ACKNOWLEDGMENT

Acknowledgment is made with appreciation to Dr. Ahmad Safaai-Jazi for his continuous advice, help, and support during my Ph.D. research at Virginia Tech. Also, I would like to extend my thanks to my Ph.D. committee members: Dr. Ioannis M. Besieris, Dr. Guy J. Indebetouw, Dr. Sedki M. Riad, and Dr. Wayne A. Scales. Their time, advice, help, and interest in my research work are really appreciated.

Table of Contents

1.	Introduction	1
	1.1 PRESENTATION OF THE PROBLEMS AND SOLUTIONS	1
	1.2 SCOPE OF INVESTIGATION	6
	1.2.1 Design of Polarization-Maintaining Fibers With	
	Zero Dispersion at 1.3 μ m and 1.55 μ m	6
	1.2.2 Analysis and Design of Fiber With Zero Polarization-	
	Mode Dispersion And Large Effective Area	7
	1.2.3 Wedge-Shape Dielectric Waveguide With Metal-	
	Coated Boundaries	8
2.	Literature Survey	9
	2.1 POLARIZATION IN SINGLE-MODE FIBERS	9
	2.2 POLARIZATION-MAINTAINING FIBERS	11
	2.2.1 Circular Polarization-Maintaining Fibers	11
	2.2.2 Linear Polarization-Maintaining Fibers	12
	2.2.2.1 Polarization-Maintaining Fibers With	
	Side Pits and Side Tunnels	12
	2.2.2.2 Polarization-Maintaining Fibers With	
	Stress Induced Parts	14
	2.2.2.3 Polarization-Maintaining Fibers With	
	Geometrical Asymmetry	19
	2.2.2.4 Polarization-Maintaining Fibers With	
	Refractive Index Modulation	21
	2.3 FIBERS / WAVEGUIDES WITH METAL BOUNDARIES	23
	2.3.1 Planar Waveguide Polarizers	23

2.3.2 Fiber Polarizers	
2.4 POLARIZATION-MODE DISPERSION (PMD)	
IN OPTICAL FIBERS	
2.5 SUMMARY	
Design of High-Birefringence and Single-Polarization Single-	
Mode Fibers	
3.1 POLARIZATION-MAINTAINING FIBERS	
3.1.1 Anisotropic Fibers	
3.2 ANALYSIS	
3.2.1 Propagation Constant and Birefringence	
3.2.2 Dispersion	
3.3 FIBER DESIGNS	
3.3.1 High-Birefringence Fibers	
3.3.1.1 Dispersion-Flattened Fibers	
3.3.1.2 Dispersion Shifted Fibers	
3.3.1.3 Dispersion -Unshifted Fibers	
3.3.2 Single-Polarization Single-Mode Fibers (SPSM)	
3.3.2.1 Single-Polarization Single-Mode	
Dispersion-Flattened Fibers	
3.3.2.2 Single-Polarization Single-Mode Dispersion-	
Shifted Fibers	
3.3.2.3 Single-Polarization Single-Mode Dispersion-	
Unshifted Fibers	

Polarization-Mode Dispersion	61
L	
	Polarization-Mode Dispersion

4.1 POLARIZATION-MODE DISPERSION	61
4.2 SINGLE-MODE FIBERS WITH SMALL ELLIPTICITY	62
4.2.1 Analysis of Slightly Elliptical Multiple-Clad Fiber	62
4.2.1.1 Field Solutions	62
4.2.1.2 Boundary Conditions	65
4.2.2 Analysis of Four-Layers Fiber	67
4.2.2.1 Field Solutions and Characteristic Equations	67
4.2.2.2 Amplitude Coefficients	68
4.2.2.3 Birefringence Calculations	69
4.2.2.4 Effective Area (Aeff) and Mode-Field	
Diameter (MFD)	73
4.3 DESIGN OF ZERO POLARIZATION-MODE DISPERSION	
FIBER	74
4.4 TOLERANCE ANALYSIS	82
4.4.1 Polarization Mode Dispersion	82
4.4.2 Chromatic Dispersion	87
4.4.3 Effective Area and Mode-Field Diameter	91
Wedge-Shape Dielectric Waveguide Bounded by Conducting	
Planes	101
5.1 FIELD SOLUTIONS AND CHARACTERISTIC EQUATIONS	102
5.2 GUIDED MODE SOLUTIONS	105

	5.2.1 TE and TM modes	105
	5.2.2 Hybrid HE and EH Modes	106
5.3	SPECIAL CASES	106

5.

- 5.3.1 $\phi_{\rm o} = \pi$ 106
- 5.3.2 $\phi_{\rm o} = \pi/2$ 107
- 5.3.3 $\phi_{o} = \pi/n$, n an integer > 2 107

	5.3.4 Arbitrary ϕ_o	107
	5.4 WAVEGUIDE LOSSES	108
	5.4.1 Conductor Loss	109
	5.4.2 Dielectric Loss	109
	5.5 NUMERICAL RESULTS AND DISCUSSION	110
6.	Conclusion	117
Арр	oendix A	120
Арр	oendix B	124
Ref	erences	127

List of Figures

2.1	The structure of a helical or spiral fiber	13
2.2	Side-pit fiber (a) cross section, (b) refractive index	
	distribution versus x-axis	15
2.3	Cross sections of Bow-tie and PANDA fibers	17
2.4	Side view of a fiber optic polarizer with buffer layer	28
2.5	A partial metal-clad fiber (a) cross section view of fiber	
	optic polarizer, (b) side view of in-line fiber optic polarizer	29
2.6	D-shaped fiber polarizer with elliptical core	31
3.1	Refractive-index profiles used for the design of high-	
	birefringence and single-polarization single-mode fibers	38
3.2	Normalized propagation constant versus wavelength for the	
	y-polarization of fundamental LP_{01} mode for fibers F1 to F5	44
3.3	Normalized propagation constant versus wavelength for the	
	x-polarization of fundamental LP_{01} mode for fibers F1 to F5	45
3.4	Birefringence versus wavelength for fibers F1 to F5	46
3.5	Dispersion versus wavelength for the y-polarization of fundamental	
	LP ₀₁ mode for fibers F1 and F2	48
3.6	Dispersion versus wavelength for the y-polarization of fundamental	
	LP ₀₁ mode for fibers F3 to F5	51
3.7	Normalized propagation constant versus wavelength for the x and y	
	polarizations of fundamental LP_{01} mode for fibers F6 and F7	55
3.8	Dispersion versus wavelength for the y-polarization of fundamental	
	LP_{01} mode for fibers F6 and F7	56

3.9	Normalized propagation constant versus wavelength for the x and y	
	polarizations of fundamental LP_{01} mode for fibers F8 and F9	58
3.10	Dispersion versus wavelength for the y-polarization of fundamental	
	LP ₀₁ mode for fibers F8 and F9	59
4.1	Cross section view of multiple-clad elliptical fiber consisting of N layers	64
4.2	Refractive-index profile used for the design of zero PMD fiber	75
4.3	Normalized birefringence ($\delta\beta_{xy}/e$) versus wavelength of fundamental	
	LP ₀₁ mode	77
4.4	Normalized propagation constant b versus wavelength of fundamental	
	LP ₀₁ mode	78
4.5	Dispersion versus wavelength of fundamental LP ₀₁ mode	79
4.6	Effective area versus wavelength of fundamental LP_{01} mode	80
4.7	Mode-Field Diameter versus wavelength of fundamental LP_{01} mode	81
4.8	Bending loss versus bending radius of fundamental LP ₀₁ mode	83
4.9	Variations of normalized birefringence ($\delta\beta_{xy}/e$) versus wavelength	
	of fundamental LP $_{01}$ mode for radius a_1 variations of $\pm 1\%$ and $\pm 2\%$	84
4.10	Variations of normalized birefringence ($\delta\beta_{xy}/e$) versus wavelength	
	of fundamental LP ₀₁ mode for radius a_2 variations of $\pm 1\%$ and $\pm 2\%$	85
4.11	Variations of normalized birefringence ($\delta\beta_{xy}/e$) versus wavelength	
	of fundamental LP_{01} mode for radius a_3 variations of $\pm 1\%$ and $\pm 2\%$	86
4.12	2 Variations of chromatic dispersion versus wavelength of fundamental	
	LP_{01} mode for radius a_1 variations of $\pm 1\%$ and $\pm 2\%$	88
4.13	Variations of chromatic dispersion versus wavelength of fundamental	
	LP_{01} mode for radius a_2 variations of $\pm 1\%$ and $\pm 2\%$	89
4.14	Variations of chromatic dispersion versus wavelength of fundamental	
	LP_{01} mode for radius a_3 variations of $\pm 1\%$ and $\pm 2\%$	90

4.15 Variations of effective area versus wavelength of fundamental	
LP_{01} mode for radius a_1 variations of $\pm 1\%$ and $\pm 2\%$	93
4.16 Variations of effective area versus wavelength of fundamental	
LP_{01} mode for radius a_2 variations of $\pm 1\%$ and $\pm 2\%$	94
4.17 Variations of effective area versus wavelength of fundamental	
LP_{01} mode for radius a_3 variations of $\pm 1\%$ and $\pm 2\%$	95
4.18 Variations of mode-field diameter versus wavelength of fundamental	
LP_{01} mode for radius a_1 variations of $\pm 1\%$ and $\pm 2\%$	97
4.19 Variations of mode-field diameter versus wavelength of fundamental	
LP_{01} mode for radius a_2 variations of $\pm 1\%$ and $\pm 2\%$	98
4.20 Variations of mode-field diameter versus wavelength of fundamental	
LP_{01} mode for radius a_3 variations of $\pm 1\%$ and $\pm 2\%$	99
5.1 Geometry and coordinates for a wedge-shape dielectric waveguide	
5.1 Geometry and coordinates for a wedge-shape dielectric waveguide bounded by conducting planes at $\varphi = 0$ and $\varphi = \varphi_0$	103
	103
bounded by conducting planes at $\varphi = 0$ and $\varphi = \varphi_0$	103
bounded by conducting planes at $\varphi = 0$ and $\varphi = \varphi_0$ 5.2 Normalized propagation constant, b, versus normalized frequency,	103
 bounded by conducting planes at φ = 0 and φ = φο 5.2 Normalized propagation constant, b, versus normalized frequency, ak_o, for the fundamental modes of wedge-shape dielectric waveguide 	103
bounded by conducting planes at $\varphi = 0$ and $\varphi = \varphi o$ 5.2 Normalized propagation constant, b, versus normalized frequency, ak_o , for the fundamental modes of wedge-shape dielectric waveguide with $\varphi_o = \pi$, $2\pi/3$, and π/n ; $n \ge 2$, and with $\varepsilon_{r1} = 2.25$, and $\varepsilon_{r2} = 1$.	103 111
bounded by conducting planes at $\varphi = 0$ and $\varphi = \varphi_0$ 5.2 Normalized propagation constant, b, versus normalized frequency, ak_o , for the fundamental modes of wedge-shape dielectric waveguide with $\varphi_o = \pi$, $2\pi/3$, and π/n ; $n \ge 2$, and with $\varepsilon_{r1} = 2.25$, and $\varepsilon_{r2} = 1$. The fundamental modes for these values of φ_o are HE ₁₁ , HE _{3/2,1} , and TE ₀₁ ,	
bounded by conducting planes at $\varphi = 0$ and $\varphi = \varphi_0$ 5.2 Normalized propagation constant, b, versus normalized frequency, ak_o , for the fundamental modes of wedge-shape dielectric waveguide with $\varphi_o = \pi$, $2\pi/3$, and π/n ; $n \ge 2$, and with $\varepsilon_{r1} = 2.25$, and $\varepsilon_{r2} = 1$. The fundamental modes for these values of φ_o are HE ₁₁ , HE _{3/2,1} , and TE ₀₁ , respectively	
 bounded by conducting planes at φ = 0 and φ = φο 5.2 Normalized propagation constant, b, versus normalized frequency, ak_o, for the fundamental modes of wedge-shape dielectric waveguide with φ_o = π, 2π/3, and π/n; n ≥ 2, and with ε_{r1} = 2.25, and ε_{r2} = 1. The fundamental modes for these values of φ_o are HE₁₁, HE_{3/2,1}, and TE₀₁, respectively 5.3 Variations of normalized attenuation coefficients of conductor, α_c, 	

- 5.4 Variations of normalized attenuation coefficients of conductor, $\overline{\alpha}_{c}$, and dielectric, $\overline{\alpha}_{d}$, versus normalized frequency, ak_{o} , for the HE_{3/2,1} mode in a wedge-shape dielectric waveguide with $\phi_{o} = 2\pi/3$, and $\epsilon_{r1} = 2.25$, and $\epsilon_{r2} = 1$ 115
- **5.5** Variations of normalized attenuation coefficients of conductor, $\overline{\alpha}_{c}$, and dielectric, $\overline{\alpha}_{d}$, versus normalized frequency, ak_{o} , for the TE₀₁ mode in a wedge-shape dielectric waveguide with $\phi_{o} = \pi/n$; n an integer, and $\varepsilon_{r1} = 2.25$, and $\varepsilon_{r2} = 1$ 116

List of Tables

2.1	Classification of Polarization-Maintaining Fibers	10
3.1	Compositions of Materials Used in The Design of	
	Polarization-Maintaining Fibers	42
3.2	Materials and Radii for Polarization-Maintaining	
	Dispersion-Flattened Fibers	43
3.3	Cutoff Wavelength of The LP ₁₁ Mode For the Designed Fibers	47
3.4	Materials and Radii for Polarization-Maintaining Dispersion-	
	Shifted and -Unshifted Fibers	49
3.5	Materials and Radii of Designed SPSM Fibers	54
3.6	Summary of Characteristics For The Designed Polarization-	
	Maintaining Fibers	60
4.1	Materials and Radii of Designed Dispersion-Shifted Fiber	
	For Zero PMD	76
4.2	Transmission Properties of Zero PMD Dispersion-Shifted Fiber	
	At $\lambda = 1.55 \ \mu m$	82
4.3	The Wavelength At Which Normalized Birefringence Peak Occurs	
	As The Radii a_i (i = 1, 2, and 3) Of The Fiber Changes	87
4.4	Chromatic Dispersion Values in ps/(nm.km) At $\lambda = 1.55 \ \mu m$ As	
	The Radius a_i (i = 1, 2, and 3) Of The Fiber Changes	91
4.5	The Wavelength At Which Chromatic Dispersion Is Zero Or Close	
	To Zero (less than 0.09 ps/(nm.km)) As The Radius a_i (i = 1, 2, and 3)	
	Of The Fiber Changes	92

4.6	Effective Area Values in μm^2 At $\lambda = 1.55 \ \mu m$ As The Radius	
	a_i (i = 1, 2, and 3) Of The Fiber Changes	96
4.7	Mode-Field Diameter Values in μm At $\lambda = 1.55 \ \mu m$ As The Radius	
	a_i (i = 1, 2, and 3) Of The Fiber Changes	100

5.1 Single-Mode Frequency Range For Different Wedge Angles 112