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Abstract

Digital communications and computers are having a tremendous impact on the world today.  In

order to meet the increasing demand for digital communication services, engineers must design

systems in a timely and cost-effective manner.  The number of technologies available for providing a

given service is growing daily, covering transmission media, devices, and software.  The resulting

design, analysis, and optimization of performance can be very demanding and difficult. Over the past

decades, a large body of computer-aided engineering techniques have been developed to facilitate the

design process of complex technological systems.  These techniques rely on models of devices and

systems, both analytic and simulation, to guide the analysis and design throughout the life cycle of a

system.  Computer-aided design, analysis, and simulation of communication systems constitute a new

and important part of this process.

This thesis studies different aspects of the simulation of communication systems by covering

some basic ideas, approaches, and methodologies within the simulation context.  Performance

measurement of a digital communication is the main focus of this thesis.  However, some popular

visual indicators of signal quality, which are often generated in a simulation to provide a qualitative

sense of the performance of a digital system, are also considered.

Another purpose of this thesis is to serve as a model for developing simulations or template of

other systems.  In other words, students learning to simulate a system can use the work presented here

as a starting point.
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Chapter 1

Introduction

The complexity of communication systems and signal processing systems has grown

considerably in recent years due to the advances in integrated circuit technology and in the demands

placed on the systems themselves.  This growth in complexity makes the traditional analytical

methods of analysis more unsuitable for analyzing and designing modern communication systems.

Therefore new and efficient design and analysis tools are needed.  This demand can be met by using

powerful computer-aided simulation-based techniques.

The simulation of communication systems is concerned with imitating some aspects of the

behavior of communication systems without building actual hardware.  The digital computer is used

for this purpose.  If each element of a physical communication system is represented by a

mathematical model, the digital computer can serve as the “laboratory” for that system by connecting

all these models together to simulate the actual system.  This is referred to as a software model.  The

parameters of the model can be changed at will and the consequences can be observed without having

to build hardware until the performance of the system is satisfactory.

1.1 History of Simulation-based Analysis and Design

The simulation of control systems using analog computers was used as a digital tool in the 1950s.

The analog computer was a simulator of continuous systems that was composed of modular

components that were interconnected via a patchboard to yield a block diagram configuration

representing the system.  The linear elements, such as integrators, summing junctions, and amplifiers

were realized using operational amplifiers.  Nonlinear modules such as limiters and arbitrary

functions represented in piecewise linear form can be realized using devices and other nonlinear

circuit elements.  Any system whose behavior is described by a linear or nonlinear differential
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equation with constant or with time varying coefficients can be reduced to a block diagram while in

turn can be realized using components on an analog computer.  By wiring the components according

to the block diagram and exciting the model with appropriate signals one can simulate the dynamic

behavior of a broad range of linear and nonlinear systems using the analog computer.

In 1960s, analog computer techniques started to be applied to digital simulation.  The framework

for digital simulation originated with block-oriented languages such as CSMP, MIDAS, and SCADS.

These simulation languages emulated the behavior of analog computers on a component-by-

component basis.  These block-oriented simulation languages draw their motivation from the analog

block diagram as a simple and convenient way of describing continuous systems.  In mid 1960s,

circuit analysis simulator such as ECAP and SPICE were also developed, which led to advances in

numerical integration techniques and topological simplification of signal flowgraphs [2].  SPICE is

still used extensively today.

Advances in discrete-time systems and digital signal processing have led to new approaches for

digital simulation of systems.  In the late 1960s and early 1970s, SYSTID, CSMP, CHAMP, LINK,

and others were developed for aiding the analysis and design of satellite communication links [2].

In 1980s, interactive and menu driven simulators such as ICSSM, TOPSIM, and ICS were

developed [2].  With these packages, simulations were performed on a mainframe or a super-

minicomputer, and graphics terminals are used to provide a limited amount of interactive

preprocessing as well as postprocessing.

Since mid 1980s, the simulation of communication systems has received more and more

attentions as a separate subject within the electrical engineering community.  In the past ten years,

computer hardware and software technologies have undergone significant changes.  Powerful

workstations and personal computers have replaced mainframes as major computing tools.  The

current generation of simulation software packages such as BOSS, SPW, COSSAP, and others offer

interactive, graphical, and user-friendly frameworks for simulation-based analysis and design of

communication systems [2].
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1.2 Overview of this thesis

This thesis deals with major aspects of the modeling and simulation of communication systems

by studying two major simulation methods: the Monte Carlo method and the Quasianalytical method.

It gives a detailed comparison between those two simulation methods.  At the same time this thesis

also explores another approach that differs from the conventional Monte Carlo method: Block

Process.

Chapter 2 deals with many basic aspects of the simulation of communication systems, such as

discrete-time representation of different signals as well as the lowpass representation of a bandpass

signal.

Chapter 3 introduces the two major simulation methods, and an end-to-end Binary Phase Shift

Keying (BPSK) communication system is used to demonstrate the effectiveness of the above

methods.

Chapter 4 covers more sample systems to further demonstrate the strength and the weakness of

two methods as well as how simulation of communication systems can be applied into analyzing and

designing real-life communication systems.

Chapter 5, the concluding chapter, will summarize all the conclusions drawn from the previous

studies and it is also hoped that this thesis will serve as a springboard for the reader to further explore

the field of simulation of communication systems.

Another purpose of this thesis is to serve as a model for developing simulations or template of

other systems.  In other words, students learning to simulate a system can use the work presented here

as a starting point.
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Chapter 2

Representation of Signals in Simulation

2.1 Introduction

In a general sense, a system is defined as a combination and interconnection of several

components to perform a desired task [1].  A signal is defined as the time history of some quantity,

usually a voltage or current [7].  This thesis is concerned with the response of systems to random

signals.

Most real life signals and systems that we wish to simulate are continuous.  However, continuous-

time signals and systems are represented by equivalent discrete-time signals and systems for

computer simulation.  In this chapter, we are to develop methods for obtaining such equivalent

discrete representations.

2.2 Continuous and Discrete-Time Signal

A continuous signal is defined as a real or complex function of time x(t), where the independent

variable, t, is continuous [2].  There are a few fundamentally important continuous signals, such as

the unit step function u(t), the unit impulse function �(t), the sinc function sinc(t), and complex

exponential signals.  Since these signals are well defined and very commonly used in the field of

communications, this thesis will not spend any time defining and deriving these functions.

Discrete-time signal is only defined at discrete times t = nTs, where n are integers.  In most cases,

such discrete-time signals result by sampling continuous signals at instants separated by the sampling

interval Ts.

According to the sampling theorem, any continuous signal s(t) with a bandwidth of W can be

uniquely represented by samples of s(t) taken at a rate of fs � 2W samples/sec.  The minimum rate fn
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= 2W samples/sec is called the Nyquist rate.  As a result, any real life continuous signal can be

sampled at or above Nyquist rate.  The resulting discrete-time signal can be used in simulation and

this will not introduce any distortion into the system.

2.3 Representations of Bandpass Signals in Simulation

The fundamentals of simulation of digital communication system are the sampling theory and the

complex envelope technique to represent signals and noise in a proper way [4].  In section 2.2, we

covered the sampling theory briefly.  In this section, we will cover the complex envelope technique.

Digital information-bearing signals are usually transmitted by some type of carrier modulation.

When the bandwidth of such a signal is much smaller than the carrier frequency, this signal is defined

as narrowband bandpass signals.  Since we ultimately need to sample these functions, we wish to do

so in the most efficient way possible.  As mentioned previously, any continuous signal can be

uniquely represented by the equivalent discrete model only if the sampling frequency is greater or

equal to twice the highest frequency.  In other words, any bandpass signal with bandwidth B and

carrier frequency fc has to be sampled at the minimum rate of 2*(fc+B/2) according to the lowpass

sampling theorem.  However, any lowpass signal with bandwidth of W only needs to be sampled at a

rate of 2W.  It is known that the carrier modulated signals and bandpass system can, with minor

restrictions, be analyzed and simulated as if they were low-pass.  The technique used in the

implementation of this idea is called complex envelope method [2].

Any carrier modulated signal )(tx  can be represented as

)](2cos[)()( ttftrtx c �� �� (2.3.1)

which can be represented as

])(Re[)( 2)( tfjtj ceetrtx ��� (2.3.2)

where )(tr  is the amplitude modulation, )(t�  is the phase modulation of the signal, and cf  is the

carrier frequency.  The signal
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)()()( tjetrtv �� (2.3.3)

evidently contains all the information-related variations, and is of a low-pass nature.  It is often called

the complex low-pass equivalent or the complex envelope of the signal.  If the narrowband condition

defined earlier this section is satisfied one can show that bandpass filtering of )(tx  can be evaluated

through an equivalent low-pass filtering operation with )(tv  as input.

In order to find the equivalent low-pass representation of a carrier modulated signal, one needs to

begin with the modulated signal in the in-phase and quadrature form.  Any bandpass signal )(tx  can

be expressed as

)(2sin)(2cos)()( tftxtftxtx cqcd �� �� (2.3.4)

where )(txd  and )(txq  are the in-phase and quadrature components of the bandpass signal )(tx

respectively.  It is known that if the bandwidth B of both the in-phase and quadrature components are

such that B<< cf , then the Hilbert transform of )(tx  is

tftxtftxtx cqcd �� 2cos)(2sin)()(ˆ �� (2.3.5)

The analytic signal of )(tx  is therefore

tfj
qd

cetjxtxtxjtxtx �2)]()([)(ˆ)()( ����
�

(2.3.6)

The carrier modulated signal )(tx  is then

])(~Re[)](Re[)( 2 tfj cetxtxtx ���
�

(2.3.7)

The equivalent low-pass representation or the complex envelope is then defined as

)()()()(~ 2 tjxtxetxtx qd
tfj c ��� �

�

� (2.3.8)

2.3.1 Representation of the M-ary PSK Signals

An M-ary PSK signal can be represented as [3]

])1(
2

2cos[)( ic m
M

tfAts �
�

� ���� (2.3.9)
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where Mm��1 , Tt ��0  and i�  is the transmitter phase angle.  Equation (2.3.9) can also be

represented as

�
�
�

�
	



�
��

tfj
m

M
j

c
i

eeAts �
�

�

2])1(
2

[
Re)( (2.3.10)

From equation (2.3.7), the complex envelope is given as [3],

])1(
2

[
)(~ im

M
j

Aets
�

�
��

� (2.3.11)

Thus

])1(
2

cos[)( id m
M

Atx �
�

��� (2.3.12)

and

])1(
2

sin[)( iq m
M

Atx �
�

��� (2.3.13)

We will use this signal form in Chapter 4 when the performance of M-ary PSK is studied.

2.3.2 Representation of the M-ary FSK Signals

An M-ary FSK signal can be represented as [3]

])(2cos[)( mmc tfIfAtx �� ���� (2.3.14)

or

� �tfjjftIj cmm eeeAtx ��� 22Re)( �� (2.3.15)

where Mm��1 ; 
T

f
1

�� , which is the minimum frequency separation in order to guarantee the

orthogonality between the signals; and 
2

12 Mm
I m

��
� .  m�  is the phase of each signal in the

signal set.

Using equation (2.3.7), the complex envelope can be derived from equation (2.3.15) as

)2()(~ mm ftIjAetx �� ��� (2.3.16)
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The complex envelope of )(tx  is then expressed as [3]

)2cos()( mmd ftIAtx �� ��� (2.3.17)

and

)2sin()( mmq ftIAtx �� ��� (2.3.18)

where )(txd  and )(txq  are the in-phase and quadrature components of the signal )(tx  respectively.

2.4 Filtering

Filtering is used in communication systems to select a desired signal and reject interference and

noise.  An ideal filter has a transfer function whose magnitude is flat within its “passband” and zero

outside of this band of frequency; its midband gain is unity and its phase is a linear function of

frequency.

In simulation, the filtering of bandpass signals is usually simplified to deal with the complex

envelopes of signals and lowpass equivalents of bandpass filters.  In MATLAB, classical filters can

be easily defined with only a few parameters such as the passband, stop-band, and the tolerances

allowed within these bands.  These filters are described by polynomial with different coefficients.

Then, the operation of filtering is realized using transposed direct form II network structure (details

see Appendix C).  Because the direct and quadrature components of a signal are orthogonal to each

other, they need to be processed by the filter operation separately too.
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Chapter 3

Simulation Techniques

The probability of symbol error is usually an important measure of the performance of a digital

communication system.  In the Monte Carlo simulation method the probability of symbol error is

determined by designing a random experiment in which the communication system transmits symbols

from an alphabet of size M total possible symbols, where M usually equals to 2k. The measure of

interest is the average number of errors in an arbitrarily long symbol sequence.  That is, let N be the

number of transmitted symbols, and n(N) be the number of observed errors.  By the definition of

relative frequency, which is an interpretation of probability, the probability 
N

Nn
p

N

)(
lim

��

�  is the

error probability associated with this system.  If M = 2, the symbol error probability is usually

referred to as the bit error probability.  Generally, we use Bit-Error-Rate (BER) instead of bit error

probability in simulation.  Since each symbol has k bits for M = 2k, each symbol error probability has

an equivalent bit error probability.  Therefore, we often use BER as a primary measurement of the

basic reliability of a given system.

3.1 Two Major Methods of BER Measurement

Since performance evaluation is essential in the analysis and design of communication systems,

the BER estimation is one of the primary goals for simulation of digital communication systems.  The

BER, which is defined as the fractional number of errors in a transmitted sequence, is certainly

informative of the basic reliability of a system.

There are many simulation-based approaches for estimating the BER, and the Monte Carlo

simulation approach discussed above is only one approach.  Other approaches are importance
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sampling, tail extrapolation and quasianalytical simulation.  Here, we only look at two of those

methods in detail.  They are the Monte Carlo technique and the Quasianalytical technique.

3.2 Monte Carlo Method

A Monte Carlo simulation run can be viewed as a statistical experiment that is the software

counterpart of an experiment performed on a real communication system.  Therefore, a Monte Carlo

simulation for a digital communication system can be developed from the mathematical model of the

system.  The system can be expressed as a block diagram in which each functional block is a signal

processing operation realized as a DSP algorithm.  We then pass information bits through the system.

That is, we count the number of “successes” (errors, in this context) and divide by the total number of

trials.  The result is the relative frequency estimate of the error probability.  This method requires no

assumptions about the input processes or the system.  In fact, in the implementation, the system is

bypassed except for the output of the digital source and the decision device’s version of the source.

Since the source output is known, comparing the two sequences at some relative delay provides the

empirical basis for an error rate.  The block diagram of a simple communication system is illustrated

in Fig. 3.1.

Digital Source
Sequence

Transmitter Receiver

Estimated
Sequence

Delay

Error Sequence

Fig. 3.1 Monte Carlo Estimation System Block Diagram

Channel

Error
Detector
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In order to implement the simulation of the system shown in Fig 3.1 it is necessary to know the

delay of the system.  This knowledge is, in effect, equivalent to symbol synchronization.  For a

carrier-modulated system, proper demodulation also requires carrier synchronization, namely, the

“lining up” of the local oscillator phase with that of the incoming carrier.  Carrier and symbol

synchronization are essential functions in any digital system, and some form of synchronization is

always implied.  However, for purposes of discussing the Monte Carlo method or any other type of

estimation techniques, the specific implementation of synchronization within the simulation is not

central to the issue.

3.2.1 Quality of an estimator

Since a Monte Carlo simulation can be viewed as a statistical experiment, the value of any

parameter obtained by such simulations is only an estimation of the true value.  Therefore it is

necessary for us to measure the quality of a Monte Carlo simulation.  That is, the “closeness” of the

estimate must be measured in a probabilistic sense.  In this paper, three measures of quality of a

Monte Carlo simulator are of interest: the bias, the variance, and the confidence interval.

3.2.1.1 Bias of a Monte Carlo Simulator

For almost all cases of interest, the simulator can be expressed as a weighted time-average:

�
�

�
N

i
iiYw

N
Q

1

1ˆ (3.2.1)

where Q̂  is the estimated value of a parameter with a true value of Q .  Since we normally expect the

estimation process to improve as N increases, an essential attribute of an estimator is that it converges

to the true value as ��N .  Such an estimator is termed unbiased.  Thus for an unbiased estimate

QQ ˆ  as ��N  for almost every sample function. Since Q̂  is a random variable it has an

associated distribution and pdf, say );(ˆ Nqf
Q

.  As we have discussed, for an unbiased estimate
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QdqNqqfQE
Q

�� �
�

��

);()ˆ( ˆ (3.2.2)

It is important that a BER estimator is unbiased, since for an unbiased estimator the simulation result

will, on the average, be correct.

As stated previously, for a Monte Carlo estimator in which N is the number of transmitted

symbols, and eN  is the number of observed errors, the probability 
N

N
p e

e �ˆ  is the estimated error

probability associated with the system.  As a result, we have 
N

NE

N

N
EpE ee

e

)(
)()ˆ( �� .  Since

ee NpNE �)( , it is clear that e
e

e p
N

Np
pE ��)ˆ( .  Hence, the Monte Carlo estimator is unbiased [2].

Note that the above discussion does not require that the error events are independent.  We

therefore have that the Monte Carlo estimator 
N

N
p e

e �ˆ  is, in general, an unbiased estimator.  In the

next section, we will derive an expression for the variance of the estimator.  The result obtained will

require independence of the error events.  Because of bandlimiting and other important system

attributes, we will see that this constraint is not often met in practice.

3.2.1.2 Variance of a Monte Carlo Estimator

The variance of an estimator,

�
�

��

���� )ˆ();()ˆ()ˆ()ˆ( 2
ˆ

2222 QEdqNqfqQEQEQ
Q

� (3.2.3)

is a measure of the dispersion about the expected value.  The smaller the variance, the better the

estimator is, for a given N.  Generally, 0)ˆ(2 Q�  only as ��N , and we are faced with a

tradeoff between estimator variance and sample size N, the latter being directly proportional to run-

time in the simulation context.
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It is convenient to use the moment generating function to determine the variance of a Monte

Carlo simulator.  The moment generating function is defined such that

�
�

���

��
k

k
k zpz)( (3.2.4)

Substituting kN
e

k
ek pp

kNk

N
kNpp ��

�
��� )1(

)!(!

!
}{ , yields

� �
� �

�� ���
�

�
��
�

�
����

�

�
��
�

�
��

N

k

N

k

kN
e

k
e

kkN
e

k
e pzp

k

N
zpp

k

N
z

0 0

)1()()1()( (3.2.5)

Using the binomial theorem which states that

�
�

�

��
�

�
��
�

�
��

m

k

kmkm ba
k

m
ba

0

)( (3.2.6)

allows, the moment generating function )(z� , to be expressed as

N
ee pzpz )]1([)( ����  (3.2.7)

From (3.2.4) it follows that

�
�

���

����
k

k
k zkpz 1)( (3.2.8)

and

�
�

���

���� ��
k

k
k zpkkz 2)1()( (3.2.9)

Letting z=1, we get

}{)1( kEkpk ���� �
�

��

(3.2.10)
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and

� �
�

���

�

���

��� ��
k k

kk kppk 2)1( (2.3.11)

Thus

)1()1(}{ 2 � ������kE (3.2.12)

We now use these results to obtain }{kE  and }{ 2kE  [8],

)1(

}){(}{
2

2222

ee

ee

Nk

pNp

NpNp

kEkE
e

��

��

��� ��

(3.2.13)

3.2.1.3 Confidence Interval

The confidence interval is the most important measure of the quality of an estimator because it

quantifies the measure of spread with an associated probability.  Let )ˆ(1 Qh , )ˆ(2 Qh  be two functions

of the estimator, such that, the interval � �21,hh  brackets the true value Q.  The difference 21 hh �  is

the width of the confidence interval.  The probability associated with the condition 12 hQh ��  is

called the confidence level and is usually denoted ��1 .  Thus, a confidence interval and confidence

level are defined through [2]

����� 1)ˆ()ˆ([ 12 QhQQhP (3.2.14)

Typical values for �  are 0.05 and 0.01, corresponding to “95% confidence level” and “99%

confidence level,” respectively.

However equation (3.2.14) only defines confidence interval with certain confidence level in

theory.  Since the true value Q  is unknown in almost all cases, equation (3.2.14) has little practical

meaning.  In order to evaluate the confidence interval, some kind of approximation is needed.  The
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most common methods to evaluate the confidence interval are Poisson approximation and Gaussian

approximation.

Let N  be the total number of symbols processed in a Monte Carlo simulation and eN  be the

total number of errors observed.  The estimated error probability ep̂  is therefore 
N

Ne .  For any give

N , eN  has a binomial distribution.  Hence one can obtain a closed form for the confidence interval

in terms of the cumulative beta distribution [5].  However, it is difficult to iteratively evaluate the

binomial distribution when N  is large.  Therefore, we use two alternative approaches: Poisson

approximation and Gaussian approximation.

It is well known that if there is a positive constant �  such that ��
��

e
N

pN ˆlim , the binomial

distribution can be approximated by the Poisson distribution.  Under the limiting condition the

cumulative binomial distribution can be replaced by the cumulative Poisson distribution
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As the above two equations to be solved for 1�  and 2� , we can construct the confidence interval

�
�

�
�
�

�

NN
21 ,

��
 with confidence level ��1 .  A table of upper and lower values of �  for different

confidence level for 500 �� eN  using the Poisson approximation can be found on page 499 [2].

The Poisson approximation gives us a usefully large range of values.  For larger eN  such as

10�eN , there exists another approximation, the Gaussian approximation, which is simpler to use.

It is know that as ��N , the estimated error probability ep̂  tends to have a normal distribution
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with mean ep  and variance 
N

pp ee )1( �
.  Hence we can construct a confidence interval in the form
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where ep  is the true value of the BER, and �d  is chosen so that

�
�

�

�

���
�

� 1
)2(

1 2/
2/1

2
d

d

t dte (3.2.18)

Let v
ep ��10ˆ  and v

eNN 10� , and under the assumptions that 1
2

�
� �dN

N
 and

eee ppp ˆ)ˆ1(ˆ �� , which are usually more than amply satisfied, equation (3.2.23) can be expressed as

�����
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1][Pr ypyob (3.2.19)

where the confidence interval � �
��

yy ,  is given by
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This interval is plotted in Figure 3.2 for confidence level of 90%, 95%, and 99%.



17

3.2.2 Example: a BPSK System Simulation

In the previous sections, we introduced the Monte Carlo simulation method to evaluate the

performance of communication systems.  In this section, an end-to-end BPSK communication system

is used as an example to further demonstrate the Monte Carlo simulation method and its properties.

The objective of this example is to evaluate the performance of a simple BPSK communication

system with the presence of Additive White Gaussian Noise (AWGN), taking into account the inter-

symbol interference (ISI) caused by the transmitting filter.  A BPSK communication system with

AWGN environment is a very easy system and consequently, it is relative easy to evaluate with an

analytical solution.  However, the non-linear effect of the transmitter filter is not as easy to follow

Fig. 3.2 Confidence Interval on BER when estimated value
              is 10-6 based on normal approximation [6]
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with the analytical solution.  A Monte Carlo approach can simulate both AWGN environment and the

ISI caused by the transmitting filter very well and thus provide us the accurate performance

evaluation of such a system.  Moreover, a Monte Carlo simulation also can provide us waveform

level simulation products, which will help us to gain more insight of the system.

3.2.2.1 Signal Representation

As mentioned in chapter 2, it is more efficient to represent a bandpass signal with its equivalent

complex envelope representation in a simulation.  A bandpass BPSK signal can be represented

mathematically as following

])1(2sin[)( ic mtfAts ��� ���� (3.2.21)

where 2,1�m  and i�  is the transmitter phase angle.

Using the results derived in equation (2.3.12) and (2.3.13), the direct and quadrature components can

be expressed as

])1cos[()( iD mAts �� ��� (3.2.22)

and

])1sin[()( iQ mAts �� ��� (3.2.23)

Therefore, the lowpass representation of a BPSK signal is

])1sin[(])1cos[(

)()()(

ii

QDl

mjAmA

tjststs

���� ������

��
(3.2.24)

in this example, A is set equal to 1 for simplicity.

3.2.2.2 The System Model

The block diagram of a BPSK communication system that we are studying in this example is

shown in figure 3.3

The data signal is assumed to be uniformly distributed so that the probability for a binary 0 or a

binary 1 is the same.  The “rand” function in Matlab is used to generate such data signals.  In this
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simulation, -1 is binary 0 and 1 is binary 1 in order to get rid of the dc component of the signal.  In

Monte Carlo simulation, the whole simulation is conducted in the bit by bit fashion.  That is, each

data bit is generated and passed through the system to check if an error has been made before the

second data bit is generated.

After the data bit is generated, it is modulated using the complex envelope representation that was

derived in the previous section.  In this simulation, the BPSK signal is assumed to have a random

phase angle uniformly distributed between 0 and 2�.  It is our intention to show that the phase angle

of the signal does not affect the performance of the system.

After the data signal is generated, it is sampled and then passed through a transmit filter.  In this

simulation, a sampling rate of 10 samples per bit is used for convenience.  A transmitter filter is used

here to limit the spectrum of the transmitted signal.  In Matlab, there is a built-in filter command for

filtering operation.  However, this filtering operation is a parallel operation.  That is, all data needs to

be used as input of the filter command to get the right output of the filter.  In Monte Carlo simulation,

the simulator is operating in a sample-by-sample mode.  Therefore, we have to either write a

sequential filtering function ourselves or find a way to save the final state information of the filter for

each sample and use it as the initial state for the next sample.  Fortunately, both tasks are not very

hard to achieve.  Since saving each state of the filter for every sample is not very efficient, we will

Data

Signal

BPSK

Modulator

Transmit

Filter
Channel

Detector
(Match
Filter)

Error

Detector

Delay

Error

Fig. 3.3 BPSK system block diagram
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use a simple sequential filter routine to accomplish such tasks (Details of the sequential filter routine

is given in Appendix C).  The transmitting filter used in this simulation is a Butterworth filter with the

bandwidth and the order defined by the user.  Since a Butterworth filter is not an ISI-free filter, the

inter-symbol interference is introduced into the system by the transmit filter.  It is also our intention to

study the effect of the inter-symbol interference on the system’s performance.

The output of the transmitter filter is then passed through an AWGN channel because it is the

most commonly used model for noise in communication systems.  Since Eb/No values are input

parameters of the simulator and the energy per bit is assumed to be 1 in this example, we can

calculate the noise power from those two parameters.  The variance of the noise can be easily

calculated using the following equation

0

2

/ NE

kE

b

b�� (3.2.25)

where k  is the sampling rate.

After the signal has been passed through the channel, it needs to be received and detected for

error.  It is our intention to study the effects of the inter-symbol interference caused by the

transmitting filter.  A filter that is only matched with the noise portion seems to be a natural choice

because it minimizes the effect of the noise.  It can also be proven that in baseband, such a filter

function is nothing more than an integrate-and-dump operation.  Therefore, in this simulation the

signal detection operation can be further simplified.  At the receiving end, we only need to

accumulate 10 samples, sum them up and make a hard decision by comparing the sum of the samples

with the threshold value.  The actual implementation of such task is very easy.  However, there are

some issues that need to be addressed here.  First, we need to make sure that the 10 samples that are

integrated are the samples from the same bit.  This is, in a sense, a symbol synchronization problem in

a simulation.  Since each bit is sampled at the same rate, this task can be easily accomplished by

lining up the first bit.  In order to line up the first bit, we must measure the system delay.  The easiest

way to measure the delay is to test different value of delay.  The value that yields the lowest BER is
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the value of the system delay.  One can also observe the delay from the eye-diagram.  The filtered

signal will not cross over at the same place as the signal before being filtered.  The difference

between the two diagram is also the system delay.   Secondly, since we intend to show that the

transmitter phase angle has no effect on system performance, the signal will have an arbitrary phase

angle.  The received signal constellation diagram is shown below

It is obvious that the threshold for detecting signal s1 and s2 is l.  It is also intuitive that if we rotate s1

and s2 � degrees clockwise, the quadrature axis becomes the threshold and the error probability will

still remain the same.  In this simulation, the second detection scheme is used.

After the detection and decision have been made, the received bit can be compared with the

original transmitted bit to reach an error statistic.  The simulator keeps count the resulting error

statistic until enough errors have been accumulated to estimate the BER with certain confidence level.

3.2.2.3 Simulation Results

Figure 3.5 shows the BER estimation for this BPSK system.  It is shown in the graph that the

simulated results are poorer than the theoretical value with the sole presence of the AWGN.  This

result clearly demonstrates the additional degradation on the system performance caused by the ISI

S2

 S1

�
I

Q

Fig. 3.4 Signal constellation diagram for BPSK signal with transmitting angle �

l
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introduced by the transmit filter.  If the bandwidth of the transmit filter is increased so that the filter

causes little or no ISI, the simulated BER curve then should agree with the theoretical value.  Since

varying the bandwidth is a parametric study of the system, this graph will be generated using

Quasianalytical technique and will be shown in the latter section of this paper.

As analyzing and designing tool, Monte Carlo method can also generate the waveforms level

simulation products such as eye-diagram and signal constellation diagram at different points of the

system to help user to gain more insight of the behavior of the system.  In this example, the

waveforms are monitored at four different places, the signal before and after the transmitting filter

and the signal before and after the receiver.

Fig. 3.5 Simulated BER performance curve with ISI
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Both figure 3.6 and figure 3.7 show the signal after the modulation and before filtering.  The

straight transition between the states in eye-diagram shows clearly that no distortion is present at this

point.

Fig. 3.6 Eye-diagram of the input of the transmitting signal
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Fig. 3.7 Signal constellation of the input of the transmitting signal
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Fig. 3.8 Eye-diagram of the output of the transmitting filter
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Fig. 3.9 Signal constellation of the output of the transmitting filter
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The eye-diagram and the signal constellation diagram of the output of the transmitting filter are

shown in Fig. 3.8 and Fig. 3.9.  The effect of the inter-symbol interference (ISI) of the transmitting

filter is clearly shown in these two diagrams.  The eye-diagram does not have the straight transition

between states any more.  At the same time, it is worth noticing that there exists a transient state from

the relaxed state to the first state at the first sample point, which is not present in the eye-diagram of

the unfiltered signals.  The signal constellation diagram also shows the signal points are scattered

between the two original signal points.
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Fig. 3.10 Eye-diagram of the input of the receiver (Eb/No=15dB)
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Figure 3.10 and 3.11 show the signal constellation and the eye-diagram of the signal after the

noise has been added.  In the eye-diagram, the signal states are close to each other due to the presence

of the noise (closed eye).  In the signal constellation diagram, the signal points are scattering around

the original signal points.  The histogram diagram shown in Fig. 3.12 illustrates how the signal points

are distributed on the direct and quadrature axis.  However, Fig. 3.12 is difficult to interpret due to the

presence of the arbitrary transmitter phase angle � .  In order to have a conventional histogram that is

easier to understand, we are going to rotate all signal points ��  degrees.  The structure used to rotate

the signal point is well known to us and is shown in Fig. 3.13.  Set �  equal to �� , and the resulting

Yd(t) and Yq(t) are the desired new direct and quadrature components of the signal.  The resulting

histogram is shown in Fig. 3.14.  After the rotation, the quadrature axis becomes the threshold for

detecting the two signal points 1s  and 2s .  Therefore, all the error statistics will only be shown on the

direct components of the signal.  This is clearly illustrated in Fig. 3.14.  The direct component has

two sets of Gaussian distributed signal points with mean of 1 and –1.

Fig 3.11 Signal Constellation of the input of the receiver
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After the signal has been received, a hard decision is made on all the detected signals.  The

decision scheme used in this simulation was illustrated in Fig. 3.4.  The signal constellation of the

received signal is shown in Fig. 3.15.
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Fig. 3.15 The signal constellation of the received signal
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The received signal has the same constellation diagram as the original signal, which means that

the detection and hard decision schemes work very well.  From this example, it is very clear that all

the waveforms generated by the simulator can not only help us understanding the behavior of the

system under different conditions, but also help us checking the correctness of the simulator itself.

Therefore, these simulation products are very useful and important.  This is a significant advantage of

the Monte Carlo method.

3.2.3 Block Analysis Method

As was shown in the previous section, a Monte Carlo simulation is run on a sample-by-sample

basis.  This structure is shown in Fig. 3.16(a).  Each sample to be produced through the simulation is

sampled, filtered, and detected sequentially.  The process is straightforward and easy to program.

Sequential time domain processing is efficient for system blocks that do not contain memory.  Where

memory is present in a system block the sample value at the output of a block is a function of past

input samples as well as the present input sample.  System blocks that are linear and not memoryless

are typically expressed using a recursive relationship.  Computer processing of these recursion

relationships is time consuming and lead to inefficient simulations.  Unfortunately, practical

communication systems use one or more filters in their implementation and filters exhibit memory.

Another approach is needed to increase simulation efficiency.

Computing the output of a linear filter, given the input and unit impulse response of the filter, is a

convolution.  We know that time domain convolution is an inefficient process on the computer and

that implementing the process in the frequency domain is much more efficient.  The implementation

involves Fourier transforming the input signal, multiplying the resulting transform by the Fourier

transform of the unit impulse response, and inverse transforming the result.  Using the Fast Fourier

Transform (FFT) to implement the transform operations results in a very efficient implementation,

especially if radix-2 FFTs can be used.  Since a block of samples must be Fourier transformed in

order to implement the filter in the frequency domain, sample-by-sample processing is not
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appropriate.  The transform, or frequency domain, approach to simulation of system blocks having

memory is referred to as Block Processing.  The basic structure of this approach is shown in Fig.

3.16(b).  The MATLAB routine “filter” is well suited to implement the approach discussed above.

Although the Block Analysis method follows the basic approach of the Monte Carlo method, the

improvement on the simulation efficiency achieved by this method gives us some capabilities, such as

parametric study, otherwise can only be achieved by the Quasianalytical technique.  However, at the

same time, the Block Analysis method still keeps the same waveform level simulation capabilities of

the conventional Monte Carlo method.

Input data bit               System Output data bit

(a) The conventional Monte Carlo method

�
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Fig. 3.16 Block diagram of the conventional Monte
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3.2.3.1 The Performance Improvement of Block Analysis Method

In this section, we are going to study the performance improvement achieved by the Block

Analysis method compared with the conventional Monte Carlo method.  To do this, we are still going

to simulate the sample BPSK system used in the previous sections.  We are going to increase the

block size from 1 to N, where N is an arbitrarily big number.  The total simulation run-time is going

to be monitored and plotted.  Obviously, the block size of 1 is the same as the conventional Monte

Carlo method.  Thus, we can see how the simulation run-time varies with the different block size.

Before the simulation can be conducted, some preliminary study needs to be done to ensure the

correctness of this simulation.  First of all, because the system is not memory-less, it is necessary for

us to save the system’s state at the end of each block and use it as the initial state for the next block so

that the Inter-Symbol Interference is not neglected.  Fortunately, the “filter” command in Matlab has

this function.  It accepts the initial condition as a parameter, and outputs the final condition as another

parameter.  Therefore, this operation can be easily achieved.  Secondly, due to the Fourier transform

operation performed by the filter command, the block size of power of 2 is preferred to reach the

optimal performance results.

Since the basic approach is the same for the Block Analysis method and the Monte Carlo method,

we can modify the original Monte Carlo simulation code to construct the Block Analysis simulator.

Figure 3.17 shows the performance improvement achieved by the Block Analysis method.  When

block size equals to 1, it is the same as the conventional Monte Carlo simulator.  As the block size

increased, the simulation run-time decreased very quickly.  It is clearly shown in the graph that the

computer run-time is reduced by a factor of 10 as the block size increases.
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Since the only place that the Block Analysis method is different from the Monte Carlo method is

the way it processes the data, the reliability parameters such as bias, variance and the confidence

interval are essentially the same as the Monte Carlo method.  Here, we will not cover them in detail

again.  The bottom line is that the Block Analysis method gives us an unbiased estimation of the

BER.

3.2.4 Discussion

In the simulation context, Monte Carlo simulator represents the “true” situation for systems.  It is

very simple to implement and is independent of the specifics of the system.  Therefore, it is one of the

most fundamental simulation methods and should be included in any simulation package.  The

capability to generate waveform level simulation results in various position of the system also makes

the Monte Carlo simulation essential as an analysis and design tool.

However, since the Monte Carlo method is just an estimation of the actual BER performance of

the system, it can not be used blindly without any mention of confidence level.  For without

confidence level, any BER simulation done by Monte Carlo method has no practical meaning at all.
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Fig. 3.17 Simulation Run-time as a function of block size
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Although the Monte Carlo method is simple to implement and generally is the closest experiment

next to actually building the actual system, the computer run-time usually is very long and even

impractical.  Therefore, for low BER systems, compromises are often necessary to get a relatively

good estimation in reasonable time.

The Block Analysis method uses the matrix capabilities of Matlab to effectively reduce the

simulation run-time with big block size.  This performance improvement is very significant,

especially for low BER system simulations.  At the same time, the Block Analysis method also makes

it possible to bring parametric study into waveform level simulation, which is also very helpful to

gain more insight of the behavior of different communication systems.

3.3 Quasianalytical Estimation

Quasianalytical estimation technique, often known as semianalytical method, is the second

simulation method studied in this paper.  Basically, this technique combines both simulation and

analysis.  The simulation is used to generate a noiseless waveform at the receiver.  Given this

waveform and assuming that the noise is additive and has a known pdf, one can then calculate the

probability of error with a formula [2].  This is the analysis portion.  In the simulation part, we let the

computer simulate the effect of the system distortion in the absence of noise, and then superimpose

the noise on the noiseless waveform in the analytical part.  The simulation part can be further clarified

by Fig. 3.18.  Fig. 3.18(a) shows a hypothetical transmitted bit stream, while Fig. 3.18(b) shows the

corresponding noiseless received waveform at the input of the decision device.  The value of this

waveform at the kth sampling instant is denoted kv .  When the noise is superimposed, the resulting

error probability is simply
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where nf  is the pdf of the noise, which is assumed to be zero mean, and it is also implied that the

threshold for detection is zero.  Graphically, the distortion of nvk �  is simply the distortion of n

shifted by kv .  The probability of error is just the shaded area in Fig. 3.18(b) under the tail.  The

total probability of error can then be expressed as
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k
kPe

N
Pe

1

1
(3.3.2)

where N is the total number of the possible states of kv .

kv

kPe

(a)

(b)

Fig. 3.18 Illustration of quasianalytical method.
(a) Transmitted bit stream.  (b) Received waveform [6]
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3.3.1 Restrictions and considerations for Quasianalytical technique

The biggest advantage gained by using Quasianalytical method is time saving.  This is achieved

because we do not have to wait for error to occur as in the case of Monte Carlo simulation.  Instead,

we simply calculate an integral, which in principle takes the same amount of time to evaluate

regardless of the BER.  However, the Quasianalytical technique cannot be applied to any arbitrary

system.  There are three restrictions associated with the Quasianalytical technique:

1. The system has to be linear from the point that the noise is introduced.

2. The memory of the system needs to be predetermined and should be relatively short.  That is, if

the amplitude of the received noiseless signal at any instance is a function of only relatively few

preceding symbols, then a comparatively short sequence can produce all of the possible states of

the received signal kv .

3. The probability density function of the noise has to be a known function specified by the user in

order to map all the possible states into an error probability.  Thus, the overall bit error rate can be

calculated.

Any system that satisfies the above three conditions can be simulated using the Quasianalytical

technique.

There is a very simple way to determine the memory of the system.  First, set the system at relax

state, and then pass a step function at time t and monitor the output waveform.  Since the system has

memory, the output will have a transient state and settle at time t1.  The system then is determined to

have a memory of (t-t1)/Tb bits, where Tb is the period of each bit.  A small simulation program can

easily accomplish this task.  First a stream of zeroes can be sent through the system to make sure the

system is completely relaxed and at time t, a stream of ones is sent.  By monitoring the transient state

of the response of the system, the memory of the system can be determined.  This operation can be

further clarified by the following example.  Assume that a simple second order Chevychev II filter is
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used in the system and our task is to determine the memory of this filter.  By using the method

mentioned above, the transient response of the filter can be obtained and is shown in Fig.3.19.

In this example, each information bit is sampled ten times and at the eleventh bit, a stream of ones is

sent.  The graph shows that the system’s response settles to a steady state at about the 150th sample,

which means that the system’s memory is about 50 samples or 5 bits.

After the memory of the system is decided, a maximum length PN sequence with length

MQN �  will be generated, where Q  is the size of the signal alphabet and M  is system’s memory

in bits.  Since the maximal PN sequence generator only generates 1�N sequences with the exception

of the all zero case, the all zero case can be added on easily.  All N sequences can then be sent

through the system to produce all the possible states for the received signal kv .  This operation can be

clearly demonstrated in Fig. 3.20.
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Fig. 3.19 The response of a second order Chevychev II filter
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Using the same Chevychev II filter used above, since the memory of the filter is determined to be 5

bits, the total number of all the possible states of the received signal kv  is 3225 ��N .  Fig. 3.20

clearly shows that there are 32 total states for the received signal, which are dispersed along the axis.

Now all the possible states of the received signal have been determined.  The last step is to map

all these states into different error probability by using the pdf of the noise, and calculate the final

error probability of the system.  As we know that if a white noise is passed through a filter with

transfer function )( fH , the average power at the output is

�
�

�
0

2

0 )(
0

dffHNPn (3.3.3)

where 02

1
N  is the two-sided power spectral density of the input.  If the filter were ideal with

bandwith NB  and midband gain 0H , the noise power at the output would be

2
000

HBNP Nn � (3.3.4)
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Here NB  is referred to as the noise-equivalent bandwidth of )( fH .  Obviously, in order to calculate

the system’s error probability, we need first to obtain the noise power at the receiver.  As a result, the

noise-equivalent bandwidth, NB , needs to be calculated.

Once again, a small simulation program can easily accomplish the task of determining the noise-

equivalent bandwidth NB .  From the equation (3.3.3) and (3.3.4), we can easily derive that

�
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�
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2
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)(
1

dffH
H

BN (3.3.5)

In the discrete form, equation (3.3.5) can be changed to
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where )1(H  is the dc response of the digital filter and sf  is the sampling frequency.  By using

Parseval’s theorem and z-transform theory, equation (3.3.6) yields
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where )(nh  is the unit impulse response of the digital filter.  Theoretically, equation (3.3.7) requires

infinite amount of computing time to evaluate since the summation is from "�  to " .  Therefore, an

approximation is needed.  That is, after the impulse response has declined a certain number of dB

from the original value, we can approximate the response from then on is zero.  Thus, the noise-

equivalent bandwidth can be evaluated by sending a unit impulse function through the system to

obtain the unit impulse response of the system.  We can then using equation (3.3.7) to calculate the

noise-equivalent bandwidth.

After the noise-equivalent bandwidth is found, we can then calculate the noise power and the

noise standard deviation at the receiver.  Thus the system error probability can be evaluated.  For
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example, with the system we used previously in an AWGN environment, the error probability can be

easily evaluated using the Q-function.
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3.3.2 Case Study

Once again, we are going to use the simple BPSK system used in the previous section to

demonstrate Quasianalytical method.

From the block diagram in figure 3.3, it is obvious that this BPSK is not a memoryless system

due to the presence of the transmitting filter.  Therefore, in order to get the right noiseless output

waveform at the output, it is necessary to determine the memory of the system.  Once we determined

the memory of the system in term of bits, we can then pass all possible input sequence through the

system to generate the proper noiseless output waveforms.  Since an overestimation of the memory of

the system will not affect the result of the simulation while an underestimate will cause an inaccurate

estimation, estimating the system memory conservatively will guarantee the correctness of the

simulation.  However, if the system memory is estimated too conservatively, the maximal length PN

sequence is going to become very long, thus increasing the simulation run-time.  Therefore, it is also

a trade off that try to estimate the system’s memory correctly and at the same time maintain the

simulation run-time to a minimum.  The following graphs show the estimation of the memory of this

BPSK system.
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Since a step function is introduced at the 100th sample, the transient state lasts about 30 samples in

this graph.  Therefore, the ISI of the filter is about 3 bits.  To ensure the correctness of the estimation,

two more bits were added.  This estimation will be used in the latter simulation.

After the memory of the system is determined, a maximum length PN sequence generator can be

used to generate all possible input sequences.  Since maximum length PN sequence generation are

covered extensively in the literature, this thesis will not consider it in detail.

The above procedures in a sense provide us information about the reliability of the

Quasianalytical estimator.  Since the memory of the system is predetermined before any actual

simulation was run, we could say that the estimator has no bias and zero variance.  However if the

estimation of the system memory is not precisely correct, the estimator then will be biased and it is

not possible to quantify this bias in a general way.

After the generation of the noiseless output waveforms, the BER calculation is generally

straightforward since the noise is additive and has a known pdf.  In this case, the noise is AWGN, so

the final calculation is just a simple Q-function evaluation.  The BER curve then can be generated

using the result from the calculation.
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Fig. 3.21 ISI estimation of the transmitting filter
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From the above graph, we can see that the result obtained using Quasianalytical technique agrees

with the result from the Monte Carlo simulation.

To study more about the effect of the ISI on the system’s performance, the bandwidth of the

transmitting filter is increased and a new BER is plotted to show how the system’s performance

changes accordingly.
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Fig. 3.23 BER curve with wideband transmitting filter
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Fig. 3.22 BER curve simulated using Quasianalytical Technique
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As it is shown in figure 3.23, when the bandwidth of the transmitting filter is increased so that

there is little or no ISI, the system performance agrees with the theoretical unfiltered value very

closely.

3.3.3 Discussion of the Quasianalytical simulation

There are many reasons that the Quasianalytical technique should be implemented.  First and

most important is its time saving property.  In a linear channel, it can provide correct answers

extremely fast.  This may be very beneficial for simulations of low BER systems.  It is also very

useful for parametric studies that otherwise would be prohibited due to the extremely long

computation time.  Secondly, it can serve as a “sanity check” for the Monte Carlo method.  As was

mentioned in the previous section, the Monte Carlo method itself is not perfect.  For example, random

number generators are not ideal most of the time and are hard to check for long sequences.

Therefore, a “sanity check” is necessary for Monte Carlo simulation results, and Quasianalytical

method serves us well in this aspect.

However, Quasianalytical method is very problem specific and generally cannot be set up in

advance to solve general problems [2].  On the other hand, Quasianalytical method is also unable to

generate waveform level simulation product with the presence of noise, which sometimes might

prohibit us to gain more insight of the behavior of the system.

Quasianalytical technique has lots of advantages and when used with combination with Monte

Carlo method, they can provide very useful simulation results for analyzing and designing purposes.

Therefore, there is no doubt that Quasianalytical technique should be implemented whenever is

possible in simulation.

3.4 Conclusions

There are many choices in BER estimation techniques.  The ones presented in this paper are just

some of the simulation-based approaches for estimating the BER.  Not all of these techniques apply
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irrespective of the modulation/coding scheme and associated receiver structure.  At the same time, all

these techniques are not isolated from each other.  Most times when combined with one another, the

best simulation results can be reached.  Therefore, one must consider which technique(s) should be

implemented.

A. Monte Carlo method.  Monte Carlo runs can be viewed as the “truest” situation for nonlinear

system next to building the actual system.  For this reason, each simulation package should

include Monte Carlo capability, not only for BER estimation, but also calibrating and

monitoring the fundamental behaviors of the system.  For low BER systems, the simulation

run-time could be unreasonably long and some sort of the alternative approach such as the

Block Analysis method must be used.  The implementation of the Monte Carl method is very

simple and is independent of the specifics of the system.  Therefore, it is possible for us to set

up the basic structure in advance for general purposes and make minor modifications to

accommodate each individual system.

B. The Quasianalytical technique.  The biggest advantage of the Quasianalytical technique is

time saving.  In a linear channel situation, this technique can provide us the correct answer

extremely fast.  The speed of the Quasianalytical technique can also be used to perform many

parametric studies which would be impossible otherwise.  It also can serve as “sanity check”

for Monte Carlo method due to the imperfection of the Monte Carlo method itself.  However,

the “analytical” part, which relates the simulated waveforms to the error rate, depends on the

actual simulation method.  Therefore, the implementation of the Quasianalytical technique is

very much problem specific and generally cannot be set up in advance.
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Chapter 4

Case Study

4.1 Introduction

In chapter 3, we studied some basic simulation approaches and methodologies.  In this chapter,

we present one more case study to further illustrate different ideas and techniques used in developing

simulations.

We used a simple simulation of a BPSK communication system in the last chapter as an example.

In this chapter, we are going to expand this example even further and construct a simulator for a

general M-ary PSK system.  The objective of this case study is to study and evaluate the error

probability performance (BER) of the system in an AWGN environment, taking into account the ISI

effect at the transmitter.  At the same time, visual indicators of the system, such as eye diagram and

signal constellation diagram, are also of strong interest to us in order to study the difference and

similarity of the different level of PSK.

4.2 Methods of Performance Evaluation Using Simulation

Due to the combination of the arbitrary level of the signal alphabet and the ISI effect, a pure

analytical solution to such a problem is somewhat tedious and involves a great deal of repetitive

work.  Moreover, such a solution does not provide easy access of the desired parametric study and

evaluation.  Simulation is therefore a more desirable option for such a task.  However, a Monte Carlo

simulation approach is very time consuming, especially when 
0N

Eb  is large.  On the other hand, a

Quasianalytical approach has its limitation too.  First of all, as the signal alphabet becomes large (8-

ary, 16-ary and etc.), the length of the required sequence increases rapidly.  Consequently this

approach loses its time saving advantage quickly as M increases.  Secondly, since the Quasianalytical
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technique is very problem specific, modifications have to be made for each M.  It is impossible to

have a general simulator that uses M as an input parameter as in the case of the Monte Carlo

approaches.

In order to reach our objective effectively, we need to apply a combination of different

methodological approaches and simulation techniques.  As mentioned above, the visual indicators

such as eye-diagram and signal constellation diagram are not only important but also necessary for

understanding and analyzing the system in the simulation.  Therefore, a Monte Carlo simulator should

be included to generate such diagrams.  For the other facet of the performance, the BER estimation,

there is no simple solution.  Each case has to be dealt with differently.  Although a Monte Carlo

simulator is time consuming, it can provide us a general simulator for different levels of signal

alphabet.  On the other hand, the Quasianalytical technique is still very efficient for low value of M.

Since all the modulation studied in this case belongs to the same family of modulation techniques, a

low signal level system such as a QPSK system often behaves similarly as a system with higher

signal level system such as 8-ary or 16-ary PSK system.  Therefore, even though the Quasianalytical

technique loses its advantage when M is large, it still can provide us great insight of the whole family

of modulation techniques by simulating the low signal level system such as a QPSK system

effectively.  Hence, different simulation techniques need to be carefully chosen according to different

problems.

4.3 Simulation of the M-ary PSK Signal

As mentioned before, both simulation approaches have their own advantages.  Therefore, this

simulator will have two parts: the Monte Carlo simulator and the Quasianalytical simulator.  Thus,

users can choose different simulator accordingly.

The Monte Carlo simulation procedure is as follows.

1. Generate a symbol s  in the range of [1, M].

2. Generate random transmitter phase i� .
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3. Construct the complex envelope of the signal by using equation (2.3.12) and (2.3.13)
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where )(txd  and )(txq  are in-phase and quadrature components of the ith symbol.  A is

chosen to be 1 for convenience.

4. Sample the in-phase and quadrature components, )(txd  and )(txq  respectively, to generate

the sampled signal )(txS .

5. Filter the in-phase and quadrature components of the sampled signal )(txS  to generate the

transmitted signal )(txtr .

6. Generate noise according to the value of 
0N

Eb , i.e. signal-to-noise ratio.
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where K is the sampling rate.  Therefore, the standard deviation of the noise is

0

*2

1

N

Eb

�� (4.3.2)

The variation of 
0N

Eb  is achieved by changing the noise variance and keeping the energy per

bit, bE , constant.

7. Construct the received signal by summing up the transmitted signal and the noise signal.

)()()( tntxtr ddtrd �� (4.3.3)

)()()( tntxtr qqtrq �� (4.3.4)
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where )(trd  and )(trq  are the in-phase and quadrature components of the received signal

)(ts .

8. Calculate the output of the matched filter.

�
�

�
K

k

tsoutput
1

)( (4.3.5)

where K is the sampling rate, which is 10 in this simulation.

9. Determine the received symbol in terms of maximum likelihood estimation.

kests �_

where

Mizz ik ,,2,1)max( ���

10. Update the symbol error statistics.

The procedure for the Quasianalytical approach is as following.

1. Estimate the memory of the system.

2. Generate the maximum length sequence.  If the system’s memory is Q  symbols, for M-ary

PSK modulation, the length of the required sequence is QMN � .

3. Filter all the sequences to generate all possible transmitted sequences.

4. Calculate the output of the matched filter to obtain the noiseless result of the system.

5. Calculate the noise variance for different values of 
0N

Eb .

6. Calculate the symbol error probability.

4.4 Simulation Results

Different simulation techniques are chosen for different value of M.  When M=4 (QPSK system),

the length of the required sequence is 102445 ��QM , assuming system’s memory is five symbols.
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This value is still reasonable small.  Therefore, the Quasianalytical approach should be chosen to

generate the symbol error probability curve.  However, when 8�M , the length of the required

sequence becomes very large.  As a result, the computer run-time of a Quasianalytical simulator will

increase dramatically too.  Therefore, the Monte Carlo method should be used because it can provide

us a general solution for all values of M.

4.4.1 QPSK System Simulation Results

The Quasianalytical technique is chosen to generate the symbol error probability for QPSK

systems.  The result is plotted in Figure 4.1.

Fig. 4.1 Symbol Error Probability curve of QPSK system
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The solid line is the theoretical value in an AWGN environment without the ISI effect.  The

difference between the simulated result and the theoretical unfiltered value clearly demonstrates the

ISI effect on the system performance.  To further demonstrate the ISI effect, the bandwidth of the

transmitter filter is increased and another simulation is run to study how the performance of the

system will change.

It is clearly shown in Figure 4.2, when the bandwidth of the transmitter filter is increased so that the

ISI effect can be neglected, the simulated result agrees with the theoretical value.

Besides the symbol error probability curve, other visual analysis tool such as eye diagrams and

the signal constellation diagrams are also our interests.  Therefore, the Monte Carlo simulator is used

here to generate the desired diagrams.
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Fig. 4.2 Symbol Error Probability curve of QPSK system
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Fig. 4.6 Signal Constellation of the output of the transmitter filter
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Fig. 4.8 Signal Constellation of the input of the receiver (Eb/No=15 dB)
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The above diagrams clearly demonstrate the ISI effect of the filter and the effect of the noise at the

different nodes of the system.  The diagrams also show visually how the channel behaves in the time

domain (eye diagram) and in the signal space (signal constellation diagram).  Fig. 4.3 and Fig. 4.4 are

the eye-diagram and the signal constellation diagram of the original transmitted signal respectively.  It

is clearly shown in Fig. 4.3 that the transition between the two states are straight transitions, which

means that no distortion has been introduced at this point.  Fig. 4.5 and Fig. 4.6 are the eye-diagram

and signal constellation diagram of the signal after filtering.  The ISI introduced by filtering causes

the signal being dispersed in the signal space which is shown in Fig. 4.6.  Hence, the state transition is

no longer straight.  It is also worth noticing that at the beginning of the time, there is a transition state

coming out of zero state, which is not shown in Fig. 4.3.  This is because that the filter is completely

relaxed before any data is introduced.  Fig. 4.7 and Fig. 4.8 are the eye-diagram and signal

constellation diagram of the signal after it has been passed through an AWGN channel.  In those two

figures, the effect of the noise is clearly shown.  In Fig. 4.7, it is shown that the “eye” has closed

somewhat due to the presence of the noise.  If Eb/No decreases more, the “eye” will eventually close

completely.  The similar effect is also shown in Fig. 4.8.  The signal points are scattered all over the

place instead of being dispersed in certain trajectories in Fig. 4.6.  Similarly, when Eb/No decreases,

the signal points will be scattered into even wider area.  Combining all six figures, we can obtain a

clear picture how the signal behaves at the various points of the system.

4.5 Conclusions

In this case study we had two objectives; the determination of the symbol error probability and

the study of system behavior in an AWGN environment taking into account the ISI introduced by the

transmitter filter.  For different level of signal alphabet, different technique should be chosen to

optimize the efficiency of the simulation process.

For 4�M , the length of the maximum length PN sequence required for the Quasianalytical

technique is short.  Therefore, we should choose the Quasianalytical technique to take full advantage
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of its speed to generate the symbol error probability curve.  For 8�M , the length of the maximum

length PN sequence becomes long which prevents the Quasianalytical simulator from a rapid

computation.  On the other hand, the Monte Carlo method fits these situations perfectly.  By using the

Monte Carlo approach, it is possible for us to develop a single simulator that takes M  as an input and

generates all the desired diagrams.  This is not possible for a Quasianalytical simulator because a

separate maximum length PN sequence generator needs to be constructed for each value of M .

An important lesson given by this case study is that each new problem should be examined

carefully for efficient means of solution.  Any simulation approaches should not be accepted blindly,

especially if they lead to large computation time.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We studied some basic simulation techniques in this paper.  These techniques are primarily used

for performance evaluation of different communication systems.  They also can be used for

configuring and executing waveform level simulations.  All those capabilities provide us wonderful

tools for analysis of proposed designs.

The Monte Carlo technique is very simple to understand and implement.  It can be viewed as the

“truest” situation next to building the actual system.  It is also independent from the specific problem;

therefore, it is possible for us to develop a general model and exchange different modules for the

specific problem.  However, despite of all the advantages that the Monte Carlo technique has, it is

very inefficient.  It has to wait for errors to happen, and thus it leads to large computational burdens in

most cases.

The Quasianalytical technique’s most overriding appeal is its speed.  It enables us to simulate

complex systems in a relatively short amount of time, and it also makes parametric study possible.

Therefore, the Quasianalytical technique should be used whenever is possible.  However, the

Quasianalytical technique can not be used on the systems and under all the situations.  There are

constraints for the Quasianalytical technique such as the distribution of the noise has to be known and

the noise has to be additive.  At the same time, in order to take the full advantage of the time saving

property of the Quasianalytical technique, the system memory has to be relatively short and the signal

alphabet has to be moderately small.  The Quasianalytical technique is also very problem specific so

it is generally impossible to be set up in advance.
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All the simulation techniques should not be isolated from each other because in most cases, a

combination of the different techniques provides the best solution for the problem.  Therefore, one

must treat each new problem with a fresh eye for the most efficient means of solution.  No technique

should be the “universal” or “standard” technique.

5.2 Future Work

Simulation has been widely used in the communication industry as an analysis and design tool for

the past decade.  However, it is also clear that each organization has developed its own simulation

package and there is no industry-wide standard, such as the SPICE package used for circuit

simulation.  In the past few years, MATLAB has been adapted widely to develop simulation for

various communication systems.  In times to come, more complete simulation packages, providing

color graphics input-output, symbolic debugging, with a variety of data display capabilities ranging

from tables to charts to graphs available singly or in combinations, will be available.

In addition to the development of software simulation package, efforts are also underway towards

the development of firmware simulation systems using the hybrid hardware/software computing

approach. The application of fast digital signal processors to moderate data rates will bring us to the

stage where the software simulation models of receivers and transmitters will be used as is in a

firmware implementation of the actual systems.

The challenge we are facing today is to use computer-aided design tools to get on with the

revolution that is upon us all in information transmission and processing.
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Appendix A.

Basic Structure of a Simulation

It is very helpful to construct a simulation in a manner that is flexible to use and easy to maintain.

In most simulations, the input and output is usually a very large portion of the whole program.

Therefore, if we separate the input and output from the main program body, the simulation program

will be much easier to maintain and understand.  For this reason, the simulation should be divided

into three parts: preprocessor, simulator, and postprocessor.

Preprocessor is the initialization part of the program.  It reads all the user defined intrinsic system

parameters and stores the data in data storage which can either be in the computer’s memory or in a

file.  This is the stage in which users define the system.  Simulator is the main body of the simulation.

It reads all the data from the data storage and executes the simulation.  At the end, simulator passes all

the end results into the data storage waiting for postprocessor to analyze them.  Postprocessor is the

output stage of the program.  It reads all the data, such as error statistic, generated by simulator and

outputs them visually, such as BER curves and signal constellations.  Postprocessor can also produce

some kind of user interface that allows users to choose the desired diagrams.  The following figures

are the preprocessor and postprocessor used for the BPSK simulation example.

Preprocess

(Set Intrinsic
Parameters)

Data Storage

Simulator

(Execute
Simulation)

Data Storage

Postprocessor

(Analyze
Results)

Fig. A.1 Basic Simulation Architecture
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EDU» initial
Input "B" for BER calculation or "W" to generate all other diagrams ==> w
The period of each information bit (0.001) ==> 0.001
The number of samples per bit (10) ==> 10
The phase angle of Transmitter (pi/8) ==> pi/4
The order of the filter (2) ==> 2
The total number of signal needs to be generated (500) ==> 500
The desired Eb/No value (in dB) to generate all the waveforms (15dB) ==> 15
Choose one or more points of the system where you would like to see eye diagrams and
signal constellation diagrams
(i.e. MFD to choose all)
M ==> at modulator output (without filtering)
F ==> at transmitter filter output
D ==> at detector (integrate and dump) input
mfd

The first input of this preprocessor is the choice between the BER curve and other diagrams.  Since

we don’t need as many runs to generate eye diagram and signal constellations, this input parameter

allows us to generate eye diagrams and signal constellations much quicker.  The following parameters

are users defined intrinsic parameters.  The last input of this preprocessor is where user would like to

see the eye diagram and signal constellations.  This allows user to insert probe at different node of the

system to monitor the behavior of the system at different stages.

Fig. A.2 Preprocessor for the BPSK system
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Fig. A.3 Postprocessor of BPSK simulation
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Figure A.3 is the user interface created by the postprocessor.  User is able to choose different

output very easily.

Another advantage to separate the preprocessor, simulator, and postprocessor is flexibility.  In

most cases, preprocessor and postprocessor are very similar for all the different communication

systems.  Therefore, only little modifications are needed for different simulation.  This can be very

convenient.  At the same time, by using this architecture, we are able to take full advantage of

different software packages.  For example, Matlab is very powerful for graphic output and is slow at

executing speed.  Therefore, we can use Matlab to construct preprocessor and postprocessor to take

full advantage of its graphic output capability while using C or other computer languages to construct

simulator to increase the speed of program, and thus achieve the optimal simulation performance.
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Appendix B.

Random Data Generator

Any simulation involving one or more stochastic process requires the generation of random

numbers.  In the previous examples, we used the built-in rand function in Matlab to achieve such a

task.  However, the distribution of the generated data sequence is unverified and in most cases, it is

very difficult to verify the distribution of the final data sequence.  Therefore, it will be helpful if we

can construct our own random data generator with know period and known distribution.

The most important and basic data generator is the uniform distributed data generator.  The

method of linear congruence is the most popular method of generating random data with uniform

distribution.  The random sequence is obtain by the recursion relationship

mcAxx NN mod)(1 ��
�

(B.1)

where m  is the modulus, A  is the multiplier, c  is the increment, and 0x  is the initial value.  The

question now is how to choose m , A ,c ,and 0x .  Clearly if Nx  is an integer, there are only m

different values which Nx  can take on.  Thus, the best we can do is to make the sequence periodic

with period m .  Therefore, the parameter m  should be chosen according to two considerations:

1. We wish a long period (m  larger)

2. We wish to generate the values Nx  quickly.

As a result, a common choice is to let Em 2�  where we assume an E  bit computer.  The increment,

c , is often set equal to zero.  With 0�c  the random number can be generated slightly faster.

However, maximum length cannot be achieved with 0�c .

The most general theorem to generate a maximum length data sequence is

1. cand m  are relative prime (no common prime factors).

2. 1�A is a multiple of every prime p which dividesm .
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3. 1�A is a multiple of 4 if 4 divides m .

Proof: Knuth [7]

A nice consequence from this theorem:

1. c  is odd.

2. 14 �� kA  where k is integer.

3. nm 2� .

The proof is simple:

1. The only prime factor for m is 2, and if c is odd, it is obvious that mand cdon’t share any

common prime factor.  Therefore, they are relatively prime.

2. kA 41�� , which is clearly a multiple of 2.

3. kA 41�� , which is also a multiple of 4.

If we divide all Nx by m , we have a uniform random generator between 0 and 1.

Now we can generate the random variable with general pdf using the uniform random generator.

If we want to generate a random variable with a pdf of

�
	

 ���

� �
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iP  and iF  are defined as
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The procedure to generate such a random variable is as following:
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1. Generate a uniformly distributed random variable U from U(0,1)

2. Find i from
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Appendix C.

Sequential Filter Function in Matlab

In the previous chapters, we used filter function repeatedly.  However, the filter command in

Matlab is a block operation (details see Matlab manual).  When we need to run a simulation in a

sample by sample fashion, some other type of filtering operation needs to be used.  Therefore, we

constructed sequential filter function to perform such tasks.

It is known to us that any filter with a transfer function as
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can be expressed with the following  diagram using Transposed Direct Form II Network Structure.

+ +

+ +

+

+ +

+

+

bo

-a1b1

z -1

-a2b2

� ��

x(n) y(n)

z -1

bn -an

z -1

Fig. C.1 n-th order Transposed Direct Form II Network
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According to the z-transform property, each 1�z  block in the above diagram is equivalent to an time

delay of one sample in time domain.  Therefore, the above diagram can be simplified as a simple shift

register with 1�n  states.  That’s how we are going to construct our sequential filter function.  The

following is the Matlab code for this function.  It is very simple and self-explaining.

function  [out,sreg]=filter_seq(A,B,n,sreg1,in)

% Filter that filters data sequentially
%
% A, B & sreg1 are 1X(n+1) matrixs
% Copyright Dr. William H. Tranter

global  out;
global  sreg;

out=B(1)*in+sreg1(1,1); % Calculate the output of the filter
sreg1=sreg1+B*in-A*out; % Calculate the new states of the shift
register
sreg=[sreg1(2:n+1),0]; % Shift the new states to prepare for next
sample
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