
Segmenting, Summarizing and Predicting Data Sequences

Liangzhe Chen

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Application

B. Aditya Prakash, Chair
Naren Ramakrishnan

Edward A. Fox
Chang-Tien Lu

Yan Liu

March 28, 2018
Blacksburg, Virginia

Keywords: Sequence Mining, Segmentation, Topic Modeling
Copyright 2018, Liangzhe Chen

Segmenting, Summarizing and Predicting Data Sequences

Liangzhe Chen

ABSTRACT (academic)

Temporal data is ubiquitous nowadays and can be easily found in many applications. Con-
sider the extensively studied social media website Twitter. All the information can be
associated with time stamps, and thus form different types of data sequences: a sequence
of feature values of users who retweet a message, a sequence of tweets from a user, or a
sequence of the evolving friendship networks. Mining these sequences is an important task,
which reveals patterns in the sequences, and it is a very challenging task as it usually requires
different techniques for different sequences. The problem becomes even more complicated
when the sequences are correlated.

In this dissertation, we study the following two types of data sequences. We show how to
carefully exploit within-sequence and across-sequence correlations to develop more effective
and scalable algorithms.

1. Multi-dimensional value sequences: We study sequences of multi-dimensional val-
ues, where each value is associated with a time stamp. Such sequences arise in many
domains such as epidemiology (medical records), social media (keyword trends), and
Critical Infrastructure (power outage data). Our goals are: for individual sequences, to
find a segmentation of the sequence to capture where the pattern changes; for multiple
correlated sequences, to use the correlations between sequences to further improve our
segmentation; and to automatically find explanations of the segmentation results.

2. Social media post sequences: Driven by applications from popular social media
websites such as Twitter and Weibo, we study the modeling of social media post
sequences. Our goal is to understand how the posts (like tweets) are generated and how
we can gain understanding of the users behind these posts. For individual social media
post sequences, we study a prediction problem to find the users’ latent state changes
over the sequence. For dependent post sequences, we analyze the social influence among
users, and how it affects users in generating posts and links.

Our models and algorithms lead to useful discoveries and solve real problems in Epidemiology,
Social Media and Critical Infrastructure Systems. Further, most algorithms and frameworks
we propose can be extended to solve sequence mining problems in other domains as well.

Segmenting, Summarizing and Predicting Data Sequences

Liangzhe Chen

ABSTRACT (general audience)

Temporal data is ubiquitous nowadays and can be easily found in many applications. Con-
sider the extensively studied social media website Twitter. All the information can be
associated with time stamps, and thus form different types of data sequences: a sequence of
feature values of users who retweet a message, a sequence of tweets from a certain user, or a
sequence of the evolving friendship networks. Mining these data sequences is an important
task, which reveals patterns in the sequences, and helps downstream tasks like data compres-
sion and visualization. At the same time, it is a very challenging task as it usually requires
different techniques for different sequences. The problem becomes even more complicated
when the sequences are correlated.

In this dissertation, we first study value sequences, where objects in the sequence are multi-
dimensional data values, and move to text sequences, where each object in the sequence
is a text document (like a tweet). For each of these data sequences, we study them either
as independent individual sequences, or as a group of dependent sequences. We then show
how to carefully exploit different types of correlations behind the sequences to develop more
effective and scalable algorithms.

Our models and algorithms lead to useful discoveries, and they solve real problems in Epi-
demiology, Social Media and Critical Infrastructure Systems. Further, most of the algorithms
and frameworks we propose can be extended to solve sequence mining problems in other do-
mains as well.

Acknowledgments

I would like to thank my advisor Prof. B. Aditya Prakash for all the guidance during
this work; all the committee members (Prof. Naren Ramakrishnan, Prof. Edward A. Fox,
Prof. Chang-Tien Lu and Prof. Yan Liu) for their time and valuable suggestions; and my
collaborators and co-workers in Virginia Tech and Oak Ridge National Lab for all their help.

This dissertation is based on work partially supported by the National Science Foundation
(IIS-1353346), the National Endowment for the Humanities (HG-229283-15), ORNL (Task
Order 4000143330), the Maryland Procurement Office (H98230-14-C-0127), and a Facebook
faculty gift. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the views of the respective
funding agencies.

iv

Contents

List of Figures xi

List of Tables xvi

Chapter 1 Introduction 1

1.1 Thesis Overview . 2

1.1.1 Thesis Statement . 3

1.1.2 Thesis Structure . 3

1.2 Summary of Work . 3

1.2.1 Part I: Individual Independent Sequences 3

1.2.2 Part II: Multiple Dependent Sequences 5

1.3 Contributions . 7

1.4 Publications . 9

Chapter 2 Survey 11

2.1 Sequence Mining . 11

2.1.1 Time Series Analysis . 11

2.1.2 Event Sequence Mining . 12

2.2 Social Media Analysis . 12

2.2.1 Social Media for Epidemiology . 12

2.2.2 Social Influence Analysis . 13

2.3 Topic Model . 14

2.3.1 Topic Model for Epidemiology . 14

v

2.3.2 Topic Model for Social Influence . 15

2.4 Critical Infrastructure Systems . 15

2.4.1 Infrastructure Vulnerability Analysis. 15

2.4.2 Influence Maximization and Cascade Analysis. 16

2.5 Graph Analysis . 16

2.5.1 Graph Summary and Sparsification 16

2.5.2 Dynamic Graph Analysis . 17

Part I Individual Independent Sequences 18

Chapter 3 Segmenting Multi-Dimensional Value Sequences 19

3.1 Introduction . 19

3.2 Preliminaries . 21

3.3 Overview . 22

3.4 Details of DASSA . 23

3.4.1 Segment-Graph . 24

3.4.2 Q1: Defining Edge Weights . 25

3.4.3 Q2: Finding the Best Path . 27

3.5 Experiments . 28

3.5.1 Results . 29

3.6 Discussion . 31

3.7 Conclusions . 32

Chapter 4 Modeling and Predicting Pattern Changes behind Tweets 33

4.1 Introduction . 33

4.2 Formulation of Models . 35

4.2.1 Hidden Flu-State from Tweet Model (HFSTM) 35

4.2.2 Issues with HFSTM . 38

4.2.3 Improving the Model—HFSTM-A . 39

4.2.4 HFSTM-A-FIT: Inference and Parameter Estimation 41

vi

4.3 Experiments . 42

4.3.1 Experimental Setup . 43

4.3.2 Robustness and Consistency (Q.1) . 44

4.3.3 Word Distributions Learnt for Each State (Q.2) 45

4.3.4 Transition Probabilities Learned Between States (Q.3) 46

4.3.5 Fitting Flu Trend using Additional State Information (Q.4) 47

4.3.6 Bridging the Social and the Epidemiological (Q.5) 49

4.3.7 Summary of Observations . 51

4.4 Discussion and Conclusion . 52

4.5 Future Work . 52

Part II Multiple Dependent Sequences 55

Chapter 5 Segmenting Network Sequences with Node Labels 56

5.1 Introduction . 56

5.2 Overview and Main Ideas . 58

5.2.1 Shortcomings of Alternative Approaches 59

5.2.2 Overview of our Method SnapNETS 60

5.3 SnapNETs: Details . 61

5.3.1 Goal 1: Summarizing Act-snapshots 61

5.3.2 Goal 2: Constructing the Segmentation Graph 62

5.3.3 Goal 3: Finding the Best Segmentation 63

5.3.4 The Complete Algorithm . 64

5.4 Experiments . 65

5.4.1 Segmentation Results . 66

5.4.2 Scalability . 69

5.5 Discussion and Conclusions . 70

vii

Chapter 6 Segmentation with Explanation for Multi-Dimensional Time
Series 71

6.1 Introduction . 71

6.2 Focus and Setup . 73

6.3 Finding Segmentations . 74

6.3.1 Our Problem . 74

6.3.2 Overview of our Approach . 74

6.3.3 Details . 75

6.4 Finding Explanations . 77

6.4.1 Our Problem . 77

6.4.2 Overview of our Approach . 78

6.4.3 Details . 78

6.5 Empirical Study . 80

6.5.1 Setup . 80

6.5.2 Quantitative Evaluation . 82

6.5.3 Case Studies: NILM . 83

6.5.4 Case Studies: Hurricanes . 84

6.6 Conclusions . 86

Chapter 7 Modeling Influence among Tweet Sequences 88

7.1 Introduction . 88

7.2 Model Formulation . 90

7.2.1 Main Concepts . 91

7.2.2 Our Model PoLIM . 92

7.3 PoLIM-FIT: Model Inference . 93

7.4 Empirical Study . 96

7.4.1 Setup . 96

7.4.2 Q1: Link Prediction . 97

7.4.3 Q2: Retweet Volume Prediction . 98

viii

7.4.4 Q3: Identifying Influenced Content 99

7.4.5 Q4: Quality of Topics . 100

7.4.6 Q5: Influence Analysis . 101

7.4.7 Q6: Case Study on Iran Election . 104

7.4.8 Scalability . 104

7.5 Discussion and Conclusions . 104

Chapter 8 Conclusion and Future Work 106

8.1 Future Work . 107

8.1.1 Integrating Additional Temporal and Spatial Correlations 107

8.1.2 Consolidating Generative Modeling and Segmentation 108

8.1.3 Connecting Our Generative Models to Real Applications 108

8.1.4 Introducing Additional Domain Constraints from CIS 108

Bibliography 108

Appendix A DASSA (Chapter 3) 123

A.1 Preliminaries . 123

A.2 Pseudo-code . 124

A.3 Proofs . 124

A.4 Additional Experiments . 127

A.4.1 Datasets . 127

A.4.2 Quality of Clusters (X̃) . 128

A.4.3 Finding the Best Path (ALP vs LP) 129

A.4.4 More Results. 129

Appendix B HFSTM and HFSTM-A (Chapter 4) 134

B.1 Estimation of Parameters . 138

B.1.1 With Background Noise . 138

B.1.2 With Both Background Noise and Topics 143

B.1.3 With Aspects . 148

ix

Appendix C PoLIM (Chapter 7) 149

C.1 Additional Experiments . 149

C.2 Switching Parameters . 151

C.3 Gibbs Sampling . 151

x

List of Figures

1.1 Segmentation results from DASSA. (a) We show the most frequent feature val-
ues (discretized) in the two segments detected. The disease infects elder people
with higher income, more vehicles first, and then it spreads to a younger pop-
ulation. (b) We show the distribution of infection status in the two segments
detected. The number of newly confirmed cases dramatically drops, showing
a sign of increasing caution and prevention of the disease. 5

1.2 Results for a tweet dataset collected in South America from 2012 to 2014.
(a) The state transition diagram with transition probabilities learned by HF-
STM. S, E, I represent three different health states ‘susceptible’, ‘exposed’,
and ‘infected’, respectively. (b) Using the models learned from HFSTM and
HFSTM-A to predict the flu trend. 5

1.3 Results for a toy example. SnapNETS first finds summaries of networks to
highlight the pattern (the summary networks are shown in the bottom line),
and then detects the segmentation that captures the dramatic pattern change
in the sequence (black dash lines represent the time cut points detected by
SnapNETS). 6

1.4 Harvey segmentation and explanation results 7

1.5 Results for a tweet dataset collected for six months in 2009. (a) The word
cloud for community 10 (c10), showing an interest in technology (‘iphone’,
‘app’, etc.) (b) The corresponding celebrities in c10. (c) The learned community-
to-community influence strength: darker the color, higher the strength. . . . 8

3.1 Our method DASSA gives meaningful cut-points: (a) Most frequent data val-
ues (discretized) in segments detected in a sequence of flu infections (Port-
land). (b) Word clouds for each detected segment in a Twitter keyword trend
data (Peru). Size of a word is proportional to its frequency in the correspond-
ing segment. More discussion in Sec. 3.5. 20

xi

3.2 (a) shows an example data sequence, (b) results from our Cluster algorithm,
X and Y are connected if the data value x appears in the corresponding y.
Values 1, 100, 2 are merged to cluster a because they occur together in the
sequence, (c) the segment-graph G, the path/segmentation found by DASSA
is marked as red. 24

3.3 (a) MDL curves of ChickenDance 1: CT vs. number of clusters l. (b) Qc

scores. Note Qc > 0.5 for all datasets—indicates high quality clusters. 29

3.4 DASSA segmentation results for ChickenDance. The cut points of Dynammo
(purple in the 1st row), TopicM (blue in 2nd row), and EMP (green in 3rd
row) are shown below the DASSA. 30

3.5 DASSA results for Ebola. (a) Distribution of infection status for the two
segments detected. (b) Distribution of infection towns for the two segments
detected. 31

4.1 A toy example showing possible user states and a tweet pattern associated
with each state when a user is infected with flu for a time period 35

4.2 (a) Plate notation for HFSTM: The variable S captures the hidden state of
the user in which the user generated this tweet. The LDA-like topic variable
TopicM captures non-flu related words. (b) HFSTM state variables expanded:
Each message Ot is associated with a state St, which remains the same for
flu-related words in Ot. Switching from one state to another is controlled by
a binary switching variable ψ and the next state St+1 from the current state
St is drawn using transition probabilities η. 37

4.3 Plate notation for HFSTM-A: The aspect value y is an observed variable for
each word, and this variable biases the probability of a word being generated
by the various topics (see Sec. 4.2.3) . 39

4.4 The translated word cloud for the most probable words in the S, E and I state-
topic distributions as learnt by HFSTM-A on TrainData. Words are originally
learned and inferred in Spanish; we then translate the result using Google
Translate for ease of understanding. The size of the word is proportional to
its probability in the corresponding topic distribution. Our model is able to
tease out the differences in the word distributions between them. 46

4.5 The transition diagram between flu-states automatically learned by HFSTM-
A. The probabilities are rounded up for simplicity. Note that the structure of
the state transitions is close to the standard epidemiological SEIS model. . 47

xii

4.6 Evaluation for the two test datatsets in 2013. Comparison of the week to
week predictions against PAHO case counts using the four models: baseline
model, HFSTM, HFSTM-A, and GFT (Google Flu Trend). Our models out-
perform the baseline; performance of HFSTM and HFSTM-A are similar, and
are comparable to GFT. GFT overestimates the peak in (a), (c) and (d). (a)
All countries, for TestPeriod-1; (b) Argentina, for TestPeriod-1; (c) Chile, for
TestPeriod-1; and (d) All countries, for TestPeriod-2 50

4.7 Evaluation for test dataset in 2014 (TestPeriod-3). Comparison of the week
to week predictions against PAHO case counts using the four models. The
comparison is based on all countries in the dataset. We observe that the
performance of HFSTM and HFSTM-A are similar and comparable to GFT,
and GFT overestimates the peak. 51

4.8 Finer grained models help bridge the gap between social and epidemiological
activity models. (a), (c) Power law describes keyword activity better (in log-
log axes to show the difference); while (b), (d) Exponential function explains
well the falling part of the curves for keyword activity (note the linear axes).
The results from HFSTM and HFSTM-A agree with each other. 54

5.1 Toy Example: SnapNETS automatically identifies four significant steps of
the network sequence. The extracted time series (e.g., #active nodes) can not
capture a proper segmentation. Gray nodes are inactive (i.e., label 0), and
black nodes are active (i.e., label 1). 57

5.2 Gs . 63

5.3 Visualization of C-graphs for the segmentations found by SnapNETS for AS-
MIX and Memetracker . The vertical lines are the detected cut points. Black
nodes are active and gray ones are inactive. 67

5.4 (a) Scalability of SnapNETS. (b) Speedup by parallelizing construction of Gs. 70

6.1 The discovered segmentation results for ChickenDance. 82

6.2 The discovered segmentation (vertical black dashed line) results for the WalkJog
dataset. 83

6.3 The discovered segmentation (vertical black dashed line) results for the NILM
dataset. 83

6.4 NILM with noisy cyclic patterns . 84

xiii

6.5 Segmentation and the corresponding explanations for Harvey. (a) The seg-
mentation and all the time series. (b)(c)(d) The most important time series
(that contribute over 80% importance in ei) for each of the cut point. (e)(f)(g)
ei visualizations for each cut point. Counties with higher ei values are more
important for the cut point, and are marked with a color closer to red. . . . 85

6.6 Segmentation and the corresponding explanations for Irma. See detailed dis-
cussions in Sec. 6.5.4. 86

6.7 Segmentation and the corresponding explanations for Matthew. See detailed
discussions in Sec. 6.5.4. 87

7.1 Plate diagram of PoLIM. 92

7.2 Link prediction results. Higher the AUC, better the performance (MMSB
does not finish for Tweets-5% and Tweets-20%). 98

7.3 Retweet volume prediction results. Lower the RMSE, better the performance
(TAP does not finish for Tweets-5% and Tweets-20%). 99

7.4 Word clouds for topics learned by PoLIM on the entire tweet data Tweets-
Whole (visualized using Wordle, an online word cloud generator). For each
topic, we show the top 100 words with highest weights. Each word is already
stemmed and lemmatized. The layout of the word cloud is randomized, and
the size of the word is proportional to its weight in the topic. 101

7.5 Matrix I learnt; darker the color, higher the value. 101

7.6 The topic distributions for several communities and the celebrities (users with
the highest Ai values) in these communities. For the most important topics in
each community, we annotate them with the top three words (stemmed and
lemmatized) in those topics. 102

7.7 Tweets from two example users with different v values learned. 103

7.8 Word clouds for the communities detected in Iran election. 104

7.9 PoLIM scales linearly w.r.t. the number of topics and communities, and par-
allelization gives near-linear speed-ups. 105

A.1 (a) MDL curves of ChickenDance 1: CostT vs number of clusters l. (b) Qc

scores. Note Qc > 0.5 for all datasets—indicates high quality clusters. 128

A.2 Pie-chart of p(x̃i|y) for each segment, and the associated most frequent data
values for Portland . DASSA learns l∗ = 2. 130

xiv

A.3 Results from the Ebola datasets. Note that at first infection mostly occurs in
towns 2 and 3 but it gradually spread over other towns in second segments.
(a) also indicates the death and new confirmed cases are reduced significantly
over time. 131

A.4 Pie-charts of p(x̃i|y). Same colors represent the same x̃i value. (c) and (d)
Cut points of the segmentation in ChickenDance 1 and ChickenDance 2 with
DASSA. The cut points of TopicM (blue cut points) and EMP (green cut
points) are shown below the DASSA segmentation. DASSA learns l∗ = 48. . 132

A.5 (a), (e) and, (g) are pie-charts of p(x̃i|y) for each segment of Peru, Paraguay
and Argentina, and the corresponding word clouds for then are shown in (b),
(f) and, (h) respectively. The results for TopicM and Dynammo for Peru are
also shown in c and d. 133

C.1 Tweets from two example users with different v values learned 149

C.2 Histograms of the top 20 A values in two different communities. 150

C.3 PoLIM scales linearly w.r.t topics and communities and parallelization gives
near-linear speed-ups. 150

xv

List of Tables

1.1 Structure of the dissertation with references to the chapters. 4

3.1 Summary of Datasets . 28

3.2 Baselines description. 29

3.3 F1 score of DASSA, TopicM , EMP , LP and Dynammo on different datasets
with ground-truth segmentation: DASSA gets perfect cuts in most of the
datasets. 30

4.1 Symbols used for HFSTM and HFSTM-A . 36

4.2 Robustness and consistency of our models (m1 = HFSTM, and m2 = HFSTM-
A) using synthetic datasets. In the ‘base’ setting, we use 100 users, and a
vocabulary of size 92, where the number of background words, state words,
and non-flu topic words are 20, 60, and 12 respectively. We vary the the
number of background words (by varying λ) and the number of user from 50
to 150. It can be seen that the performance of both models do not suffer
from increasing noise levels in the dataset (different from the noise in the
vocabulary), and it is pretty stable when we increase the number of users in
the experiments. 45

4.3 Example user state sequences from real-world tweets (translated to English by
a native Spanish speaker). We used HFSTM-A to classify tweets to different
states. As we can see from the table, our model can capture the difference
between different states and also the state transitions. 48

5.1 Comparison of SnapNETS with alternative approaches. A dashed cross means
most approaches do not satisfy the property; similarly for the dashed check. 58

5.2 Features extracted to represent each summarized Act-snapshot (i.e., C-graph). 62

5.3 Datasets details. (GT = Ground Truth) . 66

5.4 Baselines description . 68

xvi

5.5 F1 score of the segmentation detected by SnapNETS, variations, and baselines
on datasets with GT. 68

6.1 Datasets used. 81

6.2 Evaluation on ground truth datasets . 82

7.1 Terms and symbols . 90

7.2 Datasets used. 97

7.3 Example non-retweets that are influenced. 100

A.1 Symbols and notation. 123

A.2 F1 score for datasets with ground-truth. 129

xvii

Chapter 1

Introduction

This dissertation involves the study of different types of data sequences, which arise in many
domains and applications. We observe these sequences in sensor data, motion detection,
climate monitoring, online social media and critical infrastructure, as well as in applications
such as trend prediction [109, 40], event sequence analysis [82, 157], social influence extrac-
tion [77, 102], etc. Hence, analyzing these different types of data sequences, and further
understanding their patterns in an automatic way, are crucial tasks that would benefit many
areas.

In this dissertation, our focus is to exploit the within-sequence correlations and across-
sequence correlations for a variety of segmentation and prediction problems, inspired mainly
by their applications in three domains: Epidemiology, Social Media, and Critical Infrastruc-
ture Systems. Take multi-dimensional value sequences for an example. The medical records
from hospitals form such sequences, where each data value contains the age, gender, and in-
come of a patient infected with a particular disease. Can we segment the sequence to capture
the dynamic of the disease’s spreading pattern, identifying how and when such a pattern
changes? Maybe the disease infects younger people first and then the elders, or maybe people
with higher income get affected first? Can we identify these patterns automatically without
user input? Answering these questions helps us understand how the disease spreads through
the population, and thus improves our chance for a good intervention and immunization
decision [27, 144]. For social media post sequences, we observe them extensively in popular
social media websites such as Twitter, Weibo, Facebook, etc. The tweets generated by Twit-
ter users naturally form sequences of short text, and they may show predictable temporal
patterns. Can we model how each post is generated? Can we find patterns in users’ posting
behaviors and further predict them? Solving these problems helps us: understand the be-
havior of online social media users, reduce the processing and storage cost of the sequences,
and benefit down-stream tasks like visualization, prediction, etc. [108, 170].

All of the above sequences can be correlated as well, which makes them even more difficult
to analyze. Hence, for each type of sequence, we look at the sequences either as independent

1

Liangzhe Chen Chapter 1. Introduction 2

individual sequences or as multiple correlated sequences. Take social media post sequences
for an example: as independent sequences, we consider and analyze the posts/tweets from
different users separately, while as a set of correlated sequences, we consider the social
influence between users, and model how that affects the generation of users’ posts/tweets
and connections to others. Similarly for multi-dimensional value sequences, as independent
sequences, we treat each value sequence as independent, while as correlated sequences, we
assume there is an underlying relation among sequences (which can potentially be represented
by a network behind these sequences). We analyze these correlated sequences and their
underlying relations together.

Shortcoming of existing methods. Most of the existing methods are inadequate to solve
the above problems. For multi-dimensional value sequences, sequence mining methods, such
as time series algorithms or event sequence algorithms, pose various restrictions to the format
of the data sequences and hence have limited usage for our problems. For analyzing social
media post sequences, existing Markovian or non-Markovian temporal topic models can find
the state transitions within the document or the evolution of the topic, but they cannot find
the author’s state transitions behind the social media post sequences. Further, extracting
the social influence among social media users is a difficult task that only gained popularity
in recent years, and the limited related work focuses on different types of social influence
compared to the problem we study.

Applications. We emphasize that all problems studied in this dissertation are motivated
by real applications, and we use a wide range of real datasets for our analysis. These
datasets can be categorized into the following types: 1) Epidemiology. Examples include
Ebola disease reports released by the government, flu case counts from the Pan American
Health Organization (PAHO), and simulated population networks released by the Network
Dynamics and Simulation Science Laboratory (NDSSL) for national public health study. 2)
Social Media. Examples include social networks like Twitter, movie review websites like
Flixster, online shopping websites like Amazon, etc. Most of them provide APIs for data
collection. In addition, there are multiple datasets available online that we can use. 3)
Critical Infrastructure (CI). There exist many CI networks compiled by federal agencies or
commercial vendors. We use the HSIP Gold data released by the US National Geospatial-
Intelligence Agency (NGA) and the Department of Homeland Security (DHS).

1.1 Thesis Overview

In this section, we present our dissertation statement, and briefly summarize our main work.

Liangzhe Chen Chapter 1. Introduction 3

1.1.1 Thesis Statement

Modeling/optimization approaches that take into consideration the within-
sequence correlations (temporal and latent states relations) and across-
sequence correlations (latent influence and spacial relations) can improve
segmentation, summarization and prediction in data sequences from mul-
tiple domains, in comparison to approaches that ignore these correlations.

More specifically, for hospital medical/patient records in Epidemiology, and for failure records
in Critical Infrastructure Systems, we develop automatic segmentation algorithms to capture
the pattern change of the patients/disease and the number of outages respectively over
time. Our segmentation algorithms work for value sequences with real or categorical, multi-
dimensional values, and arbitrary time stamps (each data value can have arbitrary time
stamps with no restriction). When the value sequences are correlated by an underlying
network, we summarize and segment such networked sequences to detect pattern changes,
and provide an algorithm to automatically give an explanation of the segmentation result for
better interpretation and understanding. For social media post sequences, we propose two
generative models to model the pattern changes in individual text sequences, and another
generative model to capture the social influence among multiple correlated text sequences.
Our models help in understanding users’ online behavior, and they lead to good performance
in trend prediction, link prediction, and retweet prediction.

1.1.2 Thesis Structure

We organize the dissertation into two parts: individual independent sequences, and groups
of correlated sequences. The outline is shown in Table 1.1. We first give a survey of the
related work in chapter 2, then we present our work from chapters 3 to 7, and finally we give
our conclusions in chapter 8. In the following, we briefly introduce the research questions,
contributions, and publications of our work.

1.2 Summary of Work

1.2.1 Part I: Individual Independent Sequences

In this section, for each type of sequence, we assume that the sequences are independent,
and we study them separately without considering how they may affect each other. We start
from value sequences, where we solve the segmentation problem to capture the change of the
disease pattern in health reports. Then we move to text sequences, where we model tweet
data for better public surveillance.

Liangzhe Chen Chapter 1. Introduction 4

Table 1.1: Structure of the dissertation with references to the chapters.

Pattern Shift Analysis Occurrence Prediction

Independent
Sequences

Q1: How to segment
independent data value
sequences? (Chapter 3)

Q2: How to predict the
latent health states of a
sequence of social media

posts? (Chapter 4)

Multiple
Sequences

Q3: How to segment
sequences of correlated

values?(Chapter 5)
Q4: How to explain the

segmentation result?
(Chapter 6)

Q5: How to predict the
joint activity of multiple
sequences of social media

posts? (Chapter 7)

Chapter 3 (Segmenting Multi-Dimensional Value Sequences) [32] The main ques-
tion we answer in this chapter is: given a multi-dimensional value sequence, can we find a
time segmentation of the sequence, such that the patterns in adjacent time segments are
different? Most existing methods, such as time series algorithms [109, 98, 145] and event
sequence algorithms [82, 157], only work for specific types of value sequences, and hence they
cannot be trivially applied to our problems, where each data value is a multidimensional,
real/categorical value, and it has arbitrary time stamps (certain time periods may have more
data values than others). We present an algorithm DASSA (DAta Sequence Segmentation
Automatically), which does not make any prior assumption on either the data type or data
distribution, and it automatically finds the number and identity of cut points efficiently.
Through extensive experiments on a variety of real data, we show that DASSA outperforms
all the state-of-the-art competitors, and it detects meaningful, intuitive patterns in real dis-
ease infection sequences. As shown in Figure 1.1(a), DASSA automatically finds segments
where the flu infection pattern changes from elder people with higher income to younger
people with lower income, and in Figure 1.1(b), the detected segments capture the increas-
ing caution and prevention of the Ebola disease (decreasing number of deaths from the first
segment to the second).

Chapter 4 (Modeling, Predicting Pattern Changes behind Tweet Sequences) [33,
34] In this chapter, we look at the data from popular online social media (Twitter). We
propose generative models for Twitter users that capture latent health state transitions
behind their tweet sequences for better flu trend prediction. The existing temporal/dynamic
topic models either only capture transition of topics within a document/message [59, 11, 21],
or capture the change of the topics themselves [23, 68]. Hence they cannot be applied
for modeling the evolution of tweet sequences. In contrast, we propose temporal topic
models HFSTM and HFSTM-A, that integrate a Hidden Markov Model to infer the latent
state transition in the tweet sequence. Via our experiments on multiple flu-related tweet

Liangzhe Chen Chapter 1. Introduction 5

age Y X Income Size #Workers #Vehicles
4.0 4.0 4.0 10.0 0.0 3.0 5.0

Segment:1 4.0 3.0 4.0 10.0 0.0 3.0 2.0
4.0 4.0 2.0 10.0 2.0 5.0 5.0
4.0 3.0 4.0 10.0 2.0 3.0 2.0

age Y X Income Size #Workers #Vehicles
1.0 5.0 7.0 6.0 5.0 1.0 2.0

Segment:2 4.0 5.0 7.0 3.0 0.0 1.0 1.0
4.0 6.0 6.0 7.0 1.0 5.0 4.0
2.0 5.0 5.0 7.0 0.0 3.0 2.0 new

_n
on

ca
se

new
_s

usp
ec

te
d

new
_p

ro
bab

le

new
_c

on
fir

m
ed

dea
th

_s
usp

ec
te

d

dea
th

_p
ro

bab
le

dea
th

_c
on

fir
m

ed

Infection Status

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

new
_n

on
ca

se

new
_s

usp
ec

te
d

new
_p

ro
bab

le

new
_c

on
fir

m
ed

dea
th

_s
usp

ec
te

d

dea
th

_p
ro

bab
le

dea
th

_c
on

fir
m

ed

Infection Status

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

(a) Segmenting Portland simulated sequence (b) Segmenting a sequence of Ebola-cases

Figure 1.1: Segmentation results from DASSA. (a) We show the most frequent feature values
(discretized) in the two segments detected. The disease infects elder people with higher
income, more vehicles first, and then it spreads to a younger population. (b) We show the
distribution of infection status in the two segments detected. The number of newly confirmed
cases dramatically drops, showing a sign of increasing caution and prevention of the disease.

datasets, we demonstrate that our model can capture meaningful state transitions in the
tweet sequences, and the state transition leads to better flu trend prediction (Figure 1.2).

E IS

.98 .01 .53

.47

.02

.04

.95

Ja
n 2

013

Fe
b 2

01
3

Mar
20
13

Ap
r 2

013

May
 20

13

Ju
n 2

013

Ju
l 2
013

Date

0

1000

2000

3000

4000

5000

6000

C
as
e
C
ou

n
t

PAHO Case Count

Baseline Model

HFSTM

HFSTM Aspect

Google Flu Trends

(a) State transition learned (b) Predicting the flu trends

Figure 1.2: Results for a tweet dataset collected in South America from 2012 to 2014. (a) The
state transition diagram with transition probabilities learned by HFSTM. S, E, I represent
three different health states ‘susceptible’, ‘exposed’, and ‘infected’, respectively. (b) Using
the models learned from HFSTM and HFSTM-A to predict the flu trend.

1.2.2 Part II: Multiple Dependent Sequences

This part of the dissertation is devoted to algorithms that adapt to and utilize the correlations
between sequences. For example, in critical infrastructure systems, the number of people
losing power in different counties can be correlated due to the interdependency among the

Liangzhe Chen Chapter 1. Introduction 6

underlying infrastructures. In social media, whether a user will adopt a meme/product may
depend on his/her friends’ behavior. Further, the tweet content published by users are also
affected by the social influence from his/her friends. Hence, considering these correlations
and interdependencies is important for analyzing the real dynamic in the sequences. We
study how these correlations/interdependencies can be modeled and detected, and how we
can utilize them in our analysis.

Chapter 5 (Segmenting Network Sequences with Node Labels) [8] In this chapter,
we study sequences of values where the sequences themselves are connected by an underlying
network. Such a sequence can be equivalently thought of as a sequence of networks with
node labels. The main question we answer here is: given such a sequence of networks
where each node has a binary label, and the node label may change over time, can we find
a time segmentation, such that adjacent networks have different characteristics of nodes
with the same label? Such a question naturally arises in social/contact networks where
influence/opinion propagates. Existing dynamic graph algorithms [52, 153, 4, 174] detect
abrupt changes based on the changes in communities/partitions, while we propose a more
general algorithm SnapNETS, which does not require nodes to form communities/partitions.
Further, SnapNETS is more comprehensive, because it considers nodes with all different labels
to detect pattern changes (rather than only focusing on nodes with a specific label). Our
experiments on several diverse real datasets show that SnapNETS finds cut points matching
ground-truth or meaningful external signals, outperforming non-trivial baselines.

N
et

w
o

rk
 S

eq
u

en
ce

S
u

m
m

ar
iz

ed
 S

eq
u

en
ce

t1 t2 t3 t4 t5

Figure 1.3: Results for a toy example. SnapNETS first finds summaries of networks to
highlight the pattern (the summary networks are shown in the bottom line), and then detects
the segmentation that captures the dramatic pattern change in the sequence (black dash lines
represent the time cut points detected by SnapNETS).

Chapter 6 (Segmentation with Explanation for Multi-Dimensional Time Series)
[36] In this chapter, we study the segmentation problem on the correlated outage data from
recent hurricanes. Each sequence in the data captures the number of power outages for
a county during the hurricane event. Further, we also design an optimization problem to
automatically find an appropriate explanation for the segmentation results. Such a frame-

Liangzhe Chen Chapter 1. Introduction 7

work identifies the change point in the sequence and points out the culprit for the changes.
We show in Fig. 1.4 an example for the county-level outages data for Hurricane Harvey.
Fig. 1.4(a) shows the original data and the detected segmentation, and Fig. 1.4(b)(c)(d)
shows the important time series detected that best explains the corresponding cut point.
We see that our explanation highlights the time series with major pattern changes across
the cut point.

0 50 100 150 200 250 3000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

(a) Harvey-segmentation

0 50 100 150 200 250 3000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

(b) Explanation for cut0

0 50 100 150 200 250 3000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

(c) Explanation for cut1

0 50 100 150 200 250 3000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

(d) Explanation for cut2

Figure 1.4: Harvey segmentation and explanation results

Chapter 7 (Modeling and Predicting Tweets and Links) [35] Instead of considering
each tweet sequence as independent, we now study correlated tweet sequences from different
users, where one user’s tweets may be affected by another through social influence. In
this chapter, we study the problem of jointly modeling all three aspects in social media:
user connections, their textual posts, and the social influence among them. We propose a
generative model, that explicitly models how each post and link is generated by the user,
either from self interest or social influence. Such a model helps us better model the role of
social influence in affecting users’ behavior in social media, and further helps us understand
how information diffuses on such social networks. In Figure 1.5(a)(b), we show one of the
communities we learned from Twitter data collected in 2009. It shows a clear interest focus
on technology, and the celebrities with high influence (also identified by our model) are
consistent with this interest. Further, we find interesting influence patterns in Figure 1.5(c):
communities which are frequently influenced by the members inside the same communities
(dark color in the diagonal), and the existence of an influential community that affects many
of the other communities (a column of dark color).

1.3 Contributions

In this dissertation, we study a variety of segmentation and prediction problems in multiple
domains. We show that our algorithms and models achieve outstanding performance in these
problems by making use of various within-sequence and across-sequence correlations. Our
work has been adopted in real applications. The URBANNET toolkit that we developed
for monitoring, simulating, and analyzing Critical Infrastructure Systems is being used and
licensed by Oak Ridge National Laboratory experts. We are also planning on merging

Liangzhe Chen Chapter 1. Introduction 8

(a) Word cloud for c10 (b) Celebrities in c10 (c) Influence matrix

Figure 1.5: Results for a tweet dataset collected for six months in 2009. (a) The word
cloud for community 10 (c10), showing an interest in technology (‘iphone’, ‘app’, etc.) (b)
The corresponding celebrities in c10. (c) The learned community-to-community influence
strength: darker the color, higher the strength.

the CUT-n-REVEAL framework for analyzing power outages with the current URBANNET
toolkit. Our HFSTM and HFSTM-A models for flu case surveillance also contribute to the
EMBERS [137] project in the Discovery Analytics Center at Virginia Tech, which aims to
forecast significant events from open source surrogates. We summarize our contributions in
each chapter in the following.

• Chapter 3: Novel, Efficient Multi-Dimensional Value Sequence Segmen-
tation Algorithm. We propose a novel algorithm DASSA for segmenting multi-
dimensional value sequences, where the data value is multidimensional, real/categorical,
and can have arbitrary time stamps. DASSA uses the temporal closeness between data
values to achieve good segmentation performance. DASSA is efficient, and applicable
to a much wider range of data sequences and applications than traditional time series
algorithms or event sequence algorithms, which are designed only for certain types of
data sequences.

• Chapter 4: Novel Hidden State Modeling in Tweet Sequences for Better
Surveillance. We propose HFSTM and HFSTM-A to detect the latent state transition
of text sequences by integrating the topic model with the Hidden Markov Model.
When we apply our models on a flu-related tweet dataset, we show that the results
detected by our algorithms help fill the gap between phenomenological methods for
disease surveillance and epidemiological models, reconciling some contrasting behaviors
between epidemiological and social models.

• Chapter 5: Novel Efficient Segmentation Algorithm for Labeled Network
Sequences. We propose SnapNETS to introduce the characteristics of node labels into
the segmentation problem. We consider nodes with all possible label values rather than
focusing on only one value (as with most community-based dynamic graph algorithms).

Liangzhe Chen Chapter 1. Introduction 9

Further, our algorithm works in a parameter-free manner that automatically detects
the number of segments in the optimal segmentation.

• Chapter 6: Novel Segmentation with Explanation Framework. To the best
of our knowledge, we are the first to design a framework (CUT-n-REVEAL) which not
only gives the segmentation of the sequences, but also an explanation of the segmen-
tation itself. Such explanations help us better understand the detected changes by
pin-pointing the culprit sequences. It also facilitates quick utilization and deployment
of the segmentation results in real applications.

• Chapter 7: Novel Post and Link Level Social Influence Modeling: To the
best of our knowledge, we are the first to directly model how social influence affects
the generation of each post and link. Our proposed algorithm PoLIM models the
latent social influence via the community structure, and it can estimate whether a
post or a link is generated by influence or not. Such fine-grained modeling introduces
big challenges to inferring the model parameters; at the same time, it leads to more
personalized and more precise prediction for both posts and links.

1.4 Publications

Related publications include:

1. Liangzhe Chen, K. S. M. Tozammel Hossain, Patrick Butler, Naren Ramakrishnan
and B. Aditya Prakash. Flu Gone Viral: Modeling Flu on Twitter using Temporal
Topic Models, in the 14th IEEE International Conference on Data Mining (ICDM),
2014, Shenzhen, China

2. Liangzhe Chen, K. S. M. Tozammel Hossain, Patrick Butler, Naren Ramakrishnan
and B. Aditya Prakash. Syndromic Surveillance of Flu on Twitter Using Weakly
Supervised Temporal Topic Models, in Data Mining and Knowledge Discovery Journal
(DAMI), Volume 30, Number 3, 2016

3. Sorour E. Amiri, Liangzhe Chen and B. Aditya Prakash. Automatic Segmentation
of Network Sequences with Node Labels, in the 31st AAAI Conference on Artificial
Intelligence (AAAI), 2017, San Francisco.

4. Liangzhe Chen, Sorour E. Amiri and B. Aditya Prakash. Automatic Segmentation
of Data Sequences, in the 32nd AAAI Conference on Artificial Intelligence (AAAI),
2018, New Orleans

5. Liangzhe Chen and B. Aditya Prakash. Modeling Influence using Weak Supervision:
A joint Link and Post-level Analysis, in VT Computer Science Technical Reports, TR-
18-02, http://hdl.handle.net/10919/82747, 2018

Liangzhe Chen Chapter 1. Introduction 10

6. Liangzhe Chen, Nikhil Muralidhar, Supriya Chinthavali, Naren Ramakrishnan and
B. Aditya Prakash. Where and How: Segmentations with Explanations, in VT Com-
puter Science Techical Reports, TR-18-03, http://hdl.handle.net/10919/82748, 2018

Chapter 2

Survey

In this chapter, we survey the related work in multiple areas, including sequence mining,
topic modeling, critical infrastructure, and graph analysis.

2.1 Sequence Mining

The segmentation problem we study in this dissertation (mainly in chapters 3 and 6) is
closely related to the fields of time series analysis and event sequence analysis. Although
the algorithms in these field cannot be used to solve our problems directly, we introduce the
major work in these categories below.

2.1.1 Time Series Analysis

There has been much work on time series, such as modeling co-evolving time series using
multi-level HMMs [109], discovering patterns in data streams [162, 123], developing online
algorithms for frequent sequence mining [113], time series segmentation [145, 98, 81, 43],
change detection algorithms [117, 40, 165], temporal clustering [118, 180], etc. Batal et
al. [16] convert time series into time-interval sequences of temporal abstractions. They find
predictive patterns in complex multivariate time series data. Matsubara et al. [109] find the
patterns in co-evolving time series. In [138], the authors propose a framework to reconstruct
temporal models of cellular processes from time-course gene expression data. Li et al. [98]
propose extended Kalman Filters to summarize and compress the multiple time sequences
with missing values. Mueen et al. [113] develop an online algorithm to discover the frequent
sequence in real time over the most recent history. Rakthanmanon et al. [136] show a way
to search and mine truly massive time series efficiently. Their method can handle real-time
monitoring of data streams with much faster arrival rates. Wang et al. [168] propose pHMM

11

Liangzhe Chen Chapter 2. Survey 12

to reveal a global picture of the system that generates the time series data. Gensler et al. [54]
present an approach to use update techniques for approximation to speed up some time
series segmentation techniques. Same et al. [145] use Bayesian Information Criteria to build
a threshold-free segmentation approach. Liu et al. [105] propose a segmentation criterion
that improves computing efficiency, and propose two online piece-wise linear segmentation
methods based on the criterion. Tseng et al. [163] combine a clustering technique, discrete
wavelet transformation, and a genetic algorithm to automatically find segments in time
series. Chiappa et al. [41] propose a Bayesian approach to a segmentation model based on the
switching linear Gaussian state-space model, for the unsupervised time series segmentation
task. Chen et al. [40] find a method for the contextual time series change (CTC) detection
problem. All these methods, while very valuable, work on single or multiple time series, but
we focus on more general data sequences with multi-dimensional values. In addition, the
data points can have arbitrary time stamps, and certain time periods may have many more
data points than others.

2.1.2 Event Sequence Mining

Many problems have been studied on event sequences. Related work includes finding sum-
maries of event sequences [82], predicting future events [171], and segmenting element se-
quences [157]. Patnaik et al. [126] propose a streaming algorithm for mining frequent episodes
over a window of recent events in the stream. Tatti et al. [158] employ a pattern set mining
approach to consider a set of patterns as a whole, and find such pattern sets in event se-
quences. Wu et al. [173] incorporate the concept of utility into episode mining and address a
new problem of mining high utility episodes from complex event sequences. Yang et al. [176]
study the progression stages of a sequence of events/texts. Their datasets can be understood
as one-dimensional categorical data sequences. In contrast, we study a more general case in
DASSA, where the data can be multi-dimensional, and both real and categorical.

2.2 Social Media Analysis

As social media has gained in popularity in recent years, there has been much work on
utilizing the social media data for various applications and purposes. In the following, we
discuss social media’s usage for epidemiology and for social influence analysis, which will
prove to be related and useful in chapters 4 and 7.

2.2.1 Social Media for Epidemiology

In the epidemiological domain, various compartmental models (which explicitly model states
of each user) are employed to study the characteristics of flu diffusion [64]. Some of the best-

Liangzhe Chen Chapter 2. Survey 13

known examples of such models are SI [79], SIR [18], and SEIS [99], which are regularly
used to model true flu case counts. Recently, several papers [110, 175] show that the social
activity profiles do not exactly follow these models, and propose several other variants. Note
that different epidemiological models are used for different diseases. We focus our work on
flu since it is a very common disease.

In the social media domain, related research has observed many strides in the last decade.
Extensive data generated by these social networking sites (SNS) are being used to predict
and forecast various societal events [181], finding user interests [151], or finding trending
topics [177]. In particular, the study of topic and word trends has become an important
predictor of real world events and news. These trends are much easier and faster to get from
social media than from traditional methods (e.g., reliable CDC case counts typically have
lags of more than a month) [57]. For disease prediction and forecasting, especially for flu,
various methods have been proposed for large-scale [56] and small-scale predictions [42]. Fur-
thermore, there are prediction methods that are solely based on Twitter [94, 45, 93]. Sadilek
et al. [144] and Brennan et al. [27] studied the impact of different kinds of interactions to per-
sonal health–they calculate several features and predict the infection cases by classifications.
In contrast, we directly model the overall state transitions for all users. Lamb et al. [87]
discriminate tweets that express awareness of the flu from those about actual infections, and
train a classifier by which a user can tell if the author of a tweet is really infected. Aramaki
et al. [12] also trained classifiers for similar purposes. While their work is single-tweet-based,
ours takes the tweet history into account. A tweet completely non-flu related is possible to be
labeled as infected by our method if the tweets before and after both show signs of infection.
Achrekar et al. [1], Culotta et al. [45], and Lampos et al. [89] fit a flu trend by analyzing
tweets via various methods including keyword analysis, and compare their flu trend fitting
with CDC results. Lampos et al. [89] present an automated tool using keywords to track
the prevalence of Influenza-like Illness (ILI). These methods are very coarse-grained—they
do not provide understanding of how the health state of a user changes over time, while we
link the change of tweet pattern with standard epidemiological models. The unpublished
recent work by [97] builds a Markov network to capture the spatial and temporal relations
between different locations. Their definition of states is based on the number of infections
in a location (such as rising state, declining state), but states in our work (HFSTM and
HFSTM-A) are epidemiological states and they are learned directly from the tweet corpus.

2.2.2 Social Influence Analysis

The influence maximization problem aims to identify global influencers that would maximize
the spread of the information based on a Linear Threshold model or a Independent Cascade
model [80]. Mehmood et al. [112] generalize the IC model to deal with groups of nodes instead
of single node influence. There are also many interests in further identifying influencers based
on topics. Weng et al. [172] propose TwitterRank to find topic-level influencers on Twitter.
Tang et al. [155] model topic-level social influence on large networks. Pal et al. [122] propose

Liangzhe Chen Chapter 2. Survey 14

a set of carefully designed features to characterize social media authors, and use probabilistic
clustering and with-in cluster ranking to identify topical authorities. While these works either
focus on global or topic-level influencers, we model social influence in a finer-grained level
between all the users. The combination of our community-level influence, with-in community
popularity, and other parameters in our model PoLIM, can be used to compute the influence
probability between any two users.

2.3 Topic Model

In both chapters 4 and 7, we propose variations of the topic model for different applications.
In this section, we give a brief introduction of topic models and their previous usage for
epidemiology and social influence analysis.

2.3.1 Topic Model for Epidemiology

The earliest topic modeling using LDA (Latent Dirichlet Allocation) [24] gained popularity
for modeling different types of text documents (see [22] for review). Many variations of LDA
have been proposed to model various problems. For modeling health related topics Paul et
al. proposed the Ailment Topic Aspect Model (ATAM+) [127] to capture various ailments
from a corpus of tweets. This model is based on a topic aspect model [128], author-topic
model [152], and it does not consider the temporal information of the text messages (as
we do in this dissertation). Another variant of LDA is temporal topic models which can
be categorized into two groups: Markovian and non-Markov. [169] propose a non-Markov
continuous time model for topic trends which can not be used to predict the user states.
Gruber et al. propose a hidden topic Markov model (HTMM) [59], which assumes that all
the words in a sentence have the same topic and there may be a topic transition between
two consecutive sentences. In the paper [11], Andrews et al. propose a hidden Markov
topic model (HMTM) that assumes that there is a topic transition between two consecutive
words within a document. In the paper [21], Blasiak et al. use a hidden Markov model
to capture topic transition within documents which are subsequently used to classify new
messages. These methods only capture transition of topics within a document or a message,
and they do not capture state transition of users across tweets. There are two other variants
of LDA [23, 68] studying the evolution of topic distributions over time, while our model
studies the transition between a set of topic distributions which does not evolve over time.
Moreover, their models do not capture the topic changes between consecutive messages of a
user. Another recent related work is by [176] which combines keyword distributions with a
shortest path algorithm to find out a monotonically increasing stage progression of an event
sequence. In our problem (HFSTM and HFSTM-A), flu states are not monotonic, and have
transition probabilities, which their method does not learn.

Liangzhe Chen Chapter 2. Survey 15

2.3.2 Topic Model for Social Influence

Most of the topic models mentioned in the previous section only model the generation of
the text without considering the relation, or the social influence among the text authors.
In contrast, Nallapati et al. [116], Zhu et al. [183] and Bi et al. [19] jointly model the
word generation and the link formation in Twitter. Within this line of work, the most
closely related works include COLD by Hu et al. [77], a generative model that considers
text content, temporal information, link structure and community level influence; and a
topic-level influence model for heterogeneous networks by Liu et al [102]. The former models
social influence’s affect on link generation, while the latter models social influence for text
generation. To the best of our knowledge, our model PoLIM is the first that uses weak
supervision to integrate all three aspects: text content, social links, and user influence,
where the user influence controls both the text content and the social links.

2.4 Critical Infrastructure Systems

One of the major applications we study in this dissertation (chapter 6) is analyzing CIS. We
introduce two important CIS problems in the following for a better understanding of the
field.

2.4.1 Infrastructure Vulnerability Analysis.

A number of existing works attempt to model and analyze the vulnerability of critical in-
frastructure systems [53, 92, 156]. Most of them focus on a single network. For instance,
landslide hazard can be analyzed based on real-time data such as SPOT images [92] or re-
mote sensor data [156]. However, modeling and analyzing the vulnerability of interdependent
CI networks are more challenging, because the various interdependencies of critical infras-
tructure networks are challenging. This is mainly due to the fact that interdependencies
between the infrastructures involve multiple dimensions such as types of coupling and inter-
dependencies [141, 130]. For example, there exists a physical interdependency between power
substations and oil refineries for energy generation. Also, during a natural disaster, such as
a hurricane, there exist geographical interdependencies across all the critical infrastructures.
Previous works on vulnerability analysis and simulation of interdependencies between criti-
cal infrastructure systems can be categorized into: empirical approach, agent based, system
dynamics based, economic theory based, and network based approaches (see [120] for a re-
view). Some of the simulation methods might be slow and need to be accelerated in modern
parallel platforms [71, 179, 167, 72, 76, 74]. In addition, modern parallel accelerators, such
as GPUs, could be used to optimize the computation [70, 73, 69, 75]. A few mathematical
frameworks [28, 78, 100] and interdependency models [124, 48, 61] have been proposed for
vulnerability analysis. Most of these works focus on only two critical infrastructures at a

Liangzhe Chen Chapter 2. Survey 16

time. For example, Parandehgheibi et al. [125] study the interdependency between a com-
munication network and a power grid network, and analyze the vulnerability of them as the
minimum number of nodes that should be removed to cause the failures of D nodes in the
other network. Dueñas-Osorio et al. [49] study the fragilities and interdependency between
power and water network. They use a näıve cascade model (random number based) and
Monte Carlo simulation to study the fragility of the system under certain types of attacks.
Albert et al. [7] study the power grid network and determine its ability to transfer power
between generators and consumers (using the connectivity loss metric) when certain nodes
are disrupted.

2.4.2 Influence Maximization and Cascade Analysis.

The influence maximization problem aims to find the best seed nodes which maximize in-
fluence. This has been extensively studied for the Independent Cascade and the Linear
Threshold models [80], where they gave a (1-1/e) approximation algorithm based on sub-
modularity. Much work has focused on designing more efficient algorithms for the original
problem [25, 39], or extending to continuous time models [46], or under uncertainty [38]. All
these algorithms assume that the influence cascades locally through edges. A very recent
work Opera [31] finds critical nodes in a CI network that would maximally decrease the
connectivity in target networks. However, they still use a ‘local’ failure model, which does
not capture the dynamics of CIS (they optimize on a different objective function based on
the number of triangles in the network).

2.5 Graph Analysis

As we construct a correlation graph for multiple sequences in chapter 5, various types of
graph analysis algorithms can be used for our problems. In the following, we give a brief
introduction of related algorithms and explain how our methods are different.

2.5.1 Graph Summary and Sparsification

Graph summary and sparsification aim to find compact representations of graphs which
maintain desired properties. The properties can be defined based on specific user queries [51],
action logs [107], the encoding cost [104], weights of nodes and edges [135], and the drop of
the leading eigenvalue [132]. These algorithms help to reduce the processing cost of large
graphs, and maintain (sometimes amplify) the patterns in the graphs. Unlike these methods,
our summarization algorithm SnapNETS maintains the structural as well as label dependent
properties of a graph.

Liangzhe Chen Chapter 2. Survey 17

2.5.2 Dynamic Graph Analysis

Dynamic graph analysis is important due to the evolutionary nature of many networks we
see nowadays (see [2] for an overview). Many traditional machine learning tasks on static
graphs have been extended to dynamic ones [63, 3, 146] such as clustering and classification,
link prediction, anomaly detection, and trend mining. There has been work in finding
time cut-points according to change of patterns in dynamic graphs. Ferlez et al. [52] and
Sun et al. [153] use the Minimum Description Length principle to detect the cut points
when communities/partitions in the evolving network change abruptly, while [13] uses tensor
decomposition to discover temporal communities in dynamic graphs. These only work on
plain graphs (not labeled graphs) and are community-based. In contrast, our proposed
algorithm SnapNETS studies the patterns in a more general way not restricted to communities
or clusters.

Part I

Individual Independent Sequences

18

Chapter 3

Segmenting Multi-Dimensional Value
Sequences

egmenting temporal data sequences is an important problem which helps with data dynamics
in multiple applications such as epidemic surveillance, motion capture sequences, etc. In this
chapter, we give DASSA, the first self-guided and efficient algorithm to automatically find a
segmentation that best detects the change of pattern in data sequences. To avoid introducing
tuning parameters, we design DASSA to be a multi-level method which examines segments
at each level of granularity via a compact data structure called the segment-graph. We build
this data structure by carefully leveraging the information bottleneck method with the MDL
principle to effectively represent each segment. Next, DASSA efficiently finds the optimal
segmentation via a novel average-longest-path optimization on the segment-graph. Finally
we show how the outputs from DASSA can be naturally interpreted to reveal meaningful
patterns.

We ran DASSA on multiple real datasets of varying sizes and it is very effective in finding
the time-cut points of the segmentations (in some cases recovering the cut points perfectly)
as well as in finding the corresponding changing patterns.

3.1 Introduction

Given a data-sequence of Ebola infections, can we quickly tell when the characteristics of
infected people change, possibly due to a mutation? In this chapter, we study the problem
of automatically segmenting sequences of multi-dimensional data point (with categorical
and/or real-valued features like age, gender, speed, etc.) so as to capture relevant trends
and changes. The data observations can be unevenly distributed temporally and repeated
multiple times in the sequence, naturally generalizing multi-variate time-series.

19

Liangzhe Chen Chapter 3. DASSA 20

Such segmentations can be helpful in many real applications, as they may shed light on
the underlying dynamics and patterns, thereby helping in modeling, anomaly detection, and
also visualization. Consider epidemiological surveillance, where tracking disease propaga-
tion [159] can enhance the chance of a successful intervention and increase the situation
awareness. For example, automatically finding changes in patient characteristics in a se-
quence of infected cases can help us point to changes in the disease itself. In Fig. 3.1(a),
in a series of flu-infections, DASSA finds that the disease infects elder, richer people first,
and then spreads to younger people with lower income. Similarly, figuring out the changes
in how words are used together in user tweets (due to changes in users’ health status) can
help in estimating disease incidence [33]. See Fig. 3.1(b): in a series of flu-related tweets,
we observe a transition between word usage in each segment from infection to recovery. Our
motivation in this chapter is to design a general-purpose scalable segmentation algorithm for
data sequences.

age Y X Income Size #Workers #Vehicles
4.0 4.0 4.0 10.0 0.0 3.0 5.0

Segment:1 4.0 3.0 4.0 10.0 0.0 3.0 2.0
4.0 4.0 2.0 10.0 2.0 5.0 5.0
4.0 3.0 4.0 10.0 2.0 3.0 2.0

age Y X Income Size #Workers #Vehicles
1.0 5.0 7.0 6.0 5.0 1.0 2.0

Segment:2 4.0 5.0 7.0 3.0 0.0 1.0 1.0
4.0 6.0 6.0 7.0 1.0 5.0 4.0
2.0 5.0 5.0 7.0 0.0 3.0 2.0

(a) Segmenting a sequence of flu-cases

(b) Segmenting a sequence of words appearing in tweets

Figure 3.1: Our method DASSA gives meaningful cut-points: (a) Most frequent data values
(discretized) in segments detected in a sequence of flu infections (Portland). (b) Word
clouds for each detected segment in a Twitter keyword trend data (Peru). Size of a word is
proportional to its frequency in the corresponding segment. More discussion in Sec. 3.5.

Informal Problem: Given a multi-dimensional data sequence, automatically find a time
segmentation s.t. consecutive segments are not similarly informative.

Surprisingly, despite its importance, this general problem has not been studied widely. Such
a problem cannot be trivially converted to one in time series, and has many challenges. The
main properties we want a good solution to satisfy are:

P1 (Generality): No prior assumption on either data types or data distributions. The
algorithm should work well regardless even if the data is skewed, or not forming clusters
or not drawn from a known distribution.

P2 (Self-Guided): Automatically find the appropriate number and identity of cut-points
without user input.

P3 (Efficiency): Finish within reasonable time for real datasets.

In this chapter, we present an algorithm DASSA (DAta Sequence Segmentation Automati-
cally), which satisfies all of the three properties. To this end, we introduce three main ideas

Liangzhe Chen Chapter 3. DASSA 21

which may be useful for other segmentation problems as well: (a) looking at all possible
segmentations efficiently using the so-called segment-graph; (b) compressing data in each
segment based on temporal data distributions using Information Bottleneck and Minimum
Description Length; and (c) using a novel path optimization to find the best segmentation,
which automatically regularizes the number of segments and total segment difference. Via
extensive experiments ranging from epidemiological to social, to motion capture datasets,
we show how DASSA can recover high-quality segmentations, and meaningful patterns in
practice. To the best of our knowledge, we are the first to present an efficient, self-guided
method for the purpose of segmenting general data sequences.

3.2 Preliminaries

Information Bottleneck (IB): The IB method [161] compresses one signal X to the
‘bottleneck’ X̃ (much smaller than X in size) without much loss of its information related
to another signal Y . The optimization problem it solves is:

min I(X̃;X)− βI(X̃;Y) (3.1)

where I(·; ·) represents the mutual information between two variables, β is the Lagrange
multiplier. Given |X̃| and p(X, Y), this optimization problem can be solved iteratively [161]
to provide these distributions: p(x̃|x), p(x̃) and p(y|x̃); where x, x̃ and y are possible values
of X, X̃, and Y .

Slonim et. al. [150] develop a variation of IB for word-document clustering, where they use
words as the X signal, documents as the Y signal, and X̃ as the labels for words. In this
formulation, they use hard-clustering (each x is mapped to exactly one x̃) to cluster words
so that the information in the documents are maximally kept. They initialize the problem
with no compression (X̃ = X), and greedily choose the label pairs with smallest marginal
loss δI(X̃, Y) (mutual information between X̃ and Y) to merge. The loss by merging x̃i and
x̃j is defined as follows:

δI(x̃i, x̃j) = (p(x̃i) + p(x̃j)) ∗DJS[p(y|x̃i), p(y|x̃j)] (3.2)

where DJS is the Jensen-Shannon divergence.

Minimum Description Length (MDL): The MDL principle [60] suggests that the best
hypothesis for a given set of data, which captures the most regularity in the data, is the one
that leads to the best compression of the data [166, 33]. MDL finds the best model which
minimizes

CostT = Cost(M) + Cost(X|M) (3.3)

where Cost(M) is the cost to describe the model, Cost(X|M) is for describing the data using
the model.

Liangzhe Chen Chapter 3. DASSA 22

3.3 Overview

We present the main principles of DASSA (Alg. 1 shows the basic steps) next.

Algorithm 1 Pseudo-code for DASSA
Require: D
Ensure: The best segmentation S∗

1: [X̃, p(x̃|x)]=Cluster (D).//Finding data clusters using IB and MDL (Sec. 3.4.2)
2: Build a node for every possible time segment y.//Constructing G (Sec. 3.4.1)
3: Add node s and t to represent the start and end time of D.
4: Create edges for adjacent y’s.
5: Calculate the edge weights as the Euclidean distance between the corresponding conditional

cluster distribution p(x̃|y).
6: S∗ = DAG-ALP (G, h, s, t).//Finding the average longest path as S∗ (Sec. 3.4.3)

Definition 3.1 (Data sequence) A data sequence D is a list of tuples (x1, t1), . . . , (xN , tN),
where (xi, ti) is an observation of d-dimensional vector xi at time ti.

Let X =
⋃
i{xi}. W.L.O.G. we assume time stamps are sorted, i.e., t1 ≤ t2 ≤ . . . ≤ tN .

Note that both xi’s and ti’s are not necessarily unique. We can have observations with the
same data value, and there can be multiple data observations having the same time stamp.
This general definition of data sequences covers special cases like time series, where the
number of data observations at each time is the same; and event sequences, where x′is are
one-dimensional categorical values. We want to design an algorithm that automatically finds
segmentations for such data sequences, and that satisfies all the desired properties (P1-P3).

Main Ideas: To avoid introducing parameters like the desired number of segments and
to find the segmentation in an automatic manner (P2), our search space would inevitably
be the set of all possible segmentations, which is exponential in size. Our first main idea
is to use a graph data structure (called the segment-graph G) to efficiently represent and
search among all possible segmentations of the data sequence. See Fig 3.2(c) for an example
G. The node set of G mainly represents all possible time segments Y = {yi,j} (yi,j is the
segment from time i to j), s and t represent the start and end time, and the edge weights are
distances (i.e. the ‘difference’) between adjacent time segments. With this data structure,
segmentations of the data sequence are now mapped to paths from start time s to end time
t in G. Hence, finding the best segmentation is now converted to the problem of finding
the ‘best’ start-to-end path in the segment-graph G. To solve the segmentation problem
using G, two important questions remain unsolved: Q1: how do we define the difference
metric w(·) between two time segments, and Q2: what is the best start-to-end path in the
segment-graph, and how do we find it efficiently?

Q1: Segment difference. Due to P1, we cannot use model-based methods (which typically
assume certain data distributions like Gaussians in each segment or overall in D) for our

Liangzhe Chen Chapter 3. DASSA 23

problem. Our second main idea is to cluster data values based on their ‘temporal closeness’,
and then represent each segment using their conditional cluster distributions (p(x̃|y), the
probability of cluster x̃ given a segment y). We can then measure the segment difference
simply as the difference between their p(x̃|y)’s. Intuitively, clusters based on how data values
are temporally distributed over all possible segments Y naturally captures the ‘similarity’
between data values, which is well-suited for segmentation problems: if two data values
always occur close in time at multiple granularities, they contain similar information as to
defining the best segmentation. A major advantage is that clustering ‘temporally close’ data
values is not data-type specific and it does not need any prior assumptions on the data
distributions. It is also more general than the traditional clustering of data with similar
values, as data values with similar temporal occurrence may not have similar values.

Due to P2, we want to find these temporally similar data clusters in a principled, unsu-
pervised fashion. The Information Bottleneck (IB) formulation is very well-suited for this
task—thinking of segments Y as ‘documents’ and data values X as ‘words’ allows us to lever-
age IB to cluster data values with similar segment distributions p(y|x) without specifying
an explicit distance metric. As IB is non-parametric, to automatically find the appropriate
number of clusters, we further design and optimize a novel Minimum Description Length
code. Both IB and MDL are based on sound information theory principles. Note that in
contrast to other methods (topic modeling, biclustering, etc), IB has exact formal solutions
and other advantages.

Q2: Best path. The main challenges are (a) how to define this best path; and (b) how
to find it efficiently in the potential exponential search space. In the optimal segmentation,
we require the adjacent time segments to be different which may näıvely suggest choosing a
path with the maximum sum of weight. At the same time, we want to avoid over-segmenting
(having more segments than needed). Due to these considerations, instead, we propose to
define the best path in G as the one that has the maximum average edge weight. This
definition intrinsically balances the difference of segments and the number of segments, and
finds the segmentation automatically without setting the number of segments as an input
parameter (P2). We further propose a novel efficient DAG-ALP algorithm for finding the
average longest path for DAG.

3.4 Details of DASSA

We now give details about DASSA. First, we introduce smin as the unit time length, and
divide the time period into these small time units. Hence, a time cut point ci can be defined
as ci = tmin+ i ·smin, i ∈ N, and tmin ≤ ci ≤ tmax, where tmin = min(ti), and tmax = max(ti).
Now we define a time segment.

Time segments and MTS: A time segment yi,j is a time interval between any two cut
points [ci, cj). A Minimum Time Segment (MTS) is a time segment yi,j between two adjacent

Liangzhe Chen Chapter 3. DASSA 24

cut points, i.e., j = i+ 1.

Naturally following, all MTS’s have length smin, and they are the smallest time segments of
our interest. We further define the set of all possible segments Y = {yi,j|cj − ci ≤ smax},
where we assume smax is the maximum segment size we allow in a segmentation (like a year
in a Twitter dataset). In experiments, when a natural upper bound is available, we set the
smax accordingly, otherwise we set it trivially as tmax − tmin. Note that, we introduce smin
and smax mainly to incorporate domain knowledge if there’s any. Our algorithm still looks
at segments at all granularities of all sizes (in multiples of smin) as we explain later. In
principle, we can set these parameters via cross validation, but our results are robust when
there are slight changes of them.

Segmentation: A segmentation S is a set of consecutive segments S = {ya1,a2 , . . . , yam,am+1}
where each yai,aj ⊂ Y and ca1 = tmin, cam+1 = tmax.

We show a running example data sequence in Fig. 3.2(a). The optimal segmentation is shown
with the red dash line, which captures the fact that 1, 100, 2 occur together in the sequence.

Time Value
1 1
1 100
2 2
3 50
4 100
4 1
5 2
6 5

(a) (b) (c)

Figure 3.2: (a) shows an example data sequence, (b) results from our Cluster algorithm, X
and Y are connected if the data value x appears in the corresponding y. Values 1, 100, 2
are merged to cluster a because they occur together in the sequence, (c) the segment-graph
G, the path/segmentation found by DASSA is marked as red.

3.4.1 Segment-Graph

We construct a Directed Acyclic Graph (DAG) segment-graph G (V,E,W) to efficiently
represent and search among all possible segmentations. We show G’s structure below.

Nodes (V): For each segment yi,j in Y , we construct a corresponding node in a graph
G. We also add two extra nodes to the graph: a source node s and a target node t (i.e.,
V = {y1,2, y1,3, . . . , y2,3, . . .} ∪ {s, t}).

Edges (E): We create a directed edge from node yi,j to node yk,l iff j = k, i.e., they are
adjacent segments. Source node s links to all nodes with start time tmin; target node t,

Liangzhe Chen Chapter 3. DASSA 25

absorbs links from all nodes with end time tmax.

G is clearly a DAG (as we cannot go back in time), and every path from s to t is one-to-
one mapped to a segmentation of the sequence. Hence the segmentation problem is now
converted to the problem of finding the best path in G.

3.4.2 Q1: Defining Edge Weights

The edge weight w(e(yi,j, yj,k)) measures the difference between adjacent segments yi,j and
yj,k. We now propose our algorithm Cluster, which combines IB and MDL to automatically
cluster data values based on their segment distributions p(y|x) to capture their ‘temporal
similarity’, and define the edge weight as the difference between p(x̃|y). To facilitate calcu-
lating the occurrence of the same value, for features with real values, we discretize them to
a constant number of bins of equal size/width as in past literature [149]. In the following,
we assume all xi

′s are discretized.

Finding clusters using IB We define the set of clusters we want to find as X̃ =
{x̃1, x̃2, · · · , x̃l}, where each x̃i contains a set of x′s in the data space X, and l is the number
of clusters (we discuss how to automatically find l in the next section). We assume each x
belongs to only one x̃.

We want to cluster X to X̃ so that x′s with similar occurrence in Y are merged in the same x̃.
For this task, we re-purpose the word/document formulation of IB [150], designed to cluster
words based on the word-document structure. We interpret the set of data values X in our
setting as the ‘words’ and the set of all possible time segments Y as the ‘documents’. Since
such IB formulation would cluster data values with similar segment distributions p(y|x) (in
an information theoretic way without specifying a distance metric), we essentially cluster
data values with similar temporal occurrence over all time segments. We initialize X̃ = X
(each xi in its own cluster x̃i), then iteratively merge x̃i, x̃j pairs which minimizes the loss of
temporal information specified as δI(x̃i, x̃j) = (p(x̃i) + p(x̃j)) ∗ DJS[p(y|x̃i), p(y|x̃j)], where
DJS is the Jensen-Shannon divergence. Such an iteration process continues until we reach
the desired number of clusters l∗. In implementation, we use a priority queue to efficiently
find the best data values to merge in each iteration, and reduce the time complexity from
O((|X| − l)|X|2) to O((|X| − l)|X| log |X|).

Number of clusters using MDL To automatically find the appropriate number of clusters
l∗ in D, we propose to use the MDL principle: the best model for the data is the one that
expresses the data losslessly with the smallest code length. To apply MDL, we construct a
model class for any cluster number l which combines the corresponding cluster information
and some other information (which is needed to express the data losslessly), and then select
the best model (and the corresponding l∗) based on the data and the model cost.

Model description. As IB is a lossy compression method, we cannot express the data losslessly
using just the cluster information. Hence, we augment the IB results with the following

Liangzhe Chen Chapter 3. DASSA 26

additional information: (a) p(xj|x̃i), data value distribution in each cluster; (b) p(y|x̃i), the
probability of a cluster being in a time segment; and (c) p(x̃i), the prior for x̃i. Formally
our model is θ = {l, N, |Y |, p(x̃i|xj), p(y|x̃i), p(x̃i), p(xj|x̃i)}, where l = |X̃|, and N = |D|.
To describe the model, we need to encode the set θ ∈M. So our model description cost is:

C(M) = log∗ l + log∗N + log∗ |Y |+N log l

− (l|Y |+ |X̃|+ l|X|) log ε (3.4)

where ε is the precision for the probability values (ε = 10−5 indicates a precision of 0.00001),
and log∗(n) = log n + log log n + . . . (it is roughly the number of bits to encode an integer
n ≥ 1).

Data description. To describe the data, näıvely one can describe (xj, {y|tj ∈ y}) for all y
covering tj. We observe that all time segments {y|tj ∈ y} containing xj must also contain
the MTS that covers xj (followed from our segment definition). Hence, the likelihood of
observing xj is equivalent to the likelihood of observing it in the MTS that contains it.
Using this observation, we can reduce the number of (x, y) pairs we need to describe from
|X||Y | to |X|. We then derive the final data description cost as:

Cost(X|M) = − log2 L(X,Y |θ) = −
∑

(xj ,y)

log2 p(xj , y|θ)

= −
∑

(xj ,y)

log2 p(xj |x̃∗, θ)p(y|x̃∗, θ)p(x̃∗|θ) (3.5)

where x̃∗ is the corresponding cluster for x.

The total cost. Combining the above, the total cost of this description based on the model
we described is CT = C(M) +C(X|M) = Eq. 3.4 +Eq. 3.5. The best model minimizes CT ,
i.e. θ∗ = arg min

θ
CT , and θ∗’s corresponding l value is the optimal number of clusters. This

cost function is hard to optimize: hence we leverage a greedy approach that naturally fits the
iteration process we introduced before. We keep greedily merging x̃i, x̃j, and for each smdl
merges, we calculate the corresponding CT . This iteration process stops (reaching optimal
l∗) when CT begins to increase.

Final edge weights Once we find X̃ and p(x̃|x), we can calculate the cluster distribution
p(x̃|y) in each segment y by counting the number of times members of each cluster occur
in the segment. And the edge weight between segments ya and yb in G can be defined as
w(ya, yb) = Dist(p(x̃|ya), p(x̃|yb)). We want that any distance metric Dist(·, ·) we use should
satisfy the following property:

Property 1 For any three consecutive segments u, v, t, and if v can be further divided
into segments v1 and v2 (i.e., if v = [ci, cj), v1 = [ci, ck), v2 = [ck, cj)), then w(e(u, v)) +
w(e(v, t)) ≤ w(e(u, v1)) + w(e(v1, v2)) + w(e(v2, t)).

Liangzhe Chen Chapter 3. DASSA 27

Intuitively, this property makes the segmentation problem well defined in the sense that
adding more cut-points always gives us more difference/pattern changes (measured by the
sum of edge weights)—hence ‘zooming-out’, i.e., aggregation by looking at larger time-
segments should only decrease the difference. Note that capturing more pattern changes does
not always lead to a better segmentation: having a segmentation with many small changes
may be less desirable than one which captures only a few globally significant changes at the
right segment sizes. Hence how to find the best segmentation is a separate problem.

We use the popular Euclidean distance between distributions (like used in [103]), i.e., w(e(ya, yb))
= DEU(p(x̃|ya), p(x̃|yb)), which satisfies property 2. (See supp. Appendix A). The proof fol-
lows from the subadditivity (triangle inequality) of DEU . In contrast, the well-known KL
divergence does not satisfy this property in general.

3.4.3 Q2: Finding the Best Path

In the weighted G, the problem of finding the optimal segmentation is now reduced to finding
the ‘best’ path from the set of all valid paths P in G.

We argue that a good segmentation should regularize the total segment difference with the
number of segments: having many small changes is less desirable than capturing just the
significant ones. Hence, we propose to solve the Average Longest Path problem (ALP) to
find the best path.

Given: Segment-graph (DAG) G (V,E,W) with a start node s and end node t.

Find: Path S∗ from s to t with maximum average weight: S∗ = arg maxS∈P
∑

e in S w(e)

|S| .

We present a novel ALP algorithm DAG-ALP with O(h · |E|) on general DAGs (h is the
maximum path length in the DAG). Our idea is that the ALP from s to t must also be
the longest (most heavily weighted) path among all paths with the same number of nodes.
Hence, we calculate all the longest paths with different lengths (number of nodes) from s
to t, and find the one giving the maximum average edge weight. More concretely, DAG-ALP
uses a multi-layer structure, where the first layer L0 contains only the beginning node s, and
layer Li contains the nodes which can be reached from s by i steps. When we iterate through
layers, we maintain the weight (lpi(v)) of the longest path from s to v ∈ Li, and the parent
node of v in Li (π(v, i)) in the longest path. After all iterations, we get longest paths from
s to t with different lengths, and we output the one with the largest average weight. Alg. 2
shows the brief pseudo-code. Due to the structure of our segment-graph, DAG-ALP finds the
ALP in G in O(E) time (as h is bounded by the length of the data sequence).

Time and space complexity The pseudo-code of DASSA is shown in Alg. 1. With priority
queue, reduction of unnecessary data description, and DAG-ALP, our final time complexity
is O((|X| − l∗)|X| log |X| + |E|). To find the ALP we only need to store the previous layer
in DAG-ALP, hence the overall space complexity of DASSA is O(|D|). In practice, for all

Liangzhe Chen Chapter 3. DASSA 28

Algorithm 2 Pseudo-code of DAG-ALP
Require: a weighted DAG G (V, E, W), h, s, t
Ensure: Average longest path

1: Layer0 = {s} // initialize the first layer

2: lp0(s) = 0 // the longest path form s to s with length 0 is initialized as 0

3: for i = 1 to h do
4: Layeri ={nodes directly connected to any nodes in Layeri−1}
5: Calculate lpi(·) for nodes in Layeri using lpi−1(·)
6: ALP = arg max(lpi(t)i)

datasets used in our experiments, DAG-ALP finishes within 40s, and the complete algorithm
takes 30m to run on average (including one with 2 million data observations), satisfying P3.

3.5 Experiments

Setup. Our experiments are conducted on a 4 Xeon E7-4850 CPU with 512GB of 1066Mhz
main memory and DASSA takes 30m to run on average for our datasets. For all the datasets,
we set a discretization level k = 10 as it leads to a reasonable running time, and the perfor-
mance is stable around 10 (k = 5, 15 gives similar results). When constructing the segment-
graph in practice, we ignore segments with less than 5% of |D| data values (which is a small
fraction of all segments), as they have too few observations, and are not interesting for the
final segmentation.

Datasets. DASSA works for general data sequences, hence we collected real world datasets
from different domains to test. Tab. 3.1 shows the content of each data sequence. These
sequences contain different data types like age, town Id (categorical), sensor observations
(real), etc., different time-units and some of them (like Portland , Ebola) have arbitrary time
stamps (a data point can have any time stamp value, and as a result there may be different
number of data points at each time stamp).

Dataset Domain smin smax Data sequence D Ground
truth

Portland Epidemiology 0.2 1.0 {[age, y, x, income, size,#workers,#cars]i, ti}Ni=1 X
ChickenDance Motion Seq. 10s 300s {[Sensor1, Sensor2, Sensor3, Sensor4]i, ti}Ni=1 X
Twitter Social Media 10d 100d {[#(Word1),#(Word2), . . . ,#(Word12)]i, ti}Ni=1 -

Ebola Epidemiology 4d 48d {[Infection Status, Town ID]i, ti}Ni=1 -

PUC-Rio Motion Seq. 150s 600s {[6 demographical, 12 sensor features]i, ti}Ni=1 X

Table 3.1: Summary of Datasets

Baselines. To the best of our knowledge, there is no algorithm that finds segmentations for
general data sequences as we do. Hence, we first adapt a time series algorithm Dynammo [98]
(also used in [109]) as our baseline. Additionally, we compare with three variations of DASSA
(EMP , TopicM , LP in Tab. 3.2). Note that unlike DASSA which detects the no. of cut points

Liangzhe Chen Chapter 3. DASSA 29

Baseline Description
EMP Defines the distance between segments based on the empirical data distribution

p(xj|y) instead of p(x̃i|y).
TopicM Finds clusters of values using topic modeling instead of our IB-based data

clustering.
LP Finds the longest path instead of the ALP as the optimal segmentation.
Dynammo Averaging data points in a sliding window to construct multi-dimensional time

series, then feed the time series and the no. of cut points to Dynammo.

Table 3.2: Baselines description.

automatically, Dynammo needs this as an input. We set this value from the ground truth
when one is available, otherwise we set it as the number detected by DASSA.

3.5.1 Results

Testing each component of DASSA: We check the number of clusters found by MDL.
Fig. 3.3(a) shows that the MDL-curve is indeed near-convex, and it suggests an optimal
number of clusters. We examine the quality of the detected clusters by designing a Silhouette
score Qc to measure the ‘temporal similarity’ of data values in the clusters. The Silhouette
score (Fig. 3.3(b)) shows that the data values in the clusters we found truly appear close
in time (all Qc > 0.5). We also compare our ALP path optimization with the longest path
(LP) optimization, which finds the path with the maximum sum of edge weights. Our ALP
path optimization outperforms the LP optimization in all of the datasets with ground truth
segmentations (see Tab 3.3).

� �� ��� ��� ���
���

����

�

����

���

����

���

����

���� ��
	

���� �� �������� ���

�
��
� �

�� �� ��
����

�����

	��
�

l*=48

(a) MDL curve for ChickenDance 1

0

0.5

1

Arge
ntina Peru para

guay
Port

land

Chic
kenD

ance
1

Chic
kenD

ance
2

Ebo
la
PUC

−Rio

Q
c

(b) Qc scores

Figure 3.3: (a) MDL curves of ChickenDance 1: CT vs. number of clusters l. (b) Qc scores.
Note Qc > 0.5 for all datasets—indicates high quality clusters.

Quality of segmentations: We measure our final segmentation output here. We show the
F1 score for datasets with ground truth segmentation (Portland , ChickenDance, PUC-Rio),

Liangzhe Chen Chapter 3. DASSA 30

Dataset DASSA TopicM EMP LP Dynammo
ChickenDance 1 1 0.85 0.76 0.63 0.57
ChickenDance 2 1 0.6 0.90 0.54 0.71
Portland 1 1 0.66 0 1
PUC-Rio 0.66 0.46 0.25 0.44 0.25

Table 3.3: F1 score of DASSA, TopicM , EMP , LP and Dynammo on different datasets with
ground-truth segmentation: DASSA gets perfect cuts in most of the datasets.

and our case study results for Twitter and Ebola.

Quantitative evaluation In short, DASSA gives much better F1 scores.

Portland : DASSA finds the exact ground truth (F1 = 1 in Tab. 3.3), and EMP has a much
lower score (∼0.6). TopicM and Dynammo also gets F1 = 1 in this dataset, but in all other
datasets, DASSA outperforms both of them. We show the most frequent values in the two
segments of the segmentation found by DASSA in Fig. 3.1(a). It shows that elderly people,
with higher incomes, larger number of workers in family, and more vehicles are infected
first. Then younger people with lower incomes, fewer vehicles get infected. It illustrates that
DASSA is capable of detecting the pattern of disease propagation. And the results are easily
interpretable.

ChickenDance: We find the exact ground truth (F1 = 1). As shown in Fig. 3.4, DASSA
discovers all the distinct chicken dance motions precisely. In contrast, the cut points detected
by EMP , TopicM and Dynammo do not correctly find the time when a different motion takes
place: they either miss the correct cut points, or have unnecessary additional ones.

Figure 3.4: DASSA segmentation results for ChickenDance. The cut points of Dynammo
(purple in the 1st row), TopicM (blue in 2nd row), and EMP (green in 3rd row) are shown
below the DASSA.

PUC-Rio: This dataset was originally collected for classification tasks. Finding the difference
between actions is itself a non-trivial task. Interestingly, DASSA is powerful enough to
capture some meaningful segments. We see that in Tab. 3.3, DASSA reaches a F1 score of
around 0.66, which again outperforms both EMP and TopicM .

Case studies DASSA gives meaningful segments, compared to baselines.

Liangzhe Chen Chapter 3. DASSA 31

Twitter (Peru, Paraguay, Argentina): To explore the segmentation found by DASSA, we
look at users’ tweets in each segment and count the number of each word to draw word
clouds. The size of a word in the word cloud is proportional to the frequency of its usage
in the segment. As shown in Fig. 3.1(b), DASSA finds three segments. We observe that the
sizes/frequencies of infection-related words like ‘headache’, ‘tired’ and ‘fever’ are decreasing
from segment to segment. On the other hand, the frequency of the word ‘remedy’ gradually
increases. This matches what we expect from a typical infection cycle: from getting exposed,
to getting sick, and finally to be cured. Recent work [33] also matches what we found in
the word cloud (unlike us they use complex temporal graphical models to figure out similar
word clouds). In contrast, we find that Dynammo and TopicM fail to capture meaningful
word transitions.

Ebola: We explore the feature values in the two segments detected by DASSA. In Fig. 3.5(a)
we see that the death and newly confirmed cases reduce significantly from segment 1 to
segment 2, which shows a sign of increased caution for the disease. We also notice from the
change of distribution of towns (Fig. 3.5(b)) that at first the infection mostly occurs in town
2 and 3 which are ‘Kono’ and ‘Kambia’ in Sierra-Leone. Then it spreads to other towns
(e.g., town 9 which is ‘Bo’ in Sierra-Leone). DASSA automatically finds a segmentation that
captures this disease propagation pattern; giving a better understanding of the situation.

new
_n

on
ca

se

new
_s

usp
ec

te
d

new
_p

ro
bab

le

new
_c

on
fir

m
ed

dea
th

_s
usp

ec
te

d

dea
th

_p
ro

bab
le

dea
th

_c
on

fir
m

ed

Infection Status

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

new
_n

on
ca

se

new
_s

usp
ec

te
d

new
_p

ro
bab

le

new
_c

on
fir

m
ed

dea
th

_s
usp

ec
te

d

dea
th

_p
ro

bab
le

dea
th

_c
on

fir
m

ed

Infection Status

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

(a) Change of infection status

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Town ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Town ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

(b) Change of infection towns

Figure 3.5: DASSA results for Ebola. (a) Distribution of infection status for the two segments
detected. (b) Distribution of infection towns for the two segments detected.

3.6 Discussion

A segmentation algorithm implicitly contains its own distance measurements between time-
segments. In this chapter, we define the distance as a carefully designed metric between the
associated ‘co-occurrence’ cluster distributions in the segments (p(x̃|y)). One might natu-
rally think to define the segment distance as the distance between the clusters in segments
themselves; but doing so has multiple issues. As an example, we ran one classic subspace
clustering algorithm (Fires [85]) on our datasets. We observe that Fires simply does not

Liangzhe Chen Chapter 3. DASSA 32

output any clusters for many segments (for example the last two segments in the optimal seg-
mentation of Argentina, Paraguay , Peru), and it cannot detect the same good segmentations
as DASSA does. We believe similar problems would happen to other traditional clustering
algorithms as well. The cluster-based distance measurements intrinsically do not handle well
datasets where there is no clustering. In addition, using the clusters themselves to represent
the dataset will lose information as many data points are not in any of the clusters.

3.7 Conclusions

We introduce DASSA, a novel, general, self-guided and efficient algorithm, to automatically
segment data sequences. We construct a segment-graph to efficiently represent and search
among all possible segmentations. Then we propose an IB-MDL-based clustering algorithm
to capture temporal similarities between data values. Finally, a novel DAG-ALP algorithm
is presented to automatically find the segmentation. DASSA has good performance on all
datasets we collect: discovering ground truth, finding high quality segmentations, and pro-
viding interpretable real patterns.

Our framework is general for segmentation problems and extending it for more complex
sequences (such as image sequences) can be interesting future work. Future work can also
look into a parallelized or online version of DASSA.

Chapter 4

Modeling and Predicting Pattern
Changes behind Tweets

Surveillance of epidemic outbreaks and spread from social media is an important tool for
governments and public health authorities. Machine learning techniques for nowcasting
the flu have made significant inroads into correlating social media trends to case counts
and prevalence of epidemics in a population. There is a disconnect between data-driven
methods for forecasting flu incidence and epidemiological models that adopt a state based
understanding of transitions, that can lead to sub-optimal predictions. Furthermore, models
for epidemiological activity and social activity (like on Twitter) predict different shapes of
volume changes and have important differences.

In this chapter, we propose two temporal topic models (one unsupervised model as well
as one improved weakly-supervised model) to capture hidden states of a user from his/her
tweets, and aggregate states in a geographical region for better estimation of trends. We
show that our approaches help fill the gap between phenomenological methods for disease
surveillance and epidemiological models. We validate our approaches by modeling the flu
using Twitter in multiple countries of South America. We demonstrate that our models
can consistently outperform plain vocabulary assessment in flu case-count predictions, and
at the same time get better flu-peak predictions than competitors. We also show that our
fine-grained modeling can reconcile some contrasting behaviors between epidemiological and
social models.

4.1 Introduction

Web searches and social media sources, such as Twitter and Facebook, have emerged as
surrogate data sources for monitoring and forecasting the rise of public health epidemics.
The celebrated example of such surrogate sources is arguably Google Flu Trends where

33

Liangzhe Chen Chapter 4. HFSTM 34

user query volume for a handcrafted vocabulary of keywords is harnessed to yield estimates
of flu case counts. Such surrogates thus provide an easy-to-observe, indirect, approach to
understanding population-level health events.

Recent research has brought intense scrutiny of Google Flu Trends, often negative. [91]
provide explanations for Google Flu Trend’s lackluster performance. Some of the reasons are
institutional (e.g., a cloud of secrecy about which keywords are used in the model, affecting
reproducibility and verification), some are operational (e.g., lack of periodic re-training),
while others could be indicative of more systemic problems, e.g., that the vocabulary for
tracking might evolve over time, or that greater care is needed to distinguish which aspects
of search query volume should be used in modeling. These problems are not unique to Google
Flu Trends; they would resurface with any syndromic surveillance strategy, e.g., developing
a flu count modeler using Twitter.

Motivated by such considerations, we aim to better bridge the gap between syndromic
surveillance strategies and contagion-based epidemiological modeling such as SI, SIR, and
SEIS [10]. In particular, while models of social activity have been inspired by epidemiological
research, recent work [111, 175, 142] has shown that there are key aspects along which they
differ from biological contagions. Specifically, evidence from [111, 44] shows that the activity
profile (or the number of new people using a hashtag/keyword) shows a power-law drop—
in contrast standard epidemiological models exhibit an exponential drop [64]. Also, there
is some evidence that hashtags of different topics show an exposure curve which is not
monotonic, resembling a complex contagion [142].

In this chapter, we show that we can reconcile the apparently contrasting behaviors with
a finer-grained modeling of biological phases as inferred from tweets. For example, sample
tweets “Down with flu. Not going to school.” and “Recovered from flu after 5 day, now
going to the beach” denote different states of the users (also see Figure 4.1). We argue
that correcting for which epidemiological state a user belongs to, the social and biological
activity time-series are actually similar. Hashtags and keywords merge users belonging to
different epidemiological phases. We separate these states by using a temporal topic model
in this chapter. In addition, thanks to the finer-grained modeling, our approach gets better
predictions of the incidence of flu-cases than direct keyword counting and also sometimes
gets better predictions of flu-peaks than sophisticated methods like Google Flu Trends.

Our contributions are:

1. We propose temporal topic models (HFSTM and HFSTM-A) for inferring hidden bio-
logical states for users, and an EM-based learning algorithm for modeling the hidden
epidemiological state of a user. The HFSTM-A model is robust to noisy and large
vocabularies.

2. We show via extensive experiments using tweets from South America that our learners
indeed learn meaningful word distributions and state transitions. Further, our methods

Liangzhe Chen Chapter 4. HFSTM 35

S/RE IS

Had good sleep this morning!

Going to see my favourite band

My neck hurts

No word can describe the

amount of pain I am in

I am in bed with the worst flu
I should have gotten the vaccine

Starting to feel better

Going to the concert tonight

Figure 4.1: A toy example showing possible user states and a tweet pattern associated with
each state when a user is infected with flu for a time period

can better forecast the flu-trend as well as flu-peaks by aggregating user states in a
region over a time period.

3. Finally, we show that the state information learned by our models reconciles the social
contagion activity profile with standard epidemiological models.

Our work can be seen as a stepping stone to better understanding of contagions that occur
in both biological and social spheres.

4.2 Formulation of Models

We formulate our models in this section. The hypothesis is that a tweet stream generated by
a user can be used to capture the underlying health condition of that particular user, and that
the health state (e.g., flu state) of a user remains the same within a tweet. Then we use our
models to capture the flu states of a user–which are S (healthy), E (exposed), or I (infected)–
based on the classic flu-like Susceptible-Exposed-Infected-Susceptible SEIS epidemiological
model. These states model the different health conditions of a person throughout the lifecycle
of the infection. In this study, we first introduce the HFSTM model. Then we show the
limitation of HFSTM, and propose an improved model HFSTM-A (HFSTM with aspects) to
address the issue.

4.2.1 Hidden Flu-State from Tweet Model (HFSTM)

A tweet is a collection of words and a tweet stream is a collection of tweets. The number
of tweets varies across users and the number of words in a tweet varies within and across
users. We denote the t-th tweet of a user by Ot = 〈wt1, wt2, . . . , wtNt〉 where wtn denotes
the n-th word in the tweet and Nt denotes the total number of words in the tweet. Let
Ou = 〈O1, O2, . . . , OTu〉 be the tweet stream generated by a user u and Su = 〈S1, S2, . . . , STu〉
be the underlying state of the stream Ou. Here Tu denotes the length of the stream of a

Liangzhe Chen Chapter 4. HFSTM 36

Table 4.1: Symbols used for HFSTM and HFSTM-A
Symbol Meaning
S Flu state
St Flu state for the t-th tweet
ε State switching parameter
π Initial state distribution
η Transition probability matrix
l Binary background switching variable
x Binary switch between flu and non-flu words
y Aspect of word
λ Parameter for the Bernoulli distribution for l
c Parameter for the Bernoulli distribution for x
φ Topic distribution
σ Prior for l when aspect is introduced
γ Prior for x when aspect is introduced
Tu Total number of tweets for the u-th user
Nt Total number of words in t-th tweet
w Word variable in the template model
wtn The n-th word in the t-th tweet

TopicM Non-flu related topic
θ Prior for non-flu related topics
α Hyper parameter for topic distributions
ψ State switching variable
K Total number of states
β Dirichlet parameter for word distributions
U Number of users

user u and St ∈ {S,E, I}. Let O = 〈O1,O2, . . . ,OU〉 be the collection of tweets for U users,
from which we aim to learn the parameters of our model. We use K to denote the number
of states that St can take (see Tab. 4.1 for notation).

Our initial model—Hidden Flu-State from Tweet model HFSTM—is a probabilistic graphical
model which captures the tweet structure of a flu-related tweet. It is a temporal topic model
for predicting the state sequence of a user given Ou and is illustrated in Fig. 4.2(a). An
expansion of the plate notation for the same is illustrated in Fig. 4.2(b). In this model
each word w for Ot ∈ Ou is generated when the user is in a particular flu state (St) or the
user talks about a non-flu related topic (TopicMi). For example, in the message “I have
caught the flu. Feeling feverish. Not going to school” the words ‘flu’, ‘feverish’, ‘caught’ are
generated because the user is in the “infected” state and the words ‘going’ and ‘school’ are
generated by non-flu related topics. Sometimes a word can be generated due to noise which
is also accounted for in our model.

Liangzhe Chen Chapter 4. HFSTM 37

η"

l

w

c x

s

λ"

ψ

ε

ϕk

β

z θ

N
T

π

K

α

U

(a) HFSTM (b) State transition

Figure 4.2: (a) Plate notation for HFSTM: The variable S captures the hidden state of the
user in which the user generated this tweet. The LDA-like topic variable TopicM captures
non-flu related words. (b) HFSTM state variables expanded: Each message Ot is associated
with a state St, which remains the same for flu-related words in Ot. Switching from one
state to another is controlled by a binary switching variable ψ and the next state St+1 from
the current state St is drawn using transition probabilities η.

The generative process for the model is shown in Alg. 3. A binary variable l determines
whether or not a word is generated from a background distribution. The binary variable
x determines whether the current word is generated from non-flu related topics or flu-state
distributions. The value of l and x are generated from Bernoulli distributions parameterized
by λ and c. The non-flu related topics follow the LDA like mechanism [24]. The state
for the first tweet is drawn from the initial distribution denoted by π. We assume that the
states of the subsequent tweets are generated due to a state transition or by copying from
the previous state which is determined by a binary switching variable ψ with prior parameter
ε. The state St (for 2 ≤ t ≤ Tu) of the subsequent tweets are drawn from transition matrix
η and previous state St−1 with probability ε or copied from the previous state St−1 with
probability 1− ε. Once the state of a tweet is determined, a word is generated from a word
distribution defined by that state.

Let Ot = (w1, . . . , wN) be the words that are generated when a user is in a particular state.
The likelihood of the words generated by a user in that state is given below.

p(Ou) =
∑
St

p(Ou, St) =
∑
St

p(O1 . . . , OT , St)

=
∑
St

∑
St−1

p(Ot|St)p(St|St−1)p(Ot−1, St−1) (4.1)

[11] show that such kind of likelihood function is intractable. In HFSTM the unknown
parameters that we want to learn are H = {ε, π, η, φ, λ, c}. The posterior distributions over

Liangzhe Chen Chapter 4. HFSTM 38

Algorithm 3 Generator(λ, c, η, π, α, β, ε) for HFSTM

Require: A set of parameters.
Ensure: Topics and flu state of each user.

1: Set the background switching binomial λ
2: Choose φ ∼ Dir(β) for the non-flu topics, flu states, and background distribution
3: Choose initial state s1 ∼ Mult(π)
4: Draw each row of η using Dir(α) {Trans. matrix}
5: Draw θ ∼ Dir(α)
6: for each tweet 1 ≤ t ≤ Tu do
7: if not the 1st tweet in the corpus then
8: Draw ψt ∼ Ber(ε)
9: if ψt = 0 then

10: St ← St−1

11: else
12: St ← Mult(ηSt−1)
13: for Each word wi, 1 ≤ i ≤ Nt do
14: Draw li ∈ {0, 1} ∼ Ber(λ) {Background switcher.}
15: if li = 0 then
16: Draw wi ∼ Mult(φB) {Draw from background distribution.}
17: else
18: Draw xi ∈ {0, 1} ∼ Ber(c)
19: if xi = 0 then
20: Draw zi ∼ Mult(θ)
21: Draw wi ∼ Mult(φzi) {Draw from non-flu related distribution.}
22: else
23: Draw wi ∼ Mult(φst) {Draw from flu related distribution.}

these unknown variables are also intractable since the posterior distributuions depend on the
likelihood function. We hence developed an EM-based algorithm HFSTM-FIT to estimate
the parameters H of the model (we omit the details for this algorithm as it is very similar to
the inference algorithm for the extended HFSTM-A model, and we would elaborate on the
latter in Sec. 4.2.4).

4.2.2 Issues with HFSTM

HFSTM requires a ‘clean’ vocabulary, i.e., a vocabulary that does not contain many back-
ground words. In real datasets, there is a huge imbalance between background and flu-related
words. For example, among 100 tweets from a user, only two or three may be related to
his/her health state. As there is no supervision used in HFSTM, each word has the same
probability of passing/failing the switches (see the parameters λ, c in 4.2.1), which biases

Liangzhe Chen Chapter 4. HFSTM 39

our model towards background words. Hence it is likely for HFSTM to learn the complex
state transitions among background words rather than among the flu-related words. If the
dataset contains many tweets about some hot event such as a football game, the model would
learn the state transition in the sport game rather than in the flu infection since the number
of sport-related tweets overwhelms that of the flu-related tweets. For this reason, HFSTM
needs a vocabulary that does not contain many background words, otherwise we observe
that HFSTM learns the state transition behind the non-flu-related topics. As a consequence,
it highly depends on the accuracy of the selection of words, which decreases its generality.

4.2.3 Improving the Model—HFSTM-A

Due to the issues with HFSTM, we propose a new model HFSTM-A (HFSTM with aspects)
so that we can provide it with a larger noisier vocabulary. Our key idea is to explicitly
include our belief of which words are likely to be useful for state transitions. Hence we
add such weak supervision to HFSTM by introducing an ‘aspect’ value (y) for each word (a
related approach has been used by [127]). We call this new model HFSTM-A. This aspect
y takes two values {0, 1} based on whether the word is flu related or not. It then biases the
switching probabilities so that background words are less likely to be explained by the state
topic distributions. Note that this supervision is weak because the aspect of a word does not
directly decide if a word is flu-related; it only increases/decreases the probability of a word
being regarded as flu-related or not. Those words which we do not mark as related are still
possible to be analysed by state topic distributions. As a result of the changes, HFSTM-A
can handle much noisier vocabularies, and have performance comparable with the HFSTM
model.

η"

σ

w

c γ

s

λ"

ψ

ε

ϕk

β

z θ

N
T

π

K

α

U

y

l

x

Figure 4.3: Plate notation for HFSTM-A: The aspect value y is an observed variable for each
word, and this variable biases the probability of a word being generated by the various topics
(see Sec. 4.2.3)

Liangzhe Chen Chapter 4. HFSTM 40

Algorithm 4 Generator(λ, c, η, π, α, β, ε) for HFSTM-A

Require: A set of parameters.
Ensure: Topics and flu state of each user.

1: Set the background switching binomial λ
2: Choose φ ∼ (β) for the non-flu topics, flu states, and background distribution
3: Choose initial state s1 ∼ Mult(π)
4: Draw each row of η using Dir(α) {Trans. matrix}
5: Draw θ ∼ Dir(α)
6: for each tweet 1 ≤ t ≤ Tu do
7: if not the 1st tweet in the corpus then
8: Draw ψt ∼ Ber(ε)
9: if ψt = 0 then

10: St ← St−1

11: else
12: St ← Mult(ηSt−1)
13: for Each word wi, 1 ≤ i ≤ Nt do
14: Draw yi ∈ {0, 1} (observed)
15: Draw li ∈ {0, 1} ∼ Ber(λyi) {Background switcher.}
16: if li = 0 then
17: Draw wi ∼ Mult(φB) {Draw from background distribution.}
18: else
19: Draw xi ∈ {0, 1} ∼ Ber(cyi)
20: if xi = 0 then
21: Draw zi ∼ Mult(θ)
22: Draw wi ∼ Mult(φzi) {Draw from non-flu related distribution.}
23: else
24: Draw wi ∼ Mult(φst) {Draw from flu related distribution.}

More concretely, in the plate notation of this new model HFSTM-A (see Fig. 4.3), y is the
observed aspect value for a word, where l and x are the binary values which decide whether
the word is generated by background topic, non-flu topic, or state topic distribution. In
HFSTM, these two values are generated by the Bernoulli distribution with parameters λ and
c. Now in HFSTM-A, y biases these probabilities and may thus change the values of l and x.

The generative process for the HFSTM-A model is shown in Alg. 4. In contrast to Alg. 3,
we see that in Alg. 4 the value of l and x are now generated from Bernoulli distributions
parameterized by λyi and cyi , which are biased by the observed aspect value yi. The definition

Liangzhe Chen Chapter 4. HFSTM 41

of λyi and cyi are shown below.

λyi=0 = λ (4.2)

λyi=1 = λ+ b ∗ (1− λ) (4.3)

cyi=0 = c− a ∗ c (4.4)

cyi=1 = c+ a ∗ (1− c) (4.5)

where a, b are the fixed biases we add to the switching probabilities. Basically, if a word is
labeled as flu-related (yi = 1), we increase its probability of passing the background switch
(λyi=1) and its probability of passing the non-flu topic switch (cyi=1), by pushing these
probabilities closer to 1. In the equations above, we take a proportion (b and a respectively)
of the residuals and add it to the probability; and if a word is not flu-related (yi = 0), we
decrease its probability of passing the non-flu topic switch (cyi=0), by pushing the probability
towards 0 (we use a to shrink the value in the corresponding equation). Note that if a word is
not flu-related, it can still be generated by non-flu topics. Hence its probability of passing the
background switch (λyi=0) is kept unbiased. In our experiments, we test different parameter
settings, and find the performance good and stable around a = 0.4, b = 0.4.

4.2.4 HFSTM-A-FIT: Inference and Parameter Estimation

We next show an EM-based algorithm HFSTM-A-FIT to estimate the parameters H =
(ε, π, η, φ, λ, c) of our model.

At each time point t a user can be in any of the 2K states where the first K states denote
that the user happens to be in the state due to a state transition from his state at time t− 1
and the rest of states from K + 1 . . . 2K denote that the state of the user is simply copied
from the state of the user at time t− 1.

E-Step

We use a forward-backward procedure for estimating parameters. We define the forward
probability At(i) and the backward probability Bt(i) for a tweet stream as follows.

At(i) = P (t1, t2, . . . , tt, St = i)

Bt(i) = P (tt+1, . . . , tTu|St = i)

At(i) is the joint probability of the partially observed sequence until time t and state St is i.
Bt(i) is the joint probability of the partially observed sequence from t+ 1 to Tu, given state
St is i. Both At(i) and Bt(i) can be solved inductively. See the linked equations for more
details on how At(i) and Bt(i) are calculated.

Liangzhe Chen Chapter 4. HFSTM 42

Let γt(i) be the probability of being in state Si for the tth tweet given the observed tweet
sequence Ou.

γt(i) = P (St = i|Ou)

=
At(i)Bt(i)∑2K
i=1 At(i)Bt(i)

To estimate the transition probability we define ξt(i, j), the probability of being in state i at
t, and in state j at t− 1 given the Ou.

ξt(i, j) = P (St = i, St+1 = j|Ou)

=
P (St = i, St+1 = j,Ou)

P (Ou)

M-Step

In this step we re-estimate the parameters ε, π, η, φ, c, λ. We only show the estimations of
π and η below. 1

πi =

∑U
u=1 γ1(i)∑U

u=1

∑K
i=1 γ1(i)

ηij =

∑U
u=1

∑T
t=1 (ξt(i, j) + ξt(i+K, j))∑U

u=1

∑T
t=1

∑K
j=1 (ξt(i, j) + ξt(i+K, j))

4.3 Experiments

We describe our experimental results next. All the experiments are designed to answer the
following questions:

1. Can HFSTM and HFSTM-A robustly learn in presence of different noise levels in a
dataset? (See Sec. 4.3.2)

2. What are the state-topic distributions learnt by our models? (See Sec. 4.3.3)
3. Is the state transition table learned reasonable? (See Sec. 4.3.4)
4. How do our models perform for flu case-count and peak predictions? (See Sec. 4.3.5)

1More information in Appendix B.

Liangzhe Chen Chapter 4. HFSTM 43

5. Finally, as mentioned before, several papers [111, 175] have shown that the rising
and falling pattern of keywords count in social media does not match with that in
epidemiological model. By including the extra state information, can we bridge this
gap between social and epidemiological activity? (See Sec. 4.3.6)

4.3.1 Experimental Setup

First we describe our setup in more detail. Our algorithms were implemented in Python.1

Vocabularies

To ensure that the most important words (directly flu-related words like ‘flu’, ‘cold’, ‘con-
gestion’, etc.) are included in our vocabulary, we first build a flu-related keyword list. [30]
construct a flu-keyword list, by first manually setting a seed set, then using two methods
(pseudo-query and correlation analysis, see their paper for more details) to expand this seed
set, and then finally pruning it to a 114 words keyword list. A similar keyword-construction
procedure (expanding by crawling websites) was also used by [88]. For our experiments, we
include the same 114 keywords from [30] first. We then manually select and include 116
words, which are not directly related to flu, but may implicitly imply the state of a user, such
as ‘hopeless’, ‘bed’, ‘die’, ‘sad’, etc. We use these (a total of 230) words as the vocabulary
for HFSTM since it cannot deal well with a noisier vocabulary (see Sec. 4.2.2).

For HFSTM-A, the extension of HFSTM which is designed to handle larger vocabularies with
much background noise, we enlarge the size of the vocabulary by simply adding the most
frequent words in the corpus. After automatically extracting these top words, we get a final
vocabulary of 2739 words.1 All other words not in our vocabulary but occurring in the
corpus are mapped to a single generic block-word. We label a word as 1 (flu-related) if it
is in the previous 230 words list (note again this is only weak supervision; this label does
not directly decide whether this word is generated by background topics, or state topics).
Thanks to our model design, as we describe later, HFSTM-A is able to learn meaningful state
transitions and topic distributions, in spite of having a more than 10X larger vocabulary.1

Datasets

We collected tweets generated from 15 countries in South America for the period from Dec.
2012 to Aug. 2014 using Datasift’s Twitter collection service.2 Briefly, what the company
does is using the Basis technology3 natural language processing facilities to lemmatize words,
and using a custom set of geocoding algorithms to detect the location of a tweet since only

2http://datasift.com/
3http://www.basistech.com

Liangzhe Chen Chapter 4. HFSTM 44

5% of tweets are actually geotagged. We then improve the quality of our dataset by removing
bots and spammers (by checking the tweeting frequencies, number of similar contents, etc.),
and retweets.

We create a training dataset TrainData, using the tweets from Jun. 20, 2013 to Aug. 6,
2013, which contains a peak of infections. We created three evaluation sets using tweets from
different time-periods: TestPeriod-1 (Dec. 1, 2012 to Jul. 8, 2013), TestPeriod-2 (Nov. 10,
2013 to Jan 26, 2014), and TestPeriod-3 (Mar. 1, 2014 to Aug. 31, 2014). TestPeriod-1 and
TestPeriod-2 are time periods before and after our training period in the same year (2013).
We further test our models trained from 2013 on TestPeriod-3, which covers a complete flu
season in the next year, 2014. The number of flu related tweets (containing at least one
flu keyword) for these test periods are ∼ 1.8M , ∼ 0.3M , and ∼ 4M respectively. For the
two individual countries used in Sec. 4.3.5 for TestPeriod-1, this number is 60k for Chile,
and 112k for Argentina. We use tweets that occurred during the flu season in 2013 as the
training set for maximizing the number of samples that are tagged as infected. We choose
the three test sets as they either contain a complete flu season, or contain interesting rising
patterns (detecting the rising part of the disease is one of the most challenging tasks in
surveillance [29]). For creating training data we perform keyword and phrase checking (from
our vocabulary) to identify a set of users who have potentially tweeted a flu-related tweet.
We then fetch their tweet streams from the Twitter API for the training period. We then
use the Datasift service to preprocess these tweets (stemming, lemmatization, etc.), and
get our final training dataset of roughly 34,000 tweets. Under such a setting, our inference
algorithm HFSTM-A-FIT takes around 2 hours to run on a 4 Xeon E7-4850 CPU with 512GB
of 1066Mhz main memory.

We collected data from The Pan American Health Organization [121] for the ground-truth
reference dataset for flu case counts (trends). PAHO is the ground-truth medical report
source for South America and it plays the same role in South America as CDC does in the
USA (CDC does not provide flu trend data for South America). Note that PAHO gives only
per-week counts.

4.3.2 Robustness and Consistency (Q.1)

To first check the performance of our models under different conditions, we set up three kinds
of simple synthetic datasets for the learners. We first choose a set of fixed parameters as base
settings for generating a dataset. We then vary the background switching parameter (λ) for
creating a set of datasets with different noise levels (to clarify, note that via λ we are only
varying the number of background words in the dataset here, not in the vocabulary). For the
third variant of datasets, we vary the number of users for generating a set of datasets. Firstly,
in all the datasets, our learner was able to recover the true parameters, and show a good
estimation of switching variables, transition probabilities and word distributions on these
synthetic datasets. Tab. 4.2 shows the estimation error of π, η and the word distribution

Liangzhe Chen Chapter 4. HFSTM 45

for each state, measured by the KL distance between the true parameter and the estimated
value. Secondly we see that the performance of our models is pretty robust: it does not
degrade with a substantial increase in noise level, and the learner is also stable when we
increase the number of users. Finally, note that HFSTM-A learns similar quality results like
HFSTM, in spite of a much enlarged vocabulary.

Expt
KL of π KL of η KL of φ0 KL of φ1 KL of φ2 KL of φ3

m1 m2 m1 m2 m1 m2 m1 m2 m1 m2 m1 m2

base 0.04 0.04 0.08 0.02 0.24 0.57 0.2 0.08 0.2 0.12 0.2 0.04

λ = 0.1 0.04 0.04 0.08 0.03 0.01 0.48 0.01 0.17 0.01 0.13 0.01 0.04
λ = 0.3 0.04 0.04 0.03 0.50 0.00 0.14 0.01 0.01 0.01 0.01 0.01 0.01
λ = 0.5 0.04 0.04 0.03 0.05 0.01 0.70 0.01 0.17 0.01 0.16 0.01 0.06
λ = 0.9 0.04 0.04 0.04 0.01 0.00 0.45 0.01 0.07 0.01 0.08 0.01 0.02

U = 50 0.04 0.04 0.29 0.26 0.04 0.27 0.07 0.01 0.06 0.01 0.09 0.01
U = 70 0.04 0.04 0.30 0.42 0.05 0.14 0.08 0.03 0.04 0.03 0.09 0.03
U = 90 0.04 0.04 0.08 0.01 0.02 0.52 0.03 0.07 0.03 0.02 0.03 0.01
U = 110 0.04 0.04 0.01 0.40 0.00 0.17 0.01 0.01 0.01 0.01 0.01 0.01
U = 130 0.04 0.04 0.00 0.01 0.00 0.71 0.01 0.04 0.01 0.04 0.01 0.01
U = 150 0.04 0.04 0.06 0.07 0.00 0.20 0.01 0.01 0.01 0.01 0.01 0.01

Table 4.2: Robustness and consistency of our models (m1 = HFSTM, and m2 = HFSTM-A)
using synthetic datasets. In the ‘base’ setting, we use 100 users, and a vocabulary of size
92, where the number of background words, state words, and non-flu topic words are 20, 60,
and 12 respectively. We vary the the number of background words (by varying λ) and the
number of user from 50 to 150. It can be seen that the performance of both models do not
suffer from increasing noise levels in the dataset (different from the noise in the vocabulary),
and it is pretty stable when we increase the number of users in the experiments.

4.3.3 Word Distributions Learnt for Each State (Q.2)

In short, our model learns meaningful topic word distributions for the flu states from real
data (TrainData). See Fig. 4.4—it shows a word cloud for each state-topic distribution (we
renormalized each word distribution after removing the generic block-word) we learnt using
HFSTM-A. Note that both HFSTM-A and HFSTM learn meaningful distributions; here we
only show results from HFSTM-A since the result from HFSTM is similar. The most frequent
words in each state matches well with the S(usceptible), E(xposed) and I(nfected) states in
epidemiology. These word distributions in Fig. 4.4 correspond to the S, E, I states shown in
Fig. 4.5. As shown in the figure, the S state has normal words, the E state starts to gather
words which are indicating an exposure to the disease (and contains both ‘S-like’ and ‘I-like’

Liangzhe Chen Chapter 4. HFSTM 46

words), while the I state gets many typical flu-related words. The I state captures flu-related
keywords like flu, fever, pain; the E state contains words like cold, suffer, strange; and the S
state has words like enjoy, work, music, smile.

(a) S state (b) E state (c) I state

Figure 4.4: The translated word cloud for the most probable words in the S, E and I state-
topic distributions as learnt by HFSTM-A on TrainData. Words are originally learned and
inferred in Spanish; we then translate the result using Google Translate for ease of under-
standing. The size of the word is proportional to its probability in the corresponding topic
distribution. Our model is able to tease out the differences in the word distributions between
them.

4.3.4 Transition Probabilities Learned Between States (Q.3)

We show the state transition diagram learned from real data (TrainData) by HFSTM-A in
Fig. 4.5. Again, HFSTM-A is as good as HFSTM, with a much larger vocabulary. The initial
state probability learned is [0.91, 0.02, 0.07], with high probability that a tweet starts at state
S, and with much lower probabilities it starts at state E or I. We observe that for each state,
it firstly has the tendency to stay in that state, which is reasonable because a twitter user is
likely to post more than one tweet in any given state. When there is a transition occuring,
we see that transition between S and E is larger than between E and I, showing the fact that
the probability of truly getting infected is lower than the probability of just getting exposed.
Interestingly, these transition probabilities match closely with the standard epidemiological
SEIS model and intuition (a patient will eventually get to the I state once entering the E
state).

We also investigate the most-likely state sequence for each user learned by HFSTM-A. Using
the parameters learned by our model, we take a sequence of tweets from one user, and use
MLE to estimate the state each tweet is in. Tab. 4.3 shows multiple examples of these
transitions (we show the translated English version here using Google Translate and further
refined by a native speaker) using HFSTM-A (the results are similar to that of HFSTM).
As we can see, our model is powerful enough to learn the Exposed state, before the user is
infected. This also shows the accuracy of our transition probabilities between the flu states.

Liangzhe Chen Chapter 4. HFSTM 47

I(E(S(

0.6(0.43(0.64(

0.31(

0.44(

0.13(

0.18(

0.09(

0.19(

Figure 4.5: The transition diagram between flu-states automatically learned by HFSTM-
A. The probabilities are rounded up for simplicity. Note that the structure of the state
transitions is close to the standard epidemiological SEIS model.

4.3.5 Fitting Flu Trend using Additional State Information (Q.4)

Additionally, to test the predictive capability of our models, we design a flu-case count
prediction task on our test datasets, after training on TrainData. We compare four models:
(A) the baseline model, which uses classical linear regression techniques and word counts to
predict case count numbers; our models (B) HFSTM and (C) HFSTM-A, where we improve
the word counts by attaching to each word the state estimated by MLE; and (D) GFT
(Google Flu Trend). In all four cases we use a LASSO based linear regression model to
predict the number of cases of influenza like illnesses recorded by PAHO (the ground-truth).
We predict per-weekly values as both PAHO and GFT give counts only on a weekly basis.

The baseline model uses a set of features created from the counts of 114 flu related words.
For TestPeriod-1, we count these words over 1.8M tweets from 0.72M users that were fil-
tered by containing at least one keyword from our vocabulary (similarly for TestPeriod-2,
TestPeriod-3). These word counts were then collated into a single feature vector defined as
the number of tweets containing a single word per week. We then regressed this set of counts
to the PAHO case counts for each week.

Our models improve upon the baseline model by incorporating the state of the user when
a word was tweeted. In this way we capture the context of a word/tweet as implied by
our HFSTM and HFSTM-A models. For instance, if the word ‘cold’ is used in a normal
conversation it probably means temperature but if it is used while a person is in the I state
it is likely referring to flu related symptoms. For our models, we also use a LASSO regression
to make predictions in a similar fashion. However the feature vector is created from a count
of the top 20 words from each state, appended to the word of each state, such that (cold, S)
is counted differently from (cold, I).

For GFT, we directly collect data from the Google Flu Trends website4, and then apply
the same regression as used in other methods to predict the number of infection cases.
Note that as GFT is a state-of-the-art production system with highly optimized proprietary

4http://www.google.org/flutrends

Liangzhe Chen Chapter 4. HFSTM 48

User Date Tweet Message State

1

4 Jul 2013 S: @ PauFigueroaentoces yes but by then I wouldn’t like
to feel like I feel now because I wouldn’t be able to enjoy the
vacations.

Healthy

4 Jul 2013 I finished my first job, one more to go, and me feeling so
bad... I want to rest.

Healthy

4 Jul 2013 @ Kimy2Ramos My queen, I hope you’re having a great
time... because I feel terrible. I have a headache and fever
=(... I love you a lot.

Exposed

4 Jul 2013 @ PauFigueroaflu, with the flu, headache, body ache, and
even my sight hurts... Couldn’t ask for anything else.

Infected

4 Jul 2013 time to studyyy... Healthy

2

10 Jul 2013 I’m feeling like a boss for working on this by myself. I’m
gonna pass, no doubt about it hahahaha.

Healthy

10 Jul 2013 already Wednesday? Today to Aliados, how awesome. Healthy
11 Jul 2013 Any season is spring for me if I’m with you. Exposed
11 Jul 2013 It’s just great how I got sick. Sad part is that I can’t even

miss school -.-
Exposed

11 Jul 2013 It was so great to see a scene from Peter y Pablo, how much
I missed those things.

Exposed

11 Jul 2013 Oh, how much I hate you Tabcin. You’re gross -. - Healthy
11 Jul 2013 Lately I’ve been missing those little things that made you

so unique. I wonder where all those virtues went: S
Exposed

11 Jul 2013 I’m feeling awful: fever, headache, dizziness, chest pain,
snot, snot, snot and more snot and a sore throat. Am I
missing something?

Infected

Table 4.3: Example user state sequences from real-world tweets (translated to English by a
native Spanish speaker). We used HFSTM-A to classify tweets to different states. As we can
see from the table, our model can capture the difference between different states and also
the state transitions.

vocabulary lists, we do not expect to beat it consistently, yet as we describe later, we note
some interesting results.

In all types of models the same LASSO regression is applied to the time series. For each time
point a LASSO regression was fit to the last 10 weeks of data. The model was then used to
predict either for zero, one, or two weeks in the future, depending on the lag; the best lag was
chosen for each method. We evaluate all these methods for different countries (individually
and aggregated) in South America on TestPeriod-1, TestPeriod-2 and TestPeriod-3. We first
discuss results on TestPeriod-1 and TestPeriod-2, which are in the same year (2013) as the
TrainData, then we show the qualitatively similar results on TestPeriod-3, which is in a
different year (2014).

Fig. 4.6(a)–(d) show the comparison between the four models for different scenarios in

Liangzhe Chen Chapter 4. HFSTM 49

2013. Fig. 4.6(a) and (d) show the aggregated cases for all countries for TestPeriod-1 and
TestPeriod-2. We further expand the test cases by including two example countries: Ar-
gentina and Chile for TestPeriod-1 in Fig. 4.6(b) and (c). We chose Argentina and Chile
as they had the largest number of tweets in our dataset. We make several observations.
Firstly, as expected from the previous results, the performance of HFSTM and HFSTM-A
are close to each other in all cases, despite a large vocabulary difference. The RMSE values of
HFSTM-A for the four plots are 501, 437, 108, 345 respectively, and the values for HFSTM are
485, 453, 115, 350, respectively. The difference for our methods was only about 12. Secondly,
it is clear from the figures that both HFSTM and HFSTM-A outperform the baseline method
(of keyword counting) in all cases—demonstrating that the state knowledge is important and
our models are carefully learning that information correctly (as a contrast to the difference
between HFSTM and HFSTM-A above, the RMSE value difference between HFSTM-A and
the baseline for the 4 plots are about [210, 112, 120, 80], respectively). Finally, we also see
that the predictions from our methods are comparable qualitatively to the state-of-the-art
GFT predictions, even though our methods were just implemented as a research prototype
without sophisticated optimizations. In fact, although GFT performs better than HFSTM
and HFSTM-A in Figures 4.6(a) and (b) in the RMSE scores, for Figures 4.6(c) and (d), our
methods perform as well, and even outperform GFT (with an average RMSE difference of
about 24). Significantly, in Figures 4.6(a), (c) and (d), GFT clearly overestimates the peak
which our methods do not (this is an important issue with GFT which was also documented
and observed in the context of another US flu season as well [29]).

For TestPeriod-3 in 2014, we have similar observations. The performance of HFSTM and
HFSTM-A are close to each other (with 544, 599 RMSE values). GFT, although having a
better RMSE value (421), clearly overestimates the peak. The baseline method exhibits the
worst performance with an RMSE value of 871. All of the results on our test datasets show
that including the epidemiological state information of users via our models can potentially
benefit the prediction of infection cases.

4.3.6 Bridging the Social and the Epidemiological (Q.5)

Finally, as mentioned before, another key contribution of our models is to bridge the gap
between epidemiological models and social activity models. An important recent observa-
tion [111, 175] was that the fall-part of any social activity profile is power-law—in contrast
to standard epidemiological models like SEIR/SIR which give an exponential drop-off. How
can they be reconciled? In the following, we show that accounting for the differences in the
epidemiological state as learnt by our models, the two different activity profiles look the
same, i.e., they drop-off exponentially as expected from standard epidemiological models.

To test our hypothesis, we chose commonly occuring flu-keywords—such as enfermo (sick),
mal (bad), fiebre (fever), dolor (pain)—for the analysis. Firstly, we count the total occurences
of these keywords in TestPeriod-1. For each keyword we identify the falling part of its

Liangzhe Chen Chapter 4. HFSTM 50

(a) All countries, TestPeriod-1 (b) Argentina, TestPeriod-1

(c) Chile, TestPeriod-1 (d) All countries, TestPeriod-2

Figure 4.6: Evaluation for the two test datatsets in 2013. Comparison of the week to
week predictions against PAHO case counts using the four models: baseline model, HFSTM,
HFSTM-A, and GFT (Google Flu Trend). Our models outperform the baseline; performance
of HFSTM and HFSTM-A are similar, and are comparable to GFT. GFT overestimates the
peak in (a), (c) and (d). (a) All countries, for TestPeriod-1; (b) Argentina, for TestPeriod-1;
(c) Chile, for TestPeriod-1; and (d) All countries, for TestPeriod-2

Liangzhe Chen Chapter 4. HFSTM 51

Ap
r 2
014

Ma
y 2

014

Ju
n 2

01
4

Ju
l 2
014

Au
g 2

014

Se
p 2

014

Date

0

500

1000

1500

2000

2500

3000

3500

4000

C
as
e
C
ou
n
t

PAHO Case Count

Baseline Model

HFSTM

HFSTM Aspect

Google Flu Trends

Figure 4.7: Evaluation for test dataset in 2014 (TestPeriod-3). Comparison of the week to
week predictions against PAHO case counts using the four models. The comparison is based
on all countries in the dataset. We observe that the performance of HFSTM and HFSTM-A
are similar and comparable to GFT, and GFT overestimates the peak.

activity-curve. We then fit each curve with power law and exponential function. As expected
from [111], Fig. 4.8 results from HFSTM and HFSTM-A (a) and (c) both show that the
power-law function provides a much better fit of the falling part of the curve comparing to
the exponential function (RMSE scores of exponential functions is 1.5 times higher than
that of power law in both HFSTM and HFSTM-A cases).

Secondly, to study the effect of our model on the activity profiles of these keywords: we count
total occurrences of these keywords in the tweets which are tweeted only by infected users
(i.e., by those users we learn as being in I). Again, we fit the falling part of each curve with
a power law and a exponential function. In contrast to the previous figure, we see that now
exponential fit is much better than a power law fit; the RMSE score of power law is ∼ 1.9
times higher than that of exponential functions in both HFSTM and HFSTM-A cases (see
Fig. 4.8(b) and (d))—matching what we would expect from an epidemiological model like
SEIS. Thus this demonstrates that finer-grained modeling can explain differences between
the biological activity and the social activity which is used as its proxy.

4.3.7 Summary of Observations

In sum, the main observations from our experiments are:

1. Our models HFSTM and HFSTM-A learn both state topic distributions and transitions,

Liangzhe Chen Chapter 4. HFSTM 52

which match epidemiological intuition. The performance of HFSTM-A is robust despite
an enlarged and noisy vocabulary.

2. Our models consistently get better flu case-count predictions than naive vocabulary
assessment (the baseline model), over datasets covering multiple time-periods.

3. Our models make better flu-peak predictions than Google Flu Trends for the aggregated
curve in both our datasets (including individual countries like Chile).

4. Our models make qualitatively comparable flu case-count predictions to Google Flu
Trends (even beating them in some cases).

5. Our models can potentially bridge the gap between models of biological activities and
their social proxies.

4.4 Discussion and Conclusion

Predicting the hidden state of a user from a sequence of tweets is highly challenging. Our
proposed methods, HFSTM and HFSTM-A, have the capability to use this sparseness ef-
ficiently to produce a generative model. It satisfies the requirements of low dimensional
representation of the data while retaining enough information about the system. Through
extensive experiments on real tweet datasets, we showed how our methods can effectively and
robustly model hidden states of a user and the associated transitions, and use it to improve
flu-trend prediction, including avoiding recent errors discovered in methods like Google Flu
Trends. Further, our models use public data, and our results were stable across two different
time-periods. We also showed how our model can reconcile seemingly different behaviors
from social and epidemiological models.

As mentioned in the introduction, current approaches for predicting flu using information
gleaned from the Twitter data are often devoid of any epidemiological significance and hence
there is a great chasm between the data driven flu trend modelling using Twitter data and the
model-based, simulation-oriented epidemiological models such as SI, SIR and SEIS. Hence
more broadly, our technique can act as the missing link between this uncorrelated line of
research—lending a state aware nature to data-driven models, and simultaneously, it can
let simulation oriented models estimate their state transition matrices by maximizing data
likelihood.

4.5 Future Work

We have several directions to further extend our work.

Liangzhe Chen Chapter 4. HFSTM 53

The state transitions probabilities our models learn can be used to estimate parameters
in traditional epidemiological models, such as the transmission rate, the removal rate, the
infection prevalence threshold, etc. We can study how these epidemiological parameters
behave in the context of Twitter, and how these social-media-derived parameters reflect on
the real situation.

Secondly, as Twitter is a highly connected social network, we can integrate the network
structure into our models and improve the results. Currently our models assume indepen-
dence between Twitter users, and estimate a user’s states by only looking at his/her own
tweets. However in reality, people are more likely to get infected if most of their friends are
infected. Hence the neighbors of a node in the network have some bias on the state transition
of the node, which can be integrated into our models.

Thirdly, we can improve the efficiency of the inference algorithms. Note that our algorithms
are practical enough to run on real world datasets as used in this chapter. Nevertheless it
will be interesting to improve the scalability of our approach by exploring approaches like
distributed EM, or other inference algorithms like MCMC.

Finally, our proposed methods are general enough and can be easily extended to other
domains such as monitoring organized protests where a user can go through several states
of protest like ‘not interested’, ‘ambivalent’, ‘active’, ‘resigned’, etc.

Liangzhe Chen Chapter 4. HFSTM 54

(a) Total Keyword activity (log-log) by HFSTM (b) Keyword activity in learnt I state (lin-lin) by
HFSTM

(c) Total Keyword activity (log-log) by HFSTM-A (d) Keyword activity in learnt I state (lin-lin) by
HFSTM-A

Figure 4.8: Finer grained models help bridge the gap between social and epidemiological
activity models. (a), (c) Power law describes keyword activity better (in log-log axes to
show the difference); while (b), (d) Exponential function explains well the falling part of the
curves for keyword activity (note the linear axes). The results from HFSTM and HFSTM-A
agree with each other.

Part II

Multiple Dependent Sequences

55

Chapter 5

Segmenting Network Sequences with
Node Labels

Given a sequence of snapshots of flu propagating over a population network, can we find
a segmentation, capturing when the patterns of the disease spread change, possibly due
to interventions? In this chapter, we study the problem of segmenting graph sequences
with labeled nodes. Memes on the Twitter network, diseases over a contact network, and
movie-cascades over a social network, are all graph sequences with labeled nodes.

Most related works are on plain graphs (ignoring the label dynamics) or require much feature
engineering. Instead, we propose SnapNETS, to automatically find segmentations of such
graph sequences, with different characteristics of nodes of each label in adjacent segments.
It satisfies all the desired properties (being parameter-free, comprehensive and scalable) by
leveraging a principled, multi-level, and flexible framework which maps the problem to a
path optimization problem over a weighted DAG.

Extensive experiments on several diverse real datasets show that it finds cut points matching
ground-truth or meaningful external signals, outperforming non-trivial baselines. We also
show that SnapNETS scales near-linearly with the size of the input.

5.1 Introduction

Suppose we have a sequence of Ebola infections and the associated contact network of who-
can-infect-whom. Can we quickly tell a public health expert when the infection patterns
change possibly due to a virus mutation? By itself, it is crucial for public health to understand
the virus propagation and to design a good immunization strategy. One possible approach
is to segment the sequence based on some manually selected features, such as the rate of
infections. However by directly analyzing the underlying social network, and using both the

56

Liangzhe Chen Chapter 5. SnapNETS 57
N

et
w

o
rk

 S
eq

u
en

ce
S

u
m

m
ar

iz
ed

 S
eq

u
en

ce

t1 t2 t3 t4 t5

Figure 5.1: Toy Example: SnapNETS automatically identifies four significant steps of the
network sequence. The extracted time series (e.g., #active nodes) can not capture a proper
segmentation. Gray nodes are inactive (i.e., label 0), and black nodes are active (i.e., label
1).

infected and uninfected nodes, we can improve the segmentation as well as its interpretability
(e.g. ‘disease spread in a tree like fashion among elderly till Monday, and changed to clique-
like fashion among the young’ and so on).

Segmenting a graph sequence is an important problem which can help us in better under-
standing the evolution of the dataset. It has numerous applications from epidemiology/public
health to social media (rumors/memes on social networks like Twitter), anomaly detection,
and cyber security (malware on computer networks). In this chapter, we study the problem
of segmenting a graph sequence with varying node-label distributions. We assume binary
labels and can handle dynamic graphs with varying nodes and edges. For diseases/memes,
the labels can be ‘infected’/’active’ (1) & ‘healthy’/’inactive’ (0), and the network can be
the underlying contact-network. Our problem is:

Problem 1: Segmentation

Given : a sequence G of networks G1, G2, . . . , GT with labeled nodes,

Find : best segmentation c∗, which captures different patterns of node labels in G such that
adjacent segments have different characteristics of nodes with the same label.

Toy Example. Suppose G = {G1, G2, G3, G4, G5} with 0, 1 labeled nodes (Fig. 5.1 top row).
There are four main steps in G: First a central node in a star and some of its spokes have the
label 1; next, low degree nodes in a chain-shaped manner get label 1 (structural change). In
the third segment, the label moves to another community of the graph (community change).
Finally, the whole graph gets label 1 which indicates an activation rate increase in the network
(rate changes). Hence S∗ = {1, 2, 3, 5}. Note that even though the ‘active’ sub-graphs in
time-step 2 and 3 are both chains, their roles in the entire graph are different and so they
should belong in different segments. In time-step 2 the active chain is a bridge between two
parts while the chain in time-step 3 is part of a near-clique community (role change).

Liangzhe Chen Chapter 5. SnapNETS 58

SNAPNETS	

Feature	eng.	and	2me	series	
(E.g.	Li	et	al.	2009,	
Likas	et	al.	2003,	

Henderson	et	al.	2010)	

Plain-graph-based	
(E.g.	Shah	et	al.	2015,	
Koutra	et	al.	2014,	
Ferlez	et	al.	2008,	
Qu	et	al.	2014)	

Parameter	free	

Comprehensive	

Scalable	

ProperLes	

Approaches	

Table 5.1: Comparison of SnapNETS with alternative approaches. A dashed cross means
most approaches do not satisfy the property; similarly for the dashed check.

Any algorithm should have these desired properties:

P1. Parameter-free: Find the best number of segments and segmentation without use
of parameters such as change threshold and time window.

P2. Comprehensive: Use the entire snapshot for segmentation, instead of merely active
subgraphs.

P3. Scalable: The method must be scalable (i.e., scales sub-quadratically with the input
size which can be millions of edges and nodes in the sequence).

This problem has been barely (if at all) studied. Most methods that we can adapt to
solve this problem do not satisfy the above three properties—instead we propose SnapNETS
(Snapping NETwork Sequences) which does (Tab. 5.1 shows a brief comparison; more
discussions in Sec. 5.2.1). SnapNETS is a novel multi-level approach which summarizes the
given networks/labels in a very general way at multiple different time-granularities, and then
converts the problem into an appropriate optimization problem on a data structure. We give
a novel efficient algorithm for the optimization problem as well. A strong advantage of this
framework is that it allows us to automatically find the right number of segments avoiding
over or under segmentation in a very systematic and intuitive fashion. Further it gives
naturally interpretable segments, enhancing its applicability. Finally, we also demonstrate
SnapNETS’s usefulness via multiple experiments on diverse real datasets.

5.2 Overview and Main Ideas

For sake of simplicity, we focus on the case when nodes have binary labels1, i.e., active: 1
or inactive: 0. Also, for ease of description, we assume that the network remains constant
through time and we treat the problem as one with a series of graph snapshots: though our

1Extending to multiple labels is interesting future work.

Liangzhe Chen Chapter 5. SnapNETS 59

ideas can be easily used for other types of dynamic graphs, including with varying network
structure (also shown in experiments).

Finally, we allow that nodes can even switch between labels freely (c.f. Fig. 5.1). This
means we can handle both progressive/non-progressive scenarios: e.g., in the fundamental
Susceptible-Infected (SI) or Independent Cascade (IC) propagation models (where nodes
once active, can not get inactive) and the ‘flu-like’ Susceptible-Infected-Susceptible (SIS)
model where infected nodes can get healthy again. Next we give some useful definitions:

Definition 5.1 (Act-snapshot) G(V,E,L) is an Act-snapshot. V = {v1, v2, . . . , vn} and
E = {e1, e2, . . . , em} are sets of nodes and edges of G. L = [l1, l2, . . . , ln] shows the labels of
nodes. lj is 1 if vj is active and 0 otherwise.

Definition 5.2 (AS-Sequence) G = {G1, G2, . . . , GT} is sequence of T Act-snapshots with
Gi at time-step i.

Definition 5.3 (Segment) A segment si,j is a time interval between Act-snapshots Gi and
Gj, i.e., si,j = {[i, j) | i < j}. Set of all possible segments is S = {s1,2, s1,3, . . .}.

Definition 5.4 (Segmentation) A segmentation S of size m is a partition of time interval
[1, T] with m time stamps i.e. S = {a1, a2, . . . , am} where ai ∈ {1, 2, . . . , T}. The set of all
possible segmentations is C.

Definition 5.5 (Act-seti) Act-seti contains the active nodes in Act-snapshot Gi, i.e., Act-seti =
{vj|lj = 1}.

Hence our problem is to automatically segment a given AS-Sequence. We next explain the
shortcomings of alternative approaches, and then give the big picture of our framework.

5.2.1 Shortcomings of Alternative Approaches

Two natural ways to adapt existing algorithms for this task are: (a) extract complex features
from Act-snapshots and use time-series segmentation; and (b) extract Act-sets and use plain-
graph-based methods.

Feature Eng. and Time Series. Converting graph sequences to time series has several
drawbacks. First of all, it needs laborious feature-engineering: designing the right features
to capture the pattern of graphs is a complicated task and the best choice of features may
differ for different sequences [63]. Second, typical time series segmentation algorithms, which
use “local” change detection, do not satisfy our desired properties. They usually need a
threshold [101] (which usually depends on knowing the number of desired segments) to

Liangzhe Chen Chapter 5. SnapNETS 60

detect a change; or they fix one aggregation time period for the tracking [98]. All of these
can be problematic, as it is fundamentally hard to set these parameters.

Plain-graph-based analysis. Instead of manually designing complicated features, an
alternative is to use plain-graph-based methods on induced subgraphs from Act-snapshots .
However, these approaches do not satisfy P2, as they typically track only the Act-set in each
Act-snapshot [147, 84, 135]. As we show in Fig. 5.1, using only the active sub-graphs leads
to less meaningful segmentation: the active sub-graphs at time-step 2 and 3 are both a chain
of a same size, nevertheless, as discussed before the roles of these chains are different in the
two snapshots. If we just track active sub-graphs, we cannot detect this difference.

5.2.2 Overview of our Method SnapNETS

In order to overcome the disadvantages we discussed before, we propose a “global” framework
which looks at the entire AS-Sequence G and computes the correct segmentation. Due to
P1, we want to examine all possible segmentations C over all granularities. How to do this
efficiently? Our first main idea is to use a graph data structure (called the segmentation graph
Gs) to efficiently represent the exponential number of all segmentations in space polynomial
with respect to the sequence length. The nodes mainly represent the segments in S, while
the edge weights indicate the distance (‘difference’) between adjacent segments. Hence any
segmentation is mapped to a path between start and end time in Gs.

How to now compute the distance between any adjacent segments w(si,j, sj,k) (each segment
will contain sets of Act-snapshots Gi)? We want to use the entire graph (due to P2), while
avoiding extracting complex features. Note that despite the size of the graphs, patterns in
the real-world are usually much less complex. Hence, our second main idea is to develop a
smaller summary Gc

i which maintains important information in an efficient manner. As a
result, we only need a few standard features to represent these summaries.

Finally, how to find the best path in Gs? We need to define this best path and design an
efficient algorithm to find it in Gs. Our third main idea is to use the average longest path
optimization problem on Gs, as it intuitively regularizes the length of the path (number of
segments) with the weight (difference between segments). We also develop an efficient novel
algorithm DAG-ALP to find this path.

In short, we pursue 3 main goals: (1) Summarize Gi; (2) Construct Gs and (3) Define and
find the best segmentation.

Liangzhe Chen Chapter 5. SnapNETS 61

5.3 SnapNETs: Details

5.3.1 Goal 1: Summarizing Act-snapshots

We first propose finding a C-graph (i.e., Gc
i), which summarizes the structural properties and

the nodes labels of each Act-snapshot Gi. Popular methods for graph summarization include
graph sparsification [107] which try to carefully remove edges to reduce the graph’s density
while maintaining some properties. Nevertheless, these methods are typically designed for
plain graphs and it is not straightforward to modify them for Act-snapshots . So we adopt a
different, merging-based approach which reduces the no. of nodes instead while maintaining
an intuitive and important property.

Role of Eigenvalues: In many real datasets node labels come from a diffusion/propagation
process. Recent work [131] shows that important diffusion characteristics of a graph (includ-
ing the so-called ‘epidemic threshold’) are captured by the leading eigenvalue of the adjacency
matrix, for almost all cascade models. This naturally suggests that if the leading eigenvalue
of the adjacency matrix of the summarized graph Gc

i and Act-snapshot are close, Gi and Gc
i

will have similar properties.

Summarizing Act-snapshots via Coarsening: Motivated by the above, we want to
successively merge connected nodes into ‘super-nodes’ (i.e., ‘coarsen’) while maintaining the
leading eigenvalue of the adjacency matrix. Also, we want to keep the same set of labels
(0/1) in the C-graph to keep it consistent with the Act-snapshot . Thus, we define the
summarization problem as follows,

Problem 2: Act-snapshot summarization

Given : an Act-snapshot Gi(Vi, Ei, Li), and remained fraction of nodes ρ.

Find : a coarsened graph Gc
i(V

c
i , E

c
i , L

c
i) such that

minimizes
|V ci |=ρ|Vi|

|λGi − λGci | subject to
∑

(a,b)∈Eiis merged |la − lb| = 0 (5.1)

Here λG is the leading eigenvalue of graph G and la is the label of node a. This formulation
allows us to be model-free and not assume any specific model (such as IC/SIS, etc.). The
constraint in Problem 2 maintains the ‘frontier’ between active and inactive nodes to help
consistency and interpretability. Problem 2 is similar to the graph coarsening problem
(GCP [132]) whose goal is to maintain just λG, but without any constraint—they give an
efficient algorithm for this purpose which merges edges based on a quality score. Hence, we
modify that algorithm by not allowing merging of node-pairs with different labels. This works
very well in practice and gives near-linear running time. Note that a better algorithm for
Problem 2 will only improve our results. We use the same amount of coarsening (ρ = 0.1)
as in [132].

Liangzhe Chen Chapter 5. SnapNETS 62

Type ID Name

S
tr
u
ct
u
ra
l f1 Largest eigenvalue of the adjacency matrix

f2 Number of edges
f3 Entropy of the edge weight distribution
f4 Average clustering coefficient

L
a
be
l
ba
se
d

f5 Number of active nodes
f6 Average PageRank of active nodes
f7 Average degree of active nodes
f8 Average degree of active neighbors of active

nodes

Table 5.2: Features extracted to represent each summarized Act-snapshot (i.e., C-graph).

Fig. 5.1 shows our summaries via Problem 2 for the Toy Example: The C-graphs clearly
show the important non-trivial pattern changes in both the structural and label properties
of the original graphs succinctly.

5.3.2 Goal 2: Constructing the Segmentation Graph

After summarizing the Act-snapshots , each segment in the AS-Sequence contains a set of
C-graphs . How to find the distance between two such segments? In general, computing
distances between unlabeled graphs is itself a challenging problem [84]. Fortunately, in our
case, we can just extract simple features from the C-graphs due to their small size and
complexity, and use them to compute the distance. Subsequently, we build the segmentation
graph Gs to store the segments and distances information. Recall that Gs can efficiently
represent all the exponential number of possible segmentations in polynomial space.

Feature extraction of C-graphs

Extracting features from Gc
i is much more efficient primarily because of their smaller size.

Further our summarization maintains the relevant important properties effectively. So we do
not need complex features such as “number of particular substructures” (e.g., stars, maximal
cliques, ladders, etc.) used in related work.

We extracted multiple standard features [96] and eliminate correlated ones to get eight fea-
tures for each Gc

i (see Tab. 5.2 for a description). Feature vector Fi contains: Structural
features (f1-f4), and Label dependent features (f5-f8) (label-dependent properties). Finally,
we normalize them by range normalization for a meaningful comparison between the fea-
tures [96]. Thanks to our careful design, we can use very simple features for our task.

Segmentation graph We now describe how to construct Gs to compactly store and repre-
sent segmentations. Gs(Vs, Es) is a unique weighted DAG where:

Nodes (Vs): For each segment si,j ∈ S, there is one node in the graph Gs. We add two extra

Liangzhe Chen Chapter 5. SnapNETS 63

nodes to the graph: a source node s and a target node t. Therefore, Vs = S ∪ {s, t}.

Edges (Es): There is a directed edge from node si,j to any node sj,k. Also, the source node s
links to all nodes with starting time stamp 1 and all nodes with ending time stamp tmax links
to the target node t. Hence, Es = {e(si,j, sj,k)} ∪ {e(s, si,j)|i = 1} ∪ {e(si,j, t)|j = tmax}.

Edge Weights (w(e)): The weight of all edges from s or to t are zero. The weight of an
edge from si,j to sj,k is equal to the distance between sets of C-graphs in their corresponding
segments, i.e., w(e(si,j, sj,k)) = d(si,j, sj,k).

How to get this distance? Using the Fi for each Gc
i , we compute the average feature vector

over all the C-graphs in a segment as the segment’s representative, i.e., F̂si,j =
∑j
a=i Fa

(j−i+1)
, where

Fa is the feature vector of Gc
a in si,j.

S1,2 S2,3 S3,4 S4,5 S5,6

S1,3 S2,4 S3,5 S4,6

S1,4 S2,5 S3,6

S1,5 S2,6

S1,6

s t.

...

Figure 5.2: Gs

This representation has a natural interpretation as it captures the
average ‘pattern’ of C-graphs of the segment. Then the distance
d(si,j, sj,k) between ‘si,j’ and ‘sj,k’ can be defined as d(si,j, sj,k) =

||F̂si,j − F̂sj,k ||2.

Fig. 5.2 shows the Gs for our Toy Example. Edge weights are
not shown for clarity. Note that Gs is a DAG since its edges are
directed and there is no cycle in it (as we cannot go back in time).
Also, we need to compute the summary just once for each Gi, not
for each segment in Gs. We can compute the distance for every
edge in Gs independently. Hence, we summarize Act-snapshots
and construct the segmentation graph in parallel.

5.3.3 Goal 3: Finding the Best Segmentation

Let P be the set of all paths in Gs from s to t. Then,

Lemma 1 Each path p ∈ P corresponds to a valid segmentation S ∈ C and for each S ∈ C
there is a path p ∈ P.

Hence to get the best segmentation, we only need to define and find the best path in Gs,
which we discuss next.

Average longest path Note that defining the best path is a different and independent
question to that of defining edge weights. We define the best segmentation as follows:

Problem 3: Finding the best segmentation

Given : a segmentation graph Gs

Liangzhe Chen Chapter 5. SnapNETS 64

Find : the average longest path from s to t in Gs, i.e.

S∗ = arg max
S∈P

∑
si,j ,sj,k∈S

w(e(si,j, sj,k))

|S|
(5.2)

Thus, Problem 3 is the Average-Longest Path (ALP) problem on Gs (restricted to the path
set P). ALP defines the path (segmentation) quality as the average value of edge weights in
the path (distance between its segments). Note that ALP is parameter-free and importantly,
it also naturally balances the ‘length’ (weight) of the path (difference between segments) with
nodes in the path (# segments).

An alternative ‘parameter-free’ optimization would have been the Longest Path (LP) prob-
lem: which will try to find the longest (heaviest) path in P (Eq. 5.2, without the denomi-
nator). However, the LP formulation will suffer from over-segmentation—it is biased by the
number of segments in the path, in the sense that it tends to prefer longer paths with more
nodes, irrespective of the edge weights [166]. In practice our observations confirm that LP
contains unnecessary edges with low weight (see Sec. 5.4). Our ALP objective is intuitive
and overcomes the disadvantage of LP. Fig. 5.2 shows the ALP for Toy Example in red.

DAG-ALP

ALP can be solved in poly. time on DAGs (recall Gs is a DAG)2. Current state-of-the-art
algorithms [166] can solve Problem 3 in O(V 2

s .Es). This is too slow for our purposes; hence,
we propose a new and more efficient O(Es) algorithm for ALP on DAGs called DAG-ALP.

The main observation we use is that the ALP from s to t is the longest (‘heaviest’) path
among all paths with the same number of nodes (the ‘length’) as the ALP. This fact leads us
to calculate all the heaviest paths with different lengths in P and find the one which gives
the maximum average edge weight. In DAG-ALP we build a queue of layers of Gs. Each layer
i contains nodes which can reach t by i steps. When we iterate through layers, we maintain
the weight (Pi(v, t)) of the heaviest path from v to t in i steps, and the next node of v in
this path (κiv). Alg. 10 shows the pseudo-code of DAG-ALP.

Lemma 2 The DAG-ALP algorithm correctly finds the average longest path Gs.

Lemma 3 Time complexity of DAG-ALP is O(|Es|), where |Es| is number of edges in Gs.

5.3.4 The Complete Algorithm

Alg. 5 shows the final pseudo code of SnapNETS.

2ALP is NP-hard on general graphs.

Liangzhe Chen Chapter 5. SnapNETS 65

Algorithm 5 SnapNETS
for each Gi ∈ G, coarsen and get Gci once (Sec. 5.3.1) do

Compute feature F̂ vector of segments in S (Sec. 5.3.2)
Generate the segmentation graph Gs (Sec. 5.3.2)
S∗ = DAG-ALP (Gs, G, s, t) (Sec. 5.3.3)

Algorithm 6 DAG-ALP
Require: Gs, G, s, t
Ensure: Palp

1: Initialize Queue
2: Layer0 = {t} and Queue.push(Layer0)
3: Layer1 = {si,j |j = tmax}
4: Queue.push(Layer1)
5: for k = 2 to tmax do
6: Layerk = {si,j |T − j + 1 ≥ k} ∪ {s}

Queue.push(Layerk)
7: Layertmax+1 = s and Queue.push(Layertmax+1)
8: LL = Queue.pop(), κ0

t = ∅
9: while Queue is not empty do

10: CL = Queue.pop()
11: for si,j ∈ CL do
12: κCLsi,j = arg max

sj,k

PLL(sj,k, t) + w(e(si,j , sj,k))

13: PCL(si,j , t) = PLL(κCLsi,j , t) + w(e(si,j , κ
CL
si,j))

14: If s is in CL then lpCL = PCL(s, t)
15: LL = CL
16: ALP = arg max(lp11 , . . . ,

lptmax
tmax

)

17: Extract the Palp using κtmaxs to κ0
t

Lemma 4 SnapNETS has sub-quadratic time complexity O(E · logE + E
p

), where E is the
total number of edges in G and p is number of processors to parallelize constructing the
segmentation graph Gs.

5.4 Experiments

We design various experiments to evaluate SnapNETS. We implemented SnapNETS in MAT-
LAB and Python. Our experiments were conducted on a 4 Xeon E7-4850 CPU with 512GB
of 1066Mhz main memory.

Datasets. We collected a number of datasets from various domains such as social and news
media, epidemiology, autonomous system, and co-authorship network to evaluate SnapNETS.

Liangzhe Chen Chapter 5. SnapNETS 66

See Tab. 5.3 for a summary description.

The ground truth segmentations in these datasets are non-trivial. They are induced from
complex structural changes such as activation in different parts of the Act-snapshots (AS
Oregon3 and Higgs [47]), and varying role of active nodes, e.g., change of active nodes
centrality (BA-degree), or activation rate changes (Portland4). Moreover, detecting the
number of correct cut points is also a difficult task itself. In datasets without ground truth,
we would like to find how memes/news were adopted by social media users (Twitter and
Memetracker [95]) and when the co-authorship relation on a specific topic changes over time
(DBLP [90]).

Dataset #Nodes #Edges Timesteps GT

BA-degree 500 4,900 240 units X
AS-PA 633 1,086 400 units X
AS-COM 4431 7,609 530 units X
AS-MIX 1899 3261 1000 units X
Higgs 456,626 14,855,843 7 days X
Portland 1,575,861 19,481,626 25 days X
Memetracker 960 5,001 165 days
Twitter 126,915 5,589,083 30 days
DBLP 369,855 1,109,452 13 years

Table 5.3: Datasets details. (GT = Ground Truth)

Baselines. To the best of our knowledge, there is no existing algorithm which has all the
desired properties. Hence, we adapt two time series based algorithms, and one plain-graph-
based algorithm, as baselines. We show the details in Tab. 5.4.

Variations: We also designed the following three variations of SnapNETS for comparison.
(1) SN-Orig extracts features from Act-snapshots . (2) SN-LP finds the Longest Path
instead of ALP. (3) SN-Greedy greedily selects edges with the largest weight from s to t,
instead of ALP.

Metrics. For datasets with ground truth, we measure the performance by calculating the
F1 score of the set of detected cut-points with the ground-truth set. For others, we perform
case studies. We show how SnapNETS reveals interesting patterns by matching the results
with external news/events, and show how they are easily interpretable.

5.4.1 Segmentation Results

We give representative results here.

3http://topology.eecs.umich.edu/data.html
4http://ndssl.vbi.vt.edu/synthetic-data/

Liangzhe Chen Chapter 5. SnapNETS 67

(a) AS-MIX

(b) Memetracker

Figure 5.3: Visualization of C-graphs for the segmentations found by SnapNETS for AS-MIX
and Memetracker . The vertical lines are the detected cut points. Black nodes are active and
gray ones are inactive.

Liangzhe Chen Chapter 5. SnapNETS 68

Baseline Description

Dynammo
[98]

Construct time series using features in Tab. 5.2, then feed
the time series and the no. of cut points (detected by Snap-
NETS) to Dynammo, and use reconstruction errors to find
change points.

K-means
(Likas et al.
2003)

Construct time series similarly as in Dynammo, then it finds
segmentations based on an online “local” approach, and re-
ports a segment when a new cluster is detected.

VOG [84] Extract active sub-graph (VOG does not work on labeled
graphs) and use VOG to find the 10 most important
sub-structures. When the set of important sub-structures
changes sufficiently (above a threshold which is set to be
the one with the best performance), we output a segment.

Table 5.4: Baselines description

Quantitative analysis

Data w. GT
F1 score

SnapNETS SN-Orig SN-LP SN-
Greedy

Dynammo K-
means

VOG

BA-degree 1 1 0.08 1 0 0.4 0.67

AS-PA 1 0 0.05 0.67 0 0.4 1

AS-COM 0.67 0 0.07 0.5 0.5 0.22 0

AS-MIX 0.86 0 0.07 0.57 0.32 0.4 0

Higgs 1 0 0.15 1 0 0.67 0

Portland 1 0 0.4 1 1 0.67 1

Table 5.5: F1 score of the segmentation detected by SnapNETS, variations, and baselines on
datasets with GT.

We see in Tab. 5.5 that SnapNETS has the best performance among baselines and variations
of SnapNETS. Note that all the baselines require some input parameters: such as the number
of cut points (Dynammo), threshold for new cluster creation (K-means), and difference
threshold for outputting a cut point (VOG). We test a wide range of these input values and
pick the ones that give the best results. Still, their performance is clearly worse.

AS Oregon : SnapNETS performs very well to differentiate between random and preferential
attachment style activation (AS-PA) and we can accurately detect when different communi-
ties of the network get active (AS-COM and AS-MIX). Fig. 5.3(a) visualizes the C-graphs
in the S∗, and shows that our results are easily interpretable.

Higgs: SnapNETS finds the exact ground truth Jul. 4 (F1 = 1). Note that according
to external news, there were rumors about the Higgs boson discovery from Jul. 2-4; these
rumors make the ground truth harder to detect (for example VOG finds a cut point on Jul.
2 instead of Jul. 4).

Liangzhe Chen Chapter 5. SnapNETS 69

Portland : SnapNETS again detects the ground truth segments (F1 = 1). Other baselines
have worse performance except VOG and Dynammo since the change of the infection pattern
in this dataset is visible in the active subgraphs: an infected chain first, and then many
infected stars (as the disease goes viral). SnapNETS shows its power in finding the pattern
change in disease propagation.

Case studies

SnapNETS finds meaningful segments in multiple datasets from various domains with varied
patterns of evolution (both structurally and in labels) while none of the baselines perform
as well (for example, VOG finds no cut-point in DBLP , K-means essentially gives one at
the end, and Dynammo finds no cut-point in Memetracker).

Memetracker : SnapNETS finds a cut point on Oct. 1, 2008, which matches the date of
the televised debate between Joe Biden and Sarah Palin. In the first segment, C-graphs
(Fig. 5.3(b)) are close to the case when all nodes have the same label—suggesting that few
nodes randomly got infected (f5 ' 0.1, f8 ' 0.2). In the second segment, C-graphs are
substantially sparser (i.e., f2 dramatically dropped to 0.02) and contain large stars and leaf
nodes with active centers. The size of the centers and average PageRank (f6) in the C-graphs
shows that important nodes such as “CNN” and “BBC” websites spread the meme to many
nodes, and they are merged to form hubs.

Twitter : We detect two cut points at Jun. 14 (presidential election) and Jun. 27 (vote
recount). In the first segment, multiple small near-clique structures (high f1 ' 0.8 and low
f2 ' 0.5) of C-graphs shows small and highly connected groups of political activists were
active. In the second segment, important nodes such as “NYtimes” in different areas of
the graph became active and formed multiple large stars of active nodes in C-graphs (low
f1 ' 0.1 and high f6 ' 0.7). Finally, C-graphs became densely connected (f1 ' 0.85,
f2 ' 0.8) because the remaining hub and bridge nodes became active and merged, while a
few small/sparse subgraphs remained inactive.

5.4.2 Scalability

We performed scalability tests, and as expected SnapNETS scales near-linearly w.r.t. the
no. of edges in G, and the running time is reasonable and practical—it is ∼ 10 times faster
than dynamic graph analysis methods such as [147]. Also, we get excellent speed-ups (∼ 9X
faster using 10 processors) after parallelization.

Liangzhe Chen Chapter 5. SnapNETS 70

0 2 4 6 8 10 12
x 106

0

500

1000

1500

2000

2500

Number of Edges (size of data)

R
un

ni
ng

 ti
m

e
(s

ec
)

SnapNETS
Y = (2.5e−4)X − 240

(a)

2 4 6 8 101

2

3

4

5

6

7

8

9

10

Number of Processors

Sp
ee

d
U

p

Experimental
Ideal

(b)

Figure 5.4: (a) Scalability of SnapNETS. (b) Speedup by parallelizing construction of Gs.

5.5 Discussion and Conclusions

We presented SnapNETS, an intuitive and effective method to segment AS-Sequences with
binary node labels. It is the first method to satisfy all the desired properties P1, P2, P3.
It efficiently finds high-quality segmentations, detects anomalies, and gives useful insights in
diverse complex datasets.

Patterns it finds: In short, SnapNETS finds segmentations where adjacent segments have
different characteristics of nodes with the same label, i.e., the ‘placement’ and ‘connec-
tion’ of active/inactive nodes are different. This includes both structural (e.g., commu-
nity/role/centrality) and rate changes. As a non-trivial example, we can detect both a
random-vs-targeted activation and a faster-vs-slower one.

Global method: It is useful to note that SnapNETS is a ‘global’ method and not simply a
change-point detection method. We are not just looking for local changes; rather we track
the ‘total variation’ using Gs. Hence this allows to find important cut-points automatically
and without any specification.

Flexibility: The SnapNETS framework is very flexible, as our formulations are very general.
The eigenvalue characterization is general; similarly, the Gs-ALP formulation should be also
useful for other segmentation-like problems; and DAG-ALP can be of independent interest
too. Adapting SnapNETS to handle dynamic graphs with varying nodes and edges is useful
as the next step. Also, extending our work to streaming and partially observed graphs, and
handling more general node/edge level features, will be interesting.

Chapter 6

Segmentation with Explanation for
Multi-Dimensional Time Series

Recent hurricane events have caused unprecedented amounts of damage and severely threat-
ened our public safety and economy. The most observable (and severe) impact of these
hurricanes is the loss of electric power in many regions, which causes the breakdown of many
public services. Understanding the power outages and how they evolve during a hurricane
provides insights on how to reduce outages in the future, and how to improve the robustness
of the underlying critical infrastructure systems.

In this chapter, we propose a novel segmentation with explanations framework to help ex-
perts understand such datasets. Our method, CUT-n-REVEAL, first finds a segmentation of
the outage data to capture pattern changes in the sequences. We then propose a novel ex-
planation optimization problem to find an explanation of the segmentation, that highlights
the culprits of the changes. Via extensive experiments, we show that our method performs
consistently in multiple datasets with ground truth. We further study real county-level
power outage data from several recent hurricanes (Matthew, Harvey, Irma) and show that
CUT-n-REVEAL recovers important, nontrivial and actionable patterns for domain experts.

6.1 Introduction

Power outages during several recent hurricanes have caused severe impact on our national
security, economy and public safety. The 2017 hurricane season was the most expensive in
U.S. history resulting in huge economic losses (greater than $250 billion). Hurricane Irma
caused one of the largest power outages which reportedly knocked out power to 4.5 million
of Florida Power & Light’s 4.9 million customers. Hence, better understanding the power
outages and how they evolve during the hurricanes is a very important task for damage
prevention and control.

71

Liangzhe Chen Chapter 6. CUT-n-REVEAL 72

Domain experts in critical infrastructure systems (CIS) constantly seek solutions and ideas
on how to reduce the power outages during hurricanes. For example, Oak Ridge National
Laboratory’s (ORNL) Energy Awareness and Resiliency Standardized Services (EARSS)
project developed a fully automated procedure to take wind speed and location estimates
provided by hurricane forecasters and provide a geospatial estimate on the impact to the
electric grid in terms of outage areas and projected duration of outages [15]. There are
many such examples, including the National Infrastructure Simulation and Analysis Center
(NISAC) program1 (which provides projected outages) and ANL’s HEADOUT model which
quickly estimates potential customers who will lose power.

Although crucial, it is often non-trivial to analyze the cause of power outages. While the
majority of power failures from national grids last only a few hours, some blackouts can last
days and can impact several critical infrastructure systems like telecommunication networks,
financial services, water supplies and hospitals. For example, from airlines to blood supply
levels to energy and water supplies, the 2003 NE American blackout impacted a wide range
of critical infrastructure and emergency management sectors in both Canada and the U.S.
One of the widespread impacts of Hurricane Sandy was loss of electricity for over 8.5 million
homes across the eastern US [20].

As a result, identifying how and why the power outages evolve in a certain way during historic
hurricanes is a very challenging task. Identifying time-points where there is a sudden change
in the evolution of number of outages can help in many aspects from identifying causes and
prioritizing repair resources to predicting future outage outbreaks [50, 66]. Such a problem
may be addressed using the time-series mining task of ‘segmentation’ (however there are
some domain-based properties of such time-series which we need to take into account for
segmentations). Nevertheless, merely providing cut-points via segmentation is usually not
enough for directly actionable guidance. Knowing the time-point of changes, domain experts
also need to know what is changing and how it is changing, which is typically deeply buried in
an abundance of unrelated information. In the context of power outage data from hundreds of
counties, helping power engineers understand which counties were responsible for a particular
sudden change is very valuable. Knowledge of the so-called ‘culprits’ allows them to direct
their attention to these counties, and perform faster and more targeted damage control, to
prevent even larger failures.

In this chapter we address this issue via a novel segmentation-with-explanations approach.
Our main contributions are:

1. We propose a segmentation algorithm for modeling power outages, that captures tem-
poral relationships among different time stamps.

2. We propose an explanation algorithm that automatically identifies the culprit of changes
for the segmentation detected.

1http://www.sandia.gov/nisac/

Liangzhe Chen Chapter 6. CUT-n-REVEAL 73

3. Via experiments on historical hurricane data, we identify when and how the outage
numbers dramatically change, and we summarize how these can help us reduce the
number of outages in future disaster events.

6.2 Focus and Setup

We first briefly describe our focus and setup. Large power grids usually contain thousands
of generators, hundreds of thousands of transmission lines and millions of consumers. Grid
components have strong interdependencies like in the transmission grid where multiple paths
exist between generators and consumers and these paths typically are arranged in a mesh
grid. Hence if one path or line fails, the electricity instantaneously follows an alternate path
governed by Kirchhoff’s voltage and current laws [65]. If the alternate path however cannot
handle the overload, it in-turn fails and this failure cascades to neighboring components.
Due to the well established property of cascading failure propagation in the grid [65] and the
small-world properties of power grids [67], a few initial points of failure due to a hurricane
quickly cause network instability in a region, potentially causing millions of people to suffer
the effects of brownouts or blackouts. Due to built in failsafes and resilience mechanisms in
the grid, the effect of failure of a component is often localized to a region depending on the
severity of the fault or failure.

In the context of a hurricane, the grid component damage and failure is often progressive
along the spatial trajectory of the hurricane. A hurricane exhibits multiple phases of varied
intensity along its path, causing failures with different levels of severity at different regions
in its path. We model the progression of this grid failure process as a temporal segmentation
problem.

Modeling this failure process over time, across different regions (e.g., counties) affected by
a hurricane, is essential for improving the resilience of critical infrastructure during future
disasters.

We characterize the severity of this grid failure process by measuring the evolving number
of people in a hurricane affected region (a county in our case) without power over the time
period fo the hurricane. Two critical questions need to be answered for characterization of
this process:

• How can we characterize the different phases of a hurricane as a function of severity of
the damage to critical infrastructure like the power grid using highly dynamic, sparse
customer power loss data?

• Which locations (counties) are most important for characterizing each phase of failure?

Our main goal is to help domain experts answer the aforementioned questions.

Liangzhe Chen Chapter 6. CUT-n-REVEAL 74

Notation: We assume we are given a set of time series X = {x1, x2, ..., xn}, where each time
series xi = [xi(t1), xi(t2), ..., xi(tm)], and xi(tj) represents the value at time stamp tj for the
ith time series. We also assume there is an underlying graph structure G that captures the
relation among these time series {xi}, and we are given the Laplacian matrix L of G. For
example, in critical infrastructure systems, the number of electric outages in all counties form
a set of time series, and the relation among these counties can be based on the geographical
proximity: two counties that are adjacent to each other are connected to each other. We
use xi(ta : tb) to denote [xi(ta), xi(ta+1), ..., xi(tb)], and X(ta : tb) = [x1(ta : tb), x2(ta :
tb), ..., xn(ta : tb)].

Our algorithm CUT-n-REVEAL contains two parts: detecting a good segmentation of the
outage data to capture the main changes and finding the corresponding explanations for
the segmentation. With this knowledge of the segmentation and the explanations for each
segment, the expert has a holistic picture of the different phases of the failure process as
well as the specific time series that contributed significantly to each phase change. We next
describe in detail each of these tasks and our solutions.

6.3 Finding Segmentations

In this section we focus on the segmentation problem. We first describe the formal problem,
and then give the overview and details of our method.

6.3.1 Our Problem

We first need to define a segmentation:

Definition 6.1 (Segmentation S) A segmentation of X contains a set of distinct time
cut points S = {c1, c2, ..., ck}, where ci ∈ {t1, t2, ..., tm}.

The cut points of S naturally divide the time period into a set of time segments. We denote
such a time segment as si = [ci−1, ci) with c0 = t1, and ck+1 = tm. Our problem is:

Problem 6.1 Given a set of time series X, the Laplacian matrix L of the underlying
network, and a number k, find the k-segmentation of S that captures the main pattern
changes in X.

6.3.2 Overview of our Approach

We develop a model to provide simple segmentations of the continuously changing grid failure
process and interpretable explanations of the segmentations. We need to isolate temporal

Liangzhe Chen Chapter 6. CUT-n-REVEAL 75

sequences into discrete segments such that the properties of the failure process in each
segment differ from neighboring segments. The process of manually or algorithmically picking
reasonable segments is non-trivial as segments that are too small fail to capture significant
properties of the failure process while picking segments that are too large, although capturing
all failure process characteristics, do not highlight the differences between the various phases
of the process. Since this process is highly dynamic and the failure dataset is highly sparse,
methods based on capturing long-term correlation [62] or invariant learning [114] from the
data will be unable to perform adequately.

Owing to the sparse setting at hand and the lack of any long term correlations, we decided
to adopt a latent factor modeling approach which has been shown to be effective in sparse
settings like recommendation systems [119, 83]. The proposed segmentation procedure learns
a latent representation for each time step using the data for dynamic power loss across
affected counties. The results of the segmentation procedure are designed to be sparse in
nature while managing to capture all the major trends in the process. We propose to use
a data driven methodology (instead of setting a constant segment size) to automatically
derive a set of appropriate time segments. Through the segmentation model, we wish to
group time steps with similar patterns into contiguous time segments. To this end, we
propose to represent each time step in latent space so as to capture its temporal relationship
with the other time steps, and merge similar time steps into temporally contiguous segments.
This methodology allows us to obtain segments where time steps in a segment are related
to their past and future time steps in a similar way, allowing for simpler explanations later
about pattern changes.

6.3.3 Details

In line with the overarching goal of discovering the different phases of the failure process in
the power grid during natural disasters, we consider these phases or segments as a collection
S of disjoint sets ci. Each set ci contains contiguous time steps that belong to segment i.
We wish to discover a collection S = {c1, ..., ck} that minimizes similarity between any two
neighboring sets ci, cj. Two sets ci, cj are said to be neighboring sets if ci = {tl, .., tl+∆l} and
cj contains tl−1 or tl+∆l+1.

By doing so, each segment ci would capture a different pattern from its neighboring segments
(ci−1, ci+1), thus the segmentation S captures pattern changes in the time series. We employ
the normalized cut framework which has been shown to work well in subspace clustering and
segmentation tasks [148].

The normalized cut algorithm generates segments such that the similarity of time steps within
each segment are maximized while the similarity between time steps in different segments is
minimized.

The question of how to represent each time step, for effective similarity calculation between

Liangzhe Chen Chapter 6. CUT-n-REVEAL 76

time steps, still remains. One straight-forward way is to use the data values at ti and tj
across all time series and check how similar the values are. However, in this case, much of
the information relating to the continuous evolution of the failure process will be lost.

In an effort to find a more principled approach to capture the similarity between different
time steps in the failure process, we adopt the formulation provided by Tierney et al. [160]
for video scene segmentation for our purposes of modeling the hurricane failure process. The
model represents each time step in the data X, using a latent representation as a function
of other important time steps. It is through this latent representation V that we attempt to
capture the dynamics in the data X.

min
V

1

2
||X −XV ||2F + λ1||V ||1 + λ2||V R||1,2

s.t. diag(V) = 0
(6.1)

where V is an m by m matrix, and the ith column represents the latent representation of
time step i in terms of all the other time steps.

The first term in Eq. 6.1 calculates the reconstruction error between X and XV while the
second term introduces sparsity into the latent representation, enforcing that each time step
be explained as a function of a small subset of other important time steps. Finally in the
third term, R is an m by m − 1 lower triangular matrix with −1 on the diagonal and 1 on
the second diagonal.

R =

−1
1 −1

1
. . .
. . . −1

1

 (6.2)

The term V R calculates the difference of each time step with its previous time step in
the latent V space. This term essentially serves as a smoothness constraint penalizing the
dissimilarity of neighboring time steps. The l1,2 norm term forces whole column similarity
between two columns of V between neighboring time steps in V as opposed to just element-
wise similarity in the case of a simpler l1 norm on V R.

The solution to equation 6.1 can be obtained by applying the alternating direction method
of multipliers (ADMM) [26]. Using this approach does not guarantee convergence but in our
experiments, the algorithm always converged. To separate each term in equation 6.1, we
assign K = V and U = KR .

The Lagrangian formulation is given by equation 6.3

Liangzhe Chen Chapter 6. CUT-n-REVEAL 77

L(V,K,U) =
1

2
||X −XK||2F + λ1||V ||1 + λ2||U ||1,2

+ 〈G, V −K〉+
β1

2
||V −K||2F + 〈F,U −KR〉

+
β2

2
||U −KR||2F

(6.3)

Solving equation 6.3 yields a temporal weight matrix V ∈ Rm×m from which we derive an
affinity W . The affinity matrix is then segmented using the normalized cuts procedure as
mentioned previously to obtain the set of segments S.

6.4 Finding Explanations

Despite the sparsity of the segmentation procedure in the previous section, it is often not
possible to identify the cause for each segment due to many simultaneously changing time
series throughout the failure process. In this scenario, it is beneficial for a domain expert to
know the subset of ‘culprit’ time series that were influential in forming a particular segment.

6.4.1 Our Problem

Assuming we are given a segmentation S of X, containing a set of time segments and
the corresponding cut points {ci}, which counties/time series are the most important for
characterizing the different patterns in the segments? How to design explanations of the
segmentations in an intuitive, easy to understand way? The cut points in the segmentation
and our latent V matrix (which instead only captures the temporal relation among time
stamps) do not provide answers to this question. A desired explanation of the segmentation
should be simple yet effective enough that it gives direct guidance to prevent or curtail the
effect of the failure of critical infrastructure in future disasters.

We provide answers to these questions by introducing an explanation vector ei for each cut
point ci in the segmentation. Each ei is an n by 1 vector, where the jth value represents
the importance of the jth time series/counties in explaining the cut point. Intuitively, if a
time series xj shows very different patterns before and after the cut point ci, we consider
it important in explaining why ci is a good cut point. On the other hand, if time series
remains constant/unchanged across ci, it does not provide useful information in terms of
the cut point ci and should have low values in ei. In the hurricane outage data where
there are hundreds of time series/counties, such explanation vectors are able to highlight the
culprit time series/counties where major changes happen at the cut point. This explanation
also serves as a guide for future resource allocation policies of maintenance and emergency
personnel.

Liangzhe Chen Chapter 6. CUT-n-REVEAL 78

Definition 6.2 (Cut point explanations E) E = {e1, e2, ..., ek}, where ei is an n by 1
non-negative explanation vector. ||ei||1 = 1 and eij represents the importance of time series
j for explaining the cut point ci.

Now we give the problem we solve.

Problem 6.2 Given a set of time series X, the Laplacian matrix L of the underlying
network, a number k, and the k-segmentation of S, find the associated explanations E, that
capture the main pattern changes in X.

6.4.2 Overview of our Approach

Existing time series segmentation algorithms do not provide any explanation of the result in
an automatic principled way. Only recently there has been a push toward making complex
machine learning model outputs quantifiable, explainable and simple [140]. To design good
explanations specifically for hurricane outage data, we consider the characteristics of the
data, as well as the requirements from the domain experts. We formulate an optimization
problem that automatically learns explanations considering the underlying geographical re-
lation between counties, revealing a small number of truly important counties as the culprits
for the domain experts.

6.4.3 Details

We want to design an optimization problem that automatically finds good {ei}. Assume
that we have a function d(S, i), which takes a segmentation S and a cut point index i as
inputs, and returns an n by 1 vector which captures the difference of each time series before
and after the ith cut point ci in S. We want ei to give higher weights on time series with
higher d(S, i)j values (therefore higher difference across cut point ci). A straight-forward
way is to maximize the weighted sum in the following way.

arg max
E

k∑
i=1

eTi d(S, i)

subject to 0 ≤ eij ≤ 1, (6.4)

||ei||1 = 1

The above formulation guarantees that we give higher importance to time series/counties
with larger difference across the corresponding cut points. However, it treats each county
as independent and ignores their geographical relation (some counties are close in distance,
and some are far away). Such a geographical relation is important to capture because a

Liangzhe Chen Chapter 6. CUT-n-REVEAL 79

hurricane trajectory is continuous and it usually hits counties that are close to each other at
the same time. Hence, the importance of counties should be geographically smooth in the
sense that adjacent counties should have similar importance. Another drawback of the above
formulation is that it does not correctly reflect our requirement of a ‘simple’ explanation:
we only need a few culprit counties and want to avoid having high importance for too
many counties. Due to these considerations, we improve the above formulation by adding
a geographical and a sparsity constraint on ei. The final optimization problem we solve is
shown below.

Given: A set of time series X,L, a segmentation S, α, λ.

Find: E = {ei} such that

arg max
E

k∑
i=1

[eTi d(S, i)− αeTi Lei]− λ
k∑
i=1

||ei||1

subject to 0 ≤ eij ≤ 1, (6.5)

||ei||1 = 1

The geographical smoothness is introduced in the second term using the Laplacian matrix L
(obtained from the underlying network behind the counties). This term basically minimizes
the difference of ei for adjacent counties. The third term is an L1 norm regularization on
ei, which introduces sparsity in ei. This leads to the simplicity in our explanations: only a
few important counties will have non-zero values in ei to explain the ci, making the results
much simpler to interpret.

One question remains unsolved: How should we design the distance function d(S, i) to cap-
ture the difference of time series across a cut point? Our idea is to look at a time window
before the cut point ci and a time window after ci, and calculate the difference of these two
time windows as the difference of the time series across ci. Assume that w−ij represents the
sub-sequence of xj in the time window before ci, and w+

ij represents the sub-sequence in the
time window after ci. We then calculate the difference of w−ij and w+

ij using simple, standard
time series features: the mean value (f1), the standard deviation (f2), the maximum value
(f3) and the minimum value (f4).

D(S, i)j =
1

4

4∑
z=1

|fz(w−ij)− fz(w+
ij)| (6.6)

Note that |fz(w−ij)− fz(w+
ij)| are usually in different magnitudes for different features, hence

as a preprocessing step which we do not elaborate in the equation, we perform a min-max
normalization of |fz(w−ij) − fz(w+

ij)| across all time series to make them in the same scale.
As both w−ij and w+

ij are of a short length (a deliberate setting since the pattern changes
that justify the choice of a particular cut points usually lie in the local area), these simple
features are enough to capture the main pattern difference.

Liangzhe Chen Chapter 6. CUT-n-REVEAL 80

Finally, to solve Eq. 6.6, we optimize each ei separately. For each ei, the optimization can
be re-written as a Quadratic Programming problem in the following way.

arg min
ei

αeTi Lei − [d(S, i)T − λiT]ei (6.7)

subject to 0 ≤ eij ≤ 1,

||ei||1 = 1

The QP problem is well studied in the literature, and it is NP-hard in its general form.
In our case, where the QP is convex to ei, it can be solved in polynomial time using an
Interior Point method [178], and we use the existing Matlab function (quadprog) to solve
the problem.

6.5 Empirical Study

We implement CUT-n-REVEAL in Python and Matlab (we will release the code for research
purposes). Our experiments were conducted on a 4 Xeon E7-4850 CPU with 512 GB of
1066Mhz main memory.

6.5.1 Setup

Dataset. We collect datasets from different domains with the ground truth segmentations
to quantitatively evaluate our performance, and we run CUT-n-REVEAL on three hurricane
outage datasets to show our case study results. For efficiency purposes, we perform a stan-
dard rolling average as a preprocessing step to all the data. The final statistics of the datasets
are shown in Tab. 6.1.

ChickenDance: A “chicken” dance motion is recorded as a sequence of 4-dimensional data
points. This was extracted by Matsubara et.al [109] and is originally from a CMU motion
capture database2. We have the ground-truth segmentation here based on motions in the
dances.

WalkJog : We use a dataset adapted from the REALDISP Activity Recognition Dataset [14,
55], where motions of walking, jogging and running are recorded by sensors. We use a sub-
dataset with the walking motion and the jogging motion (as these motions show obviously
different patterns), and we aim to detect when a different motion happens.

NILM : Non Intrusive Load Monitoring dataset. This dataset consists of real power mea-
surements for various household appliances like lamps, laptops, and refrigerators, recorded
through the use of MAU (Measurement and Actuation Units) connected between the device

2http://mocap.cs.cmu.edu

Liangzhe Chen Chapter 6. CUT-n-REVEAL 81

and the wall-socket. A detailed account of this dataset and the data acquisition method-
ology has been presented in [139]. We use a twenty-four hour snapshot of the NILM data
to evaluate our performance, and use the time when a device switches state as the ground
truth segmentation.

Hurricane Outage data: ORNL has developed several grid situational awareness products
over the last decade such as VERDE, EARSS and EAGLE-I3 for different stakeholders
like DOE and FEMA, primarily for emergency management. For example, the National
Outage Map within EAGLE-I collects distribution outage data of all the customers from
utility websites every 15 minutes. Due to the recent coverage expansion (with more utilities
exposing data from their Outage Management Systems), in this chapter, we consider the
more recent hurricane outage data, namely for Matthew, Harvey and Irma since it covers
nearly 90% of the population in the hurricane affected areas.

Baselines To the best of our knowledge, there is no algorithm that finds explanations for
segmentations in the way we do. In the experiments, we mainly select state-of-the-art multi-
variate time series segmentation algorithms to compare against.

Autoplait [109] is a Hidden Markov Model based algorithm that discovers the different
regimes in co-evolving time series. Each regime can be thought of as the segments for
our problem.

TICC [62] is a subsequence clustering algorithm for multivariate time series to discover
repeated patterns. It clusters time stamps into segments that can be well interpreted by the
same model. Each cluster of the time stamps becomes the segments for our problem.

Dynammo [98] reconstructs data values in time series by discovering latent variables and
their dynamics, and then uses the spikes of the reconstruction errors to find cut points for
the data.

Table 6.1: Datasets used.

Dataset #Timestamps #Time series

NILM 721 5
ChickenDance 322 4
WalkJog 500 2
Harvey 264 250
Irma 169 271
Matthew 252 369

3Outage Data source: EAGLE-I https://eagle-i.doe.gov/

Liangzhe Chen Chapter 6. CUT-n-REVEAL 82

6.5.2 Quantitative Evaluation

We compare CUT-n-REVEAL performance with the baselines on the datasets with ground
truth segmentations: NILM, ChickenDance and WalkJog. We evaluate the detected cut
points by calculating the F1 score based on the ground truth cut points (as in [109]).
Higher F1 scores show better segmentation precision. We show the results in Tab. 6.2.

Table 6.2: Evaluation on ground truth datasets

Dataset
Method

CUT-n-
REVEAL

AutoPlait TICC Dynammo

NILM 0.8 0.4 0.81 0.75
ChickenDance 0.8 0.73 0.5 0.57
WalkJog 1.0 0.0 0.25 0.0

As shown in the table, except for the NILM data, CUT-n-REVEAL significantly outperforms
the baselines (achieving the best F1 scores) in most of the cases. Even in NILM, our perfor-
mance is comparable to TICC’s (a difference of only 0.01). This showcases the effectiveness
of CUT-n-REVEAL at identifying and extracting different patterns in time series. In the fol-
lowing, we visualize our segmentations and show that they capture the main pattern changes
in the data.

0 50 100 150 200 250 300

Time Steps

−100

−80

−60

−40

−20

0

20

40

60

S
en

so
r M

ea
su
re
m
en

ts

Figure 6.1: The discovered segmentation results for ChickenDance.

We show our segmentation result for ChickenDance in Fig. 6.1. CUT-n-REVEAL is able to
isolate most of the different data trends successfully. It detects precisely 6 cut points from
the 7 ground truth cuts, with two false positive cuts at time steps 72 and 234, which are very
close to ground truth cuts. In Fig. 6.2, for WalkJog, we see that CUT-n-REVEAL correctly
separates the sequences of data generated due to walking, from those due to jogging. The
cut point discovered by our method lies in a 1% cut point location tolerance window with
respect to the ground truth cut point. Finally for the NILM dataset, the results (Fig. 6.3)

Liangzhe Chen Chapter 6. CUT-n-REVEAL 83

are able to identify accurately (F1 score=0.8) the different residential daily usage patterns
(segments 1 - 9 enumerated from left to right of the figure).

0 50 100 150

Time Steps

−20

−15

−10

−5

0

5

10

15

S
en

so
r M

ea
su
re
m
en

ts

Figure 6.2: The discovered segmentation (vertical black dashed line) results for the WalkJog
dataset.

00:00
17-Jan

03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time of Day

0

50

100

150

200

250

P
ow

er
 C
on

su
m
pt
io
n Lamp1

Lamp2
Monitor
PC-Desktop
LCD-TV

Figure 6.3: The discovered segmentation (vertical black dashed line) results for the NILM
dataset.

6.5.3 Case Studies: NILM

Monitoring the energy consumption pattern of a home is essential for understanding patterns
of power wastage and overuse. Hence it is interesting to study in-depth the patterns as shown
by our segmentation for the NILM dataset. In Figure 6.3, each segment captures a state
change of one or multiple devices. Segments 1 and 2 represent a possible nightly routine with
all electronic devices except possibly a night lamp (Lamp2) turned off. Segment 4 represents
the power consumption during the first half of the work day and segment 5 captures the
event of the television being turned on, possibly during a lunch break. Segment 6 could be
equated with segment 4 representing the second half of the work day. Segment 7 represents
the beginning of the evening routine. This segment is also the period of peak demand for the
day. If a user wished to lower their energy bill, it is apparent that the energy consumption
in this segment would have to be reduced or distributed to neighboring segments. Segments
8 and 9 can be considered evening recreational activity. The segmentation algorithm thus

Liangzhe Chen Chapter 6. CUT-n-REVEAL 84

allows a resident to gain an abstracted view of their energy usage patterns as a function of
their daily activities with the devices in each segment highlighted. In order to further our
performance evaluation, and to understand if our results are robust to noise (common in such
datasets), we also included another device (a refrigerator) that consumes significant energy
relative to the other appliances, and has a consistent cyclic daily usage pattern. The usage
pattern with segmentation on the new dataset is shown in Figure 6.4. Interestingly CUT-n-
REVEAL is quite robust in the presence of such devices. It is still able to effectively capture
the device state changes of all appliances in the household like before, with the difference
being the additional segments during periods of isolated operation of the refrigerator.

00:00
17-Jan

03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time of Day

0

50

100

150

200

250

P
ow

er
 C

on
su

m
pt
io
n Lamp1

Lamp2
Monitor
PC-Desktop
Refrigerator
LCD-TV

Figure 6.4: NILM with noisy cyclic patterns

6.5.4 Case Studies: Hurricanes

We run CUT-n-REVEAL on outage data from three recent hurricanes. We show that, thanks
to CUT-n-REVEAL, we can find the segmentations which capture important outage pattern
changes, and our explanations correctly identify the culprit counties where major events
happen.

Hurricane Harvey. We show our segmentation and explanation results in Fig. 6.5.
The segmentation and all the time series are shown in Fig. 6.5(a). In Fig. 6.5(b)(c)(d), we
visualize for each cut point the most important time series whose ei values sum over 0.8 (their
importance in explaining the corresponding cut point is over 80%). In Fig. 6.5(e)(f)(g), we
visualize the entire ei vector on a map, where the color of a county shows the importance of
that county in explaining the cut point.

We detect three cut points for the Harvey data (see Fig. 6.5(a)). The first cut point captures
the date (Aug. 25) when the hurricane strengthened before its landfall. Soon after this cut
point, the number of outages starts to rise in several counties. In Fig. 6.5(b)(e), we observe
that CUT-n-REVEAL correctly highlights the counties with the steepest rise for the first cut
point (Nueces, San Patricio and Aransas), and all of them are near Harvey’s landfall area.
For the second cut point (around Aug. 27), our explanations capture two different patterns:
the number of outages in Nueces County (green line in Fig. 6.5(c) and the red county in
Fig. 6.5) experience major decrease, while the number of outages in the Victoria, Matagorda
and Montgomery counties start to rise. This cut point correctly shows that the impact of
the hurricane is moving, and our explanation identifies the direction of the move (which is

Liangzhe Chen Chapter 6. CUT-n-REVEAL 85

consistent with the trajectory of Hurricane Harvey). Finally for the last cut point (around
Aug. 30), while the outages of many counties are decreasing, our algorithm correctly detects
a small set of counties (Orange, Jefferson and Hardin) that experience a sudden outage
increase (Fig. 6.5(d)(g)). The main reason for this increase is due to the rising water of the
Neches River, which causes the city to lose service from its major pump stations. Note that
this information is deeply buried in the entire time series and it is hard to directly observe
in Fig. 6.5(a) with hundreds of time series why such a cut point makes sense. Through our
explanations, we perfectly isolate these culprit counties in Fig. 6.5(d)(g).

0 50 100 150 200 250 3000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

(a) Harvey segmentation

0 50 100 150 200 250 3000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

(b) Important time series
for c1

0 50 100 150 200 250 3000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

(c) Important time series
for c2

0 50 100 150 200 250 3000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

(d) Important time series
for c3

(e) Explanation e1 (f) Explanation e2 (g) Explanation e3

Figure 6.5: Segmentation and the corresponding explanations for Harvey. (a) The segmen-
tation and all the time series. (b)(c)(d) The most important time series (that contribute
over 80% importance in ei) for each of the cut point. (e)(f)(g) ei visualizations for each cut
point. Counties with higher ei values are more important for the cut point, and are marked
with a color closer to red.

Hurricane Irma. We make similar plots for Irma in Fig. 6.6. The first cut point (around
Sep. 10) again captures the date of the hurricane’s landfall. Interestingly, the second and
third cut point of the segmentation are very close to each other, and by directly reading the
raw data with hundreds of time series in Fig. 6.6(a), it’s impossible to make sense of these
two cut points. On the other hand, the explanations learned by CUT-n-REVEAL precisely
show why these two cut points are detected: they are related to outage increases in different
locations that are far away from each other. The second cut point shows the outage increase
in the Pinellas, Duval and St. Johns counties, while the third cut point captures the outage
outbreak in the DeKalb, Fulton and Gwinnett counties (the highlighted area in the top of
Fig. 6.6(h)). Finally, the last cut point (around Sep. 12) correctly captures the date when

Liangzhe Chen Chapter 6. CUT-n-REVEAL 86

hurricane Irma weakened into a Category 2 storm, and the number of outages in many
counties decrease.

0 20 40 60 80 100 120 140 160 1800
10

00
0020

00
0030

00
0040

00
0050

00
0060

00
0070

00
0080

00
0090

00
00

(a) Irma segmenta-
tion

0 20 40 60 80 100 120 140 160 1800
10

00
0020

00
0030

00
0040

00
0050

00
0060

00
0070

00
0080

00
0090

00
00

(b) Important time
series for c1

0 20 40 60 80 100 120 140 160 1800
10

00
0020

00
0030

00
0040

00
0050

00
0060

00
0070

00
0080

00
0090

00
00

(c) Important time
series for c2

0 20 40 60 80 100 120 140 160 1800
10

00
0020

00
0030

00
0040

00
0050

00
0060

00
0070

00
0080

00
0090

00
00

(d) Important time
series for c3

0 20 40 60 80 100 120 140 160 1800
10

00
0020

00
0030

00
0040

00
0050

00
0060

00
0070

00
0080

00
0090

00
00

(e) Important time
series for c4

(f) Explanation e1 (g) Explanation e2 (h) Explanation e3 (i) Explanation e4

Figure 6.6: Segmentation and the corresponding explanations for Irma. See detailed discus-
sions in Sec. 6.5.4.

Hurricane Matthew. In Fig. 6.7, we show our segmentation and explanations in similar
ways for Hurricane Matthew. The first cut point (around Oct. 2) corresponds to the landfall
of Matthew and a set of counties in the east coast (Brevard, Palm Beach, etc.) start to have
increasing power outages. The second cut point (around Oct. 4) and the corresponding
explanations show the moving direction of the hurricane. Counties like Duval, Chatham,
Horry and Charleston, which are to the north of the landfall location, start to experience
power outages (Chatham County experiences a peak of outage at the cut point). Soon after
Oct. 4, in Fig. 6.7(h), we observe that Horry County (highlighted with the red color), which
is influenced in the previous cut point, has now become severely affected and the influence
has spread to neary counties as well. This can be also observed in Fig. 6.7(d) where a set
of time series suddenly increase. Finally, the last cut point (around Oct. 9) shows that the
power outage impact of Matthew on these previously affected counties has mostly abated.

6.6 Conclusions

In this chapter, we have developed a combined framework for providing simple interpretable
explanations for failure processes like critical infrastructure outages. We evaluated the per-
formance of our methodology against state-of-the-art segmentation and time series clustering

Liangzhe Chen Chapter 6. CUT-n-REVEAL 87

0 50 100 150 200 2500

50
00

010
00

00
15

00
00

20
00

00
25

00
00

30
00

00
35

00
00

(a) Matthew seg-
mentation

0 50 100 150 200 2500

50
00

010
00

00
15

00
00

20
00

00
25

00
00

30
00

00
35

00
00

(b) Important time
series for c1

0 50 100 150 200 2500

50
00

010
00

00
15

00
00

20
00

00
25

00
00

30
00

00
35

00
00

(c) Important time
series for c2

0 50 100 150 200 2500

50
00

010
00

00
15

00
00

20
00

00
25

00
00

30
00

00
35

00
00

(d) Important time
series for c3

0 50 100 150 200 2500

50
00

010
00

00
15

00
00

20
00

00
25

00
00

30
00

00
35

00
00

(e) Important time
series for c4

(f) Explanation e1 (g) Explanation e2 (h) Explanation e3 (i) Explanation e4

Figure 6.7: Segmentation and the corresponding explanations for Matthew. See detailed
discussions in Sec. 6.5.4.

procedures on ground truth datasets. We have also conducted extensive analysis on the fail-
ure of the power grid during three hurricane events along with conducting a case study on the
applicability of temporal segmentation to understanding residential energy usage patterns.
There are many avenues for future work. Methodologically, we can study performing a joint
learning of segmentations and explanations to leverage both spatial and temporal informa-
tion simultaneously. We are also exploring integrating CUT-n-REVEAL with existing analysis
tools, such as the URBANNET toolkit [37] in use at national labs and power utilities.

Chapter 7

Modeling Influence among Tweet
Sequences

Microblogging websites, like Twitter and Weibo, are used by billions of people to create and
spread information. This activity depends on various factors such as the friendship links
between users, their topic interests, and the social influence between them. Making sense of
these behaviors is very important for fully understanding and utilizing these platforms.

Most prior works on modeling social-media either ignore the effect of social influence, or
consider its effect only on link formation or post generation. In contrast, in this chapter we
propose PoLIM, which jointly models the effect of influence on both link and post genera-
tion, leveraging weak supervision. We also give PoLIM-FIT, an efficient parallel inference
algorithm for PoLIM which scales to large datasets. In our experiments on a large Twit-
ter corpus, we detect meaningful topical communities, celebrities, as well as the influence
strengths pattern among them. Further, we find that there is a significant portion of posts
and links that are caused by influence, and this portion increases when the data focuses on
a specific event. We also show that differentiating and identifying the influenced content
benefits other quantitative downstream tasks as well, like predicting future tweets and link
formation.

7.1 Introduction

Modeling microblogging data, such as Twitter and Weibo, has attracted great attention in
recent years [33, 133, 170]. Social media data is easy to obtain, and understanding how
the data is generated provides insights to many applications such as community detection,
influence maximization, public-health surveillance, etc. Ultimately we want to understand
how people generate content and how online information diffuses across the underlying social
network.

88

Liangzhe Chen Chapter 7. Polim 89

This problem is compounded by the fact that due to social influence, an individual’s behavior
and attributes may conform to her neighbors’ [86, 106]. In the context of social media, social
influence can be thought of as a latent factor, that may alter users’ posting and linking
behavior. For example, a Twitter user may follow Barack Obama simply because he is a
celebrity with high popularity, regardless of his/her own interests. Similarly, a Twitter user
may retweet a close friend because of their mutual friendship regardless of whether the tweet
content is interesting to her. Without understanding how such latent social influence affects
the generation of posts and links, we cannot fully and correctly understand the complex
information patterns.

To this end, we propose a novel generative model PoLIM (Post and Link level Influence
Model) which extracts and models the latent influence that affects the generation of both
posts and links. We assume the existence of some weak supervision (like tweets with the
‘RT’ label in Twitter), that are more likely to be affected by social influence [115]. We use
this weak supervision (‘RT’) to guide the inference of PoLIM, which then generalizes and
learns the latent influence for all the posts as well as the follower-followee links. Modeling the
extent of this latent influence for both posts and links helps us learn better topic interests for
users and communities. This helps us achieve higher performance on other downstream tasks
too, such as predicting the link formation and retweet generation in the future. Informally,
our goal of proposing PoLIM can be stated as:

Problem 7.1 Given a microblogging dataset (such as Twitter and Weibo), with an underly-
ing directed friendship network G(E, V), and set of textual posts Ti from each user ni, identify
social influence among users, and the posts and friendship connections that are caused by
social influence.

Most of the existing models for social media datasets either completely ignore the effect of
social influence (they assume all behaviors are driven by self interest), or only consider its
effect on one of the two aspects (links or posts). The most closely related model is COLD
by Hu et al. [77]: although they propose a model that covers social influence, links and
posts (like us), they only use social influence to control link generation (in contrast, we
use it to control each link and post). Moreover we learn this social influence at multiple
granularities including at the community and individual level, helping us better understand
content generation. Doing so ultimately helps us to get better prediction and analysis of
the diffusion. For example, we show in our experiments how PoLIM can achieve better link
prediction and retweet volume prediction than state-of-the-art competitors which do not
perform this integrated modeling. In summary, our main contributions are:

1. We propose a novel model PoLIM which jointly models post and link generation via
latent social influence and weak supervision. We also develop a parallel inference
algorithm PoLIM-FIT to efficiently learn the parameters.

2. We use PoLIM to analyze a large 2009 Twitter dataset (containing more than 27 mil-
lion tweets). We find multiple meaningful topical communities with different latent

Liangzhe Chen Chapter 7. Polim 90

influence strength patterns. We also find interesting patterns among the influential
users of different communities.

3. Based on the specificity of the communities and tweets, we detect that significant
portions of posts and links are affected by social influence. We also demonstrate that
differentiating these posts from those by self interest leads to better performance on
concrete downstream tasks like predicting future links and retweets.

7.2 Model Formulation

We formulate our proposed model in this section. Our main hypotheses are 1) social influ-
ence controls both the post generation and the social link formation, and 2) we have some
supervision on users’ posts, which are good indicators of whether the post is generated by
social influence or not. Given these hypotheses, we formulate our model Post And Link
level Influence Model (PoLIM) to jointly model the post content, social structure and the
social influence, using weak supervision from the influence indicators. We first explain the
main concepts in PoLIM in the following. The notations we used are shown in Tab. 7.1. For
simplicity, we only show the most important symbols, and skip the prior parameters (α, β, η,
etc.) and those symbols explained in the text (λ, c∗, c′, etc.).

Table 7.1: Terms and symbols
Symbol Definition and Description

Act-snapshot The follower-followee network
N Number of users in Act-snapshot
ni User i
Ti Number of posts by ni
Z Number of topics
W Number of unique words
K Number of communities
Ei Number of links from ni
ci The ith community
θi The topic interest of ci: Zx1 probability vector
φi The word distribution for TopicMi: Wx1 probability vector
TopicMi The ith topic
I K by K influence matrix
N(ni) Neighbors of ni in Act-snapshot
tij The jth tweet of ni
eij The jth followee of ni
vi The probability that ni is not influenced by another user
ρ The probability that a user follows someone in her own community (vs. random following)
u The probability of generating word from the background topic
r The switch value for each tweet; when r = 0, the tweet is caused by self interest, otherwise

social influence
ε The switch value for each link; when ε = 0, the link is caused by social influence
Ai The N × 1 celebrity vector for ci
M The community distribution: Kx1 probability vector

Liangzhe Chen Chapter 7. Polim 91

7.2.1 Main Concepts

We denote the social network as a directed graph Act-snapshot , where each node represents
a user ni in the social network, and a directed edge represents a following relation. Every
user ni has a sequence of posts Ti = {ti1, ti2, ...}, and each post tij contains a sequence of
words. In the following, we define the most important concepts in PoLIM.

Communities. Communities sharing similar interests naturally exist in social networks.
Hence, to make the model expressive but still tractable, in PoLIM, we define the following
community concept to aggregate users with the same topic interests.

Definition 7.1 (Community) A community ci is a group of users, who share the same
topic interest θi (Z ×1 vector), where θij represents the probability of generating a post with
topic TopicMj.

In spite of the above definition, a user can still be influenced by another user. In the following,
we define the user-to-user influence through the lens of the community concept. Given an
instance that na in c1 is influenced by nb in c2 to generate a post/link, we decompose such an
influence to two steps: community-to-community influence, and user-in-community selection.

Community-to-community influence. When a user na in community ci gets influenced
by another user, we first select where (which community) the influence comes from. We
define the following influence matrix I to capture the probability of a community being
influenced by another.

Definition 7.2 (Influence matrix) An influence matrix I is a K by K matrix, where Iij
represents the probability of a user na in ci being influenced by some user in cj given that na
is influenced by another user.

Note that the diagonal entries of I can be non-zero, i.e., we allow a user to be influenced
by someone in the same community. This matches the fact that one may be influenced
by someone with either different, or similar interests. For example, na in the data mining
community may be influenced by nb in the politics community to retweet political news, and
na can also retweet his/her colleague nc from the same community about a new paper in
the field. Both cases (intra- and inter- community influence) are commonly seen in social
media [17].

User-in-community selection. Once we decide which community the influence comes
from, we select an influencer from the influencing community. Notice that different members
in a community have different powers to influence other users (for example, a dean’s tweets
are more likely to be retweeted than a student’s); we define the following ‘celebrity’ vector
to capture users’ popularity in his/her community.

Definition 7.3 (Celebrity vector) Each community ci has a celebrity vector Ai (a U by
1 vector), which shows the popularity of users in ci.

Liangzhe Chen Chapter 7. Polim 92

A user with higher popularity in a community is more influential than other members in
affecting others’ behaviors, and attracts more followers and retweets. Naturally, a user can
only be a celebrity in her own community (having non-zero values in Ai), while she can still
be influential in other communities via social influence I.

7.2.2 Our Model PoLIM

Now we describe our PoLIM model. The graphical representation of our model is shown in
Fig. 7.1: as highlighted, the main feature of PoLIM is that social influence contributes to
the generation of each post and link. We will first explain how each post and link can be
generated without any supervision (generation process shown in Alg. 7), and then explain
why and how we introduce the weak supervision l to the model.

s	

z	

w	

u	

Wij	
Ti	

φ	
Z	

φB	

θ	
e	

U	

I	

r	

v	

θ	
K-1	

C’	

α	

β	

A	

ε	

η	

ζ	

M	 σ	

c	

C*	

Ei	

l	

Social	Influence	

ρ	

λ	

Figure 7.1: Plate diagram of PoLIM.

To generate the data, we first initialize {φ, θ, I, A, c, u, v, ρ} using the prior parameters (α, β,
etc.). We use the standard conjugate priors (Beta and Dirichlet distribution) for Bernoulli
and Multinomial distribution to generate these parameters for ease of inference (a widely
adopted setup in topic modeling [116, 19]).

Generating Posts. Considering the characteristics of posts on microblogging websites
such as Twitter and Weibo, we make the following two assumptions about the posts: 1)
each post has only one latent topic (also commonly used in the past work [182, 133, 134])
and 2) each word in a post can be generated either by the corresponding latent topic, or
by a background topic which generates common words like ‘I’, ‘and’, ‘to’, ‘for’, etc. Each
user ni has a probability vi to behave from his/her self interest. Using this vi probability,
we draw the switch values r and ε, which represent whether the corresponding post and link

Liangzhe Chen Chapter 7. Polim 93

are generated from social influence or not. If a post is generated from self interest, we draw
a topic from the user’s own topic interest (the same as the topic interest of the community
he/she belongs to), and generate the post accordingly. On the other hand, if the post is
influenced by another user, we select an influencing community c′ according to the influence
matrix I, and generate the post based on the topic interest of c′.

Generating Links. Similarly for the link generation, we first draw the switch value ε.
If ε = 0, the link is generated from social influence, and we first choose an influencing
community c∗ according to I, and then choose an influencing user in c∗ to follow based
on the corresponding A∗ vector. When ε = 1, differently from the post generation above,
the link is considered either generated from self interest or random following (decided by
the switch value λ). If the link is generated from self interest, we select a celebrity user in
n′is own community to follow based on the corresponding A vector; otherwise, we choose a
random user in the network to follow.

Adopting Weak Supervision. To correctly learn social influence, a big challenge for
PoLIM is to learn when a post/link is influenced (namely to learn the switch values r, ε
correctly). In general, distinguishing social influence from other compounding variables is a
very hard task [9, 5]. Without any guidance, the change of the data likelihood caused by
an arbitrary change of these switch values, can be undesirably compensated by updating
the other parameters accordingly. In this chapter, motivated by the usage of aspects in
topic models [129], we assume the existence of good influence indicators/markers l for each
post. Intuitively, if l = 1, it suggests that the post is likely (not necessarily) generated by
influence, and we are more likely to learn r = 1 for the post, and vice versa. Retweets have
been regularly used as an proxy for influence in Twitter social influence studies [115] in past.
Hence in our experiments, we simply use the RT label as a weak influence indicator (l = 1
if the tweet contains the RT label), and bias the learning of r using the following equations
(with τ = 0.1):

p(r = 0|l = 0) = 1− τ + τv

p(r = 0|l = 1) = τ · v

The probability of p(r = 1|l) can be calculated accordingly. Note that this (weak) supervision
only applies to r; however, it also affects the learning of ε because both switch values are
controlled by the same influence probability v. Therefore, although we use l as the weak
supervision, we would be able to leverage both the posts and links information to learn
beyond l and extract social influence that best describes the data.

7.3 PoLIM-FIT: Model Inference

The main parameters in PoLIM are {θ, I, A, φ,TopicM, r, s, c′, c∗, c, ε, λ, u, v, ρ} (other prior
parameters can be inferred once these parameters are learned). To fit PoLIM on real datasets,

Liangzhe Chen Chapter 7. Polim 94

Algorithm 7 Generative process for PoLIM
1: Initialize φ, θ, I, A, c, u, v, ρ using prior parameters like α, β, etc.
2: //Generate tweets
3: for each user n do
4: for each tweet t do
5: Choose an indicator r ∼ Ber(vn) //Bernoulli distribution
6: if r=0 //from self interest then
7: Choose a topic z ∼Multi(θn) //Multinomial distribution
8: else
9: Choose an influencing community c′ ∼ In//from social influence

10: Choose a topic z ∼Multi(θc′)
11: for each word w do
12: Choose an indicator s ∼ Ber(u)
13: if s=0 then
14: Choose a word w ∼Multi(φB)//background word
15: else
16: Choose a word w ∼Multi(φz)
17: //Generate links
18: for each user n do
19: for each link l of user n do
20: Choose ε ∼ Ber(1− vn)
21: if ε = 0 then
22: Choose a community c∗ ∼ In//from social influence
23: Choose an influencing user in the community to follow en,l ∼Multi(Ac∗)
24: else
25: Choose λ ∼ Ber(ρ)
26: if λ = 0 then
27: Choose an influencing user from n’s own community to follow en,l ∼Multi(Acn) //self interest
28: else
29: Choose a random user to follow.

Algorithm 8 Pseudo-code for PoLIM-FIT
1: Initialize prior parameters like α, β, etc.
2: Sample values for {TopicM, r, s, c′, c∗, c, ε, λ, u, v, ρ}.
3: Repeat step 2 until convergence.
4: Sample values for the marginalized variables {θ, I, A, φ}.

we propose PoLIM-FIT to automatically learn all these parameters from the data in linear
time. Further, we improve the efficiency of PoLIM-FIT by parallelization.

Both the likelihood function and the posterior distributions in such graphical models are
intractable for exact inference [11]. Hence, we propose a Collapsed-Gibbs-Sampling-based
[58] algorithm PoLIM-FIT to learn the model parameters. We show the pseudo-code
in Alg. 8. PoLIM-FIT first marginalizes several parameters ({θ, I, A, φ}) when sampling
other parameters ({TopicM, r, s, c′, c∗, c, ε, λ, u, v, ρ}). Once the sampling process converges
to stable values, we then estimate the marginalized parameters from the sampled values. As
an example, in the following we show the final sampling equations for two of the important
parameters in PoLIM. 1

Community assignment ci. Each user ni has a unique community assignment ci. Given the

1See detailed equations, additional content in Appendix C.

Liangzhe Chen Chapter 7. Polim 95

other parameters, ci is sampled using the following probabilities.

p(ci|...) ∝
∏

tij ,r=0

α+N
TopicMij
−ni,ci

Zα+N−ni,ci
·

∏
tij ,r=1

ζ +N
c′ci
−ni,ci

Kζ +N−ni,ci
·

∏
eij ,ε=1,λ=0

η +N
eij
−ni,ci

|ci|η +N−ni,ci
·

∏
eij ,ε=0

ζ +N
c∗i
−ni,ci

Kζ +N−ni,ci
·M(ci)

where N
TopicMij

−ni,ci denotes the number of times the topic TopicMij is generated by a user in ci;

N
c′ci
−ni,ci denotes the number of times that c′ci is influenced by ci; and N

eij
−ni,ci is the number of

times that eij is chosen from ci by other users to follow. All the −ni means excluding ni in
the counting. Intuitively, it goes over all the tweets and edges from ni, and calculates the
likelihood of the user belonging to ci given all the switch values. Note that the edges caused
by random following are not used in the equation because their likelihoods are independent
of ci.

Latent topic TopicMij. Each post tij has a latent topic TopicMij which can be sampled as:

p(TopicMij |...) ∝
∏

wijt,sijt=1

β +N
wijt
−tij ,TopicMij

Wβ +N−tij ,TopicMij
·

(
α+N

TopicMij
−ni,ci

Zα+N−ni,ci
)1(ri=0) · (

α+N
TopicMij
−ni,c′i

Zα+N−i,c′i

)1(ri=1)

where 1() is an indicator function. Basically, we first go over all the words in tij that are
not generated by the background topic (sijt = 1), and calculate the likelihood of tij being
generated by TopicMij; then based on the r value, if tij is generated from influence, we
calculate the likelihood of ci generating the topic TopicMij, otherwise the post is influenced,
and we calculate the likelihood of the influencing community c′i generating TopicMij.

In sum, PoLIM-FIT has a linear time complexity of O(R(WZ + TK + EK + N)), where
R is the number of iterations the algorithm runs. Note that theoretically, sampling the
marginalized parameters I is quadratic in the number of communities, but since it only
needs to be sampled once after the sampling process converges, it is not the bottleneck of
the running time.

Speeding Up & Parallelization. To further improve the running time, we implement a
parallel version of PoLIM-FIT. Since many of PoLIM’s parameters are based on users, we
allocate data from different users to different worker processes, and each individual process
samples the parameters related to its users simultaneously. The counters used in the sampling

process (such as N
TopicMij

−ni,ci) are maintained as global variables that are shared by all the
processors. The final time complexity for our sampling algorithm is therefore reduced to
O(R

p
(WZ + TK + EK +N)), where p is the number of processes.

Liangzhe Chen Chapter 7. Polim 96

7.4 Empirical Study

We implement PoLIM in Java (we will release the code for research purposes). Our exper-
iments were conducted on a 4 Xeon E7-4850 CPU with 512GB of 1066Mhz main memory.
We design various experiments in this section to answer the following questions. Essentially
we want to check if our model can help in objective downstream related tasks, and if it gives
insightful patterns in the data.

Q1 [Downstream task 1] Can PoLIM improve the performance of link prediction?

Q2 [Downstream task 2] Can PoLIM improve the performance of retweet volume prediction?

Q3 In the entire dataset, what is the extent of social influence?

Q4 Does PoLIM find meaningful topics?

Q5 What are the influence strengths among different communities? Who are the celebrities?

Q6 Can PoLIM help understand the content generation and communities during a specific
event?

7.4.1 Setup

Dataset. We use a Twitter dataset Tweets-Whole collected over a 7-month period during
2009 [175]. We preprocess this data by first filtering out users that do not have at least
15 tweets in each month. Then for each tweet from these users, we perform standard to-
kenization, stemming, lemmatization, infrequent words removal, and get our final dataset.
In addition to this large complete data, for fast performance comparison purposes (which
requires multiple runs for cross-validations with different parameter settings), we generate
three sample datasets. We randomly sample 2%, 5%, and 20% of the users based on their
degrees in the social network. Finally, to analyze more specific events, we create an Tweets-
Iran dataset by extracting tweets that contain keywords in the 2009 Iran Election (such as
‘iran’, ‘iran elect’, ‘neda’, etc.1).

Baselines. To the best of our knowledge, there are no existing methods which model how
social influence affects the generation of both posts and links as we do. As a result, unlike
PoLIM which can predict both links and retweets, most state-of-the-art algorithms can only
be used for either one of the task. We list all the baselines in the following.

1. COmmunity Level Diffusion (COLD) [77] is the state-of-the-art generative model
that covers social influence, posts and links as we do. However, the social influence it
models only contributes to the link generation, while all the posts are still considered
generated from users’ own interests.

Liangzhe Chen Chapter 7. Polim 97

Table 7.2: Datasets used.

Dataset #Users #Edges #Tweets

Tweets-Whole 46.5K 2.1M 27.5M
Tweets-2% 0.9K 28K 0.7M
Tweets-5% 2K 0.1M 1.8M
Tweets-20% 9.2K 0.7M 6.5M
Tweets-Iran 3K 40K 62K

2. Mixed Membership Stochastic Blockmodel (MMSB) [6] combines dense connectivity
(blockmodel) with node specific variability (mixed-membership). Each user’s member-
ship is a mixture of communities with different weights.

3. Topical Affinity Propagation (TAP) [155] is a popular model which finds topical influ-
ence between users given the network and users’ topic interests. For our experiments,
we feed TAP with the topic interests learned by PoLIM. We then combine topic poste-
rior and the topical influence probabilities to calculate the probability of a tweet being
influenced.

4. EMP is a baseline we designed for the retweet prediction task. It uses the empirical
retweet ratio in the training data as its estimation of retweet probability in the testing
data.

7.4.2 Q1: Link Prediction

We show that the parameters learned from PoLIM can be used to predict whether a user
will follow another user well. In this experiment, we design a 5-fold cross validation on
Tweets-2% , Tweets-5% , and Tweets-20% : in each instance, we leave out 20% of the links as
the test set. Further, we randomly choose 1% of the non-existing links (nodes that are not
connected) and include them in the test set. We then train our model on the remaining links,
and evaluate the link prediction performance on the test set. To calculate the probability of
user na in ci following user nb in cj, we use:

Pr(na → nb) =vaρAi(nb) + (1− va)IijAj(nb) + va(1− ρ)
1

N
(7.1)

The first term represents the case where na behaves from self interest and chooses a followee
from his/her own community ci; the second term measures the probability that na is influ-
enced by cj, and chooses a celebrity in cj to follow; and finally, the third term represents the
probability of a random following. Given the Pr(na → nb) value calculated from Eq. 7.1, we
can compare it with a discrimination threshold value between 0 and 1 to predict whether

Liangzhe Chen Chapter 7. Polim 98

the link exists or not. Hence, we use the AUC (area under the curve) metric for evaluation,
which calculates the performance (true positive rate divided by false positive rate) at various
threshold settings, and the area under this performance curve.

As we can see in Fig. 7.2, in all three settings where we vary the number of communities from
low to high while keeping the number of topics constant (20), PoLIM consistently outperforms
the baseline algorithms. MMSB performs the worst among all three, and it does not finish
(converge) even in a day for the larger Tweets-5% and Tweets-20% . Note that our method
also outperforms COLD in all different settings. This is expected since PoLIM combines both
community-level influence (I) and personalized influence (v), while COLD only contains the
former. Hence PoLIM predicts the link generation with higher accuracy.

#Communities
20 50 80

Po
LI
M

CO
LD

M
M
SB

Po
LI
M

CO
LD

M
M
SB

Po
LI
M

CO
LD

M
M
SB

0.0

0.2

0.4

0.6

0.8

AU
C

Sc
or

e

(a) Tweets-2%

#Communities
20 50 80

Po
LI
M

CO
LD

M
M
SB

Po
LI
M

CO
LD

M
M
SB

Po
LI
M

CO
LD

M
M
SB

0.0
0.2

0.4

0.6

AU
C

Sc
or

e

(b) Tweets-5%

#Communities
20 50 80

Po
LI
M

CO
LD

M
M
SB

Po
LI
M

CO
LD

M
M
SB

Po
LI
M

CO
LD

M
M
SB

0.0
0.2

0.4

0.6

AU
C

Sc
or

e
(c) Tweets-20%

Figure 7.2: Link prediction results. Higher the AUC, better the performance (MMSB does
not finish for Tweets-5% and Tweets-20%).

7.4.3 Q2: Retweet Volume Prediction

In this section, we show that PoLIM captures well how social influence affects the tweet
generation. We design a retweet volume prediction task, where we train our model on data
in a training time period, and then use the model parameters to predict how many tweets
in the testing time period are retweets. We use a 7-fold cross validation on Tweets-2% ,
Tweets-5% and Tweets-20% . Repeatedly we leave one month’s tweets for testing, and train
PoLIM on the other six months’ data. For each tweet (from user na in community ci) in
the testing data, we can calculate the probability of the tweet being generated from social
influence using:

Pr(r = 1|t) ∝ Pr(t|r = 1) ∗ Pr(r = 1)

= (1− va)
∑
j

Iij
∑

TopicM

θj(TopicM)
∏
w∈t

[uφB(w) + (1− u)φTopicM(w)] (7.2)

where r is the switch value for the tweet (r = 1 means the tweet is caused by social influence).
The latter part of the equation basically goes over all possible influencing communities and

Liangzhe Chen Chapter 7. Polim 99

topics and calculates the likelihood of the tweet. Similarly we have:

Pr(r = 0|t) ∝ va
∑

TopicM

θi(TopicM)
∏
w∈t

[uφB(w) + (1− u)φTopicM(w)] (7.3)

We then normalize these probabilities to get the final influence probability for the tweet.
If this probability is greater than 0.5, we predict it as a retweet. Finally, we calculate the
average RMSE value between all users’ predicted number of retweets and the ground truth
number obtained from the RT labels. Note that the word ‘RT’ is only used to obtain the
labels for tweets; the word itself is filtered as stopword from the text corpus for training and
testing.

We see in Fig. 7.3, PoLIM achieves the best performance in all three datasets with different
number of topics (number of communities fixed as 20). This is mainly because PoLIM directly
models for each tweet if it is influenced. In contrast, TAP is designed to capture the overall
topical influence and authority based on users’ topic interests and their connections, and
it turns out to perform badly when it is applied on a lower level for each individual tweet
(it does not converge in a day for Tweets-5% and Tweets-20%). EMP also performs worse
because it does not adapt to the text content of the testing tweets. Note that we can not
use COLD as a baseline here, as it makes no distinction between retweets and tweets, and
hence can not predict the number of retweets.

#Topics
20 50 80

Po
LI
M

EM
P

TA
P

Po
LI
M

EM
P

TA
P

Po
LI
M

EM
P

TA
P

0

50

100

#R
et

w
ee

ts
 R

M
SE

(a) Tweets-2%

#Topics
20 50 80

Po
LI
M

EM
P

TA
P

Po
LI
M

EM
P

TA
P

Po
LI
M

EM
P

TA
P

0

20

40

60

80

#R
et

w
ee

ts
 R

M
SE

(b) Tweets-5%

#Topics
20 50 80

Po
LI
M

EM
P

TA
P

Po
LI
M

EM
P

TA
P

Po
LI
M

EM
P

TA
P

0

20

40

60

#R
et

w
ee

ts
 R

M
SE

(c) Tweets-20%

Figure 7.3: Retweet volume prediction results. Lower the RMSE, better the performance
(TAP does not finish for Tweets-5% and Tweets-20%).

7.4.4 Q3: Identifying Influenced Content

We identify the portion of tweets and links in Tweets-Whole that are caused by social
influence, and show that PoLIM indeed learns beyond the weak supervision (i.e., the retweet
labels). After running PoLIM on Tweets-Whole, similarly we use Eq. 7.1, Eq. 7.2, and Eq. 7.3
to calculate the influence probability of a tweet/link. We find that among a total of 27.5M
tweets, there is a significant portion (∼ 4.7%) of ∼ 1.3M tweets which are not retweets but

Liangzhe Chen Chapter 7. Polim 100

are actually identified as being influenced, and among a total of 2.1M connections, there is
a large portion (27.3%) of ∼ 574K links that are affected by social influence. This shows
the impact of social influence on both the tweet and link generation. Further, when we run
PoLIM on Tweets-Iran, these portions of influenced tweets and links increase to 54% and
50.7% respectively. This shows that as the communities are all about the same event (Iran
election), they have higher influence among them. We will discuss these communities more
in Sec. 7.4.7.

We want to stress that RT labels are used only as a weak supervision, and our model can
learn beyond that and find non-retweets (tweets with no RT) that are likely to be caused by
social influence. In Tab. 7.3, we show some examples of these tweets. They show a clear sign
of getting influenced: they are either related to an external event (such as a live broadcast, or
an interaction with a friend), or related to a URL about a specific product (like a converter
tool, a demo link, etc.). Mixing these tweets that are actually caused by social influence with
the other tweets for topic analysis would lead to inaccurate estimation of a user’s interest,
and may potentially harm other applications such as link prediction. To validate this, we
run one of the baseline algorithms COLD (which does not handle influence the same way
as we do) on the same link prediction task as in Sec. 7.4.2. By removing these influenced
tweets from the Tweets-Iran, we observe an average AUC improvement of ∼ 0.013, over the
same 5-fold cross validation.

Table 7.3: Example non-retweets that are influenced.

Tweet

Softwarevorstellung: Free YouTube to iPod and PSP Converter 3.1.4
http://bit.ly/u4eFv
My Twitter profile is worth $307 http://tweetvalue.com
Obama now speaking at #nerdprom2 on @cspan & http://cnn.com
Broadcasting live now! See me at http://bit.ly/14NLmL
@Welshbybirth Thanks for the #followfriday!
Hello from Chile (#foofighterslive live on http://bit.ly/3zR5dr)
Flash CS5 demo from Adobemax http://bit.ly/8qEyM
I have closed my account at this site that gets you followers:
http://morefollowers.info

7.4.5 Q4: Quality of Topics

We show in Fig. 7.4 that PoLIM learns high quality topics on the entire tweet dataset Tweets-
Whole. Due to the lack of space, we only show six example topics, and there are many other
topics covering different domains such as economy, Iran election, traffic, sports, design,
religious, energy, education, etc. Note that all the words in the word clouds are stemmed
and lemmatized.

Liangzhe Chen Chapter 7. Polim 101

(a) Obama care (b) Tech (c) Music

(d) Video (e) Disease (f) News

Figure 7.4: Word clouds for topics learned by PoLIM on the entire tweet data Tweets-Whole
(visualized using Wordle, an online word cloud generator). For each topic, we show the top
100 words with highest weights. Each word is already stemmed and lemmatized. The layout
of the word cloud is randomized, and the size of the word is proportional to its weight in the
topic.

7.4.6 Q5: Influence Analysis

Figure 7.5: Matrix
I learnt; darker the
color, higher the value.

In this section, we examine in detail the influence PoLIM learned. At
the community level, we first analyze the influence strengths among
different communities, and the celebrities inside each community.
Then, we analyze the influence at the individual level, where we
show users’ tendencies of being influenced.

Community influence and celebrities. We show the social
influence and the communities learned by PoLIM on Tweets-Whole
in Fig. 7.5 and Fig. 7.6. We make several interesting observations.
First, we observe from Fig. 7.5 that there exists a set of commu-
nities (c3 to c8) with high in-community influence, highlighted by
the dark color of the diagonal of I. This means that for users in
these communities, even when they are influenced, they tend to

be influenced by users within the same community. Second, we identify a very influential
community c6 that influences almost all the other communities (the corresponding column
in I has consistent high values). In the following, we look into several of these interesting
communities for more detailed analysis.

Liangzhe Chen Chapter 7. Polim 102

(a) Topic interests of c6 (b) Topic interests of c3 (c) Topic interests of c10
User Screenname A6 Value

mashable 0.0092
chrisbrogan 0.0051
problogger 0.0045

nansen 0.0041
brooksbayne 0.0038

the gman 0.0036
chrispirillo 0.0034

garyvee 0.0034
stephenkruiser 0.0033

dcagle 0.0032
tedmurphy 0.0032

User Screenname A3 Value

timoreilly 0.1446
nprnews 0.0820

anamariecox 0.0818
bbctech 0.0236

markknoller 0.0209
gleonhard 0.0187

politicalticker 0.0185
harrislacewell 0.0149
howardlindzon 0.0138

joanwalsh 0.0129
whitehouse rss 0.0126

User Screenname A10 Value
engadget 0.0662

journalismnews 0.0432
shanselman 0.0350

hatebu 0.0343
twfeed 0.0326

pvponline 0.0317
crackberry 0.0237

theiphoneblog 0.0214
whiteafrican 0.0160
watch akiba 0.0156
shauninman 0.0142

(d) Celebrities in c6 (e) Celebrities in c3 (f) Celebrities in c10

Figure 7.6: The topic distributions for several communities and the celebrities (users with the
highest Ai values) in these communities. For the most important topics in each community,
we annotate them with the top three words (stemmed and lemmatized) in those topics.

First, we check the most influential community c6. We plot the word clouds as the summaries
for the communities we found in Fig. 7.6. The size of each word is proportional to a weighted
importance of the word calculated by using the topic distribution of the community (θ) and
the word distribution for the topic (φ). In Fig. 7.6(a), we observe that many frequent words
used in c6, such as ‘design’, ‘busi’, ‘market’, ‘facebook’ come from different disciplines and
topics. In fact, the topic distribution of c6 has a ‘flat’ shape, showing that this community
is interested in a wide range of topics, including economy, politics, food, animal and Iphone.
Combined with the fact that c6 has influence over almost all other communities, this depicts
the type of users who are influential in the social network, who respond to a wide range
of topics, and they are more likely to be well-known figures/companies. This is confirmed
by Fig 7.6(d)), where we show the celebrities (the users with top Ai values) in the commu-
nity. The individuals with highest Ai values in c6 are mashable (media and entertainment
company), chrisbrogan (very highly rated influencer online), and problogger (a popular blog
website). All of these celebrities in c6 are famous online users with high influence over a
wide range of topics. PoLIM correctly groups them as communities, and our influence matrix
correctly captures their high influence over the other communities.

On the other hand, PoLIM also detects communities with very focused topic interests. Take
c3 for an example, we see that in Fig. 7.6(b)(e), c3 shows a focused interest in Obama health
care. Moreover, the ‘local’ celebrities in c3, such as timeoreilly, politicalticker, whitehouse rss,
are consistent with the topic interest. We make similar observations for c10 in Fig. 7.6(c)(f),

Liangzhe Chen Chapter 7. Polim 103

where the main topic interests are related to technology (keywords like ‘window’, ‘appl’,
‘iphone’, ‘app’, etc.), and the celebrities in c10 (such as engadget, theiphoneblog, crackberry)
also show similar technology focus.

Celebrity structures. We examine the celebrity values in each community and find
different celebrity structures for different communities. By examining the histogram and
entropy of the A values for the top 20 celebrities in the communities, we make an interesting
observation. For a community about a specific event, such as c7 which is mainly about the
Iran election, the importance/authority are more spread out to multiple users; while for a
community about a general topic, like c14 which focuses on garden and art, a few users would
be the leading authority and the others are much less influential. This leads to an insight
that when a new topic/event emerges, different perspectives/arguments of the subject can
be discussed, which offers more chances for users to be noticed and hence become influential.
On the other hand, for a very developed and general topic, the ‘heat’ of the discussion has
decreased to a stable level, and the authority has started to concentrate rather than diverge.

Individual’s influence tendency. At the individual level, we show that PoLIM cor-

Time in secs Tweets from user mashable

1302781.0 tweet win free vip ticket #140conf
1303395.0 you’r watch nba final 4 way make nba final social
1338254.0 hunch launch reinvent make decis
1346474.0 onli two hour left tweet win free vip ticket #140conf
1354831.0 reddit start job board whi
1361533.0 tip you’r new twitter know someon tri twitter list section
1369526.0 youtub continu time ad choic
1370893.0 green tweet 75+ environmentalist follow twitter #ecomonday
1392419.0 realiti tv show ink twitter name tattoo

(a) User mashable, v = 0.98, mostly original tweets

Time in secs Tweets from user robertgoodwin

1426918.0 rt doe anybodi know good view launch beach ani beach melbourn area #nasa
#sts127

1427333.0 rt @nasa launch offici edt wednesday guess space.com wa wrong 5:20 launch
1648039.0 brighter note you’r ever cocoa beach check italian courtyard sicilian thick

crust pizza great
1798689.0 rt nasa might found defect caus leak juli 11
2034576.0 rt @nasa lcross live stream happen live stream lunar orbit
2141796.0 rt stun pictur hole cloud astronaut wit volcano erupt
2142023.0 insan relax condo loan rule haven’t learn anyth rt wait ?...
2211875.0 rt @aldotcom nasa fund restor billion support

(b) User robertgoodwin, v = 0.37, mostly influenced by NASA (note the rt’s)

Figure 7.7: Tweets from two example users with different v values learned.

rectly learns the probability of a person being influenced. We pick two users (mashable and
robertgoodwin) and check their actual tweets to further analyze our results PoLIM learns a
v = 0.98 for mashable, which means that 98% of the times, mashable makes posts or follows
users out of self interest, and it is rarely influenced by others, as one would expect from a
large media content generator. From its tweets in Fig. 7.7, we do see that most of them are
original tweets, and it covers many different topics. In contrast, user robertgoodwin, an IT

Liangzhe Chen Chapter 7. Polim 104

professional who works for NASA, shows a clear sign of influence from NASA in his tweets
(60% of the tweets are retweets). PoLIM correctly learns a low v = 0.37 to capture this fact.

7.4.7 Q6: Case Study on Iran Election

PoLIM can help understand and detect finer-grained communities even for a specific topic.
In this experiment, we run PoLIM with 15 topics and 4 communities on Tweets-Iran. We
show the word clouds (plotted in the same way as in Sec. 7.4.6) as the summaries for the
communities we found, in Fig. 7.8. We observe that each community corresponds to a specific
aspect of the event. c1 is about the results or progress of the election itself; c2 is about the
Iranian green movement, a political movement that arose after the election to demand the
removal of Mahmoud Ahmadinajad from office; c3 is related to the video of the death of
Neda, a student of philosophy, during the protest; and finally c4 is mainly about the online
petition during the election. These results show that PoLIM can also be applied on a specific
event to discover communities with subtle difference.

(a) c1: Election
news/progress

(b) c2: Iranian green
movement

(c) c3: The video of
Neda’s death

(d) c4: Online petition

Figure 7.8: Word clouds for the communities detected in Iran election.

7.4.8 Scalability

Finally, to examine the running time of PoLIM, we vary two of the input parameters: the
number of topics and communities. We observe that in Fig. 7.9(a)(b), the running time
scales linearly w.r.t. both #topics and #communities as expected from the complexity of
the algorithm. We also observe we get near-linear speedup from parallelizing the inference
algorithm.

7.5 Discussion and Conclusions

To summarize our observations, PoLIM learns real communities with meaningful topic inter-
ests, as well as the celebrities with high influence in each communities. Broadly, it extracts

Liangzhe Chen Chapter 7. Polim 105

50 100 150
20

40

60

80

100

#Topics

Se
co

nd
s

pe
r i

te
ra

tio
n

PoLIM
Y = 0.54X + 14

(a) Varying #Topics

50 100 150

20

30

40

50

60

#Communities

Se
co

nd
s

pe
r i

te
ra

tio
n

PoLIM
Y = 0.25X + 17

(b) Varying #Communities

2 4 6 8

2

4

6

8

#Processors

Sp
ee
du
p

Experimental
Ideal

(c) Parallelization

Figure 7.9: PoLIM scales linearly w.r.t. the number of topics and communities, and paral-
lelization gives near-linear speed-ups.

well the social influence strength among different communities. At the same time, at a finer
level, it also correctly learns a person’s tendency of being influenced.

Our experimental results also confirm the existence of social influence in real datasets, and
its impact on various applications. We find that the same latent social influence governs a
significant portion of posts and links in Twitter, and such a portion tends to increase when
the dataset is about more specific events. By differentiating these posts and links from those
caused by self interests, PoLIM is able to learn more precise topic interests, and therefore
achieve better performance in other tasks such as predicting future links and retweets.

Note that one of the most important hypotheses we used in PoLIM is that retweets are more
likely to be caused by social influence. This hypothesis then guides the learning of social
influence in PoLIM in a weakly supervised fashion. While retweets are good indicators of
influence in Twitter, they may not be available for other social media websites. In these
cases, as future work, we may design other indicators such as the replies, mentions, or even
train a low-cost low-accuracy feature-based classifier as the weak supervision for PoLIM.

Chapter 8

Conclusion and Future Work

In this research, we exploit the within-sequence and across-sequence correlations to improve
the segmentation and prediction performance in a variety of problems from different domains.
We summarize the main idea and conclusions in each chapter below.

• Chapter 3: ‘Temporal closeness’ for better segmenting multi-dimensional
value sequences. We use the ‘temporal closeness’ between data values (the similar-
ity of the data values’ temporal distribution in the sequence) for segmenting multi-
dimensional value sequences. Our algorithm is general: each data value can have
arbitrary time stamps, and it improves the segmentation performance.

• Chapter 4: Latent state modeling for better tweet prediction. We capture the
state transition behind tweet sequences to better summarize and understand the Twit-
ter data. When we apply our models on a flu-related tweet dataset, we show that the
results detected by our algorithms help fill the gap between phenomenological meth-
ods for disease surveillance and epidemiological models, reconciling some contrasting
behaviors between epidemiological and social models.

• Chapter 5: Exploiting the correlation network for better segmenting mul-
tiple value sequences. We use the correlation behind sequences to convert multiple
sequences to an attributed network sequence. Our segmentation algorithm considers
nodes with all possible label values rather than focusing on only one value (as is done
by most community-based dynamic graph algorithms). Further, our algorithm works
in a parameter-free manner that automatically detects the number of segments in the
optimal segmentation.

• Chapter 6: Spatial relations for better explaining the segmentation results.
We design a framework which not only gives the segmentation of the sequences, but also
an intuitive explanation of the segmentation itself. Such explanations (which respect
the spatial distance behind different time series) help us better understand the detected

106

Liangzhe Chen Chapter 8. Conclusion 107

changes by pin-pointing the culprit sequences. It also facilitates quick utilization and
deployment of the segmentation results in real applications.

• Chapter 7: Social influence modeling for better summarizing and under-
stand Social Media data. We jointly model tweets and links in the Twitter data, as
well as how each tweet and link is affected by social influence. Such fine-grained mod-
eling introduces big challenges to inferring the model parameters; at the same time,
it leads to better understanding of the data and more precise prediction for both the
tweets and links.

Our work has been consistently adopted in real applications. The URBANNET toolkit that
we developed for monitoring, simulating and analyzing Critical Infrastructure Systems is
being used and licensed by Oak Ridge National Lab experts. We are also planning on merging
the CUT-n-REVEAL framework for analyzing power outages with the current URBANNET
toolkit. Our HFSTM and HFSTM-A models for flu case surveillance also contribute to the
EMBERS project in the Discovery Analytics Center at Virginia Tech, which aims to forecast
significant events using open source data.

8.1 Future Work

Our algorithms and models have achieved good performance in multiple the real applications
in different domains. However, there are still many directions to explore. We discuss several
such directions for further extending our work in the following.

8.1.1 Integrating Additional Temporal and Spatial Correlations

One natural way to extend our work is to expand our algorithms and models for more types
of correlations. In the context of social media, the Twitter data contains rich information
such as the time stamp of a tweet and the geo-location where the tweet is generated. This
information can be integrated into our current models (HFSTM, HFSTM-A, and PoLIM) to
make the models more comprehensive. For example, we can combine a Hawkes process
with HFSTM to model the exact time stamps of tweets. It may enrich our state transition
analysis by answering how much time a user typically stay in a state. We can also try
to model location-specific topics: the same topic (such as technology) has different work
distributions in different locations. By integrating such location information, we would be
able to see how people in different locations may use different words in the same state.

Liangzhe Chen Chapter 8. Conclusion 108

8.1.2 Consolidating Generative Modeling and Segmentation

Another direction to extend our work is to consolidate our generative models for text se-
quences with the segmentation algorithms for multi-dimensional value sequences. There are
several possible ways to do this. One idea to unify these two lines of work is to model
the segmentations themselves. By directly modeling the segmentation, the model will auto-
matically learn segmentations of the text sequence as well. Another idea is to use popular
embedding methods (such as word2vec) to convert text/sentences to multi-dimensional value
representations. Therefore we would be able to use the same segmentation framework for
both value and text sequences.

8.1.3 Connecting Our Generative Models to Real Applications

In the past decade, there have been much work on modeling social media data, each having
different hypotheses and models. The typical metrics we have used to evaluate and compare
these different models include direct comparison of the likelihood of the data, or indirect
comparison of the models’ performance in applications such as link and tweet prediction.
However, sometimes we find these metrics inadequate in fully justifying the models and
the underlying hypothesis. For example, a typical cross-validation for link/tweet prediction
would save part of the data for testing and the rest for training, which is not a realistic
setting in practice. To design a more rigorous evaluation metric, one idea is to tie the
model to a specific application. As we have done for HFSTM and HFSTM-A, the models are
designed for a specific task of flu trend prediction; the evaluation of the model thus becomes
straight-forward: the model that gives the least fitting error is the best model for the task.
Similarly, as future work, we can attach PoLIM to a real application to evaluate the model
more rigorously. For example, applying the social influence detected by PoLIM for product
promotion/meme propagation is an interesting extension that we can explore.

8.1.4 Introducing Additional Domain Constraints from CIS

As critical infrastructure systems are interdependent in very complicated ways, we inevitably
make simplified assumptions in our work. For example, in our CUT-n-REVEAL framework,
we only consider the geo-spatial constraint between counties in finding the explanation of
the segmentation: counties that are near each other should have similar importance. How-
ever, different counties can be correlated in more subtle ways based on the underlying CIS
structures. The major power generator in one county may depend on the water supply in
another county for its cooling system. Therefore, expanding our framework to allow easy
adoption of additional domain constraints is a very useful extension of our work.

Bibliography

[1] H. Achrekar, A. Gandhe, R. Lazarus, S.-H. Yu, and B. Liu. Predicting flu trends using
Twitter data. In Computer Communications Workshops (INFOCOM WKSHPS), 2011
IEEE Conference on, pages 702–707. IEEE, 2011.

[2] C. Aggarwal and K. Subbian. Evolutionary network analysis: A survey. ACM Com-
puting Surveys (CSUR), 47(1):10, 2014.

[3] C. C. Aggarwal and N. Li. On node classification in dynamic content-based networks.
In SDM, 2011.

[4] C. C. Aggarwal and S. Y. Philip. Online analysis of community evolution in data
streams. In SDM, pages 56–67. SIAM, 2005.

[5] L. M. Aiello, A. Barrat, R. Schifanella, C. Cattuto, B. Markines, and F. Menczer.
Friendship prediction and homophily in social media. ACM Transactions on the Web
(TWEB), 6(2):9, 2012.

[6] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic
blockmodels. Journal of Machine Learning Research, 9(Sep):1981–2014, 2008.

[7] R. Albert, I. Albert, and G. L. Nakarado. Structural vulnerability of the North Amer-
ican power grid. Phys. Rev. E, 69:025103, 2004.

[8] S. E. Amiri, L. Chen, and B. A. Prakash. Snapnets: Automatic segmentation of net-
work sequences with node labels. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA., pages
3–9, 2017.

[9] A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence and correlation in social
networks. In KDD. ACM, 2008.

[10] R. M. Anderson and R. M. May. Infectious Diseases of Humans. Oxford University
Press, 1991.

[11] M. Andrews and G. Vigliocco. The Hidden Markov Topic Model: A Probabilistic
Model of Semantic Representation. Topics in Cognitive Science, 2(1):101–113, 2010.

109

Liangzhe Chen Chapter 8. Conclusion 110

[12] E. Aramaki, S. Maskawa, and M. Morita. Twitter Catches the Flu: Detecting Influenza
Epidemics Using Twitter. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’11, pages 1568–1576, 2011.

[13] M. Araujo, S. Papadimitriou, S. Günnemann, C. Faloutsos, P. Basu, A. Swami, E. E.
Papalexakis, and D. Koutra. Com2: Fast automatic discovery of temporal (‘comet’)
communities. In PAKDD, 2014.

[14] O. Banos, M. A. Toth, M. Damas, H. Pomares, and I. Rojas. Dealing with the effects
of sensor displacement in wearable activity recognition. Sensors, 14(6):9995–10023,
2014.

[15] A. M. Barker, E. B. Freer, O. A. Omitaomu, S. J. Fernandez, S. Chinthavali, and J. B.
Kodysh. Automating natural disaster impact analysis: An open resource to visually
estimate a hurricane’s impact on the electric grid. In Southeastcon, pages 1–3, 2013.

[16] I. Batal, D. Fradkin, J. Harrison, F. Moerchen, and M. Hauskrecht. Mining recent
temporal patterns for event detection in multivariate time series data. KDD ’12, pages
280–288, 2012.

[17] V. Belák, S. Lam, and C. Hayes. Cross-community influence in discussion fora. In
ICWSM, 2012.

[18] E. Beretta and Y. Takeuchi. Global stability of an SIR epidemic model with time
delays. Journal of mathematical biology, 33(3):250–260, 1995.

[19] B. Bi, Y. Tian, Y. Sismanis, A. Balmin, and J. Cho. Scalable topic-specific influence
analysis on microblogs. In Proceedings of the 7th ACM international conference on
Web search and data mining, pages 513–522. ACM, 2014.

[20] E. S. Blake, T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven Ii. Tropical
Cyclone Report: Hurricane Sandy. National Hurricane Center, 12:1–10, 2013.

[21] S. Blasiak and H. Rangwala. A Hidden Markov Model Variant for Sequence Classi-
fication. In The 21nd International Joint Conference on Artificial Intelligence, pages
1192–1197, 2011.

[22] D. Blei, L. Carin, and D. Dunson. Probabilistic Topic Models. Signal Processing
Magazine, IEEE, 27(6):55–65, 2010.

[23] D. Blei and J. Lafferty. Dynamic Topic Models. In the 23rd International Conference
on Machine Learning, pages 113–120, 2006.

[24] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. The Journal of Machine
Learning Research, 3:993–1022, 2003.

Liangzhe Chen Chapter 8. Conclusion 111

[25] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in nearly
optimal time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 946–957. SIAM, 2014.

[26] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations
and Trends R© in Machine Learning, 3(1):1–122, 2011.

[27] S. P. Brennan, A. Sadilek, and H. A. Kautz. Towards understanding global spread of
disease from everyday interpersonal interactions. In IJCAI, pages 2783–2789, 2013.

[28] S. V. Buldyrev, N. W. Shere, and G. A. Cwilich. Interdependent networks with iden-
tical degree of mutually dependent nodes. Physical Review, 83(1), 2011.

[29] D. Butler. When Google got Flu Wrong. Nature, 494(7436):155–156, 2013.

[30] P. Chakraborty, P. Khadivi, B. Lewis, A. Mahendiran, J. Chen, P. Butler, E. Nsoesie,
S. Mekaru, J. Brownstein, M. Marathe, and N. Ramakrishnan. Forecasting a Moving
Target: Ensemble Models for ILI Case Count Predictions. SDM ’14, 2014.

[31] C. Chen, J. He, N. Bliss, and H. Tong. On the connectivity of multi-layered net-
works: Models, measures and optimal control. In Data Mining (ICDM), 2015 IEEE
International Conference on, pages 715–720. IEEE, 2015.

[32] L. Chen, S. E. Amiri, and B. A. Prakash. Automatic Segmentation of Data Sequences.
In AAAI, 2018.

[33] L. Chen, K. S. M. T. Hossain, P. Butler, N. Ramakrishnan, and B. A. Prakash. Flu
Gone Viral: Syndromic Surveillance of Flu on Twitter Using Temporal Topic Mod-
els. In 2014 IEEE International Conference on Data Mining, ICDM 2014, Shenzhen,
China, December 14-17, 2014, pages 755–760, 2014.

[34] L. Chen, K. S. M. T. Hossain, P. Butler, N. Ramakrishnan, and B. A. Prakash. Syn-
dromic surveillance of Flu on Twitter using weakly supervised temporal topic models.
Data Min. Knowl. Discov., 30(3):681–710, 2016.

[35] L. Chen, N. Muralidhar, S. Chinthavali, N. Ramakrishnan, and B. A. Prakash. Seg-
mentations with explanations for outage analysis. Computer Science Technical Reports
TR-18-02, VTechWorks, 2018.

[36] L. Chen and B. A. Prakash. Modeling influence using weak supervision: A joint link
and post-level analysis. Computer Science Technical Reports TR-18-03, VTechWorks,
2018.

[37] L. Chen, X. Xu, S. Lee, S. Duan, A. G. Tarditi, S. Chinthavali, and B. A. Prakash.
Hotspots: Failure cascades on heterogeneous critical infrastructure networks. In CIKM,
pages 1599–1607. ACM, 2017.

Liangzhe Chen Chapter 8. Conclusion 112

[38] W. Chen, T. Lin, Z. Tan, M. Zhao, and X. Zhou. Robust influence maximization. In
KDD, pages 795–804, 2016.

[39] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 199–208. ACM, 2009.

[40] X. C. Chen, K. Steinhaeuser, S. Boriah, S. Chatterjee, and V. Kumar. Contextual
time series change detection. In SDM, 2013.

[41] S. Chiappa. A Bayesian Approach to Switching Linear Gaussian State-Space Models
for Unsupervised Time-Series Segmentation. ICMLA, pages 3–9, 2008.

[42] N. A. Christakis and J. H. Fowler. Social Network Sensors for Early Detection of
Contagious Outbreaks. PLoS ONE, (9), 09 2010.

[43] P. Cohen, B. Heeringa, and N. Adams. Unsupervised segmentation of categorical time
series into episodes. In ICDM, pages 99–106. IEEE, 2002.

[44] R. Crane and D. Sornette. Robust Dynamic Classes Revealed by Measuring the Re-
sponse Function of a Social System. In PNAS, 2008.

[45] A. Culotta. Towards detecting influenza epidemics by analyzing Twitter messages. In
Proceedings of the first workshop on social media analytics, pages 115–122. ACM, 2010.

[46] H. Daneshmand, M. Gomez-Rodriguez, L. Song, and B. Schoelkopf. Estimating diffu-
sion network structures: Recovery conditions, sample complexity & soft-thresholding
algorithm. In ICML, pages 793–801, 2014.

[47] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. The anatomy of a scientific
rumor. Scientific Reports, 2013.

[48] S. Duan, S. Lee, S. Chinthavali, and M. Shankar. Reliable communication models
in interdependent critical infrastructure networks. In Resilience Week (RWS), 2016,
pages 152–157. IEEE, 2016.

[49] L. Dueas-Osorio, J. I. Craig, and B. J. Goodno. Seismic response of critical interde-
pendent networks. Earthquake Engineering and Structural Dynamics, 36(2):285–306,
2007.

[50] R. Eskandarpour and A. Khodaei. Machine learning based power grid outage prediction
in response to extreme events. IEEE Transactions on Power Systems, 32(4):3315–3316,
2017.

[51] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph compression. In SIGMOD,
2012.

Liangzhe Chen Chapter 8. Conclusion 113

[52] J. Ferlez, C. Faloutsos, J. Leskovec, D. Mladenic, and M. Grobelnik. Monitoring
network evolution using MDL. In ICDE. IEEE, 2008.

[53] D. Fernandez and M. Lutz. Urban flood hazard zoning in Tucumán Province, Ar-
gentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1):90–
98, 2010.

[54] A. Gensler, T. Gruber, and B. Sick. Blazing Fast Time Series Segmentation Based on
Update Techniques for Polynomial Approximations. ICDM Workshops, pages 1002–
1011, 2013.

[55] S. Gharghabi, Y. Ding, C.-C. M. Yeh, K. Kamgar, L. Ulanova, and E. Keogh. Matrix
profile viii: Domain agnostic online semantic segmentation at superhuman performance
levels. In ICDM, pages 117–126. IEEE, 2017.

[56] J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolinski, and L. Brilliant. De-
tecting Influenza Epidemics using Search Engine Query Data. Nature, 457(7232):1012–
1014, 2008.

[57] N. Glance, M. Hurst, and T. Tomokiyo. Blogpulse: Automated trend discovery for
weblogs. WWW 2004 workshop on the weblogging ecosystem: Aggregation, analysis
and dynamics, 2004.

[58] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
academy of Sciences, 101(suppl 1):5228–5235, 2004.

[59] A. Gruber, M. Rosen-Zvi, and Y. Weiss. Hidden Topic Markov Models. Artificial
Intelligence and Statistics (AISTATS), 2007.

[60] P. D. Grünwald. The Minimum Description Length Principle (Adaptive Computation
and Machine Learning). The MIT Press, 2007.

[61] M. F. Habib, M. Tornatore, and B. Mukherjee. Cascading-failure-resilient intercon-
nection for interdependent power grid-optical networks. In OFC, 2015.

[62] D. Hallac, S. Vare, S. Boyd, and J. Leskovec. Toeplitz inverse covariance-based clus-
tering of multivariate time series data. In KDD, pages 215–223. ACM, 2017.

[63] K. Henderson, T. Eliassi-Rad, C. Faloutsos, L. Akoglu, L. Li, K. Maruhashi, B. A.
Prakash, and H. Tong. Metric forensics: A multi-level approach for mining volatile
graphs. In KDD, 2010.

[64] H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42, 2000.

[65] P. Hines, K. Balasubramaniam, and E. C. Sanchez. Cascading failures in power grids.
IEEE Potentials, 28(5), 2009.

Liangzhe Chen Chapter 8. Conclusion 114

[66] P. D. Hines, I. Dobson, and P. Rezaei. Cascading power outages propagate locally in
an influence graph that is not the actual grid topology. IEEE Transactions on Power
Systems, 32(2):958–967, 2017.

[67] Å. J. Holmgren. Using graph models to analyze the vulnerability of electric power
networks. Risk analysis, 26(4):955–969, 2006.

[68] L. Hong, D. Yin, J. Guo, and B. Davison. Tracking Trends: Incorporating Term Volume
into Temporal Topic Models. In the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 484–492, 2011.

[69] K. Hou, W. c. Feng, and S. Che. Auto-Tuning Strategies for Parallelizing Sparse
Matrix-Vector (SpMV) Multiplication on Multi- and Many-Core Processors. In
2017 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2017.

[70] K. Hou, W. Liu, H. Wang, and W. Feng. Fast Segmented Sort on GPUs. In Proceedings
of the 2017 International Conference on Supercomputing, ICS ’17. ACM, 2017.

[71] K. Hou, H. Wang, and W. c. Feng. Delivering Parallel Programmability to the Masses
via the Intel MIC Ecosystem: A Case Study. In the 43rd International Conference on
Parallel Processing Workshops, pages 273–282, Sept 2014.

[72] K. Hou, H. Wang, and W. Feng. ASPaS: A Framework for Automatic SIMDization of
Parallel Sorting on x86-based Many-core Processors. In Proceedings of the 29th ACM
on International Conference on Supercomputing, ICS ’15, pages 383–392, New York,
NY, USA, 2015. ACM.

[73] K. Hou, H. Wang, and W. Feng. GPU-UniCache: Automatic Code Generation of
Spatial Blocking for Stencils on GPUs. In Proceedings of the ACM Conference on
Computing Frontiers, CF ’17. ACM, 2017.

[74] K. Hou, H. Wang, and W. Feng. A Framework for the Automatic Vectorization of
Parallel Sort on X86-based Processors. IEEE Trans. Parallel Distrib. Syst. (TPDS),
2018.

[75] K. Hou, H. Wang, W. Feng, J. Vetter, and S. Lee. Highly Efcient Compensation-based
Parallelism for Wavefront Loops on GPUs. In IEEE Int. Parallel and Distrib. Process.
Symp. (IPDPS), 2018.

[76] K. Hou, H. Wang, and W. C. Feng. AAlign: A SIMD Framework for Pairwise Sequence
Alignment on x86-Based Multi-and Many-Core Processors. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 780–789, May 2016.

[77] Z. Hu, J. Yao, B. Cui, and E. Xing. Community level diffusion extraction. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data,
pages 1555–1569. ACM, 2015.

Liangzhe Chen Chapter 8. Conclusion 115

[78] X. Huang, S. Shao, H. Wang, S. V. Buldyrev, H. E. Stanley, and S. Havlin. The
robustness of interdependent clustered networks. EPFA, 101(1), 2013.

[79] J. Jacquez and C. Simon. The stochastic SI model with recruitment and deaths I:
Comparison with the closed SIS model. Mathematical biosciences, 117(1):77–125, 1993.

[80] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through
a social network. In KDD, pages 137–146. ACM, 2003.

[81] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting time
series. In ICDM’01.

[82] J. Kiernan and E. Terzi. Constructing comprehensive summaries of large event se-
quences. ACM Trans. Knowl. Discov. Data, 3(4), 2009.

[83] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8), 2009.

[84] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. VOG: Summarizing and Under-
standing Large Graphs. In SDM, 2014.

[85] H.-P. Kriegel, P. Kroger, M. Renz, and S. Wurst. A generic framework for efficient
subspace clustering of high-dimensional data. ICDM, 2005.

[86] T. La Fond and J. Neville. Randomization tests for distinguishing social influence and
homophily effects. In WWW, pages 601–610. ACM, 2010.

[87] A. Lamb, M. J. Paul, and M. Dredze. Separating fact from fear: Tracking flu infec-
tions on twitter. In North American Chapter of the Association for Computational
Linguistics (NAACL), 2013.

[88] V. Lampos and N. Cristianini. Nowcasting events from the social web with statistical
learning. ACM TIST, 3(4):72, 2012.

[89] V. Lampos, T. De Bie, and N. Cristianini. Flu Detector: Tracking Epidemics on
Twitter. In Proceedings of the 2010 European Conference on Machine Learning and
Knowledge Discovery in Databases: Part III, ECML PKDD’10, pages 599–602, 2010.

[90] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila. Finding effectors in social net-
works. In KDD, 2010.

[91] D. M. Lazer, R. Kennedy, G. King, and A. Vespignani. The parable of Google Flu:
Traps in big data analysis. Science, 343(6176):1203–1205, 2014.

[92] C.-T. Lee. GIS Application in Landslide Hazard Analysis–An Example from the Shih-
men Reservoir Catchment Area in Northern Taiwan. In Pacific Neighborhood Consor-
tium (PNC) 2008 Annual Meeting program, 2008.

Liangzhe Chen Chapter 8. Conclusion 116

[93] K. Lee, A. Agrawal, and A. Choudhary. Real-Time Digital Flu Surveillance using
Twitter Data. In Proceedings of the SDM Workshop on Data Mining for Medicine and
Healthcare (DMMH), 2013.

[94] K. Lee, A. Agrawal, and A. Choudhary. Real-Time Disease Surveillance using Twitter
Data: Demonstration on Flu and Cancer. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD), pages 1474–
1477. ACM, 2013.

[95] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of the
news cycle. In KDD, 2009.

[96] G. Li, M. Semerci, B. Yener, and M. J. Zaki. Effective graph classification based on
topological and label attributes. Statistical Analysis and Data Mining, 2012.

[97] J. Li and C. Cardie. Early Stage Influenza Detection from Twitter. CoRR,
abs/1309.7340, 2013.

[98] L. Li, J. McCann, N. S. Pollard, and C. Faloutsos. Dynammo: Mining and summa-
rization of coevolving sequences with missing values. In KDD, 2009.

[99] M. Li and J. Muldowney. Global stability for the SEIR model in epidemiology. Math-
ematical Biosciences, 125(2):155–164, 1995.

[100] W. Li, A. Bashan, S. V. Buldyrev, H. E. Stanley, and S. Havlin. Cascading failures
in interdependent lattice networks: the critical role of the length of dependency links.
Physical Review Letters, 108(22), 2011.

[101] A. Likas, N. Vlassis, and J. J. Verbeek. The global k-means clustering algorithm.
Pattern recognition, 36(2):451–461, 2003.

[102] L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining topic-level influence in het-
erogeneous networks. In Proceedings of the 19th ACM international conference on
Information and knowledge management, pages 199–208. ACM, 2010.

[103] L. Liu, J. Tang, J. Han, and S. Yang. Learning influence from heterogeneous social
networks. Data Mining and Knowledge Discovery, 25(3):511–544, 2012.

[104] W. Liu, A. Kan, J. Chan, J. Bailey, C. Leckie, J. Pei, and R. Kotagiri. On com-
pressing weighted time-evolving graphs. In Proceedings of the 21st ACM international
conference on Information and knowledge management, pages 2319–2322. ACM, 2012.

[105] X. Liu, Z. Lin, and H. Wang. Novel Online Methods for Time Series Segmentation.
Knowledge and Data Engineering, IEEE Transactions on, 20(12):1616–1626, 2008.

[106] P. V. Marsden and N. E. Friedkin. Network studies of social influence. Sociological
Methods & Research, 22(1):127–151, 1993.

Liangzhe Chen Chapter 8. Conclusion 117

[107] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen. Sparsification
of influence networks. In KDD, 2011.

[108] M. Mathioudakis and N. Koudas. TwitterMonitor: trend detection over the Twitter
stream. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of data, SIGMOD ’10, pages 1155–1158, New York, NY, USA, 2010. ACM.

[109] Y. Matsubara, Y. Sakurai, and C. Faloutsos. AutoPlait: Automatic Mining of Co-
evolving Time Sequences. SIGMOD ’14, pages 193–204, 2014.

[110] Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M. Yoshikawa. Fast mining
and forecasting of complex time-stamped events. KDD ’12, pages 271–279, 2012.

[111] Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall
patterns of information diffusion: model and implications. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’12, pages 6–14, 2012.

[112] Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen. CSI: Community-Level Social
Influence Analysis. In Proceedings, Part II, of the European Conference on Machine
Learning and Knowledge Discovery in Databases - Volume 8189, ECML PKDD 2013,
2013.

[113] A. Mueen and E. Keogh. Online discovery and maintenance of time series motifs. KDD
’10, pages 1089–1098, 2010.

[114] N. Muralidhar, C. Wang, N. Self, M. Momtazpour, K. Nakayama, R. Sharma, and
N. Ramakrishnan. Illiad: InteLLigent Invariant and Anomaly Detection in Cyber-
Physical Systems. ACM TIST, 9(3):35, 2018.

[115] S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in
networks. In KDD. ACM, 2012.

[116] R. M. Nallapati, A. Ahmed, E. P. Xing, and W. W. Cohen. Joint latent topic models for
text and citations. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’08, pages 542–550. ACM, 2008.

[117] H.-V. Nguyen and J. Vreeken. Linear-time detection of non-linear changes in massively
high dimensional time series. In SDM. SIAM, 2016.

[118] M. H. Nguyen and F. Torre. Maximum margin temporal clustering. In International
Conference on Artificial Intelligence and Statistics, pages 520–528, 2012.

[119] X. Ning and G. Karypis. SLIM: Sparse linear methods for top-n recommender systems.
In ICDM, pages 497–506. IEEE, 2011.

Liangzhe Chen Chapter 8. Conclusion 118

[120] M. Ouyang. Review on modeling and simulation of interdependent critical infrastruc-
ture systems. Reliability Engineering and System Safety, 121:43–60, 2014.

[121] PAHO. Epidemic Disease Database, Pan American Health Organization. http://

ais.paho.org/phip/viz/ed_flu.asp, Dec. 2012.

[122] A. Pal and S. Counts. Identifying topical authorities in microblogs. In Proceedings of
the fourth ACM international conference on Web search and data mining, pages 45–54.
ACM, 2011.

[123] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple
time-series. In VLDB’05.

[124] M. Parandehgheibi and E. Modiano. Robustness of interdependent networks: the case
of communication networks and the power grid. In GLOBECOM, pages 2164–2169,
2013.

[125] M. Parandehgheibi and E. Modiano. Robustness of bidirectional interdependent net-
works: Analysis and design. arXiv preprint arXiv:1605.01262, 2016.

[126] D. Patnaik, S. Laxman, B. Chandramouli, and N. Ramakrishnan. Efficient episode
mining of dynamic event streams. ICDM ’2012.

[127] M. Paul and M. Dredze. You Are What You Tweet: Analyzing Twitter for Pub-
lic Health. In Fifth International AAAI Conference on Weblogs and Social Media
(ICWSM 2011), 2011.

[128] M. Paul and R. Girju. A Two-dimensional Topic-aspect Model for Discovering Multi-
faceted Topics. Urbana, 51:61801, 2010.

[129] M. J. Paul and M. Dredze. You are what you tweet: Analyzing twitter for public
health. Icwsm, 20:265–272, 2011.

[130] P. Pederson, D. Dudenhoeffer, S. Hartley, and M. Permann. Critical infrastructure
interdependency modeling: a survey of US and international research. Idaho National
Laboratory, pages 1–20, 2006.

[131] B. A. Prakash, D. Chakrabarti, N. C. Valler, M. Faloutsos, and C. Faloutsos. Threshold
conditions for arbitrary cascade models on arbitrary networks. KAIS, 2012.

[132] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian. Fast influence-
based coarsening for large networks. In KDD, 2014.

[133] M. Qiu, F. Zhu, and J. Jiang. It is not just what we say, but how we say them: LDA-
based behavior-topic model. In 2013 SIAM International Conference on Data Mining
(SDM13). SIAM. SIAM, 2013.

Liangzhe Chen Chapter 8. Conclusion 119

[134] Q. Qu, C. Chen, C. S. Jensen, and A. Skovsgaard. Space-time aware behavioral topic
modeling for microblog posts. IEEE Data Eng. Bull, 38(2):58–67, 2015.

[135] Q. Qu, S. Liu, C. S. Jensen, F. Zhu, and C. Faloutsos. Interestingness-driven diffusion
process summarization in dynamic networks. In ECML PKDD, pages 597–613, 2014.

[136] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia, and E. Keogh. Searching and mining trillions of time series subsequences under
dynamic time warping. KDD ’12, pages 262–270, 2012.

[137] N. Ramakrishnan, P. Butler, S. Muthiah, N. Self, R. Khandpur, P. Saraf, W. Wang,
J. Cadena, A. Vullikanti, G. Korkmaz, et al. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1799–1808.
ACM, 2014.

[138] N. Ramakrishnan, S. Tadepalli, L. T. Watson, R. F. Helm, M. Antoniotti, and
B. Mishra. Reverse engineering dynamic temporal models of biological processes and
their relationships. Proceedings of the National Academy of Sciences, 107(28):12511–
12516, 2010.

[139] A. Reinhardt, P. Baumann, D. Burgstahler, M. Hollick, H. Chonov, M. Werner, and
R. Steinmetz. On the accuracy of appliance identification based on distributed load
metering data. In SustainIT (2012), pages 1–9. IEEE, 2012.

[140] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should I trust you?: Explaining the
predictions of any classifier. In KDD, pages 1135–1144. ACM, 2016.

[141] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly. Identifying, understanding, and
analyzing critical infrastructure interdependencies. Control Systems, IEEE, 21(6):11–
25, 2001.

[142] D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of infor-
mation diffusion across topics: idioms, political hashtags, and complex contagion on
twitter. In Proceedings of the 20th international conference on World wide web, pages
695–704, 2011.

[143] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[144] A. Sadilek, H. Kautz, and V. Silenzio. Predicting Disease Transmission from Geo-
Tagged Micro-Blog Data. In the 26th AAAI Conference on Artificial Intelligence,
2012.

[145] A. Samé and G. Govaert. Online Time Series Segmentation Using Temporal Mixture
Models and Bayesian Model Selection. ICMLA ’12, 1:602–605.

Liangzhe Chen Chapter 8. Conclusion 120

[146] P. Sarkar, D. Chakrabarti, and M. I. Jordan. Nonparametric link prediction in dynamic
networks. In Proceedings of the 29th International Conference on Machine Learning,
ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

[147] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos. Timecrunch: Interpretable
dynamic graph summarization. In KDD, 2015.

[148] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
pattern analysis and machine intelligence, 22(8):888–905, 2000.

[149] M. Shokoohi-Yekta, Y. Chen, B. Campana, B. Hu, J. Zakaria, and E. Keogh. Discovery
of meaningful rules in time series. In KDD’15, pages 1085–1094.

[150] N. Slonim and N. Tishby. Document clustering using word clusters via the information
bottleneck method. SIGIR, pages 208–215, 2000.

[151] N. Spasojevic, J. Yan, A. Rao, and P. Bhattacharyya. LASTA: Large Scale Topic
Assignment on Multiple Social Networks. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages
1809–1818, New York, NY, USA, 2014. ACM.

[152] M. Steyvers, P. Smyth, M. Rosen-Zvi, and T. Griffiths. Probabilistic Author-topic
Models for Information Discovery. In The 10th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 306–315, 2004.

[153] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. Graphscope: Parameter-free
mining of large time-evolving graphs. KDD, 2007.

[154] S. Swarup, S. G. Eubank, and M. V. Marathe. Computational epidemiology as a
challenge domain for multiagent systems. AAMAS ’14, 2014.

[155] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale networks.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 807–816. ACM, 2009.

[156] N. Tassetti, A. Bernardini, and E. S. Malinverni. Use of remote sensing data and
GIS technology for assessment of landslide hazards in Susa valley, Italy. EARSeL
eProceedings, 7(1):59–67, 2008.

[157] N. Tatti. Fast sequence segmentation using log-linear models. Data Mining and Knowl-
edge Discovery, 27(3):421–441, 2013.

[158] N. Tatti and J. Vreeken. The long and the short of it: Summarising event sequences
with serial episodes. KDD ’12, pages 462–470, 2012.

Liangzhe Chen Chapter 8. Conclusion 121

[159] W. W. Thompson, L. Comanor, and D. K. Shay. Epidemiology of seasonal influenza:
use of surveillance data and statistical models to estimate the burden of disease. Jour-
nal of Infectious Diseases, 194(Supplement 2):S82–S91, 2006.

[160] S. Tierney, J. Gao, and Y. Guo. Subspace clustering for sequential data. In Proceedings
of IEEE CVPR, pages 1019–1026, 2014.

[161] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In
Proceedings of the 37th Annual Allerton Conference on Communication, Control and
Computing, pages 368–377, 1999.

[162] M. Toyoda, Y. Sakurai, and Y. Ishikawa. Pattern discovery in data streams under the
time warping distance. The VLDB Journal, 22(3):295–318, 2013.

[163] V. S. Tseng, C.-H. Chen, P.-C. Huang, and T.-P. Hong. A cluster-based genetic
approach for segmentation of time series and pattern discovery. IEEE Congress on
Evolutionary Computation, pages 1949–1953, 2008.

[164] W. Ugulino, D. Cardador, K. Vega, E. Velloso, R. Milidiu, and H. Fuks. Wearable
computing: Accelerometers’ data classification of body postures and movements. In
SBIA 2012, pages 52–61. 2012.

[165] M. Van Leeuwen and A. Siebes. Streamkrimp: Detecting change in data streams. In
Machine Learning and Knowledge Discovery in Databases, pages 672–687. Springer,
2008.

[166] J. Waggoner, S. Wang, D. Salvi, and J. Zhou. Handwritten text segmentation using
average longest path algorithm. WACV, 2013.

[167] H. Wang, W. Liu, K. Hou, and W. Feng. Parallel Transposition of Sparse Data Struc-
tures. In Proceedings of the 2016 International Conference on Supercomputing, ICS
’16, pages 33:1–33:13, New York, NY, USA, 2016. ACM.

[168] P. Wang, H. Wang, and W. Wang. Finding semantics in time series. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD
’11, pages 385–396, 2011.

[169] X. Wang and A. McCallum. Topics Over Time: a non-Markov Continuous-time Model
of Topical Trends. In Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’06, pages 424–433, 2006.

[170] Y. Wang, E. Agichtein, and M. Benzi. TM-LDA: efficient online modeling of latent
topic transitions in social media. In Proceedings of the 18th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 123–131. ACM,
2012.

Liangzhe Chen Chapter 8. Conclusion 122

[171] G. Weiss. Timeweaver: A genetic algorithm for identifying predictive patterns in
sequences of events. In Proceedings of the Genetic and Evolutionary Computation
Conference, volume 1, pages 718–725. Citeseer, 1999.

[172] J. Weng, E.-P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influential
twitterers. In Proceedings of the third ACM international conference on Web search
and data mining, pages 261–270. ACM, 2010.

[173] C.-W. Wu, Y.-F. Lin, P. S. Yu, and V. S. Tseng. Mining high utility episodes in
complex event sequences. KDD ’13, pages 536–544, 2013.

[174] K. S. Xu, M. Kliger, and A. O. Hero, III. Tracking communities in dynamic social
networks. SBP’11, pages 219–226, Berlin, Heidelberg, 2011. Springer-Verlag.

[175] J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM,
2011.

[176] J. Yang, J. J. McAuley, J. Leskovec, P. LePendu, and N. Shah. Finding progression
stages in time-evolving event sequences. In WWW ’14, 2014.

[177] S.-H. Yang, A. Kolcz, A. Schlaikjer, and P. Gupta. Large-scale High-precision Topic
Modeling on Twitter. In Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’14, pages 1907–1916, New
York, NY, USA, 2014. ACM.

[178] Y. Ye and E. Tse. An extension of Karmarkar’s projective algorithm for convex
quadratic programming. Mathematical programming, 44(1-3):157–179, 1989.

[179] D. Zhang, H. Wang, K. Hou, J. Zhang, and W. Feng. pDindel: Accelerating InDel De-
tection on a Multicore CPU Architecture with SIMD. In 2015 IEEE 5th International
Conference on Computational Advances in Bio and Medical Sciences (ICCABS), pages
1–6, Oct 2015.

[180] N. R. Zhang and D. O. Siegmund. Model selection for high-dimensional, multi-sequence
change-point problems. Statistica Sinica, 2012.

[181] S. Zhao, L. Zhong, J. Wickramasuriya, and V. Vasudevan. Human as Real-Time
Sensors of Social and Physical Events: A Case Study of Twitter and Sports Games.
CoRR, abs/1106.4300, 2011.

[182] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing Twitter
and traditional media using topic models. In Advances in Information Retrieval, pages
338–349. Springer, 2011.

[183] Y. Zhu, X. Yan, L. Getoor, and C. Moore. Scalable text and link analysis with mixed-
topic link models. In Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’13, pages 473–481. ACM, 2013.

Appendix A

DASSA (Chapter 3)

A.1 Preliminaries

First we provide the symbols used in the paper in Table A.1.

Symbol Description

D A set of ordered pair (xi, ti). i is the index of each data
point. It also used as discretized data sequence later in the
paper.

xi A d× 1 vector of data points

ti Time stamp of each data point. tmin ≤ t < tmax
X The set of unique data values (xi) in D
N Number of data points

d Number of dimensions

k Number of blocks in each dimension when discretizing the
dataset

x̃ A data cluster

X̃ The set of clusters

smin The minimum length of a time segment

Y The set of all possible time segments, considering smin and
smax

yi,j A time segment in Y , with the starting time ci and ending
time cj

DKL[p||q] Kullback-Leiber divergence of p & q

smdl The step size used in calculating CostT
CostT The total MDL cost

Table A.1: Symbols and notation.

123

Liangzhe Chen Chapter 8. Conclusion 124

Algorithm 9 Pseudo-code of Cluster
Require: D
Ensure: Data cluster X̃, and cluster membership p(x̃|x)

1: Initialize the data value set X, and time segment set Y .
2: Initialize p(x, y), p(x), p(y|x). Set X̃ as X.
3: while CT is decreasing do
4: Find the (x̃i, x̃j) pair which minimizes δI(x̃i, x̃j).
5: Merge those two (x̃i, x̃j) to x̃∗.
6: Update X̃ = {X̃ − {x̃i, x̃j}} ∪ {x̃∗}, and the δI, p(x̃∗|x), p(x̃∗), p(y|x̃∗) values.

Algorithm 10 Pseudo-code of DAG-ALP
Require: a weighted DAG G (V, E, W), h, s, t
Ensure: Average longest path

1: L0 = {s}; π(s, 0) = ∅; pw(s, 0) = 0; L1, L2, ..., Lh = ∅//Initialize the first layer with s. The parent node

of s in this layer is None. The path weight to s with length 0 is 0.

2: for i = 0 to h− 1 do
3: for v that can be reached from nodes n in Li do
4: if v /∈ Li+1 then
5: Li+1 = Li+1 ∪ v, π(v, i+ 1) = u, pw(v, i+ 1) = pw(u, i) + w(u, v)
6: else
7: if pw(v, i+ 1) < pw(u, i) + w(u, v) then
8: π[v, i+ 1] = u, pw(v, i+ 1) = pw(u, i) + w(u, v)// updating the path

9: if t ∈ Li+1 then
10: lpi+1 = pw(t, i+ 1) // find the longest paths with length i+1

11: ALP = argmax(lp11 , . . . ,
lph
h). Backtrack with π to extract the path.

A.2 Pseudo-code

We show the pseudo-code for Cluster algorithm in Alg. 9, and DAG-ALP algorithm in Alg. 10.

A.3 Proofs

Here we prove several lemmas that we mentioned in the main paper. Recall we have the
following desired property for edge weight function.

Property 2 For any three consecutive segments u, v, t, if v = [ci, cj), v1 = [ci, ck), v2 =
[ck, cj) (i.e. v can be further divided to two segments v1 and v2), then w(e(u, v))+w(e(v, t)) ≤
w(e(u, v1)) + w(e(v1, v2)) + w(e(v2, t)).

We now prove the following lemma.

Liangzhe Chen Chapter 8. Conclusion 125

Lemma 5 Our edge weight function w(e(ya, yb)) =
DEU(p(x̃|ya), p(x̃|yb)) satisfies property 2.

Proof 1 We know that nv = nv1 + nv2, where ny is the number of data observations in
segment y. We assume Py = p(x̃|y), we have

Pv =
nv1
nv

Pv1 +
nv2
nv

Pv2 =
nv1
nv

(Pv1 −Pv2) + Pv2

Similarly, we can also write

Pv =
nv1
nv

Pv1 +
nv2
nv

Pv2 = Pv1 +
nv2
nv

(Pv2 −Pv1)

Therefore,

w(e(u, v)) + w(e(v, t)) = ||Pu −Pv||2 + ||Pv −Pt||2
= ||Pu −Pv1 −

nv2
nv

(Pv2 −Pv1)||2+

||nv1
nv

(Pv1 −Pv2) + Pv2 −Pt||2

≤ ||Pu −Pv1 ||2 +
nv2
nv
||Pv1 −Pv2||2

+
nv1
nv
||Pv1 −Pv2||2 + ||Pv2 −Pt||2

= w(e(u, v1)) + w(e(v1, v2)) + w(e(v2, t))

The inequality is because of the triangle inequality of Euclidean distance.

We also prove that if we use the well-known distribution distance measure KL divergence
instead of Euclidean distance, it does not satisfy property 2 in general.

Lemma 6 An edge weight function w(e(ya, yb)) =
DKL(p(x̃|ya), p(x̃|yb)) does not satisfy property 2 in general.

Proof 2 We can prove this by constructing a counter example. We can assign Pu − Pv1,
Pv1−Pv2, Pv2−Pt accordingly so that the triangle inequality does not hold for these vectors,
and then following the proof above, we naturally get a case where w(e(u, v)) + w(e(v, t)) >
w(e(u, v1)) + w(e(v1, v2)) + w(e(v2, t)).

Lemma 7 ALP problem (decision version) on general graphs is NP-complete.

Liangzhe Chen Chapter 8. Conclusion 126

Proof 3 The ALP decision problem is: given a weighted graph G, a source node s, a target
node t, does G have an ALP from s to t that have at least average weight of c. Given an ALP
solution, we can easily check if it is a path from s to t, and its average weight in poly-time.
So the problem is in NP. Now we make a reduction from LP (decision version) to this ALP
problem. Given G, s, t, assume that we know the LP in G has at least total weight of c. We
now construct G′ by adding to G a node t′, an edge from t to t′ with weight -c. Since we
know the LP in G has at least total weight of c, we know that the ALP in G′ has at least
average weight of 0. On the other hand, if we know G′ has an ALP with at least average
weight of 0, it means that G has a path from s to t with weight larger than or equal to c.
Hence the LP in G must have at least total weight of c.

Lemma 8 DAG-ALP correctly finds the average longest path.

Proof 4 We first prove that ALP is the longest path given the corresponding path length. If
not, there exists a path with larger sum of weights while having the same path length, which
gives a better average weights and leads to a contradiction. Now we prove by reduction that
DAG-ALP finds longest paths of different length from s to t. The base case where we are at
the first two layers are clearly true. The reduction step can be proved by suboptimality of
the problem: given a longest path P(s,t), and any sub-path P(s,a), this sub-path P(s,a) must
also be the longest path from s to a given the corresponding path length. If not, there exists
a path from s to a with larger sum of weights while having the same length. Combining this
alternative path with the rest path from a to t, we have a path with larger average weights.

Lemma 9 The time complexity of DAG-ALP is O(|E|).

Proof 5 The time complexity of DAG-ALP is equal to the number of edges are visited during
the algorithm which can be calculated as follows:

Layer 1: (h− 1) = (h− 1)

Layer 2: (h− 2) + (h− 3) + . . .+ 1 =
(h− 1)(h− 2)

2

Layer 3: (h− 3) + (h− 4) + . . .+ 1 =
(h− 2)(h− 3)

2

Layer 4: h− 4) + . . .+ 1 =
(h− 3)(h− 4)

4
...

...

Layer h-1: 1 = 1

Liangzhe Chen Chapter 8. Conclusion 127

Therefore, the number of visited edges is,

(h− 1)+

(h− 1)(h− 2)

2
+

(h− 2)(h− 3)

2︸ ︷︷ ︸
(h−2)2

+

(h− 3)(h− 4)

2
+

(h− 4)(h− 5)

2︸ ︷︷ ︸
(h−4)2

+

. . .+ 1

= (h− 1) +

h
2∑
i=1

(h− 2i)2 = O(h3) = O(|E|)

A.4 Additional Experiments

Here we provide the omitted results in the experiment section of the main paper.

A.4.1 Datasets

1)Portland . NDSSL [154] provides several realistic population networks which have been
used in national public health studies. We select 7 most representative features for each
person to construct the data values. We simulate a flu-like disease propagation (using SI
model) on the contact network by seeding two nodes as infected at different times. We
expect to discover the time the second seed is injected.

2)ChickenDance. In each of the two chicken dance datasets (ChickenDance 1 and Chick-
enDance 2), a “chicken” dance motion is recorded as a sequence of 4-dimensional data
points [109]. We have the ground-truth segmentation here based on motions in the dances.

3)Twitter . We combine Twitter API with Datasift’s collection service1 to construct this
dataset. We first collect tweets generated from three different countries (Peru, Paraguay,
Argentina) from Apr to Aug, 2013 using Datasift. Then we extract flu-related tweets [?]
and build keyword trends of 12 infection-related keywords. We aim to understand change of
these word mentions with respect to time.

4)Ebola2 contains Ebola disease reports for a number of towns, and different infection types
in towns, such as ‘suspected’, ‘confirmed’, etc. We use the town name and the infection type

1http://datasift.com/
2http://health.gov.sl

Liangzhe Chen Chapter 8. Conclusion 128

as features. Combined with the date we have a categorical data sequence. We aim to find
the infection patterns from this sequence.

5)PUC-Rio. is a human motion recognition dataset [164], where subjects perform different
actions while wearing accelerometers. For our experiment, we concatenate data from different
actions, and construct a data sequence where every once a while, the subject changes her
action.

A.4.2 Quality of Clusters (X̃)

Here we examine the number and quality of data clusters found by DASSA.

Number of clusters (MDL) Fig. A.1(a) shows the CostT values with respect to the
number of clusters for the ChickenDance 1 (MDL curves for other datasets are similar). We
see that the MDL curve is indeed near-convex, and it suggests an optimal number of clusters
which minimizes CostT .

� �� ��� ��� ���
���

����

�

����

���

����

���

����

���� ��
	

���� �� �������� ���

�
��
� �

�� �� ��
����

�����

	��
�

l*=48

(a) MDL curve for ChickenDance 1

0

0.5

1

Arge
ntina Peru para

guay
Port

land

Chic
kenD

ance
1

Chic
kenD

ance
2

Ebo
la
PUC

−Rio

Q
c

(b) Qc scores

Figure A.1: (a) MDL curves of ChickenDance 1: CostT vs number of clusters l. (b) Qc

scores. Note Qc > 0.5 for all datasets—indicates high quality clusters.

Quality of clusters found by DASSA Cluster finds data values which are ‘temporally
similar’ to each other. To measure the quality of the clusters (X̃), we calculate how close in
time data values in the same cluster ({xi|xi ∈ x̃j}) appear in the sequence. We represent the
occurrence of each data value xi by a 1× |Y | vector vxi , where vxi(j) = 1 if xi occurs in the
jth segment in Y , and 0 otherwise. We then calculate the well-known Silhouette score [143]
using Eq. A.1, where Axi is the average JD (Jaccard distance) from vxi to data points in
the same cluster; Bxi are the average JD’s from vxi to data points in other clusters. The
Silhouette score for each data point xi implies how much xi belongs to x̃. We take the average
over all xi and normalize it to [0, 1]. Higher values of Qc indicate the better clustering.

Sil(xi) =
min(Bxi)−Axi

max(min(Bxi),Axi)
; Qc =

∑
i
Sil(xi)+1

2N (A.1)

Liangzhe Chen Chapter 8. Conclusion 129

Results: We show the Qc values for different datasets (after running DASSA) in Fig. A.1(b).
It can be seen that in all datasets the Qc > 0.5 which means our clustering algorithm gives
high-quality clusters capturing the temporal similarity between data values.

A.4.3 Finding the Best Path (ALP vs LP)

We show that the average longest path (ALP) optimization gives better segmentation paths
than simply using longest path (LP) optimization. Here we run (1) DASSA which uses ALP;
(2)LP (replacing ALP by LP in DASSA) for the datasets with ground-truth segmentation.
We compare the set of ground-truth cut points and the set of detected cut points from
DASSA by calculating the F1 Score as also used in other segmentation literature [109].

Results: The results are shown in Tab. A.2: DASSA performs much better than LP on
all datasets with ground truth. Especially, we get perfect segmentations on three of the
datasets. For datasets without ground truth, we compare the segmentation length. As
expected, we observe over-segmentation from LP . For instance, in Ebola (duration = 48
days) and ChickenDance 1 (duration = 1535 time-units) the number of segments with LP
is 12 and 11 while with DASSA it is just 2 and 8.

A.4.4 More Results.

Portland : We show the pie-chart for the cluster (x̃) distribution, as well as the most
frequent values in each segment in Fig. A.2(a). We see how the clusters are completely
different across segments in this dataset. And as described in the main paper, The results
of the most frequent values in the two segments indicate that elder people, with higher
incomes, larger number of workers in family, and more vehicles are infected first. Then
younger people with lower incomes, fewer vehicles get infected. It illustrates that DASSA is
capable of detecting the pattern of disease propagation.

ChickenDance : As shown in Fig. A.4, DASSA captures all the distinct chicken dance
motions precisely. In contrast, the cut points detected by EMP and TopicM do not correctly
find the time when a different motion takes place: they either miss the correct cut points,
or have unnecessary additional cut points.

Additionally we observe that, segments with the same motion label do not necessarily share
the exact same data values. For example, the two beaks in Fig. A.4(c) have similar patterns

Dataset DASSA TopicM EMP LP Dynammo
ChickenDance 1 1 0.85 0.76 0.63 0.57
ChickenDance 2 1 0.6 0.90 0.54 0.71
Portland 1 1 0.66 0 1
PUC-Rio 0.66 0.46 0.25 0.44 0.25

Table A.2: F1 score for datasets with ground-truth.

Liangzhe Chen Chapter 8. Conclusion 130

�� ��

���� ��	��
�� �

��

���� ��	��
��

(a) Cluster distributions (p(x̃i|y)) for Portland .

age Y X Income Size # Workers # Vehicles
4.0 4.0 4.0 10.0 0.0 3.0 5.0

Segment:1 4.0 3.0 4.0 10.0 0.0 3.0 2.0
4.0 4.0 2.0 10.0 2.0 5.0 5.0
4.0 3.0 4.0 10.0 2.0 3.0 2.0

age Y X Income Size # Workers # Vehicles
1.0 5.0 7.0 6.0 5.0 1.0 2.0

Segment:2 4.0 5.0 7.0 3.0 0.0 1.0 1.0
4.0 6.0 6.0 7.0 1.0 5.0 4.0
2.0 5.0 5.0 7.0 0.0 3.0 2.0

(b) High frequent feature values for Portland .

Figure A.2: Pie-chart of p(x̃i|y) for each segment, and the associated most frequent data
values for Portland . DASSA learns l∗ = 2.

but the data values inside the segments are different. Hence, we do not expect the x̃i in the
two segments (with the same motion label) to be exactly the same. Interestingly, the shape
of the co-occurring proportion still captures the similarity between two segments with the
same labels. Consider segment 1 and segment 5 in Fig. A.4—although the x̃i values are not
the same, the shapes/proportions in the two pie-charts are still similar. This captures the
fact that the two segments have similar patterns, yet the data values are not exactly the
same.

Twitter : We also observe in Fig. A.5(f) and Fig. A.5(h) that the important words across
segments are different. Dynammo, when given the same number of cut points as detected
by DASSA, produces less meaningful cut points.

Ebola : We see in Fig. A.3(a) that the p(x̃i|y) in the two segments are different. We explore
the feature values in the two segments detected by DASSA. In Fig. A.3(b) we see that
the death and newly confirmed cases reduce significantly from segment 1 to segment 2,
which shows a sign of increased caution for the disease. We also notice from the change
of distribution of towns that at first the infection mostly occurs in town 2 and 3 which are
”Kono” and ”Kambia” in Sierra-Leone. Then it spreads to other towns (e.g. town 9 which is
”Bo” in sierra-leone). DASSA automatically finds a segmentation that captures this disease
propagation pattern; giving a better understanding of the situation.

In conclusion, for the three datasets (Portland , ChickenDance, PUC-Rio) where we have the
ground truth, DASSA discovers the exact ground truth segmentation in most of the cases;
for the other datasets (Twitter , Ebola), DASSA finds a segmentation with a high Qseg. We
provide an interpretation of the segmentation and explain how they reveal the interesting
patterns in the data sequences.

Liangzhe Chen Chapter 8. Conclusion 131

��

��

��

���� 	�
���� �

��

��

��

���� 	�
���� �

(a) Cluster distributions (p(x̃i|y)) for each segment.

new
_n

on
ca

se

new
_s

usp
ec

te
d

new
_p

ro
bab

le

new
_c

on
fir

m
ed

dea
th

_s
usp

ec
te

d

dea
th

_p
ro

bab
le

dea
th

_c
on

fir
m

ed

Infection Status

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

new
_n

on
ca

se

new
_s

usp
ec

te
d

new
_p

ro
bab

le

new
_c

on
fir

m
ed

dea
th

_s
usp

ec
te

d

dea
th

_p
ro

bab
le

dea
th

_c
on

fir
m

ed

Infection Status

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
e
q
u
e
n
cy

(b) Distribution of infection status.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Town ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
e
q
u
e
n
cy

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Town ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

(c) Distribution of towns.

Figure A.3: Results from the Ebola datasets. Note that at first infection mostly occurs in
towns 2 and 3 but it gradually spread over other towns in second segments. (a) also indicates
the death and new confirmed cases are reduced significantly over time.

Liangzhe Chen Chapter 8. Conclusion 132

���� �������	
 ���� �������	 � ���� �������	 � ���� �������	

���� �������	 � ���� �������	 � ���� �������	 � ���� �������	 �

(a) Cluster distributions p(x̃i|y) for ChickenDance
1.

���� �������	
 ���� �������	 � ���� �������	 � ���� �������	

���� �������	 � ���� �������	 � ���� �������	 � ���� �������	 �

(b) Cluster distributions p(x̃i|y) for ChickenDance
2.

(c) Segmentation of ChickenDance 1.

beak wings tail
feathers

claps beaks wings tail
feathers

claps

(d) Segmentation of ChickenDance 2.

Figure A.4: Pie-charts of p(x̃i|y). Same colors represent the same x̃i value. (c) and (d) Cut
points of the segmentation in ChickenDance 1 and ChickenDance 2 with DASSA. The cut
points of TopicM (blue cut points) and EMP (green cut points) are shown below the DASSA
segmentation. DASSA learns l∗ = 48.

Liangzhe Chen Chapter 8. Conclusion 133

��

���� �����	
� �

��

���� �����	
�

�

���� �����	
� �

(a) Cluster distributions p(x̃i|y) for Peru. (b) Word cloud for Peru from DASSA.

(c) Word cloud for Peru from TopicM .

(d) Word cloud for Peru from Dynammo.

��

���� �����	
� �

��

���� �����	
�

�

���� �����	
� �

(e) Cluster distributions p(x̃i|y) for Paraguay . (f) Word cloud for Paraguay

��

���� �����	
� �

��

���� �����	
�

�

���� �����	
� �

(g) Cluster distributions p(x̃i|y) for Argentina. (h) Word cloud for Argentina

Figure A.5: (a), (e) and, (g) are pie-charts of p(x̃i|y) for each segment of Peru, Paraguay
and Argentina, and the corresponding word clouds for then are shown in (b), (f) and, (h)
respectively. The results for TopicM and Dynammo for Peru are also shown in c and d.

Appendix B

HFSTM and HFSTM-A (Chapter 4)

In the model we have three kinds of topic distributions: background, non-flu topic, and state.
We test them step by step, by first testing the model where only state words are considered,
and then pulsing the background noise part to the model and then the non-flu topic part.
We’ll introduce the inference for each of them in this sheet. We start with a model where
only state words are considered.

Let K, T , N , and U be the number of states, number of tweets per user, number of words per
tweet, and total number of users. Let O =< O1, O2, . . . , OT > and S =< S1, S2, . . . , ST >
the observed sequences of tweets and hidden states respectively for a particular user.

Here is a list of symbols that we will use.

1. ε: the prior for the binary state switching variable, which determines whether state
of a tweet is drawn from the transition probability matrix or simply copied from the
state of the previous tweet (a number in (0, 1])

2. π: initial state probability (size is 1×K)

3. η: tansition probability matrix (size is K ×K)

4. φ: word distrtibution for each state (size is K ×W , where W is the total number of
keywords for all of the states)

5. wtn: the nth word in the tth tweet

We want to learn these parameters given the tweet sequence. For compact notation we use
H = (ε, π, η, φ). We use forward backward procedure for which we define forward variable
At(i) and backward variable Bt(i) as follows.

134

Liangzhe Chen Chapter 8. Conclusion 135

At(i) = P (O1, O2, . . . , Ot, St = i|H) (B.1)

Bt(i) = P (Ot+1, . . . , OT |St = i,H) (B.2)

Forward variables:

Initialization is as follows:

For 1 ≤ i ≤ K:

A1(i) = P (O1, S1 = i|H) = P (O1|S1 = i,H)P (S1 = i|H)

=
N∏
n=1

P (w1n|S1 = i,H)πi = πi

N∏
n=1

φi(w1n)

For K + 1 ≤ i ≤ 2K: A1(i) = 0

Induction is as follows:

For 1 ≤ j ≤ K:

At(j) = P (O1, O2, . . . , Ot, St = j|H)

=

(
2K∑
i

At−1(i)εηij

)
P (Ot|St = j,H)

=

(
2K∑
i

At−1(i)εηij

)
N∏
n=1

φj(wtn)

For K + 1 ≤ j ≤ 2K:

At(j) = P (O1, O2, . . . , Ot, St = j|H)

= (At−1(j) + At−1(j −K)) (1− ε)P (Ot|St = j,H)

= (At(j) + At(j −K)) (1− ε)
N∏
n=1

φj(wtn)

Backward variables: Initialization is as follows:

Liangzhe Chen Chapter 8. Conclusion 136

For 1 ≤ i ≤ 2K:

BT (i) = 1

Induction is as follows:

For 1 ≤ i ≤ K:

Bt(i) = P (Ot+1, . . . , OT |St = i,H)

=

(
K∑
j

εηijP (Ot+1|St+1 = j,H)Bt+1(j)

)
+ (1− ε)P (Ot+1|St+1 = i+K,H)Bt+1(i+K)

=

(
K∑
j

εηij

N∏
n=1

φj(w(t+1)n)Bt+1(j)

)
+ (1− ε)

N∏
n=1

φi(w(t+1)n)Bt+1(i+K)

For K + 1 ≤ i ≤ 2K:

Bt(i) = P (Ot+1, . . . , OT |St = i,H)

=

(
K∑
j

εηijP (Ot+1|St+1 = j,H)Bt+1(j)

)
+ (1− ε)P (Ot+1|St+1 = i,H)Bt+1(i)

=

(
K∑
j

εηij

N∏
n=1

φj(w(t+1)n)Bt+1(j)

)
+ (1− ε)

N∏
n=1

φi−K(w(t+1)n)Bt+1(i)

Let γt(i) be the probability of being in state Si at for tth tweet given the observed tweet
sequence O and other model parameters. For each user the size of γ is 2K × T .

For 1 ≤ i ≤ 2K:

γt(i) = P (St = i|O,H) =
At(i)Bt(i)

P (O|H)
=

At(i)Bt(i)∑2K
i=1At(i)Bt(i)

Let ξt(i, j) be the probability of being in state Si at time t, and state Sj at time t+ 1, given
O and other model parameters.For each user the size of ξ is K2 × (T − 1).

Liangzhe Chen Chapter 8. Conclusion 137

ξt(i, j) = P (St = i, St+1 = j|O,H) =
P (St = i, St+1 = j, O|H)

P (O|H)

For ξt(i, j), we define follwoing terms.

For 1 ≤ i ≤ 2K and 1 ≤ j ≤ K

T1 = At(i)εηijP (Ot+1|St+1 = j,H)Bt+1(j) = At(i)εηij

N∏
n=1

φi(w(t+1)n)Bt+1(j)

(B.3)

Note: when i > K then ηij = η(i−K)j (B.4)

T2 = At(i)(1− ε)P (Ot+1|St+1 = i+K,H)Bt+1(i+K)

for 1 ≤ i ≤ K and K + 1 ≤ j ≤ 2K (B.5)

T3 = At(i)(1− ε)P (Ot+1|St+1 = i,H)Bt+1(i)

for K + 1 ≤ i ≤ 2K and K + 1 ≤ j ≤ 2K (B.6)

T1 = At(i)εηijP (Ot+1|St+1 = j,H)Bt+1(j) = At(i)εηij

N∏
n=1

φi(w(t+1)n)Bt+1(j)

for 1 ≤ i ≤ 2K and 1 ≤ j ≤ K (B.7)

Note: when i > K then ηij = η(i−K)j (B.8)

T2 = At(i)(1− ε)P (Ot+1|St+1 = i+K,H)Bt+1(i+K)

for 1 ≤ i ≤ K and K + 1 ≤ j ≤ 2K (B.9)

T3 = At(i)(1− ε)P (Ot+1|St+1 = i,H)Bt+1(i)

for K + 1 ≤ i ≤ 2K and K + 1 ≤ j ≤ 2K (B.10)

ξt(i, j) =
T1∑

i

∑
j(T1 + T2 + T3)

(B.11)

ξt(i, j) =
T2∑

i

∑
j(T1 + T2 + T3)

(B.12)

ξt(i, j) =
T3∑

i

∑
j(T1 + T2 + T3)

(B.13)

Liangzhe Chen Chapter 8. Conclusion 138

B.1 Estimation of Parameters

For estimating ε:

ε =

∑U
u=1

∑T
t=1

∑2K
i=1

∑K
j=1 ξ(i, j)∑U

u=1

∑T
t=1

∑2K
i=1

∑2K
j=1 ξ(i, j)

For estimating π:

πi =

∑U
u=1 γ1(i)∑U

u=1

∑K
i=1 γ1(i)

for 1 ≤ i ≤ K

For estimating η:

ηij =

∑U
u=1

∑T
t=1 (ξt(i, j) + ξt(i+K, j))∑U

u=1

∑T
t=1

∑K
j=1 (ξt(i, j) + ξt(i+K, j))

for 1 ≤ i ≤ K, 1 ≤ j ≤ K

For estimating φ:

φi(w) =

∑U
u=1

∑T
t=1

∑
1≤n≤N

&
w=wtn

(γt(i) + γt(i+K))

∑U
u=1

∑T
t=1

∑W
w=1

∑
1≤n≤N

&
w=wtn

(γt(i) + γt(i+K))
for 1 ≤ i ≤ K

B.1.1 With Background Noise

We have switch variable: l. If If l = 1, the word is generated by states, if l = 0 it’s generated
by background.

For li = 1, wi is generated by states.

Liangzhe Chen Chapter 8. Conclusion 139

P (li = 1|λ,H,w) =
P (li = 1|λ,H)P (w|li = 1, λ,H)

P (w|λ,H)

=
λP (wi|λ,H, li = 1, w−i)P (w−i|λ,H, li = 1)

P (wi|λ,H,w−i)P (w−i|λ,H)

=
λ[
∑

state P (wi|λ,H, state, w−i)P (state|λ,H,w−i)]∑
li
P (wi|λ,H,w−i, li)P (li|λ)

=
λ[
∑

state φstate(wi)γi(state)]

λ[
∑

state φstate(wi)γi(state)] + (1− λ)φBak(wi)

For li = 0, wi is generated by background.

P (li = 0|λ,H,w) =
P (li = 0|λ,H)P (w|li = 0, λ,H)

P (w|λ,H)

=
(1− λ)φBak(wi)

λ[
∑

state φstate(wi)γi(state)] + (1− λ)φBak(wi)

Forward variable: Initialization is as follows:

For 1 ≤ i ≤ K:

A1(i) = P (O1, S1 = i|H) = P (O1|S1 = i,H)P ((S1 = i|H)

= πi

N∏
n=1

P (w1n|S1 = i,H) = πi

N∏
n=1

[(1− λ)φBak(w1n) + λφi(w1n)]

For K + 1 ≤ i ≤ 2K: A1(i) = 0

Induction is as follows:

For 1 ≤ j ≤ K:

At(j) = P (O1, O2, . . . , Ot, St = j|H)

= (
2K∑
i

At−1(i)εηij)P (Ot|St = j,H)

= (
2K∑
i

At−1(i)εηij)
N∏
n=1

[(1− λ)φBak(wtn) + λφj(wtn)]

Liangzhe Chen Chapter 8. Conclusion 140

For K + 1 ≤ j ≤ 2K:

At(j) = P (O1, O2, . . . , Ot, St = j|H)

= (At−1(j) + At−1(j −K))(1− ε)
N∏
n=1

[(1− λ)φBak(wtn) + λφj(wtn)]

Backward variable: Initialization is as follows:

For 1 ≤ i ≤ 2K:

BT (i) = 1

Induction is as follows:

For 1 ≤ i ≤ K:

Bt(i) = P (Ot+1, . . . , OT |St = i,H)

=

(
K∑
j

εηijP (Ot+1|St+1 = j,H)Bt+1(j)

)
+ (1− ε)P (Ot+1|St+1 = i+K,H)Bt+1(i+K)

=

(
K∑
j

εηij

N∏
n=1

((1− λ)φBak(w(t+1)n) + λφj(w(t+1)n))Bt+1(j)

)

+ (1− ε)
N∏
n=1

((1− λ)φBak(w(t+1)n) + λφi(w(t+1)n))Bt+1(i+K)

For K + 1 ≤ i ≤ 2K:

Bt(i) = P (Ot+1, . . . , OT |St = i,H)

=

(
K∑
j

εηijP (Ot+1|St+1 = j,H)Bt+1(j)

)
+ (1− ε)P (Ot+1|St+1 = i,H)Bt+1(i)

=

(
K∑
j

εηij

N∏
n=1

((1− λ)φBak(w(t+1)n) + λφj(w(t+1)n))Bt+1(j)

)

+ (1− ε)
N∏
n=1

((1− λ)φBak(w(t+1)n) + λφi−K(w(t+1)n))Bt+1(i)

Liangzhe Chen Chapter 8. Conclusion 141

γ is the same as in the base case:

γt(i) = P (St = i|O,H) =
At(i)Bt(i)

P (O|H)
=

At(i)Bt(i)∑2K
i=1At(i)Bt(i)

ξ need to be changed as follows:

ξt(i, j) = P (St = i, St+1 = j|O,H) =
P (St = i, St+1 = j, O|H)

P (O|H)

For 1 ≤ i ≤ 2K and 1 ≤ j ≤ K:

T1 = At(i)εηijP (Ot+1|St+1 = j,H)Bt+1(j)

= At(i)εηij

N∏
n=1

((1− λ)φBak(w(t+1)n) + λφj(w(t+1)n))Bt+1(j)

For 1 ≤ i ≤ K and K + 1 ≤ j ≤ 2K:

T2 = At(i)(1− ε)P (Ot+1|St+1 = i+K,H)Bt+1(i+K)

= At(i)(1− ε)
N∏
n=1

((1− λ)φBak(w(t+1)n) + λφi(w(t+1)n))Bt+1(i+K)

For K + 1 ≤ i ≤ 2K and K + 1 ≤ j ≤ 2K:

T3 = At(i)(1− ε)P (Ot+1|St+1 = i,H)Bt+1(i)

= At(i)(1− ε)
N∏
n=1

((1− λ)φBak(w(t+1)n) + λφi−K(w(t+1)n))Bt+1(i)

ξt(i, j) =
T1∑

i

∑
j(T1 + T2 + T3)

ξt(i, j) =
T2∑

i

∑
j(T1 + T2 + T3)

ξt(i, j) =
T3∑

i

∑
j(T1 + T2 + T3)

Liangzhe Chen Chapter 8. Conclusion 142

Estimation of parameters:

All other estimation remains the same

For estimating ε:

ε =

∑U
u=1

∑T
t=1

∑2K
i=1

∑K
j=1 ξ(i, j)∑U

u=1

∑T
t=1

∑2K
i=1

∑2K
j=1 ξ(i, j)

For estimating π:

πi =

∑U
u=1 γ1(i)∑U

u=1

∑K
i=1 γ1(i)

for 1 ≤ i ≤ K

For estimating η:

ηij =

∑U
u=1

∑T
t=1 (ξt(i, j) + ξt(i+K, j))∑U

u=1

∑T
t=1

∑K
j=1 (ξt(i, j) + ξt(i+K, j))

for 1 ≤ i ≤ K, 1 ≤ j ≤ K

Except for the following two:

Estimation for λ:

λ =

∑
u

∑
t

1
Nt

∑Nt
n=1 P (ltn = 1|λ,H,w)

UT

Estimation for φ:

φi(w) =

∑U
u=1

∑T
t=1

∑
1≤n≤N

&
w=wtn

P (ltn = 1|λ,H,O) (γt(i) + γt(i+K))

∑U
u=1

∑T
t=1

∑W
w=1

∑
1≤n≤N

&
w=wtn

P (ltn = 1|λ,H,O) (γt(i) + γt(i+K))
for 1 ≤ i ≤ K

φBak =

∑U
u=1

∑T
t=1

∑
1≤n≤N

&
w=wtn

P (ltn = 0|λ,H,O)

∑U
u=1

∑T
t=1

∑W
w=1

∑
1≤n≤N

&
w=wtn

P (ltn = 0|λ,H,O)

Liangzhe Chen Chapter 8. Conclusion 143

B.1.2 With Both Background Noise and Topics

We have two switch variables: l, x. If l = 1, the word is generated either by states or topics,
if l = 0 it’s generated by background. If x = 0, the word is generated by topics, if x = 1 it’s
by states.

For li = 1, which means that wi is generated by either state or topics.

P (li = 1|λ, c,H,w) =
P (li = 1|λ, c,H)P (w|li = 1, λ, c,H)

P (w|λ, c,H)

=
λP (wi|λ, c,H, li = 1, w−i)P (w−i|λ, c,H, li = 1)

P (wi|λ, c,H,w−i)P (w−i|λ, c,H)

=
λ
∑

xi
[P (wi|λ, c,H, li = 1, xi, w−i)P (xi|λ, c,H, li = 1, w−i)]∑

li
[P (wi|λ, c,H, li, w−i)P (li|λ, c,H,w−i)]

=
λ[(
∑

topic φtopic(wi)P (topic|xi = 0, li = 1, λ, c,H,w−i))(1− c) + (
∑

state φstate(wi)γi(state))c]

λ[(
∑

topic φtopic(wi)P (topic|...))(1− c) + (
∑

state φstate(wi)γi(state))c] + (1− λ)φBak(wi)

For li = 0, wi is generated by background.

P (li = 0|λ, c,H,w) =
P (li = 0|λ, c,H)P (w|li = 0, λ, c,H)

P (w|λ, c,H)

=
(1− λ)φBak(wi)

λ[(
∑

topic φtopic(wi)P (topic|...))(1− c) + (
∑

state φstate(wi)γi(state))c] + (1− λ)φBak(wi)

For xi = 0, wi is generated by topics.

P (xi = 0|λ, c,H,w) =
P (xi = 0|λ, c,H)P (w|xi = 0, λ, c,H)

P (w|λ, c,H)

=
(1− c)P (wi|λ, c,H, xi = 0, w−i)P (w−i|λ, c,H, xi = 0)

P (wi|λ, c,H,w−i)P (w−i|λ, c,H)

=
(1− c)

∑
li

[P (wi|λ, c,H, xi = 0, li, w−i)P (li|λ, c,H, xi = 0, w−i)]∑
xi
P (wi|λ, c,H,w−i, xi)P (xi|λ, c,H,w−i)

=
(1− c)[(

∑
topic φtopic(wi)P (topic|xi = 0, li = 1, λ, c,H,w−i))λ+ φBak(wi)(1− λ)]

(1− c)[(
∑
top φtop(wi)P (top|...))λ+ φBak(wi)(1− λ)] + c[(

∑
sta φsta(wi)γi(sta))λ+ φBak(wi)(1− λ)]

For xi = 1, wi is generated by states.

P (xi = 1|λ, c,H,w) =
P (xi = 1|λ, c,H)P (w|xi = 1, λ, c,H)

P (w|λ, c,H)

=
c[(

∑
sta φsta(wi)γi(sta))λ+ φBak(wi)(1− λ)]

(1− c)[(
∑
top φtop(wi)P (top|...))λ+ φBak(wi)(1− λ)] + c[(

∑
sta φsta(wi)γi(sta))λ+ φBak(wi)(1− λ)]

Liangzhe Chen Chapter 8. Conclusion 144

Forward variable: Initialization is as follows:

For 1 ≤ i ≤ K:

A1(i) = P (O1, S1 = i|H)

= P (O1|S1 = i,H)P ((S1 = i|H)

= πi

N∏
n=1

P (w1n|S1 = i,H)

= πi

N∏
n=1

{(1− λ)φBak(w1n) + λ[(1− c)
∑
top

φtop(w1n)P (top| . . .) + cφi(w1n)]}

For K + 1 ≤ i ≤ 2K: A1(i) = 0

Induction is as follows:

For 1 ≤ j ≤ K:

At(j) = P (O1, O2, . . . , Ot, St = j|H)

= (

2K∑
i

At−1(i)εηij)P (Ot|St = j,H)

= (

2K∑
i

At−1(i)εηij)

N∏
n=1

{(1− λ)φBak(w1n) + λ[(1− c)
∑
top

φtop(w1n)P (top| . . .) + cφj(w1n)]}

For K + 1 ≤ j ≤ 2K:

At(j) = P (O1, O2, . . . , Ot, St = j|H)

= (At−1(j) +At−1(j −K))(1− ε)
N∏
n=1

{(1− λ)φBak(w1n) + λ[(1− c)
∑
top

φtop(w1n)P (top| . . .) + cφj(w1n)]}

Backward variable: Initialization is as follows:

For 1 ≤ i ≤ 2K:

BT (i) = 1

Induction is as follows:

Liangzhe Chen Chapter 8. Conclusion 145

For 1 ≤ i ≤ K:

Bt(i) = P (Ot+1, . . . , OT |St = i,H)

=

 K∑
j

εηijP (Ot+1|St+1 = j,H)Bt+1(j)

+ (1− ε)P (Ot+1|St+1 = i+K,H)Bt+1(i+K)

=

 K∑
j

εηij

N∏
n=1

{(1− λ)φBak(w(t+1)n) + λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφj(w(t+1)n)]}Bt+1(j)

+ (1− ε)

N∏
n=1

{(1− λ)φBak(w(t+1)n) + λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφi(w(t+1)n)]}Bt+1(i+K)

For K + 1 ≤ i ≤ 2K:

Bt(i) = P (Ot+1, . . . , OT |St = i,H)

=

 K∑
j

εηijP (Ot+1|St+1 = j,H)Bt+1(j)

+ (1− ε)P (Ot+1|St+1 = i,H)Bt+1(i)

=

 K∑
j

εηij

N∏
n=1

{(1− λ)φBak(w(t+1)n) + λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφj(w(t+1)n)]}Bt+1(j)

+ (1− ε)

N∏
n=1

{(1− λ)φBak(w(t+1)n) + λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφi−K(w(t+1)n)]}Bt+1(i)

γ is the same as in the base case:

γt(i) = P (St = i|O,H)

=
At(i)Bt(i)

P (O|H)

=
At(i)Bt(i)∑2K
i=1 At(i)Bt(i)

Define z as follows:

zt,n(i) = P (Ttn = i|ltn = 1, xtn = 0, wtn, H)

=
P (wtn|Ttn = i,H, ltn = 1, xtn = 0)P (Ttn = i|ltn = 1, xtn = 0, H)

P (wtn|ltn = 1, xtn = 0, H)

=
φtop=i(wtn)P (Ttn = i|ltn = 1, xtn = 0, H)∑
i[φtop=i(wtn)P (Ttn = i|ltn = 1, xtn = 0, H)]

Liangzhe Chen Chapter 8. Conclusion 146

ξ need to be changed as follows:

ξt(i, j) = P (St = i, St+1 = j|O,H)

=
P (St = i, St+1 = j, O|H)

P (O|H)

For 1 ≤ i ≤ 2K and 1 ≤ j ≤ K:

T1 = At(i)εηijP (Ot+1|St+1 = j,H)Bt+1(j)

= At(i)εηij

N∏
n=1

{(1− λ)φBak(w(t+1)n) + λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφj(w(t+1)n)]}Bt+1(j)

For 1 ≤ i ≤ K and K + 1 ≤ j ≤ 2K:

T2 = At(i)(1− ε)P (Ot+1|St+1 = i+K,H)Bt+1(i+K)

= At(i)(1− ε)
N∏
n=1

{(1− λ)φBak(w(t+1)n) + λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφi(w(t+1)n)]}Bt+1(i+K)

For K + 1 ≤ i ≤ 2K and K + 1 ≤ j ≤ 2K:

T3 = At(i)(1− ε)P (Ot+1|St+1 = i,H)Bt+1(i)

= At(i)(1− ε)
N∏
n=1

{(1− λ)φBak(w(t+1)n) + λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφi−K(w(t+1)n)]}Bt+1(i)

ξt(i, j) =
T1∑

i

∑
j(T1 + T2 + T3)

ξt(i, j) =
T2∑

i

∑
j(T1 + T2 + T3)

ξt(i, j) =
T3∑

i

∑
j(T1 + T2 + T3)

Estimation of parameters:

All other estimation remains the same

For estimating ε:

ε =

∑U
u=1

∑T
t=1

∑2K
i=1

∑K
j=1 ξ(i, j)∑U

u=1

∑T
t=1

∑2K
i=1

∑2K
j=1 ξ(i, j)

Liangzhe Chen Chapter 8. Conclusion 147

For estimating π:

πi =

∑U
u=1 γ1(i)∑U

u=1

∑K
i=1 γ1(i)

for 1 ≤ i ≤ K

For estimating η:

ηij =

∑U
u=1

∑T
t=1 (ξt(i, j) + ξt(i+K, j))∑U

u=1

∑T
t=1

∑K
j=1 (ξt(i, j) + ξt(i+K, j))

for 1 ≤ i ≤ K, 1 ≤ j ≤ K

For estimating λ:

λ =

∑
u

∑
t

1
Nt

∑Nt
n=1 P (ltn = 1|λ, c,H,w)

UT

Except for the following:

Estimation for c:

c =

∑
u

∑
t

1
Nt

∑Nt
n=1 P (ltn = 1|λ, c,H,w)P (xtn = 1|λ, c,H,w)∑
u

∑
t

1
Nt

∑Nt
n=1 P (ltn = 1|λ, c,H,w)

Estimation for φ:

φi(w) =

∑U
u=1

∑T
t=1

∑
1≤n≤N

&
w=wtn

P (ltn = 1|λ, c,H,O)P (xtn = 1|λ, c,H,O) (γt(i) + γt(i+K))

∑U
u=1

∑T
t=1

∑W
w=1

∑
1≤n≤N

&
w=wtn

P (ltn = 1|λ, c,H,O)P (xtn = 1|λ, c,H,O) (γt(i) + γt(i+K))

for 1 ≤ i ≤ K

φBak(w) =

∑U
u=1

∑T
t=1

∑
1≤n≤N

&
w=wtn

P (ltn = 0|λ, c,H,O)

∑U
u=1

∑T
t=1

∑W
w=1

∑
1≤n≤N

&
w=wtn

P (ltn = 0|λ, c,H,O)

φTopic(w) =

∑U
u=1

∑T
t=1

∑
1≤n≤N

&
w=wtn

P (ltn = 1|λ, c,H,O)P (xtn = 0|λ, c,H,O)zt,n(Topic)

∑U
u=1

∑T
t=1

∑W
w=1

∑
1≤n≤N

&
w=wtn

P (ltn = 1|λ, c,H,O)P (xtn = 0|λ, c,H,O)zt,n(Topic)

Liangzhe Chen Chapter 8. Conclusion 148

P (Ttn = i|ltn = 1, xtn = 0, H) =

∑U
u=1

∑T
t=1

∑Nt
n=1 P (ltn = 1|λ, c,H,O)P (xtn = 0|λ, c,H,O)zt,n(i)∑U

u=1

∑T
t=1

∑Nt
n=1 P (ltn = 1|λ, c,H,O)P (xtn = 0|λ, c,H,O)

B.1.3 With Aspects

The only thing we need to change is the value of c and λ according to the equation in our paper.
And use the new value of c andλ in same inferences introduced above.

Appendix C

PoLIM (Chapter 7)

C.1 Additional Experiments

Keywords used to obtain Tweets-Iran. iran, iranian, iranians, ahmadinejad, tehran, mah-
moud, moussavi, mir hossein, neda, green movement, green ribbon, mousavi, iranelection.

Individual’s influence tendency.

Time in secs Tweets from user mashable

1302781.0 tweet win free vip ticket #140conf
1303395.0 you’r watch nba final 4 way make nba final social
1338254.0 hunch launch reinvent make decis
1346474.0 onli two hour left tweet win free vip ticket #140conf
1354831.0 reddit start job board whi
1361533.0 tip you’r new twitter know someon tri twitter list section
1369526.0 youtub continu time ad choic
1370893.0 green tweet 75+ environmentalist follow twitter #ecomonday
1392419.0 realiti tv show ink twitter name tattoo

(a) User mashable, v = 0.98, mostly original tweets

Time in secs Tweets from user robertgoodwin

1426918.0 rt doe anybodi know good view launch beach ani beach melbourn area #nasa
#sts127

1427333.0 rt @nasa launch offici edt wednesday guess space.com wa wrong 5:20 launch
1648039.0 brighter note you’r ever cocoa beach check italian courtyard sicilian thick

crust pizza great
1798689.0 rt nasa might found defect caus leak juli 11
2034576.0 rt @nasa lcross live stream happen live stream lunar orbit
2141796.0 rt stun pictur hole cloud astronaut wit volcano erupt
2142023.0 insan relax condo loan rule haven’t learn anyth rt wait ?...
2211875.0 rt @aldotcom nasa fund restor billion support

(b) User robertgoodwin, v = 0.37, mostly influenced by NASA (note the rt’s)

Figure C.1: Tweets from two example users with different v values learned

At the individual level, we show that PoLIM correctly learns the probability of a person being
influenced. We pick two users (mashable and robertgoodwin) and check their actual tweets to

149

Liangzhe Chen Chapter 8. Conclusion 150

further analyze our results. PoLIM learns a v = 0.98 for mashable, which means that 98% of times,
mashable makes posts or follow users out of self interests, and it is rarely influenced by others; as
one would expect from a large media content generator. From its tweets, we do see that most of
them are original tweets, and it covers many different topics. In contrast, user robertgoodwin, an
IT professional who works for NASA, shows a clear sign of influence from NASA in his tweets (60%
of the tweets are retweets). PoLIM correctly learns a low v = 0.37 to capture this fact.

Celebrity structures. We examine the celebrity values in each community and find different
celebrity structures for different communities. By examining the histogram and entropy of the
A values for the top 20 celebrities in the communities, we make an interesting observation. For
a community about a specific event, such as c7 which is mainly about the Iran election, the im-
portance/authority are more spread out to multiple users; while for a community about a general
topic, like c14 which focuses on garden and art, a few users would have the leading authority and
the others are much less influential. This leads to an insight that when a new topic/event emerges,
different perspectives/arguments of the subject can be discussed, which offers more chances for
users to be noticed and hence become influential. On the other hand, for a very developed and
general topic, the ‘heat’ of the discussion has decreased to a stable level, and the authority has
started to concentrate rather than diverge.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

2

4

6

8

10

(a) c7 (Iran election)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10

(b) c14 (garden and
art)

Figure C.2: Histograms of the top 20 A values in two different communities.

Scalability Finally, to examine the running time of PoLIM, we vary two of the input parameters:
the number of topics and communities. In Fig. C.3(a)(b), the running time scales linearly w.r.t both
#topics and #communities as expected from the complexity of the algorithm. We also observe we
get near-linear speedup from parallelizing the inference algorithm. in Fig. C.3(c).

50 100 150
20

40

60

80

100

#Topics

Se
co

nd
s

pe
r i

te
ra

tio
n

PoLIM
Y = 0.54X + 14

(a) Varying #Topics

50 100 150

20

30

40

50

60

#Communities

Se
co

nd
s

pe
r i

te
ra

tio
n

PoLIM
Y = 0.25X + 17

(b) Varying #Communities

2 4 6 8

2

4

6

8

#Processors

Sp
ee
du
p

Experimental
Ideal

(c) Parallelization

Figure C.3: PoLIM scales linearly w.r.t topics and communities and parallelization gives
near-linear speed-ups.

Liangzhe Chen Chapter 8. Conclusion 151

C.2 Switching Parameters

Probabilities of the switching parameters:

p(s = 0) = u (C.1)

p(r = 0) = v (C.2)

p(ε = 0) = µ = 1− v (C.3)

p(λ = 0) = ρ (C.4)

When s = 0, the word is generated from background distribution. When r = 0, the topic of the
tweet is generated from the user’s own topic interest. When ε = 0, the user selects celebrity in
an influencing community to follow. When λ = 0, ε = 1, the user chooses a celebrity in her own
community to follow. When λ = 1, ε = 1, the user chooses a random user to follow.

After introducing the weak supervision, p(r = 0) changes accordingly:

p(r = 0|l = 0) = 1− τ + τ · v (C.5)

p(r = 0|l = 1) = τ · v (C.6)

where l = 1 means that the tweet is a retweet or a reply. When we observe this, we bias the
probability of the tweet being influenced by others.

C.3 Gibbs Sampling

In deriving the sampling equations, let Θ = {α, β, u, v, ζ, ρ, η, σ, ξ, θ, φz, φB, I, A,M}, and Θ′ =
{α, β, u, v, ζ, ρ, η, σ, ξ}. Note that the equations here are more elaborated than the equations in the
main paper. We expand most of the counters to more detailed situations, but they are actually the
same.

Sampling z:

We now derive the conditional probability of p(zi = j|z−i, w, r, s, y, c,Θ′).

p(zi = j|z−i, w, r, s, y, c,Θ′) ∝ p(wi|zi = j, z−i, w−i, r, s, y, c,Θ
′)p(zi = j|z−i, w−i, r, s, y, c,Θ′)

(C.7)

We factorize wi to each word in the tweets wit, the left term can be written as the product of all
p(wit|·). Also we only need to consider the words that have s = 1 since the others wouldn’t change
the probability of z:

p(wit|zi = j, z−i, w−i, r, s, y, c,Θ
′) =

∫
φj

p(wit|φj)p(φj |z−i, w−i, r, s, y, c,Θ′)dφj (C.8)

In the above equation, we can write

p(φj |z−i, w−i, r, s, y, c,Θ′) ∝ p(w−i|z−i, φj , r, s, y, c,Θ′)p(φj |z−i, r, s, y, c,Θ′) (C.9)

∼ Dirichlet(β +Nw
−i,j,s=1) (C.10)

Liangzhe Chen Chapter 8. Conclusion 152

where Nw
−i,j is the number of times that word w is assigned to j and is not generated by background

topic (s = 1). The reason of the above equation is that the Dirichlet distribution is a conjugate
prior to the multinomial likelihood distribution. Taking this result back to Eq. C.8, the probability
can be written as the expectation of the Dirichlet distribution.

p(wi|zi = j, z−i, w−i, r, s, y, c,Θ
′) =

∏
wit,sit=1

β +Nwit
−i,j,s=1

Wβ +N−i,j,s=1
(C.11)

where W is the number of words in the vocabulary, and N−i,j is the number of total words that
are assigned to topic j.

Now we look at the right term of Eq. C.7. When r = 0, the topic is generated from the user d’s
own interest. We have

p(zi = j|z−i, w−i, r, s, y, c,Θ′) =

∫
θcd

p(zi = j|z−i, θcd , w−i, r, s, y, c,Θ
′)p(θcd |z−i, w−i, r, s, y, c,Θ

′)dθcd

(C.12)

where cd is the community user d belongs to. The right term of the above equation can be written
as:

p(θcd |z−i, w−i, r, s, y, c,Θ
′) = p(z−i|θcd , w−i, r, s, y, c,Θ

′)p(θcd |w−i, r, s, y, c,Θ
′) (C.13)

∼ Dirichlet(α+N z
−i,r=0,cd

+N z
−i,r=1,cy=cd

) (C.14)

where N z
−i,r=0,cd

is the number of time topic z is generated by θcd and r = 0, and N z
−i,r=1,cy=cd

is the
number of time topic z is generated by θcd , which is an influence from user y who’s in community
cd. Then Eq. C.12 can be written by the expectation of the Dirichlet distribution.

p(zi = j|z−i, w−i, r, s, y, c,Θ′) =
α+N z=j

−i,r=0,cd
+N z=j

−i,r=1,cy=cd

Zα+N−i,r=0,cd +N−i,r=1,cy=cd

(C.15)

where Z is the number of total topics. Similarly we can derive the case when r = 1.

p(zi = j|z−i, w−i, r, s, y, c,Θ′) =
α+N z=j

−i,r=0,cd=cy
+N z=j

−i,r=1,cy

Zα+N−i,r=0,cd=cy +N−i,r=1,cy

(C.16)

Notice now we are looking at the topics generated from θcy instead of θcd since r = 1 indicates that
the topic is generated under another user’s influence.

Having both the left term and right term, we rewrite Eq. C.7 as:

p(zi = j|z−i, w, r, s, y, c,Θ′) ∝
∏

wit,sit=1

β +Nwit
−i,j,s=1

Wβ +N−i,j,s=1
·

(
α+N z=j

−i,r=0,cd
+N z=j

−i,r=1,cy=cd

Zα+N−i,r=0,cd +N−i,r=1,cy=cd

)1(ri=0) · (
α+N z=j

−i,r=0,cd=cy
+N z=j

−i,r=1,cy

Zα+N−i,r=0,cd=cy +N−i,r=1,cy

)1(ri=1)

(C.17)

Liangzhe Chen Chapter 8. Conclusion 153

Sampling s:

We look at the following conditional probability:

p(si = 1|s−i, z, w, r, y,Θ′) ∝ p(wi|si = 1, s−i, z, w−i, r, y,Θ
′)p(si = 1|s−i, z, w−i, r, y,Θ′)

= (1− u)

∫
φz

p(wi|si = 1, s−i, z, φz, w−i, r, y,Θ
′)p(φz|si = 1, s−i, z, w−i, r, y,Θ

′)dφz

= (1− u)
β +Nwi

−i,z,s=1

Wβ +N−i,z,s=1
(C.18)

For si = 0, we have

p(si = 0|s−i, z, w, r, y,Θ′) ∝ p(wi|si = 0, s−i, z, w−i, r, y,Θ
′)p(si = 0|s−i, z, w−i, r, y,Θ′)

= u

∫
φB

p(wi|si = 0, s−i, z, φB, w−i, r, y,Θ
′)p(φB|si = 0, s−i, z, w−i, r, y,Θ

′)dφz

= u
β +Nwi

−i,s=0

Wβ +N−i,s=0
(C.19)

Sampling r: In the following we use ri to denote the r value for the ith tweet from user d.

p(ri = 1|z, w, r−i, y, c,Θ′) ∝ p(zi|ri = 1, z−i, w, r−i, y, c,Θ
′)p(ri = 1|z−i, w, r−i, y, c,Θ′)

= (1− vd)
∫
θcy

p(zi|ri = 1, θcy , z−i, w, r−i, y, c,Θ
′)p(θcy |ri = 1, z−i, w, r−i, y, c,Θ

′)dθcy

= (1− vd)
α+N zi

−i,r=0,cd=cy
+N zi

−i,r=1,cy

Zα+N−i,r=0,cd=cy +N−i,r=1,cy

(C.20)

p(ri = 0|z, w, r−i, y, c,Θ′) ∝ p(zi|ri = 0, z−i, w, r−i, y, c,Θ
′)p(ri = 0|z−i, w, r−i, y, c,Θ′)

= vd

∫
θcd

p(zi|ri = 0, θcd , z−i, w, r−i, y, c,Θ
′)p(θcd |ri = 0, z−i, w, r−i, y, c,Θ

′)dθcd

= vd
α+N zi

−i,r=0,cd
+N zi

−i,r=1,cy=cd

Zα+N−i,r=0,cd +N−i,r=1,cy=cd

(C.21)

Note that the value of vd will be biased by the supervision based on the equations we show at the
beginning.

Sampling φ:

Similarly we can write the conditional distribution for φ.

p(φz|z, w, s,Θ′) ∝ p(w|φz, z, w, s,Θ′)p(φz|z, s,Θ′)
∼ Dir(β +Nwi

s=1,z) (C.22)

where Nwi
s=1,z is the number of times that wi is assigned to topic z and the word is not generated

from the background. Hence for every word w, we have

φz(w) =
β +Nw

s=1,z

Wβ +Ns=1,z
(C.23)

Liangzhe Chen Chapter 8. Conclusion 154

For φB, we have

p(φB|z, w, s,Θ′) ∝ p(w|φB, z, w, s,Θ′)p(φB|z, s,Θ′)
∼ Dir(β +Nwi

s=0) (C.24)

φB(w) =
β +Nw

s=0

Wβ +Ns=0
(C.25)

where Nwi
s=0 is the number of times word wi is generated from the background word distribution.

Sampling y:

In sampling the above parameters, we only use the community information of the influencing user
y (due to our assumption that all community members share the same topic interest). Hence we
only need to sample cy here.

p(cyi |w, e, ε, λ, z, r, cy−i , c, c∗,Θ′) ∝ p(zi|r, z−i, w, cyi , cy−i , c,Θ′)p(cyi |r, z−i, w, e, ε, λ, cy−i , c, c∗,Θ′)
(C.26)

If ri = 0, the tweet is generated from user’s own topic interes. The left term of the above equation
can be written as:

p(zi|r, z−i, w, cyi , cy−i , c,Θ′) =

∫
θcd

p(zi|θcd , ri = 0, r−i, z−i, c,Θ
′)p(θcd |ri = 0, r−i, z−i, c,Θ

′)dθcd

=
α+N zi

−i,r=0,cd
+N zi

−i,r=1,cy=cd

Zα+N−i,r=0,cd +N−i,r=1,cy=cd

(C.27)

If ri = 1, the left term can be written as:

p(zi|r, z−i, w, cyi , cy−i , c,Θ′) =

∫
θcy

p(zi|θcy , ri = 1, r−i, z−i, c,Θ
′)p(θcy |ri = 1, r−i, z−i, c,Θ

′)dθcd

=
α+N zi

−i,r=0,cd=cy
+N zi

−i,r=1,cy

Zα+N−i,r=0,cd=cy +N−i,r=1,cy

(C.28)

The right term in Eq. C.26 is expanded as:

p(cyi |r, z−i, w, e, ε, λ, cy−i , c, c
∗,Θ′) =

∫
Icd

p(cyi |Icd , r, z−i, w, cy−i , c,Θ
′)p(Icd |r, z−i, w, e, ε, λ, cy−i , c, c

∗,Θ′)dIcd

∝
∫
Icd

p(cyi |Icd)p(e|Icd , ε, λ, c
∗, cy−i , c,Θ

′)p(Icd |c
∗, cy−i ,Θ

′)dIcd

∝
∫
Icd

p(cyi |Icd)p(Icd |c
∗, cy−i ,Θ

′)dIcd

∝
∫
Icd

p(cyi |Icd)p(c∗, cy−i |Icd ,Θ
′)p(Icd |Θ

′)dIcd

∝
ζ +N

cy=cyi
−i,r=1,cd

+N
c∗=cyi
ε=0,cd

Kζ +N−i,r=1,cd +Nε=0,cd

(C.29)

where K is the number of communities. Note that the probablity of p(e|Icd , c∗) does not
depend on Icd anymore when c∗ are known. Hence it can be directly removed from the above
steps.

Liangzhe Chen Chapter 8. Conclusion 155

Sampling c:
p(cd|e, w, z, r, c−d, c∗, cy , ε, λ,Θ′) ∝ p(zd, ed|cd, z−d, e−d, r, c−d, c∗, cy , ε, λ,Θ′)p(cd|z−d, e−d, r, c−d, c∗, cy , ε, λ,Θ′)
∝p(zd|cd, z−d, r, c−d,Θ′)p(ed,ε=0,λ=1|cd, e−d, c−d, c∗,Θ′)p(cd|z−d, e−d, r, c−d, c∗, cy , ε, λ,Θ′)

∝
∫
θcd

p(zd|θcd , r)p(θcd |cd, z−d, r, c−d,Θ
′)dθcd ·∫

Acd

p(ed,ε=0,λ=1|Acd , ε, λ)p(Acd |cd, e−d, c−d, c
∗,Θ′)dAcd ·

p(c∗d, c
y
d|cd, z−d, e−d, r, c−d, c

∗
−d, c

y
−d, ε, λ,Θ

′)p(cd|z−d, e−d, r, c−d, c∗−d, c
y
−d, ε, λ,Θ

′)

∝
∫
θcd

p(zd|θcd , r)p(z−d|θcd , cd, r, c−d,Θ
′)p(θcd |cd, r, c−d,Θ

′)dθcd ·∫
Acd

p(ed,ε=0,λ=1|Acd , ε, λ)p(e−d|Acd , cd, c−d, c
∗,Θ′)p(Acd |cd, c−d, c

∗,Θ′)dAcd ·∫
Icd

p(c∗d, c
y
d|Icd , cd, r, ε, λ,Θ

′)p(Icd |cd, c−d, c
∗
−d, c

y
−d, r, ε, λ,Θ

′)dIcd ·M(cd)

∝
∏
d,r=0

α+N
zd
−d,r=0,cd

+N
zd
−d,r=1,cy=cd

Zα+N−d,r=0,cd +N−d,r=1,cy=cd

·

∏
ed,ε=1,λ=0

η +N
ed,ε=1,λ=0

−d,ε=1,λ=0,cd
+N

ed,ε=1,λ=0

−d,ε=0,c∗=cd

|cd|η +N−d,ε=1,λ=0,cd +N−d,ε=0,c∗=cd

·

∏
d,r=1

ζ +N
c
y
d
−d,r=1,cd

Kζ +N−d,r=1,cd

·

∏
d,ε=0

ζ +N
c∗d
−d,ε=0,cd

Kζ +N−d,ε=0,cd

·M(cd)

Sampling c∗:

p(c∗i |w, e, ε, λ, z, r, c, c∗−i, cy,Θ′) ∝ p(ei|c∗, e−i, ε, λ, c,Θ′)p(c∗i |w, e−i, c∗−i, z, r, ε, λ, c, cy,Θ′)
If εi = 0:

p(ei|c∗, e−i, ε, λ, c,Θ′) ∝
∫
Ac∗
i

p(ei|Ac∗i , c
∗
i)p(Ac∗i |c

∗
i , e−i, ε, λ, c,Θ

′)dAc∗i

∝
η +N ei

−i,ε=0,c∗i
+N ei

−i,ε=1,λ=0,cd=c∗i

|c|η +N−i,ε=0,c∗i
+N−i,ε=1,λ=0,cd=c∗i

For other cases, this probability wouldn’t change when we change c∗. We now look at the
right term:

p(c∗i |w, e−i, c∗−i, cy, z, r, ε, λ, c,Θ′) =

∫
Icd

p(c∗i |Icd)p(Icd|w, e−i, c∗−i, cy, z, r, ε, λ, c,Θ′)dIcd

∝
∫
Icd

p(c∗i |Icd)p(c∗−i, cy|Icd ,Θ′)p(Icd|Θ′)dIcd

∝
ζ +N

c∗i
−i,ε=0,c∗i

+N
c∗i
r=1,cy=c∗i

Kζ +N−i,ε=0,c∗i
+Nr=1,cy=c∗i

Liangzhe Chen Chapter 8. Conclusion 156

Sampling Ac:

Note that we assume members in the same community share the same topic interest, hence
the Ac doesn’t have an impact on the word generation process.

p(Ac|e, w, z, r, c, c∗, cy, ε, λ,Θ′)
∝p(e|Ac, c, c∗, ε, λ,Θ′)p(Ac|c, c∗, ε, λ,Θ′)
∼Dir(η +N ei

ε=1,λ=0,c +N ei
ε=0,c∗=c)

And we have

Ac(ei) =
η +N ei

ε=1,λ=0,c +N ei
ε=0,c∗=c

|c|η +Nε=1,λ=0,c +Nε=0,c∗=c

Since we use hard membership in PoLIM, theoretically the counts of N ei
ε=1,λ=0,c for ei not in c

should be 0. However, this would make it difficult for the algorithm to improve from a bad
initialization. Hence, we use a discount factor γ = 0.1 here, for each instance of ei not in c,
it is counted as γ instead of 1 for the first half of the iterations. Then the γ value linearly
decreases to 0 in the following iterations so that the final results are consistent with our hard
membership assumption.

Sampling ε:

p(εi = 0|ε−i, e, λ, π, c, c∗,Θ′) ∝ p(ei|εi = 0, ε−i, e−i, c, c
∗, λ, π,Θ′)p(εi = 0|ε−i, e−i, c, c∗, λ, π,Θ′)

(C.30)

The left term of Eq. C.30 can be written as:

p(ei|εi = 0, ε−i, e−i, c, c
∗, λ,Θ′)

=

∫
Ac∗
i

p(ei|Ac∗i , εi = 0, ε−i, e−i, c, c
∗, λ,Θ′)p(Ac∗i |εi = 0, ε−i, e−i, c, c

∗, λ,Θ′)dAc∗i

∝
η +N ei

−i,ε=1,λ=0,c=c∗i
+N ei

−i,ε=0,c∗i

|c∗i |η +N−i,ε=1,λ=0,c=c∗i
+N−i,ε=0,c∗i

(C.31)

The right term of Eq. C.30 is:

p(εi = 0|ε−i, e−i, c, c∗, λ, π,Θ′) = µ

For εi = 1, if λi = 0, the left term of Eq. C.30 can be similarly written as:

p(ei|εi = 0, ε−i, e−i, c, c
∗, λ,Θ′)

=

∫
Aci

p(ei|Aci , εi = 1, ε−i, e−i, c, c
∗, λ,Θ′)p(Aci |εi = 1, ε−i, e−i, c, c

∗, λ,Θ′)dAci

∝
η +N ei

−i,ε=1,λ=0,ci
+N ei

−i,ε=0,c∗=ci

|ci|η +N−i,ε=1,λ=0,ci +N−i,ε=0,c∗=ci

(C.32)

Liangzhe Chen Chapter 8. Conclusion 157

The right term of Eq. C.30 is 1− µ.

Similarly, If λi = 1, we have:

p(εi = 1|ε−i, e, λ, π, c, c∗,Θ′) ∝ p(ei|εi = 1, ε−i, e−i, c, c
∗, λ, π,Θ′)p(εi = 1|ε−i, e−i, c, c∗, λ, π,Θ′)

= (1− µ)p(ei|εi = 1, ε−i, e−i, c, c
∗, λ, π,Θ′)

= (1− µ)

∫
π

p(ei|π, εi = 1, ε−i, e−i, c, c
∗, λ, π,Θ′)p(π|εi = 1, ε−i, e−i, c, c

∗, λ, π,Θ′)dπ

∝= (1− µ)
ξ +N ei

−i,ε=1,λ=1

Dξ +N−i,ε=1,λ=1

Sampling λ:

p(λi = 0|λ−i, e, ε, π, c, c∗,Θ′) ∝ p(ei|λi = 0, λ−i, e−i, ε, π, c, c
∗,Θ′)p(λi = 0|λ−i, e−i, ε, π, c, c∗,Θ′)

= ρ · p(ei|λi = 0, λ−i, e−i, ε, π, c, c
∗,Θ′)

If εi = 0,

p(ei|λi = 0, λ−i, e−i, ε, π, c, c
∗,Θ′)

=

∫
Ac∗

p(ei|Ac∗ , λi = 0, λ−i, e−i, ε, π, c, c
∗,Θ′)p(Ac∗ |λi = 0, λ−i, e−i, ε, π, c, c

∗,Θ′)dAc∗

∝
η +N ei

−i,ε=0,c∗ +N ei
−i,ε=1,λ=0,cd=c∗

|c∗|η +N−i,ε=0,c∗ +N−i,ε=1,λ=0,cd=c∗

If εi = 1,

p(ei|λi = 1, λ−i, e−i, ε, π, c, c
∗,Θ′)

=

∫
Aci

p(ei|Aci , λi = 1, λ−i, e−i, ε, π, c, c
∗,Θ′)p(Aci |λi = 1, λ−i, e−i, ε, π, c, c

∗,Θ′)dAci

∝
η +N ei

−i,ε=0,c∗=ci
+N ei

−i,ε=1,λ=0,ci

|ci|η +N−i,ε=0,c∗=ci +N−i,ε=1,λ=0,ci

Similarly, we have

p(λi = 1|λ−i, e, ε, π, c, c∗,Θ′) ∝ p(ei|λi = 1, λ−i, e−i, ε, π, c, c
∗,Θ′)p(λi = 1|λ−i, e−i, ε, π, c, c∗,Θ′)

= (1− ρ) · p(ei|λi = 1, λ−i, e−i, ε, π, c, c
∗,Θ′)

If εi = 0,

p(ei|λi = 0, λ−i, e−i, ε, π, c, c
∗,Θ′)

=

∫
Ac∗

p(ei|Ac∗ , λi = 0, λ−i, e−i, ε, π, c, c
∗,Θ′)p(Ac∗|λi = 0, λ−i, e−i, ε, π, c, c

∗,Θ′)dAc∗

∝
η +N ei

−i,ε=0,c∗ +N ei
−i,ε=1,λ=0,cd=c∗

|c∗|η +N−i,ε=0,c∗ +N−i,ε=1,λ=0,cd=c∗

Liangzhe Chen Chapter 8. Conclusion 158

If εi = 1,

p(ei|λi = 0, λ−i, e−i, ε, π, c, c
∗,Θ′)

=

∫
π

p(ei|π, λi = 0, λ−i, e−i, ε, π, c, c
∗,Θ′)p(π|λi = 0, λ−i, e−i, ε, π, c, c

∗,Θ′)dπ

∝
ξ +N ei

−i,ε=1,λ=1

Dξ +N−i,ε=1,λ=1

Sampling M :

p(M |e, w, ε, λ, r, y, c, c∗, cy,Θ′) ∝ p(c|M,Θ′)p(M |Θ′) ∼ Dir(σ +N ci)

Sampling I:

p(I|cy, c∗, c,Θ′) ∝ p(cy|I, c,Θ′)p(c∗|I, c,Θ′)p(I|c,Θ′) ∼ Dir(ζ +N ci
cy +N ci

c∗)

Sampling θ:

p(θci |z, c, cy, r,Θ′) ∝ p(z|θci , c, cy, r,Θ′)p(θci |c, cy, r,Θ′) ∼ Dir(α +N zi
r=0,ci

+N zi
r=1,cy=ci

)

Sampling ρ:

For all these parameters, we assume conjugate Beta prior, hence we have

p(ρi|λ,Θ′) ∝ p(λ|ρi,Θ′)p(ρi|Θ′) ∼ Beta(0.5 +Nλi
ε=1)

Sampling v:

p(vi|ε, r,Θ′) ∝ p(ε, r|vi,Θ′)p(vi|Θ′) ∼ Beta(0.5 +N εi=1
e +N ri=0

d)

Sampling u:

p(u|s,Θ′) ∝ p(s|u,Θ′)p(u|Θ′) ∼ Beta(0.5 +N si
w)

