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(ABSTRACT)

This thesis investigates the behavior of two digital communication
systems based on Moving-Average Matched Filters (MAMF). In general,
matched filters are instrumental in detecting signals corrupted by noise as they
are designed to maximize the probability of detection of the transmitted signals.
The MAMF represents a subset of the class of matched filters.

The two communication systems under investigation are the classical
MAMF system and one of its modifications, the proposed MAMF system. In the
traditional system the N-dimensional signal vector, which encodes the bit to be
communicated, remains fixed throughout the whole communication process
(transmission and reception). In the proposed system the encoding N-
dimensional signal vector is composed of K linearly independent basis vectors
spanning a signal vector subspace of dimension M (= N/K). By combining these
basis vectors in the receiver, any vector in the signal vector subspace can be

formed in order to maximize the Output Signal-to-Noise Ratio (OSNR).

The relative measure of comparison for the two systems is the Signal-to-
Noise Ratio Improvement (SNRI). The SNRI is the ratio of the OSNR, which is
measured at the output of the receiver, to the Input Signal-to-Noise Ratio
(ISNR), which is measured at the input of the receiver. Since the ISNR is fixed
for a particular transmitted signal vector and noise characteristics, an attempt is
made to maximize the SNRI by maximizing the OSNR.

The OSNR of a MAMF is a function of the signal vector and the



autocorrelation of the noise. The OSNR reaches an absolute maximum when the
signal vector is the eigenvector associated with the smallest eigenvalue of the
Toeplitz matrix formed from the actual noise autocorrelation. For a practical
implementation the noise autocorrelation is estimated from the noise samples
obtained from gaps between transmissions; thus producing estimates. Since
there is a limit to the number of noise samples taken, the estimated
autocorrelation will stochastically deviate from the actual autocorrelation.
Therefore the OSNR random variable will approach its optimal value as the
estimated autocorrelation approaches the actual autocorrelation but it will not
attain that optimal value unless the signal vector is the correct eigenvector.
Under these conditions the SNRI varies accordingly and can sometimes become
negative on the decibel scale; a situation which is, of course, highly undesirable
in communications. This results from bad autocorrelation estimates or poor
selection of the signal vectors to be transmitted. The latter can be a result of
optimizing the system for one environment while subsequently subjecting it to an

entirely different one.

The two systems are compared and their performance evaluated in terms
of SNRI, for different signal vectors and over various noise colors. The noise is
assumed to be narrowband Gaussian. In addition, the colored noise is assumed
to be stationary for a single bit transmission. Initially, the comparison takes
place using the actual autocorrelation sequence and is then repeated using the
autocorrelation sequence estimates, obtained with the classical biased estimator.

The procedure is then repeated for more broadband stationary Gaussian noise.

The SNRI comparisons provide only a relative and not an absolute
measure of performance of the two systems. The latter is obtained by measuring
Bit Error Rates (BER) as a function of ISNR. For this purpose an optimal
detector design is presented in this work. Using the noise corrupted signal
vector, the encoding signal vectors, and the noise autocorrelation matrix, the
detector can make a decision on which signal vector was most likely transmitted
and hence which bit was most likely communicated. The Receiver Operating
Characteristic (ROC) is unique for each detector and is presented by plotting the
probability of error as a function of OSNR. The ROC represents the theoretical



basis for the BER results. The close correlation existing between the ROC and
the BER, as will be shown, enables the prediction of the performance of the

detector under various ISNR, noise colors, and choices of encoding signal vectors.

The flexibility that is introduced by the proposed system as a result of
linear combining creates the expectation that a more robust system can be
developed than the traditional MAMF. In other words, the proposed system will
deteriorate to a lesser degree than the traditional system when the detector
design is based on autocorrelation estimates. This is indeed established by the
SNRI and BER results, for a subset of the possible noise colors. Thus, the need
arises for a selector which, for every single bit transmission, will suggest the
system (proposed or traditional) to be used for most error-free detection, based
on SNRI as well as colored noise center frequency and bandwidth (pole location)
parameter estimates. The parameter estimator which will estimate the color of
the noise from the noise samples is implemented by the Burg method. It will be
shown that the [traditional/proposed] MAMF communication system which
incorporates the selector design, outperforms both the proposed and the

traditional MAMF communication systems.
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1.0 INTRODUCTION

A digital communication system is a system whose transmitter must
convey to its receiver a sequence of messages from a finite alphabet of a set
dimension L (Figure 1). This is accomplished by sequentially transmitting one
of these L different signal vectors, during a specified interval of time. These
messages might correspond to a set of numbers, or a digital representation of an

analog variable, or even numerical representations of symbols of an alphabet.

The physical medium through which the signal vector must travel
between the transmitter and the receiver is the channel. A common example of
a communication channel is the atmosphere through which electromagnetic
radiation travels. Additional examples are media which transmit acoustical
waveforms. Water, for instance, is the transmission medium for sonar systems,
which analyze high-frequency vibrations generated by, or reflected from, an
object. Sonar systems could be used to detect a submarine, or to study an
underwater canyon of unknown depth and size. Cables and wires, such as

telephone lines, are also channels.

If the channel were noiseless, so that the transmitted signal vector
reached the receiver undistorted, then the receiver would have no difficulty to
distinguish which message had been transmitted. Obviously, this is hardly a
realistic situation. Since the very initial developments of communication
systems, the processing of signals corrupted by noise has been a topic of
considerable study and importance in that field [4,5,13,16,17,19,20,23].

The distortion in a radio-communication channel is characterized by the

type of interference that is placed on the reception of electromagnetic energy
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radiated from the transmitter. One form of interference always present is
thermal noise in the antenna and the front-end components of the receiver
[7,14,15].  Another form of disturbance is electromagnetic radiation at
frequencies within the received band, or noise of a specific frequency content
which is known as colored noise. This work investigates the particular problem

of colored noise corrupting the transmitted signal vectors in the channel.

The major purpose of this thesis is to design an optimal detector for a
Moving-Average Matched Filter (MAMF) communication system after
examining the behavior of the system under ideal and estimated conditions.
Since the matched filter is designed to maximize the discrimination and
probability of detection of the corrupted signals, it is a key component of the
receiver system. The MAMF is a Finite Impulse Response (FIR) digital filter
and represents a subset of the class of matched filters. These FIR filters are
widely used due to their guarantee of stability, ease of implementation, and

efficient design.

Although there are many examples of previous work done on detection in
colored noise [4,5,9,18,22], this thesis specifically presents the discrete-time
derivation of the detector design as it focuses on two digital communication
systems, the traditional MAMF system and one of its modifications, the
proposed MAMF system [4]. The general structure of the traditional MAMF
communication system is presented in Figures 2 and 3. The system is composed
of the transmitter (Figure 2) and the receiver (Figure 3) separated by the
transmission medium or the channel. The data to be communicated, d, is
encoded in the transmitter. Each individual bit of data is encoded in a fixed N-

dimensional signal vector, s.. This vector is then transmitted through the

j-
medium where it is subject to additive colored noise w. The resulting
measurement vector r, next, enters the receiver. The Input Signal-to-Noise

Ratio (ISNR) of the vector r is measured at this point.

In order to design the MAMF, the set of encoding signals
{sg, 81, .-y 87_1} as well as the colored noise autocorrelation sequence ry, is

required. In a practical situation where no information regarding the noise
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characteristics is available, the noise autocorrelation must be estimated. The
effect of estimating the noise autocorrelation on the performance of the
traditional communication system has been investigated [3]. The noise
autocorrelation is estimated by a correlation estimator [3,4] which uses noise
samples, wg, obtained from gaps between transmissions. Since there is a limit to
the number of noise samples taken, the estimated autocorrelation sequence t,,,
will deviate from the actual autocorrelation sequence r,, [3]. The larger the
number of noise samples taken, the slower the transmission rate becomes. Under
ideal circumstances, the noise autocorrelation sequence used is the actual one,
thus assuming that the correlation estimator is 100% accurate. The classical
biased estimator is the correlation estimator that was shown by Becker [3] to be
the best choice for this particular problem. It is, therefore, used in this thesis
since it was shown to produce the highest mean SNRI and the smallest standard
deviation among numerous estimators, and for white, bandpass, and lowpass
noise. It is also a consistent estimator, which means that its estimates improve

as the length of the data sequence increases.

Since a single MAMF can be designed for every encoding signal 85, L
MAMTF are needed. After the MAMF bank is designed, the measurement vector
r (=8 4+ w ) is processed and the Output Signal-to-Noise Ratio (OSNR) is
measured at the output of each MAMF. The detector, then, based on the
information exiting each MAMF, makes a decision on which signal vector was
most likely transmitted and therefore which data bit was most probably

communicated.

The performance of the entire system is then measured in terms of Signal-
to-Noise Ratio Improvement (SNRI) which is the ratio of OSNR to ISNR. In
order to maximize the SNRI, one needs to maximize the OSNR since the ISNR

remains fixed for a particular signal vector and noise characteristics.

Up to this point many authors have completed work towards designing a
signal vector which maximizes the OSNR of the traditional MAMF system for a
particular noise color [4,5,24]. An undesirable situation can arise, though, if the

noise characteristics change or the noise becomes non-stationary during the
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transmission. This will render the signal vector non-optimal since it was
designed for one specific noise color. As a result the performance of the
communication system will suffer. Under these circumstances, the SNRI could
actually reach a value less than 1 ( negative in dB ), an observation indicating
that the MAMEF receiver system degraded the performance of the communication

system, rather than improving it.

The general structure of the proposed MAMF communication system is
displayed in Figures 2 and 4. In this system each N-dimensional signal vector
used for encoding the data d, is composed of K linearly independent basis vectors
spanning a signal vector subspace of dimension M (= N/K). Thus, the encoding
signal vector set is {Sj, Sy, ..., S;_;}. Each individual bit of data is now
encoded by the matrix S j and sent through the transmission medium where it is
subject to additive colored noise, w (Figure 2). Again the ISNR is measured at
the input of the receiver based on the N-dimensional received measurement
vector r. Also, the autocorrelation sequence is estimated after obtaining noise

samples, wg, from the gaps between transmissions [3].

In an attempt to maximize the OSNR, which is measured at the output of
each MAMF, the K linearly independent basis vectors of dimension M in the
matrix S ; are linearly combined in the following manner:

Sj = C]ls_]l + C]2S]2 + ...+ C]KS]K j = 0, 1, ceny L-].

where the coefficient vector c; is designed in such a fashion so as to ensure
maximum signal energy and thus maximum OSNR. The resulting combined

signal vector, §. is of dimension M and is used in conjunction with the

7
autocorrelation sequence - the actual r,,, under ideal conditions or the estimated
f,,, under practical conditions - to design the j-th MAMF. In order to account
for that shift in dimension - from N to M - the received vector r is combined to

produce:

f] = lel'l + Cj2r2 + ves + CjKrK J = 0, 1, ceny L"].
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which is now M-dimensional. The combined received vector i; is then processed

by the j-th MAMF (Figure 4). The OSNR is computed at the output of the
MAMTF and the performance of the overall receiving system is measured in terms
of SNRI. Next, the output of each of the L MAMF’s is considered by the
detector which determines which linearly independent basis vector set Sj was
most likely transmitted and thus which data bit was most probably

communicated.

The difference between the two communication systems lies in the
following: whereas in the receiver of the traditional MAMF system the signal
vector remains constant, in the receiver of the proposed MAMF system, any
signal vector in the M-dimensional subspace can be formed by combining the
linearly independent basis vectors of the signal space in order to maximize the
OSNR. In that way undesirable situations, like the one described for the
traditional MAMF system, are less likely to surface, thus ensuring a more robust

data communication.

The flexibility to adapt to different noise environments, as introduced by
the proposed system, creates the expectation that a more robust system than the
traditional MAMF can be implemented, in the sense that the proposed system
will deteriorate to a lesser degree than the traditional system when used under
practical conditions, where the noise autocorrelation is a priori unknown and
must be estimated. The final goal of this thesis is to design a selector which will
decide which receiving MAMF system is to be used for each individual bit
transmission, based on the estimation of the noise characteristics as well as the

detector design.

The concern of the primary goal of the thesis is the detection and
discrimination of the transmitted signal vectors. Other than the estimation of
the noise autocorrelation, which represents work already completed, as seen
previously, there is no emphasis placed on the explicit determination of the
signal and noise parameters. Nevertheless, the second goal of the thesis requires
the knowledge of the noise parameters in order for the selector to be able to

make a correct decision. Parameter estimation is one more field that has been
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the object of frenzied research activity during the last decades [2,5,7,8,9,10,21].
Due to the special nature of the noise - colored - modern spectral estimation
techniques are used to estimate frequency and bandwidth parameters of the
essentially narrowband noise [6]. It is shown that, based on this information, the
selector can identify the communication system that on average performs better,

or has the highest SNRI, under those noise conditions.

The theoretical development of both MAMF communication systems will
be reviewed in Chapter 2. In addition the detector design as well as the
estimation of the noise characteristics will be discussed. Chapter 3 presents the
incorporation of the overall design in the two MAMF communication systems.
Chapter 4 contains the presentation and evaluation of both communication
systems in terms of SNRI results obtained by computer simulations. The noise
used for the simulations has a Gaussian distribution. Different noise
characteristics and encoding signal vector sets are used and both ideal and
practical conditions are examined. An absolute measure of performance is also
evaluated in Chapter 4 by measuring Bit Error Rates (BER’s) as a function of
ISNR, again for both ideal and practical conditions. Chapter 5 presents BER
results with the communication system selector incorporated in the design, and
its overall performance is assessed. The overall findings and evaluation of the

system is discussed in the Conclusions, Chapter 6.
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2.0 THEORETICAL DEVELOPMENT

In this chapter the theory behind both the traditional and the proposed
MAMF communication systems will be developed. Specifically, this chapter will
first present the characteristics of the colored noise. Next, the properties of the
MAMTF and the correlation estimator, which are essential to the communication
systems examined, will be investigated. Meanwhile, the properties and form of
the traditional communication system will be discussed followed by those of the
proposed communication system. The latter will include a presentation of the
structure of the transmitted signal vector as well as the structure and linear
combination of the received signal. In addition, the design of the optimal

detector will be presented.
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2.1 NOISE CHARACTERISTICS

The noise which corrupts the transmitted signals in the channel is
assumed to be Gaussian, zero-mean with a noise autocorrelation sequence ry,

which is defined as follows:
Tw(7) = E{w;  ,wi} 7=0,..,N-1 (2.1)

Furthermore, the noise is assumed to be wide-sense stationary only for the
duration of the observation interval. Since the noise is colored and wide-sense
stationary, the autocorrelation sequence is non-negative definite and well-
behaved [7]. The vector form of (2.1) defines the Toeplitz colored noise

autocorrelation matrix R,, as,

7'w(O) rw('l) .- rw(°N+1)
"'w(l)
Ry = E{w wi} = (2.2)
rg(N-1 rwl0
i (N-1) (0) |

where ( ) indicates the Hermitian transpose. Since the noise is assumed to be

wide-sense stationary, r,(-7) = rg(7) [7] and thus R,, is also Hermitian.

Thus, the noise autocorrelation matrix R,, (NxN) has the following
properties which are used extensively for the detector design as well as the
MAMEF receiver system design:

1. Ry = REHT = (RI)* = RE by the definition of Hermitian matrices.

2. Rg! = (Rz)¥ by the definition of Hermitian matrices.

2.0 Theoretical Development 12



Proof. Assume that the inverse of Ry, exists and is designated Rg!. Then,
R,Rp' =1 = (RuRGNT =1
= (R"ITII)HRUJ =1
= Rzl = RzH¥ 0
3. R, =FA F~Ll, where F is the transformation matrix containing the
eigenvectors f; of the matrix R, as its columns, and A is the Jordan
canonical form containing the eigenvalues X; of Ry, [1]. In other words, R,
and A are similar matrices (Ry, ~ A).
(a) If Ry, has rank N, it has N distinct eigenvalues. Then, its eigenvectors

are independent and orthogonal, can be constructed as orthonormal, and

F is unitary, where
FHF = FFH =1 (2.3)

Thus, Ry, has a diagonal matrix representation, with A being a diagonal

matrix containing the eigenvalues of Ry, [1], or A = diag {},}{'_ ;. Then,
Ry=FAF1=FAFH (2.4)
Note that (2.4) can be written as,
Ry,F=FA = (2.5.a)
FHRH — \HFH (2.5.b)
Since R,, is Hermitian, right multiplication of (2.5.b) by F yields

FAR,F = AHFHF = FHR,F = AH (2.6)
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Left multiplication of (2.5.a) by FH yields
FAR,F=FAF A=A (2.7)

Thus A = A and therefore the eigenvalues A; are real.

(b) If Ry, has rank < N, it has at least one repeated eigenvalue. In this
case, the eigenvectors are not necessarily orthogonal. Such eigenvectors
may nevertheless be made orthogonal or orthonormal, for example by
the Gram-Schmidt orthogonalization procedure [9] (Appendix A).
Therefore, all the properties of (a) also apply for (b).

Thus, R,, has N orthogonal / orthonormal eigenvectors and its eigenvalues

are real.

4. Ry, >0, or the noise autocorrelation sequence is non-negative definite.

Therefore its eigenvalues are greater than or equal to zero.

Proof. Since Ry, is a non-negative definite matrix then, for any arbitrary

vector x,
xAR, x >0 (2.8)
In addition, since A is diagonal and }; € R, then (2.5.a) becomes,

Ry f = A f, (2.9)

] ('

where f; is the i-th eigenvector associated with the i-th eigenvalue A; of the
noise autocorrelation matrix R,,. Since (2.8) holds for any vector x, then it

must hold for any of the eigenvectors f;, fy, ..., f5. Hence according to
(2.8),

R, f >0
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and by considering (2.9),

Finally from (2.3),
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2.2 TRANSMISSION AND RECEPTION OF SIGNALS

2.2.1 Transmission of signals

The thesis investigates two MAMF communication systems. In the
traditional system, as seen from Figure 2, every individual bit of data to be

communicated is encoded in a fixed N-dimensional signal vector s It
8;=[s: s; sT j=0,1,..,L1 (2.10)
y] ]1 12 .o JN ] y Ly eeey .
where L depends upon the type of communication used. For instance, for a
binary communication system L = 2 so that s; would encode a ”0” and s; would
encode a "1”. In the channel, every signal element is corrupted by a colored
noise vector w,
w=[w, w walT (2.11)
hased 1 2 e N .
to produce the received or observed vector r:

In the proposed system, as seen from Figure 2, the data bit to be
transmitted is encoded by a matrix which has as its columns K linearly
independent signal basis vectors of dimension M (=N/K). The signal matrix is
designated S 5

S] = [SJI 8]2 oee S]K] J = 0, ]., ceey L-1 (2.13)

where

— T ;
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Similarly, for the proposed system, the colored noise matrix W, displays the

following format:
W=[w wy .. wg] (2.15)
where
W, = [wy W . Wit (2.16)

The colored noise matrix W, which has N (=K xM) elements, corrupts the

transmitted signal matrix to produce the received or observed matrix Rp:

The K linearly independent basis vectors span a signal vector subspace of
dimension K, within an M-dimensional space. Since any vector in the subspace
can be represented by a linear combination of its basis vectors, the whole signal
vector subspace is effectively transmitted rather than a single signal vector. By
linearly combining the basis vectors, one can create the signal vector that ensures
maximum probability of detection and discrimination of the transmitted signal
vectors. This flexibility introduced by the proposed communication system is a
solution to the problem of non-stationary noise where the noise characteristics

vary with every bit transmission [4].

The purpose of the proposed MAMF receiver system is to detect and
distinguish which set of basis vectors is transmitted. In order to accomplish this,
one must ensure that a linear combination of the basis vectors of the j-th signal
subspace will not result in a vector which belongs to the :-th signal subspace. In
other words, the signal vector subspaces must not overlap. Thus each set of
basis vectors must be orthogonal to every other set of basis vectors, in order to

minimize the probability of error [4,25].

The two designations rp and Rp, are theoretically created to represent

the noise corrupted signals that enter the receiver of the traditional and the
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proposed communication system respectively, as observed data sequences of
finite length. Although rp is an N-dimensional vector and it is capable of the
aforementioned representation, Rp is an M x K matrix and it is not. Evidently,
Rp has to be converted to an N-dimensional vector, in order to truly represent
an observed data sequence of finite length. One way to accomplish this is to
transmit the linearly independent basis vectors sequentially [4,25], thus resulting

in:
rp = (814w T | (3j04wa)T | oo | (35+wg) 1T i (2.18)

Now rp is a vector of dimension N (=MxK). Additional methods of
transmission for the proposed system, as well as their restrictions will be looked

upon in Sections 2.2.3 and 2.2.4.

The colored noise is assumed stationary over every single data bit
transmission, or every single N-dimensional signal vector transmission. Thus the
colored noise characteristics must be estimated for every bit transmission. For
this reason noise samples wy, are obtained from the gaps between bit
transmissions to form the observed vector actually entering the MAMF

communication receiver:
1, = [wl | 15] (Proposed syst 2.19
a=[wg | Tp posed system) (2.19.a)
— [wl | L sy
rq = [wg | rp] (Traditional system) (2.19.b)
At this point, (2.19) represents a single data bit transmission for either the

proposed or the traditional system as encoded by their respective transmission

schemes.

2.2.2 Linear Combination

In the proposed MAMF communication system, a signal vector subspace

of dimension K is transmitted rather than a single signal vector, because a linear
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combination of the linearly independent basis vectors can result in the creation

of any vector in the subspace defined by these basis vectors.

Since the transmitted signal vector, or subspace, is subject to additive
colored noise in the channel, it is obvious that when the basis vectors are linearly
combined, so are their associated additive noise vectors. The effects and
restrictions of the linear combination of the received signal and noise vectors
were investigated by Wilson [25]. Thus, if ¢; is the coefficient vector associated

with the j-th signal basis vector set,
c;=lcj cjp o gl i=0,1,.., L1 (2.20)

the linear combination of the linearly independent basis vectors (2.13) is:

= [S]]. S]2 .. S]K] Cj

The coefficients c;; are computed in such a way so as to maximize the signal
energy out of the MAMF. The coefficients must be restricted in such a way so
that the energy of the linearly combined signal vector § j equals the energy of the
transmitted signal matrix Sj. If the linearly independent basis vectors are
chosen such that each basis vector within a particular set is orthonormal to the

others,

T . _J0 form#n .
SjmSjn = {1 form=n V] (2:22)

then the following relation holds [25]:

K
_zlcgi =K Vj (2.23)
1=
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From the linear combiner action upon the noise represented by (2.15), the

linearly combined noise vector w j is,

K
Wo=Y ciw; V] (2.24)

Notice that after the linear combiner action has been performed for the proposed

MAMF communication system, 8; and W are M-dimensional vectors. Hence an

analysis on the effects of the linear combiner action on the colored noise

autocorrelation matrix follows.

2.2.3 Effects of linear combination on the noise autocorrelation matnx

As seen from the previous section in (2.17), the w; vector is the noise

vector which corresponds to the s . signal vector. Let us define,

Ruw, = E{wwi} (2.25)

From the linear combiner action upon the noise as in (2.24), it is evident
that,

K

where c* is the complex conjugate of c.
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To preserve the idea of local stationarity (within a symbol transmission
interval) the combiner noise autocorrelation matrix, Ry , should be Toeplitz.
Thus, according to (2.26), each one of the above R"’]"’m matrices has to be
Toeplitz. Furthermore, since the R"’:‘”m matrices are M x M, the combined noise
autocorrelation matrix Ry . is also MxM. By considering these restrictions, a

J
few methods of transmission of signals can be investigated.

2.2.4 Methods of transmission of signals

As was mentioned in Section 2.2.1 there are several methods of
transmitting the signal matrix for the proposed MAMF communication system.
One of these methods is represented by (2.18) where the transmitted signal
vector is constructed by concatenating the K linearly independent basis vectors.
In order to simplify the presentation of this section consider the approach
wherein an 8-dimensional signal vector is used to encode the transmitted data,

and is composed of 2, 4-dimensional linearly independent basis vectors (thus

N=8, K=2, and M=4.)

In the above, the transmitted signal vector is constructed by
concatenating the two linearly independent basis vectors, and consequently all

previous results [4,25] are based on the assignment:

s;=[s] | slo)T Vi (2.27)

Since the two vectors are of length 4, the component sequence is as follows:

— T :
8; = [Sjn Sj12 Sj13 Sj14 Sj21 Sj22 Sjo3 Sj24] vj

We have investigated possibilities with other assignments such as alternating the
components of the two basis vectors, as well as other random assignments. For

instance, the alternating element sequence is as follows:

— T ;
8; = [Sju Sj21 Sj12 Sj22 Sj13 Sj23 Sj14 Sj24] Vi
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It is evident that the noise samples would follow the same sequence. Therefore,

in the alternating element sequence:

_ T
w=[w)) Wg Wi W W3 Wz Wig Woyl

The w; element is the noise element which corresponds to the s; signal element.

Consequently, (2.18) becomes

rp = [(s;114W11) (Sjo1+Wa1) - (Sjpatwag)lT Vi

From the linear combiner action upon the noise (2.24),
it is evident that,
Ry, = E{(cj1w; + cjowo)(chwi + clowd)} Vi (2:29)
After expanding, we have
which is,
2 2

which is the expanded form of (2.26) with K=2, Vj. By setting an index of

position for the noise vector,

T
w=[Wy W Wy W3 Wy Wy Wg Wy
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_ T
= [wy; Wy Wig Wi4 Wop Wgg Wog Woyl

the concatenated vector assignment produces

Ry=| - - -

[ 10(0) rull) r0(®) | Tu®) ru(5) 1u(6) ru(?) |
)

) )
Ty(-1) 1w(0 Tw(2) | Tw(3) ry(4) 1y(5) ry(6)
Ty(-2) Tyu(-1) Tw(l) | Tw(2) tw(3) rw(4) rw
ry(-3) Tw(-2) ry 1) Tw(0) | Tw(l) 1(2) ru(3) 1w

S (2.32)
Tw(-4) 14(- )rw

)

)

) T

rw(2)
rw( )
(0)

Tw

Tw(-1) | rw(0) ru(1) rw(2) ruf

ry(-5) Tw(-4 w(-2) | Tw(-1) 1(0) Tu(1) ru(2
Tw(-6) ru(-5 w(-3) | tw(-2) ru(-1) rw(0) rw(l)
Lu(-7) Tw(-6) ru(-5) ruw(-4)] ru(-3)ru(-2) ru(-1) rw(0)

(-
(2)
ry(-3)
ry(-4) 1

w(-5)

This results from identifying elements of the assignment with elements of w, i.e.
Wog = Wg and Wiy = wy, so that E{woowis} = E{wgw]} = ry(-4) = 1y(4),

because of the assumed stationarity of the noise.

Note that each of the four submatrices of Ry, in (2.32) is Toeplitz, so that
Ry . in (2.26) is automatically Toeplitz. For every j,
J

m,j(l) = [c;1l? rwl(1) + lcjpl? ru(1) + €1k Tw(5) + cjock) Tou(-3)(2:33.b)

rg(2) = lej1l? ru(2) + lcjol® 1u(2) + cj1¢%s Twl(6) + cjocky Tu(-2) (2:33.)
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Using the same procedure for evaluating R,, the alternating element sequence

yields,
Rujw | Ruju,
Ry=| - - —
Rugwy | Rupw
rw(0) Tw(2) rw(4) rw(6) | ru(l) ru(3) ru(5) ru(7)
Tw(-2) tw(0) Tw(2) ru(4) | rw(-1) ru(l) ru(3) rw)
Tw(-4) Tw(-2) Tw(0) rw(2) | ru(-3) ru(-1) ru(l) ry()
| 2oC0) 5l) D) 5l 1D D 1) 1) |
Tw(-1) Tw(l) 1w(3) 1w(3) | Tw(0) Tw(2) ruw(4) ru(6)
Tw(-3) tw(-1) 1w(l) Tw(3) | 1w(-2) rw(0) ru(2) ru(4)
Tw(-5) Tw(-3) Tw(-1) Tw(l) | ru(-4)1u(-2) 1u(0) ry(2)
Tu(-7) Tw(-3) tw(-3) Tuw(-1)] ru(-6) ru(-4) ru(-2) ru(0)

Again the four submatrices are Toeplitz.

For the split vector assignment,

_ T
W= [Wg3 Woq Wy} Wig Wjg Wy4 Wop Woyl

we get however,
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Tw(0) Tw(l) Tw(2) Tw(3) | Tw(4) rw(5) ry(-2) re(-1)
Tw(-1) 1w(0) (1) 1w(2) | 1(3) ry(4) tw(-3) ru(-2)
Tw(-2) Tw(-1) Tw(0) Tw(l) | 1w(2) rw(3) rw(-4) rw(-3)

e

Tw(-3) Tw(-2) Tw(-1) 1(0) | 1y(l) ry(2) ru(-5) rw('4)-

(

(
Tu(-4) Tw(-3) Tw(-2) rw(-1)| rw(0) ru(l) ru(-6) ry(-5)
Luw(-3) Tw(-4) Tw(-3) Tw(-2)| ru(-1) rw(0) ru(-7) ru(-6)
rw(2) Tw(3) Tw(4) rw(3) | ruw(6) ru(7) rw(0) ruw(l)
rw(1) tw(2) tw(3) rw(4) | 1w(5) rw(6) ruw(-1) rw(0)

=

(2.35)

In this case, the four submatrices are not all Toeplitz. In addition, no non-trivial

linear combination of the four, as in (2.26), results in a Toeplitz Rg . From the

J
random assignments tried, only the concatenated vector and alternating bit

sequences resulted in a Toeplitz combiner noise autocorrelation matrix Ry, .

. J
Unless otherwise stated, the concatenated vector assignment is used throughout

this work.
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2.3 AUTOCORRELATION ESTIMATOR

As was mentioned in Section 2.2.1, the noise autocorrelation sequence
must be estimated for every data bit transmission due to the noise non-
stationarity assumption. A noise sample vector wy is obtained from gaps

between transmissions and used to estimate the autocorrelation sequence.

The estimator used in the simulations of this work is the classical biased
estimator. The CB estimator is a moving-average estimator which computes
estimates directly from the data samples. It has been shown to produce the
smallest standard deviation among the unbiased, exponential, triangular,
diagonal, and minimum norm MA estimators under white, bandpass, and
lowpass noise [3]. The estimated autocorrelation sequence produced by the CB

estimator is,
k) =1 D wiwigp (2.36)

where I is the length of the data sequence or the dimension of the vector wg, and

0 <k <I-1. Furthermore, the estimator is biased. Thus,
E{ty(k)} - (k) #0 k=0,1,..,N-1 (2.37)

Equation (2.37) indicates that the average deviation of the estimator from the
true value is non-zero. This introduction of low-level bias, achieved by the
scaling performed in (2.36), results in a significant reduction of the induced

variance of the estimates.

Also, the Toeplitz autocorrelation matrix produced is non-negative
definite (NND) which ensures that the wide-sense stationarity assumption on the

noise is not contradicted [3].

The actual finite length sequences that enter the MAMF communication
receiver are given in (2.19). The vector wy is of a finite dimension I, which

implies that there exists a limit to the number of noise samples taken. As the
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number of noise samples obtained increases, the estimated autocorrelation
sequence f,, tends to match the actual autocorrelation sequence r,,. However the
transmission rate decreases. Hence, there exists a trade-off between accuracy

and speed.
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2.4 MAMF-BASED RECEIVER SYSTEM

In modern digital communication systems, the problem of the receiving
system is to determine, at a particular instant in time, which signal vector is
present, if any. For these purposes a receiver is a mathematical description of

the operation to be performed on the noise corrupted signal.

For such a problem, reason indicates that the ability to correctly
determine which is true will improve for a large Signal-to-Noise Ratio (SNR).
For a given signal vector, it is conceivable that some filter may exist that will
amplify the signal energy while simultaneously reducing the noise energy as
much as possible so that the SNR becomes a maximum. Such a time invariant
filter which yields the maximum SNR is called a matched filter.

One class of matched filters is the class of Moving-Average Matched
Filters (MAMF). The MAMF is a Finite Impulse Response (FIR) filter which
performs a weighted sum over a finite portion of the data at a particular time
instant (Moving-Average). The MAMEF is designed to maximize OSNR for a
given ISNR, at the time instant 7. Since the signal vectors received by the
communication system are N-dimensional, the time instant 7 is equal to N (N
time instants for 7 = 1, 2, ..., N). The goal of the MAMEF is to produce a SNRI
which is greater than 1 (positive on the dB scale) so as to really improve the

ability to correctly distinguish between the transmitted signal vectors.

For this reason the MAMF constitutes the first of the two important
stages of the receiver (Figures 3 and 4). It pre-conditions the noise corrupted
signal by producing a high SNRI so as to prepare it for entrance to the second
stage, the detector. The detector is the stage of the receiver that decides which
signal was transmitted. The absolute measure of the performance of the detector
is provided through the computation of Bit Error Rates (BER).

2.4.1 MAMF Characteristics

Let h designate the impulse response of the filter,
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ha [hy hy ... hy]T
and r the received N-dimensional vector which contains the signal vector
information corrupted with additive colored noise,

_fJrp (for the proposed system as in (2.18))
=1 rp  (for the traditional system as in (2.12))

where J is the N x N exchange matrix,

0 1
J= (2.38)
1 0

Thus r designates the inverse of the received vectors ry or rp, according to the
communication system used. The output of the MAMF at time instant 7 = N,

¥ due to the vector r is:

N
YN= D TN 41—k D

=hTr (2.39)

Due to the operation of the filter on a finite number of data points, the filter is a
stable FIR digital filter.

The MAMF are designed efficiently by using the Levinson algorithm
(Appendix B) as will be shown in the next section. The MAMF are also easy to
implement and are guaranteed to be stable. These properties of the MAMF

provide a reason for its use.
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2.4.2 MAMF Theoretical Performance

The performance of the MAMF receiver system is measured in terms of
Signal-to-Noise Ratio Improvement (SNRI). The SNRI is the ratio of the
OSNR, which is measured at the output of the receiver, to the ISNR, which is

measured at its input.

The ISNR is the ratio of the signal energy to the average power of the

noise of the received vector r. If
r=8+w

where s = sy sy _q1 .. sl]T and w=[wy Wpy_; - w1]7 then,

Thus,
ISNR = &t _ 83
By considering (2.39), the output of the MAMF is given by,

N
Yy = ZrN—i—l—khk
k=1
=hTr
=hT(s + w)

= hTs + hl'w

A yN,sz'gnaI + YN, noise
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where YN, signal and YN, noise Tepresent the signal component and the noise
component of the output of the filter respectively. Thus the signal energy and

average power of the noise at 7 = N are,
Es,o = | YN, signal |2
= | (aTs) |2 (2.43.2)
Ew,o = E{ | YN, noise |2}
= E{(YN, noise) YN, noise) "}
= E{(bfw*)(bTw)} (2.43.b)
Since aflb = bTa*, (2.43.b) becomes,
Euw,o = E{(h7'w)(wHh*)}
= hTE{w wH} b*
=bh R, b (2.43.c)

where R,, is given by (2.2). Hence, by use of equations (2.43), the OSNR is,

E T \2
OSNR = 2o = 19l
Ewo h Ryh

(2.44)

The impulse response which maximizes OSNR, assuming the colored noise
autocorrelation is known, can be found by minimizing E,, , while keeping /E, ,
constant.  Hence, by applying the Lagrangian multiplier technique, the

Lagrangian equation I(h) is constructed,
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I(h) = Ey,, - ul(b”s) - VE; 5] - ul(b”s) - VE, o* (2.45)

where p is a Lagrangian multiplier. Taking the partial derivative of (2.45) with

respect to h and setting the result equal to zero yields,

Ol(h
T(h—) =2R, h-2us* =0 (2.46)

Solving for h produces,
b, = Rg! s* (2.47)

By substitution of (2.47) in (2.44), the optimal value or maximum OSNR is

obtained:
OSNR,,; =hl ;s

=s Rp!s* (2.48)

Therefore, the SNRI, from (2.41) and (2.44) is,

_ OSNR _ |(WTs)*  Hg
SNRI = -BRR- = W1 R 1% 1ol0) (2.49)

whereas the SNRI, ,; is obtained from (2.41) and (2.48),

OSNR 0
9Pt — (sT Rg! s*) x5 (2.50)

SNRIopt = —T5NR ()

Since the MAMF is designed to maximize OSNR for a given ISNR, its

theoretical performance is characterized by (2.50).
2.4.3 MAMTF Practical Performance
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As mentioned in the previous section, the OSNR,,; in (2.48) and, hence,
the SNRI,; in (2.50) were obtained under the assumption that the colored noise
autocorrelation was known. Obviously, under practical circumstances this is
rarely the case. The colored noise autocorrelation is estimated for every data bit
communicated as shown in Sections 2.2.1 and 2.3. Thus, the Toeplitz colored
noise autocorrelation matrix formed is Rw. Evidently, the MAMF impulse

response h is not optimal and,
h = Rg!s* (2.51)

Hence, (2.44) becomes,

R T 12
osNR = 9
b7 R, b

(" Ry" sM)I
(s" Ry' Ry Ry' 8)

(2.52)

which is very different from OSNR,,; in (2.48). Notice, though, that if R, =
Ry, then (2.52) becomes (2.48). Consequently, the SNRI changes accordingly.

The general MAMF receiver system layouts for the traditional and the

proposed communication systems are presented in Figures 3 and 4.

2.4.4 Optimal Detector Design

Once the noise corrupted signal has been processed by the MAMF, the
ability to make a decision on which signal was most likely transmitted appears
quite improved. At this point the design of an optimal detector can be presented
whose main responsibility would be to make the aforementioned decision. Many
authors have dealt with this particular problem [5,9,10,13,16,18,21-23] but this
section presents the discrete-time version of detection of signals suited for use for
this work.
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Thus the goal of this section is to introduce a theoretically sound detector
for use in the MAMF communication system under consideration. A binary type
of communication will be used so L=2 (Section 2.2.1). Therefore, a receiver

must be determined which chooses between hypotheses,

H, : ™n =81, T wp n=1,..,N
Hy 1 rp =5y, + wy n=1,..,N

where r,, is the received or measured element, s is the element sent from signal

jn
vector j(=0,1), w,, is the noise element which is added to the signal bit and N is

the length of the signal vector.

According to the discussion presented in Section 2.1, the following

relationship always holds,

Ry f: = A £, (2.53)

1

where A; are the real non-negative eigenvalues and f; are the corresponding
orthonormal eigenvectors of the Toeplitz noise autocorrelation matrix Ry,
Defining F to be the matrix (NxN) whose columns are the orthonormal

eigenvectors f; of the noise autocorrelation matrix R,,, then,
RyF=FA (2.54)
where

FFH = FHF = 1 (2.55)

Hence, an expansion of the received signal vector r is desirable in terms of
a set of orthonormal eigenvectors f, with weighting coefficients #;. With the

eigenvectors, or columns of F, as a basis,
N
r= E 'I'~k fk = F r (2.56)
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or,

f=FHir (2.57)
=Fls; + Fllw (2.58)

So when we take the mean under each hypothesis,
Ei{£}=Fls; 8 p
Eo{ £} = Fsg & gy
or in general,

1 . wH
EJ{I'}—F Sjé ns

; (2.59)

where A denotes ’is defined as’.

By using (2.58), (2.59) and the initial assumptions on the noise presented

in Section 2.1, the covariance of the coefficient vector under each hypothesis is,

3 . NH\_my=<H = H . <H q
E{(F-p))E-p)" =E{ 88" -Fp; - p; 87 + pjpj }

= =H H H H H H H
E{ff"}-E;{F rs;"F } - E,;{ F¥s; r"F }4+E,{ F¥s;5,"F }

~ =H H H H H H H
Ej{l'l' }_E]{F SjSJ' F}-EJ{F SjSJ' F}+Ej{F SjSJ' F}

~ ~H H H
EJ{ IT } - EJ{ F Sij F }
— H H H H H H

—E]-{F $j8; F}+Ej{F ww F}—Ej{F $j8; F}
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=E;{ Filw wlF }
= FHR, F (2.60)
In addition, from hypothesis testing theory [5],

E{(- w(E- w7} = E{(F- p)E- u) ¥} P(H) + Eo{(E - po)(F - mg) ¥} P(Hy)

where P(H,;), P(H;) are the a priori probabilities of H;, H; being true
respectively. Since the variance is the same under each of the disjoint

hypotheses, we have
E{(f- w)(F- "} =FHR, F (2.61)
Because of (2.54) and (2.55), (2.61) becomes,
E{(f- w(&- w7} =FIF A
=A (2.62)

Consequently, when (2.54) holds, the coefficients 7, are uncorrelated and their
variance is equal to A;. Thus it is reasonable to say that the received, or

observed, vector r has been ’whitened’ by the transformation FA;,

With the above derivation it is now possible to handle the problem of
detection of signals in colored Gaussian noise by considering the transformed
measurements . The likelihood ratio will be used to determine the optimum

receiver.

The coefficient vector ¥ results from a linear operation on a Gaussian
process. Hence, f has a Gaussian distribution, and because the coefficients are
uncorrelated, they are also independent. Using the mean and the variance of the

coefficient vector, as derived in (2.59) and (2.62), the conditional density
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functions can be expressed as follows:

=) — 1 1 /= -1 /=
Pﬂﬂ—mex]@{j(f'h)}[/\ L(E- m)}

La I

po( £) = m exp { % (£ - ug)T ATL (£ - )}

Taking the log-likelihood ratio,

)=
=L@ )T AT Ew) + 3G m)T AT )
A G - G,

where

Gy =1 (uff At i+ A1 gy - pffA7 )
Gy =- % (p(l)IA_l £+ A1 Ko - ;15[1\—1 o)

when expanded. Using (2.58) and (2.59), G; can be written as,

Gy =1 (sf'F A"V FHr 4 ofF A1 FHs) - 5fTF A1 FHs,))

= -% (s{I Ryl r+ff RG] 8 - s{{ Ry! $1)
Let us define the following for j=0,1,

This equation must not be confused with the optimal impulse response h

optr

(2.63.a)

(2.63.b)

(2.64)

(2.65.a)

(2.65.b)

(2.66)

(2.67)

of a

MAMF as shown in Section 2.4.2. Nevertheless, it will be shown later that a
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relation exists between the two. In addition, since R,, = Rg then R;l =
(R,_,,l)H , as proved in Section 2.1. Thus,

bY = i Ry} (2.68)
Using the three last equations,
G, =% (Bfr + 11, - sfh)) (2.69.a)
Similarly,
Go =& (Bffr + rf'hy - sf'hy) (2.69.b)

Therefore, the maximum likelihood decision rule becomes,
1,
GAlnp(F)=Gy-Gy 2 lnp (2.70)
Hy
where p is determined by the most suitable criterion for the application at hand.
The most desirable detector is the one with maximum probability of detection
and minimum probability of error. Under these circumstances the Bayes
Criterion can be used. In this criterion, costs are assigned to each type of error
to account for difference in importance [5,9]. Next, the average cost or risk is

minimized. As a result the test threshold p, is defined as

P(Hy) (Cyq - Cyp)
Po & P(H;) (Cg1 - Cq3)

(2.71)

where P(H;), P(Hy) are the a priori probabilities of H;, H; being true

respectively. C; j is defined as the cost associated with choosing H; when actually

H is true. So, in general,

CIO-COO >0 and COI—Cll >0
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Obviously, no cost should be assigned when the correct decision is made so that
Coo = C11 = 0. On the other hand, for communication all errors are equally

significant and undesirable and thus equal cost is assigned so that C;5 = Cy;.
Thus (2.71) becomes,

(2.72)

In case the probability of transmitting the ”0” bit is equal to the probability of
transmitting the ”1” bit as in P(Hy) = P(H;) = %, then py = 1 and In py = 0.
So the decision rule becomes,

7,

Inp(§)=G=G;-Gy 20 (2.73)
H,

Now, it is time to determine the relation between the }—11- which was
defined as the solution to the equation Rwhj = s; and the MAMF unit pulse
response hj. It is known that the unit pulse response of the MAMF which
maximizes OSNR for a given R,, and s; (Section 2.4.2), is the solution to the

equation,
H o
Since for the detector design presented herein,
SJ' = [Sjl 8]2 eee SjN ]T J = 0, 1
then Ryh;=Jsj (2.75)

where J has been defined as the N xN exchange matrix and repeated here,
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J =
1
1 0
From (2.75), using JJ = I,
R, b =Js; = JRL,IJBI=JJs; (2.76)
Since J R%, J = (R%)T, (2.76) becomes
R, Jb}=s; (2.77)

and thus, when comparing with (2.67), we have the relation
1. *
h;=1J hj (2.78)

which means that the h j defined in (2.67) is the reverse and complex conjugate
of the unit pulse response of the MAMF associated with the signal vector 8-
Now (2.69) can be manipulated further by considering the MAMF output

equation given in (2.39),
—5 N
hj ;= kz_:lsj'“ hi(N+1—k) A& MAMEF output @ N due to 8j

Since h¥s. = sfh

7 85 ;b (2.69.a) becomes,

G, = % (E{Ir - % E{{SI + rHl—ll - % S{IEI)

=1 (r-3sp)+ (- 35T By
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= Re{ E{I (r- % 8;) } (2.79.a)

which is the real part of the MAMF output @ N due to (r - % 87)- Similarly,

Go=Re{ bff (r- 3 s) } (2.79.b)

The decision rule is to choose H; whenever G > 0.

2.4.5 Optimal Detector Performance

An error is made when H; is true and G < 0, as well as when Hj is true
and G > 0. In order to determine the probability of these errors and therefore
the receiver performance, the density function of G must be determined. Since

G results from a linear operation on a Gaussian process r, it is itself Gaussian.

From (2.73) and (2.79), G under H; becomes,
G = L Re{ Bffs; + 2 Bffw - 2 Bffs; + Bffsg - 2 Bffw )
= 2 Re{bfls)} - L Re(hfl (25, - 59)} + Re{(B; - By)fIw}  (2.80.2)
Similarly,
G0 = - L Re(Bffse} + 1 Re{Rff (259 - 5,)} + Re{(h; - By)w} (2.80.b)
Thus, the means of G under each hypothesis are,

E{G} =2 Re{ bffs; } - Re{ bff (25 - 59) } (2.81.a)
Eg{G} = - L Re{ Bflsg} + L Re{ B (25-5)) } (2.81.b)

From a theoretical point of view, (2.67) can be used to replace h; in the above

equations in order to reach a more convenient expression for the means. It is
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obvious that from a computational point of view this is undesirable since Ei is
computed by the Levinson algorithm (Appendix B) and can be incorporated
directly into the above equations to yield the means. Substituting (2.67), into
(2.81.a) and (2.81.b), yields
E{G} =1 Re{ (s; - 59)” Ry! (s; - 50) } (2.82.a)
1 2 1-80)" Rw (81- 5 02
Ep{G} = - 5 Re{ (s, - 59" R (51 - 59) ) (2.82.b)
0 5 € Sl 30 w Sl 30 O4.

and if the following definition is made,

02G A Ref (s; - so)H Ry! (s1-8¢) } (2.83)
then
ol
Ei{G} = - Eg{G} = (2.84)

From (2.80), and (2.81) we see that,
6" - £,{G} = 60 y{G)
= Re{(hy - by)"w} (2.85)
Therefore, the variance of G is the same under each hypothesis and equals,
V{G} = E{|G-E1{G}/?}
= % E{ (- bp)#w + wh (by- By)Y(by- hy)w + wh (By- By) ) }
= 2 B{ (8- hp)Tw (B- by)Tw* + wi(By- By) w''(By- By)*
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Now since (El - EQ)HW = WT(EI - Ho)*, and according to (2.83),
V{G} = %{(l—lr hy)?Ry, (By- bg) + (by- By)TRE, (By- by)*
+ (B Bo) FE{w wT}(by- B)* + (By- by) TE(w*w/} (B By)}

= % Re{(h;- bo) "Ry (h)- hy)} + % Re{(hy- hg) "E{w wT}(h;- y)*}

2

- GTG + % Re{(ﬁl' EO)HE{W WT}(Er 1_10)*} (complex case)
2 2 ‘

%, %

=2 t32

= a%? (real case) O

Consider V{G} A& 7)2 as the variance of G for any case, complex or real. Thus, if

the data is real 2 = 02G' Then, the probability density functions of G are

(Figure 5),

(G -5 05)
P,(G) 1 exp{ 2 } (2.86.a
1 (27”72)1/2 22 )

(G +398)
Py(G) = —1L exp{ 2 } (2.86.b)

0 (27”72)1/2 _2772
Finally, the probability of error, denoted as P, [5], is

P, = P(D | Hy)P(Hy) + P(Dy | Hy)P(H,) (2.87)

where P(D,; | H j) represents the probability of choosing H; when actually H; is
true. Thus, for equal a priori probabilities [5] where py = 1 as seen in (2.72),
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P, = P(D, | H,) = P(D, | Hy) (2.88)

Therefore,

_ oo B o0 1 _22/2
P, = JO Py(G) dG = JR G dz (2.89)

where R =

N3

(Figure 5).

The error probability in (2.89) decreases as 7 increases. Therefore in
order to obtain the best performance  must be maximized for a given set of

signal vectors s;, sy with the following constraint on the signal energy,
s{Isl + sgso = 2E,

where E; is the transmitted signal energy. So for the purposes of this application

the following must be maximized:
Q A 7% - 2uE, (2.90)

Due to the irregularities presented by the variance of G 7]2, when it assumes

complex values, only the real data case is considered where 0%; = p?. Thus

(2.90) becomes,
Q & o% - 2uE, (2.91)
where y is an undetermined Lagrange multiplier. Thus Q is given by
QA (s- so)T Ry (sg - sg) - u(s{lsl + sﬂisn) (2.92)

Let §; and §; represent the optimum signal vectors for s; and sj respectively.

Then, let
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where oy and o are arbitrary multipliers and B and B are arbitrary vectors.
First maximize (2.92) for s; holding s fixed and next maximize for sy holding s;

fixed. Therefore, the two resulting equations are,

a
ac;(al) _ 0 and 29 —0
a; =0 ag=0
These lead to the following simultaneous equations,
R:,,l(§1 - 89) = {8 (2.94.a)

Since (2.94.a) was obtained with a; = 0 and (2.94.b) with oy = 0 then,
R:Dl(sl - 89) = s (2.95.a)
Rol(s; - 59) = - 159 (2.95.b)

From these equations it follows that the signal vectors satisfy the following

restriction:

8] = - 8 (2.96)
which with a; = 0 and ay = 0 in (2.93) implies

5 =-7%) (2.97)

Substituting (2.96) into (2.95),
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Comparing this equation with (2.54) points out that the optimum signal vector
8; is the eigenvector of R,, corresponding to the eigenvalue % From Section 2.1,
as Ry >0, then A >0, and thus p>0. Applying (2.96) and (2.98) to (2.92)

yields,
Q=0 = 0% =2uE,

Therefore,

9 4E
In order to maximize a%;, the eigenvalue A must be the smallest eigenvalue of R,,
according to (2.54). Therefore, by choosing for s; the eigenvector associated with
the smallest eigenvalue A, a maximum ‘72G and thus a minimum probability of

error P, are ensured.

One might find the fact that minimum probability of error P, is the
result of maximizing the variance of G o%;, hard to comprehend. Let us consider
Figure 5, (2.84), and (2.86). A variance a%; of 9 results in Gaussian probability
density functions of narrow width and close proximity (Figure 5A). When the
variance a%; is set to 49, the width of the probability density functions increases
and their relative proximity decreases (Figure 5B). However, Py(G) and P{(G)
overlap less. From (2.84), the means of Py(G) and P{(G) are proportional to the
variance. Hence, an increase in the variance of G will also increase the distance
between the two density functions. In signal detection, the area of interest is the
overlap area of the two density functions which identifies the P, as seen from
Figure 5A and described by (2.89). The smallest overlap area of the two
probability density functions results from a high variance which increases the

distance between the two density functions in a faster rate than their width.

Up to this point many authors have completed work towards designing a
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signal vector which maximizes the OSNR of the MAMF receiver system for a
particular noise color [4,5,24]. The result presented in their work coincides with
the result of the approach just presented, where the detector was placed as the
primary stage of the receiver. The optimal signal vector was thus designed with
the goal to minimize the probability of error P, of the detector, whereas previous
authors [4,24] designed the optimal signal vector by setting as a goal to maximize
the OSNR of the whole receiver system. It is evident, then, that maximizing the
OSNR - and hence the SNRI - and minimizing the P, are equivalent concepts.
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3.0 SIMULATION

This chapter presents the steps taken in order to fully simulate the
behavior of both the traditional and the proposed MAMF communication
systems. The simulation will be used as a tool for the detailed examination of
both systems in terms of performance. It will also provide the flexibility to
change with ease the conditions under which each communication system is
examined, i.e. mnoise characteristics, method of transmission, duration of
transmission, etc. The goal of an accurate and efficient simulation is to present a
complete study that accounts for most, if not all, of the possible outcomes of the

particular problem in question.

Specifically, the colored noise generation procedure is presented followed
by the system descriptions of both MAMF communication systems. A binary

communication system was chosen to be examined with real data.
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3.1 COLORED NOISE GENERATION

The colored noise used in the simulations is generated by taking a
Gaussian white noise process with zero mean and unity variance, and processing
it with an Auto-Regressive (AR) digital filter of order 2 as seen in Figure 6.
Hence, the coloring filter is an AR(2) filter with the following transfer function:

by z2
(z - 21)(z - 29)

H(z) =

_ by
" 1-2pcos(@)z" 1+ pz2

by
1+alz-1+a22—

; (3.1)

where by is defined such that the peak magnitude response is normalized to 1.
Thus by = (1-p) | el? - pe=1° |. The transfer function H(z) has two dominant
poles at z = peije, and two non-contributing zeros at z = 0 (Figure 6). The
variable p represents the distance of the complex conjugate poles from the origin
of the unit circle and controls the bandwidth of the colored noise. For instance,
when p = 0.95 the noise is narrowband, whereas when p = 0.7 the noise is more
broadband (Figure 7). The angle 6 determines where the narrowband noise is
centered. Figure TA presents the magnitude response of the coloring filter for
p=0.95 and 6 =60" whereas Figure 7B presents the coloring filter magnitude
response for p =0.7 and 6 = 60".

The first points exiting the noise coloring filter are discarded to prevent
transient effects from influencing the noise samples and hence the autocorrelation
estimates. The memory depth of the specific filter is the range of points set from
the first point exiting the filter to the point at which the impulse response

reaches 1% of its maximum value. The memory depth of the filter described by
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(3.1) depends on p and 4, and the maximum memory depth was found to be 220
points. If a second signal is transmitted, again the next 220 points are discarded
so as to guarantee the stationarity of the noise and the independence of the
subsequent noise vectors. Hence, for each data bit transmission the first 220
noise points are discarded, the next N points are used for the autocorrelation
estimator as the vector wg, and the last N noise points are used as the noise

vector w, which corrupts the transmitted signal s; of dimension N.

In order to study the effects of estimating the colored noise
autocorrelation sequence, the same experiments must be conducted with the
actual autocorrelation sequence. The actual autocorrelation can be computed by

using the method presented by Dugre, Beex, and Scharf [12].

The output of that algorithm consists of the first 3 points of the actual
autocorrelation sequence ry, due to the 3 AR coefficients of the coloring filter.
Since r,, must be of the same dimension as the signal vectors, namely N, linear
prediction is used to calculate the remaining points in the sequence. According

to [12], the unit-pulse sequence corresponding to H(z) is,

0, k<0
R
by- > agh,_,, k>0

n=1

b= (3.2)

where R is the AR order of H(z), namely 2. Obviously, by, is assumed to be zero
for k>1. The autocorrelation sequence ry(k) is related to the unit-pulse

sequence h,, as follows:
rgy(k) = Zohn h, = 1u(k), k>0 (3.3)
By substituting (3.2) into (3.3),
R
Y aprylkn)=d,, k>0 (3.4)
n=1

where,
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Q-k
dg= 3 hnbyyy (3.5)

where Q is the MA order of H(z), namely 0. Thus, d;, = 0 for k> 1, in which
case the autocorrelation sequence ry(k) satisfies a linear homogeneous difference

equation. From (3.4) and (3.5) the remaining points of ry(k) can be found.
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3.2 SYSTEM DESCRIPTIONS

3.2.1 Proposed System Description

Since a binary system of communication was chosen for the simulation
then, by referring to Section 2.2, it is evident that L = 2. Hence, the signal

matrix that encodes the data bit to be communicated is:
S] = [Sjl 812 ces SJK] _] = 0, 1 (3.6)

where S; is the signal matrix which represents the ”0” and §; is the signal
matrix which represents the ”1” (Figure 2). As discussed in Section 2.2.1, the
minimum number of linearly independent basis vectors required to span a
subspace is 2. Hence, K = 2. Furthermore, the signal vector subspaces defined
by S ;j must not overlap so as to have minimum probability of error [4]. Thus,
one set of basis vectors must be orthogonal to the other set of basis vectors. In
order to ensure 2 orthogonal subspaces, a minimum length of M = 2x2 = 4 is

required for every basis vector [25]. Then (3.6) becomes,
where

_ T ]
sji = [sji1 Sjio Sjis Sjal”  for {i _ (3.8)

The method of transmission chosen is the concatenated vector assignment. Thus

the transmitted signal vector is of dimension N = 8 (= KxM) and is:
— T -
s; = [s;j11 Sji2 Sj13 Sji4 Sj21 Sjo2 Sjo3 Sjul’  i=0,1 (3.9)

Similarly, the colored noise matrix W, is of the following format:
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W= [w; wy (3.10)
where
W= [wy wiy wig wi ]l i=1,2 (3.11)

Following again the concatenated vector assignment, the colored noise vector w

that corrupts the transmitted signal is,

w=[Wyy Wip Wiz Wiy Wy Wy Wag Wayll (3.12)
resulting in the received 8-dimensional vector rp,

rp=[s;+w j=0,1 (3.13)

In addition, the autocorrelation sequence is of length N = 8, thus at least N = 8
noise samples are required from the gaps between transmissions. Therefore, the
finite length sequence actually entering the proposed MAMF communication
receiver (Figure 2), is the 16-dimensional vector rg :

rg = [wy | rh|T (3.14)

For the concatenated vector assignment, the 8 x8 noise autocorrelation matrix

Ry is given by,
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rw(2) Tw(3) | ru(4 rw(6) 1w(7)

( )
Tw(-1) Tw(0) To(l) 14(2) | 14(3) ry(4) ryw(5) r(6)
Tw(-2) Tw(-1) 1w(0) ru(l) | rw(2) rw(3) rw(4) Tuw(5)
Tw(-3) Tw(-2) Tw(-1) 14(0) | ru(l) ry(2) ry(3) rw(4)

R IS -- (3.15)

Tu(-4) Tw(-3) ru(-2) Ty(-1)| 1u(0) ry(l) ru(2) rw(3)
Tw(-5) Tw(-4) Tw(-3) Ty(-2) | rew(-1) 1u(0) 1y(1) rw(2)
Ty(-6) Tw(-5) Tw(-4) Tw(-3) | Tw(-2) Tw(-1) 14(0) ry(l)

)

Lrw(’7) T(-6) Tw(-5) Typ(-4) | Tp(-3) ry(-2 |

as discussed in Section 2.2.4.

The linearly independent basis vectors in (3.7) can be linearly combined
to create any vector in the subspace spanned by them. Since K = 2, only two
coefficients are required to linearly combine the basis vectors for each j. Thus, if

c; is the coefficient vector associated with the j-th signal basis vector set,

the linear combination of the linearly independent basis vectors (3.7) is

W
I

92}
o

=1 spl e

Similarly, from (2.24), and the noise vectors represented by (3.10), the

linearly combined noise vector W is,
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—We.

-

Notice that §; and W; are 4-dimensional vectors. Then from (2.23), the signal

energy of the transmitted signal is 2 and the following restrictions hold,

t1 + cfy =2

(3.19)
o} +cdy=2

which denote that the points (cyy, cgg) and (cqq, ¢q9) satisfy the equations of a
circle, with radius {2 in the c;-co plane. Keep in mind that the coefficients Cji
are computed in such a way so as to maximize the OSNR.

After the combiner action has been performed, the combined colored noise

autocorrelation matrix is given in (2.31) which is the expanded form of (2.26):
2 2
Rﬁ’j = [cj] Rwlw1 + ¢j1¢h Rw1w2 + ¢joch R,,,2,,,1 + lejol Rw2w2 (3.20)

where the submatrices Rwiw- are given by (3.15). Thus, Ry is a 4x4 matrix.
J

Since real data is used, (3.20) is equivalent to,

_ 2 2

When the actual autocorrelation is known, then (2.47) can be modified to

accomodate the proposed system as,
=Rzls, j=0,1 (3.22)

Notice from the last five equations that since the optimal coefficients (cj;, cg9)
for the ”0” and (cqj, ¢q9) for the "1” are two different sets of points, the

combined signal vector § i the combined noise vector W, and thus the combined

j’
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autocorrelation matrix Ry . are different for the "0” and for the ”1”. Hence, the
J
OSNR,,; for the ”1” does not necessarily equal that for the 70”. From (2.48),

_sTR=1j3 .
OSNR; 1 = §; R~j § =01 (3.23)
The coefficients c;; and c;y are computed by maximizing OSNR; ., in (3.23).

When the actual autocorrelation is unknown and must be estimated
(Section 2.4.3), then (2.51) becomes,

. A1 .

h Rﬁ,] ; 1=0,1 (3.24)

because f,, is used to form the R,, Toeplitz autocorrelation matrix in (3.15) from

which R is derived. Furthermore, since f,, does not necessarily match the
J

actual autocorrelation sequence r,, the estimated combined autocorrelation

matrix R . does not equal the actual combined autocorrelation matrix R and

et}
the estlmated MAMF impulse response h is not optimal.

The estimated OSNR is the modification of (2.52),

OSNR; =

= A - (3.25)

Note that for the computation of OSNRj knowledge of the actual combined
autocorrelation matrix Rg , is required. As a result, the OSNRj cannot be
maximized directly to yiefd the estimated optimal coefficients, éjl and éjQ,
required for the linear combination of the basis vectors. In an effort to overcome
this problem, the signal energy at the output of the MAMF is maximized for
each j (=0, 1). From (2.43.a),
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= (87 Rg! 5,)? (3.26)
J
As R~_ approaches R j1 and C32 approach c; il and c j2 respectively. Thus,

vy
OSNR tends toward z)SNR_7 opt* It is evident that the accuracy of the
ma,x1mlzat10n procedure depends mainly on the accuracy of the autocorrelation
estimator. The maximization of (3.23) (or (3.26)) is performed by varying c;;
(or &;;) from 2 to V2 by increments of (242/200) while satisfying the

restrictions of (3.19).

Under any circumstances - actual or estimated noise autocorrelation
sequence - since the signal energy of the transmitted signal is K = 2 then from
(2.41),

ISNR = rwffo) (3.27)

As far as the detector is concerned (Figure 8), the decision rule was given
in (2.73) and is repeated here,
Hy
G=G,;-Gy 20 (3.28)
Hy

where H; represents the hypothesis that a ”1” was transmitted and H, represents
the hypothesis that a ”0” was transmitted. In addition, from (2.79),

G = b (5-15) (3.29.a)
Go = b (7 - 35 (3.29.b)

where h j is the reverse and complex conjugate of the MAMF impulse response h i

as described by (2.78). Also, F j is the combined received vector described by,
i=0,1 (3.30)
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The above operation is necessary to maintain the same dimension of M = 4 for
the vector operations in (3.29). Notice that ; does not necessarily equal fy due

to the different coefficient sets used for the respective linear combinations.

Equations (3.29), describe the detector operation for estimated noise

autocorrelation. When the actual noise autocorrelation is used,

=gt

j=hi, i=0,1 (3.31)

in (3.29).

In order to determine the optimal detector performance of the proposed
MAMTF receiver system, consider the discussion presented in Section 2.4.5. For
optimal detection the signal vectors must satisfy the restriction of (2.96) which

for the proposed system translates to:
Also, the variance of G V{G}, is the same under each hypothesis and for real

data equals a%; which is given by (2.83). It, then, must satisfy (2.99) or,

4E;
o=y (3.33)

min

where E; = K = 2 and A ; is the minimum eigenvalue of the combined colored

noise autocorrelation matrix Ry . Since the restriction (3.32) holds,
J

Rﬁ'j = R'7’1 = R% (3.34)

The mean of G under each hypothesis, E;{G} or E{{G}, is given by (2.82)

and repeated here,

02
Eg{G} = -E1{G} = £ (3.35)
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Thus, the probability density functions of G are given by (2.86) as,

(G -5 0%)?
P,(G) = —1 2 } 3.36.
1(G) ro 12 exP{ S (3.36.2)
(G + 5 o8)°
Py(G) = —1 { 2 } 3.36.b
o(G) o exp 202 ( )

By setting the probability of transmitting either a ”1” or a ”"0” equal and
P(H;) = P(Hy) = % and the test threshold py = 1, from (2.88) and (2.89) the
probability of error is P, (Figure 5),

o 0o 2
P=JPGdG=J 1 /2y 3.37
e o 0( ) R (27!‘)1/26 z ( )
where R = UTG. Therefore, P, can be evaluated for the optimal case, with known

autocorrelation, from (3.37) and (3.33).

In order to accomodate the proposed system, (2.83) can be modified to,
0% = (3, - 5)7 Rg)} (3; - 8p) (3.38)
By applying (3.32), and (3.23) to (3.38),
o = 4 (5)7 R3! (&)
=4 OSNRl,opt
= 4 OSNRg ,,; (3.39)

By equating (3.39) and (3.33),
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OSNR].,Opt - OSNRO,Opt = 5 (3.40)

By considering the last two equations the ROC can be presented as the plot of
the probability of error P, vs. OSNR. Figure 9 presents the ROC for the

proposed system.
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3.2.2 Traditional System Description

For a binary system of communication the transmitted signal vector in
the proposed MAMF communication system is of dimension N = 8. Thus, in
order to compare the two systems fairly, N = 8 should be the dimension of the
transmitted signal vector in the traditional MAMF communication system as
well. In the traditional system, as seen from Section 2.2.1 and Figure 2, every
individual bit of data to be communicated is encoded in a fixed N-dimensional
signal vector s I

so that sy encodes a ”0” and s; encodes a ”1”. The colored noise vector w, which

corrupts the transmitted signal vector is,
w=[w; wy ... wg]l (3.42)
to produce the received vector rp:
Ip = [s;tw; sjotwy .. Sj8+W8]T i=0,1 (3.43)

Therefore, the finite length sequence actually entering the traditional MAMF

communication receiver, is the 16-dimensional vector r, :

rg = [wi | oh]T (3.44)

The 8x8 noise autocorrelation matrix Ry, is given by (3.15). When the

actual colored noise autocorrelation is known, then the optimal impulse response
of the MAMF which maximizes OSNR is (2.47), and is repeated here to

accomodate each j (=0, 1),

h;,pt=Ra's;, j=0,1 (3.45)
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as well as the optimal value of the OSNR as presented in (2.48),

OSNR ; TRrols,

jopt = 51 ;o i=0,1 (3.46)

As opposed to the combined colored noise autocorrelation matrix Ry  of the

7
proposed system, R,, is the same for every j (=0, 1).

In case the noise autocorrelation is estimated the MAMF impulse

response is given by (2.51),

h;=Rg's; j=0,1 (3.47)
whereas (2.52) becomes,
. h7s )2
OSNR.. = (TJ—SJ)
J hj Ry h;

(SCJF Ry Sj)2

(s] Rg! Ry R s))

(3.48)

Note again that for the computation of OSNRJ- knowledge of the actual

autocorrelation matrix R,,, is required.

Again, when either the actual or the estimated noise autocorrelation

sequence is used,
T
S5 8.
JJ
3.49
ul0) (349

ISNR =

Obviously, if system Bit Error Rate (BER) comparisons are to be performed and
the encoding signal vectors of the proposed system are different from the
encoding signal vectors of the traditional system, then the ISNR for the proposed
system in (3.27) and the ISNR for the traditional system in (3.49) must be made

equal by adjusting the transmitted signal energy. This action ensures a fair
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comparison between the two systems.

The decision rule of the detector incorporated in the traditional MAMF
communication system (Figure 10) is given by (3.28), whereas its operation is

described by the following equations:
Gl = E{ (I'T - % Sl) (3.50&)
Gy = 1] (r7 - 3 sp) (3.50.b)

where Ej is the reverse and complex conjugate of the MAMF impulse response
h;. Also, ry is given in (3.43). The decision rule is to choose H; whenever
Gi-Gy > 0.

The equations (3.50) present the behavior of the detector for estimated
noise autocorrelation. In case the actual autocorrelation is used, the following

relation holds,

=2
I
il

i=h; 0 =01 (3.51)

for use in (3.50).

For optimal detection with the traditional MAMF receiver system, the

signal vectors must satisfy (2.96) which for the traditional system becomes:
s; = - 8g (3.52)

The variance of G for real data equals aé which is given by (2.83). Then, the

variance must satisfy (2.99) or,

ok = p— (3.53)

where E; = s{sl = sgsﬂ and A ;. is the minimum eigenvalue of the colored noise

autocorrelation matrix Ry,
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The mean of G under each hypothesis, E4{G} or E{{G}, is given by (2.82)

and repeated here,

o2

Eg{G} = -E\{G} = £ (3.54)

and the probability density functions of G are given by (2.86) as,

(G - 5 08)*
P,(G) = —1 { 2 } 3.55.
1(G) Gro 2P exp Ey (3.55.a)
(G—l—laé)?
Py(G) = —1 { 2 } 3.55.b
0(G) o P2 exp Y ( )

For equal probability of transmitting the ”1” bit or the ”0” bit
P(H;) = P(Hy) = % and the test threshold py = 1, from (2.88) and (2.89) the
probability of error is P, (Figure 5),

_ 0o _ oo 1 _22/2
P, = jo Py(G) dG = IR ek dz (3.56)

o
where R = TG Therefore, P, can be evaluated for the optimal case, with known

autocorrelation, from (3.56) and (3.53).

For the traditional system, (2.83) can be modified to,
0% = (51 - 59)T Ry! (51 - sp) (3.57)
By applying (3.52), and (3.46) to (3.57),
ot = 4 (s)T RG' (s)

=4 OSNRy .,
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=4 OSNRy ,,,; (3.58)
By equating (3.58) and (3.53),

OSNR .,y = OSNRg 5 = 12

min

(3.59)

Again, with the last two equations the ROC can be presented as the plot
of P, vs. OSNR. Figure 11 presents the ROC for the traditional system. Note
that Figures 9 and 11 are identical. This is because the detector is identical as
developed in Section 2.4.5. It is only modified for incorporation in the two
MAMF communication systems. Since the independent variable in the ROC
curves is the OSNR, the P, curve displays the behavior of the receiver itself.

Through the ROC curve, one can pinpoint the ideal probability of error
for a specific OSNR. It will be used extensively in the next sections in order to
confirm BER results which are obtained through a practical implementation of
the detector. Since the derivation was developed for optimal detector
performance, the actual noise autocorrelation sequence was used, resulting in the
computation of ideal P,. Note that as the OSNR decreases, P, asymptotically

reaches %, which represents the worst possible situation.

Nevertheless, since the ROC curve represents the detector under any
circumstances, a P, can be obtained through an OSNR, if the noise
autocorrelation is estimated. In this way, the BER results obtained with
estimated noise autocorrelation can also be confirmed, but with less certainty

than the results obtained with the actual noise autocorrelation.
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4.0 RESULTS ON MAMF RECEIVER PERFORMANCE

This chapter consists of the performance comparisons between the
traditional and the proposed MAMF communication systems, in terms of SNRI
as well as Bit Error Rates (BER). In other words, the two communication
systems are examined prior to and following the incorporation of their detectors
respectively. The effects of different colored noise characteristics, estimation of
the colored noise autocorrelation sequence, and signal choice are studied for both
systems. A number of experiments were conducted by Wilson [25], and some
were repeated in this chapter in order to compare the results and check for

consistency in the designs.
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4.1 GENERAL SNRI COMPARISONS

The comparisons are displayed in terms of plots of SNRI vs. Colored
Noise Center Frequency 8. The colored noise center frequency 6, is swept from 0°
to 180° (or O to 7 in radians) and the maximum SNRI is plotted in decibels (dB).
The center frequency range of w consists of (7/50) points, and the SNRI is
computed at each point. Initially, the colored noise used is narrowband
(p=10.95), followed by more broadband noise generated by decreasing p (= 0.8,

0.5) as explained in Section 3.1.

4.1.1 Maximum SNRI curves

The first SNRI comparisons between the two MAMF communication
systems, consist of the maximum SNRI that can be attained for both systems.
Since SNRI is maximum for maximum OSNR, the maximum OSNR is computed
at each colored noise center frequency point. Theoretically, the maximum
OSNR is found to be equal to the reciprocal of the smallest eigenvalue of the
Toeplitz colored noise autocorrelation matrix Ry, [4]. For R,,, the actual noise

autocorrelation sequence is used (Section 3.1), which is computed at each 6.

As far as the traditional system is concerned, the maximum OSNR is
computed, at each 6, as the inverse of the smallest eigenvalue of the 8 x8 noise
autocorrelation matrix R,,, The eigenvector associated with the smallest
eigenvalue is chosen as the transmitted signal vector to compute the ISNR as in
(3.40). Nevertheless, according to Section 2.1 the eigenvectors are orthonormal.
Therefore, the ISNR is just the inverse of 1 (0).

The maximum OSNR for the proposed system occurs when the reciprocal
of the smallest eigenvalue of the 4x4 combined colored noise autocorrelation
matrix Rﬁ’j is maximized. The autocorrelation matrix Ry = is computed based
on information contained in Ry, as in (3.21). For each colored noise center
frequency 6, a new actual autocorrelation matrix R,, is produced. In addition, as

the coefficients c;; and Cjp vary according to (3.19), the combined

j1
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autocorrelation matrix R changes in a similar manner. Meanwhile, its smallest
eigenvalue is computed and saved. The eigenvalue selected for the maximum
OSNR computation is the minimum of that sequence. Again, the ISNR is the

inverse of ry,(0).

The maximum SNRI is computed by taking the ratio of the maximum
OSNR to ISNR and the results are presented graphically in Figures 12, 13, and
14 for different p’s. Notice that under ideal, theoretical conditions the
traditional MAMF communication system always outperforms the proposed
MAMF communication system. Theoretical or ideal conditions, of course, are
not attainable in practice but the comparison does provide a theoretical upper
envelope for SNRI performance as well as insight into the behavior of both

communication systems.

Figure 12 is also presented by Beex and Wilson [4], and was used to check

the consistency of the current implementation of the author.

4.1.2 Optimal Traditional System vs. Proposed System

These comparisons present the traditional MAMF communication system
optimized to produce maximum OSNR at a specific colored noise center
frequency 6, and the proposed system using various orthonormal basis vectors for

its encoding signal matrix.

Figure 15 presents a comparison between the traditional system optimized
for maximum OSNR, for a colored noise center frequency § = 0°, and the
proposed system using symmetric orthonormal basis vectors as its encoding
signal vector set. Thus, for the traditional system, the signal vector was fixed to
be the eigenvector associated with the smallest eigenvalue of R,, generated at
that § = 0°. In Figure 15, the signal vectors used in the proposed system are the

following symmetric orthonormal basis vectors,

S =[s; sy (4.1)
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where

slz[[;— 00 g]T

2 2
sp=[0 Y Y2 o]
Again the actual autocorrelation values were used. The colored noise center

frequency 6§ was then swept from 0° to 180" in order to produce Figure 15.

Notice that the traditional system outperforms the proposed system in the
vicinity of § = 0°, since it is optimized for that . As soon as the colored noise
center frequency deviates, indicating a different noise environment, the SNRI
drops dramatically and actually reaches a negative decibel value in the vicinity
of # = 150°. A negative SNRI indicates degradation of receiver performance
rather than improvement and is highly undesirable. The proposed system, on
the other hand, presents a certain degree of robustness under different 6’s, clearly
making it the more preferable system to wuse for €>105, when the

aforementioned signal vectors are used.

Figure 16 presents almost the same comparison with the exception of the
signal vectors. The signal vectors used in the proposed system follow the
assignment of (4.1) and are the following anti-symmetric orthonormal basis

vectors,

sl_[@ 00 #]T
s9=[0 @ % 0]”

The same observations that were made for Figure 15 can be made for
Figure 16 as well. The only difference appears in the behavior of the proposed

system as a result of the different signal vectors used for the transmission.

Figures 17 and 18 differ from Figures 15 and 16 in that the traditional

system is now optimized for a colored noise center frequency of § = . It should
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be noted that in this case, when the actual autocorrelation values are used, there
exists a 2-dimensional eigenspace associated with the smallest eigenvalue of R,
Since any combination of independent eigenvectors is theoretically valid as a
signal vector, a family of SNRI curves can be produced for these specific
conditions. Nevertheless, a comparison can be made at the point for which the
traditional system is optimized (f = x). There the SNRI is the same for every

possible minimal eigenvector.
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FIGURE 12. PLOT OF MAXIMUM SNRI vs. CENTER FREQUENCY 6 FOR p = 0.95

4.0 Results on MAMF Receiver Performance 80



Maximum SNRI for both communication systems
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FIGURE 13. PLOT OF MAXIMUM SNRI vs. CENTER FREQUENCY 6 FOR p = 0.8
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FIGURE 14. PLOT OF MAXIMUM SNRI vs. CENTER FREQUENCY 6 FOR p = 0.5
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Optimal Traditional vs. Proposed Systems
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FIGURE 15. PLOT OF SNRI vs. CENTER FREQUENCY 6§ FOR p = 0.95
TRADITIONAL SYSTEM IS OPTIMIZED AT 6 = 0
PROPOSED SYSTEM SIGNAL VECTOR IS SYMMETRIC
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Optimal Traditional vs. Proposed Systems
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FIGURE 16. PLOT OF SNRI vs. CENTER FREQUENCY 6 FOR p = 0.95
TRADITIONAL SYSTEM IS OPTIMIZED AT 8 =0
PROPOSED SYSTEM SIGNAL VECTOR IS SKEW-SYMMETRIC
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Optimal Traditional vs. Proposed Systems
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FIGURE 17. PLOT OF SNRI vs. CENTER FREQUENCY 6 FOR p = 0.95

TRADITIONAL SYSTEM IS OPTIMIZED AT 6 = %
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Optimal Traditional vs. Proposed Systems

50

SNRI (dB)

O 05236 1.0472 15708 2.0944 2618 3.1416
Colored Noise Center Frequency, Theta (rads)

l T%D PFg)P I

FIGURE 18. PLOT OF SNRI vs. CENTER FREQUENCY 4 FOR p = 0.95
TRADITIONAL SYSTEM IS OPTIMIZED AT 6 = 12"-
PROPOSED SYSTEM SIGNAL VECTOR IS SKEW-SYMMETRIC
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4.2 SNRI AND BER RESULTS

This particular section presents the comparisons of the two MAMF
communication systems in terms of SNRI, justified by BER results which

represent the performance of their detectors.

4.2.1 Bit Error Rate (BER) Performance

With the detector design incorporated, the bit error rate (BER)
performance for both the traditional and proposed MAMF communication
systems can be determined. The BER is a statistical measure of the rate at
which bit errors occur for a number of bits transmitted. The BER is dependent
upon the ISNR and the SNRI provided by the system, and thus BER is
presented as a function of ISNR.

The data to be communicated is random. Numbers are generated from a
normal distribution with zero mean and unity variance. Therefore, if the
random number is greater than or equal to 0 a ”1” is communicated. A 70" is
communicated otherwise. The transmitted signal energy is equal for both
systems and the noise level is adjusted in order to obtain the desired ISNR

according to,

- (4.2)

In order to observe the performance of the system under ideal conditions the first
runs were conducted using the actual autocorrelation values. In this way, for a
particular colored noise center frequency, we can establish an upper bound of
BER performance for both the traditional and the proposed MAMF

communication systems.

The next runs were conducted with estimated autocorrelation values
obtained from the Classical Biased Estimator (CBE). This results in the

observation of a more practical situation through the effects of the estimator on
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BER performance. The CBE was used since, as discussed in Section 2.3, it is the

best estimator for this application.

Each run simulates the transmission of 1000 randomly generated binary
bits. The transmitted signal vectors (which represent each bit) are corrupted by
colored noise of a set center frequency, §. The bit chosen by the detector is
compared to the bit that was actually transmitted. If a ”1” was transmitted but
a ”0” was selected then a ”1|0” bit error occurs. Similarly, a ”0|1” bit error
occurs if a ”"0” was transmitted and a ”1” was selected. When the actual
autocorrelation is used, close correspondence between P, and BER is expected.
When the estimated autocorrelation is used, an increase of BER relative to that

for using actual autocorrelations is expected.
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4.2.2 Optimal Traditional System vs. Optimal Proposed System

After observing the performance of both MAMF communication systems
for the conditions described in Section 4.1.2, it would be interesting to observe
the effect of setting the proposed system at optimal conditions as well. Since
this section also presents BER, it is necessary to identify the signal vectors that
encode each bit.

For the proposed system, from (2.13), the following signal matrix was

used to encode a "0”:

So = [sp1 So2] (4.3)

Since the concatenated vector assignment is used as the transmission scheme,
(4.3) becomes,

) = s | sgs")" (4.4)
where 8y; = [ -.34506 0 -.93858 0 1T and sg2 = [0 -.93858 0 -.34506 7. For

optimal detector performance the signal vector used to encode the "1” sgp )
satisfies (2.96), where

sgp) = - sgp) (4.5)

The above signal vectors generate a SNRI curve that almost completely matched
the theoretical maximum SNRI curve for the proposed system (Figure 12) as

informed after private communication by J. R. Mitchell in October 1990.

The traditional system, as in the previous section, is optimized for § = 0°.

Therefore, the signal vector that encodes the ”0” is,
s() = [.0693 .2454 -.4188 .5095 -.5095 .4188 -.2454 .0693 |7
which is the eigenvector associated with the smallest eigenvalue of the Toeplitz
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noise autocorrelation matrix Ry, at § = 0°. In order to assure optimal detector

performance,

s{) = - o!) (4.6)

Notice that for the SNRI computations it is sufficient to use either the
sgp ) signal vector or the s&p ) signal vector for the proposed system and either the
sgt) signal vector or the sgt) signal vector for the traditional system. According
to (4.5) and (4.6) the signal energy of the vector encoding the ”1” is equal to the
signal energy of the vector encoding the ”0” for either system. Therefore,
assuming that (4.5) and (4.6) hold, sgp) and sg-t) (j=0,1) can be used for the
proposed and the traditional systems respectively for SNRI calculations.

Figure 19 presents the SNRI curve for both the proposed and the

traditional MAMF communication systems with the conditions described above.

The BER values presented in the next tables are the average of 5
statistically equivalent simulations, thus providing a better image of consistency
in the results. Table 1 illustrates the fact that when the traditional system is
optimized at # = 0° it cannot be outperformed when the colored noise center
frequency is # = 0°. From Figure 19, the actual SNRI for the proposed system is
39.95 dB and for the traditional system is 44.32 dB. Note from Figure 9, that for
ISNR of -40 dB, the calculated P, equals 0.05, which corresponds nicely to 53
(=27426) bit errors out of 1000 (Table 1). Futhermore, when estimated
autocorrelation values are used in the MAMF design, BER goes up. Note that
for an ISNR of -40 dB there is an increase in the total BER of 8% and 17% for
the proposed and the traditional systems respectively. This indicates that the
proposed system is more robust since it degrades slower than the traditional

system, for 6 = (",

Table 2 presents the behavior of both systems at § = 105.4° where the
actual SNRI for both communication systems is almost the same at 9.5 dB
(Figure 19). From Figure 9, at ISNR of -10 dB, or at OSNR of -10+9.5 = -0.5
dB the P, equals 0.178. Again this corresponds nicely to 173 (=87+86) out of
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1000. Again, when estimated noise autocorrelation values are used, the total
BER increases. At an ISNR of -10 dB, the total BER increases by 7% and 29%
for the traditional and the proposed systems respectively. Hence, for 8 = 105.4",

the traditional system is more robust than the proposed system.

When the center frequency is set at § = 135, the proposed system
performs considerably better than the traditional one, as can be seen from Table
3. This is reasonable since the actual SNRI for the proposed system is 15.5 dB
whereas the actual SNRI for the traditional system is 2.67 dB (Figure 19). The
latter number shows that when the traditional system is optimized for § = 0" and
is subject to a noise realization for § = 135", it produces very low SNRI. From
Figure 9, at ISNR of -20 dB, or at OSNR of -20.0+15.5 =-4.5 dB the P, equals
0.275. For the proposed system, the total BER is 276 (=138+138) out of 1000,
which is in perfect agreement with the P.. For the traditional system the OSNR
is -20.0+2.67 =-17.33 dB. The P, is 0.440 and the total BER is 437 (=219+218)

out of 1000 which is again very close.

Figures 20 and 21 display the correlation between the theoretically
derived and calculated probability of error P,, and the practically calculated
BER. Actual autocorrelation values were used and the results of two separate
BER runs are overlaid on top of the ROC curves for both systems. The close
correlation observed, gives an indication that evaluation of OSNR, when
estimated autocorrelation values are used in the MAMF design, could also
produce good correspondence of the probability of error and BER. In the next

section, it will be shown that that is indeed the case.
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FIGURE 19. PLOT OF SNRI vs. CENTER FREQUENCY 8 FOR p = 0.95
TRADITIONAL SYSTEM IS OPTIMIZED AT 6 = 0
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Table 1. Bit Errors / 1000 Bits vs. ISNR, Run @ 8 = 0", with p = 0.95.
Traditional system: Optimized for § = 0°
Proposed system: Optimal proposed signal vectors

System Error

ISNR (dB)

Trad. 100

0 0 0 0 30 148
0|1 0 0 0 0 32 158
Prop. 1/0 0 0 0 2 87 181
0|1 0 0 0 2 89 188
Actual AC values | || Estimated AC values
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Table 2. Bit Errors / 1000 Bits vs. ISNR, Run @ 8 = 105.4°, with p = 0.95.

Traditional system: Optimized for § = ("

Proposed system: Optimal proposed signal vectors

System

Error

0 -10

ISNR (dB)

-20  -30

92

195 241

251

244

Trad.
01 92 196 229 250 248
Prop. 1/0 12 109 206 235 245 252
0|1 12 114 208 233 243 248
Actual AC values| | | Estimated AC values
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Table 3. Bit Errors / 1000 Bits vs. ISNR, Run @ 8 = 135", with p = 0.95.

Traditional system: Optimized for § = 0°

Proposed system: Optimal proposed signal vectors

System

ISNR (dB)
20 -30

-50

Trad. 1]0 53 174 232 233 247 249
01 51 170 234 242 257 249
Prop. 1|0 20 144 208 246 252
0|1 20 152 213 239 248

Actual AC values|
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4.2.3 Optimal Proposed System vs. Traditional System

In an attempt to fairly compare the two MAMF communication systems

the encoding signal vectors were chosen to be the same.

Thus, as in the previous section, the proposed system uses the optimal
encoding signal vectors described by (4.4) and (4.5). Also, for a practical

comparison of the two communication systems, the traditional system uses,
s&t) = [-.34506 0 -.93858 0 0 -.93858 0 -.34506 |T (4.7)

to encode the ”0” bit whereas the signal vector that encodes the ”1” bit satisfies

(4.6) for optimal detector performance.

First, the SNRI is computed for each system as a function of the colored
noise center frequency 6, using actual autocorrelation values. The procedure is
then repeated for estimated autocorrelation values. In this procedure, the SNRI
(see Section 2.4.3) for each system is computed for a noise realization 8 and the
calculation 1s repeated 1000 times each time with a newly estimated

autocorrelation sequence. The mean SNRI is then calculated and graphed.

This whole procedure is first followed for narrowband noise, where
p=0.95. It is then followed for more broadband noise, where p = 0.8 and p =0.5,
in order to obtain a more complete picture of the behavior of both

communication systems.

Thus, Figure 22 presents the SNRI curves for both systems using actual
autocorrelation values for p =0.95, whereas Figure 23 presents the SNRI using
estimated autocorrelation values. Figures 24 and 25 present the SNRI curves for
actual and estimated autocorrelation values respectively for p = 0.8, while Figures
26 and 27 show the SNRI curves for p = 0.5.

Note that as p decreases and the noise becomes more broadband, the
actual SNRI and mean SNRI values also decrease. This can be explained by
looking at the signal spectrum. In this case, it is evident that the signal

magnitude response is broadband since an increase in the bandwidth of the noise
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makes the noise less distinctive, thus decreasing the SNRI.

Also notice that in Figures 22, 24, and 26 where actual autocorrelation
values are used for different p, the traditional communication system
outperforms the proposed system. This is an important observation when taking
into consideration that the optimal proposed signal vectors described by (4.4)
and (4.5) are used. From Figures 23, 25, and 27, where estimated
autocorrelation values are used, the conclusion can be drawn that the proposed
communication system is more robust in the sense that it deteriorates to a much
lesser degree than the traditional system. For instance, the proposed system is
clearly more desirable when € is in the range of 0° - 30°, while the traditional

system performs better in the 75 - 110° range.

Next, the BER are calculated for the aforementioned conditions. It
should be mentioned that the BER values presented are the average of 5
statistically equivalent runs, thus providing a better image of consistency in the
results. Tables 4, 5, and 6 present BER for both actual and estimated
autocorrelation values for 6’s of 0°, 90°, and 180° respectively, for p = 0.95.
Tables 7, 8, and 9 present the BER for p = 0.8 and Tables 10, 11, and 12 present
the BER for p = 0.5. The BER corresponds directly to the behavior of the mean

SNRI curves in the following manner.

Note from Figure 23 that the mean SNRI for the proposed system for 90°
is about 6.3 dB and the mean SNRI for the traditional system is approximately
9.8 dB. From Table 5 for an ISNR of -10 dB, the BER total of 165 (=84+481) is
computed for the traditional system, and the BER total of 266 (=129+137) is
computed for the proposed system. The mean OSNR is -3.7 dB (= -10+6.3) for
the proposed system and -0.2 dB (= -1049.8) for the traditional system. By
referring to the ROC curves given in Figures 9 or 11, one can find a P, =0.260
for the proposed system and a P,=0.165 for the traditional system, thus

confirming the previous BER values.

For an additional example let us refer to Figure 27. For a noise
realization at § =0" and at p=0.5 the mean SNRI is 7.1 dB for the proposed
system, and 6.0 dB for the traditional system. Hence, for an ISNR of -20 dB, the

4.0 Results on MAMF Receiver Performance 99



mean OSNR is -12.9 dB and -14.0 dB for the proposed and traditional systems
respectively. By referring to the ROC curve in Figures 9 or 11, a P, =0.41 and a
P, =0.42 is obtained for the proposed and the traditional system respectively.
These values correspond nicely to the BER total of 400 (=199+4201) for the

proposed system and 427 (= 212+4215) for the traditional system as taken from
Table 10.

In an effort to display the correlation between the theoretically derived
probability of error P,, and the practically obtained BER when the noise
autocorrelation is estimated, Figures 28 and 29 present the results of two
separate BER simulations overlaid on the ROC curve for the traditional and the
proposed communication system respectively. Figures 20 and 21 presented the
same graphs when the actual noise autocorrelation was used for the BER. There
is, of course, some deterioration of the OSNR, when the noise autocorrelation
sequence is estimated. Since OSNR is an estimate, an estimate of the
probability of error lse, is obtained. This deterioration is the result of the noise
autocorrelation estimator. The BER values in Figures 28 and 29 will approach
the ROC curve as the number of noise samples used by the estimator increases

as seen from Section 2.3.

In summary, there are certain areas in the colored noise center frequency
spectrum where the proposed system outperforms the traditional system and vice
versa. Therefore, the need arises for a method which when implemented would
be able to make a decision, based on the mean SNRI curves, about which system

to use for better detection. This method is examined in the next chapter.
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FIGURE 22. PLOT OF SNRI vs. CENTER FREQUENCY 6 FOR p = 0.95
TRAD. & PROP. SYSTEMS USE OPTIMAL PROPOSED VECTORS
w/ ACTUAL AUTOCORRELATION SEQUENCE
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FIGURE 23. PLOT OF MEAN SNRI vs. CENTER FREQUENCY 6 FOR p = 0.95
TRAD. & PROP. SYSTEMS USE OPTIMAL PROPOSED VECTORS
w/ ESTIMATED AUTOCORRELATION SEQUENCE
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FIGURE 24. PLOT OF SNRI vs. CENTER FREQUENCY 6 FOR p = 0.8
TRAD. & PROP. SYSTEMS USE OPTIMAL PROPOSED VECTORS
w/ ACTUAL AUTOCORRELATION SEQUENCE
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FIGURE 26. PLOT OF SNRI vs. CENTER FREQUENCY 6 FOR p = 0.5
TRAD. & PROP. SYSTEMS USE OPTIMAL PROPOSED VECTORS
w/ ACTUAL AUTOCORRELATION SEQUENCE
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Table 4. Bit Errors / 1000 Bits vs. ISNR, Run @ 8 = 0°, with p = 0.95.
Traditional system: Optimal proposed signal vectors

Proposed system: Optimal proposed signal vectors

System

Error

Type

ISNR (dB)
20  -30

-40  -50

Actual AC values |’
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Table 5. Bit Errors / 1000 Bits vs. ISNR, Run @ 8 = 90°, with p = 0.95.
Traditional system: Optimal proposed signal vectors

Proposed system: Optimal proposed signal vectors

System

-10

ISNR (dB)
20 -30

..84

186 220

Trad. 1/0 1 256 246
Ull 1 81 198 234 255 248
Prop. 1/0 14 129 204 231 245 253
0|1 11 137 212 239 257 241

Actual AC values| | | Estimated AC values

4.0 Results on MAMF Receiver Performance

110



Table 6. Bit Errors / 1000 Bits vs. ISNR, Run @ 4 = 180", with p = 0.95.
Traditional system: Optimal proposed signal vectors

Proposed system: Optimal proposed signal vectors

System

Error

Type

-10

ISNR (dB)

-20 30

Trad. 1/0 0 0 0 21 133 197
01 0 0 0 13 134 210
Prop. 1|0 0 0 0 24 131 207
0]1 0 0 0 15 134 209

Actual AC values|
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Table 7. Bit Errors / 1000 Bits vs. ISNR, Run @ 6 = 0°, with p = 0.8.
Traditional system: Optimal proposed signal vectors
Proposed system: Optimal proposed signal vectors

System Error ISNR (dB)
Type 0 -10 20 -30 -40 -50

21 110 199 234 235

Trad. 110 4
01 2 23 119 202 233 233
Prop. 110 0 63 178 239 247
01 0 0 69 183 228 235

| | Estimated AC values

Actual AC values |
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Table 8. Bit Errors / 1000 Bits vs. ISNR, Run @ 8 = 90°, with p = 0.8.
Traditional system: Optimal proposed signal vectors

Proposed system: Optimal proposed signal vectors

System

Error

Type

ISNR (dB)
20 -30

163

243

Trad. 1 IO 42 214 241 252
0|1 33 159 213 228 249 255
Prop. 1]0 70 191 220 238 254 267
0|1 74 183 221 235 249 259
Actual AC valuesf | | Estimated AC values
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Table 9. Bit Errors / 1000 Bits vs. ISNR, Run @ 6 = 180°, with p = 0.8.
Traditional system: Optimal proposed signal vectors
Proposed system: Optimal proposed signal vectors

System Error ISNR (dB)
Type 0 -10 -20 -30 -40 -50

Trad. | 1[0 0 2 90 187 238 239
0j1 0 5 87 190 233 245

Prop. 1)0 0 0 80 186 240 240
oJ1 1 2 87 191 235 237

Actual AC values Estimated AC values
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Table 10. Bit Errors / 1000 Bits vs. ISNR, Run @ § = (", with p = 0.5.
Traditional system: Optimal proposed signal vectors
Proposed system: Optimal proposed signal vectors

System Error ISNR (dB)

Trad. 10 18 121 212 247 234 246

01 24 129 215 238 239 259
Prop. 1/0 6 105 199 232 240 257
01 7 127 201 239 253 258

Actual AC values | | | Estimated AC values
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Table 11. Bit Errors / 1000 Bits vs. ISNR, Run @ ¢ = 90", with p = 0.5.

Traditional system: Optimal proposed signal vectors
Proposed system: Optimal proposed signal vectors

System

Error

Type

ISNR (dB)

-30

Trad. B

251

01 86 187 234 247 249 263
Prop. 1/0 111 191 236 247 229 254
0|1 111 207 233 253 253 238

Actual AC values Estimated AC values
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Table 12. Bit Errors / 1000 Bits vs. ISNR, Run @ 8 = 180°, with p = 0.5.
Traditional system: Optimal proposed signal vectors

Proposed system: Optimal proposed signal vectors

System

Error

Type

ISNR (dB)

134

Trad. 1[0 12 248 235
0[1 15 127 208 242 242 250
Prop. 1|0 11 128 200 232 251 235
0|1 13 124 200 235 246 246

Actual AC values Estimated AC values
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5.0 RECEIVER SELECTOR DESIGN

As seen from the SNRI curves and the BER results presented in the
previous chapter, the proposed MAMF communication system deteriorates to a
lesser degree, generally, than the traditional MAMF communication system
under the use of estimated correlations. Hence, the proposed system appears to
be more robust than the traditional system against changes in noise color.
Nevertheless there are certain noise realizations 6, for instance when

75 < 8 <110°, for which the traditional system outperforms the proposed system.

Thus, in order to ensure the best possible probability of detection and
discrimination of the transmitted bits, it is desirable as well as reasonable to
design a selector whose responsibility would be to choose the MAMF receiver
which performs better for an estimated noise realization f and p. The vector
entering the receiver is rg as seen from (2.19). The vector r, can be interpreted
by the receiver as the traditional noise corrupted transmitted vector or the
proposed noise corrupted transmitted vector depending on which is deemed most
appropriate. Hence, this chapter first presents the estimation of the colored
noise center frequency and bandwidth parameters, § and p respectively. Next,
based on the estimates § and p, a decision can be made on which system
performs better by utilizing the SNRI data that has been obtained already under
the same autocorrelation estimator conditions (Figures 23, 25, 27). The theory
behind the aforementioned procedure as well as its implementation are also
contained in this chapter which concludes with BER results obtained in order to
compare the traditional MAMF receiver, the proposed MAMF receiver and the

[traditional /proposed] MAMEF receiver in which the selector is incorporated.
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5.1 NOISE CENTER FREQUENCY & BANDWIDTH ESTIMATOR

In a practical implementation, the only data available at the receiver is
the 16-dimensional measurement vector rq as given in (2.19). The Toeplitz noise
autocorrelation matrix R,, is constructed from the noise vector wy, but no other
information concerning the noise is available. In order to be able to make a
decision on which communication system to pick for better detection, accurate
estimates of the noise bandwidth and center frequency parameters must be
obtained. This can be accomplished by the Burg method, an autoregressive
(AR) spectral estimation method. This particular method is used because
narrowband colored noise is well described by taking a Gaussian white noise
process with 02 = 1 and coloring it with an autoregressive Infinite Impulse
Response (IIR) digital filter as used and described in Section 3.1.

The Burg method uses the noise samples w,, to estimate the reflection
coefficients {k;, kg, ..., kp} and then uses the Levinson algorithm (Appendix B)
to obtain the AR parameter estimates. The reflection coefficient estimates are
calculated by minimizing estimates of the prediction error power for different
order predictors in a recursive manner. Specifically, the Burg method for
estimation of the AR parameters of an AR(p) filter is [6],

A ] A=l )
Bul0) = & 3 [ (5.1)
n=
with
IA’(] i\'w(o)
é’n Wy, =1,2,.. N-1
& n=wn =0,1,.., N-2

where N = 8. Then,

. ‘22 &f_ 1, (ek—ln—l)
k, = k=1,2,...p (52

| & 9
le{ln & —1,n-11")
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pe=(1-1k1*) pp_y (5.3)

R . ék—l,l + f(k &]’:_ljk__i fori = ]., 2, veny k-1
k ori=k
Notice that if k = 1, then al,l = f{l' Also,
Af s N ) .
ei,n—ei—l,n+kkek—1,n—1 n = k+1, k+2, ..., N-1
(5.5)

&= 1tk 1, n=kk+l, ., N2

The Burg method yields estimated poles that are on or inside the unit
circle due to the property | f(k | £ 1. Therefore a minimum-phase (stable) AR
digital filter can be associated with this method. Since an AR(2) model is

desirable, the filter has a transfer function described by,

bO Z2
(z - 21)(z - 29)

H(z) =

bO z2

bO Z2
2’ + 8912+ 8y 9

(5.6)

where by = (1-p) | eja -p e_ja | and is defined such that the peak magnitude
response is normalized to unity. In addition, 2; and 2, are the estimated poles,
and &y ; and &, o are the estimated AR coefficients which are computed using
the Burg algorithm. From this point the coefficients 4y ; and &5 o will be

referred to as 4; and &, respectively for simplicity. Hence, in order to compute
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the estimated poles the quadratic equation can be used on the denominator of

(5.6). Therefore,

(5.7)
If
ADa]-43 20 (5.8)
then the poles are real and (5.7) is used for the pole calculation. Automatically,
p=max{ | 2], | 2 ) (5.9.8)

If | 21| > | 25}, then,

. [0 if2,>0

0:{7r 720 (5.10.b)
If | 29| > | 2|, then,

. [0 if5,>0

0 :{1rr 2,50 (5.10.c)

If A<0, the poles are complex conjugates. Then, as in (3.1), (5.6) can be
manipulated to yield,

= 5,2 (5.10.&)

%3

9

élA
p

'y (5.10.b)

cos™! [-

The colored noise center frequency and bandwidth parameter estimates
can thus be computed from the results of the Burg algorithm according to
equations (5.10) or (5.9).
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5.2 DECISION ON MAMF RECEIVER SYSTEM

Under the circumstances presented in the previous section and having
available the data given in the mean SNRI curves (see Chapter 4) one can
pinpoint, in the area of operation, which of the two systems performs better in a

statistical sense.

By using Figures 23, 25, and 27 one can create a 3-D graph (x vs. y vs. z)
0 vs. mean SNRI vs. p that will serve as the database for the simulation. Since
these figures were produced when both systems used the optimal proposed signal
vector it is required that the actual bit transmission take place under the same
circumstances. Thus, for a 9, three SNRI values can be obtained by linear
interpolation, each corresponding to a different p (: 0.5, 0.8, 0.95). By using
polynomial interpolation, SNRI, the mean SNRI value corresponding to both )
and p for a particular communication system, can be determined. Specifically,
the Lagrange form of polynomial interpolation is used due to its accuracy and

simplicity as compared to similar methods.

5.2.1 Lagrange Interpolation of mean SNRI data

Let us assume that f(pj) is the mean SNRI value of pj at a specific [}
Then there is a unique interpolating polynomial such that p(p]-) = f(pj) for
0<j<n. This is the interpolating polynomial of the Lagrange form and is
defined by the following relations [11],

p(p) = ,ioﬂpj)ﬂj(m (5.11)
] =
where,
B.4p) =T (7 - ) 4] (5.12)
J i=0 (p] pz)

and n = 2, py = 0.95, p; = 0.8, pg = 0.5.
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The Lagrange form was checked for accuracy over various colored noise
center frequencies (8’s). Figures 30, 31, and 32 present the SNRI curves for both
communication systems using the Lagrange form for every p, for 6’s of 0°, 90°,
and 180° respectively. Note that when p = py = 0.5, p = p; = 0.8, and
P = py=0.95, p(p) = f(p;) for j = 0, 1, 2 as expected.

There are a few interesting cases that should be mentioned which are the
result of the interpolation technique and the particular p-points used. In Figure
30, when 0.53 <p <0.73, then pp(p) >pp(p). In other words, the interpolated
curves suggest that for § = 0°, and for that specific range of p’s, the traditional
system performs better than the proposed system. In addition, note that for the
interpolatory curve produced for the proposed system, a minimum appears at
p=0.56. This indicates that the SNRI at p=0.56 is less than the SNRI at
p=0.5 at a #=0". The same observation can be made for the interpolatory
curves produced for both systems in Figure 31, when 8 =90°. For Figures 30 and
31,

f(py) - p(0.56) ~ 0.1 dB (5.13)

The aforementioned situations contradict the previous observation made
in Section 4.2.2, that mean SNRI decreases with decreasing p and are, obviously,
unacceptable. The reason for the behaviors of the interpolatory curves of Figures
30 and 31, is the interpolation itself. The interpolation was conducted from only
three available data points, or n =2. This, in addition with p j not being equally
spaced, resulted in the aforementioned situations. For n > 2, the interpolation
would be more accurate due to the larger number of true data points. With p j
equally spaced any undesirable minima in the interpolatory curves would most
likely be avoided. In order to have so many true data points, SNRI curves would

have to be created for that many p’s.

For Figure 31, the SNRI minimum at p=0.56 is present for both
communication systems. Since the purpose of the selector is to choose one of the

two systems, this unique behavior does not produce any major influence on the
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decision and subsequently on the output of the selector. This is not the case
with Figure 30. At § =0" whenever 0.53 < p < 0.73, the selector will choose the
traditional system over the proposed system, resulting in an incorrect decision.
Since the SNRI values computed from the interpolation are also affected, a
restriction can be included to set the SNRI at the value attained at p=0.5,
whenever it falls below it. If (5.13) is true, the small error produced can be

considered an approximation error.

Hence, using the Lagrange method, a SNRI value can be obtained for
both communication systems. By picking the largest value of the two, one can
choose a communication system based on the estimates 8 and p as well as the

SNRI database, for that particular bit transmission.
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5.2.2 Estimator / Selector Implementation

The estimator developed in Section 5.1 provides estimates of the
bandwidth and frequency parameters of the colored noise. Based on these
estimates as well as the mean SNRI curves (Figures 23, 25, and 27), a selector is
designed which chooses a MAMF receiver system for the data processing. The
selector compares the SNRI values for the proposed and the traditional systems
at  and p, and chooses the system with the highest value. In this way a
minimum BER, on the average, can be assured for that particular bit

transmission.

As a test, noise was generated with bandwidth parameter p =0.95 and
center frequency 6 =0°, § =90°, and 6 =126°, to create Tables 13, 14, and 15
respectively. For every bit transmitted the estimates 8 and p were computed
using the estimator presented in Section 5.1. Based on these values the most
appropriate communication system was picked and the BER were computed
according to that communication system scheme as a function of ISNR. Every
simulation consists of the transmission of 1000 bits, using estimated noise
autocorrelation values in order to simulate as closely as possible a realistic
situation. The BER presented in Tables 13B, 14B, and 15B are computed with
both communication systems using the optimal proposed vectors and are the
average of three simulations. Tables 13A, 14A, and 15A display the most vital

statistics of these simulations as a function of ISNR.

Specifically, the maximum-likelihood estimates p and  and Ie'e are
presented. Let us assume that p j and 6 ; are the colored noise bandwidth and
center frequency parameter estimates, respectively, computed by the estimator

for the j-th bit transmission. Then, p and @ are computed in the following

manner [10]:

B
Z p; (5.14.a)

B,
> b (5.14.b)
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where B is the number of bits transmitted (1000 in this case). Similarly, assume
that 156, j is the probability of error estimate calculated from the ROC curves in
Figure 9 or 11, associated with the j-th bit, for either the traditional system or
the proposed system. Then, lse is,

. B,
PEP) =-é— > Pg? (Proposed system) (5.14.¢)
i=1

BT

Isg;) (Traditional system) (5.14.d)
1

1M

L
B

J
Equations (5.14.c) and (5.14.d), illustrate the computation method of P, for both
the proposed system and the traditional system. Since for every bit transmission
the selector chooses the best performing communication system in terms of SNRI
based on 8 and p, the P, for the selector system is computed in the following

manner:

B »J

. B, ..
P -1 y pls) (5.14.¢)
i=1

where

5(5) lsgs) if the proposed system was picked for the j-th bit
13‘(3;) if the traditional system was picked for the j-th bit

Furthermore, the number of times each communication system was
picked for a specific number of bits transmitted is displayed in Tables 13A, 14A,
and 15A as well as the average SNRI values for the traditional and proposed

communication systems, as computed based on the estimated p and 8.

From Tables 13A, 14A, and 15A, one can observe the accuracy of the
estimates. Let us consider the # in Table 13A. The estimate deviates from the
true value about 4.3° whereas in Tables 14A and 15A, the estimate deviates only
about 0.3° from the corresponding true value. Since the average 8 is computed

according to (5.14.b), and 6 is assumed throughout this work to be in the range
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of 0 <8<, the average is shifted towards the positive side since there are no
negative 8’s to compensate for. This accounts for the deviation of the # in Table
13A. Consider also the p in Table 13A. The p is very close to the true value of
0.95. However, in Tables 14A and 15A, the estimate deviates drom the true
value by about 0.07 units. The reason for this observation is that for § =0° the
poles of the colored noise AR(2) filter are real (Figure 6). Then, from Section
5.1, it is very likely that A >0 in (5.8) and thus (5.9) is used to obtain the
estimated poles. As a consquence, the p is quite accurate. When 6 =90° or
6 =126 it is very unlikely that (5.9) will ever be used to provide the
autoregressive parameter estimates. More likely, (5.10) is used, in an effort to fit

a pair of complex conjugate poles to the noise data.
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Table 13A. Statistics / 1000 Bits vs. ISNR, Estimated AC values.
True § = 0°, True p = 0.95

ISNR p ] T/P T.SNRI  P.SNRI
(dB) () (dB) (dB)
-0 0.969 4.3 1/999 23.1752  38.9009
-10 0.970 4.5 1/999 23.1705  38.5903
-20 0.969 4.5 2/998 23.1439  38.6507
-30 0.970 45 1/999 23.1969  38.8273
-40 0972 4.2 0/1000  23.2976  39.1324

Table 13B. Bit Errors / 1000 Bits vs. ISNR, Estimated AC values.
True 8 = 0°, True p = 0.95

System Error ISNR (dB)
Type 0 -10 20 -30  -40
01 0 0 0 1 73
Proposed 1[0 0 0 0 0 92
p(P) 0.000 0.000 0.000 0.002  0.168
0|1 0 1 30 157 225
Traditional 1]0 0 0 29 156 233
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Table 14A. Statistics / 1000 Bits vs. ISNR, Estimated AC values.
True 6 = 90°, True p = 0.95

ISNR p ] T/P T.SNRI  P.SNRI
(dB) ) (dB) (dB)
-0 0.890  90.7  992/8 9.2826 5.9476
-10 0.890  90.0  990/10 9.0455 5.7987
-20 0.890  90.4  993/7 9.7183 6.3421
-30 0.888  90.5  989/11 8.7189 5.4299
-40 0.892  89.9  995/5 8.9568 5.6398

Table 14B. Bit Errors / 1000 Bits vs. ISNR, Estimated AC values.
True 8 = 90°, True p = 0.95

System Error ISNR (dB)
Type 0 10 20  -30
o[ 16 139 208 262
Proposed 1]0 16 141 211 222
p(P) 0.046 0.301 0.434 0.479
o1 3 84 198 243
Traditional 1/0 2 86 196 224
p(T) 0.005 0.170 0.380  0.462
o1 | 3 &4 198 43 933
&% 19 93 ¢

0462 0487
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Table 15A. Statistics / 1000 Bits vs. ISNR, Estimated AC values.
True 0 = 126", True p = 0.95

ISNR p ) T/P T.SNRI  P.SNRI
(dB) ) (dB) (dB)
-0 0.888 125.9  547/453  12.4576 12.1196
-10 0.881 126.4  502/498  13.6442 13.2758
-20 0.878 126.3  511/489  12.6576 12.3205
-30 0.880 126.0  504/496  13.8262 13.3799
-40 0.881 126.6  480/520  13.1205 12.8133

Table 15B. Bit Errors / 1000 Bits vs. ISNR, Estimated AC values.
True 8 = 126", True p = 0.95

System Error ISNR (dB)
Type 0 -10 -20 -30 -40
01 0 49 173 217 232
Proposed 1]0 1 41 189 240 254
15((}’) 0.001 0.085 0.330 0.444 0.482
01 2 48 181 211 242
Traditional 1/0 1 45 186 220 269

0.445
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The three ’s picked for the above results were such so as to illustrate the
three possible different cases in choosing a receiver system. The § = 0° case,
presents the possibility of the proposed system outperforming the traditional
system whereas the § = 90° case presents the opposite. Finally, the 8 = 126" case
presents the possibility of the two systems being equivalent in terms of mean
SNRI. Note that with an arbitrary noise color distribution one of the above
three cases arises at any particular noise color. Also note, from Tables 13A, 14A,
and 15A that the selector is clearly capable of distinguishing which system
performs better since for the 8 = 0° case the proposed system was picked for the
reception 999 times in 1000. Furthermore, in the 8 = 90° case the traditional
system was picked for the reception approximately 992 times in 1000 and in the

6 =126’ case the choosing is approximately 500 in 1000.

In an attempt to illustrate the advantage of having a selector incorporated
in the design, the average BER were computed for each system, for the three
different colored noise center frequencies as a function of ISNR. Generally, if ©

is defined as the random variable such that,
©0)=6 for0<f<m

then the average of the function BER(©) for a specific ISNR is,

o0
E{BER(O)} = [ BER(6) p(6) d¢ (5.14)
—00
where p() is the probability density function of ©. For the discrete case (5.14)
becomes,
F
E{BER(©)} = ) BER(6)P(6;) (5.15)

where F is the number of colored noise center frequencies considered for the
calculation of the average (T =3 in this case), and P(6;) is the probability of the
colored noise having a center frequency of 6. i If p(f) is a uniform probability

density function, then a colored noise sequence has equal probability of
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containing any center frequency. Hence,

and (5.15) becomes,

F
3" BER(Y))

1 3
=4 > BER()) (5.16)

Specifically, the total BER were obtained for a particular ISNR and 6 from
Tables 13B, 14B, and 15B. Next, the average (over all three 8’s) BER was
computed for each receiver system as well as the selector system according to
(5.16). Table 16 presents these results. The most desirable system is the system
with the smallest average BER and is displayed with a gray shading. Clearly, it
is advantageous to incorporate the selector in the communication system since it
provides the best averages for all ISNR’s except -40 dB. The -40 dB case,
though, is of little importance due to the large number of BER under any

circumstances.

The BER averages presented in Table 16 can be confirmed by applying
(5.16) to the estimated probability of error function 156(9) which is computed
independently from the BER. Thus, (5.16) becomes,

E{P.(0)} = % f: (6 (5.17)

where lse(ﬂj) can be found in the Tables 13B, 14B, and 15B. The P, averages
are presented in Table 17. As before, the most desirable system is the system
with the smallest average P, and is displayed with gray shading. Again, the
advantage a communication system has with the selector incorporated in the
design, is evident. This is logical since the selector combines and utilizes either

the proposed system or the traditional system only when they function at their
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best.

From Tables 16 and 17 one can confirm the correlation of P, and BER.
For instance, for an ISNR =-10 dB the average BER for the selector system is 86
bits out of 1000, whereas the average P, is 0.086 - an exact match. For an
ISNR =-30 dB, the average BER for the traditional system, the proposed system
and the selector system are 403.67/1000, 314/1000 and 302/1000 respectively.
The average f“e for these systems are 0.406, 0.308, and 0.303 respectively,
resulting in a very close correlation with the aforementioned BER averages.
Thus, it is possible to use the Ise estimates to predict what would happen at
ISNR of 10 dB or 20 dB, without computing the BER which is not only a costly,

but a time-consuming procedure as well.

Table 18 is an extension of Table 17, in order to include the average P,
values for ISNR of 10 dB and 20 dB. It should be mentioned that these cases
represent typical communication system situations with BER on the order of
1/10*t6.  Again the selector system is predicted to outperform both the

traditional and the proposed system.
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Table 16. Receiver System BER Averages for p = 0.95

SYSTEM Traditional | Proposed |
6=0 0 o |
ISNR = 0.0 dB 0 =90 5 32
0 =126 3 1
AVER 2.667 11.00
SYSTEM Traditional | Proposed | S :
9=0 1 o |
ISNR = -10.0 dB = 90° 170 280
0 = 126" 93 90
AVER 88.000 123.33
SYSTEM Traditional | Proposed | Selec
0=0 59 0
ISNR = -20.0 dB 0 = 90° 394 419
0 =126 367 362
AVER 273.33 260.33
SYSTEM Traditional | Proposed | Selector
0=0 313 1|
ISNR = -30.0 dB 0 =90 467 484
0 =126 431 457
AVER 403.67 314.00
SYSTEM Traditional | Selector
0=0 458 165
ISNR = -40.0 dB 0 =90 487 487
0 = 126° 511 508
AVER 485.33 386.67
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Table 17. Receiver System P, Averages for p=0.95

SYSTEM Traditional | Proposed |
=0 0.001 0.000 |

ISNR = 0.0 dB 6 =90 0.005 0.046

0 =126 0.005 0.001

AVER 0.004 0.016

SYSTEM Traditional | Proposed

0=0 0.009 0.000 |
ISNR = -10.0 dB 0 =90 0.170 0.301

0 = 126" 0.094 0.085

AVER 0.091 0.129

SYSTEM | Traditional | Proposed |

=0 0.080 0.000 |
ISNR = -20.0 dB 0 =90 0.380 0.434

0 =126 0.332 0.330

AVER 0.264 0.255

SYSTEM | Traditional | Proposed | Sele

=0 0.310 0.002 |
ISNR = -30.0 dB 0 =90 0.462 0.479

0 =126 0.445 0.444

AVER 0.406 0.308

SYSTEM Traditional | Proposed | Selec

0=0 0.437 0.168 :
ISNR = -40.0 dB 0 =90 0.487 0.493

0 = 126" 0.482 0.482

AVER 0.469 0.381
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Table 18. Receiver System P, Averagesx 1075 for p = 0.95

SYSTEM Traditional
0=0 0.762
ISNR = 10.0 dB 0 =90 101.1
0 = 126" 105.1
AVER 68.99
SYSTEM Traditional | Proposed | Selectc
0=0 0.000 0.000
ISNR = 20.0 dB 0 =90 0.031 0.034
0 =126 0.000 0.000
AVER 0.010 0.011
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6.0 SUMMARY AND CONCLUSIONS

The primary goal of this thesis was the design of an optimal detector for a
MAMF communication system, capable of detecting and discriminating the
transmitted signal vectors. The optimal detector utilizes the noise corrupted
signal vector, the encoding signal vectors and the noise autocorrelation matrix in
order to make a decision on which bit was most likely communicated. The
detector is characterized by the Receiver Operating Characteristic (ROC). The
ROC is illustrated by a plot of probability of error P, vs. Output Signal-to-Noise
Ratio (OSNR), and provides a theoretical standard for the performance of the
detector. For optimal detector performance in binary communication, the signal
vector encoding the ”1” bit must be the negative of the signal vector encoding
the ”0” bit. In addition, the encoding signal vector must be the eigenvector
associated with the minimum eigenvalue of the Toeplitz colored noise

autocorrelation matrix, so that a minimum probability of error P,, is ensured.

The traditional and the proposed MAMF communication systems were
compared prior to the incorporation of their respective detectors in terms of
Signal-to-Noise Ratio Improvement (SNRI), whereas Bit Error Rate (BER)
comparison studies could be performed following the incorporation of the
detector in each system. A close correlation was observed between the BER and
the ROC for both the traditional and the proposed systems, for actual and
estimated noise autocorrelation values. From the close correlation observed
under any circumstances, one can predict the performance of the detector, in

terms of probability of error, by using the ROC curve.

The absolute maximum attainable SNRI for the traditional and the
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proposed systems was calculated over various colored noise center frequencies 6,
in order to set an upper envelope of performance for narrowband noise. The
SNRI absolute maxima that can be attained for less narrowband noise and
broadband mnoise were also calculated. These results indicated that the
traditional system was theoretically capable of outperforming the proposed
system at every colored noise center frequency. In addition, as the noise became
more broadband, the absolute maximum attainable SNRI decreased for every

individual colored noise center frequency.

The two MAMF communication systems were compared when the

traditional system was optimized for a specific thus using as its encoding

opl>
signal vector the eigenvector associated with thi, smallest eigenvalue of the
Toeplitz colored noise autocorrelation matrix generated at that 6,,,. The
proposed system used randomly picked symmetric and skew-symmetric encoding
signal basis vectors. When the colored noise center frequency was in the vicinity
of Gopt,
traditional system was optimized for that §. However, once the colored noise
opt> the SNRI for the traditional

system dropped and sometimes attained a negative decibel value which implied

the traditional system outperformed the proposed system, since the
center frequency deviated from the vicinity of 8

degradation, rather than improvement, as the performance of the receiver. The

proposed system seemed to be more robust as its SNRI curve was more well-

behaved.

The two MAMF communication systems were also compared when the
traditional system was optimized for a Gopt and the proposed system used as its
encoding signal basis vectors the vectors that almost attain the theoretical SNRI
maximum of the system. Hence both systems were considered to be optimized.
When colored noise was generated for a specific 8, and the noise autocorrelation
was estimated, the BER increased by 8% for the proposed system and 17% for
the traditional system relative to the BER calculated with the actual noise
autocorrelation values. Hence the proposed system deteriorated in a lesser
degree than the traditional system, thereby indicating robustness. However, for
another 6, the opposite occurred. From these results one can get an indication of

the need for a selector which will be able to choose, based on colored noise
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estimates for every bit transmission, the best performing receiver.

The behavior of both communication systems under a practical situation
where both systems use the signal vectors for which the proposed system is
optimal, was also investigated. As the colored noise became more broadband,
the actual SNRI and mean SNRI values decreased. Since the magnitude
response of the signal vector used was broadband, it is logical that narrowband
noise was more distinctive than broadband noise, thus resulting in a high SNRI
relative to the SNRI obtained when broadband noise was used. At different
colored noise bandwidths, when actual noise autocorrelation values were used,
the traditional communication system outperformed the proposed system. This
is an important observation when taking into consideration that the optimal
proposed signal vectors were used. When estimated autocorrelation values were
used, the proposed communication system was more robust in the sense that it
deteriorated to a lesser degree than the traditional system. Nevertheless, there
were certain areas in the colored noise center frequency spectrum where the
proposed system outperformed the traditional system and vice versa. For
instance, the proposed system was clearly more desirable when 6 was in the
range of 0° - 30°, while the traditional system performed better in the 75° - 110°

range.

Therefore, in order to ensure the best possible probability of detection and
discrimination of the transmitted bits, it was desirable as well as reasonable to
design a selector whose responsibility would be to choose the MAMF receiver
which performs better for an estimated noise realization 9 and p. Based on the
estimates § and p, a decision could be made on which system performs better by
utilizing the already existing SNRI data. The [traditional/proposed] MAMF
communication system, which incorporates the selector, performed better, on the
average, than either the traditional MAMF communication system or the
proposed MAMF communication system alone. For instance, for an ISNR of -20
dB, the average BER for the [traditional/proposed] MAMF system was 251/1000
whereas the average BER for the proposed and traditional MAMF systems were
260/1000 and 273/1000 respectively.
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APPENDIX

This chapter consists of two sections. The first section presents the
Gram-Schmidt orthonormalization and the second section presents the Levinson
algorithm. Although both procedures can be found in the literature ([9], and [6]
respectively), they are included in this chapter for fast reference due to their

importance.
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Appendix A. (Gram-Schmidt Orthonormalization Process)

Let us assume that f;, f,, ..., f;, are any n basis vectors. Then one can
always construct orthonormal basis vectors g;, g, ..., g, by using the Gram-

Schmidt orthonormalization recursive scheme which is given by the following

equations:
hy =15 - agify
h, =1, - an,n-—lfn—l T T a‘nlfl
where
<f,h >
a

nl = Zh; by >

<f h >
Ay n—-1= b 2 T];—l n>?2
’ <hbh, 1h, ;1>

where < xy > denotes the inner product of the vectors x and y. Hence, the

normal basis is obtained by normalizing the h,, vectors as follows,

Vn (A.1)

where || x| denotes the norm of the K-dimensional vector x in the following

manner:
Ix]2=<xx>

The vectors g;, g9, ..., &, form an orthonormal basis of the linear space spanned

by the basis vectors f;, f,, ..., f,.
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Appendix B. (Levinson Algorithm)

The Levinson algorithm was originally designed to solve the Yule-Walker

equations or,
Pa=0bDb (B.1)

where @ is an N x N Hermitian matrix of the following structure:

e(0) (1) ... o(-N+1)
¢(1)

®=
(N-1) #(0)

If ® denotes the autocorrelation matrix, then one may determine the AR
parameters by solving the set of linear equations of (B.1). Gaussian elimination
could be used but would require N3 operations. Due to the special structure of
the ® matrix, though, the Levinson algorithm requires N2 operations. The
algorithm recursively computes the parameter sets {a;(1), p1}, {ag(1), a5(2), po},
ey {ay(1), ..., apy(N), pp} where p; is the prediction error power at order j. The
final set at order N is the desired solution of (B.1). The recursive algorithm is

initialized by,
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p1=(1-1a;(1) [P)p(0)

with the recursion for k =2, 3, ..., N given by

o(k) + kil ap_1(De(k-1)
ag(k) =- o

ap(i) =a;_1() + a(k) af_;(ki) i=1,2,.., k1
pr=(1- | ay(k) |2)Pk_1
The reflection coefficients are given by,

kk = ak(k)

(B.2.a)
(B.2.b)

(B.2.c)

The Levinson algorithm can also be used to solve any set of linear

equations of the form,
bc=d

where the vectors ¢ and d are of the following formats:

Then the recursive algorithm is initialized by

_ . e()
="

pr=(1-]c(1) [)e(0)
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and equations (B.2) become for k=2, 3, ..., N,

k-1

d(k) + ¥ cp_1(D(k-1)
cp(k) =- o (B.4.a)
cpi) = ¢y (@) + (k) ¢y (ki) i=1,2, .., k1 (B.4.b)
e =(L- | (k) P)pp_y (B.4.c)
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