0 then the finite difference analogue of the Gauss-Newton method

is obtained. The convergence of the f.d.L.M. algorithm to a local

minimum point for sufficiently small h is proven in reference 43.



Appendix B

Transfer Matrices

Since the system of ordinary differential equations represented by
Eq. (2.61) is linear its solution can be determined by a linear combination
of N linear independent solutions. With this fact, the general solution
can be written as

A =AW @) +caP ) + .. L.+ CNA(N)(X) (B1)

(1) L am

where the column vectors A s v e are the linearly independent
solutions whose numerical determination is described in the text and the
C's are arbitrary constants. The right-running modes are the first NR
components of the A's and the remaining NL components are the‘left-running
modes.

Equation (Bl) 1leads to the following:

Bx) = ;0 (x) +. . . .+ CNT(N)(X) (82)
where
_ ifkidx
Ay (k)e 7
7 (x) = . S k=1,2, .., N (B3)
.if dx
NCR Ky

and
F Alelfkldx -

B(x) = (B4)

ifk. dx
he T
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At x = 0, Eq. (B2) reduces to

1
0
B(0) =C; |. -i-...-i-CN .
0 1
[41(0)] [C1]
A2(0) Cz
: = : (B5)
|4 Cy
- e -

so that the constants in Eq. (B2) are equal to the mode amplitudes at

x = 0. Following the notation already introduced in the text Eq. (BS5)

can be rewritten as

CJ ]
Cy B+(O)
) - ———- (86)
. B (0)
CN
[ L d
Also, Eq. (B2) can be expressed in matrix form as
—— r -
ROREIC I 1
SOOI B
Bx) = | . . . : (B7)
(L () (N
T T T c
R R R )

The above equation will now be written in partitioned form as
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BT (x) TR;1 TR, | |BT(0)
- - - = - o e - - = - (BS)

B (x) TRg: TRy B~ (0)

so that we arrive at Egs. (2.62) and (2.63)

B (x) TRl(x)B+(O) + TR, (x)B (0) (89)

B™(x) = TR3(x)B" (0) + TR, (x)B™(0) (B10)
With Eqs. (B9) and (B10) transmission and reflection matrices can be
determined in terms of the transfer matrices. The transmission and

reflection matrices obey

B+(L) = TL’°B+(0) + RL’LB-(L) (B11)
870) = 108" @) + r%*%(0) (B12)

Solving for B (0) in Eq. (B10) and then substituting the result into
Eq. (BY) yields

+ -1 + -1 -

B (L) = [TR;- TR,TR; TR3]B" (0) + TRpTR; B (L) (B13)

where x = L. Comparing Eq. (Bl3) with Eq. (B1l) implies that

0 = TR, - TR,TR} TR; (B14)
Rl - TRZTRZl (B15)

Also, by directly comparing Eqs. (B10) and (B12) yields

0L o 17t (B16)

0,0

R ~TR; “TR3 (B17)



If y is the column vector of the unknowns Gl

ple TlN’ ..

Alx,y) =

where aij

where

E;1(0)

.T

E;jj(n) =

E21(0)

E;3(0)

Ep2(n)

E3;(0)
E33(0)

E3z(n)

]

]

Appendix C

The Nonlinear Differential Equatiom

1IN

—O‘ll 12
a21 422
31 32

are (2N + 1) x (2N +

E_.(0) ﬁnm(l)
E 1) )
E_ (2 E_(1)

p10> E12(0) = uyg, E13(0) =

the coefficients of Eq.

s Ui Prpee e

(3.60) take the following forms:

@13
23

33

1) submatrices defined as

E_(2)
Enm(l) .o
Enm(O) cee

= 0,
P1ns E12(n) = uip, E;3(n) = 0,
F1(0), Ep,(0) = E%Q,
3%9, E;1(m) = Fi(n),
-z, Ex3(n) = 212,
Y Y
0, E32(0) = (1-v)[F2(0)],

E;1(0),

(1-v) (F2(n)),

E3i(n) =

0,

E33(n) = Ep;(n).
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N
F1(0) = ] u

. 1jplj’ where ()l,—n = ( )l,n
j==N 7
Ngl _
F1(1) = 0..U,.
j=-N 13 1j+1
N-2 _
Fi1(2) = u + .1,
1(2) = p11u1} _=§N P li%g+2
3
Fo(n) has the same form as F;(n) but with p being replaced by T.
- =]
B1(n)
B = Bs(n) , 0= -N,...,0,...,N
B3(n)
e —
where
Bi(n) = - [1nmpln + Fl(n)AS]

Bp(n) = - Fs(n)

By(n) = -[F3(n) + (1 - Y)Fy(n)]
- 1dA
As T A dx
lg -
F3(0) = 0. . iwjT..
=N 13 13
N-1 _
F3(l) = } o, .iw(i + )T

% 13+1

etc.

Fy(n) has the same form as F3(n) but with p, T being replaced by T,
p respectively.

F5(n) has the same form as F3(n) with T being replaced by u.



Appendix D

The Singular Value Decomposition

If the elements in a set of vectors cannot be expressed as a
linear combination of the other elements then the vectors are said
to be independent. In the following we shall develop a quantitative

approaéh to the idea of linear independence. For example the vectors,

1 0 0
0 1 and 0
cl,]1 04, 1

are very independent while the vectors

1.01 1.00 1.00
1.00 1.01 and 1.00
1.004 , L1.004, 1.01

are almost dependent. It will be shown that a numerical value can be
associated with the concept of independence”a.

Two vectors are dependent if they are parallel and are very
independent if they are orthogonal. Two vectors u and v are orthogonal
if their inner product is zero, uTv = 0.

Also, if

uTu =1
the vector u is said to have length 1. An orthogonal matrix is defined
to be a square matrix whose columns are mutually orthogonal vectors
each of length 1. Therefore a matrix U is orthogonal if

UTU =1

Since U'-l = UT an orthogonal matrix will always be nonsingular. In

what follows the concept that an orthogonal matrix is very nomnsingular

120
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and that its columns are very independent will become apparent.

The length of a vector and the angle between two vectors are
invariant under multiplication by orthogqnal matrices. Since they do
not magnify errors, orthogonal matrices are quite useful in
computational analysis.

The singular value decomposition of an m x n real matrix A is
of the form

A= UZVT
where U is an m X m orthogonal matrix, V is an n X n orthogonal matrix,
and Z is an m X n diagonal matrix where 94 = 9 > 0. The ci's are
referred to as the singular values of A. It is shown in texts on
linear algebra®? that this decomposition is always possible for any
matrix A. The columns of U and V are called the left and right
singular vectors.

It is also shown in linear algebra52 that the matrices AAT and
ATA have the same nonzero eigenvalues and that the singular values of
A are the positive square roots of these eigenvalues. Also, the left
and right singular vectors can be constructed from the eigenvectors
of AAT and ATA, respectively.

Two simple examples are presented now to illustrate the above'

procedure for determining the SVD.
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EXAMPLE 1:

SN

First compute ATA and determine its eigenvalues,

2 3
ATA = [ ]
35

The eigenvalues of ATA are

Al,2 = 6.854, .l46.

Now using the following equations compute the eigenvectors

(2-3) Vl + 3V2 =0

2 2 =
V1 + V2 =1
So that,
.526 .851
v =
.851 -.526
where the first column of V is the eigenvector corresponding to X;

and the second column is the eigenvector of A;. In this example

U = V since A is symmetric. The singular values are 2.618 and .382 so

; [/33 o] [2.618 o]
Lo ag 0 .382

that

]
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EXAMPLE 2:

Consider the singular matrix

- L]

As before, form

5 5
aTa = [ ]
5 5

whose eigenvalues are
A1,2 =10, O

Determining the eigenvectors give us

» .
.
V2 2
V =
I _1
V2 V2
Now then
T 2 4
AAT = , whose eigenvalues are A} 2=10,0 as expected.
4 8 ’
Evaluating the eigenvectors of AAT determines U as
1 -2
s | 5 /5
2 1
L@ /5

Finally the singular values are Y10 and O so that

Y10 0

0 0
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We see that one of the singular values is zero which is to be expected
since A is singular.

The rank of a matrix is another basic concept of linear algebra.
This is defined as the maximal number of indepeqdent columns or the
order of the maximal nonzero subdeterminant in the matrix. For a
particular matrix it can be quite difficult to determine its rank using
this definition. If a matrix is diagonal it is simple to determine its
rank since it is the number of nonzero elements in the matrix. The
set resulting from the multiplication of a set of independent vectors
by an orthogonal matrix is still independent. Therefore the rank of
a general matrix A is equal to the rank of the diagonal matrix I in
its SVD. Hence the rank of a matrix can be determined by the number of
nonzero singular values that it has.

Now let k represent the rank and consider an m x n matrix with
m > n. The matrix is called full rank if k = n or rank deficient if
k < n. In the case of a square matrix nonsingular and singular are
used instead of full rank and rank deficient, respectively. In computing
the SVD of a rank-deficient matrix all of its singular values can turn
out to be nonzero due to roundoff errors, indicating a matrix of full
rank. Usually in determining the SVD, an effective rank is used, which
is the number of singular values greater than some prescribed tolerance
so that the significance of single numbers, the small singular values,
and not sets of vectors can be used to determine the rank of a matrix.

A numerical value can now be associated with the idea of linear

independence. Suppose o and ¢_. are the largest and smallest
max min
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singular values of a matrix A of full rank, then the condition number

of A is defined to be

o
cond(A) = max |
g
min
Cond(A) is said to be infinite if A is rank deficient (Gmin = 0).

From this definition it is apparent that cond(A) > 1. The columns

of A are very independent if cond(A) is close to 1. The columns of

A are nearly dependent if cond(A) is large. We can say far from singular
or nearly singular if A is square. If cond(A) > cond(B), then A is
considered to be more singular than B. For an orthogonal matrix A,
cond(A) = 1 and its columns are as independent as possible. Also, if

A is an arbitrary matrix and cond(A) = 1 then A must be a scalar
multiple of an orthogonal matrix.

The advantage in using the SVD to solve a system of equations is
now presented. To begin with suppose we want to solve the following
system,

Ax = b
where A is an m x n matrix (m > n) and b is a given m vector. The n
vector x is the solution vector to be determined. Note that A can be
square and possibly singular. There are come fundamental properties of
the system that must be examined. Questioné about the consistency of
the equations, existence of solutions, uniqueness and the possibility
that Ax = 0 has nonzero sclutions arise.

In theory there are a number of algorithms that can determine

these properties. Considering the inexact data and the imprecise
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arithmetic involved in the numerical solution of the problem indicates
that the only reliable numerical method is the SVD.
Now replacing A by its SVD implies that
UZVTx = b
and
rz = d,
where z = VTx and d = UTb. The above system (Zz = d) is diagonal and

depending on the dimensions m and n and the rank k, the number of

nonzero singular values, it can be analyzed in three cases:

Q
N
[

=d., if j < n and o, 0
J’ J = n 3 #
0.z, =d,, if j <nand o, = 0
J J - J

0= dj’ if j > n.

If k = n, the second set of equations is empty. If n = m, the third

set of equations is empty. The equations are comnsistent and a solution
exists if and only if d, = 0 whenever Uj = 0or j >n. If k < n, then

the z, associated with a zero Gj can be given an arbitrary value and still
yield a solution to the system.

So far nothing has been said about how the decomposition is actually
performed in the computer routine. We will now consider the numerical
procedure used by first looking at the following problem. Suppose we
want to transform a real arbitrary vector u into a second real vector v
of the same length by using the following transformation

v=~FPu

where P is a square matrix and is a function of u and v (refer to Fig.

D.1).
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Fig. D.1

To implement this note that

0C = 0A + 248
where B is the midpoint of AC. Therefore OB is perpendicular to AC and
AB is minus the projection of OA on AC. This equation can be rewritten
as- ' | .

—_—
u + 2AB.

|<
]

Let w be a unit vector along AC so that
L

w
- ||V-u||

Since AB is minus the projection of u on KE then

—_—

AB = —-(w u)w.

Also

so that

=u - 2WW?E = (I - ZEH?)E

|<

Now we have the form of P, which is

P=1-2w, |[u|l =
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and this is called a Householder transformation. One can substitute

/
for P and algebraically verify that this is the correct form, that is

2(v-u) (v-u)"
I

Pu= (I - 2ww)u=u -

But
|lv=u| 12 = (-0 w-w = v'v - v’y - v'u + oy
- 2u'u - 2v'u
= -2(v-u) 'u
so that

Pu=u+ (v-w) =¥

It is apparent that P depends only on w, the direction of v-u. Therefore

for any two vectors u' and v' for which ||u'|]| = ||v'|| and v'-u' is in

the same direction as v-u the transformation Pu' = v' holds. The
implication here is that P reflects each point u' throﬁgh a plane that
is perpendicular to v-u and which contains the line through the origin
and %(utv). Since it appears that a Householder transformation is
merely a reflection one would expect that lengths and angles will be
preserved and hence it is an orthogonal transformation.

First note that,

Pl = I - 2(w) =1- 2uw’ = P
so that P is symmetric. Moreover,

T

PP=(I—2ﬂT)2 Tou®

I - bww’ + buwiww

I - 433? + 4__T

=1
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Hence P is indeed an orthogonal matrix. Householder transformations are
a fundamental part of the SVD routine.

The QR algorithm53 is also associated with the SVD. In the QR
algorithm a square matrix, say Hj, can be decomposed as follows:

H; = Q1R
where Q; is an orthogonal matrix and R; is an upper triangular matrix.
Interchanging the order of multiplication results in

Hy = RiQq = Q.{IHIQI = QrfﬂlQl
and since Q; is orthogonal the eigenvalues of Hi are preserved. For
most matrices the QR algorithm is convergent and Hk’ as k » », is block
upper triangular (diagonal if the original matrix is symmetric). The
eigenvalues of the original matrix will be the eigenvalues of the 2 x 2
blocks on the diagomnal.

For computational efficiency a matrix is first reduced to upper
Hessenberg form by using similarity transformations (which preserve
the eigenvalues) before applying the QR algorithm. An upper Hessenberg
form is a sqﬁare matrix which consists of an upper triangular form with
an additional band of elements adjacent to the main diagonal. The
reduction of a matrix to upper Hessenberg form is accomplished by using
Householder transformations. This is done successively until the upper

Hessenberg form is obtained and can be represented mathematically as

.-}—l“ -
hx,

*

~ h

—  h.,

1
"~
I
I
I

=
()
I
I
|
|
l

(@) oDy o@)T

c.Q H) ™7 -

Q
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k)

where the Q( 's are Householder transformations.
The convergence of the QR method can be accelerated by employing
shifts. Instead of decomposing Hk’ the algorithm is modified so that

the decomposition is now done on

B -l = Ry

and the reverse multiplication is changed to

Het1 = B gt
The value M is called the shift parameter. It has been shown°>"“ that
an excellent choice of Nk is the eigenvalue of the 2 x 2 submatrix at
the bottom right corner of (the upper Hessenberg) Hk which is closest
to héi) (the last entry on the main diagonal).

The SVD computer program first uses Householder transformations
to reduce the given matrix ta a bidiagonal form and then a variant of
the tridiagonal QR algorithm is used to find the singular values of
the bidiagonal matrix.

Let A be an m x n matrix, with m > n, and let the SVD form

A = Uyt
to be computed by the computer routine.

The reduction to bidiagonal form is accomplished by constructing

two sequences of Householder transformations™’

p(0) o1 C T o Ly o L w

and

(k) _ 1 _ Zy(k)y(k)T (k

]

Q 1, 2, * s 0y n—Z)

(x(k)Tx(k) = y(k)Ty(k) = 1) such that
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q3 e 0 0
qQ2 e3 0

(@) (1,1 @-2) _ |° 0 (0)
PV PYAQM L Q = = J

e

n

9

0 } (m-n) xn
L e
an upper bidiagonal matrix.
1

Let A( ) = A and define
A2y _ o, () o Ly 5

AL _ WA/ 0 () _ o L a2y

then P(k) is determined such that

a£§+l/2) =0 (i = k+1, ..., m)

and Q(k) such that.

(k+1) _

p 0 (G =k+2, ..., n)

A variant of the QR algorithm diagonalizes J(O). This is done

iteratively so that

(0) (1)

J - J

>. . . > I

where gD o DT, 1))
and S(l), T(l) are orthogonal. The matrices T(l) are chosen so that
the sequence M(l) = J(l)TJ(l)

(1)

converges to a diagonal matrix while the

i) ., . as
matrices S are chosen so that J( ) is bidiagomnal.



132

The following notation will now be adopted to explain the second
phase of the SVD:

W 5270 5 25W 7 z0®)

J=J s

Hi

T = jT_

M=JJ, M= J"J.

Givens rotations®3 are applied alternately from the right and the left

to J to accomplish the transition J - J. Therefore

= _ T T T
T=5,Sm1) -+ - S, )Ty o o o T

ST T

where the Givens rotation Sk is

(k-1) (k)
1 0 61
0
S, = 1 cos ek -sin 8y (k-1)
sin ek cos Gk (k)
1
0 1

and Tk is also a Givens rotation with ¢k instead of Bk.
The angle ¢, can be arbitrary but all the other angles are chosen
such that J has the same form as J. So that,
T, annihilates nothing, generates an entry {Jl;;

Sg annihilates {J},;, generates an entry {J}i3

T3 annihilates {J};3, generates an entry {Jljp
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until SE annihilates {J}n,n~l’ and generates nothing. It is shown in
reference 47 that ¢, can be chosen so that the transition M - Mis a
QR transformation with a given shift s. This is true if the first
column of T, is comstructed so that it is proportional to the first
column of M - sI. The shift parameter s is set equal to the eigenvalue
of the lower 2 x 2 submatrix of M that is closest to mo- These Givens
rotations are applied iteratively until the super-diagonal elements
converge to zero (computationally a numerical tolerance is preset in
the program).

To demonstrate this algorithm let us apply it to the following

example.
Example 3:
1 1 2
A= 1 2 2
1 2 3

Since n = 3 we need to apply two Householder transformations to
the left of A and one to the right of A to reduce it to bidiagonal
form. Let A} = A and consider introducing zeros into aj;, the first
column of A;. This is dome by adding llall| to the first compohent

of a;. Therefore

1+ /3 2.73205
uy = 1 = 1
1 1

and from this the Householder matrix can be evaluated which will be,

2
u]
By = —U—-E& = ula, = 4.73205
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U =1~ BIlElEE (w = uy/||uy|| in the earlier notation)
The transformed matrix A; is actually computed column by column from
Az = 1A

which implies that

-1 T
Uja) (I -1 wulay

-1 T
=a) - (6112151_1)31
=a ~-u
-1.73205

0
0

-1, T
Uja; = ap = 8; (ujaz)u;
= ar - (1.42265)_1_1_1

-2.88675
= .57735
.57735

-1, T
Ujaz = a3 - B1 (uiasz)u,

-4.,04145
= - .21132
. 78868
Therefore,
-1.73205 -2.88675 ~4.04145
Ay, = 0 .57735 - .21132
0 .57735 .78868

The right Householder transformation, denoted by V;, is derived from

the first row of A;. This is done by constructing the following vector
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\)1‘—‘0
vy = -2.88675 - V(2.88675)2 + (-4.04145)2
vy = -4.04145
therefore
vi= [0  -7.8533  -4.04145]
so that
viv]
TR

The transformed matrix A3 is computed row by row, that is
Az = AV,

implies that

E¥V1 = 51.11j - ﬁ

= [-1.73205 4.96655 0]
azvy; = [0 -.16362  -.59264]
alv; = [0 ~.97735 -.01140]
Therefore
~1.73205 4.96655 0
A; = 0 - .16362 -.59264
| 0 - 97735 -.01140

The final left Householder transformation is derived from the second

column of A3 according to

0
up = |-1.15457

- .97735
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so that

Up=1-2

and the desired bidiagonal form

-1.73205 4.96655 0
Ay = UpAy = 0 .99095 .10910
0 0 .58262

To implement the Givens' rotations the matrix M is formed

according to

3 - 8.60231 0
M= AtA, = |-8.60231 25.64860 .10811
0 .10811 .35135

The eigenvalues of the lower 2 x 2 submatrix are:

Al,z = 25.64906, .35089
Since X, is closer to m33, it will be the value chosen for the shift
parameter s.

The first right Givens' rotation is

cos oo -sin ¢o
Ty = sin ¢; cos ¢o
0 0 1

and the first column of T; is proportional to the first column of M-sI
so that

o cos ¢ = 2.64911

a sin ¢ = -8.60231

which implies
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cos ¢ = .29431

-.95571

sin ¢,

Post-multiplying A, by T, produces

-5.25634 -.19363 0
A5 = AL,TZ = -.94706 .29165 .1091
0 0 .58262

Now the left Givens' rotatiom, S,, is applied to annihilate {Ag},;.

The matrix S,,

p=1 q=2
cos 6p - sin 65 0
So = sin 67 cos € 0
0 0 1

is determined from the following equations:

. _ (k)

sin ek = akaqi

_ (k)

cos ek akapi
where

-1
_ (k)2 (k)12
o {[aqi 14 + [aPi 11}
In this case p =1, q = 2, and i = 1 (since {Ag},; is to be annihilated)

and the amn's are the elements of As.

Therefore
sin 8, = -.17732
cos 8y = -.98415

so that
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5.34096 .13885
Ag = SEAS = 0 -.32136
0 0
Continuing the process
p=2 q=3
1 0 0
Ty = 0 cos ¢3 -sin ¢3
0 sin ¢3 cos ¢3
where
sin ¢k = ukaiz)
cos ¢k = akaig)

a, = {[aiq]2 + [ai

Here p = 2, q = 3, and i = 1 (since {Ag};3 is to be annihilated) which

implies that

1

21" 2
P] J

sin ¢3 = a3a§g) = -,13803
3
cos ¢33 = a3a§2) = .99043
thus
5.34096 .14019
A7 = AgT3 = 0 -.30346
0 -.08042
The elements of Sj3 are
sin 63 = a3a§2) = -,25617
cos 63 = a3a§3) = -.96663

-.01935

-.10737

.58262

-.15070

.57704
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which results in

5.34096 .14019 0
Ag = SiA7 = 0 .31393 -.00215
0 0 -.59639

After one iteration it is seen that the off-diagonal terms have been
reduced in magnitude (on each successive iteration they are always
reduced in a least-squares sense). Following the above procedure,
the off-diagonal terms will converge to zero with the singular values

on the diagonal.
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ACOUSTIC PROPAGATION IN NONUNIFORM CIRCULAR DUCTS

CARRYING NEAR SONIC MEAN FLOWS

Jeffrey J. Kelly

(ABSTRACT)

A linear model based on the wave-—envelope technique is used to
study the propagation of axisymmetric and spinning acoustic modes in
hard-walled and lined nonuniform circular ducts carrying near sonic
mean flows. This method is valid for large as well as small axial
variations, as long as the mean flow does not separate.

The wave-envelope technique is based on solving for the envelopes
of the quasiparallel acoustic modes that exist in the duct instead of
solving for the actual wave, thereby reducing the computational time
and tﬂe round-off error encountered in purely numerical techniques.

The influence of the throat Mach number, frequency, boundary-layer
thickness and liner admittanée on both upstream and downstream
propagation of acoustic modes is considered.

A numerical procedure, which is stable for cases of strong
interaction, for analysis of nonlinear acoustic propagation through
nearly sonic mean flows is also developed. This procedure is a
combination of the Adams-PECE integration scheme and the singular
value decomposition scheme. It does not develop the numerical in-
stability associated with the Runge-Kutta and matrix inversion
methods for nearly sonic duct flows. The numerical results show that

an impedance condition can be satisfied at the duct exit and a



corresponding solution obtained. The numerical results confirm that
the nonlinearity intensifies the acoustic disturbance in the throat
region, reduces the intemnsity of the fundamental frequency at the

duct exit, and increases the reflections. This implies that the mode
conversion properties of variable area ducts can reflect and focus the
acoustic signal to the vicinity of the throat in high subsonic flows.
Also the numerical results indicate that a shock develops if certain

limits on the input parameters are exceeded.



