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ABSTRACT 

For realistic predictions of vehicle performance in off-road conditions, it is critical to incorporate 

in the simulation accurate representations of the variability of the terrain profile. It is not 

practically feasible to measure the terrain at a sufficiently large number of points, or, if 

measured, to use such data directly in the simulation. Dedicated modeling techniques and 

computational methods that realistically and efficiently simulate off-road operating conditions 

are thus necessary. Many studies have been recently conducted to identify effective and 

appropriate ways to reduce experimental data in order to preserve only essential information 

needed to re-create the main terrain characteristics, for future use.  

 

This thesis focuses on modeling terrain profiles using the finite difference approach for solving 

linear second-order stochastic partial differential equations. We currently use this approach to 

model non-stationary terrain profiles in two dimensions (i.e., surface maps). Certain assumptions 

are made for the values of the model coefficients to obtain the terrain profile through the fast 

computational approach described, while preserving the stochastic properties of the original 

terrain topology. The technique developed is illustrated to recreate the stochastic properties of a 

sample of terrain profile measured experimentally.  

 

To further analyze off-road conditions, stochastic soil properties are incorporated into the terrain 

topology. Soil models can be developed empirically by measuring soil data at several points, or 

they can be created by using mathematical relations such as the Bekker’s pressure-sinkage 

equation for homogeneous soils. In this thesis, based on a previously developed stochastic soil 

model, the polynomial chaos method is incorporated in the soil model. 
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In a virtual proving ground, the wheel and soil interaction has to be simulated in order to analyze 

vehicle maneuverability over different soil types. Simulations have been created on a surface 

map for different case studies: stepping with a rigid plate, rigid wheel and flexible wheel, and 

rolling of a rigid wheel and flexible wheel. These case studies had various combinations of 

stochastic or deterministic terrain profile, stochastic or deterministic soil model, and an object to 

run across the surface (e.g., deterministic terrain profile, stochastic soil model, rolling rigid 

wheel). 

 

This thesis develops a comprehensive terrain and soil simulation environment for off-road 

mobility studies. Moreover, the technique developed to simulate stochastic terrain profile can be 

employed to simulate other stochastic systems modeled by PDEs. 
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Chapter 1 Introduction 

The scope of this thesis is to realistically and efficiently develop a simulation environment for 

off-road operating conditions which combines stochastic terrain profiles and stochastic soil 

models. This chapter provides the motivation and brings arguments for the importance of this 

research. Section 1.1 describes the motivation behind the current research. Section 1.2 defines 

the problem statement. Section 1.3 explains the research objectives. Section 1.4 introduces the 

approach used to achieve the research objectives. Section 1.5 gives an outline of the remaining 

chapters. 

 

1.1 Motivation 

Modeling the terrain in a realistic and efficient manner is critical in analyzing vehicle dynamics, 

especially in off-road conditions. Terrain geometry and soil characteristics highly affect vehicle 

mobility and handling. For off-road mobility studies, many uncertainties exists within the 

system, some of which could be the variability in the terrain heights, the variability in the soil 

types, and the variability in the tire forces. Hence, there have been sustained efforts to study the 

modeling and simulations of the stochastic properties in terrain profiles to accurately predict the 

vehicle performance. 

 

Off-road studies on vehicle mobility can be categorized in three main areas: (1) real-life systems, 

(2) analytical models, (3) experimental studies. Real-life systems include the actual vehicle 

running across the terrain surface. Analytical models include mathematical or numerical 

representations of the vehicle and terrain. Experimental studies consist of physical depictions of 

the real-life systems. This thesis presents an original analytical model to illustrate the effects of 

the stochastic nature within the tire-soil interaction. The analytical model can be used to design 

real-life systems and validate experimental studies. Therefore, it is important to analyze the 

variability in recreating accurate representations of terrain profiles for off-road mobility studies. 

 

1.2 Problem Statement 

To have a complete understanding of the physics of off-road vehicle mobility, the stochastic 

nature of the terrain profile will have to be analyzed. Different operating conditions at a given 
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spatial location and a given time can greatly influence the performance of the vehicle. It is not 

practically feasible to measure the terrain at a sufficiently large number of points, or, if 

measured, to use such data directly in the simulation. Dedicated modeling techniques and 

computational methods are required to create accurate representations of virtual proving grounds 

to interpret vehicle dynamic simulations. Therefore, emphasis will have to be placed on 

stochastic terrain modeling in order to further examine vehicle dynamics. 

 

To enhance the terrain models, stochastic soil models can be incorporated with it. Stochastic 

terrain profiles only present the topology of the terrain at a given time and location. 

Implementation of soil models is critical in realistically simulating off road conditions since 

different types of soil have different soil properties. Moreover, there is difficulty in predicting 

soil properties due to their dependence on environmental conditions and soil types. At any given 

spatial location, there can be variability in the soil due to its characteristics (e.g., moisture 

content, stiffness, cohesion). Similar to the terrain profiles, it is not practically feasible to 

measure soil properties at all desired locations and implement them directly into the simulation 

to be able to develop an accurate soil model. Therefore, computational methods will also be 

required to create stochastic soil models. 

 

Combining the stochastic terrain profiles and the stochastic soil models yields a realistic virtual 

proving ground for off-road vehicle mobility studies. Many factors have to be considered when 

modeling the affects between the tire and soil interaction to have an accurate representation of 

the off-road mobility studies. Some factors may include the vertical force of the tire, the lateral 

dynamics of the tire, and the geometry of the contact patch. Dedicated modeling techniques will 

also be required to adequately present the simulation framework between a tire and the 

variability in the off-road terrain.  

 

This study focuses on: (1) generating computational tools to model stochastic terrain topology, 

(2) incorporating stochastic soil characteristics in the terrain model, and (3) developing 

simulations for tire-soil interactions in the framework developed.  
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1.3 Research Objectives 

Starting from the problem identified in the previous section, the following research objectives 

have been considered in this study.  

1. Develop an efficient mathematical approach to treat the uncertainties in the terrain 

profiles and the soil models. 

2. Use experimental data to verify the stochastic terrain modeling technique developed. 

3. Process experimental terrain profile data and extract the key stochastic properties from 

the data collected.  

4. Collect soil data to validate the stochastic soil models used. 

5. Combine the terrain profiles with soil models to create a simulation framework for the 

tire-soil interaction. 

6. Implement the mathematical models in MATLAB and run simulations with rigid plates, 

rigid wheels, and flexible wheels.  

 

1.4 Research Approach 

The computational approach used to achieve the research objectives is listed below.  

1. Modeling stochastic 2-D terrain profiles. 

• Model a linear second order stochastic partial differential equations (PDE) driven 

by uncorrelated white noise. 

• Illustrate the technique on real terrain profile data. 

2. Incorporate stochastic soil models in the simulation environment. 

• Use Bekker’s pressure-sinkage equation for homogeneous soils to simulate 

relations specific to deformable soil types. 

• Validate the stochastic soil modeling technique using soil data collected in the 

terramechanics rig at AVDL. 

3. Construct simulations to illustrate tire-soil interaction. 

• Create simulation scenarios to show different case studies of stochastic or 

deterministic terrain geometry, stochastic or deterministic soil model, and either a 

rigid plate, a rigid wheel, or a flexible wheel. 
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1.5 Thesis Outline 

This thesis is organized in the following manner. Chapter 1 provides a brief introduction of the 

research, the motivation behind it, the problem statement and research objectives.  

 

Chapter 2 presents a review of literature related to soil and terrain modeling, treatment of 

uncertainties, and tire-soil and terrain interaction. 

 

Chapter 3 provides the methodology used to model the stochastic terrain profile. The finite 

difference is used to solve a linear second-order stochastic partial differential equation (PDE) to 

create terrain in two dimensions. This chapter also provides an experimental approach to obtain 

and process data to verify the methodology developed.   

 

Chapter 4 presents a technique previously developed at AVDL which uses the Karhunen-Loeve 

expansion and the polynomial chaos theory to create the stochastic soil models. Some of the soil 

parameters in Bekker’s pressure-sinkage equation are considered to be uncertain. This chapter 

also provides an experiment performed to obtain and process data to verify the stochastic soil 

model. 

 

Chapter 5 illustrates the tire-soil interaction by creating different case scenarios in the integrated 

terrain-soil simulation environment. Several case studies were shown to examine the off-road 

mobility of rigid and flexible wheels in the off-road virtual proving ground developed.  

 

Chapter 6 and chapter 7 present the conclusions of this study and recommendations for the future 

work, respectively.     

 

Appendices are also attached to the end of this thesis with MATLAB codes and programs that 

were used to complete this work.  
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Chapter 2 Review of Literature 

This chapter is organized in the following manner. Section 2.1 introduces a general review of 

literature. It consists of sources that relate to terrain modeling, numerical approaches to derive 

terrain models, soil modeling, and tire-soil interaction models. Section 2.2 discusses the sources 

that were highly relevant for this study. Section 2.3 describes the work accomplished by Dr. Lin 

Li, whose work closely relates to the topic of this thesis. 

 

2.1 State of the art in terrain and soil modeling for off-road mobility studies 

There have been recent efforts to model terrain profiles to create accurate simulations for vehicle 

dynamics. Studies show that methods to create terrain profiles can be grouped into two distinct 

categories: on-line and off-line. 

 

On-line approaches of terrain modeling consist of collecting terrain data with improved 

technologies, such as high performance sensors, cameras, and lasers. Larson, Voyles, and Demir 

(2004) use a single camera to collect terrain data. The terrain data have spatial patterns which 

represent the characteristics of the terrain. Williams and Mahon (2004) also introduced an 

approach to collect terrain data of the sea floor by using a camera on an unmanned underwater 

vehicle (UUV). Laser scanning is a fairly new and popular technique that has been used in 

several research groups to recreate terrain models. One particular airborne laser scanner system 

is named TopEye. Data has been collected with this system to integrate terrain models with 

cartographic data (Elmqvist et al., 2001). Maas (2001) and Hyyppä et al., (2000) used techniques 

to collect airborne laser scanner data of forestry terrain. Hatger (2005) also used laser airborne 

scanning techniques to record terrain data of areas in Northrine Westphalia, Germany. Laser 

scanning collects large amounts of data, which allows highly accurate representations of the 

surface. However, it often results in complex data management and processing and long 

computational times.  

 

After the laser scanning data is identified and processed, accurate digital terrain models (DTM) 

will be created using a specific approach. The fuzzy logic approach, which is used to analyze 

different soil classes in a spatial domain, was used to produce digital soil maps for parts of 
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Vestfold county in Norway (Debella-Gilo, Etzelmuller, and Klakegg, 2007). The fractional 

Brown motion approach was used to generate lunar simulation surfaces on PC or Silicon 

Graphics (Yang et al., 2008). Kamat and Martinez (2003) introduced ViTerra, a tool used to 

recreate 3D terrains. They used particular applications of construction jobsites. Although online 

approaches are proven to be very accurate, it usually includes high costs and complex 

assemblies.  

 

Off-line approaches consist of generating algorithms and using mathematical tools to model the 

terrain profile. Many studies use statistical approaches to verify or model the terrain profiles. 

Statistical tests have been used to verify the linearity, Gaussianity, and stationarity of the terrain 

profile. The Belgian Block course and the Perryman3 profiles were used to verify this method 

(Chaika, Gorsich, and Sun, 2004). Two dimensional road profiles have also been characterized 

using the Autoregressive Integrated Moving Average (ARIMA) techniques, which examines the 

autocorrelation of the terrain models (Kern and Ferris, 2006; Kern et al., 2007). 

 

Stochastic computational approaches are also popular in modeling terrain profiles and surfaces. 

Yeh, Lin, and Wang (2001) solved the Helmholtz wave equation with a stochastic approach to 

interpret wave propagation over an irregular terrain. The power spectral density is a function that 

is often used with a stationary stochastic process. There have been studies using the PSD 

approach to measure road roughness and approximate road profiles (Andrén, 2006; Ramji et al., 

2006). The PSD approach has been used with the root mean square of elevation (RMSE) to 

characterize road/terrain roughness for ground vehicles. Howe et al., (2004) uses the 

International Roughness Index (IRI) and fatigue analysis to improve these measures. 

 

There have also been several other numerical tests and approaches to model terrain profiles and 

surfaces. Yoon (2003) used the Delaunay triangulation and the T-search algorithm to model the 

terrain profile by searching for the resulting triangular polygons. Kim, Thompson, and Machiraju 

(2003) produced rough surfaces using discrete surface growth models. Compared to on-line 

approaches, off-line approaches are usually inexpensive, easy to handle for complex topologies, 

and are often created in real-time.  
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In this study, we propose solving stochastic partial differential equations as an off-line approach 

to model terrain profiles. There are several numerical methods that can be employed to solve for 

stochastic PDEs. The popular methods are the finite element method (FEM), the finite difference 

method (FDM), and the boundary element method (BEM). For many problems, BEM is the least 

efficient out of the three methods. Comparisons are usually made between FEM and FDM since 

both methods are categorized as volume discretization methods. FEM has the ability to precisely 

model surfaces and geometries in complex domains. Although FDM is only constrained to model 

rectangular shapes, the computational approach is easily implemented compared to FEM. 

 

More sophisticated techniques can also be derived from these methods. Shen (1996) introduces 

the block finite difference scheme, which is derived from the finite element method to solve 

second-order differential equations. The method of lines (MOL) is another method in which the 

time, space, and randomness are treated separately to solve stochastic PDEs with forced additive 

noise. The MOL uses stochastic Runge-Kutta methods to solve the stochastic system (Röβler, 

Seaïd, and Zahri, 2008). The sparse grid stochastic collocation method is a collocation technique 

to approximate a solution for a stochastic PDE (Nobile, Tempone, and Webster, 2008).  

 

Satisfying boundary conditions is essential in solving stochastic PDEs since it greatly influences 

the solution. One well known boundary condition is the Dirichlet boundary condition. 

Chantasiriwan (2005) introduces a global collocation method to solve stochastic PDEs with 

random Dirichlet boundary conditions. Another technique to solve the Dirichlet boundary value 

problem is the Adomian decomposition method (El-Sayed and Gaber, 2006). Duncan, Pasik-

Duncan, and Zimmer (1996) use mathematical approaches to investigate stochastic PDEs with 

Dirichlet, Neumann, and mixed boundary conditions. 

 

There are certain variables in the stochastic PDE that define the random signal, also known as 

the white noise. Kim et al., (2007) introduced a numerical method based on the integral equation 

to solve stochastic DEs with Poissonian white shot noise. Sandow and Trimper (1992) presented 

an approach to solve a stochastic DE, particularly the Kardar-Parisi-Zhang equation, with 

Gaussian white noise. Poissonian white shot noise and Gaussian white noise are specific 

mathematical models of noise. The stochastic Algorithm Refinement (AR) hybrid technique has 
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been studied in attempts to reduce the noise in stochastic systems (Alexander, Garcia, and 

Tartakovsky, 2005).  

 

The Wiener process is a specific way to represent white noise in a stochastic system. It is used as 

a continuous time stochastic process. Gibson (1967) introduces an extensive solution to solve 

stochastic PDEs where the characteristic trajectories are modeled with the Wiener process. 

Schurz (2006) analyzes a stochastic DE driven by the Wiener process by solving it with an 

implicit backward Euler method. Lythe (1998) uses the finite difference solutions to solve for the 

Ginzburg-Landau stochastic PDE with the Wiener process. Other than mathematical methods, 

computer programs, such as Maple, have also been used to solve stochastic PDEs driven by the 

Wiener process (Cyganowski, 1995). Studies have shown that the applications of stochastic 

partial differential equations apply to problems dealing with a wide variety of subjects. Particular 

subjects include physics, biology, and chemical reactions. 

 

There have also been studies to illustrate stochastic approaches to soil modeling. Fenton (1999) 

used statistical measures, such as sample covariance, spectral density, and wavelet variance 

functions, to analyze the uncertainties in soil properties. The Bayesian approach has also been 

used to estimate the uncertainties in soil moisture simulations. This approach is based on the 

Generalized Likelihood Uncertainty Estimation (GLUE) methodology (Hossain, Anagnostou, 

and Lee, 2004). 

 

To create stochastic soil models, experiments must run to collect soil, moisture, and pressure-

sinkage data. Van et al., (2008) compiled data from Tottori dry sand using bevameter techniques. 

Procedures were derived to extract the parameters for the Bekker’s pressure-sinkage equation, 

which is a well known relationship for representing homogeneous soils. Many applications and 

studies have validated and implemented Bekker’s equation. Another experimental technique 

used to estimate soil sinkage parameters is the multiplate penetration tests (Rashidi and Gholami, 

2008). Bin et al., (2008) have also conducted experimental plate-sinkage tests to measure the 

properties of a lunar soil simulant made with volcanic ash that was obtained from the Jilin 

province, China. The plate-sinkage tests were conducted by PF2CD, a specific Distinct Element 

Method software.  
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Analysis of the behavior between tire and soil interaction is required to study off-road vehicle 

dynamics. Several studies show that this is a very challenging task and results vary depending on 

the type of terrain and the type of tire. One case scenario predicts behavior between three 

different flexible tires on soft soils using the finite element method (FEM) (Yong, Fattah, and 

Boonsinsuk, 1978). Chung and Lee (1975) utilize FEM to analyze the contact area by deriving 

the equations of motion underneath a moving rigid wheel. This study emphasizes the structure of 

the soil instead of the wheel. To efficiently simulate off-road conditions, the characteristics of the 

wheel will also have to be modeled. Shoop, Richmond, and Lacombe (2006) also model tire-

terrain interactions using FEM simulations. Specific applications include tires running on cold 

regions terrains, such as snow. Zhang, Lee, and Liu (2005) have also studied tire and snow 

interactions using the ABAQUS computer software to solve finite element methods. The contact 

forces, the response of the tire, and the deformations in the snow were some of the parameters 

investigated in the study. 

 

In addition to the use of numerical methods such as FEM, experimental tests are also performed 

to validate the studies of tire-soil interaction. Bauer, Leung, and Barfoot (2005) ran experiments 

on a single wheel rig to validate a single wheel model that was created in MATLAB. 

Experimental results that show a rigid wheel running on two different types of soil were also 

used to prove a tire-soil model created with the discrete element method (Khot et al., 2007). 

Nguyen et al., (2008) obtained experimental results to verify a method used to measure vertical 

soil reactions in contact areas of off-road tires. Wulfsohn and Upadhyaya (1992) conducted 

experiments on the UC Davis single wheel traction testing machine to develop a technique used 

to analyze the contact areas of several tires on different soil types. 

 

Agricultural tractor tires have been popular in recent studies. Van et al., (2008b) created 

experiments to study the effects of tire inflation pressure for farm tractors. A relationship is 

derived between the tire inflation pressure, the rolling resistance, and the soil-tire stresses. 

Kumar and Dewangan (2004) have presented a study on power tiller tires. The study consisted of 

varying the normal loads and inflation pressures of the tire, and running it on a rigid flat surface. 

Garber and Wong (1981) studied the pressure distribution of a tracked vehicle, which highlight 

the idea of repetitive loading. Usually, the tractor tires are modeled and run in computer 
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simulation programs such as the Tractive Performance Prediction Model for Tracked Vehicles 

(TPPMTV) program (Park et al., 2008) and the MOSES program (Ferretti and Girelli, 1999). 

Using computer simulation programs can allow users to easily change the type of terrain that the 

tire model is being run on. MATLAB is used to create the simulation environment developed in 

this thesis. MATLAB allows a user-friendly interface in incorporating the stochastic terrain 

model and the stochastic soil model into the simulation framework. 

 

Another common application of tire-soil interaction relates to planetary exploration. Studies have 

shown experimental results between rigid planetary rover wheels on dry sand (Shibly, 

Iagnemma, and Dubowsky, 2005). Patel, Scott, and Ellery (2005) suggested the use of the Rover 

Mobility Performance Evaluation Tool (RMPET), a computer program that simulates the 

interactions between tire and soil interaction for planetary exploration. Tracked and legged 

vehicles were also studied. Ishigami et al. (2007) focused on the steering aspects of the tire-soil 

contact area for a planetary exploration rover. Linear least square methods have also been used to 

determine the contact area for the applications of planetary rovers (Iagnemma et al., 2004). 

 

For tire and soil interaction, different formulations and mathematical models are used to predict 

the forces and geometry in the contact patch. One study uses mathematical models to illustrate 

the pressure-sinkage, shear stress, and repetitive loading for a contact patch (Wyk, Spoelstra, and 

Klerk, 1994). Okello (1992) introduced a study that shows the contact area being split into two 

different sections: planar and spiral. The planar section is the section underneath the tire where 

the terrain is flat. The spiral section is the section between the planar section and the wheel-

terrain entry point of contact. Formulations derived in these sections are functions of the angles 

that are created between the tire and the terrain. The deflection of the wheel can also be modeled 

as a function of the normal load, the inflation pressure, the carcass pressure, and specific 

constants that depend on the design of the tire (Sharma and Pandey, 1996b). There are many 

other techniques and methods used to analyze the contact area, and they are dependent on the 

type of tire and the terrain that the tire is rolling over. 

 

Many different scenarios may be designed to illustrate a variety of effects in simulating the tire-

soil interaction. One example of a case scenario is comparing a rigid wheel and a flexible wheel 
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running on a uniform terrain (Wang and Reece, 1984). Park, Popov, and Cole (2004) have also 

compared both flexible wheel models and rigid wheel models with a single point contact model. 

All three models were investigated with emphasis on soil deformation. In addition to the wheel, 

the terrain can also be modeled as either a rigid or a deformable surface (Sharma and Pandey, 

1996a). Irregular terrains, such as curbs and potholes, influence the tire-terrain interaction very 

much. Studies have been done to model such effects by analyzing the radial spring of the tire, the 

sidewall impact, and the soil content (Day, 2005). 

 

2.2 Background 

The methodology used to model the terrain profiles in this paper is derived from the random 

forcing model presented by Constantinescu et al. (2007). The random forcing model consists of a 

second order PDE with an additive white noise process. In that study, the purpose was to 

construct autoregressive models of the background errors and apply it in the context of chemical 

transport models. The correlation length was determined in the random forcing model to 

beටܭ
ൗܮ , in which K and L were parameters in the model. In this thesis, the finite difference 

method is used to solve the random forcing to model the stochastic terrain profiles. FDM is a 

numerical method that approximates the solution of a differential equation by discretizing the 

function on a grid. The solution is dependent on the surrounding nodes. 

 

One way to characterize the soil properties is through the Bekker’s pressure-sinkage equation for 

homogeneous soil (Wong, 2001). The pressure-sinkage parameters are n, kc, and kφ, and they 

vary depending on the type of soil and the moisture content. Soil modeling is not only limited to 

Bekker’s equation. Other representations of soil models may include Reece’s equation (Wong, 

2001), which also includes pressure-sinkage characteristics. Van et al. (2008a) has shown that 

the experimental device used to obtain the parameters can also affect the value of the parameter 

(e.g., using a rectangular plate vs. a circular plate for the sinkage test).  

 

The polynomial chaos theory was used to simulate stochastic processes by representing the 

unknown variable as a probability distribution (e.g., normal distribution). The Galerkin approach 

and collocation approach are two ways to solve for the polynomial chaos expansion (Sandu, 
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Sandu, and Ahmadian, 2006a). Applications that use the polynomial chaos theory include 

multibody dynamic systems with uncertain parameters. The Monte Carlo simulation was used to 

validate the polynomial chaos approach for multibody systems (Sandu, Sandu, and Ahmadian, 

2006b). In this study, the polynomial chaos theory is used with the Karhunen-Loeve (KL) 

expansion to model stochastic soil parameters, as described by Sandu, Sandu, and Li (2005). 

 

To realistically simulate the tire-soil interactions, the pressure distribution of the contact area, the 

geometry of the contact patch, and the characteristics of the tire will have to be modeled 

together. One way of calculating the pressure distribution in the contact patch was described by 

Chan (2008). The pressure distribution is a function of the shape change factor, the longitudinal 

slip ratio, the maximum pressure, the length of the contact patch, and the specific location of the 

contact patch. The maximum pressure is calculated as a function of the length and width of the 

contact patch and of the vertical load of the wheel. The geometry of the contact area can be 

displayed as a super-ellipse. Depending on the pressure or load of the wheel and the terrain 

characteristics, the super-ellipse can assume a wide variety of shapes (Hallonborg, 1996). 

Schwanghart (1991) discussed a study where the length of the contact area was derived using the 

sinkage, the radius of the wheel, and the deflection of the wheel. This equation can be modified 

to calculate the deflection of the wheel. Other important factors related to the contact patch are 

the slip ratio, the shear stress, and the shear displacement. 

 

2.3 Previous terrain and soil modeling at AVDL 

The work of Lin Li closely relates to the topic of this thesis. Li’s work focused on the stochastic 

nature of vehicle dynamics and terramechanics (Li, 2008). Li also developed methodologies to 

create tire-soil interaction models for off-road mobility applications. 

 

Lin Li has developed different methods to model terrain profiles. Li and Sandu (2007) have used 

both the Auto-Regressive Moving Average (ARMA) series method and the Autoregressive 

Integrated Moving Average (ARIMA) models to develop terrain profiles in one-dimension and 

two-dimensions. The linearity, stationarity, and Gaussianity of the terrain profile have been 

investigated to determine which method is of better use for modeling the different types of 

terrain. The ARMA model is better suited for well-paved roads, while the ARIMA model is 
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more appropriate for unprepared terrains. Lin Li also developed stationary and non-stationary, 1-

D terrain profiles using the polynomial chaos approach. The Karhunen-Loeve expansion was 

used with the polynomial chaos approach to expand the stochastic terrain profile to two 

dimensions. For the 2-D case, there are two different algorithms in simulating the terrain profile 

(Li and Sandu, 2008). Compared to Li’s approach to create terrain profiles, the method 

developed in this thesis has the capability to create as much terrain profiles as needed for the off-

road vehicle dynamics simulation using a limited amount of data. The model can also be easily 

simulated by varying the model parameters in the stochastic PDE. 

 

Lin Li has also developed stochastic soil models. The polynomial chaos method was applied to 

the parameters of Bekker’s pressure-sinkage equation for homogeneous soils. The parameters for 

Bekker’s equation were assumed to have a linear relationship in which the moisture content was 

the unknown variable (e.g., indirectly effects Bekker’s equation). Both the uniform and normal 

distributions were also assumed for his case studies. The probability density function was 

displayed to validate his results (Sandu, Sandu, and Li, 2005). This stochastic soil model will be 

validated in the present study and incorporated in the off-road simulation environment. The soil 

modeling approach that Sandu, Sandu, and Li (2005) developed is used to incorporate into the 

simulation environment and used to validate the soil models obtained in this thesis. However, the 

soil model created in this thesis is not completely the same; here, the uncertain variable in 

Bekker’s equation is considered one of the pressure-sinkage parameters (e.g., directly effects 

Bekker’s equation).      
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Chapter 3 Stochastic Terrain Profile 

This chapter describes a mathematical approach and validation for creating stochastic terrain 

profiles. It is organized in the following manner. Section 3.1 introduces the methodology in 

modeling the stochastic terrain profiles using a second-order stochastic partial differential 

equation. Section 3.2 shows the experimental analysis on the model coefficients. Section 3.3 

displays the procedures and Surfer software to process raw terrain data. Section 3.4 shows 

procedures in matching the stochastic terrain profile to the processed raw data. 

 

3.1 Modeling terrain profiles using the stochastic PDE method 

A main focus of this thesis is to realistically and efficiently model terrain profiles using the finite 

difference approach to solve partial differential equations. The non-stationary terrain profiles are 

modeled and analyzed in two dimensions (e.g., surface map). Consider the second-order 

stochastic partial differential equations driven by uncorrelated white noise. Equation 3.1 was 

derived from the random forcing model presented by Constantinescu et al. (2007). 

,ݔሺܭ  ሻݕ ቆ
߲ଶܼ
ଶݔ߲ ൅

߲ଶܼ
ଶቇݕ߲ ൅ ൭

߲
ݔ߲

ሺݑ௫ · ܼሻ ൅
߲

ݕ߲ ൫ݑ௬ · ܼ൯൱ ൅ ܮ · ܼ ൌ ߪ · ,ݔሺߦ  ሻ          ሺ3.1ሻݕ

The terrain height is represented by the variable Z, the model coefficients are represented by K, 

u, L, and σ, and the random variable is ξ(x,y). The variables x and y represent the distances in the 

lateral and longitudinal directions of the surface map. To simplify the equation, the following 

notation is used to approximate a particular point P.   

ܲ൫ݔ௜, ௝൯ݕ ൌ ௜ܲ௝                                                                  ሺ3.2ሻ 

The finite difference method (FDM) is a numerical method to approximate solutions for partial 

differential equations. It divides a function on an evenly spaced grid, in which each node is 

dependent on its surrounding nodes. For the methodology presented, the values of the nodes 

represent the terrain heights, variable Z, on the surface map. Using the FDM, the second 

derivatives can be approximated with the following equations. Equation 3.3 presents 

approximations in the x direction, while Equation 3.4 presents the approximations in the y 

direction. 
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As for the first derivative values, Equation 3.5 and Equation 3.6 approximate the central 

difference value for the x and y directions, respectively.  
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Using the second derivative and first derivative equations for FDM (Equations 3.3 - 3.6), the 

second order stochastic partial differential equation, which is modeled by Equation 3.1, can be 

solved to produce Equation 3.7. 
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Equation 3.7 can be further simplified in terms of terrain height, Z. This is shown in Equation 

3.8, whereas the coefficients A-E are shown by Equations 3.9 - 3.13, respectively.  
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ܣ ൌ ൤െ2ܭ௜௝ ൬
1

Δݔଶ ൅
1

Δݕଶ൰ ൅  ௜௝൨                                                ሺ3.9ሻܮ

ܤ ൌ ൤
௜௝ܭ

Δݕଶ ൅
௜,௝ାଵݑ

2Δݕ ൨                                                          ሺ3.10ሻ 



16 
 

ܥ ൌ ൤
௜௝ܭ

Δݔଶ ൅
௜ାଵ,௝ݑ

2Δݔ ൨                                                          ሺ3.11ሻ 

ܦ ൌ ൤
௜௝ܭ

Δݕଶ െ
௜,௝ିଵݑ

2Δݕ ൨                                                          ሺ3.12ሻ 

ܧ ൌ ൤
௜௝ܭ

Δݔଶ െ
௜ିଵ,௝ݑ

2Δݔ ൨                                                          ሺ3.13ሻ 

Coefficient A corresponds to the parameters related to a particular point on the surface map. 

Coefficients B-E correspond to the parameters related to the four surrounding nodes of that 

particular point, starting from the top node and rotating clockwise, respectively. Figure 3-1 

illustrates a point with corresponding coefficient A and the coefficients relating to the four 

surrounding nodes. 

 
Figure 3-1  Coefficients A-E corresponding to their relative points. 

An assumption made in our version of the finite difference approach concerns the boundary 

conditions imposed. The finite difference method is usually applied in models dealing with heat 

transfer where the boundary conditions are well defined. In the case of stochastic terrain profile 

modeling, there are no imposed boundary conditions. Therefore, we used a “wrap around” 

approach where the boundary point is equal to the last point at the opposite end of a specific row 

or column in the grid. This assumption is also shown in Figure 3-2, where the first value of the 

height on the bottom border, x1, is equal to the value of the right, bottom boundary condition, 

xN+1, and the last value of the height on the bottom border, xN, is equal to the value of the left, 

bottom boundary condition, x0. This figure only displays two boundary condition values on the 

bottom border in the x-direction. This idea is the same for the other border nodes. Although for 
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many practical purposes and applications of interest we consider that this assumption is 

acceptable (depending also on the correlation length), its implications and the limitations it 

imposes on the terrain model should be further investigated. Figure 3-2 also illustrates the 

notation that is used to simplify a point, Pij, on the surface map for the equations (e.g., Equation 

3.2).  

 
Figure 3-2  Illustration of boundary condition assumption and simplified notations. 

With the boundary conditions thus defined, a terrain profile can be divided into nine different 

sections, in which each section has different boundary nodes. Figure 3-3 is an illustration with 

the nine different sections on an example of a 6 points by 6 points surface map. Sections one, 

three, seven, and nine always contain one node. They are the top left corner, top right corner, 

bottom left corner, and bottom right corner of a surface map, respectively. However, the number 

of nodes within sections two, four, five, six, and eight are dependent on the size of the terrain 

profile. Sections two, four, six, and eight are the top boundary, left boundary, right boundary, 

and bottom boundary, respectively. Section five includes all of the interior nodes of the surface 

map.    
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Figure 3-3  Illustration of nine different sections with different surrounding nodes. 

There are two different approaches to solve for the nodes using FDM: implicit method and 

explicit method. In solving the FDM explicitly, it requires the values of the surrounding nodes, 

which means there is only one unknown value which we can solve directly. When all the values 

for the surrounding nodes are unknown, the FDM will have to be solved implicitly. A system of 

equations will be created in which all of the values will be solved simultaneously. 

 

Equation 3.8 will be followed by the implicit method because the terrain heights are unknown on 

the surface map. Figure 3-4 shows an example of the system of equations on a 4 point by 4 point 

surface map written in matrix form. Every point on the surface map has an equation that is 

dependent on its surrounding nodes. In computational aspects, another assumption is made that 

the surface map can only have an equal number of points in both the x and y directions (e.g., 

square surface map). The left hand side will consists of the sparse matrix of coefficients A-E and 

a vector of the unknown height Zij, while the right hand side will equal to a vector of σij*ξij. The 

empty cells in the sparse matrix are equal to zero. This notation is also used in Figures 3-5 and 3-

6. Depending on the number of points on the axis of the surface map, k, this matrix form is 

written so that every consecutive set of k equations will be equal to a column on the surface map 

(e.g., Figure 3-4 is a 4 points by 4 points map, so first four equations equal to column 1, next 

four equations equal to column 2, etc). 
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Figure 3-4  System of equations of a 4 points by 4 points surface map in matrix form. 

The matrix of coefficients A-E is sparse. There is a particular pattern for the sparse matrix in this 

methodology due to the assumptions imposed on the boundary conditions. To create the sparse 

matrix, the following steps are taken. In Figures 3-5a, 3-5b, and 3-5c are example submatrices of 

a 5 point by 5 point surface map. The size of these matrices is equal to the number of points on a 

side of a surface map (e.g., for a 5 point by 5 point surface map, the dimensions of the matrix is 

5x5). Figure 3-5a is a matrix containing coefficients A, B, and D. Coefficient A will always fill 

the main diagonal. Coefficient B will always fill the diagonal above the main diagonal and the 

bottom left cell of the matrix. Coefficient D will always fill the top right cell of the matrix and 

the diagonal below the main diagonal. Figure 3-5b is a matrix containing the coefficient C on the 

main diagonal. Lastly, Figure 3-5c is a diagonal matrix of coefficient E. 
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a  Matrix with coefficients A, B, D b  Matrix with coefficient C c  Matrix with coefficient E 

Figure 3-5  Matrices within a sparse matrix of a 5 points by 5 points surface map. 

The next step in creating a sparse matrix is to input Figures 3-5a, 3-5b, and 3-5c. Figure 3-6 

shows an example of the entire sparse matrix for a 5 point by 5 point surface map. The 

dimensions of the sparse matrix is equal to the entire number of points on the surface map (e.g., 

shown is an example of a 5 points by 5 points surface map, which has a total of 25 points; 

therefore, the dimensions of the sparse matrix will be 25 by 25). To better visualize the 

procedures, imagine taking the square root of the dimensions of the sparse matrix, and each cell 

also contains a grid with the same dimensions (e.g., in a 25 by 25 sparse matrix, a 5 by 5 matrix 

can be reduced, which is drawn by a thicker line in Figure 3-6, and within each cell, a 5 by 5 

matrix is inserted). When this step is completed, insert Figure 3-5a into the main diagonal. Figure 

3-5b will fill the diagonal above the main diagonal and the bottom left cell. Finally, Figure 3-5c 

will fill the top right cell and the diagonal below the main diagonal. This method in creating the 

sparse matrix can be applied to any size surface map greater than 2 by 2. The sparse matrix in 

Figure 3-4 can be used to validate the procedures.  
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Figure 3-6  Sparse matrix of a 5 points by 5 points surface map. 

Figure 3-7 is a realization of a two-dimensional terrain profile using the stochastic PDEs method 

developed in this study, and was built on an 80 points by 80 points x-y grid. This surface map 

was created using MATLAB®1. Sparse matrices were used in efforts to implicitly solve the 

system of equations. For this particular case, the lateral and longitudinal directions extend from 0 

units to 3 units. Therefore, the spatial domain for both the lateral and longitudinal directions is 

equal to 0.0375 units. All of the model coefficients were set to a value of 1 for the simulation 

illustrated in Figure 3-7. Appendix A.1 displays the MATLAB m-file used to create this surface. 

                                                            
1 MATLAB is a registered trademark of The MathWorks 
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Figure 3-7  Realization of a 2-D terrain profile using stochastic PDEs. 

The methodology introduced is not only limited to modeling stochastic terrain profiles. The 

second-order stochastic partial differential equation is a mathematical tool that can also model 

other stochastic systems and processes. 

 

3.2 Experimental analysis of model coefficients 

An analysis was conducted to analyze the influence of the model coefficients in the stochastic 

PDE on the topology of the terrain created. Two-dimensional terrain profile data (obtained 

experimentally) was used to approximate the model coefficients K, u, L, and σ of a stochastic 

system of partial differential equations. The model parameters are space dependent. Our study 

shows that the characteristic correlation length is equal to ටܭ
ൗܮ  and the value of σ influences the 

amplitude of the terrain height. The results of the study conducted to investigate the significance 

of the model parameter u and its impact on the terrain profile variation are inconclusive. Further 

analysis of this parameter is needed. 

 

It has been noticed that, as the value of K increases while the value of L remains constant, the 

difference between the height of the terrain profile decrease. An experiment was performed to 

analyze the parameter K, which is an indirect method of understanding the correlation length. 

The parameters L, u, and σ were held constant at 1, while the value of K was varied. The 
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maximum and minimum values were taken from a terrain profile on a grid of 10 points by 10 

points. The difference between the maximum heights and the minimum heights were recorded. 

This procedure was repeated 100 times and the average of the difference of heights were 

recorded. The same procedures were performed for three different experiments where the value 

for σ varied from 0.1, 1, and 10. 

 

Figure 3-8 shows the results on a log-log plot for the parameter analysis of the K value. One can 

notice the similarity in the shape, as well as in the values for peaks and slopes, when σ changes 

with one or two orders of magnitude. While the average difference in height converges to values 

close to σ in all cases presented for a K value less than 0.02, for values of K larger than 0.1, the 

height difference decreases with an abrupt slope. Also, the general trend is for K to decrease for 

σ between 0.02 and 0.1, but there is a noticeable local maximum at 0.1. The results for the three 

experiments were very consistent.   

 
Figure 3-8  Parameter analysis of K value. 

Figure 3-9 shows more detailed experiments (i.e., a finer grid for K) performed in the region of 

the K value less than 0.1. The y axis is presented on a log scale while the x axis is presented on a 

linear scale. Further analysis in this region shows a complicated pattern for the difference in 

heights of the terrain profile. Looking at the figure, there seems to be “spikes”, or local maxima, 
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at particular values of K. The pattern is consistent for all three cases of σ. This shows that K is 

indirectly affected by the value of σ. The reasons behind the pattern of the graphs in Figure 3-9 

are unknown. Further experiments by defining a finer grid for K will have to be performed to 

investigate the relationship in this region in more details. 

 
Figure 3-9  Parameter analysis for K values less than 0.1. 

So far, five “spikes” have been recorded for the three different σ values, which are shown in 

Table 3-1. All of the local maxima values in the difference of heights were at the same values of 

K, which validates the conclusion that the graphs are consistent for different values of σ and 

share the same pattern. 

 

Figure 3-10 shows a plot for the region of the K values greater than 0.1 with σ values of 0.1, 1, 3, 

5, 8, and 10. Unlike the region for the K values less than 0.1, the graphs for the region of K 

values greater than 0.1 are very consistent in the defined range. The lines plotted do not have 

unexpected peaks, and carry the same pattern throughout the entire graph. By using a variety of σ 

values, the conclusion that the σ value indirectly affects K is supported. 
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Table 3-1  Local maxima values for the region of the K values less than 0.1. 

σ K Local Maxima Values 
0.1 0.0108 1.291 
0.1 0.0125 2.1568 
0.1 0.017 1.0137 
0.1 0.022 1.5061 
0.1 0.033 0.8202 
1 0.0108 12.5386 
1 0.0125 21.2149 
1 0.017 10.6772 
1 0.022 16.1323 
1 0.033 8.5196 
10 0.0108 143.8502 
10 0.0125 200.4067 
10 0.017 100.6133 
10 0.022 163.0471 
10 0.033 80.155 

 

 
Figure 3-10  Parameter analysis for K values greater than 0.1. 

0.0001

0.001

0.01

0.1

1

0 5 10 15

D
iff
er
en

ce
 in

 H
ei
gh
t

K Value

sigma = 0.1

sigma = 1

sigma = 3

sigma = 5

sigma = 8

sigma = 10



26 
 

The “best fit” line for the plots shown in Figure 3-10 are calculated and shown in Table 3-2. 

These equations are functions of the difference in terrain heights and the K value, and are 

correspondent to a single σ value. The “best fit” equations are modeled with a power function. 

Table 3-2  “Best fit” line for graphs in regions of K values greater than 0.1. 

σ “Best fit” line 

0.1 ∆ ݐ݄݃݅݁ܪ ൌ 0.007  ଵ.଴ଵିܭ

1 ∆ ݐ݄݃݅݁ܪ ൌ 0.074  ଵିܭ

3 ∆ ݐ݄݃݅݁ܪ ൌ 0.222  ଵିܭ

5 ∆ ݐ݄݃݅݁ܪ ൌ 0.372  ଵିܭ

8 ∆ ݐ݄݃݅݁ܪ ൌ 0.594  ଵ.଴ଶିܭ

10 ∆ ݐ݄݃݅݁ܪ ൌ 0.738  ଵ.଴ଵିܭ

  

Moreover, a standard equation is developed for the K value. First, a linear relationship is 

assumed between the σ value and the coefficient of the best fit line. This relationship is shown 

through Equation 3.14. The exponent of the power function is assumed to always have a constant 

value of -1. This is a reasonable assumption since it is rounded to the nearest integer.  

ݐ݂݂݊݁݅ܿ݅݁݋ܿ ൌ  ሺ3.14ሻ                                                      ߪ 0.074

Inserting Equation 3.14 into the “best fit” line equation will lead to Equation 3.15.  

ݐ݄݃݅݁ܪ ∆ ൌ 0.074 ሺߪሻ ିܭଵ                                                   ሺ3.15ሻ 

Rearranging Equation 3.15 in terms of the K will lead to a standardized equation for the model 

coefficient K. As shown in Equation 3.16, K is dependent on ߪ and the difference in heights. 

ܭ ൌ
0.074 ሺߪሻ
ݐ݄݃݅݁ܪ ∆                                                               ሺ3.16ሻ 

To further support our conclusions of K, Figures 3-11a, 3-11b, 3-11c, and 3-11d represents 4 

realizations (e.g., 80 points by 80 points grid) with K values of 1, 2, 4, and 10, respectively, 

while the other parameters, L, u, and σ, were held constant at 1. The maximum height, minimum 

height, and the difference in heights are recorded from the subplots in Figure 3-11 and are shown 
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in Table 3-3. The data shows that as the value of K (e.g., correlation length) increases, the 

difference in terrain height decreases.  

   
  a  K value equals 1      b  K value equals 2 

   

c  K value equals 4      d  K value equals 10 

Figure 3-11  Realizations for parameter analysis of model coefficient K. 

 

Table 3-3  Numerical values recorded from subplots in Figure 3-11. 

Subplot K Value Maximum Height 
(unit length) 

Minimum Height 
(unit length) 

Difference in Heights 
(unit length) 

a 1 0.50619 0.49573 0.01046 
b 2 0.50837 0.5047 0.00367 
c 4 0.50063 0.4983 0.00233 
d 10 0.50272 0.50176 0.00096 
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Further analysis on the σ value shows that as the value of σ increases, the amplitude of the terrain 

profile also increases. Another experiment was performed to analyze the parameter σ. The 

parameters L and u were held constant at 1, while the value of K was held constant at 10,000. 

From our previous experiment, the results showed that as K increased, the difference in terrain 

height decreased. By setting the value of K at a large number, the variability of the terrain height 

will be minimized. As shown in Figure 3-12, the values of the average maximum height and 

values of the average minimum heights overlap each other. This experiment was also based on a 

terrain profile created on a 10 points by 10 points grid. The maximum and minimum values were 

recorded from the entire surface map after 100 simulations, and the values of the terrain heights 

were averaged to obtain the points plotted in Figure 3-12. The terrain height as a function of σ 

with L, u, and K constant is presented in Figure 3-12. 

 
Figure 3-12  Parameter analysis of σ value. 

The results from Figure 3-12 support the conclusions from the previous experiment, since there 

was almost no error between the averaged maximum and averaged minimum terrain heights 

while the value of K is a large number. Figure 3-12 shows that the lines are identical. From the 

plot, the “best fitted” line was derived and the equation is shown below. 
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This equation shows the relationship between the terrain height, Z, and one of the model 

coefficients, σ. 

 

Figure 3-13a, 3-13b, 3-13c, and 3-13d are realizations (e.g., 80 points by 80 points grid) that 

have different σ values of 1, 10, 25, and 100, respectively.  All of the other model parameters, K, 

L, and u, are held constant at 1.  The purpose of the subplots is to show that the amplitude of the 

terrain height is close to half of the value of σ  (e.g., Equation 3.17). 

   
a  σ value equals 1      b  σ value equals 10 

   
c  σ value equals 50      d  σ value equals 100 

Figure 3-13  Realizations for parameter analysis of model coefficient σ. 
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correlation lengths and amplitudes of the stochastic terrain topologies. The next sections show 

procedures to extract and process raw terrain data to validate the methodology and the 

experimental analysis for the model coefficients. Appendix A.2 contains more tabulated values 

collected from the experimental runs. 

 

3.3 Processing raw terrain data with Surfer 

Terrain data was obtained from Virginia Tech’s Vehicle Terrain Performance Laboratory 

(VTPL), directed by Dr. John Ferris. The raw terrain data was taken over a gravel road with a 

DGPS base station antenna, and it consisted of 32,934,540 points. The width of the terrain 

profile was taken to be around 4.2 meters. Within that range, the technology at VTPL has the 

capability of capturing 940 data points. The output of the data consists of three tab delimited 

columns (x position, y position, and z position). The positive x coordinate corresponds to East, 

the positive y coordinate corresponds to North, and the z coordinate corresponds to the 

ellipsoidal height. 

 

Since the raw data file has a large amount of data points, it would require long computational 

times and memory to process the entire data set. Therefore, an m-file is written using the 

programming software MATLAB to parse the raw data. This m-file was obtained from Trey 

Smith, a current graduate student at VTPL, and is displayed in Appendix A.3. The m-file parses 

the raw data into separate data files with .dat extensions, with each file containing a maximum of 

4,000,000 points. Therefore, the data was converted into 9 different sections, which are shown in 

Figure 3-14. The vehicle carrying the DGPS base station antenna recorded data from section 1 to 

section 9. One can notice that the terrain data is not taken parallel to the Cartesian coordinate 

system, and the raw data is not uniformly spaced on the grid. The red square in section 5 is the 

processed data that will be used for the analysis of the stochastic terrain profiles. This will be 

explained in the next section. 
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Figure 3-14  Map of the parsed raw terrain data obtained from VTPL. 

After the data is parsed, the commercial visualization tool named Surfer®2 was used to further 

process and visualize the data. Surfer has a gridding method feature in which the raw data can be 

gridded on a uniformly spaced x-y plane. Other features also include defining the exact 

dimensions of a piece of the terrain in the raw data. Appendix A displays step by step 

instructions to obtain the processed data from Surfer. A square piece of terrain in section 5 

(shaded in red on Figure 3-14) with the x coordinates of 808 to 810 and y coordinates of -550 to     

-548 was selected. Figures 3-15a, 3-15b, 3-15c, and 3-15d illustrate another feature of Surfer, in 

which it can read and apply a certain number of points to the defined surface map. The terrain 

                                                            
2 Surfer is a registered trademark of the Golden Software 



32 
 

profile is more detailed as the total number of points on the grid increases from a 100 point 

surface, a 400 point surface, a 1600 point surface, and a 6400 point surface, respectively.   

  
a  10 points by 10 points    b  20 points by 20 points 

  
c  40 points by 40 points    d  80 points by 80 points 

Figure 3-15  Processed terrain profile from raw data set in Surfer. 

The coordinates and the terrain heights of the processed data are then extracted into a separate 

file, which also has a .dat extension. Since MATLAB is used to solve the stochastic PDE model, 

it will also be used to read and mesh the terrain files for further validation of the methodology. 

Figures 3-16a, 3-16b, 3-16c, and 3-16d are representations of the respective subplots in Figure  

3-15 that are produced through MATLAB. Appendix A.3 also contains the m-file used to open 

and recreate the terrain file from Surfer. 
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a  10 points by 10 points   b  20 points by 20 points 

   
c  40 points by 40 points   d  80 points by 80 points 

Figure 3-16  Processed terrain profile from raw data set read in MATLAB. 

From MATLAB, the average height of the entire surface map, maximum height, and minimum 

height are equal to 130.53 m, 130.57 m, and 130.49 m, respectively. These values are used to 

obtain the model parameters for the stochastic PDEs. This procedure is described in the next 

section.  

 

3.4 Validating the stochastic PDE method 

By processing and extracting the key parameters from the 2 meter by 2 meter surface map, the 

stochastic PDE method can be validated. In particular, the average terrain height of all the points 

on the surface map and the difference between the terrain heights and the average terrain height 

of the entire surface map is collected from the raw data. Procedures similar to the experimental 
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analysis of the model parameters were taken to achieve a terrain profile with similar stochastic 

properties. All the stochastic terrain profiles were averaged for 100 runs in a 80 point by 80 point 

surface map. The stochastic properties were calculated to match those of Figure 3-16d.  

 

From Equation 3.17, the value of σ is equal to twice the value of the terrain height. Therefore, the 

mean terrain height of the entire surface of the raw data (130.53 m) can be considered to be the 

terrain height term in Equation 3.17, which leads to a σ value of 261.06 m. The four subplots in 

Figure 3-17 display four different trials for a σ value equal to 261.06 m, while the other model 

parameters are held constant at 1. The average terrain height of the entire surface, the maximum 

height of the entire surface, and the minimum height of the entire surface are recorded and 

displayed in Table 3-4. The average values for the four trials of the stochastic terrains are also 

displayed in Table 3-4 to compare with the values of the original deterministic terrain. The 

results are promising, in that the average terrain heights for the stochastic surfaces are close to 

the original terrain height average. 

    

a  Trial 1      b  Trial 2 

0

1

2

0

1

2
130.45

130.5

130.55

130.6

130.65

x (unit length)y (unit length)

H
ei

gh
t (

un
it 

le
ng

th
)

0

1

2

0

1

2
130.55

130.6

130.65

130.7

130.75

x (unit length)y (unit length)

H
ei

gh
t (

un
it 

le
ng

th
)



35 
 

    

c  Trial 3      d  Trial 4 

Figure 3-17  Trial runs for input of σ while model parameters remain at 1. 

 

Table 3-4  Recorded values for subplots of Figure 3-17. 

Trial Terrain Mean (m) Terrain Max (m) Terrain Min (m) 
1 130.54 130.587 130.497 
2 130.61 130.657 130.558 
3 130.312 130.64 129.95 
4 130.76 130.083 130.39 

Average 130.5554 130.4917 130.3487 
Det. Terrain 130.53 130.57 130.49 

 

Next, the correlation length, which is also related to the K value, of the original surface map is 

extracted and implemented into the stochastic model. The correlation length is defined in this 

methodology as the vertical distance between the terrain height and the average height of the 

entire surface. The correlation length is calculated and recorded for each point on the original 

surface map, which will present a 80 by 80 matrix of K values (e.g., equal to the number of 

points on the surface map). Now, the correlation length for each point on the surface map and the 

σ value are known, which allows the calculation of the K value through Equation 3.16. Figure 3-

18 shows four trials with the σ value equal to 261.06 m, the calculated K value for each point on 

the surface, and the other model parameters equal to 1. Table 3-5 displays the average of the 

terrain height for the entire stochastic surface, the maximum terrain point on the entire surface, 

the minimum terrain point on the entire surface, the average of these values for the four trials, 
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and the corresponding values for the original terrain. Compared to the subplots in Figure 3-17, 

the correlation between the neighboring points (not the same as the correlation length) were 

better correlated to the original terrain data in the subplots of Figure 3-18. Unfortunately, the 

amplitude of the terrain topology increased drastically. The assumption of the “wrap around” 

boundary condition are displayed through the subplots shown in Figure 3-18. The original terrain 

did not have an upward curve on the x axis. The stochastic surfaces have the curve because the 

boundary condition of the nodes on the x axis correlates to the points defined on the top of the 

terrain, which is also sloping downwards because of the points on the x axis. 

 

    

a  Trial 1      b  Trial 2 

    

c  Trial 3      d  Trial 4 

Figure 3-18  Trial runs for input of σ and K values. 
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Table 3-5  Recorded values for subplots of Figure 3-18. 

Trial Terrain Mean (m) Terrain Max (m) Terrain Min (m) 
1 1867.8 1868 1867.6 
2 3526.1 3526.6 3525.6 
3 337.732 337.7583 337.7044 
4 969.3079 969.4142 969.1961 

Average 1675.235 1675.443 1675.025 
Det. Terrain 130.53 130.57 130.49 

 

Further analysis showed that the absolute values of K for the original data were calculated to be 

in the range from 489.67 (minimum value) to 42766 (maximum value) with Equation 3.16. The 

analysis for the K value was conducted in the range between 0.1 and 15. We decided to scale the 

K values from the experimental data to bring them in this range. Thus, all K values are scaled to 

obtain a minimum K value of 0.2. The points in the matrix of K values are all divided by 

2448.35, which is equal to the minimum value of K (489.67) divided by the scaled K value (0.2). 

Figure 3-19 displays four trials with the σ value equal to 261.06 m, the scaled K value for each 

point on the original surface, and the other model parameters (equal to 1). The average height of 

the entire stochastic terrain, the value of the maximum terrain height in the entire surface map, 

and value of the minimum terrain height in the entire surface map, the average of these values for 

the four trials, and the corresponding values for the deterministic terrain are recorded in Table 3-

6. The subplots in Figure 3-19 show improved results, in which the amplitude of the stochastic 

terrain and the correlation between neighboring points are both similar to those of the original 

surface map. 
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a  Trial 1      b  Trial 2 

    

c  Trial 3      d  Trial 4 

Figure 3-19  Trial runs for input of σ and reduced K values. 

 

Table 3-6  Recorded values for subplots of Figure 3-19. 

Trial Terrain Mean (m) Terrain Max (m) Terrain Min (m) 
1 130.87 131.0413 130.6424 
2 130.8249 130.9401 130.7248 
3 130.2278 130.3801 130.0314 
4 131.1293 130.2454 131.0569 

Average 130.763 130.6517 130.6139 
Det. Terrain 130.53 130.57 130.49 

 

Results from Tables 3-4 and 3-6 show that the first case and the third case present the stochastic 

terrains that are close representations of the average terrain height in the original terrain. As the 
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correlation length (also the K value) decreases, the variability in the terrain height increases. 

Therefore, the K value can be reduced to better present the numerical values for the correlation 

between the neighboring nodes. Figure 3-20 shows an updated simulation with the σ value equal 

to 261.06 and a constant K value equal to 0.2 (e.g., the same parameters used for case 1 with the 

exception of the K value which is now 0.2 instead of 1). Since the K value of 1 was arbitrarily 

selected for the first case, it is reasonable to also investigate the output when another value, such 

as 0.2 is used. 

 

Figure 3-20  Simulation with σ value and K value equal to 0.2. 

The main purpose of Table 3-7 is to compare the correlation between the neighboring nodes in 

the first case and the third case. The second case is not analyzed in this table because it is 

considered to be irrelevant since the average height of the stochastic terrain is drastically higher 

than the average height of the original terrain. One specific point on the surface map is used to 

examine the correlation between the neighboring nodes. The value of the center point is taken at 

point (40,40) in the 80 point by 80 point surface map. The values of the left point, the right point, 

the top point, and the bottom point are taken 10 points (0.125 m) away from the center point 

(e.g., left point is (30,40) on the 80 point by 80 point surface map). Since the grid is very fine 

(spatial domain of 0.025 m), it will be difficult to realistically show the correlation between two 

consecutive neighboring nodes.  
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Several experimental and simulation parameters are included in Table 3-7 and used to compute 

those metrics based on which we judged the accuracy of the terrain model created. These metrics 

are visually illustrated in Figure 3-21. The variable Δhexp is computed as the difference between 

the average value of the entire deterministic terrain and the deterministic value of the terrain 

height at a particular point (e.g., correlation length in the deterministic surface). The variable 

Δhcd is computed as the difference between the deterministic value of the neighboring nodes and 

the deterministic value of the center point. The variable Δhst is computed as the difference 

between the average value of the entire stochastic terrain and the stochastic value of the terrain 

height at each point (e.g., correlation length in the stochastic surface). The variable Δhcst is 

computed as the difference between the average value of the stochastic neighboring points and 

the average value of the center point. The numbers in the subscripts for variables Δhst and Δhcst 

correspond to the respective case number (e.g., 1 and 3). The terrain height for each case was 

obtained as an average of the values for the four different trials. As the number of trials increase, 

the average values should become closer to the original terrain profile, which in turn will 

improve the correlations between the neighboring nodes. 

 
Figure 3-21  Definition of variables used in Table 3-7. 
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From the values in Table 3-7, both cases show that the mean value of the terrain height over the 

entire stochastic surface map is close to the average value of the terrain height over the entire 

deterministic surface map. However, the correlation between the neighboring nodes in case 3 is 

better than the correlation between the neighboring nodes in case 1 compared to the deterministic 

terrain. This is shown by the values of Δhcd, Δhcst1, and Δhcst3 (highlighted in red). The value of 

Δhcst3 is closer to the value of Δhcd than the value of Δhcst1 is to the value of Δhcd. By inserting 

both the value σ (average of the original terrain height over the entire surface) and the matrix of 

K values (correlation length of the original terrain height for each point), the simulations 

obtained from case 3 best represents the correlation and the amplitude of the original terrain. 

Table 3-7  Comparison between correlation of boundary nodes. 

  
Center 
Point Left Point Right Point Top 

Point 
Bottom 
Point 
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Value of terrain 130.539 130.527 130.545 131 131 
Avg value of 
entire terrain 130.53 

Δhexp -0.009 0.003 -0.015 -0.01 0 
Δhcd -0.012 0.006 -0 -0.01 
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1 

(K
=0

.2
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Value of terrain 130.6456 130.7053 130.608047 131 131 

Avg value of 
entire terrain 130.6566 

Δhst1 0.010983 -0.048672 0.04855317 -0.06 0.08 

Δhcst1  -0.059655 0.03757066 -0.07 0.07 

C
as

e 
3 

Trial 1 130.93 130.93 130.9 131 131 
Trial 2 130.8318 130.8313 130.815836 131 131 
Trial 3 131.44 131.47 131.41 131 132 
Trial 4 130.1071 130.1373 130.117473 130 130 

Avg of trial 
values 130.8272 130.8422 130.810827 131 131 

Avg value of 
entire terrain 
for four trials 

130.513 

Δhst3 -0.314209 -0.32916 -0.2978271 -0.27 -0.36 
Δhcst3 -0.014952 0.0163814 0.04 -0.05 
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Chapter 4 Stochastic Soil Model 

This chapter presents both an experimental approach, and a computational approach to develop 

stochastic soil models. It is organized in the following manner. Section 4.1 shows the creation of 

stochastic soil models using experimental procedures. Section 4.2 explains the methodology in 

creating stochastic soil models using the polynomial chaos approach on Bekker's pressure-

sinkage equation. Section 4.3 presents simulations and comparisons between the experimental 

approach and the computational approach.  

 

4.1 Experimental tests to develop empirical soil models 

To analyze off-road mobility of wheeled vehicles, soil models have to be integrated with the 

terrain profile models. Different techniques could be used to create soil models. One technique 

involves experiments to manually measure the pressure-sinkage relationship for different types 

of soil. Devices such as bevameters and cone penetrometers are used to measure the compaction 

level of the soil (also used to verify the density of the soil or the soil moisture). Due to the design 

of the device, experimental data recorded from different devices will show different results. 

Therefore, when experimental tests are performed, the pressure-sinkage parameters of the soil 

models are affected by many factors, some of which are: the type of soil, the compaction level of 

the soil, and the device used to collect the data.  

 

Virginia Tech collaborated with NASA Glenn Research Center in the summer of 2008 to 

undertake some soil studies on GRC-1, which is a lunar soil simulant (Oravec, Asnani, and Zeng, 

2008). As shown in Figure 4-1, the soil studies were performed on Virginia Tech’s 

terramechanics rig (Taylor, 2008). The rig allows us to perform experiments indoor, thus 

eliminating the impact of weather conditions and unwanted factors on the soil properties. A 

procedure with high repeatability was developed at Virginia Tech and used to prepare the soil to 

obtain consistent compaction levels. The procedure was verified by comparing it with data 

obtained from the facilities at NASA GRC.  
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Figure 4-1  Cone penetrometer experiments performed on Virginia Tech’s terramechanics rig. 

The pressure-sinkage data was then obtained with a cone penetrometer CP40 II using a cone 

diameter of 20.27 mm. This device measures the compaction of the soil by pushing a rod into the 

surface of the terrain. As the cone on the tip of the rod inserts into the ground, the CP40 II 

collects the pressure data at different depth levels. The size of the cone (either 12.83 mm or 

20.27 mm) and the maximum depth (up to 750 mm) can be defined by the user. To accurately 

collect the data points, the CP40 II monitors the rate at which the rod is being inserted into the 

ground to make sure that the user does not exceed the maximum speed of 2 m/min. Figure 4-2a 

and Figure 4-2b shows an image of the cone penetrometer CP40 II disassembled and assembled, 

respectively. 
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a  Disassembled view     b  Assembled View 

Figure 4-2  Image of the cone penetrometer CP40 II. 

Figure 4-3 shows the pressure-sinkage relationship for GRC-1 obtained experimentally at 

AVDL. The GRC-1 lunar soil simulant was prepared to be at 50% relative density, and has less 

than 1% moisture content (considered to be 100% dry). The soil compaction gradient, which is 

also the slope of the line in Figure 4-3, is calculated to be 5.0 kPa/mm (± 0.3 kPa/mm). In this 

figure, the “error” bars represent the distribution of the experimentally collected soil data, while 

the continuous line was obtained as the average value over the entire set of data.  

 

Figure 4-3  Pressure-sinkage relationship for GRC-1. 
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The best fit line for the cone penetrometer test data was modeled as a second order polynomial 

function, as shown in Equation 4.1, where P is the pressure (kPa) and s is the sinkage (mm). The 

standard deviations at the different sinkage locations are shown in Table 4-1. Appendix B 

contains the entire set of numerical values that are used to obtain Equation 4.1 and the line for 

Figure 4-3. 

ܲ ൌ ଶݏ 0.013 ൅ ݏ 3.437  ൅ 48.55                                                ሺ4.1ሻ 

Table 4-1  Standard deviations of GRC-1 at specific depths. 

Depth (mm) Standard Deviation 
5 7.5763 
15 11.7258 
25 17.9796 
35 21.9345 
45 23.4638 

 

 

4.2 Simulating stochastic soil models using the polynomial chaos approach 

Soil models can also be obtained using a semi-empirical approach. Classic examples of semi-

empirical techniques developed to quantify the soil conditions are Bekker’s equation and Reece’s 

equation (Wong, 2001). These equations are characterized for homogeneous terrains, and contain 

different soil parameters that relate to different types of soil and moisture contents. Bekker’s 

pressure-sinkage relationship is represented by Equation 4.2, 

݌ ൌ ൬
݇௖

ܾ ൅ ݇ఝ൰  ௡                                                              ሺ4.2ሻݖ

where p is pressure, z is sinkage, b is the width of the rectangular contact area, and n, kc, and kφ 

are pressure-sinkage parameters. The pressure-sinkage parameters vary with different soil types. 

Unlike the experimental tests that were performed at AVDL, the parameters for Bekker's 

equation are collected through bevameter plate-sinkage tests.   

 

In prior studies, Li and Sandu (2007) used the polynomial chaos approach to quantify the effect 

of the uncertainties in the soil properties on the pressure-sinkage relation. The moisture content 
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was the uncertain parameter and it was assumed to have a linear relationship with the pressure-

sinkage parameters. Therefore, the moisture content affected the pressure-sinkage relationship 

indirectly. A particular case study was shown using the collocation method to obtain pressure-

sinkage relations of Michigan sandy loam. The moisture content had uncertainties between 0% 

and 30%, and was assumed to have a uniform distribution and a normal (Gaussian) distribution 

(Sandu, Sandu, and Li, 2005). 

 

For the methodology presented in this thesis, the polynomial chaos approach was used on 

Bekker's equation to create stochastic soil models in which the random variable was one of the 

pressure-sinkage parameters kφ. This analysis shows a direct affect on Bekker's equation, and it 

also eliminates the assumption of a linear relationship between the pressure-sinkage parameters. 

Another reason for creating such soil models is to make comparisons between the experimental 

tests of GRC-1, which will be further described in the next section. The moisture content of the 

lunar soil simulant was not an uncertain value. Therefore, the methodology in this thesis is more 

applicable to the experimental results of GRC-1.       

 

Using the Karhunen-Loeve expansion, the uncertain parameter kφ can be expressed as 

݇ ൌ ෍ ݇ఝ
௝ ߰௝൫ߦሺߠሻ൯                                                           ሺ4.3ሻ 

where ψ j(ξ i1…ξ in) are the generalized Askey-Wiener polynomial chaoses and ξ =(ξ i1…ξ in) are 

the multi-dimensional random variables (Sandu, Sandu, and Ahmadian, 2006a). The assumption 

was made that the random variables are uniformly distributed. Therefore, the Legendre 

polynomials of order 3 were used for the basis function (Equation 4.4) in the polynomials chaos 

method, 

න ሻߦ௝ሺܮሻߦ௜ሺܮ
1
2 ߦ݀ ൌ 0

ାଵ

ିଵ
݅     ݎ݋݂      ് ݆                                           ሺ4.4ሻ 

where ܮ௜ሺߦሻܮ௝ሺߦሻ are orthogonal polynomials and ߦ is an independent random variable (Sandu, 

Sandu, and Ahmadian, 2006a). Other distributions may include the normal distribution (Hermite 

polynomials as basis function) and the beta distribution (Jacobi polynomials as basis function). 
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The uncertainty in the kφ value was then propagated through Bekker’s equation using the 

collocation method. For this particular case study, the four collocation roots were developed to 

be ±0.8611 and ±0.34. These collocation roots were applied to the Legendre polynomials to 

obtain the collocation matrix to calculate the uncertain pressure-sinkage relation. Appendix B.2 

reveals detailed calculations for the methodology presented in this section.  

 

The Karhunen-Loeve expansion is not limited to being applied to only the pressure-sinkage 

parameter kφ. Similar case studies can be simulated with n or kc being the random parameter to 

analyze how the uncertainties within those parameters affect Bekker’s equation.  

 

4.3 Comparison of results for stochastic soil models 

In this section we compare the stochastic soil model against the experimental data. The pressure-

sinkage parameters for the two soil model techniques were taken with different devices. Data 

obtained from a cone penetrometer test is different from data obtained from a bevameter (plate-

sinkage) test. The main difference is the zone of influence that is taken from each device. When 

measuring with a cone penetrometer, the zone of influence is much less than that of a bevameter 

test since the diameter of the plate is at least 5 times larger than the diameter of the cone. The 

cone penetrometer has more influence on the soil to the side of the cone, whereas the bevameter 

tests influences the soil directly below the plate. Therefore, the soil tested by a bevameter is 

usually stronger compared to a cone penetrometer test since the plate compacts the soil more 

than the cone. The results are not expected to completely match. However, the characteristics of 

the plots should be similar. 

 

The numerical simulations are based on the parameters shown in Table 4-2. Heather Oravec 

(2009) obtained the pressure-sinkage parameters in Bekker’s equation for GRC-1 by following 

the procedures for a bevameter plate-sinkage test in Wong (1980). Separate bevameter tests were 

performed on GRC-1 with different densities and different plate diameters. A simulation for dry 

sand is also shown in which the pressure-sinkage parameters are obtained from Wong (1980). 

Dry sand is chosen because the moisture content of GRC-1 is close to 0%. For all of the cases 

shown in Figure 4-2, there is 100% uncertainty in the randomization of kφ.  
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Table 4-2  Pressure-sinkage parameters for numerical simulations. 

Terrain Moisture 
Content Density (g/cc) n kc (kN/mn+1) kφ (kN/mn+2) b (m)

GRC-1 < 1% 1.64 0.9 119.1 2186.2 0.076 
GRC-1 < 1% 1.67 1.05 813.8 -1629.9 0.102 
GRC-1 < 1% 1.75 1.09 1232.3 -2349.5 0.19 

Dry Sand 0% - 1.1 0.99 1528.43 0.1 
 

Figure 4-4 shows the simulated stochastic soil properties of GRC-1 with 1.64 g/cc density and 

measured with a 0.076 plate diameter. Figure 4-5 shows the simulated stochastic soil properties 

of GRC-1 with 1.67 g/cc density and measured with a 0.102 plate diameter. Figure 4-6 shows the 

simulated stochastic soil properties of GRC-1 with 1.75 g/cc density and measured with a 0.19 

plate diameter. All of the simulations were modeled using the polynomial chaos approach. A 

1000-run Monte Carlo simulation and the probability density function are also displayed to 

verify the polynomial chaos method. From Figures 4-4a, 4-5a and 4-6a, the correlation between 

the Monte Carlo results and the polynomial chaos results looks very promising. The probability 

density functions are shown in subplot b for all of the figures. As the sinkage and pressure 

increase, the value of the PDF decreases for all cases. Comparing the analytical method with the 

experimental test, the graphs do not completely match since different devices were used to obtain 

the soil parameters, but the slope of the lines are very similar for all three cases.  

   
           a  Pressure-sinkage relationships             b  Probability density function (PDF) 

Figure 4-4  Stochastic simulation of GRC-1 with b = 0.076 m and density = 1.64 g/cc. 
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           a  Pressure-sinkage relationships             b  Probability density function (PDF) 

Figure 4-5  Stochastic simulation of GRC-1 with b = 0.102 m and density = 1.67 g/cc. 

   
           a  Pressure-sinkage relationships             b  Probability density function (PDF) 

Figure 4-6  Stochastic simulation of GRC-1 with b = 0.19 m and density = 1.75 g/cc. 

Figure 4-7 illustrates the stochastic simulation of dry sand (0% moisture) with the 

polynomial chaos method. Similar to Figures 4-4 to 4-6, a Monte Carlo simulation and a PDF is 

used to verify the polynomial chaos approach, and the results are promising. The PDF shows that 

as the pressure and sinkage increase, the value of the PDF decreases in the range of -1.5 to -2.25. 

The characteristics of the dry sand is also similar to that of GRC-1 with the exception of the 

slope of the graph.  
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           a  Pressure-sinkage relationships             b  Probability density function (PDF) 

Figure 4-7  Stochastic simulation of dry sand (0% moisture). 
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Chapter 5 Integrated Terrain-Soil Simulation Environment 

To further analyze off-road mobility studies, the stochastic terrain model and the stochastic soil 

model will be incorporated into the simulation framework. This chapter presents an integrated 

terrain and soil simulation environment. To illustrate the capabilities of the simulation 

environment developed, several case studies are presented. Section 5.1 introduces the soil 

parameters and the tire parameters used for the simulations. Sections 5.2 to 5.4 present case 

studies of a rigid plate, rigid wheel, and flexible wheel “stepping” over a deterministic surface, 

respectively. Section 5.5 and 5.6 present case studies of a rigid wheel and flexible wheel rolling 

over deterministic surfaces, respectively. Section 5.7 presents case studies of a rigid wheel and 

flexible wheel rolling over a deterministic terrain with stochastic soil properties. Section 5.8 

presents case studies of a rigid wheel and flexible wheel rolling over a stochastic terrain with 

deterministic soil properties. Section 5.9 presents case studies for a rigid wheel and flexible 

wheel rolling over stochastic terrain with stochastic soil properties. Appendix C contains all 

MATLAB m-files used to create the simulations shown in this chapter. Figure 5-1 shows a chart 

of all of the case studies presented in this chapter. 

 

5.1 Parameters used for the simulation environment 

In a virtual proving ground, the wheel and soil interaction has to be simulated in order to analyze 

the mobility of vehicles over different soil types. The simulations in this chapter are all created 

on a 2 m by 2 m (40 points by 40 points) surface map and the technique developed can be easily 

applied to the terrain profiles and soil characteristics modeled in the previous chapters. For the 

simulations including the deterministic terrain profiles, the terrain height is initially set to 1 m. 

One advantage of the modeling technique developed in this study is its capability to run such 

simulations in real time. To illustrate the capabilities of the simulation framework developed, all 

of the case studies discussed here have been simulated on a homogeneous soil terrain (Sandy 

Loam). The pressure-sinkage parameters are displayed in Table 5-1 (Wong, 2001). Table 5-2 

consists of the parameters for the tire that is being simulated on the terrain (Wulfsohn and 

Upadhyaya, 1992).  
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Figure 5-1  Chart of all the case studies presented in this chapter. 
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Table 5-1  Pressure-sinkage parameters for Sandy Loam. 

Soil Moisture 
content (%) n kc 

(kN/m2)
kφ 

(kN/m3) c (kPa) φ (deg) 

Sandy loam 
(LLL) 15 0.7 5.27 1515.04 1.72 29˚ 

 

Table 5-2  Parameters for tire model. 

Tire Dynamic Load 
(kN) 

Average slip 
(%) 

Contact width 
(mm) 

Contact length 
(mm) 

Tire Model 1 18.67 27.72 590 595 
 

 

5.2 “Stepping” with a rigid plate on a flat terrain profile 

The first case scenario is a rigid plate “stepping” on a flat terrain profile. The motivation behind 

implementing this case study is the fact that Bekker’s pressure-sinkage relation was developed 

based on experiments performed with rigid plates on soft soil. Stepping is defined here as one 

contact patch being stepped on right in front of the previous one. (The contact patches do not 

overlay each other). For the “stepping” cases, all of the contact patches are assumed to be 

rectangular, which, for the purpose of this thesis, is considered to be a reasonable assumption. 

From Bekker’s pressure-sinkage relationship, the sinkage of the terrain can be calculated with 

the parameters shown in Table 5-1 and Table 5-2. The contact patch is assumed to have an 

evenly distributed pressure distribution of 51.9 kPa (e.g., vertical force of 18.67 kN). It can be 

seen from Figure 5-2 that the terrain topology is updated upon the “stepping” with the rigid plate. 

Although not graphically shown, the soil parameters are also changed and updated since the plate 

will compact the soil underneath.  
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Figure 5-2  Rigid plate “stepping” on a deterministic flat surface. 

 

5.3 “Stepping” with a rigid wheel on a flat terrain profile 

As shown in Figure 5-4, the second case study is a rigid wheel “stepping” on a two-dimensional 

terrain profile (40 points by 40 points). Instead of having a uniformly distributed contact area, 

the pressure distribution is modeled here as  

ሻߦ௭ሺ݌ ൌ ௠ܲ௔௫ ൭1 ൅ ݏଵܣ ൬ߦ െ
݈௣

2 ൰൱ ඪ1 െ
൬ߦ െ

݈௣
2 ൰

ଶ

൬
݈௣
2 ൰

ଶ                                ሺ5.1ሻ 

where A1 is the shape change factor, s is the longitudinal slip ratio, lp is the length of the contact 

patch, and ξ is the exact location in the contact patch. Therefore, ξ can only be a value between 0 

and lp, which is shown in Figure 5-3. This figure was taken from Chan (2008, p. 35). 

 

Figure 5-3  Elliptic pressure distribution of contact patch. 
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The variable Pmax is the maximum pressure of the contact patch and it is modeled below 

௠ܲ௔௫ ൌ
4

௣݈ܾߨ
 ௭                                                                 ሺ5.2ሻܨ

where Fz is the vertical load, and b is the width of the contact patch (Chan, 2008). This 

simulation assumed uniform pressure distribution in the lateral direction of the contact patch. By 

using the pressure distribution equation in Bekker’s pressure-sinkage relationship, the values for 

the sinkage at each distance of the contact patch can be calculated. Figure 5-4 incorporates the 

pressure distribution in the contact patch of a rigid wheel “stepping” on a flat surface. 

 

Figure 5-4  Rigid wheel “stepping” on a deterministic flat surface. 

 

5.4 “Stepping” with a flexible wheel on a flat terrain profile 

The third case study is for a flexible wheel “stepping” on a two-dimensional flat terrain profile 

(40 points by 40 points), as shown in Figure 5-5. The model accounts for the pressure 

distribution, the sinkage, and the deflection of the flexible wheel. The deflection is derived from 

the following formula for the length of the contact patch 

݈௣ ൌ ඥݎଶ െ ሺݎ െ ݖ െ ሻଶߜ ൅ ඥݎଶ െ ሺݎ െ  ሻଶ                                      ሺ5.3ሻߜ
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where r is the radius of the wheel, z is the sinkage of the terrain, and δ is the deflection of the 

wheel (Schwanghart, 1991). The radius of the wheel for this case study is assumed to be half of 

the length of the contact patch. This equation can be modified to the following. 

െ2ߜଶ ൅ ሺ4ݎ െ ߜሻݖ2 െ ݈௣
ଶ ൅ ݖݎ2 െ ଶݖ ൌ 0                                        ሺ5.4ሻ 

The quadratic equation is then used to solve for the values of tire deflection, which is shown in 

Equation 5.5. 

ߜ ൌ
ݖ2 െ ݎ4 േ ඥሺ16ݎଶ െ ଶሻݖ8

െ4                                                  ሺ5.5ሻ 

The flexible wheel sinkage in this case study is calculated by subtracting from the original terrain 

height the deflected wheel radius. Therefore, to simulate Figure 5-5, the sinkage values in the 

contact patch of a flexible wheel are calculated by adding the deflection of the flexible wheel to 

the sinkage of the rigid wheel (e.g., calculation of the sinkage of the rigid wheel is the same as 

that shown in the previous case study). The calculation of the deflection of the wheel is not 

limited to Equation 5.5. There are many other equations to calculate the deflection of the wheel 

in which the formulations can be dependent on parameters other than the sinkage and radius of 

the wheel. Equation 5.5 was best suited for the case studies in this thesis since it was dependent 

on parameters to which we had access. 

 
Figure 5-5  Flexible wheel “stepping” on a deterministic flat surface. 
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5.5 Rolling with a rigid wheel on a deterministic terrain profile 

The next case studies are for a rigid wheel rolling on a two-dimensional flat terrain profile and 

on a two-dimensional terrain profile with an obstacle (the grid was 40 points by 40 points). 

Compared with the rigid wheel “stepping” case, for the rolling simulation the geometry of the 

contact patch is no longer assumed to be a rectangle. The slip ratio in the contact patch is also 

accounted for in this case, being incorporated in the description of the pressure distribution 

(Equation 5.1). As the rigid wheel is rolling, the contact patch creates a superellipse (Hallonborg, 

1996), as shown in Figure 5-6. A superellipse is modeled with the following equation 

ሺݔ െ ݄ሻ௡

ܽ௡ ൅
ሺݕ െ ݇ሻ௡

ܾ௡ ൌ 1                                                       ሺ5.6ሻ 

where a is the width of the contact patch, b is the length of the contact patch, x and y are the 

coordinates of the contact patch, and h and k are the coordinates of the center of the contact 

patch. The value of n influences the curve of the superellipse. For all of the rolling case studies 

presented in this thesis, the geometry of the contact patch is presented by Equation 5.6 where the 

value of n is equal to 1 (ellipse). 

 
Figure 5-6  Geometry of contact patch of rolling wheel. 
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Snapshot from the simulations of the rigid wheel rolling on sandy loam are presented in Figures 

5-7 and 5-9. Figure 5-7 shows the rigid wheel rolling on a deterministic flat surface of terrain 

height equal to 1 m. One can notice the elliptical shape of the contact patch contour. 

 
Figure 5-7  Rigid wheel rolling on deterministic flat surface. 

Figure 5-8 shows a deterministic terrain surface with a semi-oval bump. The length of the bump 

is 0.5 m while the height of the bump is equal to 1.012 m. Figure 5-9 shows a rigid wheel rolling 

over the semi-oval bump that was created on the deterministic surface. When the rigid wheel is 

analyzed on the stochastic terrain, there will be many bumps and obstacles. Therefore, this case 

study was implemented to see the initial affects of a deterministic obstacle.  
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Figure 5-8  Deterministic terrain surface with semi-oval bump. 

 
Figure 5-9  Rigid wheel rolling on a surface with a semi-oval bump. 
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terrain profile, the only difference being in the deflection of the wheel. The calculation for the 

deflection of the wheel is the same as that shown section 5.4. 

 

Snapshot from the simulation of the flexible wheel rolling on sandy loam are presented in 

Figures 5-10 and 5-11. Figure 5-10 shows a flexible wheel rolling on a deterministic flat surface 

of 1 m terrain height. Figure 5-11 shows a flexible wheel rolling on a deterministic surface with a 

semi-oval bump, as shown in Figure 5-8. The main differences between Figures 5-10 and 5-11 

and Figures 5-7 and 5-9, respectively, are the value of the sinkage and the curvature of the 

bottom of the contact patch. 

 
Figure 5-10  Flexible wheel rolling on deterministic flat surface. 
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Figure 5-11  Flexible wheel rolling on a surface with a semi-oval bump. 

To better visualize the “stepping” and rolling cases on a deterministic flat terrain profile with a 

height of 1 m, a side view of all of the case studies are shown in Figure 5-12. The solid gray line 

represents the stepping of the rigid plate. The solid purple line and the dashed green line 

represent the rolling and “stepping” of the rigid wheel, respectively. The solid red line and the 

dashed blue line represent the rolling and “stepping” of the flexible wheel, respectively.  

 
Figure 5-12  Side view of all case studies on flat deterministic terrain profiles. 

 

0

1

2

0

1

2
0.95

1

1.05

x, (m)y, (m)

H
ei

gh
t, 

(m
)



62 
 

5.7 Rolling on deterministic terrain profile with stochastic soil properties 

The case studies shown in this section are the rolling of a rigid and flexible wheel over a flat 

deterministic terrain profile with stochastic soil properties. Similar to the model represented in 

Chapter 4 of this thesis, the uncertain parameter in Bekker’s pressure-sinkage equation is kφ. For 

the simulations provided, the value of kφ is assumed to have a uniform distribution, and has a 

20% uncertain amplitude (the soil model in Chapter 4 has 100% uncertainty). The uncertain 

parameter is applied to every point on the surface map. Figure 5-13 shows the simulation of a 

rigid wheel rolling over a deterministic profile with stochastic soil parameter kφ. Figure 5-14 

shows the side view of the simulation. As the rigid wheel rolls over the terrain, the profile under 

the contact patch is not uniform since the sinkage at each point has a stochastic value. 

 
Figure 5-13  Rigid wheel rolling over terrain with stochastic soil parameter. 
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Figure 5-14  Side view of Figure 5-13. 

The next case study is the flexible wheel rolling over a deterministic terrain profile with 

stochastic soil properties. Similar to the case study shown above, the uncertain parameter is kφ in 

Bekker’s equation, and the uncertainty is assumed to have a uniform distribution. Figure 5-15 

shows the flexible wheel over stochastic soil, while Figure 5-16 shows the side view of the 

simulation. The calculations for the sinkage of the flexible wheel are the same as that shown in 

section 5-4. 

 
Figure 5-15  Flexible wheel rolling over terrain with stochastic soil parameter. 
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Figure 5-16  Side view of Figure 5-15. 

 

5.8 Rolling on stochastic terrain profile with deterministic soil properties 

This study shows the rolling of a flexible and rigid wheel over a stochastic terrain profile, which 

is developed in Chapter 3. For the simulations, all of the model parameters, K, L, u , and σ, were 

set to 1. Unlike the case studies shown in the previous section, the parameter kφ is deterministic 

and held at a constant value throughout the surface map for these simulations. Figure 5-17 shows 

a rigid wheel rolling over a stochastic terrain with deterministic soil properties. Figure 5-18 

shows the side view of the simulation. As the rigid wheel rolls over the terrain, the pattern in the 

terrain underneath the contact patch is the same as the original terrain height pattern, with the 

exception of the sinkage. 
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Figure 5-17  Rigid wheel rolling over stochastic terrain with deterministic soil. 

 
Figure 5-18  Side view of Figure 5-17. 

Figure 5-19 and Figure 5-20 shows the simulation of the flexible wheel rolling over the 

stochastic terrain with deterministic soil parameters and the side view of the simulation 

environment, respectively. Similar to the case studies shown above, all of the model parameters 

for the stochastic terrain profile were set to a value of 1. The calculations for the sinkage of the 

flexible wheel are the same as that shown in section 5-4. 
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Figure 5-19  Flexible wheel rolling over stochastic terrain with deterministic soil. 

 
Figure 5-20  Side view of Figure 5-19. 
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simulation of the rigid wheel while Figure 5-22 shows the side view of the simulation. Since the 

simulation incorporates stochastic soil parameters, the terrain underneath the contact patch is not 

uniform with the pattern of the original stochastic terrain height.  

 
Figure 5-21  Rigid wheel rolling over stochastic terrain with stochastic soil. 

 
Figure 5-22  Side view of Figure 5-21. 
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shown above. The only difference is that the simulation includes a flexible wheel instead of a 

rigid wheel. Figure 5-24 shows the side view of the simulation of the flexible wheel. 

 

Figure 5-23  Flexible wheel rolling over stochastic terrain with stochastic soil. 

 

Figure 5-24  Side view of Figure 5-23. 
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Chapter 6 Conclusions 

Terrain profile modeling is critical in the analysis of off-road mobility studies. An approach to 

model the non-stationary two-dimensional (terrain height along both x and y directions) terrain 

profiles is developed in this thesis. The methodology includes solving stochastic partial 

differential equations using the finite difference method. Note that, although in this study this 

methodology was used to create stochastic terrain profiles, the treatment of the stochastic PDEs 

presented is general, and may be used for other applications. The “wrap around” method was 

used as an assumption for the boundary conditions. One advantage of this methodology is the 

ability to easily change the model coefficients to efficiently and realistically create a model of 

terrain profile with the desired stochastic properties.   

 

The model coefficients for the stochastic PDE are K, u, L, and σ. These coefficients are 

considered to be space-dependent. From further analysis of the model coefficients, the 

characteristic correlation length is calculated to be K
L  and the uncorrelated white noise is 

represented by the variable σ. An experiment was performed to analyze the effects of the 

correlation length and the uncorrelated white noise. Results show that there is a specific 

relationship between the correlation length and the difference in terrain heights. The parameter 

analysis of K shows that there is a consistent relationship between K and σ values. Analysis of σ 

shows that there is a linear relationship between the uncorrelated white noise and the amplitude 

of the terrain height. The σ value affects the K value indirectly.   

 

Raw terrain data was extracted from a gravel road measured by VTPL. With the program Surfer, 

the raw data was processed and key parameters were extracted to validate the stochastic PDE 

method to model terrain profiles. With the knowledge of the model coefficients K, L and σ, the 

average terrain height of all the points on the surface map (e.g., scalar value of σ) and the 

difference between the terrain height and the average terrain height of the entire surface map at 

each point (e.g., matrix of values for correlation length, ටܭ
ൗܮ ) was recorded from the gravel 

road data. Applying these values to the model coefficients allowed the recreation of a stochastic 
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terrain profile with similar characteristics of terrain amplitude and correlation between 

neighboring nodes. 

 

Results from different experiments were taken to illustrate the uncertainties in the soil 

parameters. The first experiment involved collecting data from the Virginia Tech’s 

terramechanics rig. A cone penetrometer method was used to extract pressure-sinkage data from 

the lunar soil simulant GRC-1. The Karhunen-Loeve expansion and the polynomial chaos theory 

were also used to create a stochastic model for the soil parameters. Bekker’s equation was used 

to model the soils, and the pressure-sinkage parameter kφ is used as the uncertain parameter. The 

Monte Carlo simulation and the probability density function were used to validate the technique. 

The parameters in Bekker’s equation were derived from bevameter plate-sinkage tests. 

Depending on the device used to collect the data, the pressure sinkage parameters will vary. 

Results show a comparison between the device used to obtain the soil parameters (cone 

penetrometer versus bevameter plate-sinkage test) and the method used to obtain the pressure-

sinkage curves (experimental tests versus poly chaos model).  

 

To analyze the mobility of wheeled vehicles in off-road conditions, simulations were created for 

the “stepping” and for the rolling of a rigid wheel and of a flexible wheel on two 2D terrain 

profiles (40 points by 40 points) with homogeneous soil (LLL sandy loam). Simulations include 

a combination of case studies with the implementation of the terrain profile methodology 

developed and the incorporation of stochastic soil properties. The stepping with a rigid plate has 

also been investigated since the parameters in Bekker’s equation were collected through plate-

sinkage tests. The simulations were all created on surface maps, similar to the procedures used 

for the terrain profile modeling. Several case studies were run, as follows: 

- “Stepping” with rigid plate on deterministic flat surface 

- “Stepping” with rigid wheel on deterministic flat surface 

- “Stepping” with flexible wheel on deterministic flat surface 

- Rolling with rigid wheel on deterministic flat surface 

- Rolling with rigid wheel over deterministic semi-oval bump 

- Rolling with flexible wheel on deterministic flat surface 

- Rolling with flexible wheel over deterministic semi-oval bump 
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- Rolling with rigid wheel on deterministic flat surface with stochastic soil 

- Rolling with flexible wheel on deterministic flat surface with stochastic soil 

- Rolling with rigid wheel on stochastic surface with deterministic soil 

- Rolling with flexible wheel on stochastic surface with deterministic soil 

- Rolling with rigid wheel on stochastic surface with stochastic soil 

- Rolling with flexible wheel on stochastic surface with stochastic soil 

 

All simulations were created in real time. There were also consistent tire parameters that were 

used for the wheel in every simulation (e.g., the length and the width of the contact patch and the 

vertical load of the wheel). The slip ratio was only applied to the rolling simulations. To 

realistically represent the simulation of a tire rolling, the contact patch was also modeled as a 

superellipse. The simulations mainly focused on the effect of the vertical force on the terrain. 

The lateral dynamics were assumed to be uniform.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

Chapter 7 Future Work 

The main focus of this thesis was to illustrate a proposed methodology to create virtual proving 

grounds by modeling the terrain profile (surface map) using stochastic partial differential 

equations. This method has the advantage of allowing the researcher to create as much terrain 

profile as needed for the off-road vehicle dynamics simulation using a limited amount of data, 

while preserving the stochastic properties of the original terrain profile (from which the 

experimental data was collected). Moreover, creating such terrain profile is efficient, and can be 

done in real time. However, further analysis will be needed to accurately represent the surface of 

the terrain. 

 

To efficiently and realistically recreate stochastic terrain profiles, the model coefficients 

(particularly u) will have to be further analyzed. Additional techniques are being explored to 

continue to refine the estimation of the model coefficients in order to realistically model the 

terrain profile. Experiments have been performed on the model coefficient u, but there has been 

no final conclusion on the effect of this variable on the terrain profile. Another challenge was to 

extract the model coefficients from experimental data to realistically represent the terrain 

measured. Further studies could investigate extracting the model coefficient from terrain data. 

Also, certain assumptions were made for the technique of solving the stochastic partial 

differential equation.  The boundary condition assumption will have to be further reviewed and 

verified. Further analysis of the relationship between K and σ for the K values less than 0.1 will 

be aimed at explaining the peaks observed. 

 

Another goal of this thesis was to incorporate the terrain model, soil model, and the wheel-terrain 

contact model into a simulation framework. Steps could be taken to enhance the simulations for 

the tire and soil interactions. As for now, the only parameters shown in the simulations are the 

pressure distribution in the contact patch of a wheel and the sinkage, which focuses on the forces 

in the vertical direction. Steps were also taken to realistically show the geometry of the contact 

patch as being a superellipse. Although this may be a good foundation for the simulation 

environment of off-road mobility studies, there are many other factors that need to be shown for 

realistic simulations of the tire and soil interaction, such as shear stress and shear displacement. 
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For off-road vehicles, there is also a bulldozing effect where some of the soil displaces around 

the wheel, effect currently not shown in the simulation. The lateral dynamics of the contact patch 

will have to be analyzed and implemented into the models. The current scenarios only consist of 

one run of a single wheel over the terrain. Repetitive loading can also be implemented into the 

simulations.  
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Appendix A 

Shown in this Appendix A are MATLAB codes and the raw data used to validate and perform 

the methodology for the stochastic terrain profiles. Appendix A.1 shows the MATLAB m-file 

used to create the stochastic terrain profiles. Appendix A.2 shows all of the tabulated values for 

the experimental analysis of the model parameters K and σ. Appendix A.3 shows the MATLAB 

m-file obtained from VTPL to parse the raw data file. Appendix A.4 shows procedures to 

process the raw data files after they are parsed.  

 

A.1 MATLAB m-file used to create stochastic terrain profiles 
clear all 
  
%%%%%%%%SPARSE MATRIX METHOD%%%%%%%% 
  
X=3; %enter distance of x-axis 
Y=3; %enter distance of y-axis 
imax=81; %enter # of lines 
jmax=81; %enter # of lines 
imin=1; 
jmin=1; 
dx=X/(imax-1); 
dy=Y/(jmax-1); 
  
  
%%define K 
K(imin:imax-1,jmin:jmax-1)=1; 
  
%%define L 
L(imin:imax-1,jmin:jmax-1)=1;  
  
%%define u 
u(imin:imax-1,jmin:jmax-1)=1; 
  
%%define sigma 
sigma(imin:imax-1,jmin:jmax-1)=1;  
  
correlation=sqrt(K./abs(L)); 
  
NoPts=(imax-imin)*(jmax-jmin); 
zeta=rand(NoPts,1); 
random=reshape(zeta,(NoPts/(imax-imin)),(NoPts/(imax-imin))); 
  
  
d=[(-NoPts+sqrt(NoPts)),(-sqrt(NoPts)),(-sqrt(NoPts)+1),... 
    -1,0,1,(sqrt(NoPts)-1),... 
    (sqrt(NoPts)),(NoPts-sqrt(NoPts))]; 
  
Q=zeros(NoPts,9); 
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%%Interior Nodes 
for i = imin+1:imax-2; 
    for j = jmin+1:jmax-2; 
        A(i,j)=-2*K(i,j)*((1/dx^2)+(1/dy^2))+L(i,j); 
        B(i,j)=(K(i,j)/dy^2)+(u(i-1,j)/(2*dy)); 
        C(i,j)=(K(i,j)/dx^2)+(u(i,j+1)/(2*dx)); 
        D(i,j)=(K(i,j)/dy^2)-(u(i+1,j)/(2*dy)); 
        E(i,j)=(K(i,j)/dx^2)-(u(i,j-1)/(2*dx)); 
        V=sigma(i,j)*zeta;      
    end 
end 
  
%%Top Left Corner Node 
for i = imin; 
    for j = jmin; 
        A(i,j)=-2*K(i,j)*((1/dx^2)+(1/dy^2))+L(i,j); 
        B(i,j)=(K(i,j)/dy^2)+(u(imax-1,j)/(2*dy)); 
        C(i,j)=(K(i,j)/dx^2)+(u(i,j+1)/(2*dx)); 
        D(i,j)=(K(i,j)/dy^2)-(u(i+1,j)/(2*dy)); 
        E(i,j)=(K(i,j)/dx^2)-(u(i,jmax-1)/(2*dx)); 
        V=sigma(i,j)*zeta; 
    end 
end 
  
%%Top Right Corner Node 
for i = imin; 
    for j = jmax-1; 
        A(i,j)=-2*K(i,j)*((1/dx^2)+(1/dy^2))+L(i,j); 
        B(i,j)=(K(i,j)/dy^2)+(u(imax-1,j)/(2*dy)); 
        C(i,j)=(K(i,j)/dx^2)+(u(i,jmin)/(2*dx)); 
        D(i,j)=(K(i,j)/dy^2)-(u(i+1,j)/(2*dy)); 
        E(i,j)=(K(i,j)/dx^2)-(u(i,j-1)/(2*dx)); 
        V=sigma(i,j)*zeta; 
    end 
end 
  
%%Bottom Left Corner Node 
for i = imax-1; 
    for j = jmin; 
        A(i,j)=-2*K(i,j)*((1/dx^2)+(1/dy^2))+L(i,j); 
        B(i,j)=(K(i,j)/dy^2)+(u(imax-2,j)/(2*dy)); 
        C(i,j)=(K(i,j)/dx^2)+(u(i,j+1)/(2*dx)); 
        D(i,j)=(K(i,j)/dy^2)-(u(imin,j)/(2*dy)); 
        E(i,j)=(K(i,j)/dx^2)-(u(i,jmax-1)/(2*dx)); 
        V=sigma(i,j)*zeta; 
    end 
end 
  
%%Bottom Right Corner Node 
for i = imax-1; 
    for j = jmax-1; 
        A(i,j)=-2*K(i,j)*((1/dx^2)+(1/dy^2))+L(i,j); 
        B(i,j)=(K(i,j)/dy^2)+(u(imax-2,j)/(2*dy)); 
        C(i,j)=(K(i,j)/dx^2)+(u(i,jmin)/(2*dx)); 
        D(i,j)=(K(i,j)/dy^2)-(u(imin,j)/(2*dy)); 
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        E(i,j)=(K(i,j)/dx^2)-(u(i,j-1)/(2*dx)); 
        V=sigma(i,j)*zeta; 
    end 
end 
  
%%Top Boundary Nodes 
for i = imin; 
    for j = jmin+1:jmax-2; 
        A(i,j)=-2*K(i,j)*((1/dx^2)+(1/dy^2))+L(i,j); 
        B(i,j)=(K(i,j)/dy^2)+(u(imax-1,j)/(2*dy)); 
        C(i,j)=(K(i,j)/dx^2)+(u(i,j+1)/(2*dx)); 
        D(i,j)=(K(i,j)/dy^2)-(u(i+1,j)/(2*dy)); 
        E(i,j)=(K(i,j)/dx^2)-(u(i,j-1)/(2*dx)); 
        V=sigma(i,j)*zeta; 
    end 
end 
  
%%Bottom Boundary Nodes 
for i = imax-1; 
    for j = jmin+1:jmax-2; 
        A(i,j)=-2*K(i,j)*((1/dx^2)+(1/dy^2))+L(i,j); 
        B(i,j)=(K(i,j)/dy^2)+(u(imax-2,j)/(2*dy)); 
        C(i,j)=(K(i,j)/dx^2)+(u(i,j+1)/(2*dx)); 
        D(i,j)=(K(i,j)/dy^2)-(u(imin,j)/(2*dy)); 
        E(i,j)=(K(i,j)/dx^2)-(u(i,j-1)/(2*dx)); 
        V=sigma(i,j)*zeta; 
    end 
end 
  
%%Left Boundary Nodes 
for i = imin+1:imax-2; 
    for j = jmin; 
        A(i,j)=-2*K(i,j)*((1/dx^2)+(1/dy^2))+L(i,j); 
        B(i,j)=(K(i,j)/dy^2)+(u(i-1,j)/(2*dy)); 
        C(i,j)=(K(i,j)/dx^2)+(u(i,j+1)/(2*dx)); 
        D(i,j)=(K(i,j)/dy^2)-(u(i+1,j)/(2*dy)); 
        E(i,j)=(K(i,j)/dx^2)-(u(i,jmax-1)/(2*dx)); 
        V=sigma(i,j)*zeta; 
    end 
end 
  
%%Right Boundary Nodes 
for i = imin+1:imax-2; 
    for j = jmax-1; 
        A(i,j)=-2*K(i,j)*((1/dx^2)+(1/dy^2))+L(i,j); 
        B(i,j)=(K(i,j)/dy^2)+(u(i-1,j)/(2*dy)); 
        C(i,j)=(K(i,j)/dx^2)+(u(i,jmin)/(2*dx)); 
        D(i,j)=(K(i,j)/dy^2)-(u(i+1,j)/(2*dy)); 
        E(i,j)=(K(i,j)/dx^2)-(u(i,jmax-2)/(2*dx)); 
        V=sigma(i,j)*zeta; 
    end 
end 
  
%%% Q matrix 
Avector = reshape(A,NoPts,1);  
Bvector = reshape(B,NoPts,1);  
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Cvector = reshape(C,NoPts,1);  
Dvector = reshape(D,NoPts,1);  
Evector = reshape(E,NoPts,1);  
  
for i = imin:imax-1;                     %column 1 
        Q(i,1)=C(i,jmax-1);           
end 
        
for k=sqrt(NoPts)+1:NoPts;               %column 2 
    Q(k-sqrt(NoPts),2)=Evector(k);                   
end 
  
for k=sqrt(NoPts):sqrt(NoPts):NoPts;            %column 3 
    Q(k-sqrt(NoPts)+1,3)=Dvector(k); 
end 
  
for k=2:NoPts;                   %column 4 
    Q(k-1,4)=Bvector(k);        
    Q(sqrt(NoPts):sqrt(NoPts):NoPts,4)=0; 
end 
  
for k=1:NoPts;                            
    Q(k,5)=Avector(k);        %column 5 
end 
  
for k=1:NoPts-1;                            
    Q(k+1,6)=Dvector(k);        %column 6 
    Q(1:sqrt(NoPts):NoPts,6)=0;  
end 
  
for k=1:sqrt(NoPts):NoPts;            %column 7 
    Q(k+sqrt(NoPts)-1,7)=Bvector(k); 
end 
  
for k=1:NoPts-sqrt(NoPts); 
    Q(k+sqrt(NoPts),8)=Cvector(k);     %column 8 
end 
  
for k = 1:sqrt(NoPts);                     %column 9 
    Q(k+(NoPts-sqrt(NoPts)),9)=Evector(k);           
end 
  
S=spdiags(Q,d,NoPts,NoPts); 
figure(1); 
spy(S); 
  
Z=inv(S)*V; 
MinHeight = min(Z); 
MaxHeight = max(Z); 
Difference = MaxHeight-MinHeight 
  
Vmat=reshape(V,(NoPts/(imax-imin)),(NoPts/(imax-imin))); 
Zmat=reshape(Z,(NoPts/(imax-imin)),(NoPts/(imax-imin))); 
Zetamat=reshape(zeta,(NoPts/(imax-imin)),(NoPts/(imax-imin))); 
  



86 
 

xgrid=dx:dx:X; 
ygrid=dy:dy:Y; 
  
figure(2) 
mesh(xgrid,ygrid,Zmat) 
xlabel('x (unit length)') 
ylabel('y (unit length)') 
zlabel('Height (unit length)') 

 

A.2 Tabulated values from experimental analysis of σ and K 

This appendix shows the tabulated values recorded from the experimental analysis for the σ and 

K values. Tables A-1, A-2, and A-3 are tables representing values in Figure 3-8. The directions 

to obtain these values are as follows. 

1. Create a 10 points by 10 points matrix 

2. Extract the max and min values from 10 point by 10 point matrix 

3. Calculate the difference of MaxHeight and MinHeight for each matrix 

4. Run 100 times and record the difference for each run 

5. Calculate the average of differences 
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Table A-1  Tabulated values for Figure 3-8, for σ = 0.1. 

K Correlation Length (Lc) Average of MaxHeight - MinHeight 
1.00E+09 31623 7.2266E-12 

10000 100 7.2884E-07 
1000 31.623 0.000007049 
100 10 0.000072245 
50 7.0711 0.00014 
20 4.4721 0.00035 
10 3.1623 0.00073 
1 1 0.00775 

0.5 0.70711 0.01466 
0.2 0.44721 0.03108 

0.15 0.3873 0.0583 
0.1 0.31623 0.09608 

0.09 0.3 0.0753 
0.08 0.28284 0.06822 
0.07 0.26458 0.06372 
0.06 0.24495 0.06715 
0.05 0.22361 0.07663 
0.04 0.2 0.11038 
0.03 0.17321 0.24246 

0.025 0.15811 0.37887 
0.02 0.14142 0.39461 

0.015 0.12247 0.21455 
0.01 0.1 0.17544 

0.009 0.094868 0.13906 
0.008 0.089443 0.12091 
0.006 0.07746 0.10409 
0.005 0.070711 0.09678 
0.004 0.063246 0.09161 
0.002 0.044721 0.08396 

0.0009 0.03 0.08121 
0.0005 0.022361 0.08024 
0.0002 0.014142 0.07841 
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Table A-2  Tabulated values for Figure 3-8, for σ = 1. 

K Correlation Length (Lc) Average of MaxHeight - MinHeight 
1.00E+09 31623 7.11E-11 

10000 100 0.00000707 
1000 31.623 0.0000695 
100 10 0.0007 
50 7.0711 0.00145 
20 4.4721 0.0037 
10 3.1623 0.00705 
1 1 0.078404 

0.5 0.70711 0.14171 
0.2 0.44721 0.32804 

0.15 0.3873 0.57249 
0.1 0.31623 0.94901 

0.09 0.3 0.70936 
0.08 0.28284 0.67474 
0.07 0.26458 0.64759 
0.06 0.24495 0.67124 
0.05 0.22361 0.77845 
0.04 0.2 1.11829 
0.03 0.17321 2.43378 

0.025 0.15811 3.68906 
0.02 0.14142 3.88836 

0.015 0.12247 2.28018 
0.01 0.1 1.73457 

0.009 0.094868 1.38037 
0.008 0.089443 1.217 
0.006 0.07746 1.02231 
0.005 0.070711 0.98296 
0.004 0.063246 0.93577 
0.002 0.044721 0.8554 

0.0009 0.03 0.81983 
0.0005 0.022361 0.80451 
0.0002 0.014142 0.80389 
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Table A-3  Tabulated values for Figure 3-8, for σ = 10. 

K Correlation Length (Lc) Average of MaxHeight - MinHeight 
1.00E+09 31623 7.2619E-10 

10000 100 0.000070227 
1000 31.623 0.00071442 
100 10 0.0071 
50 7.0711 0.0142 
20 4.4721 0.0369 
10 3.1623 0.0743 
1 1 0.8049 

0.5 0.70711 1.4563 
0.2 0.44721 3.2757 

0.15 0.3873 5.8622 
0.1 0.31623 9.1901 

0.09 0.3 7.5201 
0.08 0.28284 6.7522 
0.07 0.26458 6.5658 
0.06 0.24495 6.722 
0.05 0.22361 7.782 
0.04 0.2 10.9352 
0.03 0.17321 24.981 

0.025 0.15811 36.9885 
0.02 0.14142 38.497 

0.015 0.12247 21.7855 
0.01 0.1 17.2963 

0.009 0.094868 13.6959 
0.008 0.089443 12.2074 
0.006 0.07746 10.2215 
0.005 0.070711 10.001 
0.004 0.063246 9.3448 
0.002 0.044721 8.3888 

0.0009 0.03 8.128 
0.0005 0.022361 8.1004 
0.0002 0.014142 7.9532 

 
 

 

Tables A-4, A-5, and A-6 are tables representing the data taken for Figure 3-9. The procedures 

used to record these data points are the same as the ones listed above. 
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Table A-4  Tabulated values for Figure 3-9, for σ = 0.1. 

K 
Correlation 
Length (Lc) 

Average of 
MaxHeight - 
MinHeight 

Average Max 
Height 

Average Min 
Height 

9E-06 0.003 0.0774 0.0883 0.0109 
0.00009 0.009486833 0.0782 0.0887 0.0105 
0.0002 0.014142136 0.0796 0.0888 0.0093 
0.0005 0.02236068 0.0813 0.0898 0.0086 
0.0009 0.03 0.0821 0.0912 0.0091 
0.002 0.04472136 0.0843 0.0917 0.0074 
0.004 0.063245553 0.0917 0.0955 0.0039 
0.005 0.070710678 0.0998 0.1003 5.54E-04 
0.006 0.077459667 0.104 0.1021 -0.0019 
0.007 0.083666003 0.1115 0.1057 -0.0058 
0.008 0.089442719 0.1228 0.1118 -0.011 
0.009 0.09486833 0.1344 0.1179 -0.0165 
0.01 0.1 0.1688 0.1347 -0.034 
0.011 0.104880885 0.3725 0.2352 -0.1373 

0.0109 0.104403065 0.4752 0.2878 -0.1874 
0.0108 0.103923048 1.291 0.6927 -0.5983 
0.0107 0.103440804 1.2091 0.6534 -0.5556 
0.0106 0.102956301 0.5748 0.3349 -0.2399 
0.0105 0.102469508 0.4231 0.2595 -0.1636 
0.0104 0.10198039 0.3658 0.233 -0.1329 
0.0103 0.101488916 0.3546 0.2262 -0.1283 
0.0102 0.100995049 0.3325 0.214 -0.1184 
0.0101 0.100498756 0.3896 0.2435 -0.1461 
0.012 0.109544512 0.4282 0.2624 -0.1658 

0.0125 0.111803399 2.1568 1.1217 -1.0351 
0.013 0.114017543 0.3351 0.2168 -0.1183 
0.014 0.118321596 0.2212 0.1607 -0.0606 
0.015 0.122474487 0.2223 0.161 -0.0613 
0.016 0.126491106 0.2786 0.1864 -0.0922 

0.0165 0.128452326 0.4156 0.2581 -0.1574 
0.017 0.130384048 1.0137 0.5558 -0.4579 

0.0175 0.132287566 0.7008 0.4018 -0.2989 
0.018 0.134164079 0.4061 0.2554 -0.1508 
0.019 0.137840488 0.3277 0.2151 -0.1126 
0.02 0.141421356 0.3811 0.2408 -0.1403 
0.02 0.141421356 0.3866 0.2418 -0.1448 
0.021 0.144913767 0.5721 0.3368 -0.2353 
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0.022 0.14832397 1.5061 0.8039 -0.7022 
0.023 0.151657509 1.5897 0.8446 -0.745 
0.025 0.158113883 0.3689 0.2349 -0.134 
0.03 0.173205081 0.2437 0.1729 -0.0708 
0.031 0.176068169 0.299 0.1993 -0.0997 
0.032 0.178885438 0.6719 0.3861 -0.2857 
0.033 0.181659021 0.8202 0.461 -0.3592 
0.035 0.187082869 0.2183 0.1587 -0.0595 
0.04 0.2 0.1081 0.1042 -0.0038 
0.045 0.212132034 0.0909 0.0956 0.0047 
0.05 0.223606798 0.0794 0.0904 0.011 
0.055 0.234520788 0.0731 0.087 0.0139 
0.06 0.244948974 0.0683 0.0833 0.015 
0.065 0.254950976 0.0638 0.0822 0.0185 
0.07 0.264575131 0.0648 0.0823 0.0175 
0.08 0.282842712 0.065 0.0824 0.0174 
0.09 0.3 0.0734 0.088 0.0147 
0.1 0.316227766 0.0943 0.0962 0.0019 

 

Table A-5  Tabulated values for Figure 3-9, for σ = 1. 

K 
Correlation 
Length (Lc) 

Average of 
MaxHeight - 
MinHeight 

Average Max 
Height 

Average Min 
Height 

9E-06 0.003 0.7945 0.8971 0.1026 
0.00009 0.009486833 0.7874 0.8951 0.1077 
0.0002 0.014142136 0.7978 0.8993 0.1015 
0.0005 0.02236068 0.8092 0.8955 0.0862 
0.0009 0.03 0.8113 0.9069 0.0957 
0.002 0.04472136 0.8451 0.9228 0.0777 
0.004 0.063245553 0.9236 0.9592 0.0356 
0.005 0.070710678 0.9519 0.9725 0.0206 
0.006 0.077459667 1.0148 0.9983 -0.0165 
0.007 0.083666003 1.076 1.0443 -0.0318 
0.008 0.089442719 1.247 1.1203 -0.1268 
0.009 0.09486833 1.339 1.1829 -0.1561 
0.01 0.1 1.6989 1.3441 -0.3548 
0.011 0.104880885 3.8016 2.4037 -1.398 

0.0109 0.104403065 5.1379 3.0653 -2.0727 
0.0108 0.103923048 12.5386 6.7615 -5.7771 
0.0107 0.103440804 11.9072 6.4548 -5.4524 
0.0106 0.102956301 4.9737 2.9715 -2.0021 
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0.0105 0.102469508 4.1742 2.6086 -1.5656 
0.0104 0.10198039 3.7501 2.3666 -1.3835 
0.0103 0.101488916 3.5228 2.2594 -1.2634 
0.0102 0.100995049 3.6411 2.3284 -1.3128 
0.0101 0.100498756 3.9469 2.4895 -1.4574 
0.012 0.109544512 4.3469 2.6755 -1.6715 

0.0125 0.111803399 21.2149 11.2139 -10.0011 
0.013 0.114017543 3.3546 2.1601 -1.1944 
0.014 0.118321596 2.1926 1.5663 -0.6263 
0.015 0.122474487 2.1777 1.5998 -0.5779 
0.016 0.126491106 2.8715 1.9161 -0.9554 

0.0165 0.128452326 3.7401 2.3772 -1.3629 
0.017 0.130384048 10.6772 5.8262 -4.851 

0.0175 0.132287566 6.5919 3.8015 -2.7904 
0.018 0.134164079 4.17 2.5928 -1.5772 
0.019 0.137840488 3.3374 2.1771 -1.1603 
0.02 0.141421356 3.8133 2.4052 -1.4082 
0.02 0.141421356 3.9685 2.4932 -1.4753 
0.021 0.144913767 5.7671 3.3777 -2.3894 
0.022 0.14832397 16.1323 8.5556 -7.5766 
0.023 0.151657509 16.2085 8.5959 -7.6125 
0.025 0.158113883 3.5853 2.3013 -1.284 
0.03 0.173205081 2.379 1.689 -0.6901 
0.031 0.176068169 3.098 2.053 -1.045 
0.032 0.178885438 6.8715 3.9293 -2.9423 
0.033 0.181659021 8.5196 4.7666 -3.753 
0.035 0.187082869 2.0987 1.5356 -0.5631 
0.04 0.2 1.1565 1.0676 -0.0889 
0.045 0.212132034 0.9146 0.9626 0.048 
0.05 0.223606798 0.7758 0.8911 0.1154 
0.055 0.234520788 0.7067 0.8463 0.1396 
0.06 0.244948974 0.6737 0.833 0.1593 
0.065 0.254950976 0.6821 0.8407 0.1587 
0.07 0.264575131 0.6562 0.8328 0.1767 
0.08 0.282842712 0.6495 0.8276 0.178 
0.09 0.3 0.7134 0.8511 0.1377 
0.1 0.316227766 0.9339 0.9684 0.0345 
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Table A-6  Tabulated values for Figure 3-9, for σ = 10. 

K 
Correlation 
Length (Lc) 

Average of 
MaxHeight - 
MinHeight 

Average Max 
Height 

Average Min 
Height 

9E-06 0.003 7.863 8.8737 1.0107 
0.00009 0.009486833 7.8605 8.8929 1.0324 
0.0002 0.014142136 7.8674 8.9352 1.0679 
0.0005 0.02236068 8.1682 9.1279 0.9597 
0.0009 0.03 8.1452 8.97 0.8249 
0.002 0.04472136 8.4403 9.2927 0.8524 
0.004 0.063245553 9.3133 9.6849 0.3716 
0.005 0.070710678 9.9227 10.0421 0.1194 
0.006 0.077459667 10.2573 10.0671 -0.1902 
0.007 0.083666003 11.0634 10.532 -0.5314 
0.008 0.089442719 12.0824 10.9512 -1.1313 
0.009 0.09486833 13.8713 11.8628 -2.0085 
0.01 0.1 16.9249 13.5273 -3.3976 

0.0103 0.101488916 18.5449 14.1459 -4.399 
0.0105 0.102469508 21.6883 15.8128 -5.8754 
0.0108 0.103923048 28.0983 19.0308 -9.0675 
0.0107 0.103440804 36.3407 23.208 -13.1327 
0.0106 0.102956301 51.2961 30.8195 -20.4766 
0.0105 0.102469508 112.1559 61.1672 -50.9886 
0.0104 0.10198039 143.8502 76.7682 -67.082 
0.0103 0.101488916 55.6029 32.8467 -22.7562 
0.0102 0.100995049 42.7646 26.3779 -16.3866 
0.0101 0.100498756 38.786 24.4184 -14.3676 
0.01 0.1 34.9947 22.6218 -12.3729 

0.0099 0.099498744 36.1465 23.2394 -12.9071 
0.0098 0.098994949 36.7511 23.1981 -13.553 
0.012 0.109544512 39.9519 25.1334 -14.8185 

0.0125 0.111803399 200.4067 104.1484 -96.2582 
0.013 0.114017543 32.7589 21.4909 -11.268 
0.014 0.118321596 22.1127 16.1552 -5.9575 
0.015 0.122474487 22.2937 16.3358 -5.9579 
0.016 0.126491106 28.9857 19.5522 -9.4335 

0.0165 0.128452326 37.6601 23.9301 -13.73 
0.017 0.130384048 100.6133 40.029 -29.7443 

0.0175 0.132287566 69.7733 55.6712 -44.9421 
0.018 0.134164079 37.9306 24.0425 -13.8881 
0.019 0.137840488 34.3306 22.152 -12.1786 
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0.02 0.141421356 38.8522 24.5725 -14.2798 
0.02 0.141421356 37.6924 23.802 -13.8904 
0.021 0.144913767 58.6656 34.3628 -24.3027 
0.022 0.14832397 163.0471 86.6138 -76.4333 
0.023 0.151657509 149.1133 79.5668 -69.5465 
0.024 0.154919334 57.1228 33.5523 -23.5705 
0.025 0.158113883 37.0915 23.5207 -13.5708 
0.026 0.161245155 28.3169 19.1118 -9.2051 
0.027 0.164316767 23.5769 16.7134 -6.8635 
0.028 0.167332005 22.7127 16.4147 -6.298 
0.029 0.170293864 22.3424 16.2375 -6.1049 
0.03 0.173205081 24.3445 17.1685 -7.1759 
0.031 0.176068169 31.1469 20.6396 -10.5073 
0.032 0.178885438 63.3121 36.7059 -26.6062 
0.033 0.181659021 80.155 44.6519 -35.5032 
0.034 0.184390889 32.0178 20.9029 -11.1149 
0.035 0.187082869 21.6747 15.903 -5.7717 
0.036 0.18973666 16.6876 13.4166 -3.2711 
0.037 0.192353841 14.9139 12.4912 -2.4227 
0.038 0.194935887 12.9226 11.4355 -1.4871 
0.039 0.197484177 11.7637 10.8201 -0.9436 
0.04 0.2 10.9276 10.4876 -0.4401 
0.041 0.202484567 10.6733 10.3334 -0.3399 
0.042 0.204939015 10.1238 10.0249 -0.0989 
0.043 0.207364414 9.4159 9.6982 0.2823 
0.044 0.20976177 9.1996 9.5835 0.384 
0.045 0.212132034 8.841 9.4813 0.6404 
0.046 0.214476106 8.7201 9.338 0.6179 
0.047 0.216794834 8.2628 9.1388 0.876 
0.048 0.219089023 8.2185 9.1356 0.9171 
0.049 0.221359436 7.9955 9.0131 1.0176 
0.05 0.223606798 7.6603 8.8873 1.2269 
0.051 0.225831796 7.3502 8.704 1.3538 
0.052 0.228035085 7.4133 8.6837 1.2704 
0.053 0.230217289 7.3334 8.6518 1.3184 
0.054 0.232379001 7.2634 8.7511 1.4877 
0.055 0.234520788 7.1802 8.579 1.3989 
0.056 0.236643191 7.0995 8.6146 1.5151 
0.057 0.238746728 6.9947 8.5139 1.5191 
0.058 0.240831892 7.118 8.5739 1.4558 
0.059 0.242899156 6.9045 8.4238 1.5193 
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0.06 0.244948974 6.8603 8.4264 1.566 
0.061 0.246981781 6.6548 8.3588 1.704 
0.062 0.248997992 6.8671 8.3371 1.4701 
0.063 0.250998008 6.5439 8.2079 1.6641 
0.064 0.252982213 6.5368 8.2643 1.7274 
0.065 0.254950976 6.5737 8.3091 1.7354 
0.066 0.256904652 6.7238 8.3821 1.6583 
0.067 0.258843582 6.5854 8.3251 1.7396 
0.068 0.260768096 6.7429 8.3352 1.5924 
0.069 0.262678511 6.5287 8.2544 1.7257 
0.07 0.264575131 6.432 8.2496 1.8176 
0.071 0.266458252 6.5808 8.3178 1.737 
0.072 0.268328157 6.5472 8.3169 1.7697 
0.073 0.270185122 6.6914 8.2987 1.6074 
0.074 0.27202941 6.7343 8.3701 1.6358 
0.075 0.273861279 6.5917 8.3449 1.7532 
0.076 0.275680975 6.4307 8.2488 1.8181 
0.077 0.277488739 6.5685 8.2761 1.7076 
0.078 0.279284801 6.4252 8.2157 1.7905 
0.079 0.281069386 6.5277 8.2746 1.7469 
0.08 0.282842712 6.7427 8.3038 1.5611 
0.081 0.284604989 6.6652 8.3177 1.6525 
0.082 0.286356421 6.8388 8.412 1.5733 
0.083 0.288097206 6.6354 8.3189 1.6835 
0.084 0.289827535 6.5966 8.2596 1.6631 
0.085 0.291547595 6.8942 8.4077 1.5136 
0.086 0.293257566 6.7967 8.369 1.5724 
0.087 0.294957624 7.2236 8.6461 1.4225 
0.088 0.296647939 7.3429 8.6658 1.3229 
0.089 0.298328678 7.1863 8.6396 1.4533 
0.09 0.3 7.0977 8.526 1.4283 
0.091 0.301662063 7.5118 8.7718 1.26 
0.092 0.303315018 7.8078 8.9367 1.1289 
0.093 0.304959014 7.9649 8.9363 0.9715 
0.094 0.306594194 7.8578 8.992 1.1342 
0.095 0.3082207 7.6808 8.7318 1.0511 
0.096 0.309838668 8.5355 9.1999 0.6644 
0.097 0.31144823 8.4724 9.2718 0.7993 
0.098 0.313049517 8.5245 9.2345 0.7101 
0.099 0.314642654 8.7434 9.4405 0.6971 
0.1 0.316227766 8.9381 9.4923 0.5541 



96 
 

 

Tables A-7, A-8, A-9, A-10, A-11 and A-12 are tables representing the data taken for Figure 3-

10. The procedures used to record these data points are the same as the ones listed above. 

 

Table A-7  Tabulated values for Figure 3-10, for σ = 0.1. 

K 
Correlation 
Length (Lc) 

Average of 
MaxHeight – 
MinHeight 

Average 
Max 

Height 

Average 
Min 

Height 
0.1 0.316227766 0.0923 0.0963 0.0041 
0.2 0.447213595 0.0324 0.0665 0.0341 
0.3 0.547722558 0.022 0.0612 0.0392 
0.5 0.707106781 0.0143 0.0572 0.0429 
0.6 0.774596669 0.0122 0.0562 0.044 
0.8 0.894427191 0.0097 0.0547 0.045 
1 1 0.0076 0.0534 0.0458 

1.5 1.224744871 0.005 0.0526 0.0476 
2 1.414213562 0.0039 0.0518 0.0479 
3 1.732050808 0.0024 0.0511 0.0487 
5 2.236067977 0.0014 0.0509 0.0495 
8 2.828427125 0.00095612 0.0506 0.0496 
10 3.16227766 0.00071859 0.0503 0.0496 
12 3.464101615 0.00058342 0.0505 0.05 
15 3.872983346 0.0004757 0.0497 0.0492 
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Table A-8  Tabulated values for Figure 3-10, for σ = 1. 

K 
Correlation 
Length (Lc) 

Average of 
MaxHeight – 
MinHeight 

Average 
Max 

Height 

Average 
Min 

Height 
0.1 0.316227766 0.9019 0.9498 0.0479 
0.2 0.447213595 0.3181 0.6586 0.3404 
0.3 0.547722558 0.2157 0.6103 0.3946 
0.5 0.707106781 0.1443 0.5741 0.4298 
0.6 0.774596669 0.1238 0.566 0.4421 
0.8 0.894427191 0.1011 0.5498 0.4488 
1 1 0.077 0.5385 0.4615 

1.5 1.224744871 0.0508 0.5246 0.4738 
2 1.414213562 0.0373 0.5218 0.4845 
3 1.732050808 0.024 0.5103 0.4863 
5 2.236067977 0.0147 0.508 0.4932 
8 2.828427125 0.009 0.5043 0.4953 
10 3.16227766 0.0074 0.5061 0.4987 
12 3.464101615 0.006 0.5028 0.4967 
15 3.872983346 0.0048 0.5068 0.502 

 

Table A-9  Tabulated values for Figure 3-10, for σ = 3. 

K 
Correlation 
Length (Lc) 

Average of 
MaxHeight – 
MinHeight 

Average 
Max 

Height 

Average 
Min 

Height 
0.1 0.316227766 2.738 2.8452 0.1072 
0.2 0.447213595 0.9651 1.9826 1.0176 
0.3 0.547722558 0.653 1.831 1.178 
0.5 0.707106781 0.4355 1.7309 1.2954 
0.6 0.774596669 0.3665 1.6924 1.3259 
0.8 0.894427191 0.2962 1.6449 1.3487 
1 1 0.2339 1.6161 1.3822 

1.5 1.224744871 0.1514 1.5689 1.4175 
2 1.414213562 0.1154 1.5506 1.4352 
3 1.732050808 0.0744 1.5247 1.4504 
5 2.236067977 0.0426 1.514 1.4714 
8 2.828427125 0.0272 1.5392 1.512 
10 3.16227766 0.0212 1.5205 1.4993 
12 3.464101615 0.0185 1.5098 1.4913 
15 3.872983346 0.0145 1.5071 1.4926 
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Table A-10  Tabulated values for Figure 3-10, for σ = 5. 

K 
Correlation 
Length (Lc) 

Average of 
MaxHeight – 
MinHeight 

Average 
Max 

Height 

Average 
Min 

Height 
0.1 0.316227766 4.8448 4.8872 0.0424 
0.2 0.447213595 1.6313 3.3334 1.7021 
0.3 0.547722558 1.0505 3.0181 1.9676 
0.5 0.707106781 0.7144 2.88 2.1657 
0.6 0.774596669 0.6325 2.8167 2.1841 
0.8 0.894427191 0.4536 2.7462 2.2926 
1 1 0.3979 2.6978 2.2999 

1.5 1.224744871 0.2492 2.6024 2.3533 
2 1.414213562 0.1894 2.612 2.4226 
3 1.732050808 0.1225 2.5383 2.4158 
5 2.236067977 0.0747 2.5239 2.4493 
8 2.828427125 0.0461 2.5184 2.4722 
10 3.16227766 0.0369 2.5144 2.4776 
12 3.464101615 0.0308 2.4995 2.4687 
15 3.872983346 0.0239 2.4914 2.4675 

 

Table A-11  Tabulated values for Figure 3-10, for σ = 8. 

K 
Correlation 
Length (Lc) 

Average of 
MaxHeight – 
MinHeight 

Average 
Max 

Height 

Average 
Min 

Height 
0.1 0.316227766 7.6795 7.8283 0.1488 
0.2 0.447213595 2.6107 5.3268 2.7161 
0.3 0.547722558 1.7228 4.8632 4.5975 
0.5 0.707106781 1.2171 3.1404 3.3803 
0.6 0.774596669 0.9938 4.5553 3.5615 
0.8 0.894427191 0.7464 4.3819 3.6355 
1 1 0.6303 4.3407 3.7104 

1.5 1.224744871 0.419 4.2059 3.7868 
2 1.414213562 0.2958 4.1468 3.8511 
3 1.732050808 0.1954 4.0975 3.9021 
5 2.236067977 0.1126 4.1143 4.0017 
8 2.828427125 0.0709 4.0082 3.9374 
10 3.16227766 0.056 4.0424 3.9864 
12 3.464101615 0.0479 4.0258 3.9779 
15 3.872983346 0.0368 3.9922 3.9555 
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Table A-12  Tabulated values for Figure 3-10, for σ = 10. 

K 
Correlation 
Length (Lc) 

Average of 
MaxHeight – 
MinHeight 

Average 
Max 

Height 

Average 
Min 

Height 
0.1 0.316227766 9.1453 9.5458 0.4006 
0.2 0.447213595 3.3046 6.7149 3.4104 
0.3 0.547722558 2.1688 6.0725 3.9037 
0.5 0.707106781 1.4496 5.7409 4.2913 
0.6 0.774596669 1.2465 5.654 4.4075 
0.8 0.894427191 0.9418 5.4999 4.5581 
1 1 0.7599 5.3164 4.5565 

1.5 1.224744871 0.4955 5.2738 4.7784 
2 1.414213562 0.3865 5.1651 4.7786 
3 1.732050808 0.243 5.0651 4.8221 
5 2.236067977 0.1478 5.0558 4.9079 
8 2.828427125 0.0858 5.0702 4.9844 
10 3.16227766 0.0743 5.0316 4.9573 
12 3.464101615 0.0593 5.0551 4.9957 
15 3.872983346 0.0476 5.0255 4.9779 

 

Tables A-13 is a table representing the data taken for Figure 3-12. The procedures used to record 

these data points are the same as the ones listed above with the exception of the average 

difference in maximum height and minimum height. 
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Table A-13  Tabulated values for Figure 3-12. 

sigma Average Max Height Average Min Height 
12 5.9692 5.9691 
10 5.0006 5.0005 
9 4.5 4.4999 
8 3.9822 3.9822 
7 3.4978 3.4978 
6 2.9891 2.9891 
6 2.9901 2.9901 
5 2.4984 2.4984 
4 2.0076 2.0076 
3 1.4959 1.4959 
2 0.9936 0.9936 
1 0.4967 0.4967 

0.09 0.0447 0.0447 
0.08 0.0399 0.0399 
0.07 0.0351 0.0351 
0.06 0.03 0.03 
0.05 0.025 0.025 
0.04 0.0201 0.0201 
0.03 0.0151 0.0151 
0.02 0.01 0.01 
0.01 0.005 0.005 

0.001 5.01E-04 5.01E-04 
 

A.3 MATLAB m-file used to parse the raw data 

This appendix shows the MATLAB m-file used to parse the raw data into separate files with 

each file containing 4,000,000 points. This m-file was obtained from Trey Smith, a graduate 

student at VTPL. 

MATLAB m-file: 

function parseXYZfile_20080808(directory,nLines,read_fType, write_fType) 
% units: x,y (meters), z (m) 
% Reads in a directory of xyz files, rewrites data to smaller xyz files 
  
global headerlines 
headerlines = 24; 
  
% Get directory, either as a passed parameter or through a GUI 
if (nargin<1), 
    %directory = 'C:\Documents and Settings\jbferris\Desktop\DATA\Test'; end 
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    [file, directory] = uigetfile('*.*', 'Pick any file in the directory', 
'Multiselect','on'); 
end 
  
% If no filetypes were given, use the default values below: 
if (nargin<4), 
    read_fType = '.xyz'; 
    write_fType = '.dat'; 
end 
  
if (directory(length(directory))~='\'), directory(length(directory)+1) = '\'; 
end 
  
% Open the xyz files in the directory 
F = open_files_get_filenames(directory, 1, read_fType);    % returns a 
structure of fids and corresponding names of files 
num-files = length(F); 
  
% Establish processing parameters here 
if (nargin<2), 
nLines = 4000000;           % specifies number of points per file 
end 
%precision = 2;              % number of digits to keep after the decimal 
point (in meters) 
  
block = 0;                  % track block, determines number of lines to skip 
at beginning of file 
lastBlock = 0;              % flag, indicates when end of file is reached 
  
for i = 1:num-files; 
    editFlag = input(['Parse ', F(i).filename, '?  (1 for Yes, 2 for No)  
']); 
    if editFlag==1, 
        while ~lastBlock 
            [F(i).header,data,lastBlock] = 
get_XYZdata(nLines,block*nLines,F(i),read_fType); 
            nRows=size(data,1); 
             
%             uncomment this section if you would like to round xy 
%             coordinates to cm 
%             for k=1:nRows 
%                 data(k,1)=round(data(k,1)*100)/100; 
%                 data(k,2)=round(data(k,2)*100)/100; 
%  
%             end 
            %data = round(data*(10^precision))/(10^precision);       % round 
data to desired precision 
            new_filename = write_header_new_file(F(i),block+1,write_fType);     
% writes header, discards existing file!!! 
            write_data(new_filename,data,0,0,'tab');             % appends 
data to newly created '.dat' file 
            block = block+1; 
        end 
        editFlag = 0; 
    end 
end 
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return 
  
function F = open_files_get_filenames(directory, verb,type) 
% S is an array of structures containing only xyz file info 
% D is an array of structures of file info from the dir command 
  
F=[];                   % initialize F in case there are no xyz files 
D = dir(directory);     % get directory info 
nFiles=0;               % track the number of xyz files 
for i = 3:length(D),    % loop on all possible entries that could be xyz 
files (not first two) 
  
    if D(i).isdir == 0,                                     % make sure it is 
a file 
        [token, fType] = strtok(D(i).name,'.');             % strip extension 
from filename 
        if strcmp(fType,type),                            % make sure it is 
an xyz file 
            nFiles = nFiles+1;                          % track the number of 
xyz files 
            F(nFiles).filename = token;                 % add filename 
(without extension) to list 
            F(nFiles).directory = directory;                        % add fid 
to list 
        end 
    end 
  
end                 % for i = 3:length(D) 
  
if (verb==1),       % Display files that were opened if in 'verbose' mode 
    disp('xyz files being analyzed...'); 
    for i=1:length(F), disp([num2str(F(i).directory), '  ', F(i).filename]); 
end 
    %for i=1:length(F), disp(F(i).filename); end 
end 
  
return             % open_files_get_filenames 
  
  
function [header,data,lastBlock] = get_XYZdata(nLines,offset,F,type) 
% lastBlock = 1 -- this is the last block that needs to be processed 
% lastBlock = 2 -- this block is empty, do not process it 
% FORMAT: load_data(filenamepath, headerlines, columns, lines, offset, 
delimiter, fixed length) 
  
lastBlock=0; 
global headerlines 
cols = 3;                   % 3 columns of XYZ data 
  
[header, data, col] = 
load_data(strcat(F.directory,F.filename,type),headerlines,cols,nLines,offset,
'tab','true'); 
  
if length(data(:,1))<nLines 
    lastBlock=1; 
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    nLines = length(data(:,1)); 
end 
  
if length(data(:,1)) == 0 
    lastBlock=2; 
    data = []; 
end 
  
return 
  
function [filename] = write_header_new_file(F, block,type) 
  
filename = strcat(F.directory, F.filename, '_', num2str(block), type); 
fidWrite = fopen(filename,'wt');                    % write file for writing, 
discards existing file!! 
  
% headerlines = F.header(1,1:length(F.header)-288); 
% fprintf(fidWrite,'%s\n',headerlines);                    % write each 
header line from S.header 
% fprintf(fidWrite,'%-9s\t%-9s\t%-9s\n','X (m)', 'Y (m)', 'Z(m)'); 
fclose(fidWrite); 
  
return 
  
function append_data_file(S,Laserfid,startI,endI) 
% S is structure with x y z header filename 
  
if(nargin<4), startI=1; endI=length(S.t); end 
filename = fopen(Laserfid); 
[token, fType] = strtok(filename,'.');              % strip extension from 
filename 
  
filepath = [token '.xyz']; 
data = [S.x(startI:endI),S.y(startI:endI),S.z(startI:endI)]; 
write_data(filepath,data,0,0,'tab'); 
  
smalldata = [S.x(startI:100:endI),S.y(startI:100:endI),S.z(startI:100:endI)]; 
filepathsmall = [token '_sm.xyz']; 
write_data(filepathsmall,smalldata,0,0,'tab'); 
  
return 
 

A.4 Procedures to obtained processed raw data 

This section of the Appendix A explains how the processed data was collected through Surfer 

and MATLAB. The following are step by step instructions to obtain the processed data from a 

free Demo Version Surfer. When Surfer is opened, it automatically creates a new Plot 

Document. Go to “Grid” on the top toolbar and select “Menu” from the scroll down menu. 
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Figure A-1  Print screen of “Grid” on Surfer Toolbar. 

Next, a pop up window will appear where you will have to select the file to be read by Surfer. In 

our case, it will be one of the 9 .dat extension files containing the terrain data that was parsed 

with the MATLAB m-file. For these procedures, the file containing section 5 was opened. Once 

the file is selected, another pop up window will appear as shown below. The “Gridding Method” 

option allows you to choose from several gridding types. For our case, the “Nearest Neighbor” 

method was chosen to obtain a uniformly spaced grid. The “Output Grid File” is the destination 

in which the output will be stored. The output will be in a file with a .grd extension, which can 

only be read with Surfer. The “Grid Line Geometry” displays the current dimensions, spacing, 

and number of lines of the current file by default. These variables can be changed according to 

the desire of the user.   
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Figure A-2  Print screen of pop-up window in Surfer. 

To obtain the 2 meter by 2 meter terrain profile that was used for our analysis (Figure 3-14), the 

following values were used and entered into their corresponding slots. 

Table A-14  X and Y coordinates for processed data. 

Direction Minimum Maximum 

X 808 810 
Y -550 -548 

 

To obtain the different subplots in Figures 3-14a, 3-14b, 3-14c, and 3-14d, the slot containing the 

“# of lines” will have to be adjusted accordingly. After all of the parameters are entered for the 

desired surface map, click “OK” and the file will be created. To recreate the subplots shown in 

Figure 3-14, go to “Map” on the top toolbar and select “Surface” from the scroll down menu, as 

shown below. Afterwards, a pop up window will appear and select the .grd extension file. This 

will create the subplots shown in Figure 3-14. With Surfer, there are numerous ways of 

representing the terrain surface. Described in these procedures are just one way of illustrating it. 

Surfer is a very powerful visualization tool, and there are many other features that can be used 

which are not described in these procedures. 
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Figure A-3  Illustration of “Map” on Surfer Toolbar. 

To recreate the image with MATLAB, the following m-file was created to open the .dat 

extension file from Surfer and mesh the points into the plot. Unfortunately, the Demo Version of 

Surfer did not allow the user to create the .dat extension file. I obtained this file through Trey 

Smith, who had the licensed version. The file that is opened in this m-file is named 

“Extract_80x80.dat”. This is the surface with 80 points by 80 points. 

MATLAB m-file: 
clear all  
  
fid = fopen('Extract_80x80.dat','rt'); 
coursel=fscanf(fid,'%e'); 
  
%%% Number of points on each axis; e.g., 3x3 grid, NoPts = 3 
NoPts = 80; 
  
for dim = 1:NoPts*NoPts 
    x(dim) = coursel(dim*2+(dim-2)); 
    y(dim) = coursel(dim*2+(dim-2)+1); 
    z(dim) = coursel(dim*2+(dim-2)+2); 
end 
  
xmesh = reshape(x,NoPts,NoPts); 
ymesh = reshape(y,NoPts,NoPts); 
zmesh = reshape(z,NoPts,NoPts); 
  
figure(1) 
mesh(xmesh,ymesh,zmesh) 
xlabel('x (unit length)') 
ylabel('y (unit length)') 
zlabel('Height (unit length)') 
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Appendix B 

Appendix B shows the procedures and raw data to complete the results shown for the stochastic 

soil model. Appendix B.1 shows the raw data that was collected from the cone penetrometer in 

Virginia Tech’s terramechanics rig for the lunar soil simulant GRC-1. Appendix B.2 shows 

detailed procedures for the polynomial chaos approach to specifically create the stochastic soil 

models incorporated in this thesis. Appendix B.3 shows the MATLAB m-file to create the 

stochastic soil model. 

 

B.1 Raw data for lunar soil simulant GRC-1 

This section of Appendix B shows the raw data obtained from the cone penetrometer CP40 II for 

the lunar soil simulant GRC-1. For Tables B-1 and B-2, the values in the cells of the table are the 

pressure values (kPa) at the recorded depth.  

Table B-1  Raw data obtained at depths of 5mm to 55mm for GRC-1. 

Depth (mm) 
Measurement 5 15 25 35 45 55 

1 65 116 172 225 279 332 
2 69 118 173 217 270 320 
3 68 115 168 206 250 307 
4 54 101 153 203 256 308 
5 47 84 119 159 202 249 
6 56 94 129 166 214 258 
7 55 96 152 204 257 313 
8 51 88 129 167 206 245 
9 49 94 147 194 237 275 

10 68 117 169 209 252 295 
11 61 101 151 196 246 284 
12 51 91 130 169 213 249 
13 62 110 155 226 246 286 
14 56 102 138 190 244 300 
15 49 87 128 177 220 260 
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Table B-2  Raw data obtained at depths of 65mm to 115mm for GRC-1. 

Depth (mm) 
Measurement 65 75 85 95 105 115 

1 382 423 466 518 587 684 
2 362 421 476 539 614 688 
3 357 411 465 522 582 674 
4 368 437 498 559 618 735 
5 284 340 397 467 538 654 
6 300 347 401 465 538 654 
7 369 420 478 530 581 669 
8 288 327 379 445 526 630 
9 308 347 425 466 531 622 

10 335 376 423 481 548 634 
11 326 374 420 474 533 626 
12 297 336 388 443 549 605 
13 329 366 394 431 476 565 
14 352 407 465 519 581 664 
15 299 346 395 447 502 569 

 

Table B-3 shows the value of the slope for each of the corresponding measurements. The 

pressure is the y value while the depth is the x value. The overall average value of the slope for 

all 15 measurements is equal to 4.813 kPa/mm.  

Table B-3  Slope of pressure and depth for each measurement. 

Measurement Slope (kPa/mm) 
1 5.29965035 
2 5.463286713 
3 5.305944056 
4 5.966433566 
5 5.188111888 
6 5.084615385 
7 5.482517483 
8 4.891258741 
9 4.890559441 
10 4.815034965 
11 4.863636364 
12 4.866783217 
13 4.196503497 
14 5.448251748 
15 4.613636364 

 

Table B-4 shows the calculated values of the mean and standard deviation for each depth.  
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Table B-4  Calculated mean and standard deviation for every depth interval. 

Depth (mm) Mean (mm) Standard Deviation (mm) 
5 57.4 7.57627877 
15 100.9333333 11.72583635 
25 147.5333333 17.97961809 
35 193.8666667 21.93453463 
45 239.4666667 23.46385265 
55 285.4 28.28629148 
65 330.4 33.01471533 
75 378.5333333 37.76216297 
85 431.3333333 39.41839068 
95 487.0666667 40.45538401 
105 553.6 39.76682034 
115 644.8666667 45.05689525 

 

B.2 Detailed procedures for the polynomial chaos approach 

This section shows the detailed procedures in using the collocation approach to apply the 

polynomial chaos method to create stochastic soil models. The procedures listed are specified for 

the case study used in this thesis. Bekker’s equation is used and the random parameter is kφ. 

Using the Karhunen-Loeve expansion, the uncertain parameter can be displayed as  

݇ ൌ ෍ ݇ఝ
௝

ஶ

௝ୀଵ

߰௝൫ߦሺߠሻ൯                                                          ሺܤ. 1ሻ 

where ψ j(ξ i1…ξ in) are the generalized Askey-Wiener polynomial chaoses and ξ =(ξ i1…ξ in) are 

the multi-dimensional random variables (Sandu, Sandu, and Ahmadian, 2006a). Plugging this 

expansion back into Bekker’s equation will give 
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The assumption was made that the random variables are uniformly distributed. Therefore, 

the Legendre polynomials were used for the basis function in the polynomials chaos method. 

Equation B.3 calculates the number of terms, S, used for the Legendre polynomials. 
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For our case study, the number of uncertainties in this system, q, is equal to 1 and the order of 

the polynomials, n, is equal to 3. Therefore, the number of terms used for the Legendre 

polynomials is equal to 4. Table B-5 shows the Legendre polynomials and the corresponding 

degree of the function. 

Table B-5  Legendre polynomials to the 4th order. 

Degree Legendre polynomial 

0 1 

 ݔ 1

2 1
2

ሺ3ݔଶ െ 1ሻ 

3 1
2 ሺ5ݔଷ െ  ሻݔ3

4 
1
8 ሺ35ݔସ െ ଶݔ30 ൅ 3ሻ 

 

For this particular case study, the four collocation roots were chosen to be ±0.8611 and ±0.34. 

Therefore, Equation B-1 can be expanded to the following. 

݇ሺߦሻ ൌ ݇ଵ߰଴ሺߦሻ ൅ ݇ଶ߰ଵሺߦሻ ൅ ݇ଷ߰ଶሺߦሻ ൅ ݇ସ߰ଷሺߦሻ                              ሺܤ. 4ሻ 

The value of ߦ is equal to one of the four collocation roots while ߰଴, ߰ଵ, ߰ଶ, and ߰ଷ corresponds 

to the Legendre polynomial with the corresponding degree in the subscript, respectively. 

Equation B.4 can be expanded into four equations, each with a value of the collocation point to 

create the collocation matrix. Since there are four unknown values in Equation B.4, four 

equations are created to implicitly solve for the unknown values. Equation B.5 displays the four 

unknown equations in matrix form while Figure B-1 shows the collocation matrix. The first 

column of the collocation matrix describes the mean of kφ while the second column to last 

columns of the collocation matrix describes the standard deviation of kφ. For the particular case 

study, columns 3 and 4 contained a value that was far less than the value contained in the second 

column. Therefore, they were multiplied and assumed to be a value of 0. For this particular case 
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study, the value of ݇ଵ is equal to the value of kφ and the value of ݇ଶ is equal to the value of kφ 

divided by the uncertainty amplitude. The values for ݇ଷ and ݇ସ are both equal to 0. 
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Figure B-1  Collocation matrix for stochastic soil model case study. 

Once the values for ݇ሺߦଵሻ to ݇ሺߦସሻ are calculated, Equation B.4 can be solved, which can allow 

Equation B.2 to be solved. The mean value and the standard deviation calculated from the 

polynomial chaos described are plotted. The PDF is also shown to validate the stochastic soil 

model. The MATLAB m-file is shown in the next section. 

 

B.3 MATLAB m-file for creating stochastic soil models 

This section shows the MATLAB m-file used to create the stochastic soil models. This 

MATLAB code was modified and updated from a previous code received from Dr. Lin Li. 

MATLAB m-file: 

clear all 
syms x 
  
%chaos dimension 
polynomial_dimension=1; 
polynomial_order=3; 
chaos=factorial(polynomial_dimension+polynomial_order)/factorial(polynomial_d
imension)/factorial(polynomial_order); 
  
%define parameters; 
b=0.1; %unit [m], the smaller size of contact patch 
  
%define pressure sinkage parameters 
n=1.1; 
Kc=0.99; %unit [kN/m^(n+1)] 
Kphi=1528.43; %unit [kN/m^(n+2)] 
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%uncertainty amplitude 
r=1; 
  
npoint=200; 
%initiate the sinkage 
z=linspace(0,50,npoint); %unit [cm] 
  
%errorbar interval 
bars=1:20:npoint; 
  
%%%%%%%%%%%%%%% 
%Deterministic% 
%%%%%%%%%%%%%%% 
  
 
%calculate the pressure 
Pdet=(Kc/b+Kphi)*(z/1000).^n; 
  
%plot the figure of pressure versus sinkage 
figure(1) 
subplot(221) 
plot(z,Pdet) 
xlabel('Sinkage [mm]') 
ylabel('Pressure [KPa]') 
legend('Deterministic','location','SE'); 
tit=['Pressure at random Kphi value']; 
title(tit) 
   
save Result_Deterministic z Pdet 
  
%%%%%%%%%%%%% 
%Monte Carlo% 
%%%%%%%%%%%%% 
  
%Monte Carlo runs 
NMC=1000; 
xi_1=2*(rand(1,NMC)-0.5); 
%calculate the results 
disp('Start MonteCarlo Simulation') 
timc=cputime; 
for imc=1:NMC 
    if (mod(imc,100)==0), fprintf('\nMC run no %d of %d',imc,NMC); end 
%random coefficient 
  
%uncertain Kphi 
KphiMC=Kphi+Kphi*xi_1(imc)/r; 
  
%calculate the pressure 
Pmc1=(Kc/b+KphiMC)*(z/1000).^n; 
Pmc_final1(imc,1:npoint)=Pmc1; 
end 
  
disp(['CPU MonteCarlo Seconds=',num2str((cputime-timc)/2)]); 
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%rearrange the data 
Pmc_mean1=mean(Pmc_final1); 
Pmc_std1=std(Pmc_final1); 
  
save Result_Montecarlo z Pmc_final1 Pmc_mean1 Pmc_std1 NMC bars 
  
%%plot the figure of pressure versus sinkage 
subplot(222) 
errorbar(z(bars),Pmc_mean1(bars),Pmc_std1(bars)); 
xlabel('Sinkage [mm]') 
ylabel('Pressure [kN/m^2]') 
legend('Monte Carlo(z^n)','location','SE'); 
tit=['Pressure at random Kphi value']; 
title(tit) 
  
  
subplot(223) 
plot(z,Pdet,'b-'); hold on; 
  
errorbar(z(bars),Pmc_mean1(bars),Pmc_std1(bars),'r-'); hold on 
xlabel('Sinkage [mm]') 
ylabel('Pressure [kN/m^2]') 
  
legend('Deterministic','Monte Carlo(z^n)','location','SE'); 
tit=['Pressure at random Kphi value']; 
title(tit) 
  
%%%%%%%%%%%%%%%%%%%%% 
%Stochastic Approach% 
%%%%%%%%%%%%%%%%%%%%% 
  
%uncertainty amplitude 
r=1; 
Kphi_pc(1)=Kphi; 
Kphi_pc(2)=Kphi_pc(1)/r; 
Kphi_pc(3:chaos)=0;  
  
%calculate the orthoganality 
%collocation roots 
colroots=[-0.8611 0.8611 -0.34 0.34]; 
%calculate the collocation matrix 
for k=1:chaos 
    for l=1:chaos 
        Acol(k,l)=subs(Legendre_polynomial(l,x),colroots(k)); 
        coeff(k,l)=Kphi_pc(l)*Acol(k,l); 
    end 
    Kphi_col(k)=sum(coeff(k,:)); 
end 
         
%calculate the results 
disp('Start PolyChaos Simulation') 
timp=cputime; 
%calculate the pressure 
for k=1:chaos 
    Ppc1(:,k)=(Kc/b+Kphi_col(k))*(z/1000).^n; 
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end 
for nn=1:npoint 
    Ppc1(nn,:)=Acol\Ppc1(nn,:)'; 
end 
disp(['CPU PolyChaos Seconds=',num2str(cputime-timp)]); 
V2 = [1 0.33333 0.2 0.14286]; 
for ii=1:npoint 
    Ppc_mean1(ii)=Ppc1(ii,1); 
    Ppc_std1(ii)=sqrt((Ppc1(ii,2:chaos).^2)*V2(2:chaos)'/V2(1)); 
end 
  
save Result_Polynomial Ppc1 Ppc_mean1 Ppc_std1 bars z chaos 
  
%plot the figure of pressure versus sinkage 
figure(2) 
subplot(221) 
plot(z(bars)/100,Pdet(bars),'b-'),hold on; 
errorbar(z(bars)/100,Ppc_mean1(bars),Ppc_std1(bars),'r-'),hold on; 
xlabel('Sinkage [m]') 
ylabel('Pressure [KPa]') 
legend('Deterministic','PolyChaos') 
tit=['Pressure at random Kphi value']; 
title(tit) 
  
%%%%% 
%PDF% 
%%%%% 
NPC = 5000; 
Nedges = 200; 
pressure_edges = linspace(0,1000,Nedges); 
Map1 = [1;2;3;4]; 
  
xi=2*(rand(NPC,1)-0.5); 
  
for i=1:npoint 
  YPC=zeros(NPC,1); 
 for ic = 1:chaos 
     N = Map1(ic,:); 
    aa = Legendre_polynomial(N(1),xi);    
    YPC = YPC + Ppc1(i,ic).*aa; 
 end 
 PDF(1:Nedges,i)=histc(YPC,pressure_edges)/NPC/(pressure_edges(2)-
pressure_edges(1)); 
end   
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% final ensemble from Monte Carlo simulation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(3) 
fz=12; 
  
PDF(find(PDF<1.0e-4))=NaN; 
cs = contourf(z/100,pressure_edges,log10(PDF),linspace(-3.5,-1.5,16)); 
colorbar('vert'); 
text(0.025,875,'Probability density','FontSize',fz); 
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text(0.025,775,'   (log scale)','FontSize',fz); 
xlabel('Sinkage [m]','FontSize',fz,'FontWeight','bold'); 
ylabel('Pressure [kPa]','FontSize',fz,'FontWeight','bold'); 
zlabel(['Probability density'],'FontSize',fz,'FontWeight','bold'); 
  
figure(4) 
errorbar(z(bars),Pmc_mean1(bars)+50,Pmc_std1(bars),'r--');hold on 
  
errorbar(z(bars),Ppc_mean1(bars)+50,Ppc_std1(bars),'b:'),hold on; 
  
  
%%GOBI's Challenge 
gobi = 0.013*z.^2+3.437*z+48.55; 
GobiSTD = [7.5763 11.7258 17.9796 21.9345 23.4638]; 
GobiZ = [5 15 25 35 45]; 
Gobiplot = 0.013*GobiZ.^2+3.437*GobiZ+48.55; 
plot(z,gobi,'k-'); 
errorbar(GobiZ,Gobiplot,GobiSTD,'k-'); 
  
legend('Monte Carlo','PolyChaos','Experimental test') 
xlabel('Sinkage [mm]') 
ylabel('Pressure [kPa]') 
  

 

Subroutine for “Legendre_polynomial.m”: 
function f = Legendre_polynomial( n, x )   
% x in [-1,1]. Not normalized. 
% n = order + 1 
switch n   
  case  1,  f = 1 ;  
  case  2,  f = x ;  
  case  3,  f = (-1 + 3*x.^2.)/2 ;  
  case  4,  f = (x.*(-3 + 5.*x.^2))./2 ;  
  case  5,  f = (3 - 30*x^2 + 35*x^4)/8 ; 
end 
% switch n 
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Appendix C 

Appendix C shows all of the MATLAB m-files used to create the simulation frameworks shown 

in Chapter 5. Appendix C.1 shows the m-file for the rigid plate “stepping” on the deterministic 

surface. Appendix C.2 shows the m-file for the rigid wheel “stepping” on the deterministic 

surface. Appendix C.3 shows the m-file for the flexible wheel “stepping” on the deterministic 

surface. Appendix C.4 shows the m-file for the rigid wheel rolling on the deterministic (both the 

flat and semi-oval bump) surface. Appendix C.5 shows the m-file for the flexible wheel rolling 

on the deterministic (both the flat and semi-oval bump) surface. Appendices C.6 and C.7 shows 

the m-files for the rigid wheel and the flexible wheel rolling on a deterministic surface with 

stochastic soil, respectively. Appendices C.8 and C.9 gives descriptions on how to create the case 

studies for rolling on a stochastic surface and deterministic soil, and stochastic surface and 

stochastic soil, respectively. 

  

C.1 MATLAB m-file for rigid plate “stepping” on deterministic surface 
clear all 
  
X=2; %distance of x-axis 
Y=2; %distance of y-axis 
imax=41;  
jmax=41; 
imin=1; 
jmin=1; 
dx=X/(imax-1); 
dy=Y/(jmax-1); 
  
%%Create surface 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        Z(i,j)=1; %%[m] 
    end 
end 
  
xgrid=dx:dx:X; 
ygrid=dx:dy:Y; 
  
figure(1) 
mesh(xgrid,ygrid,Z) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
%%Assume Sandy Loam  ***INPUT 
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kc = 5.27;   %% [kN/m^n+1] 
kphi = 1515.04;  %% [kN/m^n+2] 
n = 0.7; 
  
%%INPUT number of cells for length of contact patch (odd number) 
numblength = 13; 
%%INPUT number of cells for width of contact patch (odd number) 
numbwidth = 13; 
  
%%width of contact patch 
b = (numbwidth-1)*dx; %% [m] 
%%length of contact patch 
l = (numblength-1)*dy %% [m] 
  
%%Input Force 
F = 18.67; %% [kN] 
A = b*l; 
p = F/A; 
  
sinkage = (p/((kc/b) + kphi))^(1/n); 
  
Zold = Z; 
for i = imin:numblength; 
    for j = ((jmax-1)/2)-5:((jmax-1)/2)-6+numbwidth-1; 
        Zold(i,j)=Z(i,j)-sinkage; %%[m] 
    end 
end 
  
figure(2) 
mesh(xgrid,ygrid,Zold) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
Zold1 = Zold; 
for i = numblength+1:numblength*2; 
    for j = ((jmax-1)/2)-5:((jmax-1)/2)-6+numbwidth-1; 
        Zold1(i,j)=Zold(i,j)-sinkage; %%[m] 
    end 
end 
  
figure(3) 
mesh(xgrid,ygrid,Zold1) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
Zold2 = Zold1; 
for i = (numblength*2)+1:numblength*3; 
    for j = ((jmax-1)/2)-5:((jmax-1)/2)-6+numbwidth-1; 
        Zold2(i,j)=Zold1(i,j)-sinkage; %%[m] 
    end 
end 
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figure(4) 
mesh(xgrid,ygrid,Zold2) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
figure(5) 
plot(ygrid,Zold2) 
ylim([0.985 1.002]) 
xlabel('y, (m)') 
ylabel('Height, (m)') 
 

C.2 MATLAB m-file for rigid wheel “stepping” on deterministic surface 
clear all 
  
X=2; %distance of x-axis 
Y=2; %distance of y-axis 
imax=41;  
jmax=41; 
imin=1; 
jmin=1; 
dx=X/(imax-1); 
dy=Y/(jmax-1); 
  
NoPts = imax-1; 
  
%%Creating deterministic flat surface of 1m height 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        Z(i,j)=1; %%[m] 
        P(i,j)=0; 
    end 
end 
  
xgrid=dx:dx:X; 
ygrid=dy:dy:Y; 
  
figure(1) 
mesh(xgrid,ygrid,Z) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
%%INPUT number of cells for length of contact patch (odd number) 
numblength = 13; 
%%INPUT number of cells for width of contact patch (odd number) 
numbwidth = 13; 
  
%%Assume Sandy Loam  ***INPUT 
kc = 5.27;   %% [kN/m^n+1] 
kphi = 1515.04;  %% [kN/m^n+2] 
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n = 0.7; 
  
%%width of contact patch 
bp = (numbwidth-1)*dx; %% [m] 
%%length of contact patch 
lp = (numblength-1)*dy %% [m] 
%%longitudinal slip ratio 
s = 0; 
%%shape change factor 
A1 = 1; 
  
Fz = 18.67*1000; %% [kN] 
  
zeta = 0:dy:lp; 
term1 = ((4*Fz)/(pi*bp*lp)); 
term2 = (1+A1*s*(zeta-(lp/2))); 
term3a = (zeta-(lp/2)).^2; 
term3b = (lp/2)^2; 
term3c = term3a/term3b; 
term3 = sqrt(1-term3c); 
p = ((term1.*term2.*term3)/1000)'; 
  
vectorzero(NoPts,1)=0; 
Vold = vectorzero; 
[M,N] = size(p); 
Vold(1:M,1)=p(1:M); 
Vold1 = Vold; 
Vold1(M+1:(M*2),1)=p(1:M); 
Vold2=Vold1; 
Vold2((M*2)+1:(M*3),1)=p(1:M); 
  
pvector = Vold2; 
onevector = ones(1,NoPts); 
pressure = pvector*onevector; 
  
sinkage = (pressure./((kc/bp) + kphi)).^(1/n); 
  
Zold = Z;     
for i = imin:numblength; 
    for j = ((jmax-1)/2)-5:((jmax-1)/2)-6+numbwidth-1; 
        Zold(i,j)=Z(i,j)-sinkage(i,j); %%[m] 
    end 
end 
  
figure(2) 
%plot(xgrid,Zold) 
mesh(xgrid,ygrid,Zold) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
Zold1 = Zold; 
for i = numblength+1:numblength*2; 
    for j = ((jmax-1)/2)-5:((jmax-1)/2)-6+numbwidth-1; 
        Zold1(i,j)=Zold(i,j)-sinkage(i,j); %%[m] 
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    end 
end 
  
figure(3) 
mesh(xgrid,ygrid,Zold1) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
Zold2 = Zold1; 
for i = (numblength*2)+1:numblength*3; 
    for j = ((jmax-1)/2)-5:((jmax-1)/2)-6+numbwidth-1; 
        Zold2(i,j)=Zold1(i,j)-sinkage(i,j); %%[m] 
    end 
end 
  
figure(4) 
mesh(xgrid,ygrid,Zold2) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
figure(5) 
plot(ygrid,Zold2) 
ylim([0.985 1.002]) 
xlabel('y, (m)') 
ylabel('Height, (m)') 
  
 

C.3 MATLAB m-file for flexible wheel “stepping” on deterministic surface 
clear all 
  
X=2; %distance of x-axis 
Y=2; %distance of y-axis 
imax=41;  
jmax=41; 
imin=1; 
jmin=1; 
dx=X/(imax-1); 
dy=Y/(jmax-1); 
  
NoPts = imax-1; 
  
%%Creating deterministic flat surface of 1m height 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        Z(i,j)=1; %%[m] 
        P(i,j)=0; 
    end 
end 
  
xgrid=dx:dx:X; 



121 
 

ygrid=dy:dy:Y; 
  
figure(1) 
mesh(xgrid,ygrid,Z) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
%%INPUT number of cells for length of contact patch (odd number) 
numblength = 13; 
%%INPUT number of cells for width of contact patch (odd number) 
numbwidth = 13; 
  
%%Assume Sandy Loam  ***INPUT 
kc = 5.27;   %% [kN/m^n+1] 
kphi = 1515.04;  %% [kN/m^n+2] 
n = 0.7; 
  
%%width of contact patch 
bp = (numbwidth-1)*dx; %% [m] 
%%length of contact patch 
lp = (numblength-1)*dy %% [m] 
%%longitudinal slip ratio 
s = 0; 
%%shape change factor 
A1 = 1; 
  
Fz = 18.67*1000; %% [kN] 
  
zeta = 0:dy:lp; 
term1 = ((4*Fz)/(pi*bp*lp)); 
term2 = (1+A1*s*(zeta-(lp/2))); 
term3a = (zeta-(lp/2)).^2; 
term3b = (lp/2)^2; 
term3c = term3a/term3b; 
term3 = sqrt(1-term3c); 
p = ((term1.*term2.*term3)/1000)'; 
  
vectorzero(NoPts,1)=0; 
Vold = vectorzero; 
[M,N] = size(p); 
Vold(1:M,1)=p(1:M); 
Vold1 = Vold; 
Vold1(M+1:(M*2),1)=p(1:M); 
Vold2=Vold1; 
Vold2((M*2)+1:(M*3),1)=p(1:M); 
  
pvector = Vold2; 
onevector = ones(1,NoPts); 
pressure = pvector*onevector; 
  
sinkage = (pressure./((kc/bp) + kphi)).^(1/n); 
  
%%deflection of pneumatic wheel 
%%deflection is function of radius of wheel and sinkage 
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radius = (lp/2)*1000; 
  
adeflection = -2; 
bdeflection = 4.*radius-2.*sinkage; 
cdeflection = -(lp.^2) + (2.*radius.*sinkage) - (sinkage.^2);  
firstterm = sqrt(bdeflection.^2 - 4.*adeflection.*cdeflection); 
  
deflectionplus = ((-bdeflection + firstterm)./(2*adeflection)); 
deflectionminus = (-bdeflection - firstterm)./(2*adeflection); 
  
Zold = Z;     
for i = imin:numblength; 
    for j = ((jmax-1)/2)-5:((jmax-1)/2)-6+numbwidth-1; 
        Zold(i,j)=Z(i,j)-sinkage(i,j)-deflectionplus(i,j); %%[m] 
    end 
end 
  
figure(2) 
%plot(xgrid,Zold) 
mesh(xgrid,ygrid,Zold) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
Zold1 = Zold; 
for i = numblength+1:numblength*2; 
    for j = ((jmax-1)/2)-5:((jmax-1)/2)-6+numbwidth-1; 
        Zold1(i,j)=Zold(i,j)-sinkage(i,j)-deflectionplus(i,j); %%[m] 
    end 
end 
  
figure(3) 
mesh(xgrid,ygrid,Zold1) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
Zold2 = Zold1; 
for i = (numblength*2)+1:numblength*3; 
    for j = ((jmax-1)/2)-5:((jmax-1)/2)-6+numbwidth-1; 
        Zold2(i,j)=Zold1(i,j)-sinkage(i,j)-deflectionplus(i,j); %%[m] 
    end 
end 
  
figure(4) 
mesh(xgrid,ygrid,Zold2) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
figure(5) 
plot(ygrid,Zold2) 
ylim([0.985 1.002]) 
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xlabel('y, (m)') 
ylabel('Height, (m)') 
 

C.4 MATLAB m-file for rigid wheel rolling on deterministic surface 

The MATLAB code that was created for the semi-oval bump was very similar. The only 

difference was that the deterministic flat surface was changed to the deterministic semi-oval 

bump created with the following code. This semi-oval bump was also created for the rolling of 

the flexible wheel case. 

MATLAB m-file for semi-oval bump: 

%%Creating deterministic nonflat surface of 1m height 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        Z(i,j)=1; %%[m] 
        S(i,j)=0; 
    end 
end 
for i = 15:25; 
    for j = jmin:jmax-1; 
        Z(i,j)=1.004; %%[m] 
    end 
end 
for i = 17:23; 
    for j = jmin:jmax-1; 
        Z(i,j)=1.008; %%[m] 
    end 
end 
for i = 19:21; 
    for j = jmin:jmax-1; 
        Z(i,j)=1.012; %%[m] 
    end 
end 
  
figure(1) 
mesh(xgrid,ygrid,Z) 
zlim([0.95 1.05]) 
xlabel('x') 
ylabel('y') 
zlabel('Height, (m)') 
 

MATLAB m-file for simulation: 

clear all 
  
X=2; %distance of x-axis [m] 
Y=2; %distance of y-axis [m] 
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imax=41;  
jmax=41; 
imin=1; 
jmin=1; 
dx=X/(imax-1); 
dy=Y/(jmax-1); 
  
xgrid=dx:dx:X; 
ygrid=dy:dy:Y; 
  
%%Creating deterministic flat surface of 1m height 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        Z(i,j)=1; %%[m] 
        S(i,j)=0; 
    end 
end 
  
figure(1) 
mesh(xgrid,ygrid,Z) 
zlim([0.95 1.05]) 
xlabel('x') 
ylabel('y') 
zlabel('Height, (m)') 
  
%%INPUT number of cells for length of contact patch (odd number) 
numblength = 13; 
%%INPUT number of cells for width of contact patch (odd number) 
numbwidth = 13; 
  
%%Assume Sandy Loam  ***INPUT 
kc = 5.27;   %% [kN/m^n+1] 
kphi = 1515.04;  %% [kN/m^n+2] 
n = 0.7; 
  
%%width of contact patch 
bp = (numbwidth-1)*dx; %% [m] 
%%length of contact patch 
lp = (numblength-1)*dy; %% [m] 
%%longitudinal slip ratio   ***INPUT 
s = 0; 
%%shape change factor    ***INPUT 
A1 = 1; 
  
%%Vertical Force 
Fz = 18.67*1000; %% [kN] 
  
zeta = 0:dy:lp; 
  
p = ((((4*Fz)/(pi*bp*lp)).*(1+A1*s*(zeta-(lp/2))).*sqrt(1-(((zeta-
(lp/2)).^2)/((lp/2)^2))))/1000)'; 
sinkage = (p./((kc/bp) + kphi)).^(1/n); 
  
%%% Bottom left corner is now at (1,1) 
%%%%INPUT (add number to move up)  **only effective for figure(2) 
h = 1; 
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%%%%INPUT  (add number to move right) 
k = 15; 
  
%%move center in y direction  
hc=((numblength+1)/2)+h;   
 %%move center in x direction 
kc=((numbwidth-1)/2)+k;  
  
n=2; 
a=(numblength-1)/2;  %number of points (length) 
b=(numbwidth-1)/2;  %number of points (width) 
x=1+h:1:numblength+h; 
  
y = b*(1-((x-hc)./a).^n).^(1/n)+kc; 
yminus = -b*(1-((x-hc)./a).^n).^(1/n)+kc; 
  
Y = round(y+1); 
Yminus = round(yminus+1); 
  
%%%Contact Patch for thesis 
Xaxis = 0:1:numblength-1; 
Ypaper1 = Yminus-16; 
Ypaper2 = Y-16; 
figure(2) 
plot(Ypaper1,Xaxis,Ypaper2,Xaxis) 
xlabel('Number of points in x direction') 
ylabel('Number of points in y direction') 
grid on 
  
coordinates(numblength,3)=0; 
coord = coordinates; 
coord(1:numblength,1) = x(1:numblength); 
coord(1:numblength,2) = Yminus(1:numblength); 
coord(1:numblength,3) = Y(1:numblength); 
  
Zold = Z;     
Maximum = (numblength+1)/2; 
for t = 1:Maximum 
    for i = coord(t,1)-1 
        for j = coord(t,2):coord(t,3) 
            S(i,j) = sinkage(t);             
        end 
    end 
end 
  
NoIterations = 33; 
for t = Maximum:NoIterations; 
    for i = coord(Maximum,1)-1:NoIterations-1 
        for j = coord(Maximum,2):coord(Maximum,3) 
            S(i,j) = sinkage(Maximum);             
        end 
    end 
end 
  
for i = NoIterations 
    for j = coord(7,2):coord(7,3); 
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        S(i,j) = sinkage(7);   
    end 
end 
  
for i = NoIterations+1 
    for j = coord(8,2):coord(8,3); 
        S(i,j) = sinkage(8);   
    end 
end 
  
for i = NoIterations+2 
    for j = coord(9,2):coord(9,3); 
        S(i,j) = sinkage(9);   
    end 
end 
  
for i = NoIterations+3 
    for j = coord(10,2):coord(10,3); 
        S(i,j) = sinkage(10);   
    end 
end 
  
for i = NoIterations+4 
    for j = coord(11,2):coord(11,3); 
        S(i,j) = sinkage(11);   
    end 
end 
  
for i = NoIterations+5 
    for j = coord(12,2):coord(12,3); 
        S(i,j) = sinkage(12);   
    end 
end 
  
for i = NoIterations+6 
    for j = coord(13,2):coord(13,3); 
        S(i,j) = sinkage(13);   
    end 
end 
  
Zold=Z-S; %%[m] 
  
figure(3) 
mesh(xgrid,ygrid,Zold) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
figure(5) 
plot(ygrid,Zold) 
ylim([0.985 1.002]) 
xlabel('y, (m)') 
ylabel('Height, (m)') 
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C.5 MATLAB m-file for flexible wheel rolling on deterministic surface 
clear all 
  
X=2; %distance of x-axis [m] 
Y=2; %distance of y-axis [m] 
imax=41;  
jmax=41; 
imin=1; 
jmin=1; 
dx=X/(imax-1); 
dy=Y/(jmax-1); 
  
xgrid=dx:dx:X; 
ygrid=dy:dy:Y; 
  
%%Creating deterministic flat surface of 1m height 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        Z(i,j)=1; %%[m] 
        S(i,j)=0; 
    end 
end 
  
figure(1) 
mesh(xgrid,ygrid,Z) 
zlim([0.95 1.05]) 
xlabel('x') 
ylabel('y') 
zlabel('Height, (m)') 
  
%%INPUT number of cells for length of contact patch (odd number) 
numblength = 13; 
%%INPUT number of cells for width of contact patch (odd number) 
numbwidth = 13; 
  
%%Assume Sandy Loam  ***INPUT 
kc = 5.27;   %% [kN/m^n+1] 
kphi = 1515.04;  %% [kN/m^n+2] 
n = 0.7; 
  
%%width of contact patch 
bp = (numbwidth-1)*dx; %% [m] 
%%length of contact patch 
lp = (numblength-1)*dy; %% [m] 
%%longitudinal slip ratio   ***INPUT 
s = 0; 
%%shape change factor    ***INPUT 
A1 = 1; 
  
%%Vertical Force 
Fz = 18.67*1000; %% [kN] 
  
zeta = 0:dy:lp; 
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p = ((((4*Fz)/(pi*bp*lp)).*(1+A1*s*(zeta-(lp/2))).*sqrt(1-(((zeta-
(lp/2)).^2)/((lp/2)^2))))/1000)'; 
sinkage = (p./((kc/bp) + kphi)).^(1/n); 
  
%%deflection of pneumatic wheel 
%%deflection is function of radius of wheel and sinkage 
radius = (lp/2)*1000; 
  
adeflection = -2; 
bdeflection = 4.*radius-2.*sinkage; 
cdeflection = -(lp.^2) + (2.*radius.*sinkage) - (sinkage.^2);  
firstterm = sqrt(bdeflection.^2 - 4.*adeflection.*cdeflection); 
  
deflectionplus = ((-bdeflection + firstterm)./(2*adeflection)); 
deflectionminus = (-bdeflection - firstterm)./(2*adeflection); 
  
%%% Bottom left corner is now at (1,1) 
%%%%INPUT (add number to move up)  **only effective for figure(2) 
h = 1; 
%%%%INPUT  (add number to move right) 
k = 15; 
  
%%move center in y direction  
hc=((numblength+1)/2)+h;   
 %%move center in x direction 
kc=((numbwidth-1)/2)+k;  
  
n=2; 
a=(numblength-1)/2;  %number of points (length) 
b=(numbwidth-1)/2;  %number of points (width) 
x=1+h:1:numblength+h; 
  
y = b*(1-((x-hc)./a).^n).^(1/n)+kc; 
yminus = -b*(1-((x-hc)./a).^n).^(1/n)+kc; 
  
Y = round(y+1); 
Yminus = round(yminus+1); 
  
%%%Contact Patch for thesis 
Xaxis = 0:1:numblength-1; 
Ypaper1 = Yminus-16; 
Ypaper2 = Y-16; 
figure(2) 
plot(Ypaper1,Xaxis,Ypaper2,Xaxis) 
xlabel('Number of points in x direction') 
ylabel('Number of points in y direction') 
grid on 
  
coordinates(numblength,3)=0; 
coord = coordinates; 
coord(1:numblength,1) = x(1:numblength); 
coord(1:numblength,2) = Yminus(1:numblength); 
coord(1:numblength,3) = Y(1:numblength); 
  
Zold = Z;     
Maximum = (numblength+1)/2; 
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for t = 1:Maximum 
    for i = coord(t,1)-1 
        for j = coord(t,2):coord(t,3) 
            S(i,j) = sinkage(t)+deflectionplus(t);             
        end 
    end 
end 
  
NoIterations = 33; 
for t = Maximum:NoIterations; 
    for i = coord(Maximum,1)-1:NoIterations-1 
        for j = coord(Maximum,2):coord(Maximum,3) 
            S(i,j) = sinkage(Maximum)+deflectionplus(Maximum);             
        end 
    end 
end 
  
for i = NoIterations 
    for j = coord(7,2):coord(7,3); 
        S(i,j) = sinkage(7)+deflectionplus(7);   
    end 
end 
  
for i = NoIterations+1 
    for j = coord(8,2):coord(8,3); 
        S(i,j) = sinkage(8)+deflectionplus(8);   
    end 
end 
  
for i = NoIterations+2 
    for j = coord(9,2):coord(9,3); 
        S(i,j) = sinkage(9)+deflectionplus(9);   
    end 
end 
  
for i = NoIterations+3 
    for j = coord(10,2):coord(10,3); 
        S(i,j) = sinkage(10)+deflectionplus(10);   
    end 
end 
  
for i = NoIterations+4 
    for j = coord(11,2):coord(11,3); 
        S(i,j) = sinkage(11)+deflectionplus(11);   
    end 
end 
  
for i = NoIterations+5 
    for j = coord(12,2):coord(12,3); 
        S(i,j) = sinkage(12)+deflectionplus(12);   
    end 
end 
  
for i = NoIterations+6 
    for j = coord(13,2):coord(13,3); 
        S(i,j) = sinkage(13)+deflectionplus(13);   
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    end 
end 
  
Zold=Z-S; %%[m] 
  
figure(3) 
mesh(xgrid,ygrid,Zold) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
Zold1 = Zold 
figure(5) 
plot(xgrid,Zold1); 
ylim([0.985 1.002]) 
xlabel('y, (m)') 
ylabel('Height, (m)') 
 
 
C.6 MATLAB m-file for rigid wheel rolling on deterministic surface with stochastic soil 
clear all 
  
X=2; %distance of x-axis [m] 
Y=2; %distance of y-axis [m] 
imax=41;  
jmax=41; 
imin=1; 
jmin=1; 
dx=X/(imax-1); 
dy=Y/(jmax-1); 
  
xgrid=dx:dx:X; 
ygrid=dy:dy:Y; 
  
%%Creating deterministic flat surface of 1m height 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        Z(i,j)=1; %%[m] 
        S(i,j)=0; 
    end 
end 
  
figure(1) 
mesh(xgrid,ygrid,Z) 
zlim([0.95 1.05]) 
xlabel('x') 
ylabel('y') 
zlabel('Height, (m)') 
  
%%INPUT number of cells for length of contact patch (odd number) 
numblength = 13; 
%%INPUT number of cells for width of contact patch (odd number) 
numbwidth = 13; 
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%%Assume Sandy Loam  ***INPUT 
kc = 5.27;   %% [kN/m^n+1] 
kphi = 1515.04;  %% [kN/m^n+2] 
n = 0.7; 
  
%%width of contact patch 
bp = (numbwidth-1)*dx; %% [m] 
%%length of contact patch 
lp = (numblength-1)*dy; %% [m] 
%%longitudinal slip ratio   ***INPUT 
s = 0; 
%%shape change factor    ***INPUT 
A1 = 1; 
  
%%Vertical Force 
Fz = 18.67*1000; %% [kN] 
  
zeta = 0:dy:lp; 
  
p = ((((4*Fz)/(pi*bp*lp)).*(1+A1*s*(zeta-(lp/2))).*sqrt(1-(((zeta-
(lp/2)).^2)/((lp/2)^2))))/1000)'; 
  
%%% Bottom left corner is now at (1,1) 
%%%%INPUT (add number to move up)  **only effective for figure(2) 
h = 1; 
%%%%INPUT  (add number to move right) 
k = 15; 
  
%%move center in y direction  
hc=((numblength+1)/2)+h;   
 %%move center in x direction 
kc=((numbwidth-1)/2)+k;  
  
n=2; 
a=(numblength-1)/2;  %number of points (length) 
b=(numbwidth-1)/2;  %number of points (width) 
x=1+h:1:numblength+h; 
  
y = b*(1-((x-hc)./a).^n).^(1/n)+kc; 
yminus = -b*(1-((x-hc)./a).^n).^(1/n)+kc; 
  
Y = round(y+1); 
Yminus = round(yminus+1); 
  
%%%Contact Patch for thesis 
Xaxis = 0:1:numblength-1; 
Ypaper1 = Yminus-16; 
Ypaper2 = Y-16; 
figure(2) 
plot(Ypaper1,Xaxis,Ypaper2,Xaxis) 
xlabel('Number of points in x direction') 
ylabel('Number of points in y direction') 
grid on 
  
coordinates(numblength,3)=0; 
coord = coordinates; 
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coord(1:numblength,1) = x(1:numblength); 
coord(1:numblength,2) = Yminus(1:numblength); 
coord(1:numblength,3) = Y(1:numblength); 
  
syms x 
%chaos dimension 
polynomial_dimension=1; 
polynomial_order=3; 
chaos=factorial(polynomial_dimension+polynomial_order)/factorial(polynomial_d
imension)/factorial(polynomial_order); 
%uncertainty amplitude 
r=5; 
Kphi_pc(1)=Kphi; 
Kphi_pc(2)=Kphi_pc(1)/r; 
Kphi_pc(3:chaos)=0;  
  
%calculate the orthoganality 
%collocation roots 
colroots=rand(1,4); 
%calculate the collocation matrix 
for k=1:chaos 
    for l=1:chaos 
        Acol(k,l)=subs(Legendre_polynomial(l,x),colroots(k)); 
        coeff(k,l)=Kphi_pc(l)*Acol(k,l); 
    end 
    Kphi_col(k)=sum(coeff(k,:)); 
end 
 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        kphis(i,j) = Kphi_col; 
    end 
end 
  
Zold = Z;     
Maximum = (numblength+1)/2; 
for t = 1:Maximum 
    for i = coord(t,1)-1 
        for j = coord(t,2):coord(t,3) 
            S(i,j) = ((p(t)./((kc/bp) + kphis(i,j))).^(1/n));         
        end 
    end 
end 
  
NoIterations = 33; 
for t = Maximum:NoIterations; 
    for i = coord(Maximum,1)-1:NoIterations-1 
        for j = coord(Maximum,2):coord(Maximum,3) 
            S(i,j) = ((p(Maximum)./((kc/bp) + kphis(i,j))).^(1/n));        
        end 
    end 
end 
  
for i = NoIterations 
    for j = coord(7,2):coord(7,3); 
        S(i,j) = ((p(7)./((kc/bp) + kphis(i,j))).^(1/n));   
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    end 
end 
  
for i = NoIterations+1 
    for j = coord(8,2):coord(8,3); 
        S(i,j) = ((p(8)./((kc/bp) + kphis(i,j))).^(1/n));   
    end 
end 
  
for i = NoIterations+2 
    for j = coord(9,2):coord(9,3); 
        S(i,j) = ((p(9)./((kc/bp) + kphis(i,j))).^(1/n));   
    end 
end 
  
for i = NoIterations+3 
    for j = coord(10,2):coord(10,3); 
        S(i,j) = ((p(10)./((kc/bp) + kphis(i,j))).^(1/n));   
    end 
end 
  
for i = NoIterations+4 
    for j = coord(11,2):coord(11,3); 
        S(i,j) = ((p(11)./((kc/bp) + kphis(i,j))).^(1/n));   
    end 
end 
  
for i = NoIterations+5 
    for j = coord(12,2):coord(12,3); 
        S(i,j) = ((p(12)./((kc/bp) + kphis(i,j))).^(1/n));   
    end 
end 
  
for i = NoIterations+6 
    for j = coord(13,2):coord(13,3); 
        S(i,j) = ((p(13)./((kc/bp) + kphis(i,j))).^(1/n));   
    end 
end 
  
Zold=Z-(S)/19; %%[m] 
  
figure(3) 
mesh(xgrid,ygrid,Zold) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
figure(5) 
plot(ygrid,Zold) 
ylim([0.985 1.002]) 
xlabel('y, (m)') 
ylabel('Height, (m)') 
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C.7 MATLAB m-file for flexible wheel rolling on deterministic surface, stochastic soil 

clear all 
  
X=2; %distance of x-axis [m] 
Y=2; %distance of y-axis [m] 
imax=41;  
jmax=41; 
imin=1; 
jmin=1; 
dx=X/(imax-1); 
dy=Y/(jmax-1); 
  
xgrid=dx:dx:X; 
ygrid=dy:dy:Y; 
  
%%Creating deterministic flat surface of 1m height 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        Z(i,j)=1; %%[m] 
        S(i,j)=0; 
    end 
end 
  
figure(1) 
mesh(xgrid,ygrid,Z) 
zlim([0.95 1.05]) 
xlabel('x') 
ylabel('y') 
zlabel('Height, (m)') 
  
%%INPUT number of cells for length of contact patch (odd number) 
numblength = 13; 
%%INPUT number of cells for width of contact patch (odd number) 
numbwidth = 13; 
  
%%Assume Sandy Loam  ***INPUT 
kc = 5.27;   %% [kN/m^n+1] 
kphi = 1515.04;  %% [kN/m^n+2] 
n = 0.7; 
  
%%width of contact patch 
bp = (numbwidth-1)*dx; %% [m] 
%%length of contact patch 
lp = (numblength-1)*dy; %% [m] 
%%longitudinal slip ratio   ***INPUT 
s = 0; 
%%shape change factor    ***INPUT 
A1 = 1; 
  
%%Vertical Force 
Fz = 18.67*1000; %% [kN] 
  
zeta = 0:dy:lp; 
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p = ((((4*Fz)/(pi*bp*lp)).*(1+A1*s*(zeta-(lp/2))).*sqrt(1-(((zeta-
(lp/2)).^2)/((lp/2)^2))))/1000)'; 
sinkage = (p./((kc/bp) + kphi)).^(1/n); 
  
%%deflection of pneumatic wheel 
%%deflection is function of radius of wheel and sinkage 
radius = (lp/2)*1000; 
  
adeflection = -2; 
bdeflection = 4.*radius-2.*sinkage; 
cdeflection = -(lp.^2) + (2.*radius.*sinkage) - (sinkage.^2);  
firstterm = sqrt(bdeflection.^2 - 4.*adeflection.*cdeflection); 
  
deflectionplus = ((-bdeflection + firstterm)./(2*adeflection)); 
deflectionminus = (-bdeflection - firstterm)./(2*adeflection); 
  
%%% Bottom left corner is now at (1,1) 
%%%%INPUT (add number to move up)  **only effective for figure(2) 
h = 1; 
%%%%INPUT  (add number to move right) 
k = 15; 
  
%%move center in y direction  
hc=((numblength+1)/2)+h;   
 %%move center in x direction 
kc=((numbwidth-1)/2)+k;  
  
n=2; 
a=(numblength-1)/2;  %number of points (length) 
b=(numbwidth-1)/2;  %number of points (width) 
x=1+h:1:numblength+h; 
  
y = b*(1-((x-hc)./a).^n).^(1/n)+kc; 
yminus = -b*(1-((x-hc)./a).^n).^(1/n)+kc; 
  
Y = round(y+1); 
Yminus = round(yminus+1); 
  
%%%Contact Patch for thesis 
Xaxis = 0:1:numblength-1; 
Ypaper1 = Yminus-16; 
Ypaper2 = Y-16; 
figure(2) 
plot(Ypaper1,Xaxis,Ypaper2,Xaxis) 
xlabel('Number of points in x direction') 
ylabel('Number of points in y direction') 
grid on 
  
coordinates(numblength,3)=0; 
coord = coordinates; 
coord(1:numblength,1) = x(1:numblength); 
coord(1:numblength,2) = Yminus(1:numblength); 
coord(1:numblength,3) = Y(1:numblength); 
  
syms x 
%chaos dimension 
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polynomial_dimension=1; 
polynomial_order=3; 
chaos=factorial(polynomial_dimension+polynomial_order)/factorial(polynomial_d
imension)/factorial(polynomial_order); 
%uncertainty amplitude 
r=5; 
Kphi_pc(1)=Kphi; 
Kphi_pc(2)=Kphi_pc(1)/r; 
Kphi_pc(3:chaos)=0;  
  
%calculate the orthoganality 
%collocation roots 
colroots=rand(1,4); 
%calculate the collocation matrix 
for k=1:chaos 
    for l=1:chaos 
        Acol(k,l)=subs(Legendre_polynomial(l,x),colroots(k)); 
        coeff(k,l)=Kphi_pc(l)*Acol(k,l); 
    end 
    Kphi_col(k)=sum(coeff(k,:)); 
end 
 
for i = imin:imax-1; 
    for j = jmin:jmax-1; 
        kphis(i,j) = Kphi_col; 
    end 
end 
 
Zold = Z;     
Maximum = (numblength+1)/2; 
for t = 1:Maximum 
    for i = coord(t,1)-1 
        for j = coord(t,2):coord(t,3) 
            S(i,j) = ((p(t)./((kc/bp) + 
kphis(i,j))).^(1/n))+deflectionplus(t);         
        end 
    end 
end 
  
NoIterations = 33; 
for t = Maximum:NoIterations; 
    for i = coord(Maximum,1)-1:NoIterations-1 
        for j = coord(Maximum,2):coord(Maximum,3) 
            S(i,j) = ((p(Maximum)./((kc/bp) + 
kphis(i,j))).^(1/n))+deflectionplus(Maximum);        
        end 
    end 
end 
  
for i = NoIterations 
    for j = coord(7,2):coord(7,3); 
        S(i,j) = ((p(7)./((kc/bp) + kphis(i,j))).^(1/n))+deflectionplus(7);   
    end 
end 
  
for i = NoIterations+1 
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    for j = coord(8,2):coord(8,3); 
        S(i,j) = ((p(8)./((kc/bp) + kphis(i,j))).^(1/n))+deflectionplus(8);   
    end 
end 
  
for i = NoIterations+2 
    for j = coord(9,2):coord(9,3); 
        S(i,j) = ((p(9)./((kc/bp) + kphis(i,j))).^(1/n))+deflectionplus(9);   
    end 
end 
  
for i = NoIterations+3 
    for j = coord(10,2):coord(10,3); 
        S(i,j) = ((p(10)./((kc/bp) + kphis(i,j))).^(1/n))+deflectionplus(10);   
    end 
end 
  
for i = NoIterations+4 
    for j = coord(11,2):coord(11,3); 
        S(i,j) = ((p(11)./((kc/bp) + kphis(i,j))).^(1/n))+deflectionplus(11);   
    end 
end 
  
for i = NoIterations+5 
    for j = coord(12,2):coord(12,3); 
        S(i,j) = ((p(12)./((kc/bp) + kphis(i,j))).^(1/n))+deflectionplus(12);   
    end 
end 
  
for i = NoIterations+6 
    for j = coord(13,2):coord(13,3); 
        S(i,j) = ((p(13)./((kc/bp) + kphis(i,j))).^(1/n))+deflectionplus(13);   
    end 
end 
  
Zold=Z-(S)/34; %%[m] 
  
figure(3) 
mesh(xgrid,ygrid,Zold) 
zlim([0.95 1.05]) 
xlabel('x, (m)') 
ylabel('y, (m)') 
zlabel('Height, (m)') 
  
figure(5) 
plot(ygrid,Zold) 
ylim([0.985 1.002]) 
xlabel('y, (m)') 
ylabel('Height, (m)') 
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C.8 MATLAB m-file for rolling on stochastic surface with deterministic soil 

The MATLAB m-file used to produce the simulation of a rigid wheel rolling on a stochastic 

surface with deterministic soil is similar to the MATLAB m-file displayed in Appendix C.4 

(Simulation of rigid wheel rolling on deterministic terrain and deterministic soil parameters). The 

only difference is that the stochastic terrain profile method developed in this thesis is 

incorporated into the m-file instead of the flat deterministic terrain profile (MATLAB m-file 

introduced in Appendix A is inserted in MATLAB m-file simulation in Appendix C.4). 

The MATLAB m-file used to produce the simulation of a flexible wheel rolling on a stochastic 

surface with deterministic soil is similar to the MATLAB m-file displayed in Appendix C.5 

(Simulation of flexible wheel rolling on deterministic terrain and deterministic soil parameters). 

The only difference is that the stochastic terrain profile method developed in this thesis is 

incorporated into the m-file instead of the flat deterministic terrain profile (MATLAB m-file 

introduced in Appendix A is inserted in MATLAB m-file simulation in Appendix C.5). 

 

 

C.9 MATLAB m-file for rolling on stochastic surface with stochastic soil 

The MATLAB m-file used to produce the simulation of a rigid wheel rolling on a stochastic 

surface with stochastic soil is similar to the MATLAB m-file displayed in Appendix C.5 

(Simulation of rigid wheel rolling on deterministic terrain and stochastic soil parameters). The 

only difference is that the stochastic terrain profile method developed in this thesis is 

incorporated into the m-file instead of the flat deterministic terrain profile (MATLAB m-file 

introduced in Appendix A is inserted in MATLAB m-file simulation in Appendix C.5). 

The MATLAB m-file used to produce the simulation of a flexible wheel rolling on a stochastic 

surface with stochastic soil is similar to the MATLAB m-file displayed in Appendix C.6 

(Simulation of flexible wheel rolling on deterministic terrain and stochastic soil parameters). The 

only difference is that the stochastic terrain profile method developed in this thesis is 

incorporated into the m-file instead of the flat deterministic terrain profile (MATLAB m-file 

introduced in Appendix A is inserted in MATLAB m-file simulation in Appendix C.6). 


