
Architecture-Centric Project Estimation

Troy S. Henry

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial ful�llment of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science & Applications

Dr. Shawn Bohner, Chairman

Dr. James (Sean) Arthur

Dr. Deborah Tatar

Keywords:

software engineering, estimation, risk analysis, software architecture

May 14, 2007

Blacksburg, Virginia

Copyright 2007, Troy S. Henry

Architecture-Centric Project Estimation

by

Troy S. Henry

(ABSTRACT)

In recent years studies have been conducted which suggest that taking an architecture �rst

approach to managing large software projects can reduce a signi�cant amount of the uncertainty

present in project estimates. As the project progresses, more concrete information is known about

the planned system and less risk is present. However, the rate at which risk is alleviated varies across

the life-cycle. Research suggests that there exists a signi�cant drop o� in risk when the architecture

is developed. Software risk assessment techniques have been developed which attempt to quantify

the amount of risk that varying uncertainties convey to a software project. These techniques can be

applied to architecture speci�c issues to show that in many cases, conducting an architecture centric

approach to development will remove more risk than the cost of developing the architecture. By

committing to developing the architecture prior to the formal estimation process, speci�c risks can

be more tightly bounded, or even removed from the project.

The premise presented here is that through the process of architecture-centric management, it

is possible to remove substantial risk from the project. This decrease in risk exceeds that at other

phases of the life-cycle, especially in comparison of the e�ort involved. Notably, at architecture, a

su�cient amount knowledge is gained by which e�ort estimations may be tightly bounded, yet the

project is early enough in the life-cycle for proper planning and scheduling. Thus, risk is mitigated

through the increase in knowledge and the ability to maintain options at an early point. Further,

architecture development and evaluation has been shown to incorporate quality factors normally

insu�ciently considered in the system design.

The approach taken here is to consider speci�c knowledge gained through the architecting process

and how this is re
ected in parametric e�ort estimation models. This added knowledge is directly

re
ected in risk reduction. Drawing on experience of architecture researchers as well as project

managers employing this approach, this thesis considers what bene�ts to the software development

process are gained by taking this approach. Noting a strong reluctance of owners to incorporate

solid software engineering practices, the thesis concludes with an outline for an experiment which

goes about proving the reduction in risk at architecture exceeds the cost of that development.

ACKNOWLEDGEMENTS

My wife, Peggy. I owe so much to my wife whose been there to support me in every possible way. I

have no idea why she has stuck with me during the last �fteen years, but I am ever so grateful that

she saw something very few others ever did.

I owe much to Dr. Shawn Bohner, who not only guided me through this Master's Degree, but

kept me funded through graduate school, as well. I thank my other committee members, Drs.

Sean Arthur (excellent advice on my thesis and research) and Deborah Tatar whose education and

guidance helped immensely, not only through this Master's work, but during other critical milestone's

in my education. I also have to thank family members whose love, understanding and support aided

my education signi�cantly, notably, my daughter, Kayla and father, David.

The last individual I feel compelled to mention by name is the late Dr. George Gorsline, whose

memorial scholarship for \most improved student in computer science" enabled me to �nish my

undergraduate degree on a fulltime basis and continue in graduate work. Dr. Gorsline represents

a group of people I thank and acknowledge profusely: those who ever gave someone a second, or

third, or fourth chance despite all apparent evidence that individual did not deserve it.

I gratefully acknowledge all Hokies who pulled together following the events of April 16; 2007

{ your spirit of \Ut Prosim" helped inspired me to �nish this thesis. In the words of Dr. Nikki

Giovanni, \we will prevail... we are Virgnia Tech."

Also, to anyone who has designated themselves as an organ and tissue donor, I thank you.

What for you takes so little, means literally everything to others. For more information, visit

http://www.organdonor.gov/donor/index.htm.

And of course, thank you God.

iii

http://www.organdonor.gov/donor/index.htm

TABLE OF CONTENTS

1 Introduction and Problem Statement 2

1.1 The Software Crisis . 2

1.2 Reasons for Overrun . 6

1.3 Risk . 8

1.4 Cost of Failure . 10

1.5 An Architecture-Centric Approach . 11

1.6 Overview of Remaining Chapters . 12

2 Software Architecture Overview 13

2.1 Introduction . 13

2.2 Terms and Concepts . 15

2.3 Impact of Requirements . 19

2.4 Examples of Architectural Approaches . 21

2.4.1 Pipe and Filter Model . 21

2.4.2 Layers . 22

2.4.3 Blackboard . 22

2.4.4 Client-Server . 23

2.4.5 Framework . 23

2.4.6 Others . 24

2.5 Describing Architecture . 24

2.5.1 Uni�ed Modeling Language . 24

2.5.2 Other Architecture Description Languages . 26

iv

2.5.3 Where the Architecture Ends . 26

3 The Architecture Centric Approach 29

3.1 Past Research . 29

3.2 Architecture-Centric Project Management . 30

3.2.1 The Architecture Team . 31

3.2.2 Functionality-based Design . 32

3.3 Modeling the Software Architecture: The Four Views 33

3.3.1 Evaluation of Software Architecture: ATAM 35

3.3.2 Schedules and Software Development Plan . 38

3.4 Transition to Low Level Design . 39

4 Estimation and Risk 40

4.1 Estimating Size . 40

4.1.1 Units of Software Size . 41

4.2 Estimating E�ort and Cost . 44

4.2.1 Estimation By Analogy . 45

4.2.2 Parametric Models and Methods . 47

4.3 Risk Analysis . 51

4.3.1 Expected Values . 52

4.3.2 Decision Trees . 54

4.4 Conclusion . 57

5 Addressing Risk with Software Architecture 58

5.1 Addressing Estimation Risks . 59

5.2 Addressing Quality Risks . 64

5.2.1 Research Toward Formalizing Quality Requirements at the Architecture Level 65

5.3 Other Bene�ts of the Architecture-Centric Approach 65

5.3.1 Stakeholder Communication . 65

5.3.2 Resource Assignment . 66

5.3.3 The Project Schedule . 67

5.4 Ending Thoughts . 67

v

5.4.1 Why Architecture? . 67

5.4.2 Conclusion . 68

6 Conclusions and Future Work 70

6.1 Observations . 70

6.2 Conclusions . 71

6.3 Future Work . 72

6.3.1 Proving the Bene�ts of Architecture-Centric Project Management 72

6.3.2 Using Architecture-Centric Estimation to De�ne Architecture 75

References . 76

Vita . 81

vi

LIST OF FIGURES

1.1 In
ection Point in Risk Curve Around Architecture 3

2.1 Waterfall life-cycle Model [Bal06] . 14

2.2 Design Phase with Architecture . 16

2.3 Design Phase Activities and Deliverables . 28

4.1 Decision Tree for LSPRU Architecture . 55

5.1 Error Associated with Software Estimation [MIT02] 61

5.2 Cost of Change Over Life-Cycle [Met05] . 63

vii

LIST OF TABLES

1.1 Molokken's Summary of Estimation Surveys . 5

1.2 Software Project Outcomes by Size of Project . 6

4.1 SPR's multipart taxonomy of function points . 46

4.2 COCOMO II process exponent scale factors [BCH+95] 48

4.3 COCOMO II process exponent values and criteria 50

4.4 COCOMO II e�ort adjustment scale cost drivers [BCH+95] 50

4.5 Estimated outcomes of project at LSPRU . 53

4.6 Expected Values of LSPRU Alternatives . 55

1

Chapter 1

Introduction and Problem

Statement

Projects routinely fail to complete on time, on budget and on spec. Many of these project failures

are due to insu�cient knowledge present at the time estimates are made. This lack of knowledge

present is re
ected in the high risk present in those projects. This work presents a premise that

by taking an architecture-centric approach to project management, a signi�cant amount of risk can

be eliminated from the project at a higher rate than at the low-level design and implementation

phases which follow. We graphically represent this in Figure 1.1. The research approach presented

here examines size and e�ort estimation techniques in order to discover architecture factors which

suggest this assertion is true.

1.1 The Software Crisis

Research continues to support the notion that a \software crisis" still exists. Software projects

continue to run behind schedule and over budget, as has been reported for years [Har06]. Companies

invest a higher and higher percentage of revenues into IT development [CR99, Cha05], as they

incorporate automation into more of their operations. That is, an increasing amount of money is

being put into IT development, but companies are still routinely not achieving good value. Systems

cannot be counted on to �nish on time or within budget, implement all of the required features or

2

Figure 1.1: In
ection Point in Risk Curve Around Architecture

3

deliver the necessary quality requirements, despite sophisticated e�ort estimation techniques and

highly mature software engineering processes. The best estimates compiled on large scale projects

continue to fall far short of actual development results.

The CHAOS report by the Standish group shows that software projects experience an average

schedule overrun of 84% and with an average cost overrun of 56%. Their work suggests that these

numbers get worse as the project size increases. This report has been compiled from a database

of over 40; 000 projects from over 3000 companies. The research of the Standish group focusses on

large scale projects from companies with well de�ned processes. The Standish group grew out of

an IBM e�ort to track waste in software sales. The initial study showed that decreasing sales were

tied directly to a software project cancelation rate near 40%. Focus groups were then formed to

investigate the reasons for project failure. The goal of the current Standish Group is to determine

the factors which tend to lead to software failure, and conversely, success [CHA94].

The Standish Report breaks down the software projects in their database into three project

resolution categories: success, failure and challenged. Jim Johnson, Standish Group chairman,

de�nes success of a software project as being a project which is delivered within schedule and on

budget with full intended functionality. A challenged project is one that may not meet one or more

of the criteria for success, however still possesses signi�cant value. A failed project is one which

likely was never completed, or completed with a signi�cant overrun or fewer features and is likely

never released. The 2004 CHAOS report shows 53% of projects as challenged and 18% as failed, this

last percentage one that Johnson cites participating managers reporting as \optimistic" [CHA94].

The average schedule overrun of 84% in particular is interesting because it shows the de�ciencies

present in the current models for used to estimate the development life cycle.

The numbers of the Standish group, while widely cited, are called into question by many, in-

cluding Robert Glass [Gla06] who suggests the groups methodologies are lacking. Johnson of the

Standish group stands by the relevance of the 1994 �gures, and suggests that the primary factor

behind the success rate improvement is a decrease in project size, supporting Jones' 1995 study.

Johnson's claims are challenged by many [MJ03, Gla06], however, the industry still has a substan-

tial amount of cost and schedule overruns. While other research suggests that while the Standish

numbers may be higher than observed elsewhere, there is strong evidence to suggest that software

projects are indeed routinely failing to meet goals. Mol�kken and J�rgensen [MJ03] report that

30� 40% of large scale software projects experience cost overruns. While their summary of software

4

estimation surveys reports numbers not as critical as those of the CHAOS report, they do indicate

a persistent trend of overrun. A summary of Mol�kken and J�rgensen's �ndings can be found in

Table 1.1. Note that these Standish report �gures cited in are from somewhat di�erent than the

1994 edition of the CHAOS report, which only reported 365 respondents.

All of these surveys depended on project manager responses or voluntary participation in re-

search. Results may be skewed by a number of factors, namely the subjectiveness of the criteria and

a possibly unrepresentative sample set due to an organization's unwillingness to disclose its \fail-

ures" [Gla06]. These survey results display widely di�erent numbers due to a multitude of variables.

Among these are the survey size, population, time frame and scope of the project. Each researcher

also used di�erent surveys, with di�erent focus for the questions. Despite all of these variables, how-

ever, a persistent trend emerges whereas most software managers agree that a signi�cant number of

projects experience cost and schedule overrun.

Study Jenkins Phan Heenstra Lederer Bergeron Standish

Percent of cost overrun 34% 33% 33% 89%

Percent of projects over budget 61% 70% 63% 84%

Percent of schedule overrun 22%

Percent of projects over schedule 65% 80% 84%

Table 1.1: Molokken's Summary of Estimation Surveys

Furthermore, there seems to exist a high negative correlation between software project success

rates and size of the project. T. Capers Jones published research in 1995 based on a survey conducted

by a team at Software Productivity Research (http://www.spr.com/) of six distinct categories (by

domain) of large software projects [Jon98]. These domains included systems software, military

software, information systems, outsourced, commercial and end-user. They used function points to

measure the size of the projects and de�ned failure as cancelation of the project, schedule overruns

above a given threshold or cost overruns above a de�ned threshold. Success was de�ned as the

system on time or early, within budget and providing high quality levels and user satisfaction.

The research by Jones et al. at Software Productivity Research also found a relationship between

software project management factors (eg. estimation techniques, maturity of development process,

experience of team) and project outcomes. This relationship is explored in Chapter 4.

5

http://www.spr.com/

Outcome < 100 FP 100� 1; 000 FP 1; 000� 5; 000 FP > 5; 000 FP

Canceled 3 7 13 24

Late by > 12 months 1 10 12 18

Late by > 6 months 9 24 35 37

Approximately on time 72 53 37 20

Earlier than expected 15 6 3 1

Table 1.2: Software Project Outcomes by Size of Project

1.2 Reasons for Overrun

The primary reason cited by mangers for cost and schedule overrun is requirements creep [MJ03].

That is, requirements continue to be added onto the project after implementation have begun.

Reasons for this are plentiful, including unforseen scenarios, advances in technology, change of

stakeholders or business changes such as the release of similar software by another company[Cha05].

All of these reasons for requirement creep can be considered a lack of knowledge. This volatility

of requirements is considered a signi�cant factor in e�ort estimations [Roy98] and most models

make some attempt to account for this [Jon98]. Implementing new features at a later stage in the

development cycle takes signi�cantly longer than if planned from project inception [Bro95, Cha05].

Brooks suggest that optimism is an underlying factor to schedule overrun, claiming all developers

are optimists when estimating project development time. The underlying assumption, he says, is

that \each task will only take as long as it `ought' to take" [Bro95]. Mol�kken and J�rgensen also

cite studies which still claim optimism as a large contributing factor to schedule overrun [MJ03].

This factor continues to play a role in modern estimation models, as the majority of these models,

at some point, involves a subjective comparison with past similar projects. The pervading attitude

of optimism in the design team can have an outstanding e�ect on how these comparisons are made.

However, chances of project success are built on conditional probabilities, related to the dependencies

among software components. The probability of the project success is a function of the dependant

probabilities of each components success. The extent of this probabilistic dependency depends on

the nature of component dependency. This probability is computed as a product of each components

success, and the success of the interface. Consequently, the probability of meeting a deadline for the

system decreases with the number of components [Bro95]. In conclusion, the notion of optimism

6

being cited as a driving factor of overrun is not only a psychological factor, but a failure in the

design stages to anticipate problem areas. In other words, a lack of information, or uncertainty in

the software development process, leads to over-optimism.

Barry Boehm, claims that up to �fty percent of the software life-cycle is dedicated to rework on

large projects[BP88a]. Components and interfaces that were not properly designed for the system

cause engineers to devote large amounts of time to patching interfaces and rewriting code. Inade-

quately de�ned requirements which lead to a mismatch of stakeholder expectations can also be a

large contributing factor towards rework. Research notes that rework costs tend to follow a Pareto

[VS94] distribution, that is, about 80% of the rework costs are associated with 20% of the problems.

Boehm goes on to cite further research suggesting that this rework, when taking place early in the

life-cycle, can reduce the time needed from �fty to two hundred times. These related �ndings give

added emphasis to the need of detecting these issues early [BP88b].

Another cause of overrun is failing to discover that a particular quality requirement has not been

met until after the system is built. Again, note that this reworking of the system frequently results

in a cost \orders of magnitude higher than performing the evaluation and transformation of the

system design early in the development cycle" [Bos00]. Early indications of all necessary features of

a component gives not only better input to estimation models but lowers or even removes the time

spent reworking code that had already been developed. This can oftentimes lead to a signi�cant

amount of retesting, causing even more signi�cant delays on the system. Determining the failure

of a system to adequately meet a quality requirement leads to an iterative process of requirements

re�nement and change. If a change occurs involving a component with high coupling, this retesting

often involves a large number of system components.

Brooks succinctly discusses the compounding e�ects of component delays on the entire schedule

[Bro95]. While some components can be developed simultaneously, there are often components whose

progress cannot proceed past a point until another component is fully developed. These component

delays necessarily delay the schedule for testing the integration among di�erent components. It is

at these interfaces that most testing experts agree extensive scrutiny is required [Som04]. Research

has shown that the complexity surrounding component integration is a function of their coupling.

The more points at which software packages interface, as well as the nature of the interface, the

more potential for issues to arise, which in turn, requires more testing. This type of complexity is

generally weighed heavily in formal estimation techniques [BP88b].

7

This level of complexity required can be measured and calculated as a function of the cohesiveness

of the architecture. The industry currently possesses a number of the tools required to e�ciently

automate this process. Included among these are widely agreed upon languages for describing

architecture (eg. UML, ADLs), metrics for evaluating the architecture, and the ability to store and

analyze project life-cycle data for later comparisons. Some research has also been done in automating

the evaluation process for UML metrics, which could be used in the future as a factor for estimating

the risks associated with a given architectural choice. This issue is explored more fully in Chapter

6.

Selection, motivation and management of the people involved in the process is another factor

Boehm identi�es as a key indicator in e�ort estimation [BP88b, Roy98]. This property is highly

re
ected in cost estimating tools, such as COCOMO II and others as a signi�cant contributor to

e�ort estimations. Beyond the experience and training of the development team, the composition of

the team itself, or people factors, can have a signi�cant impact on the outcome of the project. This

issue of forming development teams by examining team composition and background continues to

be an area of ongoing research at Virginia Tech [Alk06].

1.3 Risk

Robert Charette draws on his experience in software project management, mostly with govern-

ment (speci�cally Department of Defense) projects over ten years. He attempts to provide project

managers with a tool to aid in the decision making process, by providing a systematic approach to

estimating and comparing alternatives and their associated risks. This section provides a brief intro-

duction to this concept and explores the issue of risk estimation and evaluation more in Section 4.3.

Charette gives three criteria necessary for an event to be considered a risk:

� A loss associated with it

� Uncertainty or chance involved

� Some choice involved[Cha89]

8

Almost all elements of a large1 software project �t these criteria, and pose some degree of risk to

the project as a whole. The uncertainty present in any undertaking with software derives from a

number of factors discussed previously. Notably, inherent in software is a large number of distinct

components, and a nonlinear number of relationships between components [Bro95, Cha89] leading

to a level of complexity not present in most engineering applications [Som04]. On typical large

scale software projects, no project engineer has knowledge of the entire system [Roy98]. This re-

quires e�ective communication between participants an introduces a possibility of error through

miscommunication [Cha89]. The uncertainty associated with any software project is also a function

of underlying assumptions on the dependant technologies. This may include unforseen constraints

on the hardware, operating systems, language and compiler or other software components. Issues

resulting from unforseen assumptions introduce a degree of risk in any software system.

The very nature of software gives us extensive choices of implementation strategies. Each of these

choices generally presents a tradeo� for the team engineers. A certain architecture may simplify and

reduce e�ort in implementing networked applications, while introducing a security issues that will

take additional e�ort to address. A certain programming language may provide convenient built

in data structures simplifying certain components but o�er a great sacri�ce in portability. A given

sorting algorithm may give signi�cantly improved performance in the average case, but perform far

below others in the worst case. These tradeo�s lead to choices for software engineers at every point

in the life-cycle. Inherent with every software choice is its own degree of risk. Some alternatives

are well known solutions, which the engineers involved have used extensively before, while other

alternatives represent new technologies to the design team. That is, each choice for the event has a

di�erent degree of uncertainty involved with it.

Charette's research involved applying formal risk analysis techniques to large software projects.

This analysis method has three steps associated with it:

1. Identi�cation of potential risk events through a structured and consistent method

2. Estimate the magnitude of each risk and its consequences, and the creation of options

3. Evaluate the consequences of risk [Cha89]

1The terms \large" and \large-scale" occurs throughout this work to describe projects. While no attempt is made
to precisely de�ne this, it is assumed that the projects in question involve a development cycle measured in years, a
development team consisting of twenty or more engineers, and an e�ort measured in hundreds of sta�-months.

9

Charette models each risk as an ordered triplet representing the scenario, its associated likelihood

and a damage index [Cha89]. He presents strategies for identifying each of these values. Risk

identi�cation techniques describe involvement from each individual stakeholder, and includes events

from non-technical environments, including legal, political and economic. Identi�cation of risks

continues through categorizations for risks, based on qualities such as predictability or source of the

risk. Estimating the the magnitude of the risk involves computing the likelihood of an event as well

as its consequence. The likelihood of an event is the probability of it occurring. For purposes of risk

estimation, this likelihood will be dependant on a certain choice of action during the development

process. Both qualitative and quantitative methods exist for these estimations, but at some level

the probability is determined by an estimate based on the best information and experience available.

Rating the sources and determining con�dence in the information can also factor into risk estimation.

Evaluating risk begins with determining a level of acceptable risk. This referent level is estab-

lished for each category of risks and gives stakeholders something to which compare an option's

associated risks. Referent levels frequently change throughout the life-cycle of a project. That is,

more risk is likely to be tolerated in early stages, than shortly before release. Evaluation continues

by determining the magnitude of the losses associated with each risk and comparing this to the

referent levels. Royce and Charette both suggest that \soft" approaches to risk evaluation, based

on qualitative results from stakeholder input is the way most participants in the decision making

process work [Roy98, Cha89]. There does exist a number of \hard" or statistically based quantitative

risk evaluation techniques which researchers have applied to software. This involves models such as

iso-risk contour maps which graph the probability of failure against the consequence of failure as

decision tool[Cha89]. Other models such as decision trees graphically represent alternative courses

of action and their e�ect on each other. Cost estimation tools such as COCOMO are also used to

estimate risk in a project. Issues of risk analysis are explored more fully in Chapter 4.

1.4 Cost of Failure

Enormous amounts of literature has been dedicated to documenting exceptional failures of software.

These include bugs in mission critical or medical systems which have resulted in loss of life, not to

mention equipment and engineering hours. Often, these anecdotes provide motivation for software

engineering literature to discuss the importance of solid design and testing techniques. Failures

10

due to de�ciencies in the software after release, as well as failures associated with overrun can have

signi�cant detrimental impacts on a company. The cost of failure is also seen in the economic

and social impacts of projects running behind schedule. Companies compete with each other over

\�rst to market" releases, as well as copyrights and patents. All of these goals are compromised

by signi�cant schedule overrun, failure to implement a complete feature set or failure to meet a

(sometimes unspeci�ed) quality requirement. These e�ects from overrun can also result in economic,

social, political loss. Forrester, an independent technology and research company, estimates a global

IT budget of $2:02 trillion in 2006 [Bar06]. If, as reported by Boehm that a possible 50% of this

money was dedicated to rework, this rework cost companies worldwide over a trillion dollars last year.

If only 10% of the global information technology budget is wasted, the industry is still absorbing

over $200 billion dollars of lost revenue. These staggering numbers suggest that a proven way to

reduce the risk associated with these projects would have merit.

1.5 An Architecture-Centric Approach

As discussed, software engineering projects seem to not perform as well as other engineering dis-

ciplines in terms of delivering a successful project on time, on budget and on speci�cation. While

having explored the causes of failure associated with software, researchers have examined processes

and techniques practiced by other disciplines [Bos00, Pau02, Som04]. Chief among these practices

is a solid methodology for architecture design. That is, a mature process for designing the top level

components of a given system. This enables not only the engineers to have a clear picture of the

structure of the project, but provides all stakeholders with a common reference point early in the

design process. This reference point supplies engineers, managers, and administrators with a top

level view of the system, allowing for better estimation and project planning. Software engineering

research has looked to adapt this architecture approach to improve software project management

E�ort estimates made early in the life-cycle have been shown to be very inaccurate [Boe84,

Jon98]. The architecture-centric approach suggests that a development of the architecture should

take place prior to formation of estimates, product and personal schedules or work breakdown

structures [Pau02]. While one can intuitively note that the further along in the life-cycle a project

progresses, that less risk will remain [Cha89], academic research and industrial experience has been

documented which suggests that the speci�cation of the software architecture removes a signi�cant

11

amount of this risk [Pau02, SNH95]. Because addressing quality concerns, such as performance and

maintainability, prior to estimation, the e�ect on overrun can be constrained. Early planning for

maintainability in particular can lessen the e�ects of requirements creep, one of the driving factors

in overrun.

1.6 Overview of Remaining Chapters

Chapter 2 presents an outline of the process of developing the software architecture. Speci�cally, the

chapter examines the phases of architecture design, the milestones of this process and the deliverables

at those milestones. Following this, this work considers the reasons for further exploring the ability

to signi�cantly reduce risk through a solid architecture in Chapter 3. Chapter 4 presents an overview

of techniques available to evaluate the risks associated with a software project. The chapter also

explores methods of estimating the size and cost of software projects, what inputs are required for

these methods, and what indicators exist to indicate their accuracy.

Chapter 5 presents speci�c risks which are alleviated through the process of developing the soft-

ware architecture. This is done by exploring the points in the development process that experience

and research suggests a given risk can be signi�cantly more tightly bounded. Chapter 6 provides a

summary of the issues surrounding widespread implementation of an architecture centric approach.

This is shown in contrast to what appears to be overwhelming evidence that this approach has great

bene�ts. The chapter also considers what further bene�ts might be gained from an architecture-

centric approach. Further areas of research in this area are explored in Section 6.3. Lastly, the work

provides ideas for how to prove the bene�ts of an architecture centric approach through an industrial

study.

12

Chapter 2

Software Architecture Overview

This chapter presents an basic overview of software architecture. Section 2.1 o�ers a de�nition of

this phase of the life-cycle, and discussion of the role of architecture in the software life-cycle. Sec-

tion 2.2 de�nes commonly used terms throughout this work, speci�cally in discussion of software

architecture. Later sections discuss architectural approaches and provide a discussion of architec-

tural description language. No topic discussion is complete without examining the boundaries, so

Section 2.5.3 concludes with a discussion of where to distinguish between architecture and low-level

design.

2.1 Introduction

Software Architecture takes on di�erent meanings throughout the �eld of software engineering, and

even more relevant to this work, within industry [Bos00]. While experts in the �eld take di�ering

ideas on what exactly comprises the architecture of a software system, this work uses Bass' frequently

cited de�nition of \the structure or structures of the system, which comprise software components,

the externally visible properties of those components and the relationships between them" [BCK98].

That is, the software architecture gives us a �rst slice at the design of the system, providing a top

level view of major components and how those components inter-operate. In the software life-cycle

waterfall model shown in Figure 2.1, the architecting of the system is seen to occur immediately

following the requirements engineering. The end result of a well designed software architecture is

to achieve conceptual integrity [Bro95] which leads to ease of use, or in the case of large software

13

Figure 2.1: Waterfall life-cycle Model [Bal06]

14

system development, ease of implementation. The level of detail necessary to achieve this design,

again, is interpreted di�erently by software engineers.

The ambiguity over what comprises a software architecture lies not only in the level of detail

provided, but how the architecture is modeled. Baragry and Reed [BR98] researched the di�culty

the software engineering community is having in building a consensus de�nition of \software archi-

tecture." This lack of consensus still exists today, however, it is no longer viewed as ambiguity, but

rather as a tool necessary to project management [FBD06]. With regard to representation of the

architecture, research suggests that di�erent models possess di�erent characteristics which in turn

describe unique components of the system. This opinion is demonstrated in Paulish's \Four Views

of Software Architecture" which is explored in Section 3.3 [Pau02]. Some models and description

languages describe components very well, but provide little description of the connections between

those components. Others represent the relationships between requirements and components to

highly varying degrees. Di�erent methods of describing architecture are explored in Section 2.5

Consideration of how industry di�erences in a de�nition of architecture in these respects may be

not only desirable, but necessary is addressed in Section 5.3. This view of architecting as a diagonal

slice across the design process is illustrated in Figure 2.2.

The software architecture serves as an early indicator of the major components intending to

comprise the �nal deliverable product. The choices made in determining these components are the

�rst attempt by project stakeholders in balancing the tradeo�s implicit in the requirements [GB98].

The architecture, once designed, gives all stakeholders a high level snapshot of the system, opening

a channel of communications between those various stakeholders [Som04]. As one of the primary

goals of an architecture is to incorporate quality as well as functional requirements at an early stage,

this property of providing a communication mechanism involving all stakeholders is of signi�cant

importance. Chapter 3 examines what bene�ts this added communication serves.

2.2 Terms and Concepts

functional requirements

This term is applied to the set of requirements which describe how the system should behave and

which functions it should provide. These requirements address issues such as what type of input

should be handled, and what features should be provided. Functional requirements de�ne the

15

Figure 2.2: Design Phase with Architecture

16

boundary of the system, specifying how it should interface with other systems and users. These

requirements are generally evaluated on their completeness and consistency, that is, the amount of

the user requirements which are speci�ed su�ciently, and the degree to which there does not exist

contradiction between requirements. In modern functional practices, requirements are generally

represented as use-cases. [Som04].

quality requirements

Also known as non-functional requirements, this set of speci�cations addresses issues not directly

related to the functionality of the system. Quality requirements consist of properties such as per-

formance, performance, reliability, safety and maintainability. There exists a considerable amount

of ambiguity over the representation of these properties during requirements engineering. As in

many issues in software engineering, the distinction between quality requirements and functional

requirements is not always clearly delineated. Security, for example, could be considered in either

category, depending on the speci�c project needs, development environment and required aspects of

the system.

life-cycle

Life-cycle is a term applied to the entire process of developing a software system, usually beginning

with \market," or \raw" requirements, leading to formal requirements engineering and concluding

with release and maintenance. The software life-cycle is represented with di�erent models and

software engineers have not yet reached a consensus on what phases and labels for those phases

should be present in a given model. This work, generally considers the software life-cycle using

the waterfall model as depicted in Figure 2.1, incorporating the phases of requirements elicitation,

design, unit coding, unit testing, integration, system testing and release. Validation and veri�cation

steps exist at each phase of the life-cycle, allowing stakeholders to review the artifacts at each phase,

ensuring that they accurately represent the system's requirements and that the development process

is correct. This model also includes feedback transitions, re
ecting the iterative nature of software

development.

stakeholder

The term stakeholder refers to any person who has a stake in the project [Mac01]. Project stake-

holders include developers, managers, architects, testers, owners, end-users and maintainers.

performance

Performance refers to the system's transaction speed and throughput[CKK02]. That is, the time to

17

process a transaction and the number of transactions the system is able to process in a �xed time.

These qualities are under a wide variety of conditions in order to assess the system's performance at

peak loads and determine the average and the bounds of the speed and throughput. Performance is

generally stated as a quality requirement.

safety

Safety is the ability of the system to operate without failure or cause undesirable damage or loss

[Som04]. This quality requirement is usually referenced in discussion of real-time mission critical or

life critical systems, although is similarly relevant in situations where system failure can result in a

business or �nancial liability to the owners. Safety requirements may be quantitatively expressed

in terms of failure rates by type, in life or mission-critical systems, a failure rate at or near 0 is the

only acceptable level.

availability

Availability is the \readiness of a system to deliver services when requested [Som04]." This require-

ment is usually speci�ed in terms of percentages indicating the percent of time that speci�c services

(or the system as a whole) is able to perform speci�ed functions.

maintainability

Maintainability is the degree to which the system can easily be modi�ed as bugs are found and

requirements change.

subsetability

Subsetability is \the ability to support the production of a subset of the system. [CKK02]" That is,

this re
ects the quality that a useful product can be delivered should the schedule slip and not all

features be implemented. This quality is implicity addressed through some processes such as agile

development.

architectural approaches

This thesis uses the term \approaches" to group together what are sometimes referred to as architec-

tural patterns or styles. This refers to a generic model for representing architectural designs. Much

of architecture literature makes subtle distinctions between these terms, while simultaneously stat-

ing the caveat that no clear delineation exists where one leaves o� and another begins. Because the

focus of this work is not on the development of architecture, it uses the term \approaches", favored

by Carnegie Mellon's Software Engineering Institute (http://www.sei.cmu.edu/), to encompass

all of these concepts [CKK02]. Styles and patterns are frequently seen as a solution template for a

18

http://www.sei.cmu.edu/

speci�c class of problems. Common styles include the Client-Server Model, the Distributed Object

Model and the Layered Model. Each of these styles comes with a speci�c set of tradeo�s in terms

of ease of implementation, e�ciency, portability and other qualities. Example styles are presented

in Section 2.4.

domain

The term refers to the larger \category" or set to which a software system belongs. These are

sometimes considered as either business domains (eg. defense intelligence project, medical system,

business data mining) or computer science domains (embedded real-time, operating systems, desktop

application). Section 2.5.3 discusses how di�ering domains tend to impose di�erent requirements on

an architecture.

archetype is the core abstraction on which the software system is structured [Bos00]. Software

archetypes represent a high level abstraction of the architecture. These components di�er from

subsystems in that an archetype describes a unit of abstract functionality which is often reused

in many places within the system. A subsystem, on the other hand, describes a subset of system

functionality. Examples of archetypes include \controller,", \device," and \handler." Archetypes

are often represented as class or package diagrams, describing the highest level of the inheritance or

aggregation hierarchies.

architectural description languages

An architectural description language (ADL) is a representation of the architecture in a form that

conveys meaning to some group of stakeholders. The most common format today for modeling

a software architecture is the Uni�ed Modeling Language (UML) [FDH06, Kru02]. Several other

ADLs exist, providing alternative representations of software architectures. See Section 2.5 for a

more detailed discussion on this topic.

2.3 Impact of Requirements

It is well understood that the layers of the waterfall model do not accurately re
ect the obscurity

between phases of the life-cycle. Sommerville remarks that \a system speci�cation should not include

any design information. In practice, this is unrealistic except for very small systems" [Som04]. The

transition from requirements engineering to architecture may present one of the starkest examples

of this blending of life-cycle phases.

19

The phenomena of \requirements creep" or \feature creep" is so well recognized in project man-

agement, that most estimation tools make some account of requirements growth in their formulas

[Jon95]. This notion of a blurring of the distinction between phases is also captured in the life-cycle

model's feedback loops, representing an iterative process between each phases. The profound impact

of changed requirements is graphically illustrated in Figure 2.1.

In addition to the inherent iterative nature of the life-cycle, the quality of the requirement

deliverables can have a large impact on the development of the system architecture. Requirements

engineers, like software architects, tend to di�er on where requirements elicitation and analysis

leaves o�, and design begins. More recently, the practice of capabilities engineering has emerged

as a process to bridge this gap. This practices identi�es sets of capabilities at the requirements

stage that are possess change tolerant characteristics, minimizing the impact of volatility [RAB07].

Further, the more formally the requirements are expressed, generally in terms of use-cases, the

higher the levels of quality. Quality of requirements is generally measured in terms of traceability,

consistency and completeness. These are the properties of being able to map the requirement to

the design components through requirements documentation, the degree to which requirements do

not possess con
icts, and the degree to which requirements are unambiguous and that all services

required by the stakeholders are de�ned [Som04]. The extent to which the requirements possess

these capabilities will generally be re
ected in the e�ort necessary to produce a solid architecture

[Pau02].

Furthermore, requirements often contain a subset referred to as \business domain requirements."

These requirements commonly dictate a design decision to the architecture team, based on business

speci�c needs (be they perceived or actual). For example, a business currently implementing all their

distributed applications in J2EE framework(http://java.sun.com/javaee/) might have concerns

about maintainability and extendability of a new server side system. In the pure waterfall model,

these concerns would be expressed as non-functional requirements and converted to use-cases speci-

fying those qualities. The system architects would then have a degree of latitude to exercise in how

to meet those requirements. It is common, however, for the requirements documents to specify that

the same J2EE framework be used for the new system. This in e�ect, constrains the design and

causes the requirements engineering output to contain decisions normally made in the architecture

stage.

20

http://java.sun.com/javaee/

2.4 Examples of Architectural Approaches

This thesis uses the generic term approaches, favored by Carnegie Mellon's Software Engineering

Institute, to describe what are often termed \styles," \patterns," or \models." While much of

software engineering and architecture literature makes distinctions between these terms, there is

little consensus as to precise de�nitions and all agree that no distinct line exists as to where a

\pattern" departs from a \style" or from a \model" [Som04, Bos00, CKK02]. Debate over this issue

is left to others. Rather, the examples presented in this section provide the reader some knowledge of

commonly used architecture approaches and some of the inherent tradeo�s that occur when choosing

among them.

Architectural approaches are designed to \improve the possibilities for certain quality attributes

for the system on which the style is imposed" and, consequently, tend to o�er less support for other

quality attributes. That is, each style presents a tradeo� to the architect. Multiple architectural

approaches can be, and are commonly, used together within the same system, with attention paid

to the constraints inherent in each approach. The choices made by the architecture team concerning

style will have an immediate impact on the ability of the system to meet its quality requirements.

2.4.1 Pipe and Filter Model

This approach models a data
ow network where the data is transmitted through the pipes, and

acted upon by the �lters, \gradually transforming inputs to outputs" [Dob02]. Filters consist of

self contained explicitly de�ned input and output interfaces. A common instance of this model is

witnessed in the Unix operating system shell, which is composed of numerous small executables,

each with a pre-de�ned and well contained function. These \�lters" can then be \piped" together

through shell level pipes and redirection operators.

The pipe and �lter model varies in its support for performance, reliability, safety and maintain-

ability. The model naturally lends itself to concurrency given that there do not exist too many time

dependencies between processes. However, if these dependencies exist, this model potentially does

not provide high performance, nor high reliability, as a single failure could bottleneck the entire

system. Similarly, maintainability is supported through small, encapsulated subsystems modeled as

individual �lters. On the other hand, due to the normally small granularity of �lters in this model,

a change to a single requirement could potentially impact numerous �lters [Bos00].

21

2.4.2 Layers

This approach decomposes the system into a set of layers representing increasing levels of abstraction.

Each layer provides an interface for using this abstractions to the layer above it. This approach builds

on the traditional hierarchically viewed system. Di�erent variations of the layered approach exist,

di�ering primarily in the quantity of layers, their roles and the types of interactions between them.

Some approaches allow higher levels to communicate directly with all lower levels, while others allow

communication only with the immediately lower level. Other allow bi-directional communication as

well.

A result of the layering approach is that performance su�ers due to the multiple layers of commu-

nication necessary between components on di�erent layers. The high coupling between layers leads

to similar concerns for reliability, as a failure at one level can impact all levels represented above

it in the hierarchy. Maintainability, on the other hand, is generally viewed as a positive aspect

of the layered approach due to well de�ned and constrained relationships between components at

di�erent layers. Safety and security are supported well by this approach, as this approach allows

for monitoring functionality to be inserted into the design as their own abstract layers, requiring

interaction with this layer before certain operations [Bos00, Som04].

2.4.3 Blackboard

This approach utilizes a central data repository from which other components interact. These

components use this singular \blackboard" as both the source from which to draw input, as well as the

default destination to store results. The interactions between components is limited to reading and

writing from this central repository. While the pure blackboard model speci�es a single repository,

this can be an interface to a distributed repository through which the components interact. Di�ering

implementations of this approach allow for various levels of priorities to be assigned to system

components.

Due to concurrency issues and a lack of well de�ned control
ow, this approach can present

performance issues. Attempts to impose control
ow on the system may improve these issues, but

at the cost of increased computation. Similarly, the lack of explicitly de�ned control
ow has large

safety concerns, a failure of one component to read or write accurate data to the central repository

can lead to a system wide failure. Security problems can exist if su�cient precautions to validate

22

data access are not taken, but the central repository simpli�es control of this access.

2.4.4 Client-Server

The client-server model organizes the system as a set of services, servers which provide them, clients

that use them and a network to allow access and communication. This over-simplistic description

suggests that the main logic of the system resides on the servers, although this varies signi�cantly

in practice. In reality, both thin-client (most of the data processing and management resides on the

server) and fat-client approaches are used. The client-server approach works by allowing clients to

make requests through a de�ned protocol which are then handled by the servers. Clients must be

aware of the servers, but are not required to have any knowledge of other clients.

The client-server model works well to optimize performance over a distributed system, however

the performance of the network itself provides a performance limit often more constrained than any

individual component. Processing can be distributed easily among multiple processors, allowing for

high concurrency. This model presents inherent tradeo�s in reliability and maintainability. These

qualities are supported by little dependence on individual clients, but are subject to failure of the

network and the servers. Systems employing redundant servers can be upgraded transparently to

clients. The issues around data security and safety are similar to those found in the blackboard

models. The popularity of this approach has led to signi�cant research in multi-tiered approaches

to improve qualities such as security and reliability.

2.4.5 Framework

Framework, or computational structure of a system, provides an infrastructure on which lower level

components are then implemented. In many cases, the framework also provides a reusable design

for a system, and in practice, a number of frameworks have been designed speci�cally to support

reuse. The purpose of the framework is to allow developers to expend more e�ort on implementing

system functionality by capturing the lower level details of the system in a reusable and extendible

package. The framework usually dictates where functionality will reside in the system, and which

Framework represents a �ner grained speci�cation of the architecture than the approaches de-

scribed above [Bos97]. As noted previously, in industry it is common experience that with a complete

set of requirements is often included speci�cations concerning which framework the architecture shall

be implemented. From this work managers are frequently able to remove a substantial amount of

23

risk from the project. Evidence suggests that e�ort estimations can likely signi�cantly improve

precision by considering framework as part of the architecture [Jon98].

2.4.6 Others

There are far too many architectural approaches to describe in this work. Some of the more popular

among these are push-based, peer-to-peer, event based and call-return architectures. Again, the

distinction between which of these approaches are best classi�ed as models, styles or patterns is

not of immediate concern. It is su�cient to note that each approach to designing an architecture

possess a set of tradeo�s to the architect, and that approaches are generally combined together

within large systems, respecting the constraints inherent in each. Notably, once a decision on an

architectural approach is made, constraints are placed on the quality attributes of the system [SC06]

and translates into the amount of risk present in the project. For further discussion on several

architectural approaches, the reader is referred to works of Shaw and Garland [SG96], Bass et. al

[BCK98] and Bosch et al. [Bos00].

2.5 Describing Architecture

The need for a language to describe a system architecture dates back to 1975 when cite deRemer

and Kron researched the di�erence between programming large systems and small programs [DK75].

They suggested that there would be bene�ts for a language to describe major components and the

relationships between them at an early stage in the life-cycle. Today, numerous architecture descrip-

tion languages exist, all of which allow for various representations of a system's components and

relationships between them. Some ADL's are incorporated into computer aided software engineering

(CASE) automated systems for generating source code from architectural models. As one of the

primary objectives of an ADL is to facilitate understanding of the architecture by all stakeholders,

most languages incorporate multiple graphical and textual descriptions of the system.

2.5.1 Uni�ed Modeling Language

The Uni�ed Modeling Language (UML) remains the most prevalent ADL in industry today [Som04].

UML is o�cially de�ned by the Object Management Group (http://www.omg.org/), a non-pro�t

consortium whose aim is to provide industry standards for numerous technologies. The current

24

http://www.omg.org/

version, UML 2:0, provides thirteen distinct diagrams, each of which serves to present a di�erent

view of system components. The collection of UML diagrams are augmented with documentation

such as written use-cases in order to provide meaning and cohesiveness to the model. UML diagrams

provide the means to add an arbitrary degree of speci�city to the model, far beyond the level of

detail normally considered to be part of the architecture. This allows for the same language to be

used throughout the design of the software system.

UML package diagrams are frequently used to provide a snapshot of the highest layers of com-

ponent groups. Use case diagrams provide the mapping between system requirements and system

components. These diagrams show the behavior of the system with respect to actors, and provide

designers with an indication of how functional requirements will be traced to classes or other compo-

nents. Package diagrams provide the ability to add level of detail through dependency connections

and nested packages. Component diagrams show physical components such as libraries, �les and

executable packages. These diagrams model the manner in which system components interact and

depend upon each others. Class diagrams in UML model classes present in an object oriented system

and are one of the most prevalent diagrams in a UML model. These diagrams generally allow for

signi�cantly varying degrees of �delity, allowing system designers to �ne tune the \detail knob" in

order to provide stakeholders with pertinent information. Class diagrams are sometimes augmented

with composite structure diagrams which model the internal structure of a class and how the class

interacts with its boundaries [SX03].

Other UML diagrams focus on demonstrating the interactions between components more so

than the structure and relationships of the components themselves. Among these are state diagrams

which represent states of the systems and the transitions between them, activity diagrams which

model the real world business process which the system is designed to produce. Sequence diagrams

are used to show the interactions between components over time, and the messages passed between

objects at speci�c points. New to UML 2:0 is the timing diagram which provides another view,

similar to sequence diagrams, to visualize the changes components undergo over time.

UML was designed to be a general purpose modeling language, with aim toward supporting an

object oriented design methodology. It has been criticized for not o�ering enough support for other

methodologies, and with respect to architecture, for not providing a consistent notation for con-

nectors [SC06]. Despite its apparent de�ciencies, UML adoption remains widespread and has been

incorporated in numerous automated tools and formal processes, notably IBM's Rational Uni�ed

25

Process [Kru02]. Research is ongoing in an attempt to extend UML to provide more structured

support as an architecture description language, notably through adding more diagrams and tighter

speci�cation of interactions [Oqu06a].

2.5.2 Other Architecture Description Languages

Oquendo proposed highly formal methods, the �-Method [Oqu04] and subsequent �-Method [Oqu06b],

to formalize the assessment of architectures through mathematical means. These ADLs were de-

signed to o�er support for modeling the changes undertaken by a system during runtime. Sashofy et

al. proposed an approach to developing an ADL based on the eXtensible Markup Language (XML)

in order to facilitate generation of ADL's and to leverage the extensibility of XML to adapt the lan-

guage for a speci�c domains needs [DvdHT05]. Numerous other architectural description languages

have been proposed and implemented to varying degrees, however, outside of speci�c domains, have

failed to gain widespread acceptance.

2.5.3 Where the Architecture Ends

There currently exists no consensus of where architecture leaves o� and design begins within the

software engineering community. Perry and Wolf suggest that \architecture is concerned with the

selection of architectural elements, their interactions, and the constraints on those elements and

their interactions necessary to provide a framework in which to satisfy the requirements and serve

as a basis for design." This di�ers from their notion of design which is described as \concerned with

the modularization and detailed interfaces of the design elements, their algorithms and procedures,

and the data types needed to support the architecture and satisfy the requirements" [PW92]. This

explanation begins to give us some intuition as to where the distinction is made, however, allows

for a large degree of subjectivity. Daniel Paulish of Siemens Corporation suggests that architecture

stops when a \module can be given to another developer for a detailed design" [Pau02]. This is

analogous to the concept of design ending at the point at which it can be given to a programmer

for implementation. Clearly, not every engineer involved in design and implementation will require

the same level of detail to carry out their task. The junior engineer is likely to require more detail

than the experienced, or senior, engineer. The ambiguity in this statement is justi�ed by Paulish's

insight that in practice, the software architects remain involved in the project past the milestone of

\architecture" and that design is an iterative process whereby the architects will receive feedback

26

from other stakeholders (in this case, speci�cally developers conducting low-level design).

This degree of subjectivity present in the architecture of a system was actually found to be a

necessary tool of the project manager by Fairbanks [FBD06]. Their research indicates that the

granularity of design should not remain constant between business domains, application domains

or organizations with di�ering structures. Speci�cally, this \detail knob" allows the manager to

specify the level of �delity to the architect which necessary in order to accurately asses size, e�ort

and risk of the project without expending more e�ort than necessary at the architecture stage. This

notion of architecture being an \adjustable" based on the domain is graphically shown in Figure 2.3.

These qualities, are explored in detail in Chapter 4, aid the project manager in decision making and

provide the insight necessary to produce engineering artifacts such as the work breakdown structure

and project schedule with milestones. This notion of an architecture \detail knob" supports the

premise that the amount of detail present in the architecture is the point at which, from a project

management view, that resources can be allocated to project components.

27

Figure 2.3: Design Phase Activities and Deliverables

28

Chapter 3

The Architecture Centric

Approach

3.1 Past Research

Daniel Paulish at Siemens corporation published extensively on the success experienced by taking

an architecture-centric approach to project management. Other Siemens architects also published

results of their experience, and outlined the approach that has become known as "global analysis"

[NPSS01]. The Siemens architects suggest presenting multiple representations of the architecture, in

an attempt to make the design relevant to all stakeholders and to capture the essential components

and their relationships. While the concept of software architecture dates back much further than

the work at Siemens1, their chief architects were among the �rst to publish methods, lessons learned

and reports of success with this approach. Today's de�nitions of software architecture di�er slightly,

but longstanding software engineering principles related to solid and early design techniques are still

present in modern architecture development and analysis methods.

The projects that researchers at Siemens draw their experience from are self-categorized as mid-

size to large projects: those involving from nine to over sixty software engineers with a life-cycle

of one to two years. Some of these projects involved distributed, multi-national teams, others

1in 1969 Fred Brooks de�ned architecture as the \conceptual structure of a computer ... as seen by the programmer"
[Int07b]

29

involved outsourcing of signi�cant components, while others still involved collaboration between

Siemens and other companies. Much of the work at Siemens took place in the domain of e-Business,

security related technologies, medical applications and industrial automation. These projects also

involved a wide variety of computer science domains and scopes, including GUI applications, real-

time embedded systems and networked systems [Pau02, HPB05].

Fairbanks et al. at Carnegie Mellon found, through involvement with projects at a large �nancial

�rm, that applying an architecture centric approach provided signi�cant bene�t to the organization

[FBD06]. This research extends past Paulish's experience in that Fairbanks was exploring the

application of an architecture �rst approach in a business whose primary area is not software. They

report on the success they had implementing this style of management with four large projects,

each with signi�cantly di�erent scope. One project was being developed from the ground up, with

no legacy code involved. Two others were signi�cant modi�cations to existing systems and the

fourth project involved coordinating three others and providing communication mechanisms. Their

research employed their own modeling technique, referred to as a \synthesis of existing published

techniques" [FBD06].

Other publications relating success with architecture-centric approaches also exist. Medvidovic

et al. found that this approach used in development of software development environments let to

high extensibility (a primary quality attribute needed for software environments) and acceptable

tradeo�s among other quality attributes [MOT+00]. These methods were only tested on smaller

systems, however the authors note future work being planned to integrate architecture-centric pro-

cesses into large software development environments. Nord and Tomayko recently examined how an

architecture-centric framework can be used to anchor an agile development process, drawing parallels

between concepts inherent in each. Far from suggesting that agile methods should lack in formalized

structure, their work suggests that agile an architecture �rst approach allows for rapid development

and iterative planned releases while ensuring the quality attributes important to stakeholders are

accounted for during the process [NT06].

3.2 Architecture-Centric Project Management

Brooks claims that integrating and testing separate components into a cohesive project imposes

a time factor of three on the development time, contributing to an overall increase of nine-fold.

30

That is, to integrate separate components into a usable, release quality system takes approximately

nine times the e�ort required to develop those components as independent entities [Bro95]. The

importance of well-designed architectures with highly speci�ed interfaces was observed over thirty

years ago, yet this style of project management is still not mainstream. All software projects are

understood to have an architecture, either explicitly or implicitly de�ned, and there is no practical

way to implement a large project without some form of high level design document. However, there

remains an unwillingness on the part of management to dedicate resources to a formal architecture

development method and subsequent process to identify costs, risks and tradeo�s from the archi-

tecture deliverables, instead relying on informal estimates which fail to account for many quality

requirements [Jon95, Roy98, Pau02].

3.2.1 The Architecture Team

The architecture team consists of a small number of stakeholders, generally the project manager,

a chief architect and a small group of high-level designers. Paulish suggest a number no more

than six developers on this team for mid-sized projects [Pau02], although later research expresses

this team size as a function of the number of component teams [HPB05]. This small number of

stakeholders involved at this stage supports the concept of the architecture being a strictly high

level design, and avoids the exponential communication complexity involved with a large team at

an early stage of the life-cycle [Bro95]. Paulish warns of dangers associated with a team too large,

drawing parallels to Brooks' oft cited observation that communication complexity exponentially as

team size increases [Pau02, Bro95]. Fairbanks published research on the other side of this issue,

citing that an architecture team which is too small fails to produce useful models at all [Fai03].

It is generally understood that the role of the architecture team will continue beyond the speci�-

cation of the architecture and succeeding plans and estimates. That is, those involved early on in the

high-level design will take on roles in successive development steps as well as in change maintenance

to the architecture itself. To this end, Paulish recommends a representative from each component

development team be a member of the system architecture team, generally the component team

leader. This is based on the assumptions that a team leader is responsible for no more than seven

software engineers. By incorporating a representative of each component team at the architecture

stage, a sense of ownership in the entire process is fostered [Pau02].

31

3.2.2 Functionality-based Design

Several schools of thought exist concerning best practices and approaches to all levels of software

design. As one of the chief goals of a formal architecture development process is to ensure the

likelihood of meeting quality requirements, a manner of incorporating these into the design process

is necessary. Bosch suggests that conventional design methods in computer science tend to under-

emphasize quality requirements, although some practices, such as object-oriented design, claim to

implicitly incorporate qualities such as reusability and maintainability into the system [Bos00].

The practice of functionality-based design presented here was found by Bosch and others to be an

\objective and repeatable" design method which organizes the process into indistinct phases that

ultimately results in a desired architecture [Bos00, Som04].

Bosch's approach to software architecture design is to begin by developing an architecture based

on the functional requirements. This begins by examining the boundaries of the system (the system

context): its interface with external entities. These entities may be other software systems with

similar or widely di�erent purposes, hardware components, and users themselves. The software

systems comprising this context may include higher-level systems, lower-level systems and peer-level

systems. Once the context has been de�ned, speci�c interfaces can then be designed and speci�ed

between the system and its boundaries. These interfaces generally fall into categories such as \uses,"

\used-by," and \depends on."

Requirements are then associated with each interface. Both functional and quality requirements

are assigned to each interface, which in turn allows for a higher degree of speci�city during re�nement.

By ensuring that all interfaces are associated with all relevant requirements, architects are fully aware

of all stakeholder needs and considerations. This suggests less need to rework subsystems which often

can often lead to overrun. Reexamining the mapping of quality requirements to system components

becomes a dominant goal of architecture evaluation, but incorporating considerations of these at

early stage allows the architecture team to make decisions which support quality goals deemed most

important.

Next, the primary issue is to identify the archetypes on which the system is to be structured.

The �rst iteration of the software architecture is to design a small set of abstract entities which

describe the majority of the system behavior at a high level. These archetypes (Section 2.2) form

the most stable part of the system in that they only change in small increments and in limited

manners. Candidate archetypes are identi�ed by noting during the architecture design process

32

recurring patterns of common characteristics between parts of the system. Candidate archetypes

are studied and those which are duplicated or whose intersection of functionality is large are combined

and re�ned until an appropriate set of archetypes is determined.

Following identi�cation of the archetypes, the system is then decomposed into components which

are instantiations of those archetypes. These components are primarily speci�ed in the manner in

which they interact with the system's context. These component interactions may include user

interfaces, hardware interfaces, network protocols and interactions with other software systems.

The inner workings of an architecture's system components (ie. algorithms, data structures) are

usually reserved for succeeding, lower level, design phases. The descriptions of these components

are used to verify that the architecture describes a system which meets its functional and its quality

requirements, or proposes an acceptable tradeo�. These components comprising the architecture

and the relationships between them are expressed in models (Section 3.3) and an iterative process

of evaluation and re�nement Section 3.3.1) continues until an acceptable tradeo� is reached.

3.3 Modeling the Software Architecture: The Four Views

Section 2.5 examines the need to express high level design in a standardized format capturing the

components and relationships that comprise the architecture. As a signi�cant factor in the analysis

of an architecture is input from a sampling of all stakeholders, most research supports the use of

multiple diagrams, tables and textual commentary to express the features in a meaningful way to all

interested parties. To this end, this section presents what Paulish terms the \four views of software

architecture" [Pau02]. Building on the widespread acceptance of the Uni�ed Modeling Language as

an architectural description language (see Section 2.5.1), discussion follows of how various diagrams

can be used to express these four views. Information on the four views and their realization using

UML is described in the published works of Siemens' research [RKJ04, HNS00].

Conceptual View

The conceptual view describes the system at a very high level, showing identi�ed archetypes and

their relationships. This view is is intended to be highly relevant to non-technical stakeholders, as it

is frequently associated with the application domain of the system by identifying problems and their

solutions primarily in domain terms. This view should be independent of software and hardware

33

techniques, tools and techniques, rather closely modeling the domain process being modeled. The

conceptual view addresses the validity of the architecture, how functionality will be partitioned into

system components, and provides a �rst indication of how changes in requirements can be minimized

in the system.

The conceptual view can be visualized in UML with class diagrams showing stereotyped classes

to view the static con�guration. These abstract class diagrams represent the archetypes of the

system identi�ed during functionality-based design. It is understood in this view that these class

diagrams represent a class of solutions more so than classes intended to be present in the �nal

system. Sequence diagrams demonstrate interactions among components, allowing stakeholders to

visualize changes in the system's archetypes during processing of a task.

Module View

The module view of an architecture shows the system's organization as a layered representation.

The goal of this view is to organize system in such a way as to minimize the impact of change

in system boundary elements. The module view is relevant to project managers and team leaders

as it helps focus the software engineer's expertise, improving process e�ciency. The module view

provides a mapping between the conceptual solutions presented above, and the platforms and tech-

nologies intended for use with the system. The module view provides stakeholders with indicators

for validating interface constraints and early indicators to assess con�guration management.

Class diagrams are used to demonstrate module decomposition, utilizing nesting of classes

through aggregation. Subsystems and represented layers shown with package diagrams, again using

nesting and UML dependencies to show relationships between layers. UML class and package dia-

grams provide a number of dependency representations (eg. association, aggregation, inheritance,

etc.) allowing for assessment of complexity. These diagrams indicate how the product will be realized

in a given framework and how subsystems can be organized to support reuse.

Execution View

Class diagrams again play a role here, demonstrating the execution con�guration of the system. The

execution view provides insight into how a system will meet quality requirements such as performance

and maintainability. This view demonstrates how the system handles runtime considerations such

as memory usage and hardware assignments between multiple processors.

34

Deployment diagrams are used to demonstrate how the con�guration corresponds to system

hardware components. Sequence diagrams show the dynamic behavior of the system, especially

important in network-centric applications. State and sequence diagrams illustrate the protocol of a

communication path.

Code View

The code view is the lowest level view, often viewed as more a part of detailed design e�ort. This

view maps how modules and interfaces will be mapped to source �les and how runtime components

in the execution view correspond to executable �les, including existing legacy components and

libraries. This view has particular relevance to programmers, who require speci�c knowledge of

languages, application programmer interfaces, libraries and source code organization. The code

view is especially useful for assessing performance, maintainability and portability.

Component diagrams are the UML artifact which show these components' organization and their

dependencies. This view relies also on tables and some method of trace dependency in order to map

elements in the module view to their respective source components.

The four views of software architecture are necessary to ensure that all stakeholders gain an

understanding of the proposed system. Each view is realized with a di�erent set of models and

therefore conveys a di�erent set of information. System designers and programmers may use the

execution and code view to gain understanding of their components place in the system design

and what interfaces they are concerned with. Non-technical stakeholders may use the conceptual

view to gain understanding of how quality concerns and functional requirements are realized in

the architecture. The ability to convey the architecture to all stakeholders plays a primary role in

evaluation.

3.3.1 Evaluation of Software Architecture: ATAM

Certainly, any software development process will involve some method of evaluating the design

documents. A formal method for analyzing the architecture which involves a representative sampling

of stakeholders, however, is frequently lacking in industry [CKK02, Pau02].

This section presents an overview of the Software Engineering Institute's Architecture Tradeo�

Analysis Method or ATAM. ATAM grew out of software engineering research aimed at providing

a more structured method to assess the ability of an architecture to determine suitability of an

35

architecture to meet the requirements of the system for which it is designed. Clement's et. al

suggest that an architecture is \suitable" if it meets two criteria:

� The system that results from it will meet its quality goals. That is, the system will run

predictably and fast enough to meet its performance requirements. It will be modi�able in

planned ways. It will meet its security constraints. It will provide the required behavioral

function. \[The] architecture is considered suitable if it provides the blueprint for building a

system that achieves those properties [CKK02]".

� The system can be build using the resources at hand: the sta�, the budget, the legacy software

(if any), and the time allotted before delivery. That is, the architecture is feasible from an

implementation perspective [CKK02, BM97].

The ATAM Steps

Detailed explanations of the ATAM process can be found through the Software Engineering Institute

[Sof06] and in work by Clements et al. [CKK02]. The goals of ATAM are to ensure suitability of the

architecture by incorporating input from stakeholders in an organized and disciplined manner [Sof06].

The nine steps in this evaluation process are listed with a brief explanation of each step. The bene�ts

of this method are discussed in Section 5.2 with regard to providing an intuition of how architecture

can be used to estimate risk. This method builds on the experience of software engineering research

in architecture, and on other methods for evaluating software architecture, notably SAAM (Software

Architectural Analysis Method), another scenario based approach [CKK02].

1. Present the ATAM Stakeholders are given an overview of the ATAM process for the purpose

of explaining individual roles, setting expectations and answering questions.

2. Present the business drivers A review of the business goals motivating the design of

the system, its most important functions, constraints and quality attributes which are given

signi�cant weight.

3. Present the architecture Normally conducted by the lead architect, this presentation in-

forms stakeholders of technical constraints, the system context, the major components and

their relationships. The focus of this presentation is how the architecture addresses the busi-

ness drivers.

36

4. Identify the architectural approaches The architect reviews which styles or patterns (see

Section 2.4 are used to address the highest priority quality attributes.

5. Generate the quality attribute utility tree This step involves, through scenario anal-

ysis, to determine two dimensions related to each quality attribute: the importance of the

scenario to the success of the project and the degree of di�culty in successfully achieving the

desired scenario results. The ATAM descriptions proscribe a graphical representation of these

dimensions in the form of a tree. The SEI researchers suggest using a 0 to 10 scale, or, more

commonly, a nominal \low - medium - high" scale to estimate these two dimensions. The

result of this utility tree generation is a prioritization of quality attributes so that stakeholders

may make informed tradeo� decisions.

6. Analyze architectural approaches This builds on step 4, by mapping the approaches used

in the architecture to the scenarios used in the generation of the quality attribute tree. At

this point, the architect identi�es tradeo�s exercised between quality attributes and how those

tradeo�s are re
ected in the approaches used. At this point, risks to the project can be

identi�ed and categorized (normally by the quality requirements they are associated with).

7. Brainstorm and prioritize scenarios The purpose of this step is to facilitate discussion

among stakeholders concerning the prioritization of scenarios explored in the previous steps.

More scenarios are generated and placed into the utility tree, re
ecting the iterative nature

of the software life-cycle (see Section 2.3 for further discussion of this issue). Prioritization of

scenarios is recommended to be accomplished through group consensus, often by voting.

8. Analyze architectural approaches Repeating the activities of step 6, the architect explains

to stakeholders the decisions made regarding how the approaches used re
ect the prioritization

of scenarios. In a perfect world, this would be an exact repetition of previous work. Expressing

the iterative nature of software development, this step is likely to include insight on how

other approaches may be incorporated to more accurately re
ect the stakeholder priorities.

Signi�cant discrepancies likely lead to the entire ATAM process being repeated.

9. Present results A summary of the ATAM process is presented to stakeholders. This includes

a review of architectural approaches, scenarios and their prioritization, the utility tree, and

project risks.

37

Assessing the ability of an architecture to deliver on a speci�c quality requirement begins with

constructing scenarios or pro�les under which the system is likely to be subjected. A scenario is

a \short statement describing an interaction of one of the stakeholders with the system" [CKK02].

Scenarios are described in terms of stimuli and responses. That is, the set of circumstances which

may arise and the desired reaction of the system to those circumstances. The most common type of

scenario is closely related to that of use-cases, which are being used to describe requirements with

increasing frequency. Scenarios, as used for architecture assessment, attempt to describe not only

intended interactions of the speci�ed system, but also attempt to describe situations the system

may need to address in the future (ie. \growth scenarios"), as in the case of maintainability and

portability requirements. The Software Engineering Institute's research also considers a class of

scenarios termed \exploratory scenarios" which describe changes likely to stress the system.

3.3.2 Schedules and Software Development Plan

A key motivation for Paulish's architecture-centric software project planning is that by developing

the architecture �rst, the project manager is able to make much more informed decisions with

regard to project schedules and personal schedules. Royce supports this idea by identifying a stable

architecture a signi�cant milestone in the life-cycle. By providing a basis on which stakeholders

can refer to system components and map those to requirements, management is given signi�cant

added knowledge when planning the remaining software development. Having identi�ed the major

components of the system, the project manager is able to select the correct team necessary to bring

appropriate levels of expertise to the project. Due to system components being identi�ed, with

interfaces and constraints well documented, other software engineers are able to generate personal

schedules with a much higher degree of precision [Pau02].

Paulish suggests that early estimation work take place concurrently with the design of the archi-

tecture. Once a suitable architecture is developed and assessed, the input to produce higher �delity

estimation models is in place (see Section 4.2). The estimation models provide management with

the data necessary to develop detailed work-breakdown structures, or software development plans.

Paulish recommends allowing individual developers, with cooperation from team leaders, to generate

personal schedules for areas of responsibility. Because major components and interfaces have been

de�ned prior to this, developers are generally able to produce personal schedules with a claimed

accuracy within 20%.

38

3.4 Transition to Low Level Design

The Carnegie Mellon research showed that the level of detail incorporated into the architecture varied

from projects to project, a point identi�ed earlier as being related to the ambiguity in the de�nition

of architecture in Chapter 2. Their research identi�ed the di�culty that software architects had in

determining the point at which to stop adding detail. They describe the importance of incorporating

a \detail knob" in the architecture design plan as a mechanism of responding to the needs of various

stakeholders. Paulish takes an approach of bounding the time given for the architecture development.

That is, instead of speci�cally managing the level of detail present in a project, short deadlines for

deliverables are given [Pau02]. They present preliminary results mapping project characteristics to

level of detail [FBD06]. Their work with these four projects suggests that the level of detail in the

architecture is to progress until su�cient to answer stakeholders questions.

39

Chapter 4

Estimation and Risk

\Cost, schedule and quality are highly correlated factors in software development. They basically

form three sides of the same triangle" [BAC00b]. This insight by Barry Boehm suggests what archi-

tecture practitioners preach: considering quality requirements early in the process of development

has a profound impact on cost and schedule. The following section provides an introduction to the

practice of estimating software costs, usually as a function of the schedule. The practice of software

estimation maintains the goal of estimating the size of the project, as well as the e�ort or length of

time to project completion. The output of these estimation models is a primary consideration for

risk estimation techniques. That is, two large risks being measured are completing the project on

time (or at all) and the risk of not �nishing on budget. Through the development of architecture,

one factor towards reducing these risks is by providing the ability to estimate individual risks with

much higher precision. Completing the three sides of Boehm's triangle, this thesis shows how the

architecture development process can be used to ultimately lower costs and keep projects on schedule

in Chapter 5. Section 4.3.2 presents the risk evaluation technique known as decision trees as one

possibility to aid the project manager in choosing alternatives.

4.1 Estimating Size

Size of the software system is the dominant factor used to estimate e�ort or cost of developing the

system. Once the architecture is developed, one can estimate the size of the software which becomes

input into e�ort estimates. Following is an overview of the most common units for expressing

40

the estimated size of software projects. Almost all size estimates are based on inferences made

by project stakeholders drawing from experience with previous projects within the same domain.

Software development organizations keep detailed records on project size for comparison purposes.

These comparisons are matched as closely as possible by project managers and lead developers

to the project being estimated. Ultimately, however, these size estimates involve some degree of

subjectivity, as those stakeholders are expected to draw a comparison between the current project

and past projects. A desire to remove some of this subjectivity prevalent in \lines of code" estimates

has led to measurements in function points, and recently, use cases and object points, which can be

inferred more directly from the architecture documentation.

4.1.1 Units of Software Size

This section presents a review of units commonly used to count and estimate the size of the software

project. Each of these estimates of size carries a degree of uncertainty. As these size estimates

are used as input for estimation models, this uncertainty becomes risk of project completion against

schedule and budget. The following sections are to review the reader concerning background material

on inputs for estimation models. For readers experienced with this material, the discussion of

estimation techniques is resumed in in Section 4.2.

Source Lines of Code

There are two primary units used for estimation of software size: function points and source lines

of code (SLOC). Source lines of code have been in practice the longest for use in formal estimation

models. However, their variability between languages and individual programmers makes this a

somewhat unreliable indicator of actual project size. Research was applied to correlating estimated

lines of code to e�orts by life-cycle phase. Estimates involving lines of code su�er from the inabil-

ity to easily account for project development activities other than programming. Defect removal,

documentation, communication, project management and change management all fare poorly when

estimated using SLOC [Jon98]. The coding phase of the software development life-cycle is gener-

ally estimated below 35% of the total e�ort needed, highlighting the impact of the shortcomings

associated with SLOC based estimates [Jon98].

The main reason that SLOC estimates fare so poorly is due to a lack of correlation between

lines of code and complexity of the project. Today, high level languages are capable of producing

41

extremely complex logic with highly terse code. Further, signi�cant variation between programming

styles can greatly in
uence the number of lines of code produced by a given programmer, even when

policies attempt to enforce uniform style constraints. A skilled developer, pro�cient in the language

and development environment will often be able to produce the same functionality with fewer lines

of code as a novice programmer under identical circumstances. Further, the advent of graphical

programming tools allow complex logic to be generated with very few lines of code augmenting a

drag and drop interface.

Some issues regarding estimates based on lines of code have been addressed through re�ning the

de�nition for line of code, and subsequently categorizing the code counts into classes. The goal of

this e�ort is to improve communication and repeatability. That is, metrics built on a given SLOC

de�nition should be aware of exactly what types of statements are counted, and the SLOC should be

the same if the count is repeated. Blank lines and comments are generally excluded from these counts,

however di�erent techniques di�er in their approach to treating compound statements, function

headers and prototypes, lines containing only a delimiter, modi�ed and code not programmed by

the development team (eg. library code, generated or converted code, code in other languages)

[Par92]. Lines of code remain a source of uncertainty for use in estimation models due to di�erences

in languages, coding styles and the amount of project e�ort required other than coding.

Function Points

Function points were introduced by A.J. Albrecht at IBM as a way of expressing the size and

complexity of software systems independent of implementation language, technology and capability

of the project team. Function points were originally intended as a device to allow for precise e�ort

estimation, but they remain a unit for discussing the size of a software system. Function points

generally consider �ve areas, which can be derived as early as the end of the requirements stage:

1. system inputs

2. system outputs

3. interactive inquiries

4. external logical �les

5. internal logical �les

42

Function point analysis involves counting the number of each attribute instance and applying a

weighting scheme. Most practitioners consider these attributes to have varying levels of complexity,

and to re
ect this lack of consensus, a number of schemes have been proposed and practiced [Jon98].

Once a function point total is calculated, some multiplier is applied to the total as a re
ection of the

perceived intricacy of the overall system. This multiplier considers factors such as the scope, class

and type. These complexity adjustment factors tend to be highly subjective, and much research has

been done in the area of software complexity metrics, which attempts to �nds methods of quantifying

complexity [Zus97, Jon98].

Albrecht's original system has been adapted and modi�ed several times since its inception in

the 1970's. The International Function Point User's Groups was founded in the early 1980's to

further explore this method of sizing software projects and develop a set of standards for the prac-

tice [Int07a]. Other methods include the Boeing 3D function point, DeMarco bang and Mark II.

These techniques di�er from the original systems by varying the amounts of weighing for di�erent

complexity estimates [Jon95]. Many of these methods have attempted to map their function point

method against lines of code by programming language. These indirect methods of obtaining SLOC

estimates are widely employed in estimation models, due to popularity of the SLOC unit among

software managers [Roy98, Jon95]. Function points su�er from inaccuracies as measurements of size

due to the inequality of the types of attributes, and inaccuracies of those attributes mapping back

to project size.

Use Cases

In recent years research has been conducted in estimating software size by use cases. These methods

bene�t from the widespread use of the Uni�ed Modeling Language (UML) and object oriented

design. Use cases, as a method of describing the requirements, o�er a bridge between requirements

and design [Mac01]. Much of the research in this area has looked at automating sizing estimates by

using models generated through currently established processes such as the Rational Uni�ed Process

[Kru02]. This practice of applying use cases as a manner of estimating size is still in early stages of

adoption; however, preliminary research suggests that use cases can be e�ective in estimating size

[ADSJ01].

Research conducted with use cases involved three industrial studies by Anda et al. at an e-

commerce company [ADSJ01]. Their approach involved assigning weightings to the actors and

43

use-cases in use case models derived using the Rational Uni�ed Process. Approaches involving use-

cases closely model those employing function points, that is, weightings are given to the countable

features (categories of use-cases, actors) and weightings are then applied based on some criteria.

A �nal adjustment is then made to the use case point total as an attempt to re
ect the overall

complexity of the system, development environment, as well as maturity and experience of the sta�

and organization. Approaches to these weightings have taken place based on complexity metrics

[CS], number of transactions [MAC05a], types of interfaces [ADSJ01] and heuristics applied by the

development team [MAC05a].

Modern applications of agile development, more integrated object-oriented processes and web-

based systems have lately given rise to more units for measuring size. Object points, web-objects,

application points and multimedia points all attempt to address modern practices [Rei00a]. Few of

these have been used as part of formal estimation models on large scale projects [Rei00b]. However,

recent trends have led to smaller systems being developed, and potential exists for these other units

to be useful in many domains [Jon98].

4.2 Estimating E�ort and Cost

While estimating the size of a project becomes the �rst step towards estimating cost, other formal

estimation methods exist to bound cost. E�ort is generally measured in work-months (programmer-

months, developer-months, man-months), or just months. Cost is then calculated by multiplying

e�ort by burdened rate (ie. salary, overhead) of the sta� employed to carry out the task. These costs

are calculated by phase in the software life-cycle. These estimates can then be used as input for

project management (eg. scheduling, work breakdown structure) and business processes (eg. fore-

casting, marketing) [Roy98]. Most software cost estimation techniques, and the associated databases

of prior projects used to calibrate them, are proprietary tools of the companies who use and develop

them. Software engineers have published information on the tools used to estimate software cost, as

well as samples of the data and techniques used to calibrate the weights [Jon95].

The following sections present methods for estimating e�ort in software projects which are used

to estimate cost, allocate resources and determine the project schedule. The reader familiar with

e�ort estimation is invited to proceed to Chapter 5 which discusses the impact of architecture-centric

project management on reducing the uncertainty present in the estimation process.

44

4.2.1 Estimation By Analogy

Manual methods are generally based on heuristics, or sometimes termed, \rules of thumb." The

project knowledge accumulated over time is used to predict the outcome of future projects. The

ease of producing a manual estimate remains the most popular choice for project managers, despite

evidence to their inaccuracy [Jon98]. The in
uence of optimism on this process was noted as a

signi�cant cause of overrun in Chapter 1, and can be a strong in
uence in manual estimation

techniques. Most of these rules attempt to provide an average amount of coding per programmer-

month based on SLOC. Many software development groups maintain extensive databases, recording

project management data so these rules may be re�ned over time [Roy98]. This allows for tracking

of performance of varying teams, combinations of teams, and incorporates the ability to track the

SLOC per work-month having �xed a given language, framework or other factor. Careful record

keeping also allows for tracking of work-months over phases in the life-cycle. This activity based

analysis allows for domains with highly di�erent processes to generate tailored estimates based on

a history of the activities associated with that domain.

Manual methods which employ function points frequently use templates for rating the various

categories of function points. These categories are given a weighting based on their scope, class and

type. Table 4.1 shows a sample taxonomy of these properties that are used by Software Productivity

Research [Jon98]. The weight is assigned to a function point based on the sum of its scope, class and

type weights. The sum of this function point total is computed, and then scaled with adjustment

factors determined by domain speci�c or team speci�c properties.

The weighted function point total is then usually applied to a series of charts mapping function

points to SLOC by language, pages of documentation, testing cases, predicted number of bugs and

ultimately, development schedules. Rather than mapping function points directly to programmer-

months, however, function points are frequently expressed in a mapping to calendar months. A

separate mapping relates the number of personnel to the number of function points. Thus, function

point methods attempt to address issues related by Fred Brooks involving the perils of adding

developers late in the process. By attempting to correctly map not the length of development time

in calendar months independently of the number of developers, this method is often felt to be a

greater tool in scheduling.

45

Weight Scope Class Type

1 Subroutine Individual software Nonprocedural

2 Module Shareware Web applet

3 Reusable module Academic software Batch

4 Disposable prototype Single location-internal Interactive

5 Evolutionary prototype Multilocation-internal Interactive GUI

6 Standalone program Contract project-civilian Batch database

7 Component of system Time sharing Interactive database

8 Release of system Military service Client/server

9 New system Internet Mathematical

10 Compund system Leased software Systems

11 Bundled software Communications

12 Marketed commercially Process control

13 Outsource contract Trusted system

14 Government contract Embedded

15 Military contract Image processing

16 Multimedia

17 Robotics

18 Arti�cial intelligence

19 Neural net

20 Hybrid: mixed

Table 4.1: SPR's multipart taxonomy of function points

46

4.2.2 Parametric Models and Methods

Parametric models attempt to account for a number of factors (parameters) which in
uence the

e�ort estimation. The ability of a parametric model to re
ect the impact of these factors allows

us to understand how the process of architecting can in
uence the e�ort estimation (Section 5.1).

The wide acceptance of the COCOMO II model for estimation in both industry and academia make

it suitable for consideration as an input for risk evaluation. The openness of its algorithm has

allowed signi�cant research with COCOMO, results that are unavailable with other, proprietary

techniques. Capers Jones remarked that \COCOMO remains the only software estimation model

whose algorithms are not treated like trade secrets" [Jon95]. There exist a number of vendors

providing premium estimation services and software based on the COCOMO model. Among these

are COSTAR by Softstar Systems (http://www.softstarsystems.com/), Cost Xpert by Cost Xpert

Group (http://www.costxpert.com/) and ESTIMATE Professional by the Software Productivity

Center (http://www.spc.ca/).

COCOMO II

The most frequently referenced automated method for large scale software estimation is the CO-

COMO (COnstructive COst MOdel) II strategy [Roy98, Fai06]. This strategy, built on the original

COCOMO method by Boehm [BAC00a], incorporates changes re
ecting modern software engineer-

ing practices. The model, like those built by analogy, requires a calibration of the application domain

and environment. This calibration is based on many of the same factors that go into determining

weightings for function points in sizing techniques. After calibration with over 161 project data

points, the COCOMO II model gave predictions of e�ort within 30% of the actual results 75% of

the time [BAC00a]. This approach allows for statistical interpretation of historical data intergraded

with expert judgement.

The COCOMO II strategy de�nes three models for cost estimation: The prototyping model, early

design model and post-architecture model. These models corresponds to increasingly detailed levels

of input through the phases of the software life-cycle. Each of these assumes successive levels of

information exists, brought about through the reaching of decisions. This added knowledge re
ects

the risks at that point in the project.

The prototyping or \applications composition" model is designed to provide an \order of mag-

nitude" approximation during the feasibility assessment phase. The early design model is designed

47

http://www.softstarsystems.com/
http://www.costxpert.com/
http://www.spc.ca/

to provide estimates concurrently with the formation of the architecture and formalization of the

requirements. This model uses the same base equation to estimate e�ort as the highest �delity,

post-architecture model, and the point at which the models di�er is at the precision of the indi-

vidual variable estimates. The post-architecture models assumes that the project currently has a

\stable" set of requirements1 and a candidate architecture. Just as with proprietary estimation

models, most organizations employing models such as COCOMO II still do not make public their

calibration data [Jon95, BAC00a]. The numbers discussed in the following section re
ect typical

values cited in academic papers. The notion of architecture adopted in this thesis generally involves

a level of detail approximate to that of the COCOMO II post-architectural model.

The COCOMO II post-architectural model uses the base estimating equation,

E�ort = 2:45

17Y
i=1

(EMi) (Size)
1:01+
P

5

j=1
SFj

where

E�ort = number of sta�-months

EMi = refers to process scale factors, shown in Table 4.2

Size = number of KSLOC, for more see footnote2

SFj = refers to e�ort scale factors, shown in Table 4.4

Scale Factor Symbol Abbreviation Name

SF1 PREC Precendentedness

SF2 FLEX Development Flexibility

SF3 RESL Architecture and Risk Resolution

SF4 TEAM Team Cohesion

SF5 PMAT Process Maturity

Table 4.2: COCOMO II process exponent scale factors [BCH+95]

1the term \stable" when applied to requirements is used to indicate that a formal requirements engineering phase
has occurred, not that the requirements are frozen. In fact, Boehm indicates that requirements creep is a built in
factor in all COCOMO models [BAC00a].

48

The exponent by which COCOMO scales the software size is determined by the combined e�ects

of �ve \scale factors" or cost drivers, shown in Table 4.2. These �ve factors re
ect concerns such

as the degree of domain experience of the organization and the degree of
exibility in the process,

company, contract and communications. Table 4.3 shows the factors Boehm uses to assign values

to the �ve exponent scale factors. Several of these factors are qualitative in nature, and very

dependant upon the opinions of the members providing input for the estimation. The coe�cients

listed in Table 4.4 are assigned values between 0:5 and 1:5. These e�ort adjustment parameters are

calibrated by maintaining a database of those controls over a series of projects. Ongoing research

in the area of software estimation involves improving on these estimates. A large amount of this

research involves using metrics to estimate product complexity [BAC00a, Jon95].

Use Case Based COCOMO

Mohagheghi et al. [MAC05b] conducted an industry experiment using Use Case Points which

generates an estimate of e�ort in worker-months based on use cases which specify requirements.

There approach was to implement a complexity assessment of actors and use cases based on technical

and environmental factors, similar to function point analysis. A weighted use case point total is

input into a formula derived from COCOMO II's formula for adapted software. This speci�c use

case method was tested on six moderately sized projects. Similar methods were developed by Anda

et al. [ADSJ01], and Carroll of Agilis Solutions [Car05], who claims e�ort estimates within 9% of

95% of over two hundred large projects. Estimation based on use cases is a fertile area of research as

the popularity of object oriented design and UML continues to grow, this approach attempts to take

advantage of a design artifact already in popular use. The ability of use-cases to be used as part of

the architecting process in particular adds relevance to claims that at this point in the life-cycle a

signi�cant amount of knowledge is gained which enables risk reduction.

Other Parametric E�ort Estimation Models

There exist numerous other parametric models which attempt to address qualities not covered by

COCOMO II, notably, those related to domain speci�c attributes. Included among these are SLIM,

Checkpoint, Price-S, ESTIMACS, SEER-SIM and SELECT. SELECT stands alone among these

with explicit consideration of security issues. All are calibrated from analysis of past projects,

hence, like COCOMO II fare poorly with unprecedented software projects. As noted previously,

49

Symbol 5 4 3 2 1 0

SF1 thoroughly largely somewhat generally largely thoroughly

unprecedented unprecedented unprecedented familiar familiar familiar

SF2 rigorous occasional some general some general

relaxation relaxation conformity conformity goals

SF3 little(20%) some(40%) often(60%) generally(60%) mostly(80%) full(100%)

SF4 very di�cult somewhat basically largely highly seamless

interactions di�cult cooperative cooperative cooperative interactions

interactions interactions

SF5 Based on CMMI Rating

Table 4.3: COCOMO II process exponent values and criteria

Scale Factor Symbol Abbreviation Name

EM1 RELY Required Reliability

EM2 DATA Data Base Size

EM3 DPLX Product Complexity

EM4 RUSE Required Reusability

EM5 DOCU Documentation Match to Life-cycle Needs

EM6 TIME Time Constraint

EM7 STOR Storage Constraint

EM8 PVOL Platform Volatility

EM9 ACAP Analyst Capability

EM10 PCAP Programmer Capability

EM11 AEXP Applications Experience

EM12 PEXP Platform Experience

EM13 LTEX Languages and Tool Experience

EM14 PCON Personnel Continuity

EM15 TOOL Use of Software Tools

EM16 SITE Multi-Site Development

EM17 SCED Required Development Schedule

Table 4.4: COCOMO II e�ort adjustment scale cost drivers [BCH+95]

50

most of these are proprietary models, not readily available for academic research [Jon98, BAC00a].

E�ort Estimation and Architecture

The previous sections examined common sizing and e�ort estimation practices with focus on one

parametric model, COCOMO II. E�ort estimation, particularly with the COCOMO model, has

been shown to be more accurate at the point of architecture, supporting the claim that at this point

in the software life-cycle managers are able to reduce a substantial amount of risk through gained

knowledge of the system. The following section introduces concepts associated with risk analysis,

which allow for formal analysis of speci�c identi�ed concerns of a project. Chapter 5 examines

speci�c risks addressed through the architecting of the system and how those are re
ected in the

COCOMO model.

4.3 Risk Analysis

Risk analysis is the practice of identifying and estimating the risks associated with a given activity.

The following section provides the reader an overview of risk analysis practices, can be used in con-

junction with architecture-centric project management. The risks identi�ed during the architecting

of the system, speci�cally through architectural evaluation such as ATAM (see 3.3.1), can be used

as input for the types of analysis introduced in this section. ATAM provides stakeholders a process

to identify system risks, particulary those associated with quality requirements, and the impact of

those risks on the system as a whole. Most information in this section concerning risk analysis

is drawn from Robert Charette's work [Cha89] and the reader is referred to that text for a more

in-depth treatment of the subject. The reader experienced with risk analysis is invited to proceed

to Chapter 5 which examines the speci�c risks addressed through architecture-centric management.

Charette suggests that each risk can be identi�ed by an ordered triplet of information:

1. si, the the risk as categorized by type

2. li, the likelihood, or probability, of the risk occurring

3. xi, the severity, or consequence of the risk [Cha89]

To that end, one can categorize the threats associated with a software project as those factors

which may cause the project to not succeed. These may include failure to meet schedule (or,

51

consequently budget), failure to deliver functionality, and failure to deliver quality requirements (for

an overview of speci�c quality requirements see Section 2.2. Before examining how the practice of

architecture-centric project management can alleviate these risks, a discussion follows of how risks

are estimated and evaluated. Chapter 5 examines which risks exist to software projects and how

they can be reduced and evaluated through this process.

As the criteria suggest, each identi�ed risk has two primary components: the chance of occurrence

and the magnitude of the consequences. This view of risk is related to the statistical notion of

\expected value," or what the outcome of an alternative will be should it repeated numerous times

[Cha89]. The goal of risk analysis is to provide the project manager with a tool to assist in deciding

on a course of action. The net result of these analysis techniques is a comparison of the risks

associated with various courses of action, usually displayed graphically or numerically. As addressed

in Section 1.2, optimism plays a large factor in project overrun with stakeholders generally assuming

that unforseen negative events will not occur. Risk analysis provides project managers a tool to

numerically evaluate alternatives and remove some degree of optimistic bias from the decision making

process.

4.3.1 Expected Values

One method of evaluating the risks associated with di�erent alternatives is to consider the values

associated with each outcome and the probability of that outcome occurring. Expected value is

the sum of all probabilities of a risk's outcomes occurring multiplied by the value of that outcome's

occurrence. For a random variable, X, expected value is expressed mathematically as,

E(X) =

Z

XdP

where
 is the space of all possible values of X and P is the probability space of X. For discrete

random variables, this simpli�es to,

E(X) =
X
i

livi

where i is the number of possible outcomes, li is the probability (likelihood) of outcome i occurring

and vi is the value (payo�, consequence) associated with outcome i. Note that the expected value

may possibly never equal any possible value of the random variable3. Likelihoods represent proba-

3The classical example of this is with the role of a six sided die where, E(die roll) = 1

6
+ 2

6
+ 3

6
+ 4

6
+ 5

6
+ 6

6
= 3:5

52

bilities, and thus the all likelihoods expressed should sum to 1 [MA02]. Expected values are used

in insurance, gambling and business extensively in order to provide decision makers with a tool to

consider the balance between risk and reward.

In order to consider calculating expected values of alternatives, one must �rst have estimates

for the likelihood and values associated with a given alternative's consequences. The accuracy

of those estimates will have a large impact on the expected values. Consider a simple example

related to software architecture, treating estimation error as a discrete random variable. Assume the

architecture team for our company, Large Software Project R Us (LSPRU), proposes a given design

which is termed architecture A1 and following the application of the COCOMO II post-architecture

analysis the e�ort is then calculated in monetary terms. It is assumed that there exists a database

containing a reasonable set of relevant project outcomes and estimates, with accompanying regression

analysis for use in calibration. Based on previous use of COCOMO with similar projects at LSPRU,

one can estimate the possible outcomes of this project with respect to �nishing on schedule, as well

as the likelihood and value of those outcomes. These are shown in Table 4.5.

Outcome Likelihood Cost

1 month early 0:05 �4; 500; 000

on time 0:25 �5; 000; 000

1 month late 0:2 �5; 500; 000

2 months late 0:15 �6; 000; 000

3 months late 0:1 �6; 500; 000

4 months late 0:05 �7; 500; 000

5 months late 0:05 �8; 000; 000

6 months late 0:05 �8; 500; 000

7 months late 0:05 �9; 000; 000

8 months late 0:05 �9; 500; 000

Table 4.5: Estimated outcomes of project at LSPRU

Applying the de�nition for expected value of a discrete random variable, where l is the likelihood

of occurrence and v is the value or consequence of the loss (expressing cost in millions of dollars):

E(X) =
X
i

livi

53

E(X) = (0:05)(�4:5) + (0:25)(�5) + (0:2)(�5:5) + (0:15)(�6) + (0:1)(�6:5) + (0:05)(�7)

+(0:05)(�7:5) + (0:05)(�8) + (0:05)(�8:5) + (0:05)(�9)

E(X) = �6:125

Given these calculations, the project manager estimates the cost of implementing this architecture

at $6; 125; 000. Realistically, the random variable represented time to complete the project would

be treated as a continuous random variable, and the cost associated with project overrun may not

increase linearly with time. In an ideal world, the project manager could compare this architecture

with other alternatives, examine the expected values of each, and then make a decision with sound

numerical backing.

4.3.2 Decision Trees

This section presents decision trees as one method for analyzing risks associated with various alter-

natives. Decision trees re
ect well the choices of alternatives associated with decisions made during

architecting. As each decision is made, knowledge is gained about the project, which allows for more

closely identifying the likelihood and outcome of consequences associated with these alternatives.

Further, trees in general provide a familiar representation to computer scientists. Other mechanisms

exist for risk analysis, and are mentioned in 4.3.2.

Decision trees provide a graphical means of comparing alternative courses of action with their

probably outcomes and expected values. This method of risk evaluation provides the bene�ts of

being simple, as it is closely related to the notion of expected values. Root and internal nodes of

the decision tree represent alternatives, while edges (other than those extending from the root node)

represent probabilities. Note that the sum of the probability edges coming out of a given node must

sum to one (100%). The leaf nodes of the decision tree represent the payo� amount of a given

decision. The advantage to using decision trees for risk assessment is that stakeholders can easily

visualize all alternative courses of action and the consequences of each. In the case of multi-level

trees, the probability of a given outcome is computed by taking the produce of all probabilities along

the edges starting at the root and continuing to the outcome4.

Revisiting the example from Large Software Projects R Us, assume the project manager gets her

wish, and is presented with three di�erent architectures. Each of these has been estimated using

4This is termed conditional probability. For an in-depth treatment of this subject, the reader is referred to [MA02]

54

Alternative E(X) Calculations Expected Value

A1 (0:3)(�4:75) + (0:7)(�7:5) �$6:675M

A2 (0:1)(�4) + (0:9)(�7) �$6:7M

A3 (0:2)(�5:5) + (0:8)(�6:5) �$6:3M

Table 4.6: Expected Values of LSPRU Alternatives

Figure 4.1: Decision Tree for LSPRU Architecture

55

their favorite cost estimation model, and the results have been aggregated into a decision tree. The

tree is simpli�ed by aggregating each outcome as either early/on-time or late. Due to the nature

of each alternative architecture, however, the probabilities of �nishing the project early/on-time

(represented as the uppermost outcome associated with each node) and probabilities of �nishing

late (lower outcome) vary signi�cantly. This tree can be seen in Figure 4.1, and each alternative

presents itself a highly di�erent expected value. The �rst architecture, A1, has a 0:3 probability of

�nishing on time, with a cost of $4:75M while the cost to develop the second architecture on time

is only $4M , however, the estimated probability of this falls to 0:1. Expected values now provide a

way to compare these alternatives. The comparison is presented in Table 4.6. From this table, note

that architecture A3 seems to have a lower expected value than the others.

Making the example somewhat more realistic, lets assume that the �rst architecture, A1 comes

with a few di�erent alternatives. Perhaps the architects are split on choosing a framework. Some

developers feel certain that by implementing in J2EE that the probability of completing the project

on time increases signi�cantly due to their experience with it. Others have concerns that in order

to compensate for inherent performance issues in the J2EE framework, that work-arounds will take

longer to implement, and choose instead to use .NET. This would lead us to produce a multi-

tiered decision tree as described earlier, adding to the complexity not only of the graph, but of the

decisions necessary to resolve by stakeholders. Further, these multi-tiered decision trees can be used

to visualize the potential impact of cascading decisions[Cha89].

Other Methods for Risk Evaluation

Decision trees provide a simple method for visually analyzing the alternatives available and asso-

ciating their respective probabilities and outcomes. However, as noted, decision trees may become

arbitrarily large and complex, and fail to account for multiple dimensions of risk. Charette sug-

gests isorisk countour maps as an alternative. These maps graph curves against axes representing

costs and probability. They enable the project manager to view several alternatives on the same

graph simultaneously; however, this requires the establishment of a risk referent, or risk tolerance,

level. Project management processes, such as those based on network models (eg. PERT, Petri-nets,

queueing models), also incorporate a degree of risk evaluation. Another software engineering tool for

project management is the work breakdown structure (WBS), a detailed description of all signi�cant

work, task decomposition, assignment of responsibilities and framework for scheduling and budget-

56

ing [Roy98, Boe84]. The process of creating a well planned WBS is considered by practitioners to

be a large step toward risk evaluation [Cha89].

4.4 Conclusion

The presence of multiple alternatives within an architecture presents one very large factor which

increases the complexity. Other realistic issues in risk evaluation include estimates of the probabili-

ties involved. Large corporations keep detailed databases of e�ort histories with regard to software

projects, and these used in conjunction with estimation models provide estimates of those proba-

bilities, although it should be noted that relatively small changes in probabilities can have a large

impact on expected values. Techniques such as the Delphi method have been developed to re�ne

expert input from multiple sources in order to produce accurate estimates of these probabilities

[KCLS98] [Cha89]. No method is perfect, and the large complexity and exponential number of al-

ternatives associated with software projects provides limits on how tight of estimates any method

may ever obtain [Bro95, Cha89]. Risk assessment does not o�er any \silver bullet" [BAC00b] to

project managers in order to facilitate a successful project; however, evidence has shown that by

careful consideration of risk factors and sound software engineering techniques, higher success rates

can be achieved than results show [AV02, Cha89].

57

Chapter 5

Addressing Risk with Software

Architecture

The premise of this research is that at the point of architecture, a signi�cant amount of risk is

removed from the project in relation to the e�ort expended to this point. Naively, it can be assumed

that all risks associated with a software project naturally decrease as the project moves through

the software life-cycle. This decrease in risk is a direct function of the amount of knowledge gained.

However, savvy project managers are aware that this increase in knowledge and hence, reduction in

risk, does not occur uniformly by life-cycle phase. The success associated with software architecture,

notably that reported by Daniel Paulish and others at Siemens Corporation [Pau02, NPSS01], as

well as academic research by Jan Bosch [Bos00], and the work of those at the Software Engineering

Institute [BCK98, CKK02], suggests that at the point of architecture, a signi�cant decrease in the

amount of risk associated with a project. This decrease could be visualized as an \in
ection point"

on the curve of risk measured as a function of time. The exact point at which this in
ection may

occur remains unknown, for a number of reasons:

� Formal risk assessment is still not a widespread practice in industry

� Organizations engaging in formalized estimation and risk assessment methods tend to keep

this data proprietary.

� Current practices of estimation and risk assessment generally fail to account for quality re-

58

quirements

� The extent to which an architecture is detailed varies signi�cantly based on domain, project

size, scope and stakeholder preference. This point is elaborated in Section 2.5.3.

� The nascent nature of software architecture is only beginning to show results in software

industry.

Given that as knowledge of the project increases over time, and with this knowledge comes a

reduction in the level of uncertainty inherent in the process, this added knowledge provides the

project manager with higher precision estimates. At early stages, when little is known about the

project, estimates are highly inaccurate and large potential exists for unforseen problems to occur

and for quality attributes to be unaccounted for. Early decisions made in the software life-cycle

remove uncertainty from the project, hence lower risk by identifying and constraining. However,

poor decisions at an early stage have been shown to be extremely expensive, with this expense

growing the later in the life-cycle that the mistake is discovered. Conversely, early quality decisions

enable the team to avoid this expense. Through a solid architecting process, including a formalized

evaluation involving most stakeholders, the project team can therefore remove signi�cant risk from

the project at an early stage. The premise suggests this provides a large amount of risk reduction for

the e�ort expended. To this end, this chapter presents an accumulation of how currently available

work suggests risks can be largely reduced or bounded through the process of architecture-centric

project management.

5.1 Addressing Estimation Risks

One of the largest and most costly risks associated with large software projects is that of not

�nishing on time or, consequently, on budget. As detailed in Section 1.1, a high percentage of large

projects run signi�cantly over schedule and over budget, costing corporations millions of dollars,

as well as damage to reputation. It is well known that the estimation techniques discussed in

Chapter 4 carry with them a certain amount of uncertainty [Jon95, BAC00a]. The amount of this

uncertainty decreases throughout the life-cycle, and, according to COCOMO pioneer, Barry Boehm,

this uncertainty decreases dramatically during the design process as can be seen in Figure 5.1.

Graphically, the �gure demonstrates the decrease in uncertainty, shown as the divergence between

59

the curves, as the software life-cycle progresses. Early estimates at the product de�nition stage are

shown to vary between one-quarter the actual e�ort and four times the actual e�ort. By the time,

design speci�cation is complete, this variance in estimation error ranges between eight-tenths and a

fourth-again as much of the �nal e�ort.

This observation has been con�rmed by several others, including Paulish [Pau02]. COCOMO II

addresses this by considering estimation to be an iterative process, to be repeated multiple times as

more information is known about the project. That is, as more knowledge is gained in the life-cycle,

uncertainty is removed from the process, which provides the manager with better estimates, equating

to lower risk. In reality, formal estimation techniques are rarely done at all, and when completed,

usually occur only once during the life-cycle [Jon95].

Research has well established that the further along in the software life-cycle, the more costly

it is to incorporate changes to the system [BAC00a]. Boehm's research further suggests that as

the process moves through the lifecycle, that the cost of these changes increases exponentially,

as illustrated in Figure 5.2. Motivated by this, software engineers seek to create an architecture

which will not only meet the functional and quality requirements speci�ed, but also allow for future

modi�cation with as little expense as possible.

Examining the COCOMO II process scale factors (Table 4.2) and e�ort adjustment factors

(Table 4.4), it becomes apparent that a number of these factors can be estimated more closely

following the steps outlined by Paulish's architecture centric project planning approach. The level of

precedentedness, SF1, should follow immediately from the architecture deliverables. Precedentedness

is de�ned as \the degree of domain experience of the development organization" [Roy98].

Capturing the degree to which the architecture-centric process has been implemented by the

team is SF3, architecture and risk resolution, whereby following the prescribed techniques of ATAM

and subsequent risk analysis as described in Section 4.3, an economical adjustment factor can safely

be applied [Roy98]. The impact of these two factors is large, as COCOMO incorporates these into

the exponential scaling factor, not simply the multiplicative.

Among the cost drivers whose boundaries become more apparent are EM2, data base size. This

factor is calculated by a ratio of data base size (in bytes) to software size (in SLOC) and is bounded

through the development of architecture by determining the software components and database

usage prior to cost estimation. EM3, product complexity can be estimated by applying established

software metrics to the architecture. This degree to which this particular cost driver can be estimated

60

Figure 5.1: Error Associated with Software Estimation [MIT02]

61

is highly dependant on the level of speci�city in the architecture. Research of Fairbanks [FBD06] and

Bosch [Bos00] seems to suggest that this indicator will likely be a place where the project manager

may be required to �ne-tune the \detail knob" for speci�c components, in order to closely estimate

the e�ort.

EM8, platform volatility refers to the hardware and software components making which system

resides on and calls. Components such as the network, operating system, database management

system, and framework make up the platform used in this COCOMO cost driver. The volatility of

these components is determined by estimating the frequency of major and minor changes during the

development life-cycle. Again, once the architecture has been developed, the project manager is in

a position to closely estimate this factor based on history.

EM11, applications experience, EM12, platform experience and EM13, languages and tool expe-

rience all follow directly from the architecture development process. That is, once decisions have

been reached regarding these, the project manager is in a far better position to estimate the level of

experience and competency of the team with respect to the applications, platforms and languages.

Further, should the desired experience not be present on the proposed team, in some cases the

manager may be able to lower this cost driver by bringing on board an individual with expertise in

a given area, allowing the cost driver to be lowered at an early stage. By determining this early,

the team is able to avoid the temptation of making \a late project later [Bro95]" by onboarding an

expert further in the life-cycle.

EM1, required reliability, EM4, required reusability, EM6, time constraint, EM7, storage con-

straint are often considered to be quality requirements. This e�ect and importance of these require-

ments will be determined through the ATAM steps. Speci�cally, the quality attribute tree generated

through ATAM gives an indication of the importance of these constraints to all stakeholders.

In summary, the ability to bound project estimation much more closely following the development

of the architecture is widely accepted [Boe84, Pau02, Bos00]. The ability to more closely estimate

the time and cost for developing the system can be easily equated to the risk of developing the

system on time (or equivalently on budget) [Jon95]. While completing the project, as speci�ed in

the requirements, on time and on budget is only one risk, it is considered by most project managers

to be the most signi�cant risk [Roy98]. Further, the number of instructions programmed is by far

the largest factor identi�ed as an indicator of project e�ort [BP88b]. By investing the resources into

developing the architecture, the project manager reduces the likelihood of developing unnecessary

62

Figure 5.2: Cost of Change Over Life-Cycle [Met05]

63

components.

5.2 Addressing Quality Risks

The ability of architecture to provide an early indicator of quality requirements is a large motivation

for architecture-centric project management. Most published work on the subject of architecture

evaluation and analysis focusses heavily on the suitability of the design for supporting quality re-

quirements [CKK02, Bas06]. Assessment of the suitability of an architecture to deliver on quality

requirements posses several challenges to the architecture team. As has been noted, quality require-

ments are frequently poorly speci�ed and overly broad. The responsibility of requirements elicitation

then falls on the architecture team to determine exactly which of these are most important, the scope

of the requirement, the speci�cations of the requirement and acceptable tradeo�s among con
icting

quality requirements.

Architecture-centric project management, and speci�cally ATAM, allows all stakeholders in a

project to have input in determining the importance of quality requirements. While some of these

are explicitly accounted for in the COCOMO model (eg. reusability, reliability, time and space con-

straints) most other qualities are not. Issues such as maintainability, subsetability, security, usability

and portability are not directly accounted for in COCOMO, and will often be overlooked by the

design and production team unless other stakeholders are given opportunity for input. This \ex-

plicit evaluation of the architecture of software systems with respect to the quality requirements will

minimize the risk of building a system that fails to meet its quality requirements and consequently

decrease the cost of system development" [Bos00].

In summary, the architecture-centric project management process provides the necessary com-

ponents to apply risk management analysis while accounting for quality requirements. This includes

risk identi�cation, by ensuring input from all stakeholders, or at least a representative sample of

stakeholders, is given during the architectural analysis stage. These quality risks are then prioritized

by consensus of stakeholders, giving the project manager a �rst indication of the consequences of

this quality not being met, and of the payo� in meeting the quality requirement. The third neces-

sary component for risk evaluation is the likelihood of a risk occurring. Section 3.3.1 examines how

the ATAM method elicits input from developers in order to gauge the probability of meeting given

quality requirement under the proposed architecture.

64

5.2.1 Research Toward Formalizing Quality Requirements at the Archi-

tecture Level

Subramanian and Chung [SC05] conducted research exploring an architecture centered approach

and focussed on incorporating the quality requirement of adaptability into the architecture. They

sought to answer two questions:

� If all constituent components of an architecture possess a given non-functional requirement,

will the system as a whole satisfy the requirement?

� What is the minimum number of components in an architecture that must possess a certain

non-functional requirement, in order for the system as a whole to display that requirement.

By creating a goal interdependency graph with logical AND and OR relationships between components

in order to maintain adaptability of the system, they examined how scenarios where varying numbers

of constituent components of the architecture possessed this quality. A logical AND relationship

here shows a case where system adaptability can be maintained only if all constituent components

possess that quality. A logical OR relationship models the case where the quality can be maintained

in the entire system, given that at least one of a subset of constituent components maintain the

property. The graph takes on exponential degrees of complexity as these relationships are combined

among components. While their research presents a way to identify this question, they lack real

world architectures to test. This ability to identify the components necessary to maintain a quality

attribute in the system allows for a signi�cant reduction of risk at the architectural level. If a

system's failure to meet adaptability requirements is identi�ed at the architectural level, the expense

of rework at later stages of the life-cycle can be avoided. That is, the added knowledge gained from

identifying quality risks at the architectural stage reduces the uncertainty present ultimately leading

to a reduction of risk, at the point of architecture.

5.3 Other Bene�ts of the Architecture-Centric Approach

5.3.1 Stakeholder Communication

Fairbanks et al. discovered that using architectural graphical models was an e�ective tool for bridging

the communication gap between stakeholders [FBD06]. They found that parties from the business

65

domain, after being presented with basic UML models were able to participate in a planning in a

relevant way. The UML provided a common notation in which stakeholders were able to properly

ground the communication. This played an important role in making architecture decisions that fall

on the boundary between technical issues and business issues. They present an example involving

a high demand for data feeds on a shared repository. The stakeholders had two possible solutions

to the problem, one requiring a technical solution by decentralizing the data, the other with a

business solution involving a change to work practices. Both solutions had varying degrees of impact

on di�erent stakeholders, but the researchers discovered that the architectural UML models they

employed provided a su�cient common reference for resolving the debate.

The importance of the architecture providing a communication mechanism to all project stake-

holders cannot be understated. The artifacts produced during this process provides information

which, when done correctly, addresses the concerns of all involved. Paulish speci�cally refers to

the four separate architectures for this speci�c purpose. Clements et. al. suggest that one of the

largest bene�ts of the architecture review process is \getting all the stakeholders in the same room

at the same time" [CKK02]. Their work builds on the case studies used in developing the Software

Engineering Institute's ATAM process. The SEI researchers noted that \a group dynamic emerges

in which stakeholders see each other as all wanting the same thing: a successful system" [CKK02].

Whereas before, their goals may have been in con
ict with each other, now they are able to explain

their goals and motivations so that they begin to understand each other. Increased levels of commu-

nication suggest that stakeholders can ensure at this early stage, that their concerns are addressed.

Once again, by identifying concerns at the architectural stage, the uncertainty which leads to high

risk areas is alleviated, allowing the risk to be reduced

5.3.2 Resource Assignment

Architecture �rst allows project managers to properly assign resources to projects. Projects with

insu�cient resources initially assigned account for a large amount of schedule overrun for the system

[Bro95]. This problem becomes compounded when managers attempt to add additional engineers

to the project once signs of overrun are present. As Brooks details, this actually has a tendency

to increase the overall development time by adding \ramp-up time" and complexity to the com-

munication process. This suggests that taking the architecture �rst approach prior to allocation

of resources has potential for a signi�cant impact in scheduling precision, ultimately resulting in a

66

reduction in risk. The Siemens researchers also cited success in using the architecture to �nalize

the composition of component teams. Paulish suggests that the identi�ed top level components

translate naturally into these teams of software engineers. Also, as noted in Section 5.1, this process

will identify de�ciencies in team experience, in some cases allowing the manager to add expertise

to the project at an early stage in the development. Hence, by identifying the resources needed to

not only implement the functional requirements, but also the quality requirements expressed by all

stakeholders at an early stage, the project manager is able to ensure the resources are in place at

an early stage. The knowledge gained by this ability to assign resources at the architectural stage

again alleviates the uncertainty in the project, thus reducing risk.

5.3.3 The Project Schedule

Making a better schedule is cited by Paulish as a bene�t to the architecture-centric approach.

Brooks notes that dependencies among components leads to schedule overrun, as complete testing

of a component cannot be complete until other components with which it is coupled are imple-

mented [Bro95]. The dependencies identi�ed among architectural components allows the manager

to set checkpoints which account for these dependencies, leading to a more realistic and manageable

schedule. Those components on which a high number of others depend can be developed and tested

�rst, thus avoiding some of the delays associated with testing interdependencies. Royce and Keil

suggest that implementing proper and reasonable checkpoints of milestones in the development of

a large software project is a driving success factor [Roy98, KCLS98]. Based on this, the ability of

architecture to aid the project manager in setting a reasonable schedule (and associated deliverables

such as a work breakdown structure, software development plan) is another driving factor in helping

ensure risks are mitigated over the life-cycle.

5.4 Ending Thoughts

5.4.1 Why Architecture?

This section addresses the issue of why there exists this large decrease in risk at the point of

architecture. Much research has been conducted and is ongoing in an attempt to mitigate risk at the

point of requirements. Indeed, considerable work is underway to use capability engineering to better

67

formulate the mapping between needs and requirements such that capabilities are produced which

are change tolerant. These provide a natural transition to architecture components which can then be

allocated to the relevant resources [RAB07]. While this work has large potential to produce systems

with high conceptual integrity and incorporate quality attributes (eg. maintainability), research

suggests that at the point of requirements there is not enough knowledge present to perform reliable

e�ort estimates. Further, prior to developing the architecture of the system, decisions regarding top

level components, frameworks and languages have yet to be made, thus removing the ability to assign

resources to components in a knowledgable manner. At this point, the project manager is lacking

the ability to set proper milestones and develop the work breakdown structure. In summary, this

research suggests that the manager simply does not have enough knowledge to mitigate a substantial

amount of risk.

Given that not enough knowledge is present at the requirements stage to mitigate substantial

risk, the next question is whether or not a more appropriate phase of the life-cycle for this decrease

in risk is at the conclusion of low-level design. Once low-level design is complete, the system is ready

for implementation. Decisions have been made regarding not only major hardware and software

components, frameworks and languages, but also data structures, algorithms and very �ne grained

details of the system. At this phase in the life-cycle, the project has exceeded the point at which

the manager is in a position to mitigate some substantial risks. As the system is in a state to begin

coding, if a need is seen for an experienced developer for a certain niche, the time pressure (and

consequently, the cost) of obtaining that developer grows signi�cantly. Of course, this principle

applies to resources other than engineers also, such as computing resources.

5.4.2 Conclusion

This chapter identi�es the factors involved with project estimation which are bounded by the process

of architecture-centric project management. Based on the ability to more closely estimate the

e�ort required to develop the software system, the risk of completing on schedule and on budget

is greatly reduced. Similarly, through the architecture-centric management process, quality risks,

not accounted for in traditional management practices are incorporated in the planning and risk

evaluation. Lastly, Chapter 5 examines the reasons to support the premise that the largest drop

o� in risk occurs at the point of architecture, enumerating the knowledge lacking at the point of

requirements and discussing the substantial e�ort involved in low-level design, which, while greatly

68

identifying and quantifying risks, occurs too late in life-cycle for the project manager to adjust plans

to mitigate these risks.

69

Chapter 6

Conclusions and Future Work

6.1 Observations

Proponents of architecture have long cited its bene�ts of including consideration of quality require-

ments early in the design phase. Research of Siemens and the Software Engineering Institute also

claims bene�ts to project management by providing the manager a framework for making decisions

regarding scheduling and resource allocation. The bene�ts of this approach have been documented

well in terms of software engineering theory and some cases studies. There has yet to be published

many well documented case studies of large projects, especially viewed in comparison with large

projects not employing an architecture-centric approach.

For small projects, this is too expensive due to the high overhead associated with formal esti-

mation models and risk analysis techniques. Further, this cost grows signi�cantly when faced with

the decision between multiple architectures, each with numerous alternatives. As projects increase

in size, however, the failure rate increases signi�cantly [Jon98] and an early investment into an

architecture-centric approach would seem to have potential to largely mitigate several of the risks

associated with them. However, for large projects whose life-cycle spans years and whose budget is

measured in millions of dollars, potential exists for management to implement an architecture-centric

approach.

70

6.2 Conclusions

To review, Charette's steps in risk evaluation:

1. Identi�cation of potential risk events through a structured and consistent method

2. Estimate the magnitude of each risk and its consequences, and the creation of options

3. Evaluate the consequences of risk [Cha89]

Steps one and two occur in architecture-centric management through the architecture design and

evaluation process. During design, risks to project completion are identi�ed by the architects. During

architecture evaluation, the magnitude of each risk (ie. the importance it has to the project), the

likelihood of occurrence and the consequence of the risk occurring are estimated. The accumulation

of past work suggests that at the point of architecture, project managers are able to perform this

risk evaluation strategy with more impact than in prior or successive life-cycle phases.

Chapter 5 examines the risks that are either alleviated or tightly bounded through the devel-

opment of the architecture, namely estimation risks and risks associated with not meeting quality

requirements. These risks are known to be poorly accounted for in traditional project management.

Knowing that early life-cycle size and e�ort estimates have been established to be highly unreliable,

this work enumerates how e�ort estimation parameters become more tightly bounded through the

architecting process. Further, architectural evaluation as detailed in Section 3.3.1 provides a struc-

tured process to identify the quality risks from all stakeholders which are frequently not addressed.

A compilation of prior work suggests that at this point of architecture, the signi�cant decrease

in risk as a result of gained knowledge occurs. The work of Siemens practitioners and the SEI

researchers speci�cally points to the ability to appropriately allocate and assign resources at an

early stage. The accuracy gained by e�ort estimates suggests that at the point of architecture,

enough information is known for this to occur. That is, major components, frameworks, languages

and interfaces have been designed, so at this juncture, the project manager is aware of what needs

exist to carry out low-level design and implementation. Further, experience from numerous project

failures (see Section 1.1) suggests that discovering needs too late in the life-cycle, causes rework,

added expense. That is, the lack of knowledge up to this point manifests itself, suggesting a high

amount of risk present if quality factors and resource needs are not identi�ed sooner.

71

Chapter 4 presented formalized and widely accepted methods of estimating and evaluating the

risks associated with large software projects. These techniques can be used by project managers

to and future researchers to prove that architecture-centric project management provides a way of

measuring and mitigating estimation and quality risks. Notably, Section 4.3.2 examined the use of

decision trees as a tool for evaluating alternatives, their expected values and risks associated with

them. Software development, especially associated with large projects, will allays have substantial

risk. These risks include failure to meet schedule, failure to meet budget, and failure to deliver on

functionality or quality requirements. However, with solid software engineering practices, notably

around the point of architecture, this work suggests that many of these risks can be mitigated and

managed in a way to allow for a higher amount of projects to be successful.

Contributions of this research include providing a framework with which to consider the impact

of architecture-centric management on reducing risk in large projects. Speci�cally,

� Mapping speci�c points of knowledge gained through the architecting process to the COCOMO

II parametric e�ort estimation model

� Enumerating documented bene�ts (eg. providing communication mechanism, involvement of

all stakeholders) of architecture-centric management not re
ected in parametric models which

have potential to signi�cantly lower risk

� Suggesting a plan to prove the bene�ts of architecture �rst management to encourage widespread

adoption

� Presenting evidence that prior to architecture, there is not enough knowledge present to sub-

stantially reduce estimation risk

� Discussing, from a management point of view, that scheduling which occurs in life-cycle phases

subsequent to architecture is too late to allow optimal resource allocation

6.3 Future Work

6.3.1 Proving the Bene�ts of Architecture-Centric Project Management

In some cases, stakeholders openly question the investment of time into architecture development,

rather than beginning coding, even on large projects [FBD06]. Currently, managers and consultants

72

o�er what are essentially free estimates based on rules of thumb (see Section 4.2.1). Despite numerous

amounts of evidence to the inaccuracy of manual methods, they remain the most widespread in

practice [Jon98]. Further, even in cases where estimation models are used, investors are reluctant

to enter into a full architecture-centric approach, oftentimes in favor of speeding up development

[Fai03, BNWZ07]. This hesitation for widespread adoption may be mitigated by published work

proving the success, rather than current literature which o�ers mainly best practices, isolated success

stories and in some cases analysis based on a level of detail normally associated with low-level design

metrics, not architecture. In order to prove this idea, this section presents an outline for how one

would conduct an experiment with cooperation of a software producing organization involved with

large projects.

Signi�cant knowledge can be gained by examining the artifacts of architectural knowledge and

design from past projects. Researchers can use the architectural design documents in order to

conduct estimates using COCOMO II's post-architectural model. The results of these estimates can

then be compared to actual e�ort expended on the project. Based on these comparisons, researchers

would be able verify that at the point of architecture, e�ort estimates are predicted with a high degree

of precision. Further, by comparisons of these estimates to actual outcomes, research can assess the

ability of an architecture-centric approach to identify potential problems, or even doomed-to-failure

projects at this early stage.

Estimation risks can be measured in a straight-forward manner at multiple times during the life-

cycle. COCOMO II presents three models corresponding to various stages in the software life-cycle.

Researchers would conduct estimation of several projects at each of these phases:

1. The prototyping model conducted from early user-requirements (ie. customer needs) docu-

mentation

2. The early design model after the �rst iteration of architecture with early design documentation

and requirements speci�cation

3. The post-architectural model following completion of the architecture

Following the life-cycle of the project to release, the accuracy of each of these models can be

compared to the actual e�ort expended on the project. Once this information is known, the es-

timation risk can be calculated given the (1) the likelihood of each technique, corresponding to

73

life-cycle phase, accurately predicting the e�ort within a given tolerance and (2) the consequence of

the overrun, measured in schedule slippage and dollars as a function of programmer-months.

Following the calculation of risk based on the three estimation models, researchers can calculate

what is known as the expected value of information (EVOI) [Cha89]. This �gure represents the

what the information gained through the architecting process is worth to the project manager. This

calculation begins by calculating the expected value of an given estimate. This is, essentially, the

sum of the product of the probabilities of each outcome, in this case where the project �nishes

with respect to its schedule, and the cost or payo� of each alternative (see Section 4.3.1 for more

information). The expected value of the information is the di�erence of the expected value and the

cost of obtaining the information, in this case the cost of developing the architecture.

By repeating this study over several projects, a compilation of data concerning the expected

value of information can be accumulated. If, as expected, this value consistently can be shown to be

positive (the cost of developing the architecture is less than than the expected value of estimation),

more widespread acceptance of an architecture-centric approach is likely to occur. It is possible

even that there exists an economy related to developing multiple architectures. That is, prior to a

decision for implementation, the risks can be explored with each architectural alternative and still

be measured as a �nancially favorable outcome.

This experiment details the calculation of estimation risk only accounting for functional require-

ments. A more interesting point may even exist whereas the quality requirements are considered,

and some measurement of the �nal projects quality in terms of usability, portability, maintainability,

etc... be conducted and compared with those of projects which failed to employ an architecture eval-

uation such as ATAM. To prove the bene�ts of this approach with respect to quality, it is possible

to measure the e�ort spent on rework, due to quality issues being addressed late in the life-cycle, in

comparison with the cost spent developing the architecture and cost spent on subsequent architecture

evaluation. Assuming that a representative group of stakeholders can be assembled to participate,

the ability of the architecture to accommodate quality requirements can be assessed. Based on this

assessment, again, results from ATAM can be then compared to the ability of the developed system

to deliver on quality requirements. Large potential exists here by studying projects which failed to

deliver quality requirements to verify that indeed, this would be noted by performing architecture

analysis.

Verifying results of COCOMO II estimation models and the Architecture Tradeo� Analysis

74

Method against known performance of successful and failed projects, has potential to reap large

amounts of data, speci�cally to verify the in
ection point around architecture. If, as expected,

the process of developing and evaluating the architecture prior to resource allocation allows for

accurate predictions with regard to e�ort and the ability of the proposed system to incorporate

quality attributes, the hypothesis is proved.

6.3.2 Using Architecture-Centric Estimation to De�ne Architecture

As an interesting side-note to this research, note that evidence presented from numerous industry

and academic research projects with size and estimation suggests that the process of evaluating risk

may help de�ne the point at which architecture is separated from low-level design. This suggests that

this delineation exists where the software project manager believes to have enough granularity of

detail in order to bound the estimates of risk tightly enough in order to arrive at a decision. That is,

the process of risk evaluation can be considered as a method of arriving at an answer to the question

of \what is an a software architecture" that was discussed in Section 2.5.3. In many cases, a course

level of detail is su�cient to provide accurate e�ort estimates and assess the quality risks associated

with a project. In other cases, such as safety-critical systems, real-time embedded systems, or those

for which the platform, language or other tools are relatively new to the project's engineering team,

may require a much �ner grained level of detail. This belief is captured graphically in Figure 2.3.

Following more research compiling data from architecture �rst approaches, it is possible to de-

velop heuristics suggesting what levels of detail are required to obtain the desired information. This

level of detail could be measured by number of each types of diagrams(class, sequence, timing, etc..),

amount of information present on the diagram(type of dependency, information passing mechanism,

class attributes, methods, etc..) or number and types of tables and charts re
ecting traceability and

mapping between diagrams. This level of detail could be grouped by business domain and computer

science domain, and precedentedness of the project, platform, language or other tool to the devel-

opment team. Guidelines suggesting a level of necessary detail could prove to be useful for accurate

estimation and stakeholder understanding of the project.

75

REFERENCES

[ADSJ01] Bente Anda, Hege Dreiem, Dag I. K. Sj�berg, and Magne J�rgensen. Estimating soft-
ware development e�ort based on use cases-experiences from industry. In Proceedings
of the 4th International Conference on The Uni�ed Modeling Language, Modeling Lan-
guages, Concepts, and Tools, pages 487{502, London, UK, 2001. Springer-Verlag.

[Alk06] Mohammad A Alkandari. Investigation into cultural aspects, personality, and roles of
software project team con�guration. Master's thesis, Virginia Tech, 2006.

[AV02] Tom Addison and Seema Vallabh. Controlling software project risks: an empirical study
of methods used by experienced project managers. In SAICSIT '02: Proceedings of the
2002 annual research conference of the South African institute of computer scientists and
information technologists on Enablement through technology, pages 128{140, , Republic
of South Africa, 2002. South African Institute for Computer Scientists and Information
Technologists.

[BAC00a] Barry Boehm, Chris Abts, and Sunita Chulani. Software development cost estimation
approaches a survey. Ann. Softw. Eng., 10(1-4):177{205, 2000.

[BAC00b] Barry W. Boehm, Chris Abts, and Sunita Chulani. Software development cost estima-
tion approaches - a survey. Ann. Software Eng., 10:177{205, 2000.

[Bal06] Osman Balci. Software development life cycle waterfall model. In Software Engineering
CS 3204, Lecture Notes in Computer Science, 2006.

[Bar06] Andrew Bartels. http://www.forrester.com/Research/Document/0,7211,40451,00.html,
2006.

[Bas06] Len Bass. Principles for designing software architecture to achieve quality attribute
requirements. In SERA '06: Proceedings of the Fourth International Conference on
Software Engineering Research, Management and Applications, page 2, Washington,
DC, USA, 2006. IEEE Computer Society.

[BCH+95] Barry Boehm, Bradford Clark, Ellis Horowitz, Richard Shelby, and Chris Westland. An
Overview of the COCOMO 2.0 Software Cost Model. In Software Technology Confer-
ence, April 1995.

[BCK98] L. Bass, P. Clements, and R. Kazman. Software Architecture In Practice. Addison-
Wesley, 1998.

76

[BM97] J. Bosch and P. Molin. Software architecture design: Evaluation and transformation,
1997.

[BNWZ07] Len Bass, Robert Nord, William Wood, and David Zubrow. Risk themes discovered
through architecture evaluations. wicsa, 0:1, 2007.

[Boe84] Barry W. Boehm. Software engineering economics. IEEE Trans. Software Eng., 10(1):4{
21, 1984.

[Bos97] J. Bosch. Specifying frameworks and design patterns as architectural fragments, 1997.

[Bos00] Jan Bosch. Design and Use of Software Architectures. Pearson, 2000.

[BP88a] B. W. Boehm and P. N. Papaccio. Understanding and controlling software costs. IEEE
Trans. Softw. Eng., 14(10):1462{1477, 1988.

[BP88b] Barry W. Boehm and Philip N. Papaccio. Understanding and controlling software costs.
IEEE Trans. Software Eng., 14(10):1462{1477, 1988.

[BR98] J. Baragry and K. Reed. Why is it so hard to de�ne software architecture? In APSEC
'98: Proceedings of the Fifth Asia Paci�c Software Engineering Conference, page 28,
Washington, DC, USA, 1998. IEEE Computer Society.

[Bro95] Frederick P. Brooks. The Mythical Man-Month. Addison Wesley, 1995.

[Car05] Edward R. Carroll. Estimating software based on use case points. In OOPSLA '05:
Companion to the 20th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 257{265, New York, NY, USA, 2005.
ACM Press.

[Cha89] Robert N. Charette. Software engineering risk analysis and management. McGraw-Hill,
Inc., New York, NY, USA, 1989.

[CHA94] http://www.standishgroup.com/sample_research/chaos_1994_1.php, 1994.

[Cha05] Robert N. Charette. Why software fails. IEEE Spectrum, 42(9):42{49, September 2005.

[CKK02] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architecture: Meth-
ods and case studies. Addison-Wesley, 2002.

[CR99] Elliot Chikofsky and Howard A. Rubin. Using metrics to justify investment in it. IT
Professional, 1(2):75{77, 1999.

[CS] M. Carbone and G. Santucci. \fast & serious: a uml based metric for e�ort estimation".
In Proceedings of the 6th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering.

[DK75] Frank DeRemer and Hans Kron. Programming-in-the large versus programming-in-
the-small. In Proceedings of the international conference on Reliable software, pages
114{121, New York, NY, USA, 1975. ACM Press.

77

http://www.standishgroup.com/sample_research/chaos_1994_1.php

[Dob02] Ernst-Erich Doberkat. Pipes and �lters: Modelling a software architecture through
relations. Memo 123, Lehrstuhl Software-Technologie, University of Dortmund, June
2002.

[DvdHT05] Eric M. Dashofy, Andr�; van der Hoek, and Richard N. Taylor. A comprehensive
approach for the development of modular software architecture description languages.
ACM Trans. Softw. Eng. Methodol., 14(2):199{245, 2005.

[Fai03] George Fairbanks. Why can't they create architecture models like "developer x"?: an
experience report. In ICSE '03: Proceedings of the 25th International Conference on
Software Engineering, pages 548{552, Washington, DC, USA, 2003. IEEE Computer
Society.

[Fai06] Richard E. (Dick) Fairley. The in
uence of cocomo on software engineering education
and training. In CSEET '06: Proceedings of the 19th Conference on Software Engineer-
ing Education & Training (CSEET'06), pages 193{200, Washington, DC, USA, 2006.
IEEE Computer Society.

[FBD06] George Fairbanks, Kevin Bierho�, and Desmond D'Souza. Software architecture at a
large �nancial �rm. In OOPSLA '06: Companion to the 21st ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications, pages 815{823,
New York, NY, USA, 2006. ACM Press.

[FDH06] Yujian Fu, Zhijiang Dong, and Xudong He. Formalizing and validating uml architecture
description of web systems. In ICWE '06: Workshop proceedings of the sixth interna-
tional conference on Web engineering, page 8, New York, NY, USA, 2006. ACM Press.

[GB98] H�akan Grahn and Jan Bosch. Some initial performance characteristics of three architec-
tural styles. In WOSP '98: Proceedings of the 1st international workshop on Software
and performance, pages 197{198, New York, NY, USA, 1998. ACM Press.

[Gla06] Robert L. Glass. The standish report: does it really describe a software crisis? Commun.
ACM, 49(8):15{16, 2006.

[Har06] http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS, 2006.

[HNS00] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied software architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[HPB05] James D. Herbsleb, Daniel J. Paulish, and Matthew Bass. Global software develop-
ment at siemens: experience from nine projects. In ICSE '05: Proceedings of the 27th
international conference on Software engineering, pages 524{533, 2005.

[Int07a] International Function Point Users Group. http://www.ifpug.org/about/, 2007.

[Int07b] International Function Point Users Group. Origins of Softare architecture study, 2007.

[Jon95] Capers Jones. Back�ring: Converting lines-of-code to function points. Computer,
28(11):87{88, 1995.

[Jon98] T. Capers Jones. Estimating software costs. McGraw-Hill, Inc., Hightstown, NJ, USA,
1998.

78

http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS

[KCLS98] Mark Keil, Paul E. Cule, Kalle Lyytinen, and Roy C. Schmidt. A framework for iden-
tifying software project risks. Commun. ACM, 41(11):76{83, 1998.

[Kru02] Philippe Kruchten. Tutorial: introduction to the rational uni�ed process R
. In ICSE
'02: Proceedings of the 24th International Conference on Software Engineering, pages
703{703, New York, NY, USA, 2002. ACM Press.

[MA02] J. Susan Milton and Jesse C. Arnold. Introduction to Probability and Statistics: Princi-
ples and Applications for Engineering and the Computing Sciences. McGraw-Hill Higher
Education, 2002.

[Mac01] Leszek A. Maciaszek. Requirements analysis and system design: developing information
systems with UML. Addison-Wesley Longman Ltd., Essex, UK, UK, 2001.

[MAC05a] Parastoo Mohagheghi, Bente Anda, and Reidar Conradi. E�ort estimation of use cases
for incremental large-scale software development. In ICSE '05: Proceedings of the 27th
international conference on Software engineering, pages 303{311, 2005.

[MAC05b] Parastoo Mohagheghi, Bente Anda, and Reidar Conradi. E�ort estimation of use cases
for incremental large-scale software development. In ICSE '05: Proceedings of the 27th
international conference on Software engineering, pages 303{311, 2005.

[Met05] Methods & Tools. http://www.methodsandtools.com/mt/download.php?spring05, 2005.

[MIT02] MIT OpenCourseware. http://www.core.org.cn/OCW CN/Civil-and-
Environmental-Engineering/1-264JDatabase{Internet{and-Systems-Integration-
TechnologiesFall2002/LectureNotes/index.htm, 2002.

[MJ03] K. Mol�kken and M. J�rgensen. A review of software surveys on software e�ort esti-
mation. In ISESE 2003: International Symposium on Empirical Software Engineering,
pages 223{230, 2003.

[MOT+00] Nenad Medvidovic, Peyman Oreizy, Richard N. Taylor, Rohit Khare, and Michael
Guntersdorfer. An architecture-centered approach to software environment integra-
tion. Memo USC-CSE-00-516, Center for Software Engineering, University of Southern
California, March 2000.

[NPSS01] Robert L. Nord, Daniel J. Paulish, Robert W. Schwanke, and Dilip Soni. Software
architecture in a changing world: developing design strategies that anticipate change.
In ESEC/FSE-9: Proceedings of the 8th European software engineering conference held
jointly with 9th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 309{310, New York, NY, USA, 2001. ACM Press.

[NT06] Robert L. Nord and James E. Tomayko. Software architecture-centric methods and
agile development. IEEE Software, 23(2):47{53, 2006.

[Oqu04] Flavio Oquendo. �-adl: an architecture description language based on the higher-order
typed �-calculus for specifying dynamic and mobile software architectures. SIGSOFT
Softw. Eng. Notes, 29(3):1{14, 2004.

[Oqu06a] Flavio Oquendo. Formally modelling software architectures with the uml 2.0 pro�le for
�-adl. SIGSOFT Softw. Eng. Notes, 31(1):1{13, 2006.

79

[Oqu06b] Flavio Oquendo. �-method: a model-driven formal method for architecture-centric
software engineering. SIGSOFT Softw. Eng. Notes, 31(3):1{13, 2006.

[Par92] R. Park. Software size measurement: A framework for counting source statements, 1992.

[Pau02] Daniel J. Paulish. Architecture-Centric Software Project Management: A Practical
Guide. Pearson, 2002.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software archi-
tecture. SIGSOFT Softw. Eng. Notes, 17(4):40{52, 1992.

[RAB07] Ramya Ravichandar, James D. Arthur, and Shawn A. Bohner. Capabilities engineering:
Constructing change-tolerant systems. hicss, 0:278b, 2007.

[Rei00a] Donald J. Reifer. Web development: Estimating quick-to-market software. IEEE Softw.,
17(6):57{64, 2000.

[Rei00b] Donald J. Reifer. Web development: Estimating quick-to-market software. IEEE Softw.,
17(6):57{64, 2000.

[RKJ04] Sunghwan Roh, Kyungrae Kim, and Taewoong Jeon. Architecture modeling language
based on uml2.0. In APSEC, pages 663{669, 2004.

[Roy98] Walker Royce. Software Project Management: A Uni�ed Framework. Addison-Wesley,
1998.

[SC05] Nary Subramanian and Lawrence Chung. Relationship between the whole of software
architecture and its parts: An nfr perspective. In SNPD-SAWN '05: Proceedings of the
Sixth International Conference on Software Engineering, Arti�cial Intelligence, Net-
working and Parallel/Distributed Computing and First ACIS International Workshop
on Self-Assembling Wireless Networks (SNPD/SAWN'05), pages 164{169, Washington,
DC, USA, 2005. IEEE Computer Society.

[SC06] Mary Shaw and Paul Clements. The golden age of software architecture. IEEE Softw.,
23(2):31{39, 2006.

[SG96] Mary Shaw and David Garlan. Software architecture: perspectives on an emerging
discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[SNH95] Dilip Soni, Robert L. Nord, and Christine Hofmeister. Software architecture in industrial
applications. In ICSE '95: Proceedings of the 17th international conference on Software
engineering, pages 196{207, New York, NY, USA, 1995. ACM Press.

[Sof06] Software Engineering Institute. http: // www. sei. cmu. edu/ architecture/ ata_

method. html , 2006.

[Som04] Ian Sommerville. Software Engineering. Pearson, seventh edition, 2004.

[SX03] Petri Selonen and Jianli Xu. Validating uml models against architectural pro�les. In
ESEC/FSE-11: Proceedings of the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 58{67, New York, NY, USA, 2003. ACM Press.

80

http://www.sei.cmu.edu/architecture/ata_method.html
http://www.sei.cmu.edu/architecture/ata_method.html

[VS94] D. H. Von Seggern. PHB practical handbook of curve design and generation. CRC Press,
1994.

[Zus97] Horst Zuse. A Framework of Software Measurement. Walter de Gruyter & Co.,
Hawthorne, NJ, USA, 1997.

81

VITA

Troy Steven Henry

2024 Gillwell Lane
Fuquay-Varina, NC 27526-5342

Education Despite his best e�orts to the contrary, Troy graduated Blacksburg High School in 1988.

Following this near escape, he embarked on a collegiate education at Virginia Tech. However, after a
series of self-termed \extremely poor choices" he left college after one year, on academic probation.
In order to convince himself of the necessity of a college education, he pursued a sixteen year career in
quick-service restaurant management. In the Summer of 2001, Troy returned to Virginia Tech on a
part-time basis, renewed in his determination to obtain a degree in computer science. While in school
part-time over �ve years, Troy managed to progress from freshmen to senior, and gain admission
to Virginia Tech's 5 Year BS/MS program. As it would turn out, Mr. Henry's academic failures
during the 1980's served him well by priming his transcript so that he could earn the George Gorsline
Memorial Scholarship for \Most Improved Student in Computer Science." This scholarship allowed
him to leave his full-time restaurant job and attend to his education. Troy completed his bachelors
degree in Computer Science, with a minor in Mathematics in August of 2006, graduating Summa
Cum Laude and winning Computer Science Department's \Most Outstanding Senior" award. In
May of 2007 he �nished his thesis in software engineering, attempting to integrate his experience in
management with his education in computer science.

Professional Accomplishments Troy was named Tacoma, Inc.'s \Manager of the Year" in 2000

and was the only manager in Tacoma's 19 year history to have his store named franchise \Restaurant
of the Year" on three occasions. He received numerous other recognition and achievement awards
over his sixteen year Taco Bell career, but is most proud of his ability to win two of the \Restaurant
of the Year" awards while also attending Virginia Tech on a part-time basis. Troy has accepted a
position as Software Design Engineer with Plexus technology group (http://www.plexus.com/) in
Raleigh, NC. He hopes to integrate his technical skills and management experience at Plexus for a
highly satisfying and rewarding career.

Personal Troy is married to a wonderful, patient and highly understanding woman, Peggy Lowe. He

continues to credit Peggy with the majority of his personal, academic and professional success. He

82

http://www.plexus.com/

is the proud father of Justin Lowe, USAF, and Kayla Henry, whose early academic accomplishments

have far exceeded her father's. Troy and his family are members of the Unity Church (www.unity.

org), a spiritual community he has found to be extremely supportive of his goals, and whose values

are aligned with his spiritual and logical beliefs. Upon completion of his academic goals, he hopes

to resume activities such as running, hiking and camping.

83

www.unity.org
www.unity.org

	Front Matter
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	Introduction and Problem Statement
	The Software Crisis
	Reasons for Overrun
	Risk
	Cost of Failure
	An Architecture-Centric Approach
	Overview of Remaining Chapters

	Software Architecture Overview
	Introduction
	Terms and Concepts
	Impact of Requirements
	Examples of Architectural Approaches
	Pipe and Filter Model
	Layers
	Blackboard
	Client-Server
	Framework
	Others

	Describing Architecture
	Unified Modeling Language
	Other Architecture Description Languages
	Where the Architecture Ends

	The Architecture Centric Approach
	Past Research
	Architecture-Centric Project Management
	The Architecture Team
	Functionality-based Design

	Modeling the Software Architecture: The Four Views
	Evaluation of Software Architecture: ATAM
	Schedules and Software Development Plan

	Transition to Low Level Design

	Estimation and Risk
	Estimating Size
	Units of Software Size

	Estimating Effort and Cost
	Estimation By Analogy
	Parametric Models and Methods

	Risk Analysis
	Expected Values
	Decision Trees

	Conclusion

	Addressing Risk with Software Architecture
	Addressing Estimation Risks
	Addressing Quality Risks
	Research Toward Formalizing Quality Requirements at the Architecture Level

	Other Benefits of the Architecture-Centric Approach
	Stakeholder Communication
	Resource Assignment
	The Project Schedule

	Ending Thoughts
	Why Architecture?
	Conclusion

	Conclusions and Future Work
	Observations
	Conclusions
	Future Work
	Proving the Benefits of Architecture-Centric Project Management
	Using Architecture-Centric Estimation to Define Architecture

	End Matter
	Bibliography
	References
	Vita
	Vita

