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4.0  Solution Methods for the Fundamental Equations

4.1  Nonlinear Fluid Analysis

An implicit time advancement algorithm is obtained by applying the backward Euler time-

integration scheme to the unsteady term and linearizing the right hand side of the semi-

discrete approximation in Eq.(3.5) yielding

Vi

∆ti
I +

∂Ri

∂Q

 

  
 

  ∆Q = − Ri (4.1)

where R i has been given previously in Eq.(3.6), and ∂R i ∂Q  is the inviscid Jacobian

matrix. In the present work, the inviscid fluxes are evaluated using the flux vector splitting

technique of Van Leer [117], and the Jacobian matrix may then be expressed in terms of the

split Van Leer flux Jacobians as

∂Ri

∂Q
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∂Ei,j
+

∂Q f , j
−

∂Q f , j
−

∂Q
+

∂Ei,j
−

∂Qf , j
+

∂Qf ,j
+

∂Q

 

 
 

 

 
 Ai,j

j=κ (i)
∑ (4.2)

where the flux Jacobians are evaluated with variables interpolated to the j cell faces as

discussed in section 3.1.3, and ∂Qf , j
± ∂Q  represents the cell center contribution from the

interpolation or reconstruction scheme. When higher-order spatial accuracy is desired in

Eq.(4.2), the form of the Jacobian becomes extremely complicated and the computational

stencil very large. This is due to the upwind biased interpolation scheme that must be used

for unstructured grids. The order of accuracy of the aerodynamic analysis, however, is

determined from the evaluation of the residual vector, and a first-order Jacobian has been
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found sufficient to converge the implicit scheme. Since the left hand side operator is not an

exact linearization of the residual, the ability to achieve quadratic convergence is now lost.

It should be noted that an inexact linearization is not permitted for the aerodynamic

sensitivity equation. This is because the underlying equations are linear and no

approximations to the higher-order Jacobian matrix are allowed. This will be discussed in a

subsequent section. Furthermore, in the current work two methods are available for solving

Eq.(4.1) above: an iterative point Gauss-Seidel method and a preconditioned-Generalized

Minimal Residual (GMRES) algorithm.

4.1.1  Point Gauss-Seidel

If the coefficient matrix in Eq.(4.1) is denoted as A[ ], it is possible to write this matrix as

the linear combination of the diagonal and off-diagonal matrices as

A[ ]n = D[ ]n + O[ ]n (4.3)

where n represents the iteration number of the nonlinear flow solution. Following the

formulation of Ref. 141, the solution at step n consists of solving the linear systems of

equations with a subiterative procedure. In the current work, the subiterative steps are

accomplished by first updating all odd-numbered cells with a point-Jacobi iteration as

D[ ]n ∆Qodd
m = − Rn + O[ ]n ∆Qall

m−1{ } (4.4)

where m represents the subiteration number. This step is followed by a point Gauss-Seidel

iteration for the even-numbered cells

D[ ]n ∆Qeven
m = − Rn + O[ ]n ∆Qodd

m + O[ ]n ∆Qeven
m−1{ } (4.5)

where the most recent solution at subiteration m  is used for the odd-numbered cells and the

solution at a the previous subiteration m-1 is used for the even-numbered cells. This

Gauss-Seidel like procedure is fully vectorizable. Once again, since an inexact linearization
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of the residual is used in the coefficient matrix, the ability to achieve quadratic convergence

of the nonlinear system is lost, and it is therefore useless to solve the linear systems at each

n iteration beyond the truncation error. In practice, it has been found that 15 to 20

subiterations produce the fastest rate of convergence for the nonlinear fluid equations

[130].

4.1.2  Preconditioned-GMRES

The GMRES algorithm developed by Saad and Schultz [142], which has its genesis in

the conjugate gradient methods, is an efficient technique for solving sparse nonsymmetric

linear systems. For a more detailed discussion on the use of GMRES in CFD, the reader is

directed to the literature [122,141,143-146]. Following Ref. 142, at each iteration n of the

nonlinear flow analysis an approximation to the solution of the linear system may be

denoted as ∆Qo
n , and the subiterative solution may be advanced as

∆Qm = ∆Qo
n + ym (4.6)

where GMRES(m) finds the best solution for ym over the Krylov subspace <v1, [A]v1,

[A2]v1, ..., [A
m-1]v1> by solving the minimization problem

rm = min
y

v1 + A[ ]y (4.7a)

with

v1 = A[ ]∆Qo
n + Rn , rm = A[ ]∆Qm + Rn (4.7b)

The GMRES algorithm forms an orthogonal basis v1,  v 2,  . . . ,  v ˜ m  (referred to as search

directions) that span the Krylov subspace by a modified Gram-Schmidt method. As the

number of search directions increases, so do the memory requirements of this algorithm.

Hence a restarted algorithm, denoted as GMRES(m,k), is utilized which discards the m
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search directions and recomputes them every k restart cycles. Once again, a detailed

explanation of this algorithm may be found in reference 142.

An important requirement, especially for the solution of the nonlinear fluid equations, is

the selection of the preconditioner used in conjunction with GMRES. Preconditioning has

been found to effectively cluster the eigenvalues of the coefficient matrix [A] around a

single value [145]. This clustering allows GMRES to more efficiently eliminate the errors

associated with each eigenvalue and, thus, reduced the number of iterations required to

solve the linear systems or even cause a divergent system to converge. Hence, the selection

of a good preconditioner is vital. In the present work, an incomplete LU factorization with

zero fill-in beyond the original sparsity pattern, referred to as ILU(0), is used. Details of

this preconditioner may be found in references 145, 147, and 148.

4.1.3  Convergence Acceleration Techniques

For steady-state calculations, the governing equations are integrated from an arbitrary

initial condition to a time-asymptotic state. Thus, when a steady-state solution is desired, it

is typical to employ first order time accurate schemes and use non-time-like maneuvers in

an attempt to accelerate the algorithm. The time step term, ∆ti , in Eq.(4.1) may therefore be

viewed as a relaxation parameter and used as a means of conditioning the coefficient

matrix. In the current work, two methods are used to specify the time step term: local time

stepping [128,149] and switch-evolution relaxation [9,145].

Local time stepping is used for computations performed with the point Gauss-Seidel

algorithm. For this method, the time step may be expressed as

∆ti = CFL
Vi

ui + ai( )Pi
x + vi + ai( ) Pi

y + wi + ai( ) Pi
z (4.8)
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where CFL is the Courant-Friedrichs-Lewy number, and Pi
x , Pi

y , Pi
z  are the projected

face areas in the x-, y-, and z-directions

Pi
x = ηx A( )

i,j
j=κ i( )
∑ , Pi

y = ηy A( )
i,j

j=κ i( )
∑ , Pi

z = ηz A( )
i,j

j=κ i( )
∑ (4.9)

where the summation is over the j faces of cell i. The CFL number is normally linearly

ramped from 25 to 200 over 75 to 100 iterations, after which it remains 200.

For the computations which utilize the GMRES algorithm, the convergence

characteristics of this preconditioned iterative scheme may also be improved by judicious

specification of the time-step term. Moreover, with this fully implicit scheme, much higher

CFL numbers are permissible and, therefore, a different technique is used. This technique,

referred to as switch-evolution relaxation (SER), varies the time step term inversely

proportional to the L2-norm of the residual until a threshold is reached

∆ti = min ωres ,ωmax( ) (4.10a)

with

ωres = 1.0 L2 (4.10b)

where ωmax  is the limiting value of the time step term and taken as 1,800 for the

computations herein. The specification of a threshold is necessary when the Jacobian in the

coefficient matrix is not a consistent and exact linearization of the residual vector. Since the

approximation used for the left-hand-side coefficient matrix of Eq.(4.1) is the spatially

first-order accurate Jacobian, switch-evolution relaxation must be used.

4.2  Linear Structural Analysis

The finite-element structural analysis program used in the present work has been

documented in reference 150. Since the stiffness matrix for linear static structural analysis

is symmetric and positive-definite, a Choleski factorization is used to solve the system of
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equations. This direct method utilizes a variable-band width storage scheme and takes

advantage of column heights to reduce the number of operations in the Choleski

factorization [152]. Further details of the solution algorithm may be found in reference 152.

The solution to this system of equations produces the vector of nodal displacements. From

this deformation field, element stresses can be computed. Derivations of the element

stresses for the constant strain triangle membrane element and for truss members may be

found in virtually any finite-element text [132-134].

4.3  Static Aeroelastic Analysis

An integrated static aeroelastic analysis procedure, which adopts a domain-decomposition

approach, has been developed in the present work. Since a domain-decomposition

approach is used, the disciplines must be coupled at the boundary interfaces. This

coupling, referred to as aerodynamic-structural geometric coordination, requires the

interdisciplinary transfer of loads from the aerodynamic analysis to the structural finite-

element model; the resulting structural deformations must then be represented on the

aerodynamic mesh. Furthermore, the rate or frequency at which the discipline analyses are

interacted is controlled via the introduction of interaction analysis control parameters.

Proper specification of these parameters permits extremely efficient static aeroelastic

analyses to be performed. The methods used in the current work to perform the

aerodynamic-structural geometric coordination and for the interaction analysis control are

discussed below.

4.3.1  Aerodynamic-Structural Geometric Interaction

To resolve the nonlinear fluid flow around an arbitrary object, both the surface and the

volume around that surface must be discretized. For the structural analysis, the
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discretization encompasses the surface of the object and the volume interior to the surface.

In practice, the nonlinear aerodynamic analysis requires a higher degree of resolution than

linear structural analysis. Therefore, coordination between the fluid and the structure

becomes an important concern in the aeroelastic analysis of a flexible body. This

discrepancy in resolution is shown in Fig. 4.1, which illustrates the structural finite-

element and unstructured CFD surface meshes for a transport wing.

In performing aeroelastic analysis to determine the static equilibrium position of a wing,

structural properties may be lumped into sectional quantities, and a reduced resolution

model (e.g., classical beam theory [153]) can be used. When element stresses are required

for constraints and when structural optimization is performed, a more detailed model is

necessary. Because multidisciplinary analysis and optimization is the ultimate focus of this

work, a detailed model is used, even though only the static equilibrium position is sought.

The interaction between the fluid and the structure is accomplished by lumping the

aerodynamic forces at the surface structural nodes, using a bilinear interpolation method,

and applying them directly to the jig shape. An alternative to this load-lumping procedure,

which has been discussed in Chapter 1, is to introduce a virtual surface between the

aerodynamic and structural models. During the course of this study a method for

transferring interface information via a virtual surface, based on a Bezier surface

formulation, has been developed. Since the computations performed in the current research

only seek the static equilibrium position, the load-lumping procedure is used exclusively.

Guruswamy and Byun [77], however, have shown that the virtual surface method more

accurately conserves the virtual work done during the course of an unsteady, dynamic

calculation; but utilize the load-lumping procedure for static analyses.

After the static structural equilibrium equations have been solved and the deformations

have been determined, the corresponding aerodynamic surface mesh must be updated.

Because the structural deformations at each node are three dimensional, changes in cross-
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sectional properties (e.g., camber or thickness) of the wing depicted in Fig. 4.1 are

possible. These cross-sectional deviations tend to be relatively small, as verified by the

initial results for the wing used in the present study. Thus, it is assumed herein that the

airfoil sections of the wing do not change. As a result, the in-plane deformations of the

sections are limited to rigid-body translation and rotation (i.e., wing-section canting has

been neglected here). Furthermore, for this wing these section deformations can be

modeled approximately with simply an equivalent vertical translation and a twist angle (i.e.,

deformations that are consistent with beam theory). The translation and the twist at each

section are determined by minimizing (in a least-squares sense) the discrepancy between

this approximate form and the deformations predicted by the structural analysis. These

approximated structural deformations are applied directly to the aerodynamic surface by

using a simple polynomial regression. For the aeroelastic wing computations presented in

the current work, a third-order polynomial regression is used for both the vertical

translation and the twist to smoothly vary the aerodynamic surface mesh between the

structural stations in the spanwise direction.

Once the surface is moved to conform to the structural deformations, the volume grid for

the fluid solver must also be adapted to reflect these changes. A discussion of the mesh

movement strategy used to update the interior volume grid is deferred to section 5.3.

4.3.2  Interaction Analysis Control

Interaction analysis control parameters are defined in order to study the convergence of

the coupled system. Two methods are explored in the current work; both methods are

based on the aerodynamic analysis because it has many more degrees of freedom than the

structural analysis and involves the solution of nonlinear equations. The first method is

based on the residual reduction of the aerodynamic analysis; the second specifies a fixed

number of aerodynamic analysis iterations before the structural analysis is performed. In
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method 1 the structural analysis is interacted when the CFD residual criterion Log(R/R0) ≤

Ns ∗ Log(Fn) is satisfied. Here, Ns represents the number of accumulated structural

interactions, Fn determines the rate of interaction, and R0 is the initial CFD residual. The

second method simply interacts the two systems at a prescribed constant rate after every Ifs

CFD iterations. Note that the two methods become identical at the extremes. That is,

methods 1 and 2 produce the same level of interaction when Fn and Ifs are unity (i.e., the

disciplines interact every iteration) and as Fn approaches zero and Ifs becomes large (i.e.,

the disciplines interact after the aerodynamic analysis is essentially converged). The

disciplines are not interacted when the root mean square (rms) of nodal displacements falls

below a prespecified tolerance.

The ability to trim the wing with the angle of attack has also been developed and is

accomplished by incorporating a feedback loop in the analysis. The particular feedback

loop used is adopted from USM3D [153], where lifting-line theory is used to estimate

dα/dCL. In turn, this derivative is used to compute the required change in angle of attack to

achieve the specified lift. Because this derivative is approximate, the feedback loop is

iterated until the computed lift coefficient and the specified lift coefficient are within a

desired tolerance. The trim loop iteration is controlled by the same aerodynamic and

structural interaction control parameters discussed above; thus, the angle of attack and

structural deformations are updated simultaneously. However, this frequent angle-of-attack

update must be under-relaxed or limited for the flexible-wing computations because of the

large departure from the target lift in the early stages of the interaction. For the present

results, the angle-of-attack update increment was limited.
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4.4  Aerodynamic Sensitivity Analysis

The solution of Eq.(3.24c) poses the difficulty of solving an extremely large linear

system for each design variable. Solving these systems, however, is made more tractable

when these equations are decomposed and recast into what has been termed the incremental

iterative form [15,44,139,140]. In this form, the sensitivity of the interior cells may be

iteratively solved as

˜ A ∆n ∂Qo
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followed by the update of the boundary sensitivity
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(4.12)

In the above, ˜ A  may now be any convenient approximation to the higher-order Jacobian

which converges the linear system. This is because Eq.(4.11a) is now cast in delta form,

with the physics contained in the right-hand-side vector. It has been found that the first-

order Jacobian works well for use in the coefficient matrix of Eq.(4.11a), and is therefore

used in the present work. The memory requirements for the first-order Jabobian, unlike

that for the higher-order Jacobian, can be computed exactly for any unstructured mesh to be

5×25×ncell. Comparing with the example cited in section 3.3.1 for the memory needs of

the higher-order Jacobian for a 350,000 cell mesh, the first-order Jacobian only requires

43.75 mega-words of storage. This is approximately a factor of 10 reduction in memory.
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Two particularly attractive features of the incremental iterative strategy are that (i) a more

diagonally dominant matrix may be used to drive the solution of the linear systems (as

opposed to the sometimes ill-conditioned higher-order Jacobian), and (ii) the higher-order

Jacobian now resides on the right-hand-side of the equations and may be dealt with in an

explicit manner. When in this form, only the k-vectors resulting from the matrix-vector

product of ∂R ∂Q( ) ⋅ ∂Q ∂βk( )  are of concern. Hence, CPU time and memory efficient

methods for constructing the exact matrix-vector product can be exploited. To this end,

Barth and Linton [26] have developed a new technique which permits the construction of

the higher-order Jacobian-vector product using slightly less memory than that which would

be required to evaluate the first-order Jacobian. This is accomplished by avoiding the need

to assemble the full Jacobian prior to multiplication. With the details omitted (and the reader

directed to Ref. 26 for the proof and further explanation of this method), this technique,

applied to the desired matrix-vector product in Eq.(4.11a), may be symbolically written

(using the notation of Eq.(4.2)) as
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where ∂Q ∂βk( )
f , j
−

 and ∂Q ∂βk( )
f , j
+

 are the vectors reconstructed from ∂Q ∂βk  using

the same upwind interpolation scheme employed in the CFD analysis. That is, instead of

using Q to obtain the solution at the cell interfaces, the sensitivity of the state vector

∂Q ∂βk  is used in the interpolation of equation 3.15. The resulting vector from this matrix-

vector product is then scattered to the adjacent cells in the same manner as used for the

nonlinear flow-residual calculation.

It should be noted that this method only requires the storage of the 5x5 flux Jacobians

and the reconstructed vectors at the cell faces. Since this product is to be used in the
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sensitivity analysis, the memory which was utilized to compute the flux Jacobians for the

first-order Jacobian and that used to reconstruct the CFD state vector may be reused. Thus,

spatially first- or higher-order accurate sensitivity analysis may be performed with virtually

the same memory as the CFD analysis. The only additional memory is due to the storage of

the grid and metric sensitivity terms and the derivative ∂R ∂βk      or    ∂R ∂X( ) ⋅ ∂X ∂βk( ) .

(Note that for geometric design variables ∂R ∂βk  is zero, and for non-geometric design

variables ∂R ∂X( ) ⋅ ∂X ∂βk( )  is zero). Another attribute of this method is that the matrix-

vector product computation only requires a fraction of the CPU time originally needed to

assemble the full higher-order Jacobian; hence, the benefits are two-fold.  The use of Barth

and Linton’s technique within the incremental iterative method has significant ramifications

in that it makes large-scale optimizations of practical three-dimensional configurations

possible [50].

4.5  Solution Methodologies

The linear systems resulting from the nonlinear aerodynamic analysis (i.e., Eq.(4.1)),

and those from the aerodynamic shape sensitivity analysis (i.e., Eq.(3.25) or Eq.(4.11a)),

may be solved using the same techniques. Within the optimization process, it is evident that

the aerodynamic analysis not only consumes more CPU time (than the shape sensitivity

analysis) to converge the nonlinear systems, it also is needed more frequently. Thus,

solution algorithms which have high convergence rates are imperative when multiple

analyses are to be performed. To this end, it has been found that a fully implicit iterative

solver, such as preconditioned-GMRES [142], often out performs conventional explicit as

well as classical iterative solvers [122,154,155]. However, the selection of the

preconditioner used in conjunction with GMRES essentially governs the performance and

memory required by this algorithm.
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For two-dimensional, and relatively small three-dimensional (in terms of mesh size),

configurations the GMRES algorithm may be utilized for both the aerodynamic and linear

sensitivity analyses. With an incomplete LU factorization (ILU(0)) as a left preconditioner,

20 search directions with 3 restart cycles, i.e., GMRES(20,3), were found sufficient to

converge the nonlinear fluid equations. For computations that permitted the use of

GMRES, the pre-eliminated form of the sensitivity equation, given in Eq.(3.25), was

solved. This linear system used an ILU(0) as a right preconditioner, required 20 search

directions, and converged solutions were obtained in approximately 20 restart cycles for

two-dimensional and 30 restart cycles for three-dimensional configurations. Due to the

memory requirements associated with this algorithm and the storage of the spatially higher-

order accurate Jacobian, it was not possible to utilize it for large three-dimensional

configurations.

For large three-dimensional configurations the Gauss-Seidel iterative method is used to

solve the fluid and sensitivity equations. The Gauss-Seidel method is also used for the

aeroelastic analyses performed. The best performance of this algorithm, in terms of CPU

time required to solve the nonlinear flow equations, was found through numerical

experiments to be with 20 subiterations. Furthermore, when it was necessary to resort to

the Gauss-Seidel algorithm due to memory considerations, the incremental iterative form of

the sensitivity equation, given in Eq.(4.11a), was utilized. For this system of equations it

was found that 10 subiterations were sufficient to converge the iterative scheme.

As a final note, it has been observed that the ordering of the cells in a grid has an affect

on the rate of convergence of iterative solvers. With this in mind, many researchers

[130,154,156] currently working with unstructured grids (which usually have a random

ordering) have adopted renumbering algorithms such as Cuthill-McKee (CM) [157] or

reverse-CM [158]. These algorithms attempt to reorder a given mesh such that the

bandwidth of the coefficient matrix is minimized. In the present work, reordering is
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accomplished, during the initial preprocessing of the grid, using the Gibbs-Poole-

Stockmeyer [159] algorithm.
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