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Abstract 
 

In the past two decades, molecular cell biology has transitioned from a traditional 

descriptive science into a quantitative science that systematically measures cellular 

dynamics on different levels of genome, transcriptome and proteome.  Along with this 

transition emerges the interdisciplinary field of systems biology, which aims to unravel 

complex interactions in biological systems through integrating experimental data into 

qualitative or quantitative models and computer simulations.  In this dissertation, we 

applied various systems biology tools to investigate two important problems with respect 

to cellular activation dynamics and reprograming.  

 

Specifically, in the first section of the dissertation, we focused on lipopolysaccharide 

(LPS)-mediated priming and tolerance: a reprogramming in cytokine production in 

macrophages pretreated with specific doses of LPS. Though both priming and tolerance 

are important in the immune system’s response to pathogens, the molecular mechanisms 

still remain unclear. We computationally investigated all network topologies and 

dynamics that are able to generate priming or tolerance in a generic three-node model. 
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Accordingly, we found three basic priming mechanisms and one tolerance mechanism. 

Existing experimental evidence support these in silico found mechanisms.  

 

In the second part of the dissertation, we applied stochastic modeling and simulations to 

investigate the phenotypic transition of bacteria E.coli between normally-growing cells 

and persister cells (growth-arrested phenotype), and how this process can contribute to 

drug resistance. We built up a complex computational model capturing the molecular 

mechanism on both single cell level and population level.  The paper also proposed a 

novel way to accelerate the phenotypic transition from persister cells to normally growing 

cell under resonance activation. The general picture of phenotypic transitions should be 

applicable to a broader context of biological systems, such as T cell differentiation and 

stem cell reprogramming.  
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Chapter 1. Introduction and Overview of the Research 

1.1 Introduction  

Recent two decades have witnessed great achievement in the development of quantitative and 

high-throughput experimental techniques (e.g. microarrays, RNA-seq, ChIP-seq, Q-PCR etc) 

which greatly deepened our understanding of the complex biological systems. For example, with 

the help of the technique of chromatin immunoprecipitation sequencing (ChIP-seq), one can 

accurately pin-point all DNA-binding events of a specific protein across entire genomes 

(Johnson et al, 2007), thereby, revealing new mechanisms of transcriptional regulations, histone 

modifications, and nucleosome architecture (Heintzman et al, 2009; Schmid & Bucher, 2007). 

By virtue of these new techniques, biologists are now able to track genome-wide cellular 

dynamics on multiple levels of genome, transcriptome and proteome. Our understanding of 

biological systems has thereby jumped from a bunch of static black-boxes with simple input-

output relationships, into quantitative and dynamic models of molecular interaction networks that 

are controlled by multi-scale spatial and temporal regulations (Chen et al, 2004; Oda & Kitano, 

2006). 

 

However, as the “wiring diagram” of molecular interactions expands, understanding system 

behaviors out of complex interactions and large-scale experimental datasets is beyond just 

eyeballing and intuition. For a signaling pathway involving dozens of molecular species 

connected in several feedback and feedforward loops, which is typical, attempts to track the 

dynamics of each molecular species through intuition must face failure in the end. This is where 

systems biology comes into the arena. Systems biology aims to unravel complex biological 
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systems by integrating multi-scale experimental data into qualitative or quantitative 

computational models that, by virtue of theoretical analysis and numerical simulations, can 

reproduce the experimental observations and reveal new insights of the system for further 

experimental tests (Alon, 2007; Cheong et al, 2008; Gardy et al, 2009; Gilchrist et al, 2006).  

 

From a system biologist’s point of view, a cell works as an information processing unit that 

senses subtle changes in the micro-environment, processes the information and makes 

appropriate responses. This information processing unit is composed of a number of signaling 

and regulatory pathways that are connected in a way to elicit specific and robust response to 

different stimulating conditions. In vitro, signal-response relationships could be studied under 

different external perturbations to wild-type or genetically-altered cells. For example, we can 

stimulate cells with different kinds of signals, different doses or durations, or sequential 

stimulations.  In this respect, numerous experimental and theoretical studies have demonstrated 

that both combinatorial and dynamical characteristics of signaling networks are indispensable for 

coordinating specific gene expression programs to different stimulating conditions (Huang et al, 

2009). 

 

As one example, macrophages are one kind of tissue-resident innate immune cells that can exert 

anti-microbial and inflammatory responses against infections. There are at least ten Toll-like 

receptors (TLRs) expressed on cellular membrane or on endosome membrane of macrophages. 

These receptors are responsible for recognizing a wide range of microbes through pathogen 

associated molecular patterns (PAMPs) and for initiating an effective innate immune response 

(Akira & Takeda, 2004). Challenging macrophages with different PAMPs selectively activates a 
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specific TLR signaling pathway and corresponding gene expression program. For example, 

TLR2 recognizes bacterial lipoproteins and peptidoglycan, while TLR4 is responsive to 

lipopolysaccharide (LPS, product of gram-negative bacteria) and fibrinogen (Huang et al, 2009). 

Activation of TLR2 and TLR4 both lead to the activation of MyD88-dependent pathway and 

subsequent NFκB activation, giving rise to a profound inflammatory response. At the same time, 

TLR4, but not TLR2, also activates MyD88-independent pathway, which is essential for 

transcribing Interferon-responsible factors (IRFs) and many anti-microbial genes (e.g. Ifn-β).  

 

It is extremely fascinating but also challenging for systems biologists to study how signaling and 

regulatory networks function based on complex pathway cross-talks and great variation of time-

scales (Behar et al, 2007; Hoffmann et al, 2002; Hu & Ivashkiv, 2009; Litvak et al, 2009; 

Natarajan et al, 2006). For example, according to various studies, transcription factors NFκB and 

Interferon-beta (IFN-β) could demonstrate either positive or negative cooperation on target genes 

with both κB site and Interferon-Response-Element (IRE). Based on current research, there are 

15 homo-dimers and hetero-dimers of NFκB being assembled and disassembled in macrophages 

in context dependent manners (Hoffmann et al, 2006). While transcriptionally active dimers of 

NFκB can positively cooperate with IFN to initiate gene expression, transcriptionally inactive 

dimers (such as p50:p50) send IFN away through competitively binding to guanine-rich IRE 

sequence on the enhancers of the target genes (Cheng et al, 2011).  

 

For pathway signaling and cross-talks, timing is everything. First, each pathway operates with 

specific kinetics. Co-stimulation or sequential stimulation of two pathways with different 

activation kinetics could lead to synergy, priming or tolerance effect on the co-regulated target 
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genes, as observed between different TLRs in macrophages (Bagchi et al, 2007; Foster et al, 

2007; Zhang & Morrison, 1993). Second, separation of time scale also exists on different levels 

of transcriptional regulations. Take mammalian cells as an example, binding of transcription 

factors to DNA (~ 1 sec) is typically 3-orders of magnitude faster than transcription and 

translation (~ 30 min) (Alon, 2007). As for chromatin modification, different histone 

modifications (e.g. phosphorylation, acetylation, methylation and ubiquitylation) could also 

exhibit a great variance in kinetics during signaling processes and histone markings (Barth & 

Imhof, 2010).  

 

In order to interpret complex signaling networks, systems biologists have made tremendous 

effort in building up a map of “functional motifs” of signaling networks in various model 

systems (Alon, 2007; Alon & Mangan, 2003; Gilchrist et al, 2006; Ma et al, 2009; Tyson et al, 

2003; Tyson & Novak, 2010; Yao et al, 2011). Functional motif refers to a small network of 

molecular species (e.g. kinase, transcription factors etc.) interacting in a way that enables the 

system to generate a specific information-processing function. For example, with appropriate 

parameter settings, a negative feedback loop can generate homeostasis or oscillation (Hoffmann 

et al, 2002; Ma et al, 2009; Tyson et al, 2003). A coherent-feedforward loop, on the other hand, 

generates an “AND” gate logic on transcriptional regulation between two cooperating 

transcription factors, thereby enables the system to induce signal-specific or duration-specific 

responses (Alon & Mangan, 2003; Litvak et al, 2009). A complex biochemical interaction map is 

therefore considered as a circuit of functional motifs operating under multiple spatial-temporal 

controls (Alon, 2007; Tyson & Novak, 2010).   
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In this dissertation, we have investigated into fundamental questions about functional motifs and 

dynamics in the signaling or regulatory network for specific gene expression response, under two 

important contexts: cellular reprogramming and polarized activation dynamics. 

 

1.2 Research Overview 

In Chapter 2, we adopted and developed several computational systems biology methods to study 

network motifs and dynamics that lead to adapted cytokine production in macrophages upon 

sequential challenge of LPS (Shnyra et al, 1998; West & Koons, 2008; Zhang & Morrison, 

1993). Since macrophage responses are governed by a complex signaling network, it remains 

unknown what molecular mechanisms enable a cell to calculate its cytokine level precisely based 

on a pathogen exposure history.  

 

The motivation led us to study all possible network motifs and dynamics that could possibly 

generate priming or tolerance in a generic three-node network. A mathematical model based on 

Ordinary Differential Equations was build up to simulate the dynamical behavior of each 

network motif. A novel two-stage Monte-Carlo sampling of parameters was developed to 

achieve an efficient search in the high-dimensional parameter space for all possible 

priming/tolerance motifs. All the motifs were further clustered according to their time courses.  

 

As a result, we found three basic priming mechanisms and one tolerance mechanism. Each 

priming/tolerance mechanism was found to meet a unique minimum requirement on network 

topology and dynamics. Using information from databases and literatures, we have identified 

molecules that may contribute to priming and tolerance effects. This paper has been published in 
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PLoS Computational Biology in 2012 (Fu et al, 2012). The method should be applicable to other 

types of cellular responses. 

 

In Chapter 3, we use computational modeling and statistical physics to investigate potential ways 

to reprogram bacterial cells between phenotypes. The killing time of a bacterial colony usually 

follows a two-phase killing curve where the majority of bacteria die quickly within several hours 

(h) of antibiotic treatment, a small fraction of cells (typically 0.01% ~ 1% depending on the 

bacteria strains), however, could survive even after 50 h of antibiotic treatment (Balaban et al, 

2004). These persister cells are genetically identical to normally growing cells. However, as they 

are in a growth-arrest phenotype, they are insensitive to antibiotics (Balaban et al, 2004). In this 

chapter, we demonstrated a way to accelerate the “killing” of persister cells through triggering a 

series of synchronized phenotypic transitions from persister cells into normally growing cells. In 

statistical physics, a noise-assisted barrier-crossing event can be accelerated under a weak 

perturbing signal with resonance frequency. This theory is called Resonance Activation.  

Because phenotypic transition of a bacterium can be mapped into a barrier-crossing event on 

energy landscape, we introduced Resonance Activation into this context and demonstrated, in 

silico, that resonance activation could occur under the perturbation of a weak external signal with 

resonance frequency.  

 

Based on stochastic simulations on both single cell level and population level, we showed that 

with resonance activation, persister cells could quickly transform into the normally growing 

phenotype and get killed by antibiotics, thereby greatly reducing antibiotic usage and 

corresponding side-effects. The method shown in this chapter should be applicable to other 



 7 

systems, such as stem cell reprogramming or cancer therapies that can be mapped to barrier-

crossing events in physics. The paper in Chapter 3 has been published in Physical Biology in 

2010 and has been highlighted by Institute of Physics (IOP) as a featured article of the year (Fu 

et al, 2010). 
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2.1 Abstract 

The innate immune system, acting as the first line of host defense, senses and adapts to foreign 

challenges through complex intracellular and intercellular signaling networks. Endotoxin 

tolerance and priming elicited by macrophages are classic examples of the complex adaptation of 

innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin 

(lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented 

inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and 

priming are critically involved in both immune homeostasis and the pathogenesis of diverse 

inflammatory diseases. However, the underlying molecular mechanisms are not well understood. 

By means of a computational search through the parameter space of a coarse-grained three-node 

network with a two-stage Metropolis sampling approach, we enumerated all the network 

topologies that can generate priming or tolerance. We discovered three major mechanisms for 

mailto:jxing@vt.edu
mailto:lwli@vt.edu
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priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance 

(inhibitor persistence). These results not only explain existing experimental observations, but 

also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of 

endotoxin priming and tolerance.       

 

2.2 Introduction 

Innate immune cells such as macrophages and dendritic cells constitute the first layer of host 

defense. Like policemen constantly patrolling the streets for criminal activity, these cells are 

responsible for initiating the first attack against invading pathogens (Akira & Takeda, 2004; 

Gordon & Martinez, 2010). For example, using Toll-like receptor 4 (TLR4), macrophages 

recognize lipopolysaccharide (LPS, also called endotoxin), a pathogen-associated molecular 

pattern (PAMP) that is expressed on the outer membrane of gram-negative bacteria. Within 

hours of stimulation, hundreds of regulatory genes, kinases, cytokines, and chemokines are 

activated in sequential waves, leading to a profound inflammatory and anti-microbial response in 

macrophages (Medzhitov & Horng, 2009). Although effective levels of inflammation require 

potent cytokine production, excessive or prolonged expression can be detrimental, resulting in 

various immune diseases, such as autoimmunity, atherosclerosis, sepsis shock and cancers (Lin 

& Karin, 2007; Medzhitov & Horng, 2009). Owing to this double-edged nature of innate 

immunity, living organisms have evolved a highly complex signaling network to fine-tune the 

expression of cytokines (Ezekowitz & Hoffmann, 1996). A fundamental question in this field is 

what kinds of network topologies and dynamics in the signaling network ensure the appropriate 

expression of cytokines. This question is part of a larger current theme in systems biology of the 

design principles of biological networks. Are there small network motifs that serve as building 
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blocks to perform complex “information processing” functions in biological signaling networks 

(Alon, 2007; Kholodenko, 2006; Ma et al, 2006; Ma et al, 2009; Milo et al, 2002; Shen-Orr et al, 

2002; Tyson et al, 2003)? In this context, a systems and computational biology approach may 

greatly deepen our understanding in innate immunity (Gardy et al, 2009; Gilchrist et al, 2006; 

Hume et al, 2007; Litvak et al, 2009; Tegner et al, 2006). 

 

Here we focus on the signaling motifs responsible for endotoxin priming and tolerance of 

macrophages. The interaction between host macrophages and bacterial endotoxin is arguably one 

of the most ancient and highly conserved phenomena in multi-cellular eukaryotic organisms 

(Ezekowitz & Hoffmann, 1996). Through TLR4, LPS activates MyD88-dependent and MyD88-

independent pathways, which eventually lead to the regulation of a number of downstream genes 

and pathways, including the mitogen-activated protein kinase (MAPK), phosphoinositide 3-

kinase (PI3K), and nuclear factor κB (NFκB). The integration of these intracellular pathways 

leads to measured induction of pro-inflammatory mediators. Intriguingly, the induction of 

inflammatory mediators is also finely controlled by the quantities and prior history of LPS 

challenges. The latter is physiologically relevant since cells are likely repetitively exposed to 

stimulants in their natural environment. For example, numerous in vitro studies have found that 

significant induction of cytokine TNF-α and IL-6 requires at least 10 ng/mL LPS in mouse 

peritoneal macrophages (Hirohashi & Morrison, 1996; Shnyra et al, 1998) and macrophage cell 

lines (Hume et al, 2001), and a high dose of LPS (100 ng/mL) is sufficient to trigger a 

catastrophic “cytokine storm”. Strikingly, however, the dose-response relationship can be 

reprogrammed by two successive treatments with LPS, to give either a reduced or an augmented 

expression of cytokines (Figure 2.1A). In vitro, preconditioning macrophages with a high dose 
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(HD) of LPS (10−100 ng/mL) renders the cells much less responsive to a subsequent HD 

stimulation in terms of pro-inflammatory cytokine expression. This phenomenon, known as 

“endotoxin tolerance” or “LPS tolerance” (Biswas & Lopez-Collazo, 2009), is reported to last up 

to 3 weeks in vivo (West & Heagy, 2002). On the other hand, macrophages primed by a low dose 

(LD) of LPS (0.05−1 ng/mL) show an augmented production of cytokine in response to a 

subsequent HD  challenge, a phenomenon known as “LPS priming” (Henricson et al, 1993; 

Hirohashi & Morrison, 1996; Shnyra et al, 1998; West & Koons, 2008; Zhang & Morrison, 

1993). Both priming and tolerance are present in other cells of the innate immune system 

including monocytes and fibroblasts, and are highly conserved from mice to humans. Our own 

studies on murine macrophages show both effects (Figure 2.1B).    

 

Endotoxin priming and tolerance may confer significant survival advantages to higher 

eukaryotes. Priming of innate immune cells may enable robust and expedient defense against 

invading pathogens, a mechanism crudely analogous to vaccination of the adaptive immune 

system. On the other hand, tolerance may promote proper homeostasis following robust innate 

immune responses. However, despite these survival advantages, endotoxin priming and tolerance 

are also closely associated with the pathogenesis of both chronic and acute human diseases. For 

example, despite the potential ability to limit pro-inflammatory cytokine production, endotoxin 

tolerance is responsible for the induction of immunosuppression in patients with sepsis shock, 

and this suppression leads to increased incidence to secondary infections and mortality (West & 

Heagy, 2002). Endotoxin priming, on the other hand, reprograms macrophages to super-

induction of proinflammatory cytokines. Increasing evidence relates this phenomenon to low-

grade metabolic endotoxemia, where an elevated but physiological level of LPS in the host’s 
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bloodstream results in a higher incidence of insulin resistance, diabetes and atherosclerosis 

(Kiechl et al, 2001; Moreno-Navarrete et al, 2010; Slofstra et al, 2006; Wiesner et al, 2010). 

Augmented IL-6 expression has also been observed in human blood cells that were primed by 

LD and challenged by HD LPS (Nakamura et al, 2004). 

 

Despite the significance and intense research efforts, molecular mechanisms responsible for 

endotoxin priming and tolerance are not well understood, apparently due to the complex nature 

of intracellular signaling networks. Tolerance has been attributed to the negative regulators at 

multiple levels of the TLR4 signaling pathway. These include signaling molecules (e.g. SHIP, 

ST2, induction of IRAK-M and suppression of IRAK-1), transcriptional modulators (e.g. ATF3, 

p50/p50 homodimers), soluble factors (e.g. IL-10 and TGFβ), and gene-specific chromatin 

modifications (Biswas & Lopez-Collazo, 2009; Brint et al, 2004; Chang et al, 2009; El Gazzar et 

al, 2007; Foster et al, 2007; Jacinto et al, 2002; Kobayashi et al, 2002; Li et al, 2000; Sly et al, 

2004). These negative regulators are likely to work together to drive macrophages into a 

transient refractory state for cytokine expression after LPS pretreatment (Sly et al, 2004). 

Molecular mechanisms for priming are rarely studied and even less well understood than 

tolerance. Early studies suggest that like endotoxin tolerance, both intra- and inter-cellular events 

may be involved in LPS priming (Zhang & Morrison, 1993). Morrison and coworkers first 

revealed that LPS priming of cytokine TNF-α production is induced, at least in part, by a 

reprogrammed counterbalance between endogenous IL-10 and IL-12 in an autocrine fashion 

(Shnyra et al, 1998). However, it is still elusive exactly how the change in two counteracting 

soluble secretory products can contribute to the priming effect, and whether LPS priming is 

exclusively an intercellular event or it takes place at both intra- and inter-cellular levels.  
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These published observations and our own new experimental results have inspired us to look for 

all possible mechanisms for LPS priming and tolerance. To do this, we computationally searched 

the high-dimensional parameter space associated with a generic mathematical model of a three-

node regulatory network. The search reveals only three mechanisms accounting for priming 

(pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor 

persistence). Existing experimental results support these mechanisms.  

 

In summary, our approach provides a systematic, quantitative framework for understanding 

numerous experimental observations, and it suggests new experimental procedures to identify the 

players and investigate the dynamics of priming and tolerance. Our analysis suggests that 

endotoxin tolerance and priming are rooted in the basic structure of the immune regulatory 

network: a signal often triggers synergizing pathways to ensure that sufficient responses can be 

elicited efficiently, as well as opposing pathways to ensure that the responses can be resolved 

eventually (Akira & Takeda, 2004). Therefore, in addition to shedding light on LPS-induced 

tolerance and priming, our approach is applicable in the more general context of cross-priming 

and cross-talk in the signal transduction mechanisms of the innate immune system (Bagchi et al, 

2007; Hu et al, 2008; Hu & Ivashkiv, 2009). 

 

2.3 Materials and Methods  

Mathematical description 

The following mathematical formalism is used to describe the dynamics of the three-node 

system, 
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all t. All variables and parameters are dimensionless. ( )j jG W is a generic “sigmoidal” function 

with steepness (slope at Wj = 0) that increases with σj. Each ωji is a real number in [-1, 1] with its 

absolute value denoting the strength of the regulation; ωji > 0 for the “activators” and ωji < 0 for 

“inhibitors” of node j. The sum, Wj, is the net activation or inhibition on node j, and ωj0 

determines whether node j is “on” or “off” when all input signals are 0. The parameters γj 

determine how quickly each variable approaches its goal value, G(σjWj) for the present value of 

Wj. Because the magnitudes of the weights are bounded, |ωji| < 1, it is possible to do a thorough 

and systematic search of all possible weight matrices, even for networks of moderate complexity, 

e.g., K (= number of non-zero ωji’s) < 20. The formalism is close to that used by Vohradsky 

(Vohradsky, 2001; Weaver et al, 1999) and others (Jaeger et al, 2004; Perkins et al, 2006) 

previously. More detailed discussions and applications of the formalism can be found in (Hong 

et al, 2011; Tyson et al, 2011; Tyson & Novak, 2010). 

 

The model contains 18 parameters: 9 ωji’s, 3 γj’s, 3 σj’s and 3 ωj0’s. By setting 3 1  , we fix the 

time scale of the model to be the response time of the output variable, 3( )x t .  We set 

30 0.50   , so that the response variable is close to 3 0x   in the absence of input. We also 

chose 3 6   as a moderate value for the sigmoidicity of the output response. Apart from that, 

20  is set to be 0.25 so that the x2 pathway is responsive to LD stimulation. 
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Monte Carlo sampling algorithm 

Our goal is to sample points in a 14-dimensional parameter space that is bounded and 

continuous. The sampling algorithm needs to search the parameter space thoroughly and 

generate sample parameter sets that are statistically unbiased and significant. Our strategy is a 

random walk based on the Metropolis Algorithm (Metropolis et al, 1953) through parameter 

space according to the following rules: 

0. Choose an initial parameter set 
0θ  and determine its score: 0 0   if it is a “good” set, or 

0 1   if it is not. (See Text S1 for the definition of a good set of parameters for priming 

or for tolerance.)   

1. Generate parameter set 1kθ  from kθ  by 1k k   θ θ ζ , where 0.025   specifies the 

maximum displacement per step, and ζ  is a vector of random numbers with uniform 

distribution between -0.5 and 0.5.  

2. Compute 1k . If 1k k  , then accept the step from k to k+1. If 1k k  , then 

accept the step from k to k + 1 with probability ρ. Otherwise, reject the step k to k+1. 

3. Update k. If k is larger than a maximum step number, stop. Otherwise return to step 1.  

We pursue this strategy in two stages. In stage 1, we set 0.0025   (see Text S1), so that the 

random walk has larger tendency to stay in “good” regions of parameter space, but can also jump 

out of a good region and searches randomly until it falls into another good region (which may be 

the same region it left). Stage 1 generates a random walk of 10
9
 steps, which is sampled every 

100 steps. From this sample of 10
7
 parameter sets only the good ones are saved, giving a sample 

of ~ 48 10  good parameter sets. These data are then analyzed as described below: 
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1. The K-means algorithm is applied to identify possible clusters of good parameter sets in 

the 14-dimensional parameter space. The clustering result is then visualized through the 

first two principal components (which account for ~60% of the data variance) under 

Principal Component Analysis.  

2. One parameter set is chosen from each possible cluster to serve as starting points for 

stage 2. 

Stage 2 is a repeat of stage 1 with ρ = 0. In this case the random walk never leaves a good region. 

The purpose of stage 3 is to generate a large sample of good parameter sets that may occupy 

different regions of parameter space. The random walks are sampled every 100 steps, generating 

10
6
 good parameter sets from each starting point. Each parameter set must pass an additional test 

for “biological relevance” (see Text S1 for details) before further analysis.  

 

While the results reported in the main text are from one run of the search procedure, the whole 

procedure was repeated several times with random initial starting point in stage 1. The final 

results of these repeated runs agree with each other, confirming the convergence of our search 

procedure. 

 

Discretization of continuous parameter matrix into topology matrix 

In order to analyze the topological feature of each priming/tolerance mechanism, one needs to 

map the continuous parameters ωji into a discretized topological matrix τji. In the topological 

space, variables are only described by (−, 0, +) representing inhibition, no regulation and 

activation, respectively. A cut off value (= 0.1) is used to perform the discretization, following 

the rules below:  
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Experimental studies of LPS priming and tolerance 

Murine bone marrow derived macrophages from C57BL/6 wild type mice were harvested as 

described previously (Maitra et al, 2011). Cells were cultured in DMEM medium (Invitrogen) 

supplemented with 100 units/mL penicillin, 100 μg/mL streptomycin, 2 mM l-glutamine, and 

10% fetal bovine serum (Hyclone) in a humidified incubator with 5% CO2 at 37 °C.  Cells were 

treated with LPS (E. coli 0111:B4, Sigma) as indicated in the figure legend. RNAs were 

harvested using Trizol reagent (Invitrogen) as previously described (Maitra et al, 2011). 

Quantitative real-time reverse-transcription (RT)-PCR were performed as described (Maitra et al, 

2009). The relative levels of IL-6 message were calculated using the ΔΔCt method, using 

GAPDH as the internal control. The relative levels of mRNA from the untreated samples were 

adjusted to 1 and served as the basal control value.  

 

2.4 Results 

Inducing priming and tolerance in a well-controlled experimental setting  

Although separate experimental studies of priming and tolerance have been carried out in many 

laboratories, no systematic study of both effects has been performed in the same setting. Thus, 

we first set out to measure priming and tolerance in the same experimental system. We used 

murine bone marrow derived macrophages (BMDMs), which are widely used for measuring LPS 

responses. BMDM were treated with various combinations of LD (50 pg/mL) and HD (100 

ng/mL) LPS for times indicated in Figure 2.1B. Cells were washed with PBS and fresh medium 
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between consecutive treatments. Figure 2.1B shows that 50 pg/mL LPS induced negligible IL-6, 

while 100 ng/mL LPS induced robust expression of IL-6 in BMDM (~3300 fold). Consistent 

with previous findings, cells pre-treated for 4 h with 50 pg/mL LPS exhibited ~4500 fold 

induction of IL-6 when challenged with 100 ng/mL LPS, a ~36% augmentation as compared to 

cells treated with 100 ng/mL LPS alone (p < 0.05).  In contrast, cells pretreated for 4 h with 100 

ng/mL LPS exhibited only ~700 fold induction of IL-6 when re-challenged with 100 ng/mL LPS, 

a ~80% reduction as compared to cells treated with 100 ng/mL LPS alone (p < 0.05).     



 23 

 

Figure 2.1. Formulation of the problem.  (A) Schematic illustration of in vitro experimental 

studies of LPS-induced tolerance and priming effect in macrophages. (B) IL-6 mRNA levels of 

murine bone marrow derived macrophages treated with various combinations of LPS.  * p<0.05. 

(C) Abstraction of the parallel LPS associated pathways into a three-node network motif and the 

corresponding mathematical model based on ordinary differential equations. Refer to Materials 

and Methods for details. 
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Identifying motifs that generate priming effect 

Figure 2.1C shows that LPS binding to TLR4 triggers two groups of parallel pathways: MyD88-

dependent and (several) MyD88-independent pathways. Together, these pathways control the 

expression of different but overlapping inflammatory mediators in a delicate time-dependent and 

dose-dependent manner. Based on these parallel pathways, we proposed a three-node model in 

Figure 2.1C as a minimal abstraction of the system. Each node can positively or negatively 

regulate the activity of itself and the other two nodes. The interactions are governed, we assume, 

by a standardized set of nonlinear ordinary differential equations (Figure 2.1C) for xj = activity 

of the j
th

 node (0 ≤ xj ≤ 1, j = 1,2,3). For a complete description of the mathematical model, see 

the section on Materials and Methods. The “network topology” of the model is determined by the 

sign pattern of the nine interaction coefficients (−1 ≤ ωji ≤ 1, j,i = 1,2,3) which express the 

magnitude and direction of the effect of node i on node j.  This is a coarse-grained model, with 

no distinction between intra- and inter-cellular events. For example, in a real cell the self-

regulation of a node may correspond to a feedback loop involving many intermediates, including 

extracellular cytokines. The simplicity of the model allows full search of the 14-dimensional 

parameter space (although there are 18 parameters in Table 2.1, four of them are held constant, 

as explained in Materials and Methods). Similar three-node models have been studied in other 

contexts (Ma et al, 2009; Yang et al, 2008; Yao et al, 2011). 

 

We searched the 14-dimensional parameter space of the model for priming and then for 

tolerance. The behavior of the model is defined as “priming” if the maximum level of the output 

variable x3 under the priming dose (step 3 in Figure 2.1A) is small (x3 < 0.3), but with the 

subsequent high dose (step 4 in Figure 2.1A) x3 is at least 50% higher than the level reached 
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without priming (step 1 in Figure 2.1A). Similarly, for “tolerance” the maximum level of x3 must 

be high enough under the first HD exposure (x3 > 0.3) but less intense by at least 50% under the 

second HD challenge (step 2 in Figure 2.1A). Precise criteria for priming and tolerance are 

provided in Table 2.S1. Brute force search of the parameter space is impractical. Unbiased 

searching results in <1000 parameter sets exhibiting priming after 10
8
 Monte Carlo steps. 

Noticing that parameter sets giving priming or tolerance (called “good sets” for convenience) are 

clustered into a small number of isolated regions in parameter space, we designed a two-stage 

sampling procedure. First we perform a Metropolis search slightly biased for good sets. Next, to 

identify any isolated regions of parameter space where good sets are clustered, we analyzed the 

good sets using K-means clustering and Principal Component Analysis (see Text S1). The good 

sets then serve as seeds in the second stage of sampling, which restricts Metropolis searching to 

each local region of good sets. This two-stage procedure allows us to search the parameter space 

thoroughly and to obtain good-set samples that are large enough for statistical analysis. The 

overall procedure is illustrated schematically in Figure 2.S1 and discussed in Supporting Text.  

 

Three basic mechanisms for the priming effect of LPS  

By trial-and-error, we found that the two experimentally measurable quantities, Δx1 and Δx2 (see 

Figure 2.2A), are effective in dividing the “good” parameter sets into three regions (see Figure 

2.2B). Here Δx1 = maximum difference between x1 during the LD priming stage and the steady 

state value of x1 in the absence of any stimulus, and Δx2 = difference between the maximum 

values of x2 during the HD period with and without the priming pretreatment (Figure 2.2A). 

Further analysis (discussed below) revealed that the three groups correspond to three distinct 

priming mechanisms: “Pathway Synergy” (PS), “Activator Induction” (AI), and “Suppressor 
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Deactivation” (SD). All AI and PS parameter sets show considerable increase in x2 (> 0.1) after 

the priming stage, while SD does not (Figure 2.S2). 

 

 

Figure 2.2. Three priming mechanisms revealed by time-course patterns. (A) Definition of 

x1 x2 x1 refers to the maximum difference between x1 during the LD 

priming stage and the steady state value of x1 x2 refers to the 

difference between the maximum values of x2 during the HD period with and without priming 

pretreatment. (B) The time courses of the priming data sets naturally divide into three clusters, 

corresponding to three priming mechanisms. The pie chart shows the relative frequencies of the 

priming mechanisms among all the priming parameter sets.  

 

To characterize these priming mechanisms, we next examined the parameter sets within each 

group for shared topological features. The topology of a regulatory motif is defined as the sign 

pattern (+, − or 0) of the nine interaction coefficients, ωji, with the proviso that ωji’s in the 

interval [−0.1, 0.1] are set = 0. We define a backbone motif as the simplest network topology that 

is shared by most of the good priming sets in each group and that is able to generate a priming 
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effect on its own. Therefore, a backbone motif represents a core network structure in each group. 

Figure 2.3A shows that each group has its unique backbone motif(s), directly revealing different 

priming mechanisms in each group.  Figure 2.S3 and Supporting Text provide detailed statistical 

methods used to identify the backbone motifs. The two-dimensional parameter histograms in 

Figure 2.S4 provide further support for the backbone motifs we have identified. 

 

Figure 2.3B-D shows typical time-courses and state-space trajectories for the three priming 

mechanisms (see Table 2.S2 for the parameter values used to generate this figure). 

 

Pathway Synergy (PS): As shown in the upper left panel of Figure 2.3A, the backbone motif of 

PS mechanism contains both pathways through x1 and x2 activating x3. Under a single HD, the 

faster pathway through x1 prevents activation of x2, either directly or through x3. Consequently 

there is no synergy between the two pathways after a single HD. With LD pretreatment, 

however, x2 is partially activated. During the following HD treatment, this partial activation 

allows x2 to increase significantly, either transiently (Figure 2.3B left panel, called 

“monostable”) or persistently (Figure 2.3B right panel, called “bistable”), despite inhibition from 

x1 and/or x3. Simultaneous activation of both pathways leads to synergy between them and a 

priming effect for x3.  

 

Activator Induction (AI): In the backbone motif (see upper right panel of Figure 2.3A), the 

pathway through x1 (with high activation threshold) inhibits x3, whereas the pathway through x2 

(with a low activation threshold) activates x3. Consequently, under a single HD, the two 

pathways work against each other to prevent full activation of x3. A LD pretreatment partially 
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activates x2 without significantly affecting x1. Then, during the following HD treatment, x2 gets a 

head start on x1 to induce greater activation of x3 than observed under a single HD. The 

activation of x3 can be either transient (monostable) or persistent (bistable), as illustrated in 

Figure 2.3C and Figure 2.S5A.  

 

Suppressor Deactivation (SD): In this case there are two backbone motifs slightly different from 

each other (the lower panel of Figure 2.3A). Both motifs contain an inhibition pathway (x1 ―| x3) 

with slow dynamics and low sensitivity to LPS, and an activation pathway (x2 → x3) with fast 

dynamics and high sensitivity to LPS. The basal level of the suppressor x1 is relatively high, 

which is typical of some suppressors (e.g. TOLLIP, TRAILR, PI3K and nuclear receptors) that 

are constitutively expressed in macrophages to prevent unwanted expression of downstream pro-

inflammatory genes under non-stimulated conditions (Liew et al, 2005; Necela et al, 2008). 

Compared to AI, in this case the LD pretreatment decreases the level of suppressor x1, through 

direct inhibition of x1 by x2. The basic SD effect is amplified either by x2 self-activation 

(backbone motif I) or by negative feedback from x3 to x1 (backbone motif II). As before, the 

activation of x3 can be either transient (monostable) or persistent (bistable), as illustrated in 

Figure 2.3B and Figure 2.S5B. 
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Figure 2.3. Details of the three priming mechanisms. (A) Backbone motifs (topological features 

shared by most of the good parameter sets) of each priming mechanism (see Figure 2.S3 and 

Text S1 for details). The width of a line is proportional to the mean value of the corresponding γji 

among data sets under each priming mechanism. The “slow” and “fast” time scales reflect the 

values of γj in comparison to γ3 = 1. (B-D) Typical time courses and corresponding phase space 

trajectories with or without LD pretreatment. Bistable results for AI and SD are shown in Figure 

2.S5.  
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Combined backbone motifs may enhance the robustness of the priming effect 

Each of these groups contains many different network topologies (187 in PS, 139 in SD, and 82 

in AI). Taking SD as an example, Figure 2.4A shows the sorted density distribution of the 139 

unique topologies represented by the SD parameter sets. The top 7 of these topologies (Figure 

2.4B) comprise 31% of all the SD parameter sets. Consistent with other studies (Ma et al, 2009; 

Yao et al, 2011), the most highly represented topologies contain more links than the 

corresponding backbone motif, indicating that additional links may increase the robustness of a 

network. While the two backbone motifs rank Top 27 and Top 10 respectively (Figure 2.4B), 

their combination ranks Top 4. The Venn diagram in Figure 2.4C shows that of the 93% of SD 

parameter sets that contain at least one of the two backbone motifs, 64% contain both. Notice 

that the two backbone motifs use different helpers to deactivate the suppressor (x1) under LD, the 

combination of motifs (Top 4) integrates both helpers so that deactivation of the suppressor can 

be enhanced (Figure 2.4C). The results of a similar analysis applied to PS and AI mechanisms 

are given in Figure 2.S7.  

 

Additionally, in the Figure 2.S8 and Supporting Text, we discuss a parameter compensation 

effect that further expands the priming region in the parameter space. 
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Figure 2.4. Analysis of the robust priming topologies in the SD mechanism. (A) 139 unique 

topologies under SD mechanism sorted by topology density (see Figure 2.S6 and Supporting 

Text for detailed discussion). (B) The highest seven density topologies and the backbone motifs. 

Line widths are proportional to the mean value of samples of the corresponding topology. 

Dashed lines denote the additional link present in the top topologies but absent in the backbone 

motif. (C) Combination of the two backbone motifs is common in the SD data sets. 93% of SD 

data sets are found to contain either Motif I or Motif II as the backbone motif. Among them, 64% 

contain both Motif I and Motif II. 
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Slow inhibitor relaxation dynamics is essential for the induction of tolerance 

We used the 3-node model to search for endotoxin-tolerance motifs. The tolerance effect requires 

that pro-inflammatory cytokine expression (x3) is markedly reduced (by at least 1.5 fold) under 

two sequential HD treatments with LPS, compared to the level induced by a single HD (see 

Table 2.S1 for details). Over 1660 unique topologies are found to give a tolerance effect (Figure 

2.5A), indicating that the requirements for tolerance are much lower than for priming. A typical 

time course (Figure 2.5B, left panel) highlights the essential dynamical requirement for tolerance 

— to sustain a sufficiently high level of inhibitor (x1 in this case) after the first HD of LPS so that 

x3 is less responsive to the second HD stimulus. The effect is transient: if the second HD stimulus 

is delayed long enough for the suppressor to return to its basal level, then the tolerance effect is 

lost (Figure 2.5B, right panel). This “memory” effect has been noticed in other modeling studies 

(An & Faeder, 2009; Day et al, 2006; Riviere et al, 2009; Vodovotz et al, 2009) and is consistent 

with experimental observations. For example, the tolerance status of IL-6 is reported to persist 

for 48 h after the initial HD of LPS, but beyond this time a re-challenge started to recover the 

expression of IL-6 (Foster et al, 2007). Figure 2.5C shows two backbone motifs that support 

temporary persistence of the inhibitor: by slow removal or by positive auto-regulation of the 

inhibitor. 
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Figure 2.5. Analysis of the tolerance data sets. (A) The unique topologies generating a tolerance 

effect sorted by topology density. (B) Typical time courses shown with normal (left panel) or 

elongated (right panel) gap period between the two doses. Solid line: time course tracking the 

dynamics of the system under the first HD stimulation, in gap period and under a second HD 

stimulation. Dashed line: time course tracking the dynamics under a single HD treatment; in this 

case the system is treated with no LPS during the otherwise first HD period. (C) Distribution of 

the change of x1 level due to the initial HD stimulation reveals two mechanisms to achieve slow 

relaxation dynamics in the inhibitor (left panel) and the corresponding two backbone motif (right 

panel).  

 

The dosing scenarios for priming and tolerance are well separated 

It is of interest to ask whether priming and tolerance can be observed in a single 3-node network 

given the corresponding dosing conditions. It turns out that about 11% of the priming motifs 
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exhibit tolerance as well, and most of them belong to the SD or the AI mechanism. Figure 2.6A 

shows qualitatively the dose-response relationship for priming and tolerance in a typical network 

motif. First, both priming and tolerance require a relatively large second dose (>0.5). Second, the 

dosing regions for priming and tolerance are well separated. A low first dose (0.1−0.4) leads to 

priming while a higher one (0.5−1) leads to tolerance. There exists a range separating the 

priming and the tolerance region where neither are observed.  

 

Signaling durations affect the induction of priming and tolerance 

Most experimental studies of priming and tolerance are performed with fixed durations of the 

three time periods (T1, T2, and T3 in Figure 2.1A). Time-course measurements are rarely 

reported. The phase diagrams in Figure 2.6B & C show how varying each time period can affect 

the induction of priming and tolerance in a typical network motif. Altogether, these results reveal 

important dynamical requirement in priming and tolerance and suggest systematic studies in real 

biological experiments. 

 

The left panel of Figure 2.6B shows the effects of varying stimulus durations (T1 and T3) at fixed 

gap duration (T2). To generate priming, T1 must be sufficiently long, while T3 can be relatively 

short (left panel of Figure 2.6B). A sufficient priming duration is crucial because the system 

utilizes this time to activate/deactivate the regulatory pathway with slower dynamics, i.e., the 

synergizing pathway in PS and the suppressor pathway in SD. Therefore, if T1 is too short, one 

may erroneously conclude that priming does not exist in the system. On the other hand, tolerance 

is less dependent on T1 (right panel of Figure 2.6B). 
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Figure 2.6C shows results when all durations are varied under the constraint T1 = T3. In this case, 

both priming and tolerance require that T2 is sufficiently short compared to the time required for 

the system to relax to its basal state after the first stimulus. This result reveals priming and 

tolerance as essentially the result of cellular memory of the first stimulation. 

 

 

Figure 2.6. Phase diagrams for priming and tolerance in a typical network motif. (A) Regions of 

dosing conditions for tolerance and priming are well separated. (B) Both priming and tolerance 

effects are affected by the duration of two sequential treatments (with the gap period between 

two doses being fixed). (C) Priming and tolerance are also affected by the duration of the gap 

between two doses. Very long gaps fail to exhibit either priming or tolerance.  

 

2.5 Discussion  

Using a simple yet flexible model of cellular signaling pathways, we have carried out a 

systematic study of the topological and dynamic requirements for endotoxin priming and 
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tolerance in cells of the innate immune system. Our study reveals that the phenomena of priming 

and tolerance can be attributed to a few characteristic network motifs (called “backbone” motifs) 

that are simple yet effective combinations of feed-forward loops, negative feedback signals, and 

auto-activation. In addition to reconciling the limited available experimental data on endotoxin 

priming and tolerance, our models suggest novel, testable hypotheses regarding the molecular 

mechanisms responsible for these effects.  

 

Essential modalities for priming and tolerance 

Our in silico analysis identifies three basic mechanisms for priming (Figure 2.7). In these 

mechanisms two pathways interact either constructively (pathway synergy−PS) or destructively 

(activator induction−AI, suppressor deactivation−SD). Compared to the response of these 

systems to a single high dose (HD) of LPS, a priming dose of LPS modifies the relative phases 

of the two pathways so as to strengthen pathway synergy (for PS mechanism) or weaken 

pathway interference (for SD and AI mechanisms).  
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Figure 2.7. Schematic illustration of constructive (PS) and destructive (AI, SD) pathway 

interference leading to priming effect. PS results from the activation of the LD-responsive 

pathway (x2) which cooperates with the other HD-responsive pathway (x1) to boost cytokine 

expression in response to the following HD stimulus. AI results from activating a LD-responsive 

pathway (x2), which cancels the inhibition coming from the other HD-responsive inhibitor (x1) 

during the HD stage. SD results from deactivating a constitutively expressed suppressor (x1) 

during the priming stage. Red line with arrow head: activation pathway. Blue line with bar head: 

inhibition pathway. Line width denotes strength of the pathway controlling the downstream 

cytokine expression. 

 

In this work we define the priming effect as a response of x3 that is at least 50% higher with 

priming than without. The threshold of 50% is consistent with experimental observations 

(Henricson et al, 1993; West & Koons, 2008), but to be sure that our conclusions are robust, we 

also performed the computational analysis at two other thresholds: 30% augmentation or 70% 
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augmentation (i.e., λ=1.3 or λ=1.7 in Table 2.S1). In both cases we obtained results similar to 

those shown in Figure 2.2B, corresponding to the three priming mechanisms, although the exact 

percentage of each priming mechanism among the data sets varies with the priming threshold. 

 

The priming effect may be viewed as a primitive counterpart of the more sophisticated memory 

mechanisms of the adaptive immune system. For a limited period of time after exposure to a 

weak stimulus, the system is prepared to launch a stronger response to a second exposure to the 

(same or another) stimulus (Hu et al, 2008; Taniguchi & Takaoka, 2001). On the other hand, 

tolerance reflects a transient refractory status to produce inflammatory cytokines due to the 

memory of an earlier exposure.  

 

Supporting experimental evidences at intra- and inter-cellular levels  

The actual molecular and cellular networks responsible for endotoxin priming and tolerance are 

highly complex, involving both intra- and inter-cellular signaling modalities. A combination of 

priming/tolerance motifs most likely coexist in real signaling networks, and their interactions 

will determine the specific properties of the priming/tolerance effect in vivo. LPS is known to 

activate multiple intracellular pathways through TLR4, including MyD88-dependent, TRIF-

dependent pathways (Takeda & Akira, 2004). Cross-talk among these pathways may be 

differentially modulated by low vs. high dosages of LPS, and thus contribute to differential 

priming and tolerance (Laird et al, 2009; Li et al, 2000; Maitra et al, 2011).  
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Figure 2.8. Example regulatory networks supporting the priming mechanisms. (A) The AI 

mechanism is consistent with observed intra- and inter-cellular molecular mechanisms for LPS 

priming, based on counterbalanced IL-10 and IL-12 signaling (Shnyra et al, 1998). (B) The PS 

mechanism inspires this predicted intracellular molecular mechanism based on the selective 

activation of C/EBPδ by LD LPS. (C) IFN-γ self-priming and cross-priming to LPS follows the 

AI and PS mechanisms. Network details are retrieved from the database IPA (@Ingenuity) as 

well as the experimental literature listed in Table 2.S3. Dashed lines refer to indirect regulations 

involving autocrine signaling loops. 
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Endotoxin tolerance has drawn significant attention in the past due to its relevance to septic 

shock.  Existing literature reveals the involvement of multiple negative regulators (SHIP, ST2, 

IL-10, IRAK-M, SOCS1) at either intracellular or intercellular levels.  Many of them are shown 

to be persistently elevated during endotoxin tolerance, a key feature (confirmed by our systems 

analysis) creating a refractory state that suppresses the expression of pro-inflammatory mediators 

(see Table 2.2). For example, SHIP and ST2 are documented to have very slow degradation 

rates. On the other hand, negative regulators with faster turn-over rates, such as A20 and MKP1 

(induced between 2−4 h by LPS), are known not to be required for LPS tolerance (Biswas & 

Lopez-Collazo, 2009; van 't Veer et al, 2007).  

 

In terms of priming, our in silico results are consistent with limited experimental data regarding 

potential molecular mechanisms. For example (Figure 2.8A), IL-12 and IL-10 are differentially 

induced by low vs. high dose LPS, and subsequently serve as autocrine mediators to modulate 

LPS priming (Shnyra et al, 1998). Figure 2.8B provides a second example. Low dose LPS (50 

pg/mL) can selectively activate transcription factor C/EBPδ, yet fails to activate the classic 

NFκB pathway (Maitra et al, 2011). Hence, by a pathway synergy motif, the selective activation 

of C/EBPδ by low dose LPS may synergize with NFκB under the subsequent high dose to induce 

the priming effect. While the removal of nuclear repressor by low dose LPS is reported (Maitra 

et al, 2011), further evidence for the predicted suppressor deactivation mechanism awaits 

additional, targeted experimentation. In this context, one needs to be aware that our predicted 

network motifs are simple topologies that have the potential to generate priming or tolerance, 

within proper parameter ranges. Our predictions warrant further experimental studies to 
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determine the physiologically relevant ranges of signaling parameters required for priming and 

tolerance.  

 

Our analysis of priming and tolerance is not limited to LPS. Bagchi et al. showed that cross-

priming may happen between specific TLRs (Bagchi et al, 2007). Ivashkiv and coworkers 

reported that IFN-γ can prime macrophage for an augmented response to a variety of stimulants, 

including bacterial LPS, virus, IFN-α/β and IFN-γ itself (Hu et al, 2008; Hu & Ivashkiv, 2009). 

IFN-γ self-priming is similar to LPS self-priming: a low dose can prime for boosted expression 

of interferon-responsive genes. The priming mechanism as reported by Hu et al. resembles the 

AI strategy (Hu et al, 2002). Interferon-responsive genes such as IRF1 and IP-10 are 

transcriptionally induced by transcription factor STAT1, and are inhibited by SOCS1 through a 

negative feedback mechanism. Low dose IFN-γ (1 U/ml) is able to elevate the expression level 

of STAT1, preparing macrophage for a boosted activation of STAT1 (through phosphorylation 

and dimerization of STAT1) under the high dose IFN-γ stimulation. With STAT1 being active, 

however, the inhibitor SOCS1 cannot be expressed during the priming stage, resulting in an 

augmented expression of IRF-1 and IP-10 (Figure 2.8C). Furthermore, Figure 2.8C suggests a 

possible cross-priming between IFN-γ and TLR4 via a PS mechanism. Priming of macrophage 

by a low dose IFN-γ promotes STAT1 expression, which may synergistically cooperate with 

NFκB to give boosted cytokine expression to secondary stimulation by LPS (Hu et al, 2002; 

Schroder et al, 2004). Further experimental studies are needed to confirm the prediction.  
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Limitations of three-node models and further theoretical studies 

Three-node models have been used to analyze functional network motifs in several contexts 

(Alon, 2007; Ma et al, 2009; Yao et al, 2011). The simplicity of three-node models allows a 

thorough search of the parameter space. However, the model should be viewed as a minimal 

system. A typical biochemical network surely has more than three nodes. Therefore each node or 

link in the three-node model is normally coarse-grained from more complex networks. The 

model parameters are also composite quantities. Three-node models are limited in their ability to 

generate certain dynamic features such as time delays. Figure 2.3A shows the backbone motifs of 

the three mechanisms we have identified. Further studies of models with additional nodes will be 

necessary to determine whether all of the links are necessary.  For example, in Figure 2.8B, we 

cannot find evidence for IL-6 inhibiting C/EBPδ (either by direct or indirect links). This lack of 

evidence may indicate a missing link waiting for experimental confirmation, or it may indicate a 

limitation of the three-node model. The parameter search algorithm developed in this work can 

be applied to models with 4 or more nodes, although the search space grows rapidly with the 

number of nodes.  

 

Despite the above-mentioned limitations, we expect that the three priming mechanisms and the 

one tolerance mechanism discovered here are quite general, holding beyond the three-node 

model. We expect that the present work can serve as a basis for analyzing larger networks with 

more mechanistic details. As illustrated in Figure 2.8, motifs can be combined together in series 

or in parallel, and these combined structures may lead to new dynamic properties of functional 

importance. 
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Suggested experimental design 

Our analysis in Figure 2.6 suggests that systematic studies of signal durations (T1, T2 and T3) 

may reveal important details of the dynamics of priming and tolerance. For example, both 

relatively short (4 h, as the experiment in this paper) and longer priming duration (≥ 20 h) are 

exhibit priming effects in macrophages (Henricson et al, 1993). Relatively fast transcriptional 

regulators like NFκB and AP-1, as well as numerous signaling repressors such as PI3K and 

nuclear receptors, may be involved in intracellular priming motifs, inducing priming in response 

to short pretreatments. On the other hand, a longer pretreatment orchestrates more complex 

intercellular pathways whereby autocrine or paracrine signaling of cytokines (e.g. IL-10, IL-12 

and type I IFNs) might dominate the induction of priming effects (Shnyra et al, 1998). Therefore, 

measurements of the full time spectrum are necessary to reveal different parts of the network 

contributing to priming/tolerance.  

 

Furthermore, our analysis predicts that priming networks may respond in two distinct fashions: 

monostable (transient super-induction of cytokine) or bistable (sustained super-induction of 

cytokines). Time-course measurements can distinguish between these two responses, keeping in 

mind that the bistable behavior predicted here is relative to the effective time-scale of the model. 

Each motif considered here is embedded in a larger network. Eventually, in a healthy organism 

pro-inflammatory cytokines have to be cleared out by some other slow processes that resolve the 

inflammation. On this longer time scale, the sustained induction of cytokines predicted by some 

of our models would be resolved. 
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The analysis presented in Figure 2.2B suggests a plausible hypothesis to characterize underlying 

mechanisms of endotoxin priming. High-throughput techniques can be used to identify genes and 

proteins that are significantly changed by low dose pretreatment. Likely candidates can be 

assayed during the course of a priming experiment, and the time-course data analyzed as in 

Figure 2.2B to identify the critical regulatory factors.  

 

Our analyses and simulations reveal that the priming effect is quite sensitive to system dynamics, 

i.e., to parameter values and initial conditions. It is well documented that many biological control 

systems, especially those involving gene expression, are stochastic in nature. Consequently a 

population of seemingly identical cells may respond heterogeneously to a fixed experimental 

protocol. In this case, single-cell measurements may reveal cell-to-cell variations in priming and 

tolerance responses (Diercks et al, 2009; Lee & Covert, 2010; Ravasi et al, 2002). 

 

Taken together, our integrated and systems analyses reconcile the intriguing paradigm of priming 

and tolerance in monocytes and macrophages. Given the significance and prevalence of this 

paradigm in immune cells to diverse stimulants other than LPS, our identified functional motifs 

will serve as potential guidance for future experimental works related to macrophage polarization 

as well as dynamic balance of immune homeostasis and pathogenesis of inflammatory diseases.   
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Table 2.1.  Description of modeling parameters.  

Parameter  Description 

xj Concentration (or activity) of species j 

γj Time scale of xj dynamics 

ωji Regulation strength of xi on xj 

ωj0 Activation threshold of xj 

σj Nonlinearity of the regulation relation associated to species xj 

Sj External signal strength acting on xj. (S3=0, S1=S2) 
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Table 2.2. Experimental evidence supporting the proposed tolerance mechanism. 

Molecular 

Candidate 

Inhibition Target Persistent 

Strategy 

Reported Evidence Reference 

IRAK-M IRAK-1 and IRAK-4 

signaling 

Slow time scale Both mRNA and protein 

level of IRAK-M kept 

increased until 24 h with LPS 

stimulation. 

(Kobayashi et al, 

2002) 

SHIP NFκB pathway Slow time scale; 

Positive auto-

regulation of 

upstream regulator 

Slow but sustained 

production of SHIP (peaked 

at 24 h and remained high 

until 48 h with LPS 

stimulation), regulated via 

autocrine-acting TGF-β; long 

half-life of SHIP protein. 

(Sly et al, 2004) 

SOCS1  

(under debate) 

IRAK and NFκB 

pathway 

Slow time scale SOCS1 mRNA levels 

remains detectable 24 h post 

LPS stimulation. 

(Nakagawa et al, 

2002) 

ST2 MyD88 and Mal Slow time scale ST2 is induced at 4 h and 

lasts until 48 h with LPS 

stimulation. 

(Brint et al, 2004) 

IL-10 

(required but 

not necessary 

for tolerance) 

MyD88-dependent 

pathway (IRAK, 

TRAF6) 

Slow time scale; 

Positive 

autoregulation  

Significant level of IL-10 

was detected with prolonged 

(24 h) LPS stimulation, and 

the level is sustained until 48 

h. The IL-10-activated 

STAT3 is required for 

efficient induction of IL-10. 

(Benkhart et al, 

2000; Chang et al, 

2009; de Waal 

Malefyt et al, 

1991; Staples et al, 

2007) 
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DNA 

methylation 

and chromatin 

remodeling 

Proinflammatory 

cytokine (TNF-α) 

gene expression 

Slow time scale Sustained methylation of H3 

(lys9), increased and 

sustained binding of RelB (as 

transcriptional repressor) on 

TNF-α promoter in tolerant 

THP-1 cells. 

(Chen et al, 2009; 

El Gazzar et al, 

2007) 

 

 

2.8 Supporting Information 

Detailed criteria for priming and tolerance in the Metropolis searching algorithm  

We used the Metropolis algorithm (Metropolis et al, 1953) to search for parameter values for 

which the system exhibits priming or tolerance effects. Table 2.S1 gives the criteria for 

identifying priming or tolerance parameter sets. In general, both priming and tolerance require 

the system to generate a dose-response curve having the following qualitative features: small 

signal (LD) gives small response and large signal (HD) gives large response; priming requires 

that LD+HD LPS gives a larger response than does a single HD LPS (positive control); tolerance 

requires that HD+HD LPS gives lower response than does a single HD LPS (positive control). 

Parameter sets that satisfy these conditions (either for priming or for tolerance) are called “good” 

sets. 

 

Two-stage Metropolis search for parameter sets that exhibit priming or tolerance 

It is impractical to perform a brute force search for priming/tolerance samples in a high 

dimensional parameter space. Figure 2.S1A illustrates an alternative two-stage strategy. In the 

first stage, we searched widely over the parameter space with some bias to stay in a good 
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parameter region and some chance to wander off in search of another good region. Then K-

means Clustering and Principal Component Analysis was applied to the samples of good 

parameter sets generated in stage 1 to see if the data form several separate clusters. Each 

potential cluster provides a random seed for a second round of Metropolis searching. This time 

the search is restricted to stay within a good region, in order to search each region thoroughly 

and to obtain a representative sample of good parameter sets.  

 

 

Figure 2.S1. Illustration of the two-stage Metropolis search procedure. (A) Schematic 

illustration of the two-stage Metropolis search method for priming/tolerance parameter sets. In 

the first stage one randomly searches the whole parameter space. K-means clustering algorithm 

identifies one or more clusters of the data. Then one performs a second Metropolis step to search 

thoroughly inside each cluster. (B) As a result, we got three priming set clusters with K-means 

clustering. By calculating the minimum volume bounding ellipsoid, we found that cluster 1 and 2 

belong to a single region (Region I) whereas cluster 3 belong to a separate region (Region II).  
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Figure 2.S2. Distribution of change in x2’s initial condition prior to HD without or without 

priming treatment. Both PS and AI show considerable increase in x2 in the primed system. PDF: 

probability distribution function. 

 

To apply the Metropolis Algorithm, we relate the current problem of searching in the parameter 

space to sampling the partition function of a pseudo-statistical physics system. The bias 

controlling the probability of wandering out of a good region ( 10,   1k k    ) is defined by a 

Boltzmann-type expression 1( )k ke
   

 where β represents an “inverse temperature” variable. 

There exists a trade-off value of β for the Metropolis search in stage I. If β is too large, the search 

will stay in a local minimum and fail to explore the parameter space thoroughly. If β is too small, 

the search cannot yield enough samples for the clustering analysis. Through trial and error, we 

found that β = 6 is a good value for the stage I Metropolis search, which gives ρ = 0.0025. Note 

that the priming region is very small compared to the whole parameter space. Therefore, 

although ρ = 0.0025 is very small, it still guarantees that the system has sufficient probability to 

leave the good regions and thoroughly search the parameter space. 

 

In the above procedure, the score function k plays the role of “energy” in a physical system. In 

general it can be a continuous function, and its gradient can guide the Metropolis search to the 



 61 

favorable region. For the current problem, the score function we use essentially behaves as a 

two-state system. Therefore we assign the value of k to be 0 or 1.  

 

We chose to use the Metropolis method for the first stage, but other methods will probably work 

equally well, e.g. genetic algorithm (Singhania, 2011) and the methods used by Ma et al. (Ma et 

al, 2009) and Yao et al. (Yao et al, 2011). 

 

Figure 2.S1B provides the result of the two-stage Metropolis search. In the left panel the priming 

sets obtained from the first stage form three main clusters under the K-means Clustering. For 

visualization purpose the clusters in the high-dimensional parameter space are plotted using the 

first two components of Principal Component Analysis. Using the Khachiyan Algorithm 

(Khachiyan, 1996), we calculated the minimal volume ellipsoid to embrace 99% of the 

parameter sets of each region. As shown in the right panel of Figure 2.1B which calculates the 

distance of a parameter set to the center of each bounding ellipsoid, it turns out that a single 

ellipsoid embraces clusters 1 and 2, thus forming one single region (we call it “Region I”). This 

result is independently confirmed with the following Metropolis simulation with ρ = 0: a 

trajectory starting from one cluster can generate parameter sets belonging to the other cluster. On 

the other hand, cluster 3 forms a separate region (Region II). Notice that a small portion of 

samples locate within both ellipsoids, indicating these two ellipsoids (regions) are barely 

connected. We found that Region II is actually (part of) the mirror image of Region I with the 

roles of x1 and x2 exchanged, reflecting the symmetry of the 3-node system. Therefore, the results 

discussed below and in the main text focus on the motifs found in Region I.  
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About 10
6
 output samples are generated out of 10

8
 Metropolis steps in stage 2. Of these 10

6
 

samples, some appear to be biologically irrelevant and are removed from the sample set. For 

example, in some cases 3( )x t
 
increases to a much higher level after the HD stimulation is 

removed, this would be a pathological response of the system. Other samples show 

unrealistically large sensitivity to initial conditions, i.e., although LD induced only small changes 

in x1, x2 and x3 (less than 10%), the system still exhibited priming effect. If priming were due to 

such small differences, then (in our opinion) the response would not be robust to the stochastic 

fluctuation expected in real systems (Chang et al, 2008; Cohen et al, 2008; Sigal et al, 2006; 

Spencer et al, 2009). 

 

While the results reported in the main text are from one trajectory result, the procedure was 

repeated several times with random initial start of the searching in stage 1. Results analyzed from 

different trajectories agree with each other, confirming the convergence of our two-stage 

Metropolis searching procedure.  
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Figure 2.S3. Statistical method used to identify backbone motifs from priming/tolerance data. 
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Statistical method used to identify backbone motifs 

A backbone motif is defined to be the simplest motif (the fewest number of non-zero ωji’s) that is 

shared by most of the priming/tolerance network structures in a particular region. A backbone 

motif must be able to generate a priming/tolerance effect by itself. Identification of backbone 

motifs helps to define the core mechanism of priming or tolerance. Figure 2.S3 shows the 

statistical method used to obtain the backbone motifs for the pathway synergy group.  

 

Step 1: calculate the mean of each interaction coefficient ωji among all samples of the group, and 

map the mean values into a topological matrix τji (see Material and methods in the main text for 

the method of parameter discretization). 

 

Step 2: for each ωji calculate its coefficient of variation (CV = standard deviation divided by 

|mean|). The value of CV measures the dispersion of the data along each parameter dimension. A 

large value of CV suggests that a link is not essential and should not be part of the backbone 

motif. Only links with CV < CutOff should be part of a backbone motif. For CV > CutOff, τji = 0 

in the backbone motif.  

 

Step 2.1: determine the optimal value of CutOff. As CutOff decreases, the corresponding motif 

becomes simpler and therefore more samples contain this motif. However, the motif is a 

backbone motif only if it gives priming by itself. Therefore, there exists an optimal CutOff value 

so that the corresponding motif has the simplest topology that is still able to generate priming for 

some specific parameter sets. In this case the optimal CutOff = 0.54 (see the right figure in Step 

2.1 of Supplement Figure 2.3).  
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Step 2.2: compare each dimension in the CV matrix to this optimal CutOff value, and obtain the 

corresponding backbone motif. 

 

 

Figure 2.S4. Parameter correlations highlight the backbone motifs of each priming mechanism: 

(A) Pathway Synergy, (B) Suppressor Deactivation, and (C) Activator Induction. 

 

Figure 2.S4 shows 2D histograms of parameter distributions under each priming mechanism (PS, 

SD and AI). These histograms clearly highlight the corresponding backbone motifs. For 

example, for the 2D histogram shown in Supplemental Figure 2.4A, the PS data form clusters 

where both x1 and x2 activate x3 (2
nd

 figure), and x3 feeds back negatively on x2 (4
th

 figure). Also 
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x2 shows significant auto-activation but x1 does not (data spread out horizontally in the 5
th

 

figure); this is in line with the backbone motif where x1 auto-regulation is not essential for 

priming. Similarly, x1 exerts strong inhibition on x2, whereas the regulation from x2 to x1 can be 

either negative, zero or positive (the 3
rd

 figure), in line with the backbone motif where this 

regulation is missing. In addition, the 1
st
 figure indicates that x1 should change on a much faster 

time-scale than x2. This is a dynamical requirement of pathway synergy in addition to the 

topological features as illustrated by the backbone motif. 

 

 

Figure 2.S5. Typical time course and corresponding trajectory in the phase space. (A) bistable 

case of AI mechanism. (B) bistable case of SD mechanism. Refer to Figure 2.3 of the main text 

for the time course trajectories in other cases. 
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Motif density is more robust than frequency to variation in the topological cut-off 

To map from the continuous space of interaction coefficients ωji to the discrete space of network 

topologies τji, one must choose a cut-off value 0 for mapping ωji’s to −1, 0 or +1. We have 

chosen this cut-off 0 (somewhat arbitrarily) to be 0.1. The simplest way to order these 

topologies from “more robust” to “less robust” is in terms of the number of parameter sets that 

map into each topology, i.e., the frequency of each topology in the total data set. However, we 

find that topology-frequency is sensitive to the choice of the cut-off value for ωji. A better 

measure is topology density (Figure 2.S6), defined as follows. The total volume of the 9-

dimensional space of interaction coefficients is 2
9
, because each ωji can continuously vary over 

[−1, 1]. For a motif with m non-zero τji’s, the volume of its subspace is 0(1 ) (0.9)m m  .  The 

density of the motif is defined as the number of samples corresponding to this motif divided by 

the volume of its subspace. 

 

In Figure 2.S6 we compared the two ways of ordering the topologies using the SD data set as an 

example. The figure shows how the rank of robustness of each topology changes due to 10%, 

30% and 50% positive or negative variations from the original cut-off 0 0.1  . A point on the 

figure with coordinate (x, y) means that the rank of a given topology is x with 0 0.1  , but y 

with the varied 0 . Scattering from the diagonal indicates changing of the ranking due to 

0 variation. The density-sorted rank (top panel) is less sensitive than the frequency-sorted one 

(lower panel) to the change of 0 . 
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Figure 2.S6. Change in the robustness rank as a result of variations in the topology cut-off. SD 

datasets are used as an example. The robustness rank is calculated based on density (top panel) 

or sample frequency (lower panel) of the unique topologies. Changes in the robustness rank is 

compared with 10% (left column), 30% (center column), and 50% (right column) variation in the 

topology cut-off τ0=0.1.  
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Figure 2.S7. Topologies of PS and AI mechanisms. (A) The topology density distribution for the 

PS mechanism. (B) Top six PS topologies and the backbone motif. (C) The topology density 

distribution for the AI mechanism. (D) Top six AI topologies and the backbone motif. Line 

widths are proportional to the mean value of samples of the corresponding topology. Dashed 

lines denote the additional links present in the top topologies but absent in the backbone motif. 
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2D parameter correlations demonstrate how parameter compensation affects topological 

robustness 

We calculated the correlation matrix of each priming mechanism from the corresponding 

samples. As can be seen from Figure 2.S8A, some parameters show strong anti-correlations. For 

a pair of anti-correlated parameters, increasing one can be compensated by decreasing the other 

(or negatively increasing the other if the regulation is inhibition), so the overall dynamics 

remains (approximately) the same. This is because in the modeling equations,  
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the activation of species xj is dependent on the overall net input Wj. As Wj sums inputs from all 

regulating nodes, a change in one parameter (e.g. ωj1) can be compensated by a change in a 

second parameter (e.g. ωj2) if the sum stays the same. Such parameter compensation expands the 

region of parameter space where priming or tolerance is observed and therefore affects the 

robustness of the model. 
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Figure 2.S8. Parameter correlation and compensation affects the robustness of the model. A) 

Correlation matrix calculated based on the samples of each priming mechanism. The p-value is 

smaller than 0.05 except where marked. B) The parameter compensation mechanism is 

illustrated by the 2D correlation histogram of the SD samples (left) and the corresponding 

connection diagrams (right). 

 

For example, the left panel of Figure 2.S8B shows that the feedback from x3 to x2 strongly anti-

correlated with x2’s auto-regulation among SD datasets. With ω23 = 0, the absolute value of ω22 

needs to be also small (the Null region in the right panel of Figure 2.S8B), otherwise priming is 

abolished. However, since ω23 and ω22 are anti-correlated, the effect of an increasing ω22 can be 
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canceled off by increasing ω23, thus expand the priming region in the parameter space (the upper 

left and bottom right regions of the right panel of Figure 2.S8B). 
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Table 2.S1. Criteria identifying priming and tolerance for a given parameter set x. 

A Good set of Single LD Single HD LD+HD HD+HD 

Priming RLD(x) < δLD RHD(x) ≥ 

δHD 

RLD+HD(x)/RHD(x) ≥ λ - 

Tolerance  RLD(x) < δLD RHD(x) ≥ 

δHD 

- RHD (x)/RHD+HD(x) ≥ λ 

Description LD signal 

stimulates 

small 

response. 

HD signal 

stimulates 

large 

response. 

Two sequential 

signals (LD followed 

by HD) gives a larger 

response than a single 

HD. 

Two sequential signals 

(HD followed by HD) 

gives a smaller 

response than a single 

HD. 

R denotes the maximum response of “cytokine” x3 under a specific stimulation protocol. LD: low 

dose; HD: high dose; LD+HD: LD followed by HD with maximum response measured in the 

HD period; HD+HD: HD followed by HD with maximum response measured in the second HD 

period. δLD and δHD denote the threshold of response under LD and HD, respectively. λ > 1 is the 

threshold of fold-change in the maximum response. The values we have chosen for these 

parameters (LD=0.1, HD=1, δLD=δHD=0.3, λ=1.5) are in qualitative agreement with experimental 

observations. 
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Table 2.S2. Parameter sets used to generate time course and phase-space trajectory in Figure 2.3 

and Figure 2.S5. 

 PS PS AI AI PS PS 

 bistable monostable bistable monostable bistable monostable 

ω11 0.26 0.19 -0.54 0 0.86 0.84 

ω12 -0.92 -0.27 0.05 -0.11 -0.78 -0.90 

ω13 0.61 0.23 -0.24 0.04 -0.86 -0.36 

ω21 -0.95 -0.93 -0.61 -0.52 0.36 0.08 

ω22 0.53 0.54 0.99 0.95 0.06 0.16 

ω23 -0.54 -0.35 -0.69 -0.89 -0.53 -0.45 

ω31 0.18 0.18 -0.80 -0.75 -0.96 -0.85 

ω32 0.47 0.27 0.83 0.82 0.89 0.93 

ω33 0.12 0.40 0.69 0.77 0.61 0.54 

γ1 1.56 0.43 0.10 0.11 0.14 0.15 

γ2 0.11 0.11 0.19 0.16 0.76 9.96 

γ3 1.00 1.00 1.00 1.00 1.00 1.00 

σ1 6.84 8.00 4.36 4.37 7.96 5.36 

σ2 7.19 8.00 6.55 6.89 6.33 5.50 

σ3 6.00 8.00 6.00 6.00 6.00 6.00 

ω10 -0.75 -0.50 -0.07 -0.22 -0.10 -0.15 

ω20 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 

ω30 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 
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Table 2.S3. Experimental literature supporting the network details in Figure 2.8.   

Figure 

2.8  

Panel 

Source Target Regulatory 

Type 

Reference Comment 

A TLR4 IRAK Activation (Hacker & 

Karin, 2006; 

O'Neill et al, 

2003) 

 

A IRAK P38 Activation (Akira & 

Takeda, 

2004; 

Koziczak-

Holbro et al, 

2007) 

 

A P38 IL-10 Transcription (De et al, 

2000) 

 

A IL-10 IL-12 inhibition (Sica et al, 

2000; 

Uyemura et 

al, 1996) 

 

A IL-10 TNFα inhibition (Fiorentino 

et al, 1991; 
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Shnyra et al, 

1998) 

A IRAK AP-1 Activation (Thompson 

& 

Locarnini, 

2007) 

 

A AP-1 IL-12 Transcription (Ma et al, 

2004; 

Matsumoto 

et al, 2004) 

 

A IL-12 TNFα Transcription (Jana et al, 

2003; 

Shnyra et al, 

1998) 

 

A TNFα TNFα Positive auto-

regulation 

involving an 

autocrine loop 

(Spriggs et 

al, 1987) 

 

A IL-12 IL-12 Positive auto-

regulation 

involving an 

autocrine loop 

(Grohmann 

et al, 2001) 

IL-12 auto-regulates itself 

through Jak/Stat pathway 

with STAT4 being the 

major transcription factor. 

A TNFα IL-12 inhibition (Hodge- TNFα inhibits IL-12p40 
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Dufour et al, 

1998; 

Zakharova 

& Ziegler, 

2005) 

through TNFα signaling 

pathway. 

B IRAK4 IKK Activation (Hacker & 

Karin, 

2006) 

 

B IKK NFκB Activation (Hacker & 

Karin, 

2006) 

 

B NFκB ATF3 Transcription (Kawai & 

Akira, 

2010) 

 

B ATF3 C/EBPδ Inhibition (Gilchrist et 

al, 2006; 

Litvak et al, 

2009) 

 

B NFκB IL-6 Transcription (Litvak et 

al, 2009) 

 

B IRAK1 IKKε Activation (Maitra et 

al, 2011) 

 

B IKKε C/EBPδ Activation (Maitra et Low dose LPS induces the 
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al, 2011) expression of C/EBPδ 

through IRAK1 and IKKε.  

B C/EBPδ C/EBPδ Transcription (Litvak et 

al, 2009) 

C/EBPδ can bind onto its 

own promoter to enhance 

the transcription. 

B C/EBPδ IL-6 Transcription (Litvak et 

al, 2009) 

 

C IFNγ STAT1 Transcription (Hu et al, 

2002) 

Low dose IFNγ elevates 

STAT1 transcription, but 

not STAT1 

phosphorylation. 

C IFNγ P-

STAT1 

Activation (Hu et al, 

2002) 

Phosphorylation of STAT1 

is activated only under high 

dose IFNγ. 

C P-

STAT1 

SOCS1 Transcription (Hu et al, 

2002) 

 

C SOCS1 P-

STAT1 

Inhibit (Hu et al, 

2002) 

SOCS1 inhibits the 

phosphorylation and 

activation of STAT1. 

C P-

STAT1 

IRF-1, 

IP-10 

Transcription (Hu et al, 

2002) 

 

C P-

STAT1 

TNFα Transcription (Kalliolias 

& Ivashkiv, 

P-STAT1 may 

synergistically cooperate 
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2008) with NFκB to activate the 

transcription of TNFα. 

C TNFα SOCS1 Transcription (Federici et 

al, 2002) 

TNFα might be able to 

negatively feedback on P-

STAT1 through enhancing 

the production of SOCS1. 
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3.1 Abstract  

A bacterial colony may develop a small number of cells genetically identical to, but 

phenotypically different from other normally growing bacteria. These so-called persister cells 

keep themselves in a dormant state and thus are insensitive to antibiotic treatment, resulting in 

serious problems of drug resistance. In this paper, we proposed a novel strategy to “kill” persister 

cells by triggering them to switch, in a fast and synchronized way, into normally growing cells 

that are susceptible to antibiotics. The strategy is based on resonant activation (RA), a well-

studied phenomenon in physics where the internal noise of a system can constructively facilitate 

fast and synchronized barrier crossings. Through stochastic Gilliespie simulation with a generic 

toggle switch model, we demonstrated that RA exists in the phenotypic switching of a single 

bacterium. Further, by coupling single cell level and population level simulations, we showed 

that with RA, one can greatly reduce the time and total amount of antibiotics needed to sterilize a 



 86 

bacterial population. We suggest that resonant activation is a general phenomenon in phenotypic 

transition, and can find other applications such as cancer therapy. 

 

3.2 Introduction 

Noise has often been viewed as a nuisance for many years in biology. Robustness of large 

biological systems requires noise from both intracelluar and intercelluar sources being canceled 

or filtered in one way or another. Yet growing evidence indicates that noise actually plays 

fundamental roles in many biological processes, as in cell fate decision and in mutation and 

evolution (Rao et al, 2002). In this paper, we suggest that the functional role of noise can go even 

beyond: the internal noise in bacterial gene expression can be utilized to counteract antibiotic 

resistance, by inducing resonant activation that can facilitate a fast and synchronized phenotypic 

switching in bacteria population. 

  

Antibiotic resistance is a severe and growing problem in clinical practice. It refers to a 

phenomenon that certain phenotypes of microorganisms, e.g. bacteria, are able to withstand (and 

requires prolonged) antibiotic treatment.  It may be acquired from horizontal gene transfer and 

mutations in the pathogenic chromosome(Cirz et al, 2005; Miller et al, 2004; Ochman et al, 

2000), or from the existence of phenotypic heterogeneity within bacteria population(Balaban et 

al, 2004; Gefen & Balaban, 2009; Levin & Rozen, 2006). The latter links antibiotic resistance to 

a special bacterial phenotype called persister cell, a non-growing (or slowly growing) and non-

inherited cell phenotype whose number only accounts for a small fraction of total population.  
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Persister cells are genetically homogeneous to normally growing cells. They are first discovered 

by Bigger(Bigger, 1944) and then found in higher-percentage in biofilms that are known to be 

responsible for a majority of recalcitrant infections such as tuberculosis(Ojha et al, 2008; Stewart 

et al, 2003). Several experimental and theoretical works suggested their formation during mid-

exponential phase, as well as their function as an “insurance” to maximize the overall survival 

probability of bacterial population in changing environments(Balaban et al, 2004; Keren et al, 

2004a; Kussell et al, 2005; Lou et al, 2008). The magic is that persister cells have negligible 

growth rate and non-negligible phenotypic switching rate. The negligible growth rate helps 

persister cells dodging antibiotic attack that depends mostly on active cell wall growth. The non-

negligible phenotypic switching rate, on the other hand, ensures finite probability of stochastic 

switching from persister cells to normally growing cells taking place at a period that the stress 

(e.g., antibiotics) is removed. Then those newly formed normal cells serve as the “seeds” for 

reestablishing the population.  Therefore, Kussell et al. proposed the phenotypic switching rate 

can be seen as a result of evolutionary adaptation of bacteria to their real fluctuating 

environment(Kussell et al, 2005).  

  

The ubiquity of persister cells makes bacteria population hard to sterilize. The time-series of the 

survival fraction under antibiotic treatment obeys a two-phase exponential decay, with the 

majority of cells being killed at a fast rate at the beginning while the rest being killed much 

slowly afterwards. hipA7, a mutant strain of E.coli that contains higher percentage (10
-5

~10
-2

) of 

persister cells, has been reported survival in a fraction about 10
-5

 even after continuous 

ampicillin treatment for 50 h (Balaban et al, 2004). Therefore, it is of concern how to efficiently 

sterilize bacteria populations, especially for strains with more fractions of persister cells. In 2008, 
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Gefen et al. observed that persister cells of hipA7 assume normal growth during the first 1.5 h on 

exiting the stationary phase(Gefen et al, 2008). While applying ampicillin within that time 

window, the number of persister cells can be lowered by 1 order of magnitude. However, those 

still alive may adopt dormancy after that time window, and can convert to normally growing 

phenotype and re-grow to a new population under appropriate conditions. The essential problem 

here is that well-established persister cells are insensitive to antibiotics. They have to be 

converted into normally growing cells to get sterilized by drugs. However this transition is 

stochastic and may take a long time. For hipA7, the transition rate is 1/0.07 h
-1

, which gives an 

exponential waiting time distribution with the average waiting time of conversion ~ 14 h.  For 

some species, e.g. the E coli mutant hipQ, the rate can be much smaller. Therefore, bacteria 

sterilization requires continuous antibiotics application at least to cover this broad range of time, 

which may be impractical and/or detrimental to the host.  

  

Several toxin-antitoxin (TA) modules in bacterial chromosome have been experimentally 

identified to regulate bacterial phenotypic transitions, though detailed mechanism has not been 

clearly understood (Christensen et al, 2003; Gefen & Balaban, 2009; Pedersen et al, 2002). 

Irrespective of the details, the basic mechanism is simple: a mutual inhibition exists between 

antitoxin's and cognate toxin's expression, which determines whether a single bacterium assumes 

normally growing phenotype (when antitoxin dominates) or persister phenotype (when toxin 

dominates). Therefore bistability is the major dynamical property of single cell's phenotypic 

transition(Lou et al, 2008). In this theoretical investigation we used the well-studied generic 

toggle switch to model this bistable system, Figure 3.1 (a).   
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Making analogy between biological networks and other familiar physical systems has led to 

several insightful studies (Walczak et al, 2005; Wang et al, 2006; Zhu et al, 2004). In this work 

we focused on resonant activation (RA), a well-studied phenomenon for thermally activated 

barrier-crossing systems (Doering & Gadoua, 1992; Marchi et al, 1996; Schmitt et al, 2006). If 

the barrier is under time varying periodic perturbation, “cooperative interplay between the barrier 

modulation process and thermal noise assisting barrier crossing events can cause an enhancement 

of the reaction kinetics” (Schmitt et al, 2006). The mean first passage time (MFPT), which is the 

average time the system waits for the first successful barrier crossing, reaches its minimum (by 

several folds or even orders of magnitude compared with that of the unperturbed system) at the 

resonance frequency of the perturbation. Under resonance frequency c with period 

2 /
c cT   , the system prefers to make a transition when the barrier height reaches its 

minimum. Consequently, the FPT distribution displays a series of peaks at odd multiples of 

/ 2
c

T , instead of a continuous exponential distribution. RA is related but different from another 

well studied phenomenon, stochastic resonance (SR) (Gammaitoni et al, 1998; Schmitt et al, 

2006). SR focuses on synchronizing the transitions between two states by the external periodic 

signal with matching frequency, so it helps the system to pick up the signal from the stochastic 

background noise. RA emphasizes that the average time of the transition from one state to 

another reaches a minimum by the external modulation. To understand the latter intuitively, 

consider a barrier crossing system with the barrier height itself varies with time. If the barrier 

fluctuation is very fast compared to the mean time between two transitions, the system only 

experiences an averaged potential barrier; if the fluctuation is very slow compared to the mean 

transition time, the transition dynamics is simply a weighted average of the dynamics with 
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different barrier heights; RA suggests that the mean transition time reaches a minimum at some 

intermediate barrier fluctuation time scale. 

  

Complementary to current efforts of searching for more efficient antibiotics, in this work we 

proposed to utilize the phenomenon of resonant activation to help fighting drug resistance. 

Noticing the similarity between thermally activated barrier crossing and cell phenotypic 

transition, we will first use a genetic toggle switch model to demonstrate that resonant activation 

exists for biological network dynamics. Then we will examine how one can shorten the time and 

the amount of antibiotics needed to extinct a bacteria population using resonant activation. Our 

strategy utilizes the two characters of RA: accelerated kinetics, and multi-peaked FPT 

distributions. 

  

3.3 Model and Method 

Single cell level 

Currently the exact regulation mechanism for the persister-normal cell transition is not clear, and 

different hypotheses have been raised to give possible answers (Gefen & Balaban, 2009). For our 

purpose of illustrating the idea, we will use a generic toggle switch to represent the mutual 

inhibition within T-A module. As shown in Figure 3.1 (a), the network contains two genes 

mutually inhibiting each other through their dimerized protein products. The two types of protein 

dimers compete for the promoter binding site. Ten chemical reactions shown below control the 

dynamics of the generic toggle switch shown in Figure 3.1 (a): 
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Figure 3.1. A schematic toggle switch model controlling single cell phenotype switch. (a) The 

toggle switch model. Periodic signal is added to the system, perturbing the degradation rate of 

protein A. (b) Gillespie simulations show that the model behaves like a two-state system, 

corresponding to two phenotypes of bacterium. 
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Table 3.1 gives the corresponding rate constants. Define   to be the difference between the total 

number of free and bound protein B and the total number of free and bound protein A. Therefore, 

with these parameters and mass-action type dynamics, the system gives two stable states 

corresponding to the persister ( 0  ), and normally growing ( 0  ) phenotypes, respectively 

(see Figure 3.1 (b)). Stochastic fluctuations of the reactions drive the system to transit between 

the two states. These parameters are modified from the model of Allen et al. (Allen et al, 2005), 

so the model gives  hipA7 p2n (persister cell to normally growing cell)   and n2p (normally 

growing cell to persister cell) switching rates 0.07 h
-1

 and 0.008 h
-1

, respectively, as used by 

others (Balaban et al, 2004; Kussell et al, 2005).  The abstract toggle switch model also places 

the present work in a broader context. Many microorganisms, including viruses and bacteria, 

coexist in a dormant and an active phenotype (Dubnau & Losick, 2006). The toggle switch is a 

frequently occurred generic regulation mechanism and a good model for phenotypic transitions 

in bacteria (Gardner et al, 2000; Smits et al, 2006). 

  

To be specific and for practical considerations of computational feasibility, we chose model 

parameters in most simulations in this work to mimic the dynamics of hipA7. However, we want 

to emphasize that the proposed approach below works best for the following situation. First, we 

assume that one can regulate some of the rate constants through an external oscillating perturbing 

signal. Consequently some rates (the degradation rate of A for the results reported in the main 

text) are oscillating with time. The strength of the perturbing signal should be restricted due to 

the consideration of toxicity to the host.   Second, we focus on the case that the transition from 

the persister to the normally growing phenotype is very slow, so that the sterilization of the total 
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population requires a long term antibiotic treatment, which may bring severe side-effect like liver 

damage. 

 

Population level 

At the population level, a cell is subject to an environment alternating between growing and 

antibiotics stress conditions. A normally growing cell has faster net proliferation rate than a 

persister cell does under growth condition, but also a larger death rate under antibiotic stress (see 

also(Kussell et al, 2005). 

 

Three types of cellular events can take place for each cell: cell division (the cell including the 

molecular state of the toggle switch are cloned into two identical copies), cell death, and 

phenotypic transition. Table 3.2 gives all the related rate constants based on experimental 

observations (Balaban et al, 2004; Kussell et al, 2005). For a given cell with phenotype n 

(normally growing) or p (persister), the reactions for stochastic simulations additional to the 10 

toggle switch reactions are 
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Unlike the work of Kussell et al, in our model we did not simulate the cell phenotypic transitions 

directly. Instead we propagate the 10 toggle switch reactions for each cell, which determine the 

phenotype of the cell (see above).  
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Each population level simulation initiates from a stationary-phase colony including 10
4
 normal 

cells and 10
2 

persister cells. The population is then put into fresh medium with/without 

antibiotics, as determined by each different strategy.  The phenotype of a single cell is 

determined by its own toggle switch dynamics based on the value of δ. We use τ-leap Gillespie 

algorithm to propagate the 10 chemical reactions of each toggle switch and cell birth/death 

simultaneously(Gillespie, 2001). For the rates with periodic time-dependence, we approximate 

them as constant within one Gillespie step, which is much smaller than the rate varying period.  

For simplicity, we do not consider quorum sensing, thus each cell behaves independently and 

does not communicate with others except for competing resources as discussed below. To 

prevent the population from overgrowth in our simulations, we rescaled the growth rate g as a 

decreasing function of the number of normally growing cells n, 0( ) / [1 ( )]n ng t g n t      

where τ is the time step in τ-leap Gillespie algorithm, α controls the scaling strength (here α = 

0.001), and 0

ng  represents the original growth rate of normal cells without rescaling. We didn't 

rescale the persister cells' growth rate since the value before rescaling is already negligible. A 

physical justification of the rescaling is that the accessible nutrients and volume of a cell colony 

are usually limited against unrestricted massive replications.  

  

3.4 Results 

Resonant activation exists in cellular phenotypic switch 

For the model we examined, the switching rate from n2p is much smaller than that of p2n at the 

exponential phase. This dynamics mimics that of hipA7 (Balaban et al, 2004), and resembles to 

barrier crossing rates in an asymmetric double well potential, with one deeper well representing 

normally growing phenotype, and the other well representing persister phenotype. Let's define 
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2p nt as the first passage time for p2n switching. The distribution of 2p nt , apart from an initial 

transient time period, follows an exponential form  

 2 /

2( ) p n Kt t

p nP t e


  

(see Figure 3.2 (a)), where tK is the inverse of the Kramers rate (Gammaitoni et al, 1998; Hänggi, 

2002; Pechukas & Hanggi, 1994). The prolonged distribution contributes to bacterial persistence. 

 

Figure 3.2. Results of single cell simulations. (a) 2( )p nP t in the absence of the perturbing signal. 

(b) The mean first passage time (MFPT) versus frequency   of the sine-formed perturbation 

signal. (c) A weak perturbing signal with off-resonance frequency still gives an exponential 

distribution of 2( )p nP t , here 10  h
-1

. (d) A weak perturbing signal with resonance frequency 

(red curve) changes 2( )p nP t  into several separated spikes. Each spike overlaps with a peak of the 

periodic signal (red curve) with 1.6c   h
-1

 and 0  . 
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Next, we perturbed the protein A's degradation rate with sine-formed signal (see Figure 3.1), 

0

3 3 (1 sin( ))k k t     , with 0 1  . For each simulation the phase θ is randomly drawn 

from a uniform distribution between 0 and 2π. This is because in the population level simulations 

below, the relative phase between the birth time of a persister cell and the added signal can be 

seen as a random variable. Figure 3.2 (b) shows that the mean first passage time (MFPT) as a 

function of ω, averaged over 5000 independent simulations, shows a minimum around 

1.6c  h
-1

, and the curve is rather flat over a range of ω values. Resonant activation occurs at 

the frequency c where MFPT reaches minimum (Marchi et al, 1996; Schmitt et al, 2006) 

despite the current system is described by discrete dynamics. 

  

Figure 3.2 also shows 2( )p nP t  under a perturbing signal with different frequency. At a high ω, 

the system cannot respond fast enough, and the perturbation is equivalent to an averaged 

constant one. The distribution is exponential, Figure 3.2 (c).  Under resonance frequency c , 

however, 2p nt distribution changes into several separated spikes, Figure 3.2 (d). Note that the 

peaks of spikes overlap with the peaks of the periodic signal. Therefore transition takes place 

more frequently when the signal reaches the peak value, thus the degradation rate of protein A is 

the fastest, and the transition from A dominant to B dominant is the easiest(Gammaitoni et al, 

1998).  If the system misses one peak of the signal for a p2n transition, it prefers waiting for the 

next peak. We observed this type of localized distribution over a broad range of ω values 

corresponding to the flat bottom region of the MFPT- ω curve (see Figure 3.2 (b) and Figure 

3.S1 in the Supplementary Information). Further increase of ω leads to gradual merge of the 

spikes, and eventually reduction to a single exponential distribution. These observations are 
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consistent with studies with barrier crossings in a double well potential(Schmitt et al, 2006), 

further supporting the existence of RA in the system. 

  

For all the results reported here, we added the perturbing signal on protein A's degradation for 

illustrative purpose (see Figure 3.1 (a)). In real experiments and applications, one can also 

perturb other reactions (e.g. protein synthesis as well as degradation), depending on the actual 

practical feasibility. For example, one possible implementation of this perturbation may be 

through varying the activity of protease through specific regulating molecules. We further 

presented results with perturbations on A's synthesis rate, and B's synthesis and degradation rates 

in the Supplementary Information, Figure 3.S2. In all these cases we observed resonant 

activation with the same resonant frequency, but with varying fold of change of the MFPT. We 

provided a theoretical explanation there. It depends on the system to identify the reactions most 

sensitive to the perturbations. Figure 3.S3 in the Supplementary Information also showed that 

existence of RA is independent of the detailed form of the periodic perturbation signal.   

  

Resonant activation accelerates bacteria colony sterilization 

The stochastic simulations on single cell dynamics discussed above show that resonant activation 

can facilitate fast and synchronized p2n switches. Next we coupled the single cell level dynamics 

with population level proliferation/death under changing environment. 

 

First we define a killing strategy K to be the combination of a perturbing signal S and an 

antibiotic environment E, characterized by their frequency (ω1 and ω2), strength, and duration, 

respectively.  
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For a given population initialized with 10
4
 normally growing cells and 10

2
 persister cells, our 

simulations allow it to evolve until no bacterium exists, or a maximum time reaches. Because the 

stochastic nature of the dynamics, for each population the sterilization time Tkill is random. To 

quantitatively compare different strategies, for each strategy we performed independent 

simulations with 1000 populations, and recorded Tkill of each population sample.  Figure 3.S4 in 

Supplementary Information gives the killing time distribution of 1000 population samples under 

strategies K1 and K3. To compare the different strategies, we used the time needed to sterilize 

90% of the 1000 population samples, Q, as a criterion. Practically this is a more relevant quantity 

than the average killing time, although we reached similar conclusion below with the latter.  

  

The stochastic simulation results are summarized in Figure 3.3 and Table 3.3.  Figure 3.4 give 

several typical trajectories. Without the perturbing signal, both the strategies with periodic (K1) 

and continuous (K2) antibiotics treatment require long time, since it takes long time to eradicate 

the persister cells. On the other hand, with the perturbation at the resonance frequency (K3 and 

K4), the sterilization time is greatly reduced. Because under K3, most of the p2n transitions take 

place within the period of applying antibiotics, it is difficult for the bacteria population to restore 

either the normally growing or the persister subpopulations (see Figure 3.S5 in the 

Supplementary Information). Consequently the sterilization time for K3 and K4 are about the 

same. To further prove this, we compute over 500 independent samples the ratio ( 2

g

p nR ) between 

the number of p2n transitions that happen during growth environment and the total number of 

p2n transitions. Larger 2

g

p nR  corresponds to the inefficiency of the periodic antibiotic strategy, 

because the population may be easier to get re-established during growth period. Under K3, 
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2 4.3%g

p nR  , while under K1, 2 46.8%g

p nR  . We observed similar efficient bacterial eradication 

with signal frequencies away from c  but still lying near the flat bottom of the MFPT-ω curve in 

Figure 1 (b). However, further change of the frequency (K5 and K6) shows less improvement 

over that of K1 or K2.  Figure 3.3 (b) gives the total amount of antibiotics used for each case. 

Compared to K2, K3 requires less than half of the time, with ~25% of the total amount of 

antibiotics.  In the Supplementary Information, we also examined how the killing time depends 

on the signal duration and strength, Figure 3.S6 and Figure 3.S7. 

 

Figure 3.3. Comparison of various strategies at the population level. (a)  90% quantile (Q) of 

Tkill under six different killing strategies (refer to Table 3.3 for notation of each killing strategy). 

(b) Corresponding relative antibiotic consumption.  Please refer to Table 3.1 for the illustration 

of killing strategies K. 

 

To further examine the strength and limitation of our proposal, we examined a more difficult 

case of bacterial persistence. The model is similar to what discussed above, except that the p2n 
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transition rate is reduced by a factor of 5. Correspondingly, we extend each period of alternative 

antibiotics and freely growing environment. This leaves more time for the system to recover 

under the latter environment. Figure 3.5 gives several typical trajectories of population level 

simulations. For strategy K1, we had difficulty to observe population extinction even after 10
4
 h. 

While almost all the normally growing cells are killed, and the persister subpopulation size is 

reduced under an antibiotics environment, both subpopulations are restored to their original 

levels under next freely growing period. For strategy K2, the 90% quantile of sterilization time 

for 1000 populations is 362 h. In comparison, the 90% quantile of sterilization time for K3 and 

K4 are 358 h and 168 h, respectively. Though under K3, the ratio of p2n transitions within 

growth period 2 4.3%g

p nR  , in this case a single p2n transition under the freely growing 

environment is sufficient to restore both the two subpopulations. That explains why K3 requires 

almost the same sterilization time with K2. However, K3 uses about half of the amount of 

antibiotics needed under K2. In addition, since antibiotics are applied periodically, K3 might be 

better than K4 considering it leaves time for the host to recover from possible side effects of the 

antibiotics treatment. Therefore, in this case, one has to make a compromise between short 

sterilization time and side-effect reduction. 
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Figure 3.4. Sample population dynamics corresponding to the results in Figure 3.3. (a) K1. (b) 

K2. (c) K3, 1.6c  h
-1

, 2 / 3.9
c cT    h. (d) K4.  Black curve shows the dynamics of 

normally growing population. Red curve shows the dynamics of persister population. Gray time 

windows in the background indicate antibiotic treatment, blank time windows represent 

environment good for growth. 
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Figure 3.5. Sample population dynamics corresponding to a phenotype with slower switching 

rate (see the main text). Antibiotic treatment is either continuous or periodic. (a) K1.  (b) K2.  (c) 

K3, 0.27c  h
-1

, 2 / 23.3
c cT    h. (d) K4.  Black curve shows the dynamics of normally 

growing population. Red curve shows the dynamics of persister population. Gray time windows 

in the background indicate antibiotic treatment, blank time windows represent environment good 

for growth.  

 

3.5 Discussions and concluding remarks 

In the past decade, bacterial persistence became a spotlight in microbiological arena. The leading 

actors, called persister cells, are some special dormant cells which account for only a small 

fraction of the total population. However, they are insensitive to antimicrobial therapy, and are 

able to switch back into normally growing phenotype to initiate population regrowth. The 

phenotypic switching property of bacteria has been experimentally identified to be regulated by 
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several toxin-antitoxin (TA) modules within bacterium chromosome, such as hipBA, relBE and 

chpA. For example, Keren et al. reported that hipBA-knocked-out E. coli biofilm produced 150-

folder-fewer persister cells under mitomycin treatment(Keren et al, 2004b). Continuous efforts 

have been made to reveal the detailed molecular regulation mechanism (Christensen et al, 2003; 

Pedersen et al, 2002). 

  

Now, it is believed that persister cells may evolve into maximizing the overall survival 

possibility of bacteria population in real fluctuation environment. Many lab experiments have 

proved that the existence of persister cells in biofilms is responsible for many recalcitrant 

diseases, such as human tuberculosis, an infectious disease caused by Mycobacterium 

tuberculosis biofilms. The typical antibiotic treatment of this disease is as long as 6-9 months. 

Therefore, besides the inefficiency of the therapy, the side-effect from such a long-term use of 

antibiotics is of serious concern.  Active research is undertaken to fight against bacteria 

persistence through accelerating the phenotype transition rate with chemical or physical 

method(Gefen & Balaban, 2009; Stewart et al, 2003). In this work we assume such a mechanism 

exists, and focused on the optimal strategy to combine it with antibiotics treatment.  

  

Stochastic resonance has been discovered in many biological systems(Hänggi, 2002). Similar to 

Schmitt et al., we also observed stochastic resonance in the present system. Resonant activation, 

on the other hand, is seldom discussed in the biology context. The phenomenon of RA is related 

to fluctuation resonance previously reported (Lipan & Wong, 2005; Mettetal et al, 2008). For a 

stochastic system with one steady state driven by an oscillating perturbation, there may be a 

resonant frequency of the perturbation so that the system shows largest fluctuation amplitude. 
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This is called fluctuation resonance, which resembles the peak of the energy absorption spectrum 

of a system. For a system with multiple steady states, larger fluctuations lead to faster transition 

rate to a new steady state. This is resonant activation.  Here we demonstrated the existence of RA 

in non-thermal systems governed by discrete chemical reaction dynamics. RA has two unique 

properties: reduced mean first passage time, and localized transition in time. We propose to 

utilize the two properties of RA to help on eliminating persistent bacteria.  As previously 

mentioned, the essential reason for bacterial persistence is the large time-scale of tp2n 

distribution. This requires continuous antibiotic treatment to cover most of the time period to 

prevent bacteria population re-establishment.  With RA, the distribution is narrowed through 

reduction of the MFPT. This is our main argument for using RA against bacteria persistence. 

Furthermore for some cases the localized spike shaped transition time distribution may allow 

dividing the antibiotics treatment into sessions without serious problem of bacteria population 

restoration. This is of special advantage by minimizing side effects of antibiotics treatment to 

patients if the treatment has to be long. On the other hand, our simulations show that even if one 

can accelerate the bacteria phenotype switching rate, improper procedure (strategy K5) leads to 

no improvement in fighting bacteria persistence. 

  

In this work, we presented the general idea of modulating cellular phenotype switching through 

resonant activation. It should be viewed as illustrative. More detailed modeling and experimental 

studies are necessary to examine the feasibility and the optimal strategy for each specific system.   

Detailed molecular mechanism of the toxin-antitoxin module, its interaction with related signal 

transduction and metabolic pathways should be carefully considered. The detailed model will 

provide information on the strategies of adding the perturbing signal. In a bacterial colony, 
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several persistent phenotypes may coexist. In this case a more efficient strategy may be to apply 

antibiotics continuously for a period, then switch to the strategy we propose here for the most 

persistent phenotype. The broad range of resonance frequency of one phenotype (see Figure 3.2 

(b)) may also allow one to choose an overlapping frequency for all the phenotypes. The 

perturbing signal is not limited to chemicals, but any external environmental change that can 

affect the phenotype switching dynamics. 

  

We want to point out that the actual performance of each strategy depends on the property of the 

system, especially the unperturbed p2n transition time and the system noise level. Here we only 

focused on illustrating the basic idea, and the choice of the system is partly restricted by 

computational considerations. Orders of magnitude reduction of the MFPT with RA have been 

reported for some physical systems(Boguñá et al, 1998). One may expect similar result for some 

phenotypic transitions. 

  

While here we focused on bacterial persistence, we want to emphasize that resonant activation is 

a general phenomenon for phenotypic transitions, which are analogous to thermally activated 

barrier crossing processes. One may find application of the idea discussed here to other 

problems. For example, Spencer et al. have shown that cancer cells have persistence behavior 

similar to bacteria(Spencer et al, 2009). Radiotherapy is a standard cancer treatment option. It 

normally consists of multi-session low dose of radiation in a few weeks. The radiation induces 

cell DNA damage, which eventually leads to apoptosis. In this case it is even easier to apply RA. 

Here radiation is the oscillating signal, apoptosis plays the role of antibiotics, and population 

restoration during the treatment intervals is not a serious problem. An optimal strategy may exist 
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on performing the treatment utilizing resonant activation. Similar argument applies to 

chemotherapy. In this case stochastic resonance does not exist since the system is not bistable.  
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Table 3.1. Parameters for single cell level simulation. 

Parameter Value (unit
a
) Notation 

 0.05 Basal synthesis rate of A 

 1 Basal synthesis rate of B 

 0.45 Basal degradation rate of A 

 0.56 Basal degradation rate of B 

 5 Dimer A2 association rate 

 5 Dimer A2 disassociation rate 

 5 Dimer B2 association rate 

 5 Dimer B2 disassociation rate 

 5 Binding rate between operon and A2 

 1 Unbinding rate of A2 from operon 

 5 Binding rate of B2 from operon 

 1 Unbinding rate of B2 from operon 

 1 Synthesis rate of A 

 1 Synthesis rate of B 
a
 first order reaction unit = 130 h

-1
, second order reaction unit = 130 h

-1 
molecule

-1
 

 

 

Table 3.2. Parameters for population level simulation. 

Parameter Value (h
-1

) Notation 

 0.2 Net growth rate of normally growing cells under the growth 

condition 

 4 Net death rate of normally growing cells under the antibiotic 

condition 

 0.02 Net growth rate of persister cells under the growth condition 

  Net death rate of persister cells under the antibiotic condition 
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Table 3.3. 90% quantile of Tkill (Q) under different killing strategies. 

 
1

S  
2

E  Q (h) Notation 

K1   H(
c

S ) 
a
 84.6 No signal + periodic antibiotics 

K2   
0

bE  76.0 No signal + continuous antibiotics 

K3 
c

S  H(
c

S ) 33.2 Resonance signal + periodic antibiotics 

K4 
c

S  0E  33.0 Resonance signal + continuous antibiotics 

K5 10S  H( 10S ) 68.8 Off-resonance signal + off-resonance periodic antibiotics 

K6 10S  0E  63.7 Off-resonance signal + continuous antibiotics 

a 
H(x) is a Heaviside function which returns 1 if x ≥ 0, otherwise returns 0. We assume that H = 1 

denotes that the antibiotic treatment is switched on, and H = 0 denotes that the antibiotic 

treatment is switched off.  sin( )
c cS A t   is the sine-formed perturbing signal under resonance 

frequency c . 
b 

E0 represents continuous antibiotic treatment. 
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3.8 Supplementary Information 

3.8.1 Large region of ω guarantees RA in single cell phenotypic transition 

Under resonance frequency 1.6c h
-1

, the mean first passage time (MFPT) reaches a minimum. 

Actually, the MFPT-ω curve displays a rather flat bottom, indicating a large region of the signal 

frequency may generate RA in our system. Figure 3.S1 shows some FPT distribution for the p2n 

transitions (also denoted by 2( )p nP t ) within this region of signal frequency.  The 2( )p nP t under 

ω=0.3, 1.0, 2.0 h
-1

 all produce separated-spikes-like distribution. This allows some freedom in 

real therapeutic applications. We have repeated the double well system studied by Schmitt et 

al.(Schmitt et al, 2006), and found similar behaviors. 

 

3.8.2 Choices of the perturbation target for RA 

In the main text, we reported results with the degradation rate of protein A being periodically 

perturbed. Figure 3.S2 (a-c) shows the MFPT of p2n transitions when A's synthesis rate, B's 

synthesis or degradation rates are perturbed at different signal frequency, respectively. Clearly, 

resonant activation exists in all cases.  However, the fold of change between the MFPT at the 

resonant frequency and that with no perturbation varies. The effect with perturbation on A's 

synthesis is similar to that on A's degradation, but the effect with either B's synthesis or 

degradation is much weaker. Figure 3.S2 (d) shows the system's stationary distribution on the nA- 

nB plane, which can be related to a potential(Graham & Haken, 1971). Clearly the system 

dynamic shows transition state-like behavior, with the transition state having small numbers of 

both A and B. That is, leaving from the state with high A and low B (persister), for the system to 

make a state transition it is more important to reduce the number of A than increasing the 

number of B. This explains why it is more sensitive to perturb the reactions involving A.  
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Figure 3.S1. 2( )p nP t  under different signal frequency. All signals are sine-formed, as described 

in the main text. a. ω = 0.3 h
-1

.  b. ω = 1.0  h
-1

. c. ω = 2.0 h
-1

. All these three cases give values of 

the MFPT close to the minimum in Figure 3.2 (b) in the main text. 

 

3.8.3 Resonant activation exists with various signal forms 

In the main text, we applied a sine-formed signal to perturb the degradation rate of protein A in 

each generic toggle switch, and observed RA. A more practical signal form may be 

unidirectional on the perturbation. We tested with a step-function form. That is, the protein 

degradation rate k3 was only increased from its basal rate periodically by a constant value. Again 

we observed that the MPFT shows a minimum at the same c  as with the sine function form. 

However, in this case some of the neighboring spikes in the FPT distribution are not fully 

separated, Figure 3.S3. We observed ~ 9.4% p2n transitions taking place under the growth 

environment, comparing to ~ 4.3% for the sine function form.  
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Consequently, for a system with easy population restoration (i.e., the second example discussed 

in the main text), the sterilization time using the periodic antibiotics treatment  (K3) with the step 

function signal  is longer than that with the sine function signal. In this case, strategy K4 under 

the step function signal gives a 90% quantile of the sterilization time ~39% of that with strategy 

K2. 

 

Figure 3.S2. RA with perturbation on different reactions. a) MFPT of p2n transition when A's 

synthesis rate k9 is perturbed. b) MFPT of p2n transition when B's synthesis rate k10 is perturbed. 

c) MFPT of p2n transition when B's degradation rate 0

4k is perturbed. These perturbations are 

implemented using sine signal with the same perturbing strength.  Together with the case of 

perturbing A's degradation, all four cases generate local minimums around 11.6 hc
 , but with 

different fold of change in the MFPT as signal frequency varies. d) Stationary distribution on the 

nA- nB phase plane sampled with a long trajectory. Refer to the color bar for the relative 

probability of each (nA, nB), with a decreasing value from the top (red) to the bottom (blue).  
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 Figure 3.S3. tp2n under the step-function signal. Other parameters are the same as in Table 1 of 

the main text. 

 

3.8.4 The distribution of Tkill and the reason for using statistics Q 

Figure 3.S4 gives the killing time distribution of the 1000 samples under strategies K1 and K3. 

Clearly both distributions have long tails. Therefore we suggest that the 90% quantile may be a 

better quantity than the mean value to compare different strategies, although the conclusions are 

the same.   
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Figure 3.S4. Distribution of Tkill.  a. Case K1. b. Case K3. Blue dash line shows the location of 

the mean value; red dash line shows the location of 90% quantile of the total samples (Q). 

 

3.8.5 Most p2n transitions take place during antibiotic periods under killing strategy K3 

By recording the population dynamics with corresponding p2n transitions under different killing 

strategies, Figure 3.S5 shows that most p2n transitions take place within the period of antibiotics 

treatment under strategy K3. Therefore, the bacterial population is difficult to re-establish when 

K3 is applied. On the other hand, under K1, the distribution of p2n is exponential, indicating the 

phenotypic transition may take place during either growth condition or antibiotic condition.  
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Figure 3.S5. Sample population dynamics with corresponding p2n transitions under different 

killing strategies. (a) K1. (b) K3, 11.6 hc
 , 2 / 3.9 h

c cT    . (c) p2n under K1.  (d) p2n 

under K3.  Black curve shows the dynamics of normally growing population. Red curve shows 

the dynamics of persister population. Gray time windows in the background indicate antibiotic 

treatment, blank time windows represent environment good for growth. 

 

3.8.6 Signal strength affects the sterilization time of bacteria population 

As can be seen from Figure 3.S6, signals with stronger strength can reduce more time needed for 

sterilizing bacteria population. However, a stronger signal implies a bigger perturbation to the 

system, which may be unfavorable due to practical considerations and toxicity. 



 119 

 

Figure 3.S6. 90% quantile of sterilization time (Q) under signal with different strength. Here we 

use sine-formed signal sin( )S t    with strength . In the main text, 0.15  unit. The 

maximal   should be the basal degradation rate of the target protein, which in our case is 0.45 

unit. 

 

3.8.7 Duration of each session of antibiotics treatment affects sterilization time 

At resonance frequency, the p2n transition distribution is multi-spike shaped. This allows 

discrete antibiotics treatment, as long as each session covers all or most of the p2n transition 

time.  We performed population level simulations with different antibiotics treatment duration 

centered at the signal peak times. Figure 3.S7 shows the 90% quantile of the sterilization time. 

As expected, upon increasing the antibiotics treatment duration from zero, the sterilization time 

first drops sharply, and then flattens.  Further increase of the antibiotic duration does not 

decrease the sterilization time. Therefore in this case one may further reduce the duration of each 
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session of the antibiotics treatment to ~ 1.3 h from the 2 h value used in in the main text, without 

significant increase of the sterilization time.  

 

Figure 3.S7. 90% quantile of sterilization time (Q) under different duration of antibiotic 

treatment.  
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Chapter 4. Conclusions 

Systems biology has emerged and flourished at the transition of biology from a traditional 

experimental study into a multi-disciplinary field. As many quantitative and high-throughput 

experimental technique are developed, systems biology has becoming essential for us to integrate 

and interpret large-scale experimental data by using tools from mathematics, physics, computer 

science and engineering (Alon, 2007; Gardy et al, 2009; Gilchrist et al, 2006).  

 

It remains a fundamental question to the field of systems biology how cells are able to generate 

not only robust but precise and specific responses to different signaling conditions. In a natural 

environment, cells are likely being exposed to all kinds of signaling conditions, e.g. a 

combination of different fluctuating signals co-stimulating or sequentially stimulating cells. As 

cellular behaviors are controlled by complex signaling and regulatory networks, this question is 

then transformed into understanding specific information processing properties emerged from 

signaling and regulatory networks. In this respect, the concept of “functional motifs” has been 

proposed to unravel a bunch intertwined static molecular interactions into several small modules 

with specific known information-processing functions and dynamic characteristics.  Therefore, a 

complex network could be described as an interaction circuit composed of a number of 

functional motifs that could be computationally studied (Alon, 2007; Milo et al, 2002; Tyson & 

Novak, 2010). 

 

In the first part of this dissertation (Chapter 2), we studied part of the above question in terms of 

the functional motifs and dynamics leading to adapted gene expressions under two sequential 

phases of LPS stimulation, known as LPS-priming and tolerance.  In the study, we applied 
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mathematical modeling and Monte-Carlo simulations to study all possible topologies and 

dynamics in a generic 3-node network that can lead to a pre-defined priming and tolerance under 

sequential stimulations. As a result, we found over 100,000 priming motifs and over 1,000,000 

tolerance motifs. A subsequent statistical and topological analysis revealed three core priming 

mechanisms and one tolerance mechanism out of the large number of functional motifs. Each 

mechanism has a unique requirement on the basic network structure and dynamics, known as 

backbone motif. These in silico found mechanisms were supported by several lines of molecular 

evidence from current experimental investigations. Further investigates are necessary to apply 

these priming and tolerance motifs in the context of specific signaling/regulatory networks to 

uncover candidate molecules for experimentalists to test. 

 

In the second part of the dissertation, we theoretically studied potential ways to accelerate 

bacterial phenotypic transitions from persister phenotype to normally growing phenotype, as 

persister cells are insensitive to antibiotics while normally growing cells are sensitive (Balaban et 

al, 2004). We stochastically modeled the single cell dynamics based on a generic toggle switch 

composed of toxin and anti-toxin, with each dominating a bacterial phenotype. We then studied 

how the rate of phenotypic transition could be affected under a weak external signal. As a result, 

we discovered that with a resonance frequency, the weak external signal could induce 1) a 

maximum rate of phenotypic transition from persister phenotype to normally growing 

phenotype; 2) synchronized timing (first passage time) of phenotypic transition. The 

phenomenon is known as “Resonance Activation (RA)” in statistical physics (Hänggi, 2002). On 

integrating single cell and population level (where cells divide and die) simulations together, we 

found that RA could not only accelerate and synchronize timings of bacterial phenotypic 
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transitions, but also provide a potential way to reduce antibiotic treatment, as antibiotics are only 

needed at the synchronized windows where persisters cells transit into normally growing 

phenotype.  Note in this theoretical work, we did not consider genome mutation of bacteria going 

through repeated antibiotic stimulations. As a matter of fact, it is highly likely that bacteria are 

quickly mutated. Therefore, it might be difficult to induce RA in bacteria system experimentally. 

However, we state that RA should be applicable to a general problem of cellular reprograming or 

phenotypic transition, where cellular genome is more stable.  
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