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ABSTRACT

Deep learning has become an ubiquitous part of research in all fields, including wireless communi-

cations. Researchers have shown the ability to leverage deep neural networks (DNNs) that operate

on raw in-phase and quadrature samples, termed Radio Frequency Machine Learning (RFML), to

synthesize new waveforms, control radio resources, as well as detect and classify signals. While

there are numerous advantages to RFML, this thesis answers the question “is it secure?” DNNs

have been shown, in other applications such as Computer Vision (CV), to be vulnerable to what

are known as adversarial evasion attacks, which consist of corrupting an underlying example with a

small, intelligently crafted, perturbation that causes a DNN to misclassify the example. This thesis

develops the first threat model that encompasses the unique adversarial goals and capabilities that

are present in RFML. Attacks that occur with direct digital access to the RFML classifier are

differentiated from physical attacks that must propagate over-the-air (OTA) and are thus subject

to impairments due to the wireless channel or inaccuracies in the signal detection stage. This thesis

first finds that RFML systems are vulnerable to current adversarial evasion attacks using the well

known Fast Gradient Sign Method originally developed for CV applications. However, these cur-

rent adversarial evasion attacks do not account for the underlying communications and therefore

the adversarial advantage is limited because the signal quickly becomes unintelligible. In order to

envision new threats, this thesis goes on to develop a new adversarial evasion attack that takes into

account the underlying communications and wireless channel models in order to create adversarial

evasion attacks with more intelligible underlying communications that generalize to OTA attacks.
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GENERAL AUDIENCE ABSTRACT

Deep learning is beginning to permeate many commercial products and is being included in pro-

totypes for next generation wireless communications devices. This technology can provide huge

breakthroughs in autonomy; however, it is not sufficient to study the effectiveness of deep learning

in an idealized laboratory environment, the real world is often harsh and/or adversarial. There-

fore, it is important to know how, and when, these deep learning enabled devices will fail in the

presence of bad actors before they are deployed in high risk environments, such as battlefields or

connected autonomous vehicle communications. This thesis studies a small subset of the security

vulnerabilities of deep learning enabled wireless communications devices by attempting to evade

deep learning enabled signal classification by an eavesdropper while maintaining effective wireless

communications with a cooperative receiver. The primary goal of this thesis is to define the threats

to, and identify the current vulnerabilities of, deep learning enabled signal classification systems,

because a system can only be secured once its vulnerabilities are known.
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Introduction and Motivation
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3

Always-on connectivity and high data rates have become ubiquitous in most modern

countries. This powers many applications such as social media, Smart Home devices, and

connected vehicles. However, network usage is still rapidly expanding with mobile traffic

expected to increase seven-fold (from 2017) by 2022 and, at that time, connected devices

will outnumber humans 1.5 : 1 [5]. While the usage increases, the wireless spectrum remains

a finite natural resource. Therefore, we must invent more intelligent ways to efficiently use

this resource.

Growing from the success of Deep Neural Networks (DNNs) in other applications, such

as Computer Vision (CV), deep learning now permeates nearly all facets of wireless commu-

nications research. It has been applied to create new wireless waveforms [6], control radio

resources [7], and aid in spectrum sensing through signal classification [8–13]. The com-

bination of all these applications can then be used in the development of Cognitive Radio

(CR) [14, 15] in order to build intelligent radios that opportunistically access the spectrum

in a manner that is both efficient and creates highly reliable communications.

These applications, in particular signal classification, have largely been studied before.

However, previous iterations of this technology were likelihood or feature based [16–21], while

more recent approaches leverage the advances in DNNs to operate directly on raw In-Phase

and Quadrature (IQ) samples [8–13]. The current work uses the term Radio Frequency

Machine Learning (RFML) to succinctly describe these systems based on DNNs due to the

Defense Advanced Research Projects Agency (DARPA) program by that same name [22].

While prior approaches were application specific, because of their need to infuse human
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knowledge via expert features or statistics, RFML offers a potentially future-proof technology

by being able to autonomously adapt to new types of signals and radio environments when

provided with training data. Further, this autonomy removes the need for a human in-the-

loop and thus a RFML system could adapt to new situations in the field or learn from its

experiences, a key goal of CR [15] and the DARPA RFML systems program [22]. Yet, before

a system of this nature should be realized as a deployed system, we must first answer the

question “are these systems secure?” This thesis seeks to answer that question, specifically

for RFML signal classification.

DNNs have been shown, in other applications such as CV, to be vulnerable to what are

known as adversarial examples. Adversarial examples are small, imperceptible to humans,

perturbations that are intelligently crafted and applied to the input of DNNs to cause a

misclassification at inference time. The crafting of these adversarial examples is termed

adversarial machine learning, specifically, an adversarial evasion attack. Adversarial machine

learning could be used, in the context of RFML, to disrupt Dynamic Spectrum Access (DSA)

systems through primary user emulation [23], evade mobile transmitter tracking [24], or

avoid demodulation by confusing an Automatic Modulation Classification (AMC) system

[16]. Although this type of vulnerability, and defenses to counter it, have been extensively

studied in CV [25–42], this vulnerability is only beginning to be studied in the context of

RFML [43–47].

While RFML research on adversarial machine learning evasion attacks and defenses can

build off of the large body of literature present in the CV domain, RFML has additional
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adversarial goals and capabilities beyond those typically considered in CV. Adversarial goals

must be split between attacks that can perturb the signal digitally, directly at the eavesdrop-

per and physical attacks that can only perturb the signal before transmission Over-the-Air

(OTA). While attacks with direct access to the eavesdropper’s classification network are able

to inject pristine perturbations, due to their digital access to the classifier’s input, physical

attacks are impaired by all of the common sources of noise in a RFML system such as ther-

mal noise, multi-path propagation, and signal detection effects [48] which can all impair an

adversary’s ability to evade classification. Additionally, in the context of wireless communi-

cations, attacks must be characterized against the primary metric of interest, Bit Error Rate

(BER). An adversary may seek to evade an eavesdropping classifier but that is of limited

benefit if it also corrupts the transmission to a cooperative receiver.

1.1 Research Contributions

This thesis makes the following contributions:

• Chapter 3 and [1] consolidate the additional adversarial goals and capabilities present

in RFML and proposes a new threat model for evaluating adversarial evasion attacks

in the context of wireless communications.

• Chapters 4 and 5, as well as [1], then presents results outlining the vulnerabilities

of RFML systems to current adversarial machine learning methodologies using the

well known Fast Gradient Sign Method (FGSM) attack [39]. Chapter 4 shows the
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vulnerabilities of RFML systems to adversarial machine learning when the adversary

has direct access to the classifier while Chapter 5 shows their vulnerabilities to OTA

adversarial machine learning attacks.

• In order to envision future threats to RFML, the current work presents a communica-

tions aware attack in Chapter 6 (and in [2]) which considers both BER and receiver

effects in its training procedure. This attack creates perturbations which generalize

over receiver effects, have lower impact to the underlying communication, and do not

rely on gradient computation during operation which would allow for higher data rates.

1.2 Thesis Outline

Chapter 2 presents the background information on the wireless physical layer that is nec-

essary to understand the evaluation methodology of Chapter 5 and attack methodology of

Chapter 6. It then introduces CR, defines it, and outlines the key technologies that enable

its realization, as well as additional reasons why these systems would be deceived. Chapter 2

then focuses on RFML signal classification and outlines the threats that adversarial machine

learning poses to these systems. While the current work is primarily focused on evasion at-

tacks, RFML would also be vulnerable to privacy or causative attacks and they are therefore

outlined. Chapter 2 concludes with a discussion of the most closely related work and how

this thesis contributes to the state of the art.

Chapter 3 begins by outlining the system model used in the current work, specifically
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for AMC, which is the reference signal classification task studied. A threat model is then

presented, that encompasses the unique adversarial goals and capabilities an adversary may

have or possess in the context of RFML. This threat model details how the current work,

and the related work presented in Chapter 2, fit within this model. Chapter 3 concludes with

a presentation of the specific DNNs studied in the current work along with their training

data.

The study of specific evasion attacks begins in Chapter 4 with the presentation of a direct

access evasion attack. Chapter 4 begins by providing a gentle introduction to adversarial

machine learning before specifically describing how FGSM creates adversarial examples. The

FGSM algorithm is then modified to create perturbations that are constrained by power

ratios, instead of simply a distance in the feature space, in order to more intuitively capture

the relationship between perturbations and the underlying signal. Chapter 4 then first

performs a baseline evaluation to verify that FGSM is effective for a direct access attack and

shows that FGSM provides a 10 dB improvement over simply adding Gaussian noise to the

signal. After confirming the viability of adversarial machine learning in RFML, Chapter 4

then evaluates the impact of one key difference between DNNs in CV and DNNs in RFML:

the input dimensionality is vastly lower in most RFML applications. It is then found that

this lower input dimensionality actually provides some robustness to adversarial examples by

showing that larger input sizes are more accurate when the model is not under attack, but,

smaller input sizes are more accurate when the model is under attack by FGSM. Chapter 4

concludes by analyzing the impact of Additive White Gaussian Noise (AWGN) on individual
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adversarial examples and finds that an FGSM attack can be successful when there is little

to no noise applied to the sample; however, the evasion attack can become less successful as

the perturbation power approaches the noise floor.

Chapter 5 expands the small-scale study of the impact of noise on adversarial RFML, in

Chapter 4, into a large scale study of physical evasion attacks using the FGSM algorithm. Af-

ter describing the simulation environment that allows for the evaluation, Chapter 5 presents

results outlining the impact of three RFML specific effects that would undoubtedly occur

in an OTA attack: AWGN, sample time offsets, and center frequency offsets. The impact

of AWGN on adversarial RFML presented at the end of Chapter 4 on individual examples

is shown to generalize in the results of Chapter 5. Further, it is shown that the additional

signal detection effects of sample time offsets and center frequency offsets can impact adver-

sarial success by as much as 20%. Chapter 5 also evaluates the impact on BER, the primary

metric of interest in wireless communications, under the assumption of perfect synchroniza-

tion and concludes that a direct translation of adversarial machine learning methodology

from CV is less effective in the case of higher order modulations, such as QAM16, where the

perturbation has a higher impact on BER than to classification accuracy.

Following from the conclusions of Chapter 5, Chapter 6 presents adversarial methodology

that directly accounts for BER and does not depend on time synchronization between the ad-

versarial transmitter and eavesdropper, which would never realistically occur. The proposed

methodology is shown to perform (in terms of adversarial success) as well, or better, than

the FGSM attack outlined in Chapter 5. Further, the methodology presented in Chapter
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6 achieves these results by encapsulating the adversarial generation methodology in DNNs

and therefore does not require solving an optimization problem for every communications

block that needs to be transmitted, greatly freeing resources in an adversarial transmitter.

Chapter 6 concludes with a discussion of the spectrum usage by the proposed methodologies

and how this provides benefits to the intended receiver, by allowing them to filter out parts

of the perturbation with a matched filter, and the limitations this could have in an attack

against a real system where an eavesdropper may obtain that same benefit during its signal

isolation stage.

This thesis then concludes in Chapter 7 where the current vulnerabilities of RFML are

summarized. Chapter 7 then presents a short discussion of what it means to be “secure”

against adversarial machine learning in both a civilian and military context, where the

recourse for being under attack is different. Chapter 7 then concludes with proposed future

directions for research in adversarial RFML.
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This chapter begins by outlining the wireless physical layer, which provides the necessary

background to understand the communications aware attack presented in Chapter 6. It then

describes what a CR is, why it would be used, and how DNNs are natural enablers of this

category of device. After zooming in on a subset of CR, the deep learning enabled signal

classification stage, this chapter then overviews all threats to that sub-module. Traditionally,

these threats would fall under either cybersecurity or electronic attacks; however, the current

work is primarily concerned with adversarial machine learning, specifically it is concerned

with evasion attacks. While a quick overview of evasion attacks is presented in this chapter,

along with the most closely related prior work, evasion attacks in the context of wireless

communications is discussed in more detail, and a threat model for RFML is formulated, in

Chapter 3.

2.1 Wireless Physical Layer

The primary goal of any wireless communications system is to communicate information from

a transmitter to a receiver. A simplistic diagram, for a digital communications system, is

shown in Figure 2.1. In this diagram an “application” seeks to transmit bits to an application

running on another device. For simplicity, Figure 2.1 does not make any distinction between

possible applications and omits all other layers of the networking stack. The transmitter

would then “modulate” that information by first encoding the bits into a symbol space,

interpolating and filtering the signal (“pulse shape”) in order to limit the spectrum usage,
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Figure 2.1: Overview of a digital communications transmitter/receiver pair.

and then sending the signal to a Radio Frequency Front End (RFFE) 1. The RFFE would

translate the signal from digital to analog using a Digital to Analog Converter (DAC),

shift the signal in frequency onto the carrier frequency, and then amplify and transmit the

signal using an antenna. The receiver implements the inverse of this process. The RFFE of

the signal receives and amplifies the signal before shifting the signal in frequency down to

baseband and digitizing it using an Analog to Digital Converter (ADC). A “matched filter”

is applied to the signal, which maximizes the Signal-to-Noise Ratio (SNR) of the received

symbols. The signal is then decimated back to one sample per symbol, ideally at the optimal

sampling time to maximize SNR, and a hard decision is typically made to decode the symbols

back into bits.

In any real environment, there will be multiple transmitters and receivers. One pair’s

signal is another pair’s source of interference because the wireless spectrum is finite. With

1The current work is focused on Linear Digital Amplitude Phase Modulation (LDAPM).
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the recent explosion in Internet of Things devices, as well as Connected Vehicles, the number

of wireless devices in the environment is growing exponentially, but the available spectrum

does not increase and therefore becomes more scarce with each new device. One approach

to dealing with this scarcity is through CR [14,15].

2.2 Cognitive Radio

CR is a term coined in 1999 [14] and is described in [15] as an intelligent device that senses and

understand its environment via processing of Radio Frequency (RF) signal data (spectrum

sensing) and adjusts its transmission parameters based on this knowledge of the environment

(subject to some policy constraints) in order to achieve highly reliable communications or

another user-defined goal such as efficient spectrum usage. One way to achieve more efficient

spectrum usage is through DSA.

There are three typical spectrum access technologies [49]: licensed, unlicensed, and man-

aged. A traditional cellular system would be centrally administered where a base station

governs the spectrum usage in order to achieve a desired receiver performance; however,

CRs have the ability to form decentralized, or ad hoc, networks that could take advantage of

spectrum holes in unlicensed or managed frequencies [15]. These spectrum holes are time,

space, and frequency dependent based on the transmitters operating in the vicinity of the

CR. A CR must therefore, take in a wideband signal (observe), perform analysis of that

spectrum (orient), adjust transmission parameters to take advantage of spectrum holes or
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better adapt to the interference of the environment (decide), and then transmit (act). In the

simplest case, a CR could identify an unused frequency band and subsequently transmit on

this band.

2.2.1 Key Enablers of Cognitive Radio

CR and Software Defined Radio (SDR) go hand-in-hand as it is nearly impossible to realize a

CR that does not operate on top of SDR. SDRs provide the ability to reconfigure transmission

waveforms on the fly and CRs provide the intelligence needed to determine which parameters

to reconfigure. Although a CR could operate without Machine Learning (ML), such as with

a static policy database that simulates intelligence, ML has become pervasive in wireless

communications research. This is natural because ML can scale to larger action spaces that

would become memory prohibitive in a purely database enabled radio. Further, ML is able

to adapt without a human in the loop, and therefore can accomplish a key goal of CR which

is to learn from its environment and actions. These two key enablers, SDR and ML, are

discussed in more detail below.

2.2.1.1 Software Defined Radio

SDRs were introduced around the same time as CRs [50,51]. Their defining characteristic was

that the majority of the signal processing is performed in software as opposed to hardware.

Performing signal processing in software allows for nearly limitless flexibility through the

lifetime of a radio because it can be updated via OTA software patches, but, comes at the
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cost of computing overhead. As computing power becomes cheaper, and specialized chips

for Digital Signal Processing (DSP) become available, SDR becomes a feasible solution for

real world applications.

SDRs have also benefited from open source frameworks that reduce the cost to create a

waveform [52–54]. Although the exact methodology differs between each framework, they

all provide reusable signal processing blocks, such as for filtering, power spectral density

estimation, or modulation, that can quickly be employed for each new waveform. The

current work utilizes GNU Radio [52] which provides life-cycle management, scheduling of

signal processing blocks, a graphical programming interface for waveform creation, and good

software driver support for a range of SDR devices known as a Universal Software Radio

Peripheral (USRP) [55].

2.2.1.2 Radio Frequency Machine Learning

DARPA RFML Systems [22] is a program aimed at developing “the foundations for applying

modern data-driven Machine Learning to the RF Spectrum domain.” Two primary goals

of the program are to develop technologies to improve spectrum awareness as well as to

autonomously control radio resources. The key difference between RFML and prior appli-

cations of machine learning to wireless communications is the desire to remove the need

for hand engineered features. Therefore, while the current work would not consider feature

based machine learning [19, 21] as RFML, it uses RFML to succinctly describe the latest

iteration of technologies, based on deep learning, that do not use human engineered features
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as input [8, 9, 13,48]. Removing the need for human engineered features can be very benefi-

cial, particularly in quickly changing environments, because it removes the need for a human

in-the-loop and thus greatly speeds up adaptation. However, it is important to understand

the security risks to these systems, which is the focus of the current work.

Machine learning is a natural enabler of CR in many aspects. One of the key goals of

CR is to be able to learn from the environment. Modern advances in reinforcement learning

have shown the ability of DNNs to learn a Q function that approximates the reward of a

set of actions given the current state of the environment [56]. A similar technology can be

applied to CR where a deep reinforcement learning agent controls radio resources [7]. Deep

learning enabled waveforms have also been developed. In general, a known modulation form

is used; however, with auto-encoders, researchers have shown the ability to use DNNs to

directly synthesize a waveform that is conditioned on the data [6].

Even if machine learning does not control the entire radio, it can aid in spectrum sensing

[57] by building off of the large body of success with deep learning in CV classification

systems by applying these technologies to signal classification tasks given raw IQ inputs

[8, 9, 13, 48]. Traditionally, signal classification would consist of two distinct steps. The first

step would detect and isolate a signal in time and frequency while the second step would then

classify that isolated signal. While DNNs can combine these two steps [58–61] in a process

known as semantic segmentation, the current work does not consider these technologies and

specifically focuses on traditional signal classification aided by DNNs as that is the most

mature technology.
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Threats to all of the CR tasks performed by DNNs mentioned in the current section can

have similar goals; however, the current work specifically focuses on threats to the signal

classification tasks as signal classification has been the most widely researched RFML task

thus far. While there is some loss of generality from focusing on these signal classification

tasks, the methodology developed can be easily transferred to all other tasks.

2.2.1.3 Spectrum Sensing: Blind Signal Classification

The radio environment of a CR is not known a priori and therefore must be sensed in

real time. A receiver would typically not know when or where (in space or frequency) a

transmission would occur. Therefore, a CR must first detect a signal and isolate it in time

and frequency, before subsequent classification. After isolation, parameters of the signal and

the transmitter of that signal can be estimated or classified for usage in the decision stage.

In the context of CR2, estimating the power, center frequency, and bandwidth of a signal

can aid in identifying spectrum holes. A CR could classify the modulation of the signal

used, which would allow for automatic demodulation if the format is not known a priori or

a CR transmitter adapts the modulation on the fly. Further, the CR could perform specific

emitter identification, which would aid in tracking transmitter’s in the environment even as

their transmission parameters change. Knowing a transmitter’s traffic patterns can aid in

predicting when they will transmit and therefore aid in identifying future spectrum holes.

A simplistic diagram of a RFML system for signal classification is shown in Figure 2.2.

2Although CR is used as the motivating example in the current work, signal classification tasks, and

therefore the threats to signal classification, have obvious applications to signals intelligence.
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Figure 2.2: Overview of a RFML signal classification system (eavesdropper device). The

eavesdropper could use RFML signal classification for traffic recognition [62], modulation

recognition [16], or specific emitter identification [13,24].

This system has no a priori knowledge of the signals it will encounter and is thus perform-

ing blind signal classification. Therefore, it first detects and isolates a signal in time and

frequency, before performing signal classification on short segments of a continuous signal

using DNNs with minimal pre-processing. The outputs of the classification stage can then

aid in spectrum awareness.

2.2.2 Competition in Ad Hoc Networks

The spectrum is a limited natural resource and therefore CRs may compete for spectrum

resources. In [15] Haykin describes a game theoretic approach to this competition that leads

to a Nash equilibrium provided that each CR is “rational”, and therefore takes the most

optimal action, and that each CR has a “view of the world”. Therefore, a natural threat

to this system is if a CR deceives the spectrum sensing stage of all neighboring CRs in
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order to exploit the system and gain spectrum resources for themselves. The current work

focuses on envisioning ways that a CR could deceive deep learning enabled spectrum sensing,

specifically the signal classification task.

2.3 Threats to RFML Signal Classification

There are multiple attack vectors to compromise a RFML system. Electronic Warfare (EW)

refers to the usage of the spectrum to impede an enemy. While this could be stretched

to apply to the current work, the current work uses EW to describe attacks on the signal

detection stage or RFFE in Figure 2.3. An adversary could direct energy at the RFFE to

remove its ability to perceive other signals or could create communications signals which

have a low probability of detection and thus would never be sent to the signal classification

stage. The current work does not consider attacks against the RFFE or signal detection and

instead considers them static and therefore do not respond to the attack.

RFML systems are built on top of SDR [63] and thus are subject to traditional cyber-

security attacks against these software implementations [64]. The vulnerabilities of GNU

Radio [52] to these attacks have been demonstrated in [65,66]. While cyber-security attacks

could clearly impact RFML signal classification, these are not the focus of the current work.

The current work examines the threats specific to the signal classification stage and is

thus concerned with adversarial machine learning [67] which has seen a surge of activity in

the context of CV [25].
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Figure 2.3: The current work is only concerned with attacking the signal classification

subsystem. This is studied using modulation recognition as a reference signal classification

task.

2.3.1 Adversarial Machine Learning

The threat surface for adversarial machine learning in the context of RFML is surveyed in

Figure 2.4. The types of attacks shown can be split into three logical categories: privacy

attacks, causative attacks, and evasion attacks.

2.3.1.1 Privacy Attacks

Privacy attacks observe information about the inputs and outputs of a classifier in order

to gain information about how it works. Membership Inference attacks determine whether

a specific input was a part of the training dataset of the classifier [68]. Model Extraction

attacks use the same information in order to build a nearly equivalent model [69]. Privacy

attacks are, in general, a concern because they compromise the confidentiality of the model.

This is especially prevalent when the training data could be sensitive, such as in healthcare

applications.
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23

In addition to being an attack in their own right, these privacy attacks can be exploratory

and provide an adversary with more knowledge in order to attempt an evasion attack. There-

fore, while these attacks could be supplementary to the current work, they are not the focus

and are therefore not discussed further.

2.3.1.2 Causative Attacks

Causative attacks exert influence over a model’s training process in order to inject vulnera-

bilities. A data poisoning attack would manipulate the training data in order to change the

learned decision boundaries of a model [70–72]. This attack type will be extremely concern-

ing to any system that (re-)trains using OTA data captures because an adversary would be

able to inject training data just by being in proximity to the signal collection device. These

attacks are already beginning to be researched in the context of CR [44,73].

A software Trojan attack compromises the training stage of a network in order to inject

a vulnerability in the learned parameters that can later be exploited [74]. This type of

attack assumes a very high level of access because it requires the ability to directly set the

parameters of the DNNs which it is attacking. While this may seem unreasonable, it can be

a serious threat when considering that multiple companies typically collaborate on a single

product. If Company A is employed to train the model while Company B assembles and sells

the final product, then Company B may like to verify that the model it is being supplied is

not compromised in some way that can later be exploited.

The eventual goal of causative attacks is to degrade classifier performance at inference
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time through attacks at training time. Therefore, while the current work does not consider

the high level of access needed for a causative attack, it does explore evasion attacks which

have similar goals but don’t assume any influence over the training process.

2.3.1.3 Evasion Attacks

The current work focuses on adversarial evasion attacks in the context of RFML. While the

specific goals and capabilities an adversary must possess to achieve adversarial success are

discussed in Chapter 3, it can, in short, be described as an attack that assumes a fully trained

and static model to which it has control over the inputs. An adversary then intelligently

crafts “perturbations” to the input that cause a misclassification. This type of attack is

well studied in CV literature [27, 30, 32–34, 37, 39, 40, 75, 75–77] but is just beginning to be

researched in the context of RFML [43–45,73].

2.4 Related Work

Prior security threats to cognitive signal classifiers have been researched [78, 79], however,

the state of the art signal classification systems use deep learning techniques [8–13] whose

vulnerabilities have not been studied extensively in the context of RF. In [44] and [73],

the authors consider adversarial machine learning for intelligently jamming a deep learning

enabled transmitter, at transmission time and sensing time, to prevent a transmission. Their

work considers learning OTA by observing an acknowledgement from a receiver as a binary

feedback. While their work is primarily concerned with preventing transmission, the current
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work is primarily concerned with enabling transmission while avoiding eavesdroppers and is

thus fundamentally different. Constraining a perturbation to be interpretable, in the form

of demodulation by the intended receiver, places a much tighter bound on the problem.

The work presented in [43] was the first research into adversarial evasion attacks in RF.

In this preliminary work, the authors present a study of the effectiveness of two adversarial

algorithms, a variant of the FGSM and Universal Adversarial Perturbation (UAP), against

DNNs trained using the RML2016.10A dataset [80]. Therefore, [43] is a close analogy to

Chapter 4 in the current work. However, while the authors of [43] showed results at varying

SNRs, they implicitly assumed direct access to the classifier by not adding noise to the per-

turbation. Chapter 4 extends this work to consider the impact of AWGN on the perturbation

on a small scale and Chapter 5 provides a large scale analysis of AWGN as well as other

effects to show that adversarial success rates, when an attack is launched OTA and therefore

cannot directly feed adversarial examples into the classifier, are lowered. Further, Chapter

5 then shows that these adversarial methodologies can become prohibitive for higher order

modulations, such as QAM16, because the underlying signal is no longer interpretable by the

intended receiver. Therefore, deception can only be achieved at the cost of forgoing much

of the initial communication capacity of the link. The work in Chapters 4 and 5 were then

published in [1].

The very recent, and independent, work published in [45] then echos the findings of

Chapter 5 that AWGN has a negative impact on adversarial success and begin evaluating

the attack in terms of BER, as is done in Chapter 5. While Chapter 5 merely evaluates
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current attacks in terms of BER, [45] develops methodology that directly accounts for BER

when crafting the perturbations. However, their methodology misses two key practical points

of deploying an adversarial RFML system. First, [45] assumes the eavesdropper and the ad-

versary are synchronized in time, which cannot be assumed because the eavesdropper is

performing blind signal classification. Second, [45] presents methodology that requires solv-

ing an optimization problem for every communications block to be transmitted, which is

computationally expensive. Chapter 6 addresses both of these issues. First, the underlying

training methodology does not assume time synchronization and therefore the perturbations

created do not depend on synchronization for adversarial success. Second, the methodology

presented in Chapter 6 works by encapsulating the perturbation creation into a fully convo-

lutional neural network. Therefore, once trained, this network could be easily deployed as

a non-linear filter and would not require the extra computation of solving an optimization

problem for each communications block.

Adversarial RFML is quickly becoming an active area of research with new literature

being put out every day; therefore, the current work is not all encompassing of current

progress in adversarial RFML. The current work only considers untargeted attacks, which

seek to degrade classification accuracy but do not seek to masquerade as a specific target

class. The work of Chapter 4 has been extended into a targeted attack in [4]. The work

shown in [4] substantiates the claim in Chapter 3 that targeted attacks are more difficult

than untargeted attacks. Further, [4] shows that targeting a “difficult” class, such as an

analog modulation format when starting with a digital modulation format can require high
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powered perturbations. Therefore, while the methodology presented in Chapter 6 could be

extended into a targeted attack, it is not considered in the current work due to the power

requirements to achieve high success rates.

The first step to securing any system is understanding the threats to that system. The

current work takes that first step by characterizing where the threats could come from,

envisioning new threats, and describing the limitations of adversarial evasion attacks in the

context of wireless communications. However, the current work does not explicitly consider

any defensive measures on the eavesdropper device. While many defensive strategies have

been considered in CV, one of the best is adversarial training [34, 41]. The work in [47] has

applied this concept to RF with good preliminary results. The current work concludes with

a short discussion of what it means to be secure against adversarial RFML in both a civilian

and military context.



Chapter 3

Attack Evaluation Methodology

28
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This chapter outlines the common methodology used throughout the current work to

evaluate the success of the developed adversarial evasion attacks. Although the current

work uses AMC as a reference CR task, the threat model (presented from the perspective of

the eavesdropper) would hold provided that:

1. The adversary’s primary goal is the wireless transmission of information to a cooper-

ative receiver.

2. The eavesdropper employs a DNNs that aids in signal classification or decision making

by outputting the most likely class or most beneficial action.

Therefore, the vocabulary used in this chapter can be used to describe threats to nearly

all deep learning enabled CRs. The chapter begins by describing the system model used in

the current work, then describes the unique threats that can be posed to that model, and

concludes with a reference implementation of the eavesdropper’s classification network.

3.1 Automatic Modulation Classification System Model

The current work considers the task of blind signal classification where an eavesdropper

attempts to detect a signal in the spectrum, isolate it in time and frequency, and perform

modulation classification. This task assumes that the signal is a wireless communication be-

tween a transmitter and a cooperative receiver where the eavesdropper is not synchronized

and has very limited a priori information about the communication. Ultimately, the eaves-
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dropper could then use the output for DSA, signals intelligence, and/or as a preliminary

step to demodulating the signal and extracting the actual information transmitted.

The study of adversarial examples in this model could be framed from the perspective of

either the eavesdropper or the transmitter. First, this study can be considered a vulnerability

analysis of RFML systems and the information gained can then be used to produce a more

robust eavesdropper that is hardened against deception by adversarial machine learning

[47]. Additionally, this study could be considered a feasibility analysis for methodology to

protect transmissions from eavesdroppers. Evading an eavesdropper can limit tracking of

the transmitter or automatic demodulation of its transmission. The current work does not

take a side in the application of this technology and presents a case for both sides; however,

the term adversary is used to describe the transmitter that seeks to evade an

eavesdropper for the remainder of the current work.

3.2 Threat Model

A rich taxonomy already exists for describing threat models for adversarial machine learning

in the context of CV; however, threat models which only consider CV applications lack

adversarial goals and capabilities that are unique to RFML. Therefore, the current work

extends the threat model initially proposed in [37] for RFML in Figure 3.1 and outlines how

the current work fits in with the related literature. Before describing the current work’s

place within the literature, this section first expands on the unique categories of adversarial
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goals and capabilities that must be considered when discussing adversarial threats to RFML

systems. The goals an adversary may have are presented across the horizontal axis (Figure

3.1) and the capabilities, or prior knowledge, an adversary may possess are shown along the

vertical axis. Therefore, the “easiest” adversarial evasion attack would be presented in the

upper left of the diagram and the “hardest” adversarial evasion attack would be presented

in the bottom right.

3.2.1 Adversarial Goals

Three main goals are traditionally considered for adversarial machine learning [37]: confi-

dence reduction, untargeted misclassification, and targeted misclassification. An example of

what the classifier’s output could look like in a successful case of each attack is shown in

Figure 3.2. Confidence reduction is the easiest goal an adversary can have. It simply refers

to introducing uncertainty into the classifier’s decision even if it ultimately determines the

class of signal correctly. To put more simply, an adversary would desire to lower the output

of the true class of a network’s output but not necessarily care if it is still the maximum

output of the network.

An adversary whose goal is simply to be classified as any other signal type than its true

class, can be described as untargeted misclassification. Put simply, an adversary desires to

lower the output of the true class of a network’s output. In this case, the adversary does not

care which other class becomes the maximum output of the network as long as it is not the

true class.
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Figure 3.2: Example confidence outputs of a model for confidence reduction, untargeted

misclassification, and targeted misclassification. In all plots, the original example belongs

to Class A and is classified correctly. The output of the classifier on the “initial” example

is shown in blue, while, the output of the classifier on the adversarial example, or the

output when “attacked”, is shown in orange.

Targeted misclassification is typically the most difficult goal of adversarial machine learn-

ing. It occurs when an adversary desires a classifier to output a specific (and incorrect) target

class instead of simply any class that is not the true class. Due to the hierarchical nature of

human engineered modulations, the difficulty of targeted misclassification for AMC depends

heavily on the signal formats of the true and target class. Targeted misclassification are

sometimes split between attacks that start with a real input [35, 39] versus those that start

with noise [38]. The threat model presented in Figure 3.1 only considers the former because

the current work assumes that an adversary’s primary goal is to transmit information and

not simply degrade classifier performance. Without this assumption, the problem simplifies

to replaying a known signal that corresponds to the desired target class or transmitting noise

at the eavesdropper if it does not care about the eavesdropper’s classification.

Further, the current work categorizes adversarial goals based on where the attack is
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launched from: “at the eavesdropper” with direct access, “from a transmitter” with self

protect, or “from a separate device” with cover. The specific locations as well as when they

are discussed in the current work is shown in Figure 3.3, the following subsections go into

further details about each location, and the pros and cons of attacks from each location are

later summarized in Table 3.1.

3.2.1.1 Direct Access

Traditional adversarial machine learning, such as those generally considered in CV or the

attack considered in [43], fall into the direct access category. This category of attack is

performed “at the eavesdropper” as part of their signal processing chain. Therefore, the

propagation channel and receiver effects for the example is perfectly known at the time of

crafting the perturbation, the perturbation itself is not subjected to any receiver effects, and

the perturbation will have no effect on the intended receiver because it is not sent OTA.

Attacks at this level are very useful for characterizing the worst case vulnerabilities of a

classifier but they are less realistic in the context of RFML because it assumes that the

signal processing chain has been compromised.

3.2.1.2 Self Protect

When the adversarial perturbation is added at the transmitter and propagates along with the

transmitted signal to the eavesdropper, this can be categorized as self protect. By adding the

perturbation at the transmitter, the perturbation can still be completely synchronous with
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the signal transmission; however, the perturbation will now be subjected to all of the receiver

effects traditionally considered in RFML and will also impact the intended receiver. While

many of the algorithms that are successful for the direct access category of attacks will be

applicable to self protect, the evaluation of adversarial success must take into account receiver

effects. Therefore, attacks that seek to create minimal perturbations, such as the modified

FGSM method presented in [43], will no longer work because adversarial success can not

be guaranteed due to the signal being subjected to a stochastic process. The concurrently

developed work presented in [45] would fall under this category of attack. Further, the

current work focuses specifically on this category of attack and presents advances over the

current adversarial methodology in Chapter 6.

3.2.1.3 Cover

RFML allows for a third category of adversarial goals, in which the adversarial perturbation

originates from a separate emitter from the transmitter and is only combined at the eaves-

dropper device1. Low cost transmitters can be Size, Weight, and Power (SWaP) constrained.

Therefore, it may be beneficial to have a single unit provide cover for multiple SWaP con-

strained nodes. However, because these attacks cannot rely on synchronization between the

transmission and perturbation, the perturbations must be time shift invariant [43] making

this category of attack more difficult. The current work does not present a study of this

category of adversarial goal and leaves that to future work.

1Although the intention of a cover device is to impact the eavesdropper, it is likely that unintended

emissions would also impact the cooperate receiving device as well.
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Attack Location Pros Cons

Direct Access

1. Perturbation not subject to

noise.

2. No impact to intended receiver.

1. Requires compromising the sig-

nal processing chain.

Self Protect

1. Does not require access to the

eavesdropper’s device.

2. Synchronous with the underly-

ing transmission.

1. Impacts the interpretation of

the signal by the intended re-

ceiver.

2. Requires increased computa-

tion complexity on the trans-

mission device, possibly lower-

ing data rates.

3. Perturbation is subject to

noise.

Cover

1. Can provide cover for multiple

transmitters.

2. Does not require increased

computational complexity on

the transmission device.

3. Could use beamforming to

steer energy at eavesdropper or

away from receiver.

1. Asynchronous with the trans-

mission.

2. Could impact intended re-

ceiver.

3. Perturbation is subject to

noise.

4. Eavesdropper could use adap-

tive beamforming to null en-

ergy from the cover device.

Table 3.1: Summary of the pros and cons of adversarial evasion attacks from each

location.
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3.2.2 Adversarial Capabilities

An adversary can break the evasion task into two subsets. First, the adversary must de-

termine the optimal signal that would disrupt the classification but not the receiver’s de-

modulation. Then, the adversary must be able to transmit a signal such that this optimal

signal would be received by the eavesdropper and receiver with minimal corruption. Tra-

ditional adversarial machine learning capabilities, such as those described in [37], generally

help with determining “what you want a classifier to see” by providing information about

the target DNNs that can subsequently be used to optimize the input. An adversary with a

high level of capability may have perfect knowledge of the learned parameters of the model.

These attacks are referred to as white-box in most literature. In a slightly more realistic

case, the attacker may have access to the network architecture and training dataset, but not

the learned parameters. The attacker must then create adversarial examples that generalize

over all possible models created from the dataset and architecture. In a very limited case,

the attacker may only have access to what is deemed an oracle, an entity that will label a

limited number of X, Y pairs for the attacker through an Application Programmer Interface

(API) [32] or an observable wireless transmission [44,73]. This allows the attacker to perform

limited probes against the target network in order to build up an attack.

Adversarial machine learning applied to RFML has a different class of capabilities an

attacker can possess that can be thought of as “the ability to make a classifier see a specific

example”. RF propagation can be directed through the use of smart antennas and the

use of this ability generally falls under physical layer security. However, the use of these
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concepts typically only apply when the transmitter knows the location of the receiver and/or

eavesdropper. It could direct its energy only at the receiver, thus likely minimizing the SNR

at the eavesdropper. Similarly, a jammer could direct energy only at the eavesdropper,

maximizing the impact of perturbations on classification accuracy while minimizing the

impact to the receiver.

Signal processing chains can present an impediment to adversarial success. Traditionally,

RFFEs are built to reject out of band interference and therefore adversarial perturbations

consisting of high frequencies could be filtered out. Power amplifiers can exhibit non-linear

characteristics which would distort the perturbation. The precision of the analog to digital

converter could limit the attack to stair stepped ranges. Further, the adversarial perturbation

could have cascading effects on the DSP present on the device such as impacting the signal

detection and isolation stage, resulting in sample rate or center frequency offsets between

the transmitter and eavesdropper. The signal processing chain is assumed by the related

work [43,45] and these effects are not discussed. Although some of these effects are modeled

in Chapter 5 and 6, examining this is largely left to future work. Until these effects are

accounted for, it is difficult to claim that any attack would work in a real environment with

the same success rates seen in simulation.

3.2.3 Threat Model Assumed in the Current Work

In the current work we assume full knowledge of the learned parameters of the target DNNs

and set the goal as untargeted misclassification. The current work considers perturbations
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that are specific to the underlying transmitted signal and characterizes their effectiveness

in the presence of receiver effects such as noise, sample time offsets, and frequency offsets.

Therefore, both direct access attacks as well as self protect are considered.

The related work by Sadeghi and Larsson [43] presented an analysis of two untargeted

misclassification attacks against AMC without a channel model applied to the perturbations.

One attack assumed perfect knowledge of the target network and the other only assumed

knowledge of the entire training dataset, but did not assume knowledge of the target network

architecture. The related work by Hameed et al. [45] evaluated the attack in the presence of

an AWGN channel and additionally considered BER for both evaluation and during crafting

of adversarial perturbations. Many of the attacks in [45] were presented with full knowl-

edge of the learned parameters but one attack only considered knowledge of the training

dataset and target architecture and instead used a separately trained model to craft the

perturbations.

The current work (as well as the related work [43,45]) does not assume knowledge of either

the eavesdropper or receiver locations and therefore does not consider directional antennas

and instead shows results across varying SNR ranges. Further, the current work assumes

that the receiver is fixed and thus does not introduce any modifications to the receive chain

that accounts for the perturbations added to the signal. In [43], because it was a direct access

attack, there was no impact to the receiver chain. In [45], the authors added convolutional

coding to the bit stream in order to properly demodulate the signal in the presence of their

attack. The current work does not assume there is any coding on the bit stream and presents
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results without it.

Further, the current and related work [43, 45] implicitly assume knowledge of the signal

processing chain. This implicit assumption comes because none of the current adversarial

evasion attacks in the context of RFML fully model the cascading effects on signal detection

and isolation or the impact of non-linearities or quantization error in the RFFE.

3.3 AMC Target Network

3.3.1 Network Architecture

The current work uses the DNNs architecture shown in Figure 3.4 which was first introduced

in [8] for a reference raw IQ AMC model, but, the methodology in this work would hold for

all network architectures. This architecture consists of two convolutional layers followed by

two fully connected layers. This network takes the IQ samples as a [1, 2, N ] tensor which

corresponds to 1 channel, IQ, and N input samples. The current work uses extended filter

sizes as done in [9] and [48], using filters with 7 taps and padded with 3 zeros on either side.

The first convolutional layer has 256 channels, or kernels, and filters I and Q separately. The

first layer does not use a bias term as this led to vanishing gradients during our training.

The second layer consists of 80 channels and filters the I and Q samples together using a

two-dimensional real convolution. This layer includes a bias term. The feature maps are

then flattened and fed into two fully connected layers, the first consisting of 256 neurons and

the second consisting of the number of output classes. All layers use ReLU as the activation
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function (except for the output layer). As a pre-processing step, the average power of each

input is normalized to 1.

3.3.2 Dataset A

The majority of this work uses the open source RML2016.10A dataset introduced in [80].

This synthetic dataset consists of 11 modulation types: BPSK, QPSK, 8PSK, CPFSK,

GFSK, PAM4, QAM16, QAM64, AM-SSB, AM-DSB, and WBFM. These signals are created

inside of GNU Radio and passed through a dynamic channel model to create sample signals

at SNRs ranging from −20 dB to 18 dB. A subset of the data is shown in Figure 3.5 and 3.6.

Using an open source dataset allows for reproduction of results; however, this dataset only

provides one input size, 128 complex samples. Furthermore, this dataset contains limited

center frequency offsets. Therefore, it was necessary to create an additional dataset to

perform the additional evaluations in terms of center frequency offset contained in Chapter

5.

3.3.3 Dataset B

The main differences between Dataset A and Dataset B are the channel model as well as the

modulations used. Dataset B contains a static channel model with center frequency offsets

and SNR calculated as Es/N0 while Dataset A contains a dynamic channel model but no

center frequency offsets. Dataset A contains a static multi-path effect that Dataset B does

not. Additionally, Dataset B only uses a subset of the modulations that Dataset A contains
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Figure 3.5: Random samples from FSK and Analog Modulations in Dataset A. The SNR

was restricted to 18 dB but the specific examples in time were selected randomly from

that subset. The frequency content is averaged across all examples that have 18 dB SNR

and the corresponding modulation.
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Figure 3.6: Random samples from LDAPM Modulations in Dataset A. The SNR was

restricted to 18 dB but the specific examples in time were selected randomly from that

subset. The frequency content is averaged across all examples that have 18 dB SNR and

the corresponding modulation.
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for simplicity.

This additional dataset was also created using synthetic data from GNU Radio. Three

datasets were created with varying input size (128, 256, and 512). These synthetic datasets

consists of 5 modulation schemes: BPSK, QPSK, 8PSK, QAM16, and QAM64. Keeping

with the RML2016.10A Dataset, the samples per symbol of the root raised cosine filter were

fixed at 8. The one sided filter span in symbols is varied uniformly from 7 to 10 with a

step size of 1. The roll-off factor of the root raised cosine was varied uniformly from 0.34

to 0.36 with a step size of 0.01. For the channel model, the modulated signal was subjected

to AWGN and given a center frequency offset as described by (5.1) to simulate errors in the

receiver’s signal detection stage [48] . The power of the AWGN is calculated using Es/N0

and varied uniformly from 0 dB to 20 dB with a step size of 2. The center frequency offset,

which was normalized to the sample rate, is swept uniformly from −1% to 1% with a step

size of 0.2% 2. A subset of the data is shown in Figure 3.7.

3.3.4 Training Results

The network is implemented in PyTorch and trained using an NVIDIA 1080 GPU with the

Adam [81] optimizer. The batch size used is 1024 when the network is trained with Dataset A

and 512 when trained with Dataset B due to the increased example sizes. Models trained on

Dataset A use dropout for regularization, as was initially proposed in [8]; however, models

2While ±1% is used in the current work as the range of center frequency offsets for Dataset B, [48] showed

that DNNs could generalize over even wider ranges when performing AMC; however, the focus of the current

work is to examine how even minute center frequency offsets can have negative impacts on the adversary.



47

−0.4 −0.2 0.0 0.2 0.4

−20

−15

−10

−5

0

BP
SK

Average Frequency Content
Power Shown in dB

CFO of -1%
CFO of 1%

0 20 40 60 80 100 120

−0.50

−0.25

0.00

0.25

0.50

Random Sample 1
IQ vs Time

0 20 40 60 80 100 120
−0.6

−0.4

−0.2

0.0

0.2

0.4

Random Sample 2
IQ vs Time

−0.4 −0.2 0.0 0.2 0.4

−20

−15

−10

−5

0

Q
PS

K

CFO of -1%
CFO of 1%

0 20 40 60 80 100 120

−0.4

−0.2

0.0

0.2

0.4

0 20 40 60 80 100 120

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.4 −0.2 0.0 0.2 0.4

−20

−15

−10

−5

0

8P
SK

CFO of -1%
CFO of 1%

0 20 40 60 80 100 120
−0.50

−0.25

0.00

0.25

0.50

0 20 40 60 80 100 120
−0.50

−0.25

0.00

0.25

0.50

−0.4 −0.2 0.0 0.2 0.4

−20

−15

−10

−5

0

Q
AM

16

CFO of -1%
CFO of 1%

0 20 40 60 80 100 120
−0.75

−0.50

−0.25

0.00

0.25

0.50

0 20 40 60 80 100 120

−0.50

−0.25

0.00

0.25

0.50

−0.4 −0.2 0.0 0.2 0.4
Normalized Frequenc 

−20

−15

−10

−5

0

Q
AM

64

CFO of -1%
CFO of 1%

0 20 40 60 80 100 120
Samples

−0.5

0.0

0.5

0 20 40 60 80 100 120
Samples

−0.5

0.0

0.5

Figure 3.7: Random samples from the 128 sample version of Dataset B. The Es/N0 was

restricted to 20 dB but the specific examples in time were selected randomly from that

subset. The center frequency offset is shown by averaging the frequency content across all

samples with −1% offset and 1% offset.
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trained on Dataset B use Batch Normalization as this increased training stability for the

larger example sizes. For all models, the learning rate is set to 0.001 and early stopping is

employed with a patience of 5.

During training, 30% of the dataset was withheld as a test set. The remaining 70% of

the data is used in the training sequence with 5% of the training set used as a validation

set. All data is split randomly with the exception that modulation classes and SNR are kept

balanced for all sets. Each of the models is then evaluated at each SNR in the test set for

overall accuracy and the results are shown, for Dataset A, in Figure 3.8, and for Dataset B in

Figure 3.9. As expected, increasing the input size lead to increasing accuracy across all SNR

ranges for Dataset B. The peak accuracy for Dataset B is higher, even for the equivalent 128

sized input network, than Dataset A, likely because there are more modulations to confuse

the network with in Dataset A. While the specific SNR cannot be compared between the

two test results in Figure 3.8 and 3.9 because the underlying dataset use a different measure

of SNR, all Figures in future chapters present results in terms of Es/N0.
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Figure 3.8: Dataset A test accuracy vs SNR.
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Figure 3.9: Dataset B test accuracy vs SNR for three different DNNs input sizes. In this

Figure, there are no center frequency offsets during evaluation. As expected, increasing

the input size results in increasing test accuracy over the entire SNR range studied.
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The focus of the current work is to develop an OTA adversarial evasion attack against

RFML. This chapter makes a step towards that goal by studying the effectiveness of the

FGSM attack, which is one methodology for adversarial evasion attacks presented in CV, in

an environment that is the closest analogy to that presented in [39], with direct access to

the classifier.

This chapter first introduces the concept of adversarial machine learning for untargeted

evasion attacks and describes how FGSM creates adversarial examples. It then adapts FGSM

to be bounded by a power ratio, as is common in wireless communications, instead of by

a distance in the feature space, as is common in CV. Using this adaptation, a baseline

evaluation is performed to confirm that FGSM is effective against a RFML model. The

remainder of the chapter is dedicated to studying the effect that input sizes and noise have

on the adversarial attack. By studying randomly drawn individual examples in Section 4.5,

and the effect that AWGN has on them, the current chapter offers a fine grained look at

some effects that could be encountered in an OTA attack. This chapter then concludes and

these effects are studied more broadly for an FGSM attack in Chapter 5.

4.1 Introduction to Adversarial Machine Learning

Most raw IQ based signal classifiers seek to take in a signal snapshot, x, and output the most

probable class y. Traditionally, x would represent a single channel of complex samples, with

little pre-processing performed, and could therefore be represented as a two-dimensional ma-
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trix [IQ, number of samples]. Specifically, RFML systems, which use DNNs, learn a mapping

from the data by solving

argmin
θ
L(f(θ,x),y)), (4.1)

where x and y represent the training inputs and target labels respectively and f represents

the chosen network architecture. A loss function (L), such as categorical cross entropy,

is generally used in conjunction with an optimizer, such as stochastic gradient descent or

Adam [81], to train the DNNs and thus learn the network parameters θ. While training the

model, the dataset is fixed (assuming no data augmentation) and is assumed to be sampled

from the same distribution that will be seen during operation of the RFML system.

Untargeted adversarial machine learning is simply the inverse of this process. By seeking

to maximize the same loss function, an adversary can decrease the accuracy of a system.

Therefore, the adversary is also solving an optimization problem that can be defined by the

following 1.

argmax
x∗

L(f(θ,x∗),y)) (4.2)

In this case, the parameters, θ, of the classifier are fixed but the input, x∗, can be

manipulated. Many approaches exist to solve this problem [27, 33, 35, 39, 82]. In particular,

1Adversarial machine learning is generally constrained such that ||x∗−x||p ≤ ε where p can be 0, 1, 2,∞.

In this thesis, the constraint is formulated in terms of the power ratio between the perturbation and the

underlying transmission.
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Figure 4.1: BPSK adversarial example with a 10 dB (Es/Ej) perturbation, created with

the FGSM [39] algorithm, applied.

FGSM [39] creates untargeted adversarial examples using

x∗ = x+ ε× sign(∇xL(f(θ,x),y)), (4.3)

where y represents the true input label and ∇x represents the gradient of the loss func-

tion with respect to the original input, x. This methodology creates adversarial examples

constrained by a distance, ε, in the feature space in a single step. x∗ is referred to as an ad-

versarial example. One adversarial example used in the current work is presented in Figure

4.1, where the source modulation is BPSK and a perturbation has been applied to achieve

untargeted evasion for a direct access attack.
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In the context of wireless communications, the absolute value of the signal is generally

less important than the relative power of the signal with respect to some other signal such as

noise. Therefore, similar to [43], the current work reformulates the perturbation constraint,

ε, from a distance bounding in the feature space to a bounding of power ratios in the following

section.

4.2 Adapting FGSM

The average energy per symbol (Es) of a transmission can be computed using

E[Es] =
sps

N

N∑
i=0

|si|2, (4.4)

where sps represents samples per symbol, N is the total number of samples, and si represents

a particular sample in time. Without loss of generality, the current work assumes the average

energy per symbol of the modulated signal, Es, is 1. Therefore, the power ratio of the

underlying transmission to the jamming/perturbation signal2 (Ej) can be derived as

Es
Ej

=
1

Ej

= 10−Ej(dB)/10

(4.5)

Since the input of sign(∇x) in (4.3) is complex, the output is also complex, and is therefore

a vector whose values are [±1,±1j]. Therefore, the magnitude of each sample of the jamming

2Because the perturbation is an electronic signal deliberately crafted to impair the successful operation

of the eavesdropper, the current work uses jamming signal and perturbation signal interchangeably.
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signal can be computed as

| sign(∇x)| = | sign(z)|

=
√

(±1)2 + (±1)2

=
√

2

(4.6)

Thus the energy per symbol of sign(∇x) can be computed by plugging (4.6) into (4.4)

resulting in

Esign(∇x) =
sps

N

N∑
i=0

| sign(∇x)|2

= 2× sps

(4.7)

Because sps is fixed throughout transmission, a closed form scaling factor, ε, can be

derived to achieve the desired energy ratio (Es/Ej) by using

ε =

√
Ej

Es

Esign(∇x)

=

√
10

Ej(dB)

10

2× sps

(4.8)

Plugging ε into (4.3) allows the creation of adversarial examples constrained by Es/Ej

and can be succinctly defined as

x∗ = x+

√
10

Ej(dB)

10

2× sps
× sign(∇xL(f(θ,x),y)) (4.9)
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Constraining the power ratio in this way can be useful for evaluating system design trade-

offs. Typically, a transmitter has a fixed power budget and the current chapter considers an

adversarial machine learning technique which is not aware of the underlying signal; therefore,

power which is used for the jamming signal subsequently cannot be used for the underlying

transmission3.

4.3 Baseline Evaluation

In order to first characterize the effectiveness of adversarial machine learning on raw IQ based

AMC, a baseline study of average classification accuracy against Es/Ej was performed using

the model trained on Dataset A. This attack was performed with no noise added to the

adversarial examples, either before or after the perturbation was added, and thus assumes

direct access to the classifier input. This represents the best case scenario for the classification

network because, since there was no noise added, the SNR is infinite and therefore the model

would be most accurate when it is not under attack. Additionally, this also shows the best

case scenario for the adversary because the perturbation is also not distorted by noise. Ergo,

this is the most ideal environment for both parties. Further, to more closely shadow the

results shown in Chapter 5 and 6, which will be studied both in terms of classification

accuracy and BER in a simulated OTA environment, the modulations are restricted to

BPSK, QPSK, 8PSK, QAM16, and QAM64.

As can be seen in Figure 4.2, even at 30 dB, the FGSM attack is more effective than

3 Methodology that takes into account BER is explored in Chapter 6.
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Figure 4.2: Classification accuracy of a model trained on Dataset A for a direct access

attack. This plot compares the average classification accuracy for BPSK, QPSK, 8PSK,

QAM16, and QAM64 when FGSM in used to apply a specific adversarial perturbation to

the accuracy when “jammed” with a Gaussian noise signal at the same power ratio.

simply adding Gaussian noise (AWGN). At 10 dB, the FGSM attack is effective enough to

degrade the classifier below the performance of random guessing. This represents an 8 dB

improvement over the same degradation using Gaussian noise.

4.4 Attack Effectiveness versus NN Input Size

Increasing the DNNs input size has been empirically shown to improve the performance of

raw IQ AMC in [48] as well as the current work’s reproduction of similar results in Figure

3.9. While it is intuitive that viewing longer time windows of a signal will allow for higher
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Figure 4.3: (top) Overall classification accuracy of models trained on Dataset B in the

presence of a direct access FGSM attack for different input sizes. (bottom) The relative

classification accuracy ranking of the three different models for each Es/Ej .

classification accuracy (for static channels where psuedo-stationarity can still be assumed),

it is also intuitive that allowing more adversarial jamming energy to enter the algorithm will

have adverse effects. Therefore, the current work presents an experiment used to verify this

intuition. Three copies of the same network, that differ only in input size, are trained on

Dataset B. The analysis from the previous section is then repeated and shown in Figure 4.3.

As expected, at very high Es/Ej, where the adversarial energy is low, the network with the

largest input size is the most accurate. However, it is quickly supplanted by the second largest

input size when Es/Ej drops below 55 dB (ε ≈ 0.00044). Once Es/Ej drops below 15 dB, the

classification accuracy ranking inverts from the initial rankings, with the smallest input size
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being the most accurate and the largest input size being the least accurate. Therefore, when

developing a RFML system for use in adversarial environments, the benefits of increasing

input size must be balanced against the cost of increasing the attack surface.

4.5 Analyzing Individual Adversarial Examples

While the earlier sections presented macro-level results, this section presents results at a

micro-level by analyzing the fine grained effect of the adversarial machine learning method

on individual examples rather than the average effect across multiple examples. The current

work considers a single machine learning example from each of the source modulations4. For

each example, Es/Ej is swept from 40 to 0 dB with a step size of 1 dB. At each Es/Ej, the

outputs of the DNN before the softmax function (as was shown in [39]) are captured.

One adversarial example for BPSK is shown in Figure 4.1. It can be seen in the Q

samples that, due to the sign operation in (4.9), the perturbation applied to the signal has

a square shape. Therefore, the perturbation alone is easily identifiable; however, in the I

samples, where the underlying modulated signal also lies, it is less distinguishable. Notably,

the differences are most apparent around the symbol locations (note that this signal has

8 samples per symbol), which could indicate that the symbol transitions are an important

feature to the classifier.

4While random individual examples are analyzed for simplicity, the conclusions drawn are further explored

in Chapter 5.
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4.5.1 Difference in Logits

While the full output of the DNNs provides ample information, it is multi-dimensional and

therefore hard to visualize. One metric that is often used is a confusion matrix, which

captures the relationships among classes. However, confusion matrices are generally only

presented as an average across multiple examples and do not provide any notion of the

confidence with which a classifier made a single prediction. Therefore, a confusion matrix

would not fully capture the variance of the DNNs because the outputs would not change

unless the input examples were moved across a decision boundary. Another metric that could

be used is to apply the softmax function to the output and report the confidence associated

with the source class. This metric shows the variance of the classifier output but does not

provide any indication of the Top-1 accuracy score because even a low confidence output

could still be the highest and therefore the predicted class. The Top-1 accuracy score can

be described as

E[yp = yt] (4.10)

where yp is the classification label obtained by taking the index of the maximum network

output of the model.

yp = argmax(y) (4.11)

Under the classification policy presented in (4.11), and the accuracy defined by (4.10),
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Top-1 accuracy can also be described as the probability of correct classification.

The current work presents an additional metric, which we term the “difference in logits”

(∆logits), that simultaneously captures the accuracy of the classifier as well as the variance in

outputs. “Logits” refers to the DNNs output before the softmax function has been applied.

The maximum output of all incorrect classes is subtracted from the source (true) class output,

which can be described by the following Equation.

∆logits = ys −max(yi∀i 6= s) (4.12)

The difference in logits can be visualized as the shaded region in the top of Figures 4.4

and 4.5. When ∆logits is positive, the example is correctly classified and a negative ∆logits

therefore indicates untargeted adversarial success.

4.5.2 Classifier Output versus Attack Intensity

The output of the classifier for the BPSK example, across multiple Es/Ej is shown in Figure

4.4. At an Es/Ej of 10 dB, the jamming intensity present in Figure 4.1, untargeted misclas-

sification is achieved because the BPSK output is not the highest output of the classifier;

this result is also indicated by viewing that ∆logits is negative. However, even though mis-

classification is achieved, the signal is still classified as a linearly modulated signal, with the

predicted modulation order increasing as Es/Ej increased. Linearly modulated signals have

symbols which exist in the IQ plane (distinguished as solid lines in Figure 4.4) versus a FSK
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Figure 4.4: Output of the model trained on Dataset A for a direct access FGSM attack

using a single, randomly selected, BPSK adversarial example across varying Es/Ej (top)

and the corresponding difference in logits (bottom). The areas shaded red represent regions

where a correct classification occurred (therefore the adversary was unsuccessful) while

the areas shaded green represent an incorrect classification (therefore the adversary was

successful). Note that the regions are only shaded to visualize (4.12).
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or continuous signal (distinguished as dashed lines) whose symbols exist in the frequency

domain or do not have discrete symbols at all, respectively. Therefore, while the adversarial

machine learning method was able to achieve untargeted misclassification by causing the

classifier to misinterpret the specific linearly modulated signal, the classifier still captured

the hierarchical family of the human-engineered modulation. This reinforces the natural no-

tion that the difficulty of targeted adversarial machine learning varies based on the specific

source and target modulations used.

Figure 4.5 shows the output of the classifier for a single QAM16 example. As was ob-

served in Figure 4.4, at very low Es/Ej, where the attack intensity is the highest, the example

is again classified as QAM (though untargeted misclassification is narrowly achieved because

the model believes it is QAM64). Further, the QAM16 example required much lower en-

ergy (Es/Ej < 30 dB) than the BPSK example (Es/Ej < 15 dB) to achieve untargeted

misclassification. Therefore, increasing the perturbation energy does not always provide ad-

vantageous effects from the evasion perspective, as can be observed from the difference in

logits of Figure 4.5, and the optimal attack intensity varies between source modulations.

4.5.3 Mutation Testing with AWGN

In an OTA environment, an adversary would (almost) never be able to ensure that a trans-

mitted signal isn’t corrupted by some source of noise. Noise can come from many sources,

including an adjacent transmitter, non-linearities in the eavesdropper or transmitter’s RFFE,

errors in the eavesdroppers signal detection stage, or simply the motion of electrons in the
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Figure 4.5: Output of the model trained on Dataset A for a direct access FGSM attack

using a single, randomly selected, QAM16 adversarial example across varying Es/Ej (top)

and the corresponding difference in logits (bottom). The areas shaded red represent regions

where a correct classification occurred (therefore the adversary was unsuccessful) while

the areas shaded green represent an incorrect classification (therefore the adversary was

successful). Although it is a low confidence prediction, the classification is narrowly correct

when Es/Ej > 35(dB) and narrowly incorrect when Es/Ej < 5(dB). With the model

having trouble distinguishing between QAM16 and QAM64. Note that the regions are

only shaded to visualize (4.12).
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RFFE.

While having the adversarial example corrupted by noise is a certainty for OTA attacks,

it was actually proposed as a defensive strategy in [42], named mutation testing, where

the authors repeatedly applied domain specific noise to a machine learning example and

calculated the input’s sensitivity, with respect to the classifier output, in the presence of

this noise. The authors of [42] found that adversarial examples were more sensitive to noise

than examples contained in the initial training distribution and therefore mutation testing

could be used to detect adversarial examples. It is important to note that the noise is added

after the perturbation is applied and thus corrupts both the original example as well as the

adversarial perturbation.

The current work presents a study of the effect of AWGN, one of the most prevalent

models of noise in RFML, on randomly selected individual adversarial examples. For each

Es/Ej, AWGN is introduced to the signal at varying Es/N0 (SNR). Es/N0 is swept from 20

to 0 dB with a step size of 1 dB. For each of the SNRs considered, 1000 trials are performed.

While Es/Ej and Es/N0 are the parameters swept in this experiment, the jamming to noise

ratio (Ej/N0) can be quickly inferred by

Ej
N0

=
Es/N0

Es/Ej

=
Es
N0

dB− Es
Ej

dB

(4.13)

Again, results are presented in Figure 4.6 from the BPSK example originally shown in
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Figure 4.6: The effect of noise on the output of the model trained on Dataset A for a

single, randomly selected, BPSK adversarial example with an Es/Ej of 10 dB. The line

represents the mean of the difference in logits, at a specific Es/N0, while the shaded region

represents the 25th and 75th percentiles in order to show the variance of the output.

Figure 4.1, where Es/Ej is 10 dB. The mean of the difference in logits is shown with the

25th and 75th percentiles shaded to show the variance in the output of the classifier at

each SNR. With even a small amount of noise (Es/N0 of 17 dB) the 75th percentile of the

difference in logits becomes positive indicating that the example was classified correctly in

some iterations. Increasing the noise power to roughly half that of the applied perturbation

(Ej/N0 of 3 dB) results in the classification, on average, being correct.

This effect was not observed across all adversarial examples tested. In Figure 4.7 it is

shown that, while the increased sensitivity of the classifier output is observed in the same

range of Ej/N0, it does not result in a correct classification. Therefore, while [42] presented
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Figure 4.7: The effect of noise on the output of the model trained on Dataset A for a

single, randomly selected, QPSK adversarial example with an Es/Ej of 10 dB. The line

represents the mean of the difference in logits, at a specific Es/N0, while the shaded region

represents the 25th and 75th percentiles in order to show the variance of the output.

general conclusions that all adversarial examples were sensitive to noise, these results show

that this effect is most pronounced when the adversarial perturbation and noise have similar

power. Additionally, these effects were not observed at all in the individual 8PSK and

QAM16 examples studied.

Although only four random examples were studied in this section, it is clear that AWGN

can greatly impact the classifier’s output when applied to adversarial examples and, in

some cases, that can lead to a reduction in adversarial success when the perturbation and

noise power are at similar levels. Therefore, the current Chapter does not conclude that

the vulnerabilities found in direct access attacks, which have deterministic access to the
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classifier’s inputs, automatically transfer to OTA attacks, where an adversary would only

have access to the classifier’s inputs through a stochastic wireless channel.

4.6 Conclusion

This chapter has shown a baseline result that deep learning based raw IQ AMC is vulnerable

to untargeted adversarial examples when the adversary has direct access to the classifier’s

input. Further, it was shown that although increasing the DNNs input size can improve

accuracy in non-adversarial scenarios, it can make a classifier more susceptible to deception

for a given Es/Ej. However, these results assumed direct access to the classifier input, which

is unrealistic in an operational environment. A more realistic attack would only have access

to the classifier’s input through a stochastic wireless channel; therefore, this chapter studied

the impact, on a fine grained level, of AWGN on the adversarial examples crafted using the

FGSM algorithm and found that noise can have a negative impact on adversarial success.

Therefore, the evaluations presented in this Chapter are not indicative of the adversarial

success rates that would be achieved in an OTA attack. The following chapter performs an

evaluation of identical methodology, but, in an OTA environment where sources of noise can

negatively impact adversarial success and the perturbation applied to the transmission can

negatively impact the communication to a cooperative receiver.
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All OTA attacks must consider the impact of receiver effects on adversarial success;

furthermore, self protect attacks must balance the secondary goal of evading an adversary

with the primary goal of transmitting information across a wireless channel. These effects

have traditionally been ignored in prior work and therefore, while the previous chapter

studied adversarial success in near perfect conditions, this chapter studies the impact to

adversarial success when the examples are evaluated in the presence of three specific receiver

effects, which would likely occur during an OTA attack: AWGN, sample time offsets, and

center frequency offsets. While these effects are not exhaustive of all noise sources that could

occur, the study of additional effects1 is left to future work.

The work presented in this chapter does not consider the impact of noise on adversarial

success or the impact of the perturbation to the intended receiver in the adversarial machine

learning methodology. This chapter therefore uses the same FGSM method that was studied

in Chapter 4, but, examines how that methodology would break down in an OTA attack

at the eavesdropper or impact the intended communication at the receiver. In Chapter 6,

methodology will be developed that specifically accounts for AWGN and sample time offsets

at the eavesdropper, as well as the BER at the intended receiver.

1Additional sources of noise that would occur in a real system include: non-linearities in the transmitter’s

or eavesdropper’s RFFE (due to amplifier distortion or inter-modulation effects), multi-path effects due to

the propagation environment, quantization error (from the DAC on the transmitter or the ADC on the

eavesdropper), or a fast fading channel that changes quick enough to impact the short time window of the

signal that the eavesdropper uses for classification.
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Figure 5.1: Block diagram of the evaluation methodology developed for the current

work. The current work assumes perfect knowledge of the target DNNs and therefore the

DNNs shown in the AMC Evaluation and Adversarial ML blocks are identical and simply

separated for clarity.

5.1 Simulation Environment

The high level overview of the simulation environment used in the current chapter is shown

in Figure 5.1 and each major block is described below. Full evaluation in the context of

wireless communications requires the interfacing of both a DSP and ML framework. The

current work uses GNU Radio and PyTorch respectively; however, the methodology is not

dependent upon use of those frameworks in any way.
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5.1.1 Modulation

The initial modulated signal is generated by a simple flow graph in GNU Radio. Unless

otherwise stated, the parameters for transmission can be summarized as follows. The symbol

constellations used are BPSK, QPSK, 8PSK, and QAM16. The root raised cosine filter

interpolates to 8 samples per symbol using a filter span of 8 symbols and a roll-off factor of

0.35. 1000 examples2 modulation scheme are created using a random bit stream.

The FGSM methodology used in the current (and previous) chapter does not depend on

the properties of the signal in any way, but, the signals should closely resemble the training

distribution of the AMC model under test in order to isolate the effects of adversarial machine

learning from the effects of changing the test distribution.

5.1.2 Adversarial ML

In order to craft the jamming signal using adversarial machine learning techniques, it is

necessary to first slice the signal into discrete examples matching the DNNs input size.

Before feeding these examples into the DNNs, dithering is employed to add small amounts

of noise to the examples. While dithering is a standard process in signal processing, it was

specifically used in the current work because the sign operation in PyTorch is defined such

21000 examples per class corresponds to 16000 random symbols per modulation in the current Chapter.

This is because the AMC model studied operates on 128 complex samples which are 8 times over sampled,

and therefore view 16 (128/8) symbols per inference. While 1000 examples are created as a baseline signal,

due to sweeping parameters for the channel model and performing multiple trials at each characterization

in order to sample the random process, the actual number of examples evaluated is much higher.
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that sign(0) = 0. Therefore, for a BPSK signal, sign(∇x) would always be 0 for quadrature

samples, which are always 0 by definition of BPSK. Restricting the perturbation only to

the in-phase samples was not the goal of the current work and dithering eliminated this

issue. After dithering, the FGSM algorithm is then used to create the perturbations which

are concatenated back together to form the jamming signal. For each Es/Ej studied, the

jamming signal is scaled linearly using (4.8) and added to the modulated signal. Unless

otherwise stated, Es/Ej is swept from 0 to 20 dB with a step size of 4 dB.

5.1.3 Channel Model

The current work considers a simple, and static, channel model with AWGN and center

frequency offsets. While the channel model is fixed for each observation, the parameters of

this model is swept throughout the current chapter in order to evaluate the effectiveness of

adversarial machine learning in multiple scenarios.

AWGN models thermal noise in the receiver and implicitly considers the path loss between

the transmitter and eavesdropper by varying the height of the noise floor (as Es is fixed at 1 in

the current work). Center frequency offsets model errors in the signal detection and isolation

stage that would occur because the eavesdropper is performing blind signal classification and

is therefore not synchronized3 to the underlying transmission.

3The channel model encapsulates errors due to the eavesdropper not being synchronized to the transmitter

in the frequency domain. An additional effect, due to not being synchronized in time, is explored in Chapter

5.4 but is not represented in the channel model because it only occurs when the signal is split into discrete

examples.



75

The received signal can be characterized as follows:

srx(t) = e−j2πfotstx(t) + CN (0, σ2) (5.1)

Where fo is the normalized frequency offset and σ2 is given by the desired Es/N0. The

channel model is implemented using a GNU Radio flow graph.

5.1.4 Demodulation

Demodulating the received signal, at the intended receiver, consists of match filtering, down-

sampling to one sample per symbol, and decoding the symbols back into a bit stream to verify

the data received matches the data transmitted. The demodulation is also implemented as

a GNU Radio flow graph and assumes both symbol and frame synchronization.

5.1.5 Automatic Modulation Classification Evaluation

Top-1 accuracy is the metric used for eavesdropper classifier evaluation in [8], [9], and [48] and

is the metric used for evaluation in the current work. For untargeted adversarial machine

learning, adversarial success is defined as a lower Top-1 accuracy as opposed to a higher

accuracy.
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5.2 Impact of Additive White Gaussian Noise

AWGN has been shown to negatively impact both BER and classification accuracy. Addi-

tionally, as discussed in Section 4.5, AWGN can have a negative effect on adversarial success.

While section 4.5 studied this impact on individual examples, this section further evaluates

these negative effects with a larger scale study in order to validate that the intuition gained

from section 4.5 generalizes across all examples. In some cases, such as in “rubbish exam-

ples” [39] or “fooling images” [38], the primary goal of adversarial machine learning may

simply be to create an input that is classified with high confidence as some target class

starting from a noise input. However, in most practical applications, fooling a classifier is a

secondary goal that must be balanced against the primary objective. In CV, this primary

objective is to preserve human perception of the image. In the current work, the primary ob-

jective of self protect attacks is to transmit information to a friendly receiver using a known

modulation while the secondary objective is to avoid recognition of that modulation scheme

by an eavesdropper. Therefore, this section presents results showing the compounding im-

pacts of adversarial machine learning and AWGN on BER as well as the effect of AWGN on

adversarial success rates.

Using the model trained on Dataset A, a range of Es/N0 and Es/Ej are considered.

For each Es/N0 considered, ten thousand trials are executed to provide averaging of the

random processes present in the channel model for a given random signal. The current work

considers both the BER and classification accuracy for BPSK in Figure 5.2, QPSK in Figure
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5.3, 8PSK in Figure 5.4, and QAM16 in 5.5.

Unsurprisingly, increasing the adversarial perturbation energy has positive effects on

adversarial success rates (also shown previously in Chapter 4) and negative effects on BER.

In order to directly compare the trade space between the two across a range of SNRs, BER

versus classification accuracy is plotted for each Es/Ej considered. At high SNR, extremely

low probabilities of bit error, such as those seen in BPSK at Es/N0 = 20 dB, are hard

to characterize empirically due to computation constraints. Therefore, in the BER versus

classification accuracy plots, all results with lower than 10−6 BER have been omitted for

clarity. Conversely, not all BERs are attainable in the SNR range studied when Es/Ej

becomes small; therefore, when comparing BER vs classification accuracy not all BERs will

necessarily be defined.

By looking at Figure 5.2, one can observe that classification accuracy can be degraded

to ≈ 0% with no noticeable effect to BER for BPSK when using a white-box adversarial

attack with an Es/Ej of 4 dB. While this is a very strong result, it only occurs at high SNRs

(> 15 dB). A more reasonable result to compare to would be the baseline result at 10 dB.

In order to achieve the same BER as the baseline of no attack (shown as a dashed line), an

adversary must increase their SNR, and therefore their transmission power, by ≈ 2 dB when

performing an adversarial attack at an Es/Ej of 8 dB. A similar analysis can be performed

for QPSK (Figure 5.3) where a 4 dB increase to SNR is required to maintain the same BER

while reducing classification accuracy to < 20%.

As stated in Chapter 4, AWGN can have negative effects on adversarial success. There-
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Figure 5.2: Classification accuracy and BER at varying Es/Ej and Es/N0 for self protect

untargeted adversarial attacks using FGSM on the model trained with Dataset A and a

source modulation class of BPSK. Note that when using a high powered perturbation,

where Es/Ej is a small value, not all BERs are attainable in the SNR range studied.

In all plots, the adversary desires to have lower curves because lower BER implies a

lower impact to the underlying communication and a lower accuracy implies untargeted

adversarial success. Conversely, the eavesdropper desires to have higher curves which

indicate a larger increase in BER for an adversary to evade signal classification.
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Figure 5.3: Classification accuracy and BER at varying Es/Ej and Es/N0 for self protect

untargeted adversarial attacks using FGSM on the model trained with Dataset A and a

source modulation class of QPSK. Note that when using a high powered perturbation,

where Es/Ej is a small value, not all BERs are attainable in the SNR range studied.

In all plots, the adversary desires to have lower curves because lower BER implies a

lower impact to the underlying communication and a lower accuracy implies untargeted

adversarial success. Conversely, the eavesdropper desires to have higher curves which

indicate a larger increase in BER for an adversary to evade signal classification.
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fore, while an eavesdropper with a high SNR would be fooled nearly all of the time by a

BPSK transmission with an Es/Ej of 8 dB, an eavesdropper with an Es/N0 of 10 dB would

still classify this signal correctly 20% of the time. If an adversary wished to attain 0% clas-

sification more generally for BPSK using FGSM, then they would need to transmit with an

Es/Ej of 4 dB. This attack intensity would require an SNR increase of ≈ 4 dB to maintain

the same BER. The increased accuracy, at lower SNRs, observed previously in Figure 4.4 can

also be observed in Figure 5.2 and therefore generalizes across BPSK examples. This effect

can also be observed, to a lesser extent, in the results of 8PSK (Figure 5.4) and QAM164

(Figure 5.5). Thus, even when evaluating adversarial success purely in terms of accuracy,

the adversary can be significantly impaired by an AWGN channel and must contribute more

power to the perturbation in order to achieve the same success rates as a Direct Access

Evasion Attack (Chapter 4).

As previously mentioned, reducing an eavesdropper’s classification accuracy is a sec-

ondary goal that must be balanced against the ability to successfully transmit information.

Therefore, as modulation order increases, BER can become prohibitive for an adversary’s

success. For instance, FGSM attacks using source modulations of 8PSK and QAM16, with

Es/Ej ≤ 8 dB, already contain bit errors without any added noise. Therefore, degrading

classification accuracy of 8PSK below 20%, outside of the eavesdropper receiving the signal

4Although QAM16 shows an accuracy increase at lower SNRs for adversarial examples, this is also

observed in the baseline case (although it is less pronounced). Therefore, while it can’t be conclusively

stated that accuracy increases at lower SNRs is unique to adversarial examples for QAM16, it can clearly

be concluded that an adversary would be less successful when the eavesdropper has a low SNR.
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Figure 5.4: Classification accuracy and bit error rates at varying Es/Ej and Es/N0

for self protect untargeted adversarial attacks using FGSM on the model trained with

Dataset A and a source modulation class of 8PSK. Note that when using a high powered

perturbation, where Es/Ej is a small value, not all BERs are attainable in the SNR range

studied. In all plots, the adversary desires to have lower curves because lower BER implies

a lower impact to the underlying communication and a lower accuracy implies untargeted

adversarial success. Conversely, the eavesdropper desires to have higher curves which

indicate a larger increase in BER for an adversary to evade signal classification.
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Figure 5.5: Classification accuracy and bit error rates at varying Es/Ej and Es/N0

for self protect untargeted adversarial attacks using FGSM on the model trained with

Dataset A and a source modulation class of QAM16. Note that when using a high powered

perturbation, where Es/Ej is a small value, not all BERs are attainable in the SNR range

studied. In all plots, the adversary desires to have lower curves because lower BER implies

a lower impact to the underlying communication and a lower accuracy implies untargeted

adversarial success. Conversely, the eavesdropper desires to have higher curves which

indicate a larger increase in BER for an adversary to evade signal classification.
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at low SNR, would require forward error correction to account for the errors in transmission.

In the case of QAM16, attacks using Es/Ej ≤ 4 dB would impact the receiver more than

the eavesdropper in many scenarios. Specifically, QAM16 has a BER of ≈ 16% and ≈ 25%

when Es/Ej is 4 and 0 dB respectively even when there is no additive noise. Therefore, when

evaluated as a function of BER, the classification accuracy is actually lower in the baseline

case than under the presence of these high intensity attacks.

These results conclude that adversarial machine learning is effective across multiple mod-

ulations and SNRs to achieve the goal of untargeted misclassification because, for a given

BER, classification can be greatly reduced in many scenarios. However, avoiding signal

classification may require sacrificing spectral efficiency or increasing transmission power to

maintain the same BER. Additionally, AWGN was shown to have a negative impact on

adversarial success rates in 3 out of 4 source modulations tested and therefore adversarial

machine learning can be the most effective at high SNRs.

5.3 Impact of Center Frequency Offsets

Signal classification systems typically do not know when and where a transmission will

occur. Therefore, they must take in a wideband signal, detect the frequency bins of the

signals present, as well as the start and stop times of transmission, and bring those signals

down to baseband for further classification. However, this process is not without error. One

effect shown in [48] was the consequences of errors in center frequency estimation, resulting in
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frequency offset signals. The authors of [48] found that raw IQ based AMC only generalized

over the training distribution it was provided and therefore if additional frequency offsets

outside of the training distribution were encountered, the classification accuracy would suffer.

Because these estimations are never exact, adversarial examples transmitted over the air must

also generalize over these effects. This section, as well as the following section for a different

effect, simply evaluates whether an FGSM attack does in fact generalize over these effects

and does not modify the methodology.

In order to evaluate the impact of center frequency offsets to adversarial examples, it is

necessary to use a model that has been trained to generalize over these effects. Therefore, this

experiment uses Dataset B, which has a training distribution consisting of ±1% frequency

offsets, which have been normalized to the sample rate. An input size of 128 is used for

closer comparison to other results using Dataset A, which only has 128 as an input size.

The frequency offsets are swept between −2.5% and 2.5% with a step size of 0.1%. Es/N0 is

evaluated at 10 and 20 dB. At each SNR, 100 trials are performed to average out the effects

of the stochastic process. The results of this experiment are shown in Figure 5.6.

It can be observed that the baseline classifier has learned to generalize over the effects

of frequency offsets within its training range of ±1%; however, the adversarial examples

are classified with ≈ 10% higher accuracy even at the lowest evaluated frequency offsets of

±0.1%. This effect is observed at both 20 and 10 dB SNR. Therefore, even minute errors

in frequency offset estimation can have negative effects on adversarial machine learning and

must be considered by adversarial generation methods. Yet, even though frequency offsets
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Figure 5.6: Classification accuracy vs normalized center frequency offset at varying

Es/Ej for self protect untargeted adversarial attacks using FGSM. The model used is

trained on Dataset B with an input size of 128. This dataset has a training distribution

of ±1% frequency offset that has been normalized to the sample rate.
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impede adversarial success, an FGSM attack is still more successful at evasion than the

baseline case of not modifying the signal at all.

5.4 Impact of Timing Offsets

An additional effect that could be encountered is sample time offsets. In the context of

communications, sample time offsets can be thought of as a rectangular windowing function,

used for creating discrete machine learning examples, not aligning between the adversar-

ial perturbation crafting, at the transmitter, and signal classification, at the eavesdropper.

As previously mentioned, the signal classification system must estimate the start and stop

times of a transmission; one way to estimate these times is to use an energy detection al-

gorithm where the power of a frequency range is integrated over time and then thresholded

to provide a binary indication of whether a signal is present. A low threshold could have a

high false alarm rate and a high threshold could induce a lag in the estimation of the start

time. Furthermore, signal classification systems could use overlapping windows for subse-

quent classifications to increase accuracy through the averaging of multiple classifications of

different “views” of a signal or use non-consecutive windows due to real-time computation

constraints. Therefore, this effect is a near certainty. The current section simply evaluates

whether an FGSM attack generalizes over this effect and does not modify the adversarial

methodology. Chapter 6 will present methodology that does not rely on a discrete window

for crafting a perturbation in order to generalize over this effect.
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This experiment uses the model trained on Dataset A and again evaluates the effect at an

Es/N0 of 10 and 20 dB. At each SNR, 100 trials are performed. The time offset is modeled

as a shift in the starting index, from the starting index used at the transmitter for creating

the adversarial perturbations, that is used when slicing the signal for evaluating the signal

classification performance and non-overlapping/consecutive windows are still used. The time

offset was swept from 0 to 127 (because the input size is 128 and this effect is periodic in

the input size); however, only the results from 0 to 10 are shown for simplicity. Time

offsets higher than 8 samples, the symbol period, did not present any significant additional

impairments beyond those seen at 8. The results are shown in Figure 5.7.

As expected, the network is not heavily effected in the baseline case. However, the

adversarial examples can be significantly impacted. In the case of an Es/Ej of 12 dB, simply

shifting the time window to the right by four samples can increase the classification accuracy

by 20%. Additional energy can be dedicated to the adversarial perturbation to partially

overcome this effect. In Figure 5.7 it can be observed that attacks with an Es/Ej of 4 dB

or 0 dB have less than 10% accuracy increase from this effect. However, as stated in prior

sections, increasing the perturbation power of an FGSM attack negatively impacts BER

and therefore becomes prohibitive for higher order modulations. While some adversarial

perturbations have been shown to be agnostic to these time shifts, such as the UAP [33]

attack considered in [43], all evaluations of adversarial machine learning in the context of

RFML, that seek to model OTA attacks, must assume this effect exists and generalize over

it.
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Figure 5.7: Classification accuracy vs time window offsets at varying Es/Ej for self

protect untargeted adversarial attacks using FGSM. The model used is trained on Dataset

A.
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5.5 Conclusion

The current chapter has demonstrated that RFML systems are vulnerable to OTA adversar-

ial evasion attacks; however, these attacks are not as effective as an attack with Direct Access

to the classifier, as was demonstrated in Chapter 4. This Chapter has proven this by eval-

uating multiple example attacks against a raw IQ deep learning based modulation classifier

and examined the effectiveness of an FGSM attack in the presence of three RFML domain

specific effects that would occur at an eavesdropper: AWGN, sample time offsets, and center

frequency offsets. When evaluating OTA attacks, evading an eavesdropper is generally a

secondary goal and must be balanced against the primary goal of transmission, which is to

communicate information across a wireless channel. Therefore, the current chapter showed

that these attacks harmed the eavesdropper more than the adversary by demonstrating that,

for a given BER, classification accuracy could be lowered for the majority of the OTA attacks

considered. Given these results, it is logical to conclude that similar vulnerabilities exist in

all RFML systems when the adversary has white-box knowledge of the classifier.

Future OTA adversarial evasion attacks must consider their ability to generalize over

RFML domain specific receiver effects as well as their their impact to the underlying trans-

mission. The current chapter has demonstrated that all three sources of noise considered

can degrade the adversary’s ability to evade classification. Furthermore, the current chapter

has shown that, while current adversarial methodology can be used for evading classifica-

tion, especially when using a lower order source modulation such as BPSK, it may require
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sacrificing spectral efficiency or increasing transmission power to maintain the same BER.

The following chapter describes methodology that incorporates these effects and wireless

communications goals directly into the adversarial methodology in order to create strong

adversarial examples that generalize over receiver effects and have limited impact to the

underlying transmission.



Chapter 6

Communications Aware Evasion

Attacks
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The previous chapters have demonstrated the use of adversarial RFML for untargeted

OTA evasion attacks on raw IQ based AMC. However, the prior methodologies only consider

the effect of adversarial machine learning on the underlying transmission as an evaluation

metric (Chapter 5), don’t consider it at all (Chapter 4 and [4], [43]), or actively seek to

disrupt communication [44,46]. Recent research has shown the promise of directly including

the BER in the loss function [45], but, the proposed techniques require gradient computation

for each example in order to craft an adversarial perturbation which requires a machine

learning framework and thus makes deployment of these adversarial methodologies difficult.

Further, the methodology in [45] operated on discrete blocks of signals and thus assumed

time synchronization.

This chapter addresses both of the shortcomings of [45]. First, methodology is indepen-

dently developed that directly accounts for the underlying transmission in the adversarial

optimization problem. Second, the methodology presented in the current chapter directly

accounts for sample time offsets and therefore does not depend on time synchronization.

Finally, the learned model for perturbation creation is encapsulated in a fully convolutional

adversarial residual network. Once the parameters of this network are learned, in an offline

training process, they could be easily deployed as a complex non-linear filter in a communi-

cations system.

This chapter is organized as follows. First, a system model is presented, which describes

the necessary modifications to a transmit chain. Second, the methodology is described,

including the custom loss functions, the training procedure used to minimize those loss
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Figure 6.1: Overview of the system model assumed in the current chapter where the

contributions are encapsulated in the “adversarial network” block.

functions, and the specific neural network architecture that is used to encapsulate the learned

parameters during training. Finally, the results are provided, specifically showing the tradeoff

between the ability to communicate with the ability to deceive, the BER and accuracy vs

SNR, as well as a discussion on the additional bandwidth used by this methodology.

6.1 System Model

An overview of the system model for the current work is provided in Figure 6.1. The

current work considers three major components of the system: an intelligent and mutable

transmitter, which seeks to communicate with an immutable receiver implementation, while

avoiding AMC by a deep learning enabled eavesdropper.

6.1.1 Transmitter

The primary goal of the transmitter is considered to be the communication of information

to the receiver and BER is the pertinent metric used to evaluate fulfilment of this goal.

The secondary goal of the transmitter is to evade classification of its unintended emission
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to an eavesdropper. A methodology is developed for applying adversarial machine learning

techniques to the signal before transmission.

Many adversarial techniques, such as the well known FGSM [39] require the computa-

tion of both a forward and backward pass (iterated variants such as [35] require multiple

computations) in order to compute an added perturbation that causes a misclassification.

Adversarial Transformation Network (ATN) are separate DNNs that can transform any in-

put into an adversarial example. The authors of [30] presented two variants: Adversarial

Auto-Encoder (AAE) and Perturbation - Adversarial Transformation Network (P-ATN).

AAEs create adversarial examples through

x∗ = g(θ,x), (6.1)

where g(·) represents the AAE, x represents the initial input, and θ represents the parameter

matrices learned during the training of the AAE. The second variant of ATN, P-ATN, is

very similar to the residual block introduced in [83] and creates adversarial transformations

through

x∗ = x+ g(θ,x) (6.2)

Residual networks can more easily learn the identity function because it is easier to push a

residual to 0 than to learn to directly replicate x on the output of the network (as would be

needed in AAEs). Furthermore, the current work considers that the transmission is already

optimal for the primary goal of communicating information (ergo the identity function would

be optimal if only this goal was considered) and thus uses a P-ATN architecture. The current

work will refer to P-ATN as an Adversarial Residual Network (ARN) for simplicity.
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In order to provide the greatest control over the signal, the ARN is chosen to be applied

at the highest sample rate in the system; thus, the ARN is the final step in the transmit

chain and occurs after the pulse shaping filter.

6.1.2 Receiver

The receiver is assumed to be fixed, and therefore no modifications are made in the receive

chain. The current work assumes that the receiver is synchronized to the transmitter and is

demodulating the signal using a known modulation scheme, such as PSK or QAM, to extract

the transmitted information.

6.1.3 Eavesdropper

The eavesdropper is modeled as a deep learning enabled blind modulation classifier operating

on raw IQ with minimal pre-processing [8, 9]. Therefore, the eavesdropper has very limited

a priori information about the transmission and must first detect when, in time, and where,

in frequency, a transmission has occurred. It must then isolate that signal and bring it down

to baseband before classifying the modulation. This process can introduce errors such as

center frequency offsets or sample time offsets [48].

6.1.4 Threat Model

The current work describes a physical attack where the signal is perturbed at the transmitter

and propagates through a wireless channel to a cooperative receiver and unintended eaves-
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dropper. In order to trick the eavesdropper, the current work assumes full knowledge of the

eavesdropper’s neural network and signal processing chain in order to evade classification.

Therefore, in the threat model provided by Figure 3.1, the current chapter would have a goal

of self protect untargeted misclassification with knowledge of the target network architecture

and parameter matrices.

Further, the current work is only concerned with modeling attacks on the classifier in

Figure 6.1 and considers all other portions of the eavesdropper to be static and not react to

the attack. Therefore, evaluating the cascading effects that the perturbation would have on

the signal detection and isolation stage of the eavesdropper are left as future work.

6.2 Methodology

This section first describes the methodology needed to create and train an ARN for evading

signal classification while maintaining the ability to communicate. First, the loss, or ob-

jective, function is presented. Then, the specific training procedure used to minimize that

loss function is described. Finally, the exact ARN architecture used in the current work is

presented. After training the ARN, its performance is then evaluated using a reference AMC

model and receiver implementation. The reference model as well as the procedure used to

perform the evaluations seen in Section 6.3 is described at the end of this section.
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6.2.1 Loss Function

The objective of the ARN can be succinctly described as “minimize BER at the receiver

and minimize classification accuracy at the eavesdropper.” However, because the ARN in

this work is trained using Adam [81], which is a gradient based method, a surrogate loss

function needs to be used that is (at least pointwise) differentiable. Further, as there are

multiple objectives for the ARN, the full loss function used is therefore a balance between the

adversarial loss, Ladv, that seeks to evade classification, and the communications loss, Lcomm,

that seeks to minimize BER. This balance is controlled by a hyper-parameter, denoted in the

current work as α 1. Additionally, while the current work considers instantaneous transmit

power to be a hard limit and thus the perturbation power is constrained before transmission,

it also includes a perturbation power term in the loss function as a regularizer, Lpwr. This

regularization term is chosen to be a part of the communications loss because, as previously

mentioned, the original communications is considered to be optimal, and therefore a lower

power perturbation would undoubtedly correlate with lower communications loss because

the symbols would not be perturbed. The hyper-parameter describing the trade off between

true communications loss and power regularization is described as β in the current work and

1As α is a hyper-parameter of the methodology presented in this Chapter, it should be chosen by the

operator based on their high level objectives. For instance, an operator that places a high priority on

communications would choose α to be a value close to 100% where as an operator that places a high value

on evading signal classification would choose α to be a value close to 0%. The current Chapter later chooses

50% as a middle ground for further analysis.
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is always 0.99. The full loss function can thus be described by

L(·) = (1− α)Ladv(·) + α[(β)Lcomm(·) + (1− β)Lpwr(·)] (6.3)

and each component of this loss function is described below. As most deep learning frame-

works are designed to minimize a loss function, all elements of L(·) are formulated as min-

imization problems. For ease of interpretation, all loss functions have been formulated to

asymptotically approach 0; therefore, the most optimal ARN would achieve a loss, L(·), of

0.

6.2.1.1 Adversarial Loss

Traditional adversarial machine learning would seek to maximize the cross-entropy loss of

target DNNs with respect to the true class of the adversarial example. In practice, this

results in DNNs having lower confidences in the true class and thus misclassifications when

the model becomes more confident in another class than the true one. However, this can’t

be used in the current work because cross-entropy loss becomes unstable and approaches ∞

as the confidence in the true class approaches 0, which is the region that is being optimized

in the current work. Therefore, the current work does not use cross-entropy loss and instead

uses the square of the model’s confidence for the true (source) class, denoted as ps, as a

proxy for the same goal.

Ladv(ps) = p2s (6.4)

The confidence, ps, is obtained by applying a softmax function to the output of DNNs. The

objective of the ARN, in the current work, is to lower the confidence in the source class (ps)



99

and thus to minimize Ladv.

6.2.1.2 Communications Hinge Loss

The primary objective of wireless communications is to transmit information without error.

This information can be thought of as a random bit stream; however, the information is

first encoded into a symbol space before being transmitted over the air where each symbol

could encode multiple bits in order to increase data rates. Therefore, when defining a loss

function for a physical layer wireless communication, it would be logical to simply use the

mean squared error in the symbol space. However, a typical wireless receiver would use

a hard decision, based on the nearest possible symbol, to decode each symbol back to its

corresponding bits. Thus, if the error in the symbol space did not result in an incorrect hard

decision, it would have no impact on receiver performance. If one assumes an AWGN channel

and a synchronized receiver, as the current work does, then the probability of incorrectly

decoding a symbol for any given SNR depends only on the distance between the transmitted

symbol and its decision boundary. Naturally, the decision boundaries are different for each

source modulation. Higher order modulations have lower distances between symbols and are

thus more sensitive to AWGN.

The current work does not directly use distance in the symbol space for deriving the

probability of bit error in order to remain agnostic of the channel model. Instead, the

current work introduces what is termed a “Communications Hinge Loss” that can be used

to empirically penalize bit errors when they occur during training. First, an indicator variable
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is created to describe symbol error.

Is =


0 HD(Srx) = HD(Stx)

1 otherwise

(6.5)

In (6.5), HD(Srx) represents the hard decision made by the receiver to decode the received

symbol, Srx, and HD(Stx) represents the correct interpretation of the transmitted symbol,

Stx. Thus, Is is only non-zero when a bit error would occur. In higher order modulation

schemes, a single symbol can encode multiple bits, and therefore an error in decoding a

symbol can result in multiple bit errors. For simplicity, Is does not encode the number of

bit errors that occurred. As gray coding is used in the current work, the most likely number

of bit errors, per symbol error, is 1; thus E[Is] is related to BER through

E[Is]

log2M
≈ BER (6.6)

where M is the order of the modulation and log2M denotes the number of bits per symbol.

Note that Srx and Stx are complex valued. The current work denotes their error vector

magnitude (EVM) as |Srx − Stx|. Further, the current work uses normalized constellations

that have an average energy per symbol, Es, of 1. Therefore, the EVM of received symbols

will generally be much smaller than 1 and EVM(·)2 ≤ EVM(·). Additionally, the current

work uses the observation that E[Srx] = Stx+j where Stx+j is the transmitted symbol (af-

ter the perturbation has been applied) and uses EVM(Stx, Stx+j) as a noiseless proxy for
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EVM(Stx, Srx). Finally, the communications hinge loss is defined as

Lcomm(Stx, Stx+j, Is) = EVM(Stx, Stx+j)
2

+ Is × EVM(Stx, Stx+j),

(6.7)

which will heavily penalize bit errors that occur during training while only lightly penalizing

the movement of the transmitted symbol if it does not disrupt communication. Intuitively

(6.7) is a nearly ideal loss function for minimizing BER. First, as previously mentioned in

(6.6), Is is almost perfectly correlated with BER. However, as its derivative is always 0, it

cannot directly be used in most gradient descent algorithms. Thus, the addition of EVM

ensures that Lcomm is smoother, has a derivative that is typically non-zero, and provides

an easily implemented surrogate for maximizing the distance between symbols. Specifically,

for the interior symbols of QAM, minimizing EVM is equivalent to maximizing the distance

between symbols in the constellation. For PSK and the outer symbols of QAM, EVM

provides a good approximation of maximizing the distance, but, as power can be added

through the addition of the perturbation, the symbols could be moved further from the

origin and thus further from all other symbols. This potential behavior is not encapsulated

by (6.7) and should be considered in future work.

6.2.1.3 Perturbation Power Regularization

As will be discussed in Sections 6.2.2 and 6.2.5, the instantaneous power of the ARN is

always hard limited. However, a loss term that penalizes the average perturbation power,

Ej, in terms of its power ratio, Es/Ej, is included for regularization of the ARN output.
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Each ARN is allowed a power budget, L, and the perturbation power regularization seeks to

greatly penalize exceeding that limit with no penalty for using less power. This regularizing

loss term is provided by

Lpwr(
Es
Ej
, L) = max(0, L− Es

Ej
)2 (6.8)

6.2.2 Training Implementation

An overview of the training implementation is provided in Figure 6.2 with each major com-

ponent, as well as the specific procedure, described below. All elements of the training

procedure are implemented in PyTorch and, with the exception of the initial AMC train-

ing, executed on a CPU (a GPU was not used purely to allow parallel training of multiple

networks).

6.2.2.1 Transmitter

The transmit chain in training consists of sampling random symbols from a constellation,

upsampling the symbol stream to achieve the desired samples per symbol (sps), which is 8

in the current work (due to the usage of an open source dataset which only contains eight

times over sampled signals), and then pulse shaping the resulting signal.

6.2.2.2 Root Raised Cosine Filter

Both the pulse shaping and match filter are implemented using a convolution operation with

the taps of the convolution set as a root raised cosine filter with a half-sided span of 8 symbols
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Figure 6.2: Training procedure used in the current work. All elements are implemented

in PyTorch. The forward pass, or the “signals”, are shown in black. The backward pass,

or the “gradient of the loss“, is shown in red. In order to extract the symbols, Stx+j ,

the transmitted signal is match filtered and then downsampled to achieve one sample per

symbol. The symbol error indicator, Is, is created by applying AWGN to the signal before

performing the same filtering and downsampling process to extract the received symbols,

Srx, which can then be compared with the transmitted symbols, Stx, to compute Is. The

signal used for AMC is also passed through an AWGN channel but the power of the noise,

σ2adv, is varied independently of the power of the noise at the receiver, σ2rx. When creating

discrete adversarial examples to pass through the AMC model, the starting index is varied

uniformly to ensure that adversarial success does not depend on time synchronization.
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and excess bandwidth of 0.35. Using convolutions with separate upsampling/downsampling

was due simply to ease of implementation in PyTorch.

6.2.2.3 Combining Signals

To ensure that the perturbation remained below a specified power limit, L, the perturbation

was first normalized to have a maximum component of 1.

s∗j =
g(θ, stx)

max(|R(g(θ, stx))|, |C(g(θ, stx))|)
(6.9)

In (6.9), stx represents the signal that would have been transmitted if the ARN was not

present, g(·) represents the outputs of the ARN, and s∗j represents an intermediate, un-

scaled, perturbation signal. The final perturbation signal, sj, could then be created with the

assurance that Es/Ej > L through

sj = s∗j

√
10

−Es/Ej(dB)

10

2× 8
, (6.10)

by leveraging the fact that the samples per symbol are 8 throughout transmission and E[Es]

is 1 for all signals. The final combined signal, stx+j is then simply the addition of the original

signal and perturbation created by the ARN, stx + sj.

6.2.2.4 Receiver

The receiver is implemented by first match filtering the signal and then downsampling to

one sample per symbol. Two different receiver implementation are used. The first does not

simulate a channel and therefore extracts the true transmitted symbols Stx+j. The second
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simulates an AWGN channel and extracts Srx, where Srx is Stx+j + CN (0, σ2
rx) (CN denotes

a complex normal distribution). This noisy estimate of the received symbol is then used to

compute Is by determining if the nearest symbol in the constellation to Srx matches Stx.

The noise power, σ2
rx, is set to achieve a desired SNR. In the current work, the receiver SNR

is uniformly sampled from 10 to 20 dB.

6.2.2.5 Eavesdropper Channel and Signal Isolation Model

The eavesdropper receives the signal through an AWGN channel with the noise power, σ2
adv,

set to achieve a desired SNR (note that σ2
adv and σ2

rx are independent as the eavesdropper

and receiver are not necessarily co-located). In the current work, this SNR is uniformly

sampled from 10 to 20 dB. Although there are multiple effects due to errors in the signal

detection and isolation stage [48], the one that is modeled in this work is a simple time

offset. This effect occurs because a RFML system will typically only look at a small window

in time and it is unknown when that window starts. In Chapter 5.4, it was found that time

offsets (from the window used to craft the adversarial perturbation) higher than the symbol

period did not provide a significant detriment to adversarial success for FGSM; therefore,

this effect is modeled, during training, as a discrete uniform distribution from 0 to 8 samples.

Non-overlapping and consecutive windows are used to create examples for the eavesdropper.
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6.2.2.6 Training Procedure

As mentioned in Section 6.2.2.1, the input data to the ARN consists of random signal

streams. A batch, in the current work, refers to one iteration of training where 1000 random

symbols are sent. During a batch, all parameters of the environment such as SNRs and

time offsets at the eavesdropper are static; however, they are re-sampled at the beginning

of each new batch. Each batch consists of a single back propagation and ARN parameter

update. An epoch, in the current work, refers to 1000 batches. Because the input data, as

well as the noise realizations, are modeled as random variables, instead of a fixed dataset, a

separate validation procedure is not used to reduce computational complexity. Instead, the

mean training loss per epoch is used for early stopping with a patience of 5. The maximum

number of training epochs is set as 10.

6.2.3 Adversarial Residual Network Architecture

The current work considers an ARN architectures that does not change the sample rate

of the signal and therefore produces 1 complex sample on the output for every 1 complex

sample on the input. In the context of neural networks, this can be easily implemented as a

fully convolutional neural network. This network takes in one channel on the input and in

the current work, the batch dimension is not used for the ARN (though it is used for AMC).

Therefore, the input to the network is a tensor of the form [1, 1, 2, N ], where N represents a

variable number of samples for the input signal. The output of the ARN is thus the same

dimensions since there is no change in sample rate. There are 256 kernels with 1× 7 filters
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in the first layer, 160 kernels with 2×7 filters in the second layer, and 2 kernels with 1×129

filters in the final layer which are then concatenated to form I and Q on the output of the

ARN. Batch Normalization [84] is used for regularization and ReLU is used as the activation

function on all but the final layer.

6.2.4 Automatic Modulation Classification

The reference AMC implementation used is the same as in Chapter 4 and 5. The current

Chapter uses Batch Normalization [84] instead of dropout as the regularization method. The

AMC network was trained on Dataset A which contains 11 modulations with all signals eight

times over sampled.

6.2.5 Evaluation Procedure

For each attack, a signal consisting of 8000 random symbols is created and passed through

the ARN to craft perturbations. In order to evaluate the impact to communications, the

combination of signal and perturbation is subjected to AWGN at SNRs varying from 0 to 20

dB (Es/N0). At each SNR, 100 trials are performed and a BER is calculated. To evaluate

the impact to AMC, the combination of signal and perturbation is again subjected to AWGN

in the same SNR range. At each SNR, sample time offsets are introduced varying from 0 to

8 (the symbol period). 10 trials are performed for each characterization and classification

accuracy is computed.

For the evaluation, the initial signal is created, and AWGN is applied to the signal and
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perturbation, using GNU Radio. The sample time offsets are implemented in Python and

all machine learning components are implemented using PyTorch.

6.3 Results

In order to validate the methodology described in prior sections, 60 ARNs were trained

to evade AMC. Four source modulations were used: BPSK, QPSK, 8PSK, and QAM16.

Multiple configurations were tried, with α values of 50%, 70%, and 90%, and Es/Ej limits

were swept from −10 to 10 dB with a step size of 5 dB.

6.3.1 Trading Off Communication for Deception

Logically, the ability to evade signal classification will require sacrificing some communica-

tions ability. This tradeoff can be directly observed in Figure 6.3 which shows the correlation

between adversarial loss, which measures the ability to deceive, and communications loss,

which measures the ability to communicate. The loss values are extracted from the mean

training loss of the “best” epoch, where “best” is described as the lowest total training loss

and is therefore the epoch used for early stopping. As expected, the groupings closely fol-

low the α parameter used with some outliers for an Es/Ej limit of 10 dB. When the ARN

has a small power budget, it is not able to perturb the signal and therefore incurs a lower

communications loss but loses the ability to evade classification.

This tradeoff can also seen in the convergence plots, which represent the training loss
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over time. In Figure 6.4, the mean training loss for each of the loss functions is provided

(before being scaled using α and β) for each batch during training. Note that each epoch, in

the current work, consists of 1000 batches. During the second epoch, it can be seen that the

ARN learns to sacrifice communications for evasion because the communications loss rises

while the adversarial loss lowers.

6.3.2 Evading Modulation Recognition

In order to evaluate the ARN’s ability to evade modulation recognition results are presented

in Figure 6.5 for BPSK, Figure 6.6 for QPSK, Figure 6.7 for 8PSK, and Figure 6.8 for

QAM 16. These results are presented as an average accuracy across uniformly sampled time

offsets from 0 to 8 (the symbol period) to show that the ARN does not depend on time

synchronization with the eavesdropper. As with FGSM attacks (Chapter 5.2), the ARN

is most effective when the eavesdropper perceives the signal with a high SNR, but, is able

to greatly lower the classification accuracy across the board (discussion of the impact to

communications is reserved for Section 6.3.3).

Recall that the perturbation power was hard limited by (6.10) such that Es/Ej is guar-

anteed to be greater than a specified limit, but, in practice, the average perturbation power

was much lower than the limit, and therefore E[Es/Ej] � L (this is further discussed in

section 6.3.4). Although the exact location of the highest classification accuracy cannot be

directly predicted from E[Es/Ej], as was found for FGSM attacks (Chapter 5.2), the relative

locations are preserved. For instance, in Figure 6.5, E[Es/Ej] for the −10 dB attack (blue)
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Figure 6.4: Mean training loss per batch, before scaling with α and β, for an ARN being

trained on a source modulation of 8PSK, α parameter of 50%, and an Es/Ej limit of 5

dB. At the beginning of training, the ARN trades off communication’s ability (orange)

for deceiving the eavesdropper (blue). For reference, horizontal dashed lines are added to

represent the mean classification confidence in the true class that would produce a specific

adversarial loss (blue).
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is 9 dB while E[Es/Ej] for the other ARN attacks (orange and green) in Figure 6.5 are 10

dB. Further, observe that the highest classification accuracy occurs at ≈ 7 dB and ≈ 8 dB

for blue and the others, respectively, reinforcing that higher perturbation powers can aid

in generalizing adversarial evasion attacks across larger SNR ranges for the ARN, just as

they did for FGSM in Chapter 5.2. The same result can be observed in Figure 6.7 where,

counter-intuitively, E[Es/Ej] is 1 dB higher for the −5 dB limited attack (orange) than the

0 dB attack (blue).

6.3.3 Maintaining the Communications Link

Figure 6.5 shows that the ARN can achieve similar results, in terms of BER increase required

to achieve a lower classification accuracy as FGSM. The ARN was able to do this without

requiring the computation of a gradient to craft the adversarial perturbation, which makes

it a more suitable methodology for a real time communication system due to the lower

computational complexity. Further, as was shown in Chapter 5.2, the BER penalty for high

intensity FGSM attacks can quickly become prohibitive for higher order modulations such

as 8PSK and QAM16. Figure 6.7 shows that incorporating communications objectives into

the loss function of the ARN allows for lower BER increases to achieve this evasion which

makes the ARN much more effective when higher order source modulations are used than a

traditional adversarial evasion attack which only considers classifier evasion as an objective.

Despite incorporating a communications loss, the ARN did not completely eliminate BER

in all modulations tested. With an α of 50%, four of five QAM16 ARNs contained BERs
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Figure 6.5: (top) BER for adversarial attacks at differing Es/Ej for a source modu-

lation of BPSK as well as the theoretical BER for comparison. (bottom) Classification

accuracy for the same adversarial attacks with the baseline classification accuracy, which

would occur when no adversarial machine learning is performed, shown. The classification

accuracy is presented with uniformly distributed time offsets.
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Figure 6.7: (top) BER for adversarial attacks at differing Es/Ej for a source modu-

lation of 8PSK as well as the theoretical BER for comparison. (bottom) Classification

accuracy for the same adversarial attacks with the baseline classification accuracy, which

would occur when no adversarial machine learning is performed, shown. The classification
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Figure 6.8: (top) BER for adversarial attacks at differing Es/Ej for a source modula-

tion of QAM16 as well as the theoretical BER for comparison. (bottom) Classification

accuracy for the same adversarial attacks with the baseline classification accuracy, which

would occur when no adversarial machine learning is performed, shown. The classification

accuracy is presented with uniformly distributed time offsets.
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even without noise. However, while Chapter 5.2 found that high intensity attacks could cause

BERs of up to 30% without noise, rendering the communication largely useless, the ARN

developed in the current work only had BERs less than 5× 10−3 for QAM16. Therefore,

while the BERs have not been completely eliminated for higher order modulations by the

current work, they have been greatly reduced.

Further, counter to the FGSM attack presented in Chapter 5.2, increasing the perturba-

tion power output by the ARN does not necessarily increase the BER. As can be seen in

Figure 6.5, the ARN with a −10 dB Es/Ej limit had a lower BER than the other presented

attacks which had lower perturbation powers. This can be attributed to two things. First, as

the ARN is aware of the underlying communications methodology, the perturbations crafted

are not simply interference to the intended receiver and can be used to positively affect the

interpretation of the transmitted signal. Second, as the ARN operates on an oversampled

signal, due to the precedent set for AMC by the RML2016.10A dataset [80], the effective

Es/Ej when the receiver is making the hard decision on which symbol was sent is in fact

higher because portions of the perturbation do not make it through the match filter.

6.3.4 Adversarial Spectrum Usage

One example of the spectrum usage by the ARN is provided in Figure 6.9. The ARN

increases the bandwidth of the signal by placing some of the perturbation energy out of

band. In the current results, a match filter provided up to a 6 dB gain in Es/Ej; specifically,

the signal shown in Figure 6.9 can be filtered to provide a 2 dB gain. While this is a positive
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perturbation crafted by an ARN with an α of 0.5 and Es/Ej limit of 0 dB. (left) Frequency
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signals, which represents what would be transmitted.

from the communications perspective, it may be detrimental from an evasion perspective.

While the current work considered an AMC model which was operating on an eight times

over sampled signal, a more ideal signal detection and isolation stage could also filter the

out of band perturbation which would likely increase classification accuracy. Further, the

current work has considered the signal detection and isolation stage to be fixed and not

react to the attack; however, this is unrealistic as an eavesdropper would not know a priori

the parameters of the signal and therefore the perturbation would have cascading effects on

the signal detection and isolation stage. However, further exploration of the compounding

impact on the signal detection and isolation stage is left as future work.
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6.4 Conclusion

The current chapter has developed and tested methodology for evading signal classification

with minimal impact to the underlying communication. The developed methodology was

shown to be equivalent or better than an FGSM attack when evaluated in terms of both BER

and classification accuracy. Further, an ARN, once trained, has encapsulated the knowledge

needed to craft the perturbation into the parameter matrices of a fully convolutional neural

network. While prior work in adversarial RFML has required the solving of an optimization

problem via gradient descent using one (Chapter 5 and [43]) or more [4], [45] iterations for

each block of signals that are to be transmitted, the ARN only requires a single inference by

a pre-trained model. Thus, an ARN has reduced computational complexity during operation

and is more suitable to high data rate systems.

Most of the work in adversarial RFML [4], [45], including much of the current work,

operates on the RML2016.10A (Dataset A) dataset [80] and thus considers perturbations that

can use eight times the bandwidth of the underlying signal. The current work has shown that

while untargeted adversarial evasion can be achieved with low power perturbations, there is

still a large power difference between in band and out of band. Ergo, a more optimal signal

detection and isolation stage would likely filter out some of the adversarial perturbation

before subsequent classification by DNNs. Future research should consider joint attacks on

the signal detection and isolation stage as well as the AMC stage in order to ensure that

the cascading effects of the perturbation on other subsystems is modeled. Further, all future
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adversarial RFML attacks must report the bandwidth requirements of the perturbation as

a hard constraint just as power constraints are reported in order for comparison between

attacks.

While the ARN presented in the current chapter greatly reduced the impact to the under-

lying communications, ARNs trained on QAM16 for high intensity attacks still contained bit

errors even without noise. Thus, future work should explore forward error correction tech-

niques, such as block coding, that will correct for the small BER present in QAM16. If the

ARN also operates on a block, it will implicitly be able to learn to sacrifice certain symbols,

which would be corrected by the error correction technique, to evade signal classification.
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The current work has investigated the vulnerabilities of current RFML systems, specifi-

cally raw IQ based AMC, to adversarial evasion attacks. It has done this by first developing

a threat model that enhances the vocabulary used to describe the adversarial goals that

are unique to RFML (Chapter 3). The current work then evaluated the closest analogy to

most of the literature surrounding adversarial machine learning in CV [35, 37, 39], a direct

access attack using an existing, well-known, adversarial machine method, FGSM, from CV

(Chapter 4). Chapter 4 found that RFML signal classification DNNs are just as susceptible

to adversarial examples as in CV by demonstrating that an FGSM attack offered a 10 dB im-

provement, in perturbation power needed to achieve a given accuracy reduction, over simply

adding Gaussian noise to the signal. However, a direct access attack assumes that an addi-

tional exploit has been used to compromise the signal processing chain of the eavesdropper,

and therefore, it is unrealistic in many scenarios. Therefore, the current work then investi-

gated the vulnerabilities of RFML systems to self protect attacks, which are launched OTA,

where the perturbation is subject to multiple channel and signal detection effects and has

an impact on the intended receiver of the signal (Chapter 5). Chapter 5 found that channel

and signal detection effects can significantly (by up to a 20% increase in accuracy) reduce

the effectiveness of adversarial machine learning in OTA attacks. While these effects can be

overcome by higher intensity attacks, Chapter 5 showed that high intensity attacks, which

significantly corrupt the underlying transmission, quickly become prohibitive for a rational

adversary whose primary objective is to communicate information to the intended receiver

and evading signal classification is a secondary goal. In order to envision future threats, the
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current work developed a “communications aware” attack that directly incorporated BER in

the adversarial methodology, did not depend on time synchronization with the eavesdropper,

and did not require solving an optimization problem for every communications block that

was transmitted (Chapter 6). Chapter 6 found that the developed attack performed equiv-

alently or better than an FGSM attack when evaluated in terms of BER and classification

accuracy. The current work now concludes with this chapter.

This chapter first summarizes the current vulnerabilities of RFML systems that were

discovered through the current work, outlines what it will take to secure against these threats,

and then summarizes the proposed future work beyond this Thesis.

7.1 Current RFML Vulnerabilities

Similar to DNNs in other modalities, RFML DNNs are severely vulnerable to direct access

attacks. In practicality, these vulnerabilities are partially mitigated in OTA attacks through

channel and signal detection effects, which would traditionally be considered an impedi-

ment to signal classification, but, also impede the adversarial machine learning techniques

used. The perturbation applied to the signal must overcome the noise power for maximum

effectiveness, therefore, lower SNR captures of an adversarial signal can result in higher clas-

sification accuracy. Further, FGSM has reduced effectiveness when the assumption of time

synchronization is removed (up to 20% higher accuracy) and a more realistic model of the

signal detection and isolation stage [48] is used that induces center frequency offsets (up to
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10% higher accuracy). All of these effects can be overcome by increasing the adversarial

perturbation energy but this quickly becomes prohibitive for a rational adversary whose pri-

mary goal is to transmit information to an intended receiver, using a known modulation, and

secondary goal is to avoid recognition of that modulation by an unintended eavesdropper.

The underlying interpretation of the signal is central to successful evasion because, without

that constraint, these attacks quickly devolve into simply transmitting a known modulation

with a random data stream or replaying a signal that is observed but the exact waveform

is unknown and therefore cannot be replicated. Therefore, while high intensity attacks may

still be beneficial when using a low order modulation, such as BPSK, because the BER, even

without noise, can approach 30% for higher order modulations such as QAM16, there is lim-

ited benefit to a rational adversary in applying a direct translation of adversarial machine

learning from CV.

Further, while the current work focused on untargeted attacks, the work in [4] extended

the methodology from Chapter 4 into a targeted attack and found that significant perturba-

tion energy was required, even for a direct access attack, to reliably move between differing

signal categories such as digital and analog waveforms. Although it was not evaluated in [4],

these high energy perturbations will undoubtedly corrupt the underlying transmission, just

as the work in Chapter 5, because they are also not considering the underlying communica-

tion during the crafting of the perturbation. Therefore, while current adversarial machine

learning techniques may be sufficient to masquerade a QPSK signal as an 8PSK or QAM16

signal, they would not be sufficient to masquerade a QPSK signal as an analog transmission
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because of the large impact on the communication to an intended receiver. Thinking more

broadly, while the current abilities of these adversarial machine learning techniques could be

used to evade automatic demodulation (by simply being mistaken as any other modulation

than the true class), they are likely not sufficient for Primary User Emulation [23], where a

digital signal would need to masquerade as a radar transmission or analog broadcast.

In order to envision future threats, beyond a direct translation of methodology from CV,

Chapter 6 showed that the underlying impact to the transmission can be greatly reduced

by incorporating BER in the adversarial methodology. It did this, while encapsulating the

underlying perturbation creation procedure into a fully convolutional neural network and

therefore could easily be deployed to a real time communications system due to the lower

computational complexity. This improved methodology both lowered BER and did not

depend on time synchronization and thus performed equivalently (for low order modulations)

or better (for high order modulations) than the FGSM attack. While BER was greatly

reduced by the ARN presented in Chapter 6, small amounts of bit errors were still induced in

the QAM16 source modulations tested when under high intensity attacks. While the FGSM

attack had BERs up to 30%, the ARN was able to reduce this to 5× 10−3. Regardless,

this means that an adversary would still require forward error correction techniques, such

as block coding, to account for these errors but the rate could be greatly increased over an

FGSM based attack.

In summary, adversarial RFML is a credible and evolving threat to RFML signal clas-

sification systems and therefore defenses must begin to be investigated; however, a direct
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translation of adversarial machine learning from CV is generally insufficient to cause serious

immediate concern due to its high impact on the underlying communication, assumption of

time synchronization, and inability to generalize over channel and signal detection effects.

7.2 Hardening RFML

A RFML system will never be completely invulnerable to attack, but, the benefits of launch-

ing that attack can be greatly reduced. Even minimal defenses can increase the perturba-

tion power, bandwidth used, computational complexity, and bit error rate of an adversarial

transmitter. However, this must be done without significant increases to the RFML system’s

classification latency, computational complexity, and threat surface.

Hardening RFML is beginning to be investigated in [47] and [85] where two threads are

investigated: detecting that an attack occurs and being robust to that attack. Detecting the

presence of an adversarial evasion attack is likely sufficient for many civilian applications of

RFML, such as DSA, where, sensing that a transmitter is masquerading as a primary user is

sufficient, even if the specific signal format they’re using is unknown. However, when military

applications are considered, detection of the attack becomes of limited benefit. Considering

the case of automatic demodulation, where an eavesdropper seeks to passively collect the

data of transmitters in its proximity, detecting that they are camouflaging their transmission

does not allow for successful demodulation because the underlying modulation scheme being

used is still not known. Therefore, while detection of the attack is a good first step for
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defenses, being robust to the attack must also be investigated.

7.3 Limitations of the Current Work and Suggested

Future Directions

All work in adversarial RFML so far, including the current work, has ignored the cascading

impact that these perturbations will have on both the intended receiver and the signal pro-

cessing of the eavesdropper. While the current work evaluates BER, synchronization between

the receiver and transmitter is assumed. While this is a reasonable starting assumption, due

to oscillator drifts, a phase-locked loop would typically be used to maintain synchronization

and adversarial perturbations would undoubtedly have an effect on this which could impact

the interpretation of all signal types. Further, automatic gain control would typically be used

to adjust for varying received signal strength and adversarial perturbations would affect this

as well. Neither of these cascading impacts on the receiver have been modeled in the current

work and should be investigated in the future.

The current work modeled errors in the signal detection and isolation stage but assumed

that it was static and thus did not react to the attacks. While this assumption is necessary for

preliminary work in adversarial RFML, it is not a valid assumption that could be made on a

real system. The current work, as well as many others, operate on oversampled signals when

creating the perturbation and thus, as shown in Chapter 6, increase the bandwidth of the

signal. While increasing the bandwidth of the signal is a valid design decision for adversarial
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RFML, assuming that it will not be filtered out in the preliminary signal processing before

signal classification is not. Therefore, future work should consider a joint attack on both

the signal detection and isolation stage, as well as the signal classification model, in order

to ensure that these adversarial evasion attacks generalize across more optimal initial signal

processing.

Considering the previous cascading impact, more perturbation energy will likely be con-

centrated into the same frequency range as the underlying signal, removing the benefit the

intended receiver had in the current work of being able to filter out parts of the perturba-

tion. This, combined with the already small amount of bit errors present in higher order

modulations, means that forward error correction must be considered in future work. Future

work should consider applying the ARN concept from Chapter 6 to communications blocks

that are protected with a block code in order to lower the BER.

The current work has considered multiple channel and signal detection effects; however,

it only performed a simulated analysis and therefore the effects are not exhaustive of all that

would be seen in a real world scenario. Future work, particularly those seeking to establish

the vulnerabilities of a specific RFML device, should consider empirical analysis of these

attacks by transmitting and receiving these adversarial signals using SDRs such as USRPs.

By physically transmitting the signal, additional effects will be included in the evaluation

such as non-linearities in power amplifiers, quantization error due to ADCs and DACs, and

interference from other transmitters in the environment. However, each of these hardware

impairments and interferers are unique to the specific RFFEs used and environments oper-
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ated in. In general, these impairments and noise cannot be directly controlled for. Therefore,

it becomes more difficult to isolate the impact of a specific source of noise, such as the time

or center frequency offsets discussed in the current work, on adversarial success (and to over-

come that specific impairment as was done for sample time offsets in Chapter 6). Further,

parameters of the noise, such as SNR, have to be estimated when performing an experimen-

tal validation; thus, reporting adversarial success as a function of any of these parameters

loses accuracy even when they can be more directly controlled. For these reasons, while an

empirical analysis could provide a good estimate of the vulnerabilities of a specific RFML

system, the current work has focused on a simulation based analysis in order to: stay more

general as an analysis of the algorithms used and not the specific hardware used, isolate

the impact of each individual source of noise, and provide estimations of adversarial success

across a range of parameters.

Finally, the current work has only considered attacks against RFML signal classification,

but, that is not indicative of all of RFML. Investigating the vulnerabilities of the auto-

encoder based waveforms [6,12] has begun and have been found to be especially vulnerable to

adversarial machine learning as well [46]. Future work in adversarial RFML should expand

further into attacks against Deep Q Network (DQN) agents that control the RFFE [7].

Evaluating the vulnerabilities of all applications of RFML will help to define the limitations

of this technology in adversarial environments and serves as the first step to developing

techniques to make the technology more robust.
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