Effects of Input Power Factor Correction on Variable Speed Drive Systems

Shiyoung Lee

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

> Doctor of Philosophy in Electrical and Computer Engineering

> > Krishnan Ramu, Chair Dan D. Chen Werner E. Kohler Saifur Rahman Hugh F. VanLandingham

February 17, 1999 Blacksburg, Virginia

Keywords: C-Dump Converter, Switched Reluctance Motor, Brushless DC Motor, Efficiency, Loss Model

Effects of Input Power Factor Correction on Variable Speed Drive Systems

Shiyoung Lee

Abstract

The use of variable speed drive (VSD) systems in the appliance industry is growing due to emerging high volume of fractional horsepower VSD applications. Almost all of the appliance VSDs have no input power factor correction (PFC) circuits. This results in harmonic pollution of the utility supply which could be avoided.

The impact of the PFC circuit in the overall drive system efficiency, harmonic content, magnitude of the system input current and input power factor is particularly addressed in this dissertation along with the development of analytical methods applicable to the steady-state analysis of input power factor corrected VSD systems.

Three different types of motors - the switched reluctance motor (SRM), permanent magnet brushless dc motor (PMBDC) and dc motor (DCM) are employed in this study. The C-dump converter topology, a single switch per phase converter, is adopted for the prototype SRM- and PMBDC-based VSD systems. The conventional full-bridge converter is used for DCM-based VSD systems. Four-quadrant controllers, utilizing PI speed and current control loops for the PMBDC- and DCM-based VSD system, are developed and their design results are verified with experiment and simulation. A single-quadrant controller with a PI speed feedback loop is employed for the SRM-based VSD system.

The analysis of each type of VSD system includes development of loss models and establishment of proper operational modes. The magnitude of the input current harmonic spectra is measured and compared with and without a front-end PFC converter. One electromagnetic compatibility (EMC) standard, IEC 1000-3-2 which describes the limitation on harmonic current emission is modified for 120V ac system. This modified standard is utilized as the reference to evaluate the measured input current harmonics. The magnitude of input current harmonics for a VSD system are greatly reduced with PFC preregulators. While the input PFC circuit draws a near sinusoidal current from an ac source, it lowers the overall VSD system efficiency and increases cost of the overall system.

To my beloved wife, Shinhui and our children, Byungro, Shinae and Eunae.

Acknowledgments

I would like to express thanks to my advisor, Professor Krishnan Ramu, for his continuing guidance, encouragement, and financial support throughout the course of my study. I would also like to give thanks to Professors Dan Y. Chen, Werner E. Kohler, Saifur Rahman and Hugh F. VanLandingham for serving as committee members and providing valuable suggestions.

A special thanks goes to Mr. Terry Jackson, of the U.S. Nuclear Regulatory Commission, for his help with simulation. Many thanks go to former and current members of Motion Control Systems Research Group who have provided me with various valuable support and have been a great source of inspiration.

I wish to express my sincerest gratitudes to my mother in Seoul and to my mother and fatherin-law in Dai-Heung, both in Korea, who beyond the gift of my life, have endowed me with a will to persevere against all odds. I dedicate this work to my beloved wife, Shinhui, and our children, Byungro, Shinae and Eunae. They have traveled a long and winding road beside me without any complaint. Without their love, this study wouldn't have been possible.

Most of all, I give thanks to the Lord Our God and the Holy Mother who provided me with the opportunity and wisdom for this graduate study.

Table of Contents

Abstract		ii
Dedicatio	n	iii
Acknowle	dgments	iv
Table of (Contents	v
List of Fi	πικας	
List of Ta	blog	····· viii
LIST OF TA	DIes	X11
Chapter 1	. Introduction	1
1.1	Background	1
1.2	Overview of Previous Research	6
	1.2.1 Single-Phase PFC Topologies	6
	1.2.2 Input PF-Corrected VSD Systems	8
1.3	Motivation and Objective	9
1.4	Dissertation Outline	11
Chapter 2	2. Input PFC Circuit	13
2.1	Introduction	
2.2	Principle of Operation of the Boost PFC Circuit	
2.3	Design of the Boost PFC Preregulator	
2.4	Efficiency Evaluation for the Boost PFC Preregulator	19
	2.4.1 Derivation of Loss Models	19
	2.4.2 Efficiency Evaluation with Analysis and Experiment	
2.5	Input Current Harmonics in the Boost PFC Preregulator	
2.6	Conclusions	
Chapter 3	3. Input PF-Corrected SRM-Based VSD System	27
3.1	Introduction	
3.2	Principle of Operation of SRM	
3.3	Analysis and Design of C-Dump Converter-Based SRM Drive	
	3.3.1 Overview of Single Switch Per Phase Converter Topologies	
	3.3.2 Principle of Operation of the C-Dump Converter	
	3.3.3 Analysis of C-Dump Converter-Based SRM Drive	
	3.3.4 C-Dump Converter Power Circuit Design	
3.4	Development of Controllers for the C-Dump Converter-Based	
	SRM Drive System	
	3.4.1 Unified Design Procedure for PI Speed and Current	
	Controllers for VSD Systems	

	3.4.2 Main PWM Controller for the C-Dump Converter-Based	
	SRM Drive System	52
	3.4.3 Auxiliary PWM Controller for the C-Dump Converter-Based	
	SRM Drive System	54
3.5	Design Verification of the Developed C-Dump Controller	55
	3.5.1 Experimental Verification	55
	3.5.2 Simulation of the C-dump Converter-Based SRM Drive System	58
3.6	Input PF-Corrected VSD System with SRM	63
	3.6.1 Implementation of the Proposed System	64
	3.6.2 Discussion on Experimental Method and Results	65
3.7	Conclusions	73
Chapter 4	4. UMD With SRM-Based VSD System	74
4.1	Introduction	74
4.2	UMD Topologies	75
	4.2.1 UMD for Dc Link-Based VSD System	75
	4.2.2 Topologies for the Charger Subsystem	76
	4.2.3 Topologies for the Discharger Subsystem	77
	4.2.4 Comparison of Switch VA Ratings of Charger and	
	Discharger Topologies	
4.3	SRM-Based VSD as an UMD System	
	4.3.1 Configuration of the Proposed UMD System	
	4.3.2 Analysis of Charger/Discharger Circuit	80
4.4	Experimental Verification	
	4.4.1 Experimental Setup and Method	
	4.4.2 Experimental Results and Discussion	
	4.4.3 System Performance	
4.5	Conclusions	
Chapter !	5. Input PF-Corrected PMBDC-Based VSD System	
5.1	Introduction	98
5.2	Principle of Operation of the Proposed C-Dump Converter-Based	
	PMBDC Drive System	
	5.2.1 Motoring Operation	101
	5.2.2 Regenerative Operation	101
5.3	Analysis and Design of the C-Dump Converter-Based	104
	5.2.1 Maximum Snood	104
	5.3.1 Waxiiiuiii Speeu	104 105
	5.3.2 Design Guidelines for the C-Dump Converter for DMRDC Drive	103 105
5 /	Four-Ouadrant Controller Development for C-Dump	103
5.4	Converter-Based PMBDC Drive	107
	5.4.1 Definition of Operational Quadrant	107
	2.1.1 Demition of Operational Quadrant	

	5.4.2 Implementation of Four-Quadrant Controller	109
	5.4.3 Experimental Verification of the Developed Controller	110
5.5	Input PF-Corrected PMBDC Drive	112
	5.5.1 Analysis and Design of the Input PF Corrected PMBDC Drive	112
	5.5.2 Experimental Setup and Method	118
	5.5.3 Discussion on Experimental Results	119
5.6	Conclusions	125

6.1	Introduction	
6.2	Analysis of DCM-Based VSD System	
	6.2.1 Derivation of Duty Cycle	
	6.2.2 Development of Loss Model	
6.3	Implementation of Four-Quadrant Controller	
6.4	Design Verification of the Developed Controller	
6.5	Input PF-Corrected DCM Drive	
	6.5.1 Experimental Setup	
	6.5.2 Efficiency Evaluation	
	6.5.3 Input Variables	
6.6	Conclusions	
Chapter '	7. Conclusions and Recommendations	
_		
7.1	Conclusions	
7.2	Recommendations for Future Study	
Appendix	A. Specifications of PFC and Buck Converters	
••	•	
Appendix	B. Motor Parameters	
r r		
Bibliogra	nhv	147
210110510	F 7	17/
Vita		150
v 11ca		······1J2

List of Figures

Figure 1.1	Flowchart for class determination of electrical equipments by IEC 1000-3-2 standard	3
Figure 1.2	Class D waveform envelope	3
Figure 1.3	Application of the Class D waveform envelope to input current of	
8	a single-phase diode rectifier circuit	4
Figure 1.4	A single-phase diode rectifier circuit with capacitor	5
Figure 1.5	Comparison of the input current harmonic magnitudes with two	
e	different input voltages	5
Figure 1.6	Classification of single-phase input PFC topologies for VSD systems	7
Figure 2.1	An example of current harmonic contents in diode rectifier circuit	
e	with capacitor	14
Figure 2.2	A simplified block diagram of a single-phase boost PFC circuit	16
Figure 2.3	Experimental test setup for efficiency measurement of the	
e	developed PFC preregulator	21
Figure 2.4	Measured and predicted efficiencies versus output power	
e	for the developed boost PFC preregulators	22
Figure 2.5	Error of prediction versus output power with the developed	
e	loss models for 300W and 2kW boost PFC preregulators	23
Figure 2.6	Typical waveforms of the 2kW PFC preregulator with 1.4kW load	25
Figure 2.7	Comparison of measured input current harmonic spectra from Figure 2.6	
C	with modified IEC 1000-3-2 Class A harmonic current limit	25
Figure 3.1	Operation of an 8/6 SRM	28
Figure 3.2	Ideal inductance profile and torque generation of the SRM	30
Figure 3.3	Single switch per phase converter for bifilar wound SRM	31
Figure 3.4	Single switch per phase converter with split dc power supply	32
Figure 3.5	Single switch per phase converter with energy dissipating resistor	32
Figure 3.6	Single switch per phase converter with C-dump energy recovery circuit	33
Figure 3.7(i)	Equivalent C-dump converter circuit per phase	34
Figure 3.7(ii)	Relationships between gate signals and currents	34
Figure 3.8(i)	Definition of operational modes	35
Figure 3.8(ii)	Five modes of operation of a phase	35
Figure 3.9	Block diagram of the proposed C-dump converter-based SRM drive system	48
Figure 3.10	Generalized block diagram of a closed-loop VSD system with current	
	and speed feedback	48
Figure 3.11	Block diagram of current control loop	50
Figure 3.12	Block diagram of speed control loop	51
Figure 3.13	Block diagram of main PWM controller	52
Figure 3.14	Realization of a PI speed controller for the SRM-based VSD system	53
Figure 3.15	Simulated step speed response of the designed speed control loop	
	for 250W SRM at 1,000r/min	54
Figure 3.16	Simplified circuit diagram of the auxiliary PWM controller and	
	its operational waveforms	55

Figure 3.17(i)	Measured phase and recovery current waveforms of 8/6 250W	
0	SRM drive at 1,000r/min	56
Figure 3.17(ii)	Expanded phase and recovery current waveforms of 8/6 250W	
C ()	SRM drive at 1,000r/min	56
Figure 3.18	Transient experimental waveforms	57
Figure 3.19	Duty cycles and phase current versus rotor speed	57
Figure 3.20	Single-phase SRM model	58
Figure 3.21	Flux and torque data versus motor phase current and rotor position	
e	for a prototype 8/6 250W SRM	60
Figure 3.22	Three modes of operation of a phase for simulation	61
Figure 3.23	Flowchart for simulation of the C-dump converter-based SRM drive	62
Figure 3.24	Simulated SRM phase currents at 1,000r/min	63
Figure 3.25	Expanded current and PWM switching signals	
e	for main and recovery switches at 1,000r/min	63
Figure 3.26	Test setup for C-dump converter-based SRM drive with and	
e	without PFC circuit	64
Figure 3.27	Experimental waveforms of the line voltage, current and harmonic spectra	
e	of the line current without and with PFC preregulator at 2,300r/min	66
Figure 3.28	Comparison of the measured input current harmonics from	
e	Figure 3.27 with modified Class D limit	67
Figure 3.29(i)	Input power factor with and without PFC preregulator	67
Figure 3.29(ii)	Magnitude of input ac current with and without PFC preregulator	68
Figure 3.30	Friction and windage losses of a 250W SRM and Pittman DCM set	69
Figure 3.31	Efficiency calculation procedure for the SRM drive	
8	with and without PFC preregulator	70
Figure 3.32(i)	SRM drive system efficiency and normalized measured output	
8	without PFC preregulator	71
Figure 3.32(ii)	SRM drive system efficiency and normalized measured output	
8	with PFC preregulator	71
Figure 3.33	Efficiency prediction error versus SRM speed	
e	with and without PFC preregulator	72
Figure 4.1	The conventional UPS with VSD	75
Figure 4.2	The proposed UMD for VSD	75
Figure 4.3	Diode bridge rectifier with a buck converter	76
Figure 4.4	Diode bridge rectifier with a PFC preregulator and a buck converter	77
Figure 4.5	Charger with high frequency transformer isolation	77
Figure 4.6	Boost converter as a discharger	78
Figure 4.7	Forward converter as a discharger	78
Figure 4.8	The simplified block diagram of the proposed UMD system	80
Figure 4.9	Simplified circuit diagram of the proposed charger/discharger	81
Figure 4.10	Four operational modes of the proposed charger/discharger	81
Figure 4.11	Illustration of duty cycles in the proposed charger/discharger	81
Figure 4.12	Equivalent circuits of four operational modes in charger/discharger	83
Figure 4.13	Experimental test setup for UMD system with SRM-based VSD	88
<u> </u>	⊥ 1 √	-

Figure 4.14	Transient gate drive signals for charger/discharger	89
Figure 4.15	Current waveforms of SRM phase and inductor in	
C	charger/discharger at 1,000r/min	90
Figure 4.16	Transient current waveforms of SRM phase and inductor in	
C	charger/discharger at 1,000r/min	90
Figure 4.17(i)	Power flow in charging mode	91
Figure 4.17(ii)	Overall system efficiency and normalized output power	
	in charging mode without PFC preregulator	92
Figure 4.17(iii)	Overall system efficiency and normalized output power	
0	in charging mode with PFC preregulator	92
Figure 4.18	Error of prediction of the SRM-based UMD system efficiency	
C	with and without the PFC at charging mode	93
Figure 4.19(i)	Power flow in discharging mode.	94
Figure 4.19(ii)	Boost discharger efficiency in discharging mode	94
Figure 4.19(iii)	Efficiency prediction error versus SRM speed for boost	
C ()	discharger in UMD system	95
Figure 4.19(iv)	Overall system efficiency and normalized output power	
0	in discharging mode without PFC preregulator	96
Figure 4.19(v)	Prediction error versus SRM speed for UMD overall	
0	system efficiency in discharging mode	96
Figure 5.1	Definition of four operational quadrants	99
Figure 5.2	C-dump converter topology for three-phase PMBDC	.100
Figure 5.3	Voltage, current and airgap power waveforms of the proposed	
C	C-dump based PMBDC.	.100
Figure 5.4	First-quadrant motoring operation of PMBDC drive	.102
Figure 5.5	Fourth-quadrant regenerative operation of PMBDC drive	.103
Figure 5.6	Determination of operating quadrant with polarities of speed	
C	response and torque command	.108
Figure 5.7(i)	Commutation logic diagram for phase sequences a-b-c and a-c-b	.109
Figure 5.7(ii)	Waveforms of commutation logic circuit	.110
Figure 5.8	Simplified block diagram of the proposed four-quadrant PMBDC drive	.111
Figure 5.9	Current loop response of the experimental prototype drive	.111
Figure 5.10	Speed and current loop responses of the experimental	
-	prototype drive	.112
Figure 5.11	Friction and windage losses of a 4hp PMBDC motor from Kollmorgen	
-	and 1hp separately excited DCM from Integrated Electric	.113
Figure 5.12	Measured duty cycle of main phase switch, d and recovery switch, d_r	.114
Figure 5.13	Measured and predicted duty cycle of main phase switch	.115
Figure 5.14	Measured and predicted duty cycle of recovery switch	.115
Figure 5.15	Prediction error versus PMBDC speed for duty cycles for	
-	main and auxiliary switches	.116
Figure 5.16	Test setup for the input PF-corrected PMBDC-based VSD system	.119
Figure 5.17(i)	Efficiency of a 2kW buck converter	.120
Figure 5.17(ii)	Error of prediction versus output power for 2kW buck converter efficiency	.120

Figure 5.18	Predicted and measured overall system efficiency and normalized	
-	tested output of the PMBDC drive with and without PFC	
	(i) without PFC	121
	(ii) with PFC	122
Figure 5.19	Efficiency prediction error versus PMBDC speed	
	with and without PFC preregulator	122
Figure 5.20	Input current and its harmonic spectra without and with	
	PFC preregulator at 1,500r/min	
	(i) without PFC	123
	(ii) with PFC	124
Figure 5.21	Comparison of measured input current harmonics from Figure 5.20	
	with modified IEC 1000-3-2 Class D harmonic current limits	124
Figure 5.22	Magnitude of the input ac current with and without PFC	125
Figure 6.1	MOSFET-based H-bridge converter configuration for DCM drive	127
Figure 6.2	Operational waveforms of V_o and i_a in first-quadrant	128
Figure 6.3	Equivalent circuits of two operational modes in first-quadrant operation	128
Figure 6.4	Simplified block diagram of the developed DCM-based	
	VSD with four-quadrant controller	131
Figure 6.5	Simplified commutation logic diagram of the developed	
	four-quadrant controller for DCM-based VSD system	132
Figure 6.6	Speed loop response at ±1,000r/min	133
Figure 6.7	Flowchart for simulation of DCM-based VSD system	134
Figure 6.8	Simulated speed response at ±1,000r/min	134
Figure 6.9	Test setup for the input PF-corrected DCM-based VSD system	135
Figure 6.10	Measured and predicted overall system efficiency and normalized tested	
-	output power of DCM drive without and with PFC preregulator	137
Figure 6.11	Error of prediction versus speed for DCM-based VSD system	
	with and without PFC preregulator	138
Figure 6.12	Input current and its harmonic spectra of DCM drive at 1,500r/min	
	without and with PFC preregulator	139
Figure 6.13	Comparison of measured input current harmonics from Figure 6.12	
	with modified IEC 1000-3-2 Class D harmonic current limit	140
Figure 6.14	Input power factor with and without PFC preregulator	140
Figure 6.15	Magnitude of input ac current with and without PFC	141

List of Tables

Table 1.1	Original harmonic current limits for Class A and D equipments by IEC 1000-3-2 standard	4
Table 1.2	Modified harmonic current limits for Class A and D equipments with 120V power source	6
Table 2.1	Ratings for power components in the boost PFC preregulator	20
Table 2.2	Losses for power components in the boost PFC preregulator	20
Table 2.3	Statistical analysis of efficiency prediction errors for 300W and 2kW	
1000 2.5	PFC preregulators	24
Table 3.1	Ratings for key components in C-dump converter-based SRM drive	42
Table 3.2	Losses for key components in C-dump converter-based SRM drive	
Table 3.3	Base values and system parameters of the prototype SRM drive	47
Table 3.4	Transfer functions of functional blocks in a closed-loop VSD systems	49
Table 3.5	System and input matrices for simulation of a C-dump converter	
	based 250W SRM drive system	
Table 3.6	Statistical analysis of efficiency prediction errors for	
	SRM drive system with and without PFC preregulator	
Table 4.1	Charger switch VA rating comparison	
Table 4.2	Discharger switch VA rating comparison	
Table 4.3	Ratings for key power components in buck charger	
Table 4.4	Losses for key power components in buck charger	85
Table 4.5	Ratings for key power components in boost discharger	
Table 4.6	Losses for key power components in boost discharger	
Table 4.7	Statistical analysis of efficiency prediction errors for UMD	
	drive system with and without the PFC preregulator	
Table 4.8	Statistical analysis of efficiency prediction errors for boost discharger	
Table 4.9	Statistical analysis of efficiency prediction errors for SRM-based	
	UMD system in discharging mode without PFC preregulator	
Table 5.1	Definition of four operational quadrants	
Table 5.2	Decision of operational quadrant with polarities of speed and torque	108
Table 5.3	Statistical analysis results of prediction errors for main and	
	auxiliary switch duty cycles	116
Table 5.4	Ratings for key power components in C-dump PMBDC drive	117
Table 5.5	Losses for key power components in C-dump PMBDC drive	118
Table 5.6	Statistical analysis of efficiency prediction errors for 2kW buck converter .	121
Table 5.7	Statistical analysis of efficiency prediction errors for	
	PMBDC drive system with and without PFC preregulator	123
Table 6.1	Ratings of power components in DCM drive	130
Table 6.2	Losses of power components in DCM drive	130
Table 6.3	Switching logic for four quadrant operation of DCM-based VSD	131
Table 6.4	PI gains of the speed and current control loops	133
Table 6.5	Statistical analysis results of efficiency prediction errors	
	for DCM drive system with and without PFC preregulator	138