
"4

Edge-Packing by Isomorphic Subgraphs

by

John Paul C. Vergara

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

©John Paul C. Vergara and VPI & SU 1990

APPROVED: Aan ‘) A VHA

a 4 Z 7

Professor Lenwood §. Heath, Chairman

Dyinater Mb cond (zl P20»
a (7 7

Professor Donald C. S. Allison Professor Ezra A. Brown

November, 1990

Blacksburg, Virginia

Ld
BO
\859

(440

V¢79

C2 '

Edge-Packing by Isomorphic Subgraphs

by

John Paul C. Vergara

Committee Chairman: Professor Lenwood S. Heath

Computer Science

(ABSTRACT)

Maximum G Edge-Packing (E Packg) is the problem of finding the maximum number of

edge-disjoint isomorphic copies of a fixed guest graph G in a host graph H. The problem

is primarily considered for several guest graphs (stars, paths and cycles) and host graphs

(arbitrary graphs, planar graphs and trees). We give polynomial-time algorithms when G

is a 2-path or when H is a tree; we show the problem is NP-complete otherwise. Also,

we propose straightforward greedy polynomial-time approximation algorithms which are at

least 1/|EG| optimal.

ACKNOWLEDGEMENTS

I thank my committee chairman, Dr. Lenwood Heath, for providing the direction for this

work as well as many valuable insights and suggestions, without which this thesis would not

have been possible. I also thank the other members of my committee, Dr. Donald Allison

and Dr. Ezra Brown, for their support and participation.

To my parents, brothers and sister in the Philippines, who I know have always had

their unwaivering confidence in me, I express my deepest gratitude. I also like to thank

my friends both here in Blacksburg and in the Philippines for the encouragement that they

have provided.

Finally, I give special thanks to my favorite TV character, Bart Simpson, for constantly

reminding me of the lighter side of life and for being by my side—or should i say, my

slide—to the end. You’re radical, man!

ill

TABLE OF CONTENTS

1 INTRODUCTION

2 DEFINITIONS

3 2-PATH EDGE-PACKING

4 TREE HOSTS

4.1 k-starsas guests 2... 2... ee ee

4.2 k-paths as guests... 2... ee ee

4.3 Tree guestsin general2.- 02-0000

5 PLANAR HOSTS

5.1 k-starsas guests 2... 0... cee ee

5.2 k-paths as guests .. 2... ee eee

5.3 Forks as guests-2-2-..

5.3.1 One-branch forks-...20.

5.3.2 Multi-branch forks

5.4 k-cycles as guests... 0... ee ee

5.6 Arbitrary guest graphs.

6 ARBITRARY HOSTS

iv

© 8 @ ee e@ 8 © 2 6

7 8 8 © 8 2 8 2

eo 8 @& «© ©

14

14

15

22

28

31

34

41

41

44

49

53

56

CONTENTS

7 OUTERPLANAR HOSTS

8 THE APPROXIMABILITY OF EPackg

8.1 A greedy algorithm0-0 2.00020 -2022200048

8.2 EPackgisinMaxSNP

8.3 Another greedy algorithm 02.200. eee eee ee

9 CONCLUSIONS AND FURTHER RESEARCH

57

62

62

64

67

70

LIST OF FIGURES

1.1

3.1

3.2

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.0

3.6

5.7

5.8

5.9

5.10 A clause gadget for 3-paths

5.11 A variable subgadget for 5-paths

5.12 A clause gadget for 5-paths

A maximum triangle edge-packing

Recursively extracting 2-paths from atree.......

A tree model ofagraph .. 1... 2... ee ee

Recursively extracting k-stars ... 2... 2. ee ee ee ee

Recursively extracting k-paths

Rooted subtrees of G.... 2... ee

G-edge-packing for trees .. 2... . ee ee

A counterexample on arbitrary hosts for 3-stars and 3-paths. . .

The graph of (vy + v2)(v) + 03 + Vy)(t1 + Het U4)...

A variable gadget for 3-stars with its true and false modes

A clause gadget for 3-stars. 2... . ee

Reduction to an E-Pack3_star(planar) instance

A variable gadget for 5-stars. 2... ee ee

A clause gadget for 5-stars..... 00 1... ee as

A variable gadget for 3-paths .. 2.2... 2.0.0.0. 00 02000.

True and false modes for 3-paths

vi

ee

ee 8 ee ee

ee em ee

i

13

17

21

23

26

LIST OF FIGURES

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

7.1

7.2

7.3

8.1

8.2

8.3

Dividing a one-branch fork into parts. 42

A variable gadget for one-branch forks2..0048. 43

A clause gadget for one-branch forks52..0. 008. 44

Dividing a multi-branch fork into parts...-...0. 00005005 46

A variable gadget for multi-branch forks-02240. 48

A clause gadget for multi-branch forks-... 2.050000. 49

A variable gadget for 3-cycles with its true and false modes 51

A clause gadget for 3-cycles .. 2... 2... 2. eee ee ee .. 52

Other clause gadgets for 3-cycles . 0 7 2... eee ee 52

A variable gadget for 5-cycles . 2... 2. ...2..2-02.2000- .. 93

A clause gadget for 5-cycles . 2... 2. ee 54

An outerplanar graph and its dual2.-50 +. 00208. 58

Finding an independent set of degree-3 vertices in a tree . .. 60

5-cycles in an outerplanar graph .. 1... ee ee 61

Reduction example from BIS, to EPackg_stap 6 0 0 ee 67

Finding 6-cyclesinagraph 68

An alternate way of finding 6-cyclesina graph0.4. 69

vil

LIST OF TABLES

9.1 The status of EPackg ee 8» 8 & © © 8 . 71

Chapter 1

INTRODUCTION

An edge-packing of a graph H is a set of edge-disjoint subgraphs of H. An edge-partition of

Hf is an edge-packing of H with no edges left over (i.e., the union of the subgraphs in the

packing is exactly H). It is often useful to restrict the subgraphs of H to a certain class or

property. For instance, edge-partitioning a graph into subgraphs which are all matchings is

equivalent to the chromatic index problem, a well-known problem which involves minimally

coloring the edges of a graph such that no two adjacent edges have the same color. There

are other problems that may be viewed as edge-packings or edge-partitions of graphs.

Colbourn [C1,C2] used edge-packing in the determination of network reliability. Edge-

packing the representative graph of a network by spanning trees and then computing sep-

arately the reliabilities of these trees provide a lower bound for the reliability of the whole

network. Edge-packing the graph by paths whose ends are on two specific terminals of the

network provides a bound for the reliability between the two terminals in the same manner.

Klein and Stein [KS] studied edge-packing graphs by cycles. Finding a maximal set of

edge-disjoint cycles in a graph aids in solving the minimum-cost circulation problem [GT]

which involves repeatedly finding a maximal set of weighted cycles in a weighted directed

graph.

Other studies in edge-packing include packing by triangle free graphs (Monochromatic

 O.

Fl

Figure 1.1: A maximum triangle edge-packing (edges in the packing are in bold).

Triangle) or by treshold graphs (Treshold Number) [GJ], packing complete graphs by trees

[Y] and packing planar graphs by outerplanar graphs [H2].

In this paper, we investigate Maximum G Edge-Packing (EPackg), the problem of

finding the maximum number of edge-disjoint copies of a fixed (guest) graph G = (Vg, Eq)

in a (host) graph H = (Vy, Ex). This is the same as determining the largest edge-packing

of a graph by subgraphs isomorphic to G. Figure 1.1, for example, exhibits a maximum

G edge-packing of a graph where G is a triangle. Note that selected triangles may share

vertices, but never edges. This paper considers E Packg for several instances of G. The

main goal is to provide a sufficient understanding of this problem so that results could be

extended to arbitrary guest graphs. In addition, the host graph 4 is restricted to particular

classes of graphs and the effect on the computational complexity of E Packg is observed.

We begin by formally defining E Packg as a decision problem:

MAXIMUM G EDGE-PACKING (EF Packg)

INSTANCE: A host graph H and an integer K < |Fy|/|Ec|.

QUESTION: Does H contain K edge-disjoint copies of G, i.e., are there A subsets

(£,,£2,..., EK) of Ey such that E; 9 E; = 0,Vi # 7 and the graph induced by each

FE; is isomorphic to G?

Since E'Packg is clearly trivial when the guest graph G is a single edge, we only consider

cases where G is a graph with at least two edges. Of particular interest are the cases where

G is a star (graphs isomorphic to A,,), a path or a cycle since these comprise graphs of

the simplest types and solving the problem for these simple cases provides possibilities for

extension to guest graphs of more general types. It is also useful to consider restricting the

host graph H to certain classes. Planar graphs are of special importance since they often

correspond to suitable applications. The class of planar graphs as well as the subclasses

of trees and outerplanar graphs are considered in this paper. Restricting the host graph

G to these classes allows us to more precisely determine the computational complexity of

E Packg.

It is sufficient to deal only with connected host graphs since the guest graphs which we

investigate are themselves connected. The problem (for connected guests and disconnected

hosts) clearly reduces to edge-packing each connected component of the host graph. Dis-

connected guest graphs are a different issue altogether since this will mean finding copies

of different graphs (components of G) in H. We therefore avoid such guest graphs in our

discussion since they do not immediately follow from the results obtained for connected

guest graphs.

In this paper, we obtain NP-completeness results. NP-complete problems are the class

of problems which are conjectured to have no polynomial-time solution but with the char-

acteristic that if one problem from that class is polynomial-time solvable, then the entire

class is polynomial-time solvable. Garey and Johnson [GJ] provide an extensive discussion

of NP-completeness as well as a list of known NP-complete problems. This paper shows

that EPackg is NP-complete for particular combinations of guest and host graphs. Also,

the combinations for which the problem is polynomial-time solvable are investigated.

We discuss two problems related to EPackg. Oneis G Edge-Partition (E Partg) which

involves partitioning the edges of H into copies of G. It is not hard to observe that FE Partg is

just a special case of FE Packg with K = |Ey|/|Eq| (no edges are left over in the packing).

The second problem is Minimum G Edge-Cover (ECoverg). This problem is another

generalization of F.Partg and involves finding the minimum number of copies of G (not

necessarily edge-disjoint) that cover all the edges of H. We formally define these as two

decision problems:

G EDGE-PARTITION (EPartg)

INSTANCE: A host graph H such that |Ey| = K|Eg| for some integer K.

QUESTION: Can the edges of H be partitioned into copies of G?

MINIMUM G EDGE-COVER (ECoverg)

INSTANCE: A host graph H and an integer K > |Ey|/|Ec|.

QUESTION: Can the edges of H be covered with K copies of G?

EPartg has been studied by Holyer [H3,J2] and by Dyer and Frieze [DF]. For guest

graphs which are either complete graphs or cycles, Holyer proves that EPartg is NP-

complete by reducing from 3-Satisfiability (3-SAT), a known NP-complete problem. Dyer

and Frieze, on the other hand, prove E Partg NP-complete for cases where the guest graph

is a path or a star (having three or more edges). Their reduction is from 3-Dimensional

Matching (3DM), known NP-complete problem. They show, in addition, that if the host

graph is restricted to planar graphs, the problem remains NP-complete for paths and for

3-stars (stars with 3 edges), but becomes polynomial-time solvable for triangles (3-cycles).

No conclusions in this case is made for stars or cycles with more than three edges.

Colbourn [C3] studied FE Partg in terms of the construction of latin squares which is in

turn useful in experimental design theory. A latin square is an nxn table of entries from the

set {1,2,...,2} such that no number from this set appears more than once in the same row or

column of the table. Constructing a latin square corresponds to triangle edge-partitioning

the complete tripartite graph formed by viewing the rows, columns and entries as the three

sets (or partitions) of vertices. A partial latin square is the situation where not all slots in

the table have been occupied. The problem of determining whether a partial latin square

can be completed, i.e., the unoccupied slots be assigned appropriate entries, is equivalent

to triangle edge-partitioning a corresponding tripartite graph. This problem (completing

partial latin squares as well as the corresponding Fk’ Partg problem) has been proven to be

NP-complete in the study.

The results obtained for E Partg, specifically the NP-completeness results, are relevant

to EPackg. Since EF Partg is a subproblem of E Packg, it follows that EF Packg is NP-

complete whenever EF Partg is NP-complete. ECoverg is NP-complete whenever - Partg

is NP-complete for the same reason. On the other hand, whenever there is a polynomial-

time algorithm that solves EF Packg or ECoverg, the same algorithm applies to E Parig as

well.

Another related problem is the “vertex-disjoint” counterpart of E Packg, Maximum G

Matching (finding the maximum number of vertex-disjoint copies of Gin H), a problem that

has been studied quite extensively. In fact, it has been found to be solvable in polynomial

time when the guest graph is an edge by regular matching [PL,BM] but NP-complete for

other connected guest graphs even if H is planar. Kirkpatrick and Hell [KH] prove NP-

completeness for this problem in general (reduction from 3DM) while Berman et al [BJLSS]

prove NP-completeness for planar hosts (from Planar 3-SAT). The reduction technique used

on both instances is to cascade copies of the fixed guest graph such that only alternating

copies may be chosen in a maximum set, thereby corresponding to true-or-false settings for

the 3-SAT instance. We use a similar technique in this paper and we elaborate on this later.

Much work has been done on G Matching particularly because of its numerous applications

in areas such as scheduling, computer network design, and wafer-scale integration [BM,KH,

MS,BJLSS]. Applications for G Edge-Packing can be conceivably derived from G Matching

since relaxing the vertex-disjoint constraint to edge-disjoint simply allows the existence of

repeated or redundant nodes while utilizing as many links (between the nodes) as possible.

Of course, the application has to be directly concerned with maximally utilizing such links.

The main results obtained in this paper can be summarized as follows:

E Packg has a polynomial-time algorithm if:

G is a path of length 2.

A is a tree.

G is a triangle (3-cycle) and # is outerplanar.

E Packg is NP-complete if:

G is a star, a path or a cycle of 3 or more edges even if H is planar.

We also discuss ways to extend the NP-completeness results obtained to more general

types of guest graphs. We, in fact, identify those types of guest graphs where the NP-

completeness results immediately follow.

In addition, the paper analyzes the approximability of EPackg. Polynomial-time ap-

proximation algorithms to solve EF Packg which are at least 1/|KgG| optimal are presented.

It is also shown that FE Packg is in Max SNP, a class of problems whose members are all

approximable within bounded ratios.

This paper is organized as follows: In chapter 2, definitions necessary for the suc-

ceeding discussions are provided. Chapter 3 discusses 2-path edge-packing and presents

a polynomial-time algorithm for arbitrary host graphs. Chapters 4 through 7 considers

E Packg in general (|Eg| > 3) for hosts graphs which are trees, planar graphs, arbitrary

graphs and outerplanar graphs, in that order. In chapter 8, we investigate the approxima-

bility of E Packg. The paper concludes in chapter 9 where we present related open problems

as well as a table summarizing the current status of EF Packg.

Chapter 2

DEFINITIONS

A graph G is represented by (Vc, Eq), an ordered pair of vertices and edges, where Vg and

Eg are the vertex set and edge set of G, respectively. We write ng = |Vg| and mg = |Ea|.

Each problem considered in this paper involves a guest graph and a host graph. These

are denoted by G and H, respectively. The guest graphs considered are k-stars, k-paths, k-

cycles, and forks. The classes of host graphs considered are arbitrary graphs, planar graphs,

outerplanar graphs, and trees.

A k-star is a graph isomorphic to Ay,,, a complete bipartite graph on one and k vertices.

Let {v} and {w1,we,...,we} be these vertices; the k-star formed by these partitions is

denoted by (v : wi, we,...,w,). A k-path is a path of length k and is denoted by the

sequence of vertices which form the path. A k-cycle is a cycle of length & and is likewise

denoted by the sequence of vertices in the cycle. A fork is any tree (a connected graph

without cycles) which is neither a star nor a path and is denoted by its edge set. We may

also denote any of the other guest graphs by its edge set (e.g., the path (a,b,c,d) may be

denoted by {(a,6), (b,c), (c, d)}).

A planar graph is a graph which can be embedded in a plane in such a way that no two

edges intersect except at a common vertex. An outerplanar graphs is a planar graph whose

vertices can be placed on a circle in the plane while its edges are embedded inside the circle;

equivalently, it is a planar graph all of whose vertices lie on one face.

A tree is just a connected graph without cycles. A tree may be rooted, i.e., a designated

vertex is considered the root of the tree. The height of a rooted tree is the length of the

longest path from the root to a vertex in the tree. A rooted tree also imposes a level for

each vertex of the tree with respect to its distance (length of its connecting path) from the

root: all vertices which are farthest from the root have level 0 while the root itself has a

level equal to the height of the tree. The parent of a vertex v, p(v), is the vertex in the

previous level of the tree which is adjacent to v. The children of v, c(v) are the vertices in

the next level of the tree which are adjacent to v. Clearly, the root is the only vertex with

no parent. Vertices with no children are called leaves.

We may denote particular instances of EPackg by replacing G with the actual

guest graph considered; e.g., EPackg where G is a 3-cycle is alternatively denoted by

E Pack3_cycte. Also, whenever the host graph A is restricted to some class or property, P,

we denote this by EPackg(P); e.g., EPack3_cycie(planar) is EF Pack3~cycie for planar host

graphs. Analogous notations for EPartg and ECoverg are likewise used.

Chapter 3

2-PATH EDGE-PACKING

Maximum G Edge-Packing is solvable in linear time when the guest graph is a 2-path. We

first provide an algorithm for the case where the host graph is a tree and show how it

extends to general host graphs.

Theorem 3.1 E Pack2_ ,atn(tree) is solvable in O(my) time.

Proof: We describe an algorithm which obtains a maximum set of edge-disjoint 2-

paths from a tree H. It uses recursion on the subtrees of the tree being processed and is

summarized in algorithm PACK-2-PATH. The algorithm is initially called with the input

tree H and its root vertex. Every call to PACK-2-PATH produces a maximum set of 2-

paths and a possible left-over edge for the subtree rooted at the given vertex. Both the

packing and the left-over edge are carried over to the next higher-level call to PACK-2-

PATH. On every call, the algorithm processes the-subtrees rooted at the children and the

solutions for each (RESULT, LEFT EDGE,) are collected (lines 7-13). The star formed

by the current vertex and its children is then processed in the following manner: Whenever

there is a left-over edge for the solutions (LEFTEDGE, # 0) of any of the subtrees rooted

at the children, it is used to form a 2-path together with an edge of the star (lines 11-

12). The remaining edges of the star are then matched to form 2-paths themselves (lines

14-17). Depending on whether there is an odd or even number of edges left in the star, a

Algorithm PACK-2-PATH. 2-path edge-packing for trees.

INPUT: A rooted tree H = (Vy, Ey) and a vertex v.

OUTPUT: A 2-path edge-packing of the subtree rooted at v and a left-over edge, if any.

1 IF (e(v) = @) THEN /* if v is a leaf, return an empty solution and no left-over edge */

2 RETURN (9, @)
3. ELSE
4 BEGIN
5 A $;

6 (W1, W2,--,Wn) — c(v);

7 FOR:—1TOn DO /* process the subtrees */
8 BEGIN
9 (RESULT, LEFTEDGE;) — PACK-2-PATH(A, w;);
10 A-~ AU RESULT;
11 IF (LEFTEDGE,; # 9) THEN /* if there is a left-over edge */
12 A AU {{(v,w;), LEFT EDGE;}}
13 END;
14 (wy, wh,...,wt,) — all the w; such that LEFTEDGE; = 9;

15 /* collect remaining edges */
16 FOR 7 — 1 tom—1 STEP 2 DO /* match these edges */

17 A— AU {{(v, wi), (0, Wiga) HI

18 IF (m is even) THEN /* all edges were successfully matched */

19 RETURN (A, 9)
20 ELSE /* there was one left over */
21 RETURN (A, (v, w!,))
22 END;

10

e

4 a

a
b qa ¢

nh

C g

d 6 f

, O
J

Figure 3.1: Recursively extracting 2-paths from a tree.

left-over edge may result (lines 18-21). Figure 3.1 provides an example of how 2-paths are

extracted on a call to PACK-2-PATH. Here, PACK-2-PATH is being processed for the tree

rooted at vertex a and has been completed for the subtrees rooted at vertices 6 through

h. Left-over edges have resulted for the subtrees rooted at b and g, hence, the 2-paths

(a,6,z) and (a,g,j) are extracted. The remaining star, (a: c,d,e, f,h), has five edges, four

of which are extracted as two 2-paths ((c,a,d) and (e,a, f)). (a,h) is the left-over edge for

this call to PACK-2-PATH. The algorithm is reminiscent of a depth-first search in that the

children (subtrees) are always processed first, the base cases being the leaves. Leaves are in

themselves subtrees with no edges so that they return an empty edge-packing as a solution

ll

with no left-over edge (lines 1-2).

The result obtained by algorithm PACK-2-PATH is clearly optimal since at most one

edge is left over after the packing algorithm is applied. It is easy to see that algorithm

PACK-2-PATH runs in O(mj) time: an edge is either extracted as part of a 2-path or

carried over to the next call until all edges are exhausted. O

It should be noted that since it is always the case that at most one edge is left over in

the edge-packing, the corresponding E Partz— at, problem is likewise solved in linear time.

ECover2_ pat, also has the same complexity since all that needs to be done is add an extra

2-path if a left-over edge results.

Corollary 3.1 FE Partg_patn(tree) and ECoverz_patn(tree) are solvable in O(my) time.

The algorithm described where the host graph is a tree easily extends to connected host

graphs in general. As long as the host graph can be modeled as a tree, the algorithm can be

applied accordingly. Any connected graph can be modeled as a tree as follows: Designate a

vertex of the graph as the root. Starting with this root, mark all unmarked edges incident

to it and designate all vertices adjacent toit through these edges as its children. Recursively

apply this step to each child until all edges are exhausted. What results is a tree where

some of the leaves may be duplicates of other nodes in the tree (see Figure 3.2). With

this, we have the following result:

Theorem 3.2 FE Pack z_ pat, is solvable in O(my) time.

Proof: Given an arbitrary graph, a corresponding tree model can be obtained by the

procedure described above and thereby algorithm PACK-2-PATH can be applied. The

possibility of repeated vertices does not affect how the algorithm works since we are looking

for edge-disjoint copies of 2-paths so that such repetition is allowed. The process takes

O(my;,;) time since transforming an arbitrary graph to its tree model likewise takes O(my)

time (edges are just exhausted). O

12

Figure 3.2: A tree model of a graph.

As in the case for trees, at most one edge is left over in the packing so that the corre-

sponding E Partg and ECoverg problems are also solved in linear time.

Corollary 3.2 EPartz_path and ECovere_patn are solvable in O(my) time.

The results in this section provide one more interesting observation: If we consider

the edge graph of the host (i.e., edges in the original graph become vertices which in turn

are adjacent if their corresponding edges are adjacent in the original graph—sometimes

called line graphs in other literature), the equivalent problem is to find a maximum set

of independent (vertex-disjoint) edges in this edge graph. This is the regular matching

problem which, for general host graphs, are solved in O(n? mi) at best [PL]. We have

shown in this section that the matching problem is simpler when the host graph is an edge

graph.

Corollary 3.3 The matching problem for edge graphs is solvable in O(my) time.

13

Chapter 4

TREE HOSTS

When considering tree hosts, only guest graphs which are themselves trees are relevant.

This section is divided into three parts, the first two of which deal with special classes

of trees, namely, stars and paths. The third part addresses tree guests in general (with

|Eg| > 3), where a less efficient but nevertheless polynomial-time algorithm is presented.

The results in this section are extensions of the algorithm provided for 2-path edge-packing

with tree hosts.

4.1 k-stars as guests

The algorithm to solve EF Packz_pa:, for trees immediately extends to E Pack,_ star for any

k > 2.

Theorem 4.1 FE Pack _star(tree) is solvable in O(my) time.

Proof: Our revised algorithm is called PACK-K-STAR. We use the same recursive

technique where each call to PACK-K-STAR produces a maximum set of k-paths and a set

of left-over edges. However, instead of detecting pairs of edges to form 2-paths, k-tuples of

edges are matched to form k-stars (lines 16-18). Of course, left-over edges are useful only

when there are k — 1 of them. If this is indeed the case (lines 19-20), they are used to form

14

a k-star in the next higher-level call to the algorithm (lines 11-12). When there are less

than k — 1 left-over edges (lines 21-22), these are simply discarded since these edges can

not possibly form another k-star unless a previously formed one is sacrificed. Figure 4.1

illustrates what occurs during a call to PACK-K-STAR. Here, the extracted 4-stars are

(c:a,2,j,k) and (a: 6,d,e, f) and the left-over edges form the star (a: 9,h).

Algorithm PACK-K-STAR likewise takes O(m ,) time since edges are either discarded

or extracted at each call. Note that unlike in the case for 2-path edge-packing where at most

one edge is left over (there is no way another 2-path can be extracted), the result obtained

for k-stars presents a possibility that mg or more edges may be discarded in the process so

a counting argument does not suffice in showing that we indeed obtain a maximum edge-

packing. Instead, we reason that the recursive method of collecting solutions of subtrees

rooted at the children of the current vertex is appropriate because at most one k-star can be

added through any of the children and this is provided for since left-over edges are carried

over to the next level whenever possible. D

The corresponding F Partg problem is at least as easy since all that needs to be detected

is the existence of discarded edges.

Corollary 4.1 E Partg_ star (tree) is solvable in O(my)time.

4.2 k-paths as guests

For guest graphs which are k-paths (k > 2), we present algorithm PACK-K-PATH, which

is likewise a revision of our 2-path edge-packing algorithm for tree hosts. Although the

revision is not a simple one, the same general concept is retained.

Theorem 4.2 E Packy_pa,(tree) is solvable in O(my) time.

Proof: A call to algorithm PACK-K-PATH still produces an edge-packing for the

subtree and a set of remaining edges which, this time, form a path down the sub-

15

Algorithm PACK-K-STAR. k-star edge-packing for trees.

INPUT: A rooted tree H = (Vy, Ey) and a vertex v.

OUTPUT: A k-star edge-packing of the subtree rooted at v and left-over edges, if any.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

IF (e(v) = 0) THEN /* if vis a leaf, return an empty solution and no left-over edges */

RETURN(Q, @)
ELSE

BEGIN
A< $;

(W1, We, Wn) — e(v);

FORi—1TOnDO /* process the subtrees */
BEGIN

(RESULT, LEFTEDGES;) — PACK-K-STAR(Z, ui);
A-AURESULT;
IF (LEFTEDGES; ~ 9) THEN

/* if there are k — 1 left-over edges from the subtree */
A- AU {{(v,w;)} U LEFTEDGES;}

END;

(w}, wh, ...,w),) — all the w; such that LEFTEDGES; = 9;

/* collect edges which were not used to form k-stars in previous step */

left — mmod k;

FOR 7 —1ltom—k+1STEP k DO /* match these edges */

A — AU {{(0,w!), (0, 0h), 5 (0) Why ga HE
IF (left = k - 1) THEN /* if there were k — 1 edges left over */

RETURN (A, {(0,0!y_p41)s(s Why pga) (0, Wh,)})
ELSE /* if less than k — 1 edges are left-over, discard */

RETURN (A, 0)
END;

16

O Co y ess eo ; h

| AQOOE

Figure 4.1: Recursively extracting k-stars (k = 4).

Algorithm PACK-K-PATH. k-path edge-packing for trees.

INPUT: A rooted tree H = (Vy, Ex) and a vertex v.

OUTPUT: A k-path edge-packing of the subtree rooted at v and a left-over path (set of edges).

1 IF (e(v) #0) THEN
2 RETURN (@, 9) /* if vis a leaf, return an empty solution and no left-over path */

3. ELSE
4 BEGIN

5 A 9;

6 (W1, W2,.,Wn) — c(v);
f FORi<1TOn DO /* process the subtrees */
8 BEGIN

9 (RESULT, LEFT PATH;) — PACK-K-PATH(Z, w,);
10 A-~ AU RESULT;

el IF (\LEFTPATH;| = k — 1) THEN
12 A-—AU {{(v,w;)} U LEFT PAT H;};
13 END;

14 (w},w9,..., W),) — all the w; such that |LEFTPATH,| < k—-1;
15 (LEFT PATH!, LEFT PATH),..., LEFTPATH(,) —

all the LEFT PATH; such that |LEFTPATH;| < k —- 1;
16 (TEM P,LONGESTLEFT) — EXTRACT-K-PATHS

((v, w,) U LEFT PAT H!,(v, wi) U LEFT PAT Hi. ...,
(v,wi,) ULEFT PATH?);

17 RETURN(AUTEMP, LONGESTLEFT)
18 END;

18

Algorithm EXTRACT-K-PATHS. used in k-path edge-packing for trees.

INPUT: A set of paths {PAT H,, PATH2,..., PATH}.
OUTPUT: A maximum k-path edge-packing for this set of paths and a longest left-over path.

1 {PATHLIST,, PATH LIST),.... PATHLIST,} —

BIN-SORT({PATM, PAT H2,..., PAT H,}) according to |PAT H,|;
2 Ac;

3 FORi~1TOk&DO
4 BEGIN
5 MATCHED — TRUE;
6 JOU

7 WHILE (|PATHLIST;| >0 AND MATCHED) DO
8 BEGIN
9 WHILE (|PATHLIST;|=0 ANDJZ < k) DO

/* look for a matching path */

10 jojtl;
11 IF (j =k +1) THEN
12 MATCHED — FALSE;
13 ELSE

14 BEGIN /* if a match is found, extract the k-path. */
15 PATH, — HEAD(PATHLIST;);
16 PATH, — HEAD(PATHLIST;);
17 A — AU TRIM(PATH, U PATH,,k)

/* TRIM the path to be of length k;

extra edges are discarded */
18 PATHLIST; — DELETEHEAD(PATHLIST;);
19 PATHLIST; — DELETEHEAD(PATH LIST;);

20 END;

21 END;
22 END;
23 «hk;

24 WHILE (2 > 0 AND |PATHLIST;| = 0) DO
/* look for the longest possible left-over path */

25 1-i-1;

26 IF (2 =0) THEN /* all paths were used */

27 RETURN(A, 0)
28 ELSE

29 RETURN(A, HEAD(PATA LIST;));

19

tree. As in our previous algorithms, a call to PACK-K-PATH collects the solutions

(RESULT, LEFT PATH,;) for the subtrees rooted at the children of the current vertex

(lines 7-13). Whenever |LEFTPATH;| = k — 1 for a subtree, the left-over path is used

to form a k-path with an edge of the star formed by the current vertex and its children.

The remaining edges of the star as well as the other left-over paths are then processed by

the procedure EXTRACT-K-PATHS (line 16). EXTRACT-K-PATHS takes a set of paths

as input. These paths are exactly the paths formed by connecting the edges of the star

with their corresponding left-over paths. The idea is to find as many k-paths as possible

by combining pairs of these paths while leaving a longest possible left-over path. Given a

particular subtree with a chosen maximum set of k-paths, we can add at most one more

k-path which is not entirely contained in this subtree to this maximum set. It is guaranteed

that this possibility is provided for by leaving the longest path down the subtree for use by

the next higher-level call to PACK-K-PATH. Choosing this correct set of k-paths such that

indeed a longest path is retained requires sorting the lengths of the paths being processed

(line 1). Figure 4.2 illustrates how such a choice is made during a call to PACK-K-PATH.

In the figure, the k-path first extracted is (a,h,p,q,7,$) because (h,p,q,7, 5) is a (k — 1)-

path. The other extracted k-paths are (b,a,g,m,n,o) and (i,d,a, f,k,1). The retained path

is (a,e,j) since it is the longest left-over. EXTRACT-K-PATHS repeatedly matches the

shortest path(s) with another shortest possible path such that the two can form a k-path

(lines 9-20). This is done until there no longer exists a k-path in the subtree. It is always

guaranteed that the longest path is retained when possible (line 29) because the longest

ones are the last to be used in the formation of new k-paths.

The sorting step in EXTRACT-K-PATHS takes O(mj,,) time since the elements being

sorted are integral and bounded (by &), hence, a bin sort is appropriate. The same bound

results in a linear time complexity even for the loop in lines 7-21 of EXTRACT-K-PATHS.

Since k is fixed, the number of actual iterations performed in this loop is dependent on the

number of edges of H. 0

20

Figure 4.2: Recursively extracting k-paths (k = 5)

21

The problem’s EF Partg counterpart has, of course, a similar complexity.

Corollary 4.2 E Part,_pata(tree) is solvable in O(my) time.

4.3 Tree guests in general

When the guest graph is an arbitrary tree, the revision becomes even more complicated

although we still end up with a polynomial time algorithm.

First, we consider the fixed guest graph G and enumerate all possible ways (up to

isomorphism) that G can be rooted. We then enumerate all the possible rooted subtrees

that result from all such rooted trees. Figure 4.3 exhibits an example of a tree G, its

possible forms as a rooted tree (Jo,7,,72,73), and the resulting possible rooted subtrees

(So, 51, 52,53,54). Since G is fixed, there is a fixed number of possible rooted trees and

subtrees for G. Furthermore, each 7; (or $;) corresponds to a collection of subtrees which

are exactly the subtrees that will result if the root of T; (or S;) is deleted. In the example, 73

corresponds to the collection of subtrees (59, 59, $1) while 54 corresponds to the collection

(So, 51). These rooted trees and subtrees of G as well as the collection of subtrees associated

with them are used by our edge-packing algorithm.

As in our previous algorithms, algorithm PACK-TREE provides a solution for the sub-

tree rooted at a given vertex v of the host tree H. This time, for simplicity, a solution

consists of a number which corresponds to the size of a maximum edge-packing (instead of

the packing itself) and a set of possible left-over subtrees. The second part may be any sub-

set of the set of rooted subtrees of G and pertains to all possible parts of G that can be left

over while retaining the maximum G edge-packing. The result of a call to PACK-TREE

on a vertex v depends on the sets of possible left-over parts gathered by calling PACK-

TREE on each of its children (lines 7-11). Algorithm EXTRACT-TREE is a procedure

which collects as many copies of G from these sets of possible parts. Instead of presenting

EXTRACT-TREE in algorithm format, we give a sketch on how it works. First, note that

although there may be more than one possible part (subtree) that may be retained in a call

22

Figure 4.3: Rooted subtrees of G.

23

A
i

Algorithm PACK-TREE. G edge-packing for trees.

INPUT: A rooted tree H = (Vy, Fy) and a vertex v.

OUTPUT: The size of a maximum G edge-packing of the subtree rooted at v
and a set of possible left-over subtrees.

1 IF (ce(v) # 0) THEN
2 RETURN (0, {5o}); /* if vis a leaf, return 0 and an empty left-over subtree*/

3 ELSE
4 BEGIN
3 COUNT — 0;

6 (W1,W2,-.,Wn) — €(v);

7 FOR i+ 1TOnDO /* process the subtrees */
8 BEGIN
9 (RESULT, LEFTSUBS;) — PACK-TREE(H, vj);
10 COUNT — COUNT + RESULT
11 END;
12 (TEM P,SUBTREES) — EXTRACT-TREES

(LEFTSUBS,,LEFTSUBS),.... DEFTSUBS,);
13 RETURN(COUNT +TEMP, SUBTREES);
14 END;

24

to PACK-TREE on one of the children of v, for instance, only one part can actually be used

on the current call to PACK-TREE. EXTRACT-TREE therefore involves partitioning the

children of v into sets of size at most some fixed number (3, in our example). This fixed

number is the maximum degree of a vertex of G, equivalently, the maximum number of sub-

trees that combine to form a copy of G. All possible ways to partition c(v) are considered.

For each possible partition, the algorithm tests whether a copy of G may be detected in each

part of the partition using any of the rooted forms of G that were previously enumerated.

The partitions where the most copies of G are detected are then considered. This number

of copies of G is then kept track of as well as the set of possible left-over subtrees that can

occur given that any of these maximum solutions were used. Of course, all this requires is,

for each case, inspect those children of v which were not used to form a copy of G.

Figure 4.4 illustrates how the partitions are handled as well as how solutions are carried

over to the next level; we use the example (for G) that we had earlier. Here, the solutions

for vertices b, c, and d have been gathered and PACK-TREE is being processed for vertex

a. There are five possible partitions for {b,c,d} and they are {{b}, {c}, {d}}, {{b,c}, {a}},

{{b,d}, {c}}, {{c,d}, {b}}, and {{b,c,d}}. The parts which are in bold are those which

can form some J; (or a copy of G). For example, the part {b,c} form 7; because the set of

possible left-over subtrees of the solution for 6 includes $2 while the set for c includes So.

So and S2, in turn, forms a copy of T,. In the example, the partition which exhibits the

most copies of G is {{b,d}, {c}} which has 2 copies. This, combined with 1, 0, and 2, the

edge-packing solutions for 6, c, and d, respectively, makes 5 copies of G for the tree rooted

at a. Since all edges in the star (a: b,c,d) were used up in this maximum G edge-packing,

So is the only possible left-over subtree.

We now formally state our result:

Theorem 4.3 E Packg(tree), where G is a fired tree, is solvable in polynomial time.

Proof; The exhaustive nature of EXTRACT-TREE guarantees that the result obtained

by algorithm PACK-TREE is indeed optimal. Using the maximum edge-packings of the

25

a (S,(S 9)

a

d (2,{

C ? dO

C) @ C

@ @

c: (0,{S5,5,,53)) -4

Figure 4.4: G-edge-packing for trees.

26

subtrees of a given tree to compute the maximum edge-packing of the tree is appropriate

because at most one other copy of G can be (partially) contained on each of the subtrees.

This is handled by the fact that all possible left-over sets of edges which can be part of a

copy of G are considered and exhausted in the algorithm. The number of possible partitions

of a set of size n such that each part is at most some size k is equivalent to the number

of partitions of the set into k parts [H1,NW]. This, in turn, is equivalent to an expression

which is of order O(n*~1). Therefore, there are O(m*;") possible partitions at each call

to EXTRACT-TREE where p is the maximum degree of a vertex in G (the maximum size

of a part in the partition). Since the number of T;’s and S,’s are fixed, EXTRACT-TREE

takes O(m', ') time and it follows that PACK-TREE takes O(m’,) time. 0

Stars and paths are special cases because of their unique structure. For a k-star, there

are only two ways to root such a graph; moreover, there are only two possible subtrees (the

one-vertex tree and the (k—1)-star). A k-path is also a special case because its subtrees are

all paths and a longest path always contains the other shorter subtrees so only the longest

needs to be kept track of in the computation. In addition, the maximum degree for a vertex

in a k-path is 2; recall that this corresponds to the maximum size of a part in a partition.

As a result, and as seen in the previous sections, edge-packing with these guest graphs is a

lot simpler and takes less time.

27

Chapter 5

PLANAR HOSTS

Unfortunately, the extension technique used for 2-path edge-packing from tree hosts te

arbitrary hosts does not apply to guest graphs which are trees in general. This is mainly

because the algorithm for 2-paths always guaranteed an edge-packing that is maximum

through a counting argument (at most one edge is left over) so that any tree model of

a graph will work. However, for trees in general (stars, paths, or otherwise) as guest

graphs, the edge-packing obtained usually involves leaving over mg or more edges, thereby

suggesting that the tree model of a graph may not produce the actual maximum set of

guest graphs. Figure 5.1 is an example of a graph where there are 2 edge-disjoint 3-stars

({(6: a,c,e),(d: b,c,e)}) as well as 2 edge-disjoint 3-paths ({(a,},d,e),(d,c,6,e)}), but its

corresponding tree model fails to produce either of these sets. E Packg where G is a star

or a path is, in fact, NP-complete for arbitrary hosts. This follows from a more restricted

NP-completeness result which we prove in this section. The result is for planar hosts, a

subproblem of the arbitrary case.

Recall that to prove NP-completeness, it has to be shown that F Packg isin NP and that

it is NP-hard. Clearly, E Packg is in NP: to verify that A’ subgraphs of G are isomorphic

toa fixed graph G and are edge-disjoint is a polynomial-time task. It remains to show that

EPackg is NP-hard, that is, it reduces from all problems in NP. Of course, it suffices to

28

Figure 5.1: Counterexample: a graph where its tree model does not produce the correct set

of 3-stars or 3-paths.

perform a reduction from a known NP-complete problem. We choose Planar 3-SAT since

we deal with planar host graphs. Planar 3-SAT is the satisfiability problem with the added

restrictions that each clause contain at most 3 literals and that the graph formed by the

variables and clauses is planar. It is formally defined as follows [L}:

PLANAR 3-SATISFIABILITY (PLANAR 3-SAT).

INSTANCE: A set V of m variables {v1 v2,...,Um}, and a set C of n clauses {c1,c2,...,¢n}

over V where |c;| < 3 for each c; in C such that the bipartite graph G, = (V UC, EF), where

E contains those pairs {(v,c): v or & belongs to the clause c}, is planar.

QUESTION: Is there a satisfying truth assignment for C?

Figure 5.2 exhibits a Planar 3-SAT instance. For each particular guest graph G

where we intend to show the NP-completeness of E Packg(planar), we need to reduce an

arbitrary Planar 3-SAT instance to an E Packg(planar) instance. Equivalently, we need to

represent the variables and clauses described above in a graph H and show that for some

kK, there is a satisfying truth assignment for C' if and only if there are A’ edge-disjoint

copies of Gin H. The method used is similar to that used by [BJLSS] in their generalized

planar-matching NP-completeness proofs. The graph H (the E Packg instance) consists of

gadgets (subgraphs) representing the variables and clauses of the Planar 3-SAT instance.

These gadgets contain cascaded copies of G so that choosing particular copies of G will

29

Figure 5.2: The graph of (v, + v2)(v + v3 + 04)(v1 + 03 + U4).

mean excluding others. In fact, the following requirements must be met:

e For each variable gadget, V;,1 < 7 < m, there must be exactly two ways to choose

a maximum set of edge-disjoint copies of G which correspond to the true-or-false

assignment (mode) of a variable. Furthermore, different alternating sets of edges

must be available (not contained in a copy of G) for each mode.

e Every clause gadget C;,1 <j < n must contain edges (and therefore, vertices) which

are shared (identified) with the variable gadgets — corresponding to literal (v or 3)

membership in a clause. These edges must be independently contained in a copy of G

within the gadget and must be essential in the formation of that copy — the objective

being that a copy of G is formed if and only if the clause is satisfied.

e The guest graphs which are cascaded in a gadget must occur in a circular (cyclic)

fashion so that the planarity of the graph is retained.

Provided these requirements are satisfied, it directly follows that C is satisfiable if and only

30

if there are K edge-disjoint copies of G in the constructed graph H.

In the following subsections, we first provide separate NP-completeness results for guest

graphs which are stars and paths. We then attempt to extend these results to trees in

general by addressing guests which are forks (trees which are neither stars or paths). Also,

since we now investigate planar hosts, there are other possible guest graphs, namely, those

containing cycles; we provide some results for these as well.

For each of these guest graphs, we show how the reduction is performed from the Planar

3-SAT instance, that is, what the graph H and the gadgets V; and Cj look like for the

different guest graphs.

5.1 k-stars as guests

Theorem 5.1 E Packy—star(planar) is NP-complete.

Proof: Let us first consider the case when G is a 3-star and then explain how to extend

the proof to k-stars in general.

For 3-stars, a variable gadget, V;, which corresponds to the variable v;, contains 4n

vertices, namely, u;[j], #[7], vily] and o[j], where 1 < 7 < n. The edges for this variable

gadget are those contained in the cycle (w,[1], @,[1], u;[2], @,[2],..., ui[n], w[n]), and those

of the form (u;[j], vi[y]) and (a[7], v:[7]), which we call spike edges (or spikes). Figure 5.3

shows what a variable gadget looks like if n = 3. There are exactly two ways to choose

a maximum set of 3-stars from such a gadget. One way is to extract all stars (there are

n of them) of the form (u;{j|: o& [7], uly], wily + 1]); the other is to choose those of the

form (u,(7]: v;[7], u[y], w[7 — 1]). Note that the addition (or subtraction) within the indices

wrap modulo n. These two choices correspond to true-or-false modes, as shown in the figure

(chosen edges are in bold). In both cases, all cycle edges and half of the spike edges are

chosen. The chosen spike edges are precisely one of two sets of alternating spikes; in either

case, one set is chosen and the other is made available. Also, as will be seen when we

describe a clause gadget, some of the vertices in V; may be identified with vertices from a

3

clause gadget and from other variable gadgets.

A clause gadget, Cj, which corresponds to the clause cj, on the other hand, contains

3 + |e;| vertices, all but 2 of which (c;[1] and c;[2]) are shared (identified) with vertices

of the variable gadgets. The edges of C; are those of a (2 + |c;|)-star, the formation of

which depend on which variables are contained in the clause c;. As in figure 5.4, suppose

Cc; = (v1 + v2 + ¥3). Then, the other vertices involved in C; are [ji], uelje], ta[j3], and

a vertex (the center of the star) identified with all of x a], val ja] and 03(j3|. The edges

between these vertices are spike edges of the variable gadgets Vi, V2 and V3. 71, j2 and

js Tefer to the actual index of the clause c; with respect to its cyclic ordering over the

respective variables (to preserve the planarity). Since the gadget is a (2 + |c;|)-star and

since |c;| < 3, at most one 3-star can be extracted from it.

Figure 5.5 illustrates how H is constructed from our Planar 3-SAT instance in figure

5.2.

Since sharing a spike edge with a clause gadget signifies variable membership in a clause,

it is clear that the only way a 3-star can be extracted from a clause gadget is when at

least one of these spikes is not being used by a variable gadget, or equivalently, when an

appropriate true-or-false assignment is made to a variable to satisfy the clause. There are

n 3-stars that can be extracted from the m variable gadgets; there are n clause gadgets

which can have at most one 3-star only if the situation described above occurs. This means

that the value of K in our E Packg instance is mn + n; 1.e., in our reduction from Planar

3-SAT, C is satisfiable if and only if there are mn + n edge-disjoint 3-stars in the resulting

FE’ Packg instance.

This reduction method immediately extends to k-stars, for k > 3. We simply add edges

to the gadgets to form k-stars instead of 3-stars. For the variable gadgets, the edges that

are added stem from the vertices in the cycle (u,[j] and w,[j]). For the clause gadgets, they

stem from the center of the star. Figures 5.6 and 5.7 show what these gadgets look like for

5-stars. O

32

Figure 5.3: A variable gadget for 3-stars with its true and false modes.

33

 vty,
 VU

u [jo] Volid

Figure 5.4: A clause gadget for 3-stars; assume c; = (v1 + v2 + 03).)

5.2 k-paths as guests

Theorem 5.2 E Packg_path(planar) is NP-complete.

Proof: Dyer and Frieze [DF] have proven that EF Partg (and thus, EPackg) is NP-

complete for planar host graphs when G is a k-path. Nevertheless, for consistency and

completeness, we show the variable and clause gadgets of an alternate proof.

We first deal with guest graphs which are 3-paths and later extend our results to k-paths

in general.

For G a 3-path, a variable gadget, Vj, contains 10n vertices: u;[j], w&[7], vi[7], aly],

wily], 2:7], wily], wily], F: [7], and y;[j7], where 1 <j <n. Edges of a gadget include those

contained in the paths: (w,{j], u(y], wily], wily], wely], Kl], wily + 1]), for all 7,1 <j <n.

They also include edges of the following form: (wi{j], zi{y]), (0: [7], Z[7]), (uly), vily]) and

(a; [7], 0 [7]). We call the last two edges spikes in the same manner that we did with k-stars.

Figure 5.8 exhibits a variable gadget when n = 3. For simplicity, only one part of the

gadget is identified and labeled. This subgadget, which corresponds to a clause containing

the variable v;, is in fact essential in our explanation.

Note that cascaded copies of the subgadget compose the entire gadget. Furthermore, the

edges of the form (wi[j], 2i[j]) are shared by neighboring subgadgets, with each subgadget

3-4

ss

Figure 5.5: Reduction to an E Pack3_star(planar) instance.

35

Figure 5.7: A clause gadget for 5-stars.

36

having two shared edges, the left and the right. We claim that there are at most 3n 3-paths

that can be edge-packed in the entire gadget. Each subgadget consists of eleven edges and

therefore contains at most 3 edge-disjoint 3-paths. Also, the subgadget needs to use at least

one of the shared edges to obtain these 3 3-paths. It does not help to extract 3-paths across

subgadgets because an edge (w;[j], 2;[j]) is just discarded when it could have been used

as part of that 3-path. For example, the path (¥;[1], w;[2], u;[2], v;[2]) is one which spans

across two sub-gadgets but extracting it causes the edge (w; (2), z;(2]) to be discarded when

the path (2;[2], w;[2], u,[2], v;[2]) could have been extracted instead. Hence, we can assume

that 3-paths are always wholly contained within a subgadget. And since a subgadget can

contain 3 3-paths while using only one shared edge, the maximum number of 3-paths for

the entire gadget is 3n.

True or false modes correspond to whether the left or right shared edge is used when

extracting the 3-paths (the choice of which shared edge is used propagates to all subgadgets).

Let us suppose that the left shared edge is used. Doing so causes all (u;[j], vi{j]) — alternating

spike edges — to be used. In fact, there are only two possible ways (per subgadget) to choose

3 3-paths, namely, the set of paths

{(ziQ], wild], we], v[9]), (ul), wl). Oi], eH), CD], WO], HO], wild + 1))},

or the set of paths

{(zi[7], wis], wel], e609), (mls), vel], B09], HO), (a), GO), WO], wi + 1)}-

It can be verified that these are the only possibilities. Moreover, since it is intended that

the spike edges (either the edge (u;[j], »;[7]) or the edge (a;,[7], 0;[j])) are shared with clause

gadgets, the second possibility is not relevant (both of the spikes are used). Using a similar

argument for the case where the right shared edge of a subgadget is used, we end up with

two possible ways to choose 3n 3-paths which correspond to true or false modes as shown

in figure 5.9.

Again, as in the case when we handled 3-stars, it should be noted that the vertices of

37

Figure 5.8: A variable gadget for 3-paths.

38

3

U5 [] , 2d vj

Figure 5.10: A clause gadget for 3-paths; assume c; = (v1 + v2 + 03).

a variable gadget may be identified with vertices of other variable gadgets if the variables

appear together in a clause.

A clause gadget, Cj, as shown in figure 5.10, contains vertices which include c;([1], ¢;[2],

and |c;| + 1 other vertices identified with the vertices of variable gadgets associated with

the variables contained in c;. The edges of Cj; are those of a 2-path formed by c¢;[1], ¢;[2]

and the outer vertex (v;[j] or v;(j]) of the variable gadgets involved, and those of a |c;|-star

formed by the spikes of the variable gadgets. The figure provides an example where we use

the same clause that we have used with 3-stars (cj = (v1 + v2 + 03)). The objective here

39

x [2]

1

Figure 5.11: A variable subgadget for 5-paths.

is that a 3-path can be extracted from the clause gadget if and only if at least one of the

edges (a spike in the variable gadget) in the star is not being used by a variable gadget.

The way planarity is preserved is the same as that used when dealing with stars: the cyclic

ordering over the respective variables is maintained.

There are 3n 3-paths that can be extracted per variable gadget; there is at most one

3-path per clause gadget and this occurs only when at least one of the edges shared with the

variable gadgets is available. Thus, the value of K in our reduction is 3mn +n. Extension

to k-paths for k > 3 simply involves lengthening the parts of the gadgets to accommodate

k-paths instead of 3-paths. In particular, the edges of the form (w,[j], z:[7]), (y:[7], WL7]),

(w; [7], w[z]) and (c;[1],¢;[2]) are magnified accordingly. As an example, figure 5.11 shows

the variable subgadget for 5-path edge- packing while figure 5.12 shows the clause gadget. 0

40

vj c.[1] c. [2]

V3[j4

Uli vel

Figure 5.12: A clause gadget for 5-paths.

5.3 Forks as guests

In this section, we consider tree guests which are neither stars nor paths. We call these

graphs forks and attempt to extend our results for stars to these guest graphs. We begin by

examining the structure of a fork. A fork always has at least one vertex of degree greater

than 2 since the graph is not a path; we call such a vertex a branch. We shall see in the

following subsections that forks with one branch can easily be modeled by a star so that

NP-completeness results do follow. Also, for forks with more than one branch, we provide

a slightly different construction of the gadgets to prove NP-completeness for some cases.

5.3.1 One-branch forks

Theorem 5.3 E Packg(planar), where G is a fired one-branch fork, is NP-complete.

Proof: A one-branch fork can be modeled by a star as follows: the branch—that is,

the vertex of degree greater than 2—is designated as the center of a k-star. We call this

branch vertex, u. The paths (at least 3 of them) which stem from wu are then seen as the

single edges of the star. We arbitrarily choose three of these paths, identify them as parts

A, B, and C, and group the remaining paths (which may be an empty set) as a fourth part,

D. Figure 5.13 provides an example of a one-branch fork and illustrates how the division

4]

Figure 5.13: Dividing a one-branch fork into parts.

into parts is made. We use these paths in the same manner we treat the single edges of

a star in the construction of gadgets for k-stars. Parts B and C correspond to the cycle

edges in a variable gadget while C corresponds to a spike edge. Of course, since these paths

will not always have the same lengths, it is necessary to alternate parts B and C in the

variable gadget. Also, copies of D are attached to the cycle vertices in order to actually

form copies of the fork. A clause gadget, on the other hand, contains parts B, C and D,

and |c;| (the number of literals in the clause) copies of A. Figures 5.14 and 5.15 illustrate

the corresponding variable and clause gadgets where we use the same assumptions we had

in our earlier proofs. The value of A’ in our reduction is the same as that for stars, mn +n,

since there are n forks that can be extracted from each of the m variable gadgets and one

fork from each of the n clause gadgets if and only if all the clauses are satisfied (copies of

A are made available by variable gadgets to all clause gadgets). 0

42

‘ A /

A ‘4 __ éc

u[3] C
eoeee ult]

1 . 8B
B / ‘

u [3]

uf]

C a / Cc

u[2] pb .-.----.
Bu [2] A

Figure 5.14: A variable gadget for one-branch forks.

43

Figure 5.15: A clause gadget for one-branch forks; assume c; = (v1 + v2 + 03).

5.3.2. Multi-branch forks

Forks with more than one branch (multi-branch forks) are difficult to model as stars, as

we shall see in the following analysis. One-branch forks are simpler because the branch

provides a single choice for the vertex to be designated as the center of the star. Multi-

branch forks present a difficulty in that no direct choice for the center of the star is apparent.

We conjecture NP-completeness for these guest graphs on planar hosts, nevertheless, and

propose gadget constructions which work in some situations.

Conjecture 5.1 EPackg(planar), where G is a fixed multi-branch fork, is NP-complete.

Again, we examine the structure of the fork guest, G, and divide it into parts. This

is done by identifying four vertices in the fork, u,v,w and 2x, such that u is a branch and

(u,v) is an edge (part A) which disconnects the graph into two components. One component

must consist entirely of paths, all of which have an end at vertex u. Two paths from this

component (there must be at least two from the component) are considered as two other

parts (B and C). Vertices w and z are the other ends of these two paths. The remaining

44

paths in the component comprise another part (part D) which may be empty. Finally, the

other component obtained by removing (u,v), shall comprise a non-empty fifth part (part

E). The division into parts is summarized in figure 5.16 where we provide an example of a

multi-branch fork. It is easily verified that identifying the four vertices uniquely provides

the division of the fork into parts.

Of course, it remains to show that all forks indeed contain such vertices. Given a multi-

branch fork G, we need to detect an edge (u,v) in the fork such that G — (u,v) has two

non-empty components, one of which (the one containing uw) consists entirely of paths with

ends at vertex v and contains at least two such paths. This can be systematically detected

by setting u to be any branch in G. We then pick a vertex v adjacent to u such that v has

other vertices adjacent toit. It is guaranteed that one such v exists since G is not astar. We

consider G—(u,v), particularly, the component which contains u. If this consists entirely of

paths, then the search is complete. If not, there exists a vertex in that component besides

u which is also a branch. We set u to be that vertex and set v to be the vertex adjacent

to u and in the path connecting u with the vertex previously set to wu. We then consider

G — (u,v), and repeatedly reset u and v until the component containing u consists entirely

of paths. Since G is finite, this must happen eventually. The vertices w and z, which are

the ends of two of those paths are then chosen arbitrarily. Observe that u, in this case, is a

branch with a special property: in the construction, the component containing u does not

have other branches in it. In this respect, we call u an end branch.

With that, we can now propose a possible construction of variable and clause gadgets.

We omit the explicit enumeration of vertices and edges for simplicity.

The variable gadget is similar to the gadget we had for stars. The copies of G are

cascaded through parts B and C of the fork. As in the construction for one-branch forks,

these parts are alternated since they may not have the same length. Part E is the set of

edges shared with the clause gadgets. Figure 5.17 provides an example using our previous

conventions and assumptions. As in the case for stars, the maximum number of copies of

G that can be obtained from this gadget is n. Each copy of G must contain an end branch

45

Figure 5.16: Dividing a multi-branch fork into parts.

46

characterized by vertex u in the previous figure (figure 5.16). In the gadget, the possibilities

are the vertices of the form u,[j] or u;[7], which correspond to the copies of G that we have

originally cascaded. The true and false modes for this gadget are the same as those for

stars. This time, instead of spikes, alternating copies of E are either used or made available.

A clause gadget is illustrated in figure 5.18. We use the same clause example, c; =

(v1 + vo + 03). The gadget consists of single copies of parts B, C, and D, and |c;| copies of

parts A and E, where each E is shared with a corresponding variable gadget. Clearly, at

most one copy of the fork can be obtained from this gadget and this occurs only when a

copy of Eis not being used by a variable gadget. Of course, the value of A in our reduction

is, as in the case for stars, mn +n.

Unfortunately, the construction described above does not always work for any multi-

branch fork. This is due to the existence of “stray” copies of G that could exist in the

gadgets. As described, copies of G should contain the end-branch u and we intend that this

be any of the vertices u;[j], @;[7], or c;[1]. However, it is conceivable that such a branch

could be found within part E (recall that we have provided no restriction for part FE except

that it be non-empty). If it is a vertex other than v;[j] or 0;[7], no problems would arise

since the resulting symmetry in G requires that one of the branches w,[j], a[7], or c;[1] and

all the edges attached to it be used anyway in the selected copy which is our intention to

begin with. The problem arises when the copy of G has u being either v;[y] or 0;[7]. If, in G,

v has degree exactly one less than that of u, then a stray copy of G which does not include

one of the cascaded parts of the gadget may exist. Fortunately, this may occur only when

the vertex adjacent to the end-branch u has degree exactly one less than that of u. When

this is not the case, we call u a proper end-branch. Consequently, we call a multi-branch

fork proper if it has a proper end-branch.

Theorem 5.4 EPackg(planar), where G is a fixed proper multi-branch fork, is NP-

complete.

Proof: The theorem immediately follows from the discussion above. D

AZ

Figure 5.17: A variable gadget for multi-branch forks.

48

Figure 5.18: A clause gadget for multi-branch forks; assume c; = (v1 + v2 + 03).

Although the construction may fail for fork guests with no proper end-branches, we have

not found such a guest where E Packg(planar) cannot be proven NP-complete by a slight

modification of the construction.

5.4 k-cycles as guests

k-cycle edge-packing is likewise NP-complete for planar host graphs. Similar constructions

for gadgets are made with a slight difference when dealing with clause gadgets. We formally

state our result as a theorem:

Theorem 5.5 EF Packy—cycte(planar) is NP-complete.

Proof: We first show this for 3-cycles and later extend our results to arbitrary k-cycles.

49

A variable gadget, V;, for 3-cycles contains 2n + 1 vertices which are: »;[j7] and 9;[j],

where 1 < 7 < n, and an extra vertex u;. The edges for this variable gadget are those

contained in the cycle (v,[1], ,[1], v;[2], o;[2],..., v;[n], oj[n]), and those contained in the

star formed by the edges (uj, v;[7]) and (ui, o[y]), 1< 7 <n.

Figure 5.19 shows the gadget for n = 3. The figure also shows the gadget in its true and

false modes. These correspond to the two ways that n 3-cycles can be extracted. In each

case, alternating cycle edges are used and this is significant because these are the edges that

are shared with the clause gadgets. It can be verified that n is the maximum number of

3-cycles that can be extracted and that the two ways to do so are exactly those presented

in the figure.

A clause gadget for 3-cycles is shown in figure 5.20. As in our previous cases, the

construction of a clause gadget depends on the variables contained in a particular clause.

Each C; contains 10 vertices whenever there are 3 variables in the corresponding clause, as

in the figure. Edges in a clause gadget form a structure similar to the variable gadget: they

form edges of a cycle and a star. Taking the specific clause example that we have been using

(ce; = (v1 + v2 + ¥3)), the vertices are c;(0], o [71], [71], ¢;(1], d3 [7a], vslys + 1], ¢;[2], v2V2],

¥2[j2], and c;[3]. Clearly, some of these vertices are shared with the corresponding variable

gadgets, specifically, those vertices which are part of a cycle edge in the variable gadget.

The maximum number of 3-cycles that can be extracted from this particular gadget is 4

and this is possible only if at least one of the shared edges is not being used by a variable

gadget.

For clauses containing 1 or 2 variables, the gadgets look like those in figure 5.21 and the

maximum number of 3 cycles that can be extracted are 1 and 3, respectively. The value

for K in our reduction is therefore mn + n, + 3n2 + 4n3, where n; is the number of clauses

which contain exactly 7 variables.

Extension to k-cycles in general requires magnifying the cycle edges of the gadgets (those

which are in the outer cycle) to accommodate for k-cycles instead of 3-cycles. Figure 5.22

and 5.23 illustrate how this is done for 5-cycles. O

50

Figure 5.19: A variable gadget for 3-cycles with its true and false modes.

51

(a) (b)

Figure 5.21: Other clause gadgets for 3-cycles: (a) |c;| = 1; (b) |e;| = 2

52

v [2] v [2]

Figure 5.22: A variable gadget for 5-cycles.

5.5 Arbitrary guest graphs

There are other possible planar guest graphs which are neither trees nor cycles. We conjec-

ture that F Packg(planar) is NP-complete for these guest graphs as well.

Conjecture 5.2 EPackg(planar), where G is a fized planar graph with 3 or more edges,

ts NP-complete .

A possible approach that may be taken to prove the above conjecture is to “model” the

arbitrary guest graph in terms of a guest graph where the NP-completeness of FE’ Packg is

already known. For example, if we can model some arbitrary planar guest graph by a cycle

and pattern the reduction accordingly, the NP-completeness of E Packg for that planar

guest graph will follow provided that the conditions necessary for the gadgets involved are

retained. This generalization technique was used by Kirkpatrick and Hell [KH] and Berman

et al [BJLSS] in proving the completeness of Maximum G Matching. The proofs they had

o3

Figure 5.23: A clause gadget for 5-cycles.

54

are both divided into two parts: guest graphs with unique maximum two-connected com-

ponents and guest graphs which have more than one maximum two-connected component.

The base cases for these two parts are 3-cycles and 2-paths, respectively. After show-

ing NP-completeness for these base cases, they modeled arbitrary guest graphs with these

graphs and concluded NP-completeness for these graphs as well. However, the gadgets

used were copies of G cascaded through single vertices thereby controlling the possibility

of creating other copies of G within and across the original copies. Since there is instead

edge-disjointedness in FE Packg, copies are cascaded through edges and the existence of

other copies of G is generally less predictable. It is in this respect that the technique used

in Maximum G Matching does not immediately translate to Maximum G Edge-Packing.

59

Chapter 6

ARBITRARY HOSTS

The NP-completeness results obtained with planar hosts carry over to arbitrary hosts since

the planar case is just a subproblem of the arbitrary case.

Corollary 6.1 FE Packg, where G is a fized star, path, one-branch fork, proper multi-branch

fork or cycle, is NP-complete.

In fact, part of this result has been proven by previous work [H3,DF] where it has been

shown that the simpler problem, EF Partg, is NP-complete for stars, paths and cycles. What

their work have essentially provided is a reduction (from 3-SAT or 3DM) to an EPackg

instance where K is exactly my/mg.

Of course, we conjecture that NP-completeness follows with arbitrary guest graphs as

well.

Conjecture 6.1 EPackc, where G is a fized graph with 3 or more edges, is NP-complete

56

Chapter 7

OUTERPLANAR HOSTS

Conjecture 7.1 EPackg(outerplanar), where G is a fired outerplanar graph, is

polynomial-time solvable.

We conjecture that EF Packg is solvable in polynomial time when both the guest and

the host graph are restricted to outerplanar graphs. Many NP-complete graph problems

which remain NP-complete if the graph involved is planar have been found to be solvable

in polynomial time when the graph is outerplanar [B,J3].

We can, in fact, present a simple algorithm where the guest graph is a triangle (3-cycle).

Consider the dual of an outerplanar graph which we define as follows: Each face (except for

the outer face) in the graph is a vertex in the dual. The outer face corresponds to several

vertices in the dual, depending on the number of edges which lie on the outer face of the

graph. Each edge in the outerplanar graph is an edge in the dual in the following way:

whenever faces in the graph are adjacent (separated by an edge), so are the vertices in the

dual. Figure 7.1 is an example of an outerplanar graph and its dual.

Observe that the dual of an outerplanar graph is simply a collection of trees [FGH]. Also,

detecting a maximum set of edge-disjoint triangles in an outerplanar graph is equivalent to

finding a maximum set of independent (non-adjacent) degree-3 vertices in the dual. This is

in turn done by treating each tree of the dual separately. It therefore suffices to present an

of

Figure 7.1: An outerplanar graph (white vertices, black edges) and its dual (black vertices,

dotted edges).

algorithm which does exactly that—detects a maximum set of independent degree-3 vertices

in a tree. We choose the tree to be rooted at a vertex of degree one (all trees have at least

two of these [BM]).

The algorithm (PACK-DUAL), like our previous algorithms, performs recursion on the

subtrees of a tree rooted at the current vertex. The call is initially made with the root

vertex which can never be in the independent set to begin with (it has degree 1). The

solution at each vertex (subtree) is an independent set of vertices and a flag which indicates

whether that vertex is in the set or not. At each call to PACK-DUAL, the results from the

children of the current vertex are collected (lines 7-11). If the current vertex is of degree 3

(a possible candidate in the set), the children are checked for membership in their respective

solutions (lines 12-13). If neither is in its respective solutions, then v is included in the set

(line 14); otherwise, it is not (line 15). Deciding on the latter is appropriate since choosing

to add v causes one or both of its children to be removed implying no increase in the current

independent set. Thus, the result at every call to PACK-DUAL is indeed optimal.

98

Algorithm PACK-DUAL. Used in 3-cycle edge-packing for outerplanar graphs.

INPUT: A rooted tree H = (Vy, Ey) (dual of graph) and a vertex v.
OUTPUT: A maximum independent set of degree-3 vertices for the tree rooted at v,

and a flag which indicates whether v is in that set.

1 IF (c(v) = 0) THEN
2 RETURN (0, FALSE); /* if v is a leaf, return an empty solution */

3 ELSE
4 BEGIN

5 Ax $;

6 (W1, W2,...,Wn) — e(v);
7 FOR:i—1TOn DO /* process the subtrees */
8 BEGIN
9 (RESULT,USED;) — PACK-DUAL(Z, wi);
10 A-—AURESULT;
11 END;
12 IF (n = 2) THEN /* if vis a degree-3 vertex*/
13 IF (NOT (USED, OR USED,)) THEN

14 RETURN(AU v, TRUE);
15 RETURN(A, FALSE);
16 END;

59

Figure 7.2: Finding an independent set of degree-3 vertices in a tree.

As an example, consider figure 7.2 which is, incidentally, the largest component of the

dual in our previous example. Here, the independent set of degree-3 vertices is in bold:

{c,k,1}. When PACK-DUAL is called with vertex 7, the independent sets for its subtrees

are computed; they are {/} and {k} which, combined, produces {k,/}. Since k is a child of

2 but is included in the maximum set, 7 is not added even though it is a degree-3 vertex.

Theorem 7.1 E Pack3_.y-1e(outerplanar) is solvable in O(my) time.

Proof: Applying algorithm PACK-DUAL to every tree of the dual of an outerplanar

graph indirectly obtains a maximum 3-cycle edge-packing for the graph as explained above.

Since edges in the dual correspond to edges in the outerplanar graph, the algorithm takes

O(m#) time: the edges (or vertices) in the dual are each visited once during the search. 0

60

Figure 7.3: 5-cycles in an outerplanar graph.

The algorithm unfortunately does not extend to EPackg where G is any non-trivial

outerplanar graph other than a 3-cycle. Only 3-cycles can independently correspond to

single regions (vertices in the dual) in an outerplanar graph. For 5-cycles, for example, as

in figure 7.3, the guest graphs may occur within multiple regions as shown. Moreover, two

5-cycles may share the same regions even though they are edge-disjoint as in the figure where

there are two edge-disjoint 5-cycles ((a,b,d,e,c) and (a,d, f,g,e)) which share a region (R).

A different approach will be necessary for such guest graphs.

61

Chapter 8

THE APPROXIMABILITY OF

E Packa

In those cases where EF Packg is NP-complete, an approximation algorithm which runs in

polynomial time is appropriate. In this section, we propose such an algorithm and show

that it always produces at least a fixed fraction of the optimal solution. We also show that

E Packg is in the class Max SNP, a class of maximization problems which have precisely

that characteristic.

8.1 A greedy algorithm

We present algorithm PACK-G, a greedy polynomial-time algorithm for finding edge-

disjoint copies of a guest graph G in a host graph H.

The first step in the algorithm (line 1) is an exhaustive search of all copies of G in H.

The algorithm proceeds by iteratively selecting copies of G and collecting them into a set

A (lines 4-11) which is precisely the obtained edge-packing. Edge-disjointedness is enforced

since every G selected at an iteration never shares an edge with any other copy of G in the

current packing. NEIGH BORS(G;) refers to the set of other copies of G in S which share

an edge with G, (this set has to be re-calculated at each iteration). This set is used in the

62

Algorithm PACK-G. An approximation algorithm for E Packg.

INPUT: A host graph H = (Vy, Ep).

OUTPUT: An approximate G edge-packing of H.

1 {G,,Go,...,Gn}— ALL-COPIES-OF-G(4);
/* identify and obtain all possible copies of Gin H */

2 Se {G1, Ge, ...,Gn};

3 Ax;

4 WHILE (5 4 6) DO
5 BEGIN

6 G;, — the copy of Gin S such that (|NEIGH BORS(G,)|) is minimum;
7 A-—A+G;;

8 FOREACH G; such that G; isin NEIGH BORS(G;,) DO
9 S—S—Gi;
10 S—S—G,

11 END;

12 RETURN(A);

exclusion of neighboring copies of a selected copy of G (lines 8-9) and also in the actual

choice of a copy of G (line 6).

It is worthwhile to note that the algorithm exhibits E Packg’s resemblance to the In-

dependent Set problem (finding the largest subset of vertices in a graph such that no two

vertices are adjacent to each other). Vertices in the Independent Set instance correspond

to copies of G in the E-Packg instance while edges correspond to the “neighbor” relation.

In fact, Johnson [J1] proposed an analogous algorithm for independent set and showed that

there is no finite ratio R such that the result produced by the algorithm is > R + OPT

(where OPT is the actual optimal solution).

The above seems to imply that the algorithm we provided is just as bad. However, the

nature of the EPackg problem imposes a certain restriction (G is fixed) in that at most

mg independent neighbors can exist for any copy of G. It is this restriction which allows

us to state the following:

63

Theorem 8.1 Algorithm PACK-G runs in polynomial time and is at least 1/mGg optimal.

Proof: PACK-G runs in polynomial time because G is fixed. There are at most O(nj,)

copies of G in an arbitrary host graph, where p = ng. In fact, detecting such copies will

take O(n{,) time since it will require testing isomorphism (to G) for each possible set of

p vertices in H. Again, note that G, and therefore p, is fixed. NEIGH BORS(G;) is

obtained by simply maintaining a list of copies of G for every edge—where copies which

include an edge are in the list of that edge. Initially, this can be done simultaneously with

the exhaustive search described above and can be updated in O(1) time at each iteration.

Lines 3-12 therefore take O(my) time, so the entire algorithm runs in O(nj,) time.

It remains to show that the algorithm produces at least 1/mg of the optimal solution.

Consider an optimal solution for an instance of E Packg. For every choice made within each

iteration of the loop in lines 4-11, at most mg copies of G from the optimal solution are

discarded (this is because the choice will have to share at least one edge with each discarded

copy). Upon completion of the algorithm, in the worst case, we end up with 1/mg of the

optimal. 0

Note that the “minimum” criterion used in line 6 is not at all used in this proof which

means there is a possibility that R is actually higher than what we claim.

8.2 EPackg is in Max SNP

There have been several attempts to classify problems in NP in terms of their approx-

imability [PY,PR]. In one such attempt, Papadimitriou and Yannakakis [PY] defined the

class Max SNP which consists of maximization versions of decision problems in NP. They

proved, using the characterization of Max SNP, that problems in this class can always be

approximated within a bounded ratio—that is, there exists an algorithm which produces

a fixed fraction of the actual optimal solution. The results in the previous section implies

that even a random algorithm for approximating E Packg (choosing an arbitrary Gy in

64

line 6) is at least 1/mg of the optimal. This leads us to conjecture that EPackg is in

Max SNP. Problems in Max SNP are those which can be logically expressed as follows:

mazs|{z : p(z,5,H)}|, where H is the instance of the problem, S is a structure from H, z

is an element of the set which we intend to maximize, and p is a quantifier-free predicate.

The expression means that we look for the structure S that produces the set which contains

the most number of elements such that each element z satisfies the predicate p(z,5, H).

The notation is derived from the logical representation of NP problems first introduced by

Fagin [F],

As an example, consider the maximization version of 3-SATISFIABILITY (MAX-3-

SAT) where instead of finding the truth assignment which satisfies all the clauses, we look

for one which satisfies the most number of clauses. Here, H is the set of variables and

clauses, S is the set of variables that we assign a true value to (the truth assignment), z is a

clause, and p asserts that at least one of the literals of x is true under the truth assignment

S. Since MAX-3-SAT restricts a clause to having at most three literals, p can easily be

written in a finite expression without using quantifiers.

Note that not all problems in NP can be expressed in the way described above. However,

E Packg can be expressed in that way which gives us our next result:

Theorem 8.2 FE Packg is in Mar SNP.

Proof: It suffices to express E Packg in the general format defined above. We simply

describe the correspondence of H,S,z, and P with our problem. Particularly, H is the

input (host) graph, S is a set of sets of mg edges of H, x represents a set of mg edges,

and p(z,5,H) captures the following assertion: (x induces a graph which is isomorphic to

G) and (all the edges of x occur exactly once in S). It is not hard to see that such an

assertion can be finitely expressed without quantifiers. The first part (isomorphism) is a

finite, quantifier-free expression since G is fixed. The second part (membership and edge-

disjointedness) involves a test for each of the edges of z (we enforce that no other copy

of Gin S has that edge), and, since x has the same cardinality as G, this part is also a

65

finite, quantifier-free expression. Finally, it is easily verifiable that the resulting expression

is indeed a restatement of F Packg. O

We can go further and show that EF Packg is Max SNP-complete. This means that

all other Max SNP problems reduce to it while preserving approximability to a constant

ratio—that is, we need to guarantee that the ratio between the fractions of the optimals

obtained stays within a constant bound during the reduction. The significance of Max

SNP-completeness is that whenever there is an improvement that can be made with ap-

proximating a Max SNP-complete problem, then corresponding improvements can be made

to all other problems in Max SNP as well. This is more precisely discussed in terms of poly-

nomial time approximation schemes (PTAS) by Papadimitriou and Yanakakis. In proving

Max SNP-completeness for EF Packg, a reduction from Bounded Independent Set (BI5;),

a known Max SNP-complete problem, is probably most appropriate. (BIS, is just the

Independent Set problem with a constant bound 6 on the maximum degree of the graph

instance). We, in fact, show that E Packy_ star is Max SNP-complete in the following result:

Theorem 8.3 E Packy_star is Max SNP-complete.

Proof: Given a B/S, instance with degree bound 6, we attach edges to those vertices

with degree less than 6 so that all original vertices will have degree equal to this bound.

Figure 8.1 illustrates how this is done for b = 4. Choosing edge-disjoint b-stars in the result-

ing instance corresponds to choosing the centers of the stars to obtain an independent set

for the sriginal instance. More importantly, whenever there is an approximation algorithm

for the resulting E Packs_ iq, instance which obtains a fraction of the optimal solution,the

same fraction (the constant ratio, in this case, is 1) of the optimal solution can be obtained

for the BIS, instance. This completes the reduction. O

There is an analogous situation for k-cycles although there is no direct easy generaliza-

tion for arbitrary guest graphs.

66

Figure 8.1: Reduction example from BIS, to FE Packa_ star.

8.3. Another greedy algorithm

We can investigate other ways to approximate E-Packg by simply changing the criterion

used at line 6 of algorithm PACK-G when selecting a copy of G to be included in the

maximum set. For instance, instead of selecting the copy which has the least number of

neighbors in S, the algorithm can select the copy which shares the least number of its

edges to other copies of G in §. This would seem appropriate specially if we consider the

proof on why the algorithm performs 1/mg of the actual optimal. Choosing such copies

of G avoids the exclusion of too many independent copies of G so that it is reasonable to

predict that this new approximation scheme is an actual improvement. Take the example

in figure 8.2 where the guest graph is a 6-cycle. Clearly, there are three 6-cycles that can

be extracted from the figure, in particular, those which surround the regions X, Y, and Z.

These 6-cycles are indeed chosen first because they share the least number of edges to the

other 6-cycles (only 2 edges). However, using our first algorithm will cause a wrong first

choice (particularly, the 6-cycle surrounding region C) and will exclude the actual optimal

set because although the choice has the least number of neighbors, it shares more edges.

Unfortunately, there are cases where this new algorithm performs poorly, as in figure

8.3, where choosing the 6-cycle surrounding region C (the one with the least number of

edges shared) is incorrect since it will exclude the actual optimal set of 6-cycles (3 of them).

Incidentally, our first algorithm finds an optimal solution in this example.

67

Figure 8.2: Finding 6-cycles in a graph where the second selection criterion performs better.

68

Figure 8.3: Findi - g 3: Finding 6-cycles in a graph where the first selection criterion performs better.

69

Chapter 9

CONCLUSIONS AND

FURTHER RESEARCH

Maximum G Edge-Packing (EL Packg) is NP-complete for most of the non-trivial guest

graphs studied. When the guest graph is a 2-path or when the host graph is a tree, the

problem is solvable in polynomial time. It remains NP-complete, however, for most of the

guest graphs studied, even if the host is restricted to planar graphs. The straightforward

polynomial-time algorithms studied which approximates E Packg exhibit solutions which

are at least 1/mag of actual optimal solutions. The status of F Packg is summarized in

table 9.1.

Still open for research is how to extend these results to other instances of F Packg,

such as for fork guests or cyclic guest graphs (graphs containing cycles) in general. The

generalization technique used in proving Maximum G-Matching [KH,BJLSS] may serve as

a suitable starting approach. There also remains the problem of determining the class of

host graphs where E Packg is solvable in polynomial time (given P # NP). Outerplanar

graphs are the most likely candidates. Although this has been shown for the case where the

guest graph is a triangle, the reasoning does not immediately extend to other guest graphs.

Also, we still have to prove whether 1/mg is indeed a tight bound for the approximation

70

Table 9.1: The current status of EPackg. P: polynomial-time solvable, NPC: NP-complete,

?: conjectured, (): results are incomplete.

guest graphs arbitrary | planar outerplanar | tree

2-path P P P P

star NPC [DF] | NPC P? P

path NPC [DF] | NPC [DF] | P? P

arbitrary tree (NPC) (NPC) P? P

cycle NPC [H3] | NPC (P,k=3) P

arbitrary cyclic || NPC? NPC? P? P
algorithms studied. In addition, determining the effects on this bound when the host graph

is restricted to planar graphs, for instance, is certainly helpful.

EPackg is in Max SNP and it is very likely that FE Packg is Max SNP-complete for

the guest graphs discussed. This is because E Packg resembles a bounded independent set

problem which has been proven to be likewise. Although there is a direct reduction for stars

and cycles as guest graphs, a complete proof for arbitrary guest graphs remains to be done.

Another approach is to classify host graphs in a different manner. In this paper, we chose

to take the hierarchy of trees, outerplanar graphs and planar graphs. We can investigate

other classes within and without this hierarchy such as grid graphs, bipartite graphs, genus-

k graphs, etc. Restricting the graphs involved to as many classes as possible clearly aids

in completely understanding the complexity our problem. This approach has been used in

numerous other graph-theoretic problems [J3].

Disconnected guest graphs is a situation which is also interesting. The NP-completeness

results obtained in this paper probably extend to disconnected guest graphs (we first select

a non-trivial connected component of G and use that in the reduction). Complications

may arise, however, in that we cannot deal with the connected components of the guest

graph G independently because these have to be disconnected in a selection of a copy of

G. This becomes a problem specially when we impose connectedness in the host graph.

The polynomial-time algorithms that were achieved in this paper for simple classes of host

graphs such as trees do not easily extend to disconnected guests graphs for the same reason.

71

Another direction we can take is to look for guest graphs of a fixed size (in terms of the

number of edges) but are not necessarily isomorphic to a given graph. Similar situations

have been studied by Dyer and Frieze [DF]. Of course, we can on the other hand, restrict

the guest graphs to particular types such as paths or cycles but relax the restriction on size.

These are slight deviations from our original problem because the guest graph is not fixed

in either structure or size but they are clearly related.

72

REFERENCES

[B]

[BJLSS]

[BM]

[C1]

[C2]

[C3]

[DF]

[F]

[FGH]

[GJ]

[GT].

[H1]

Baker B. (1983), “Approximation algorithms for NP-complete problems on planar

graphs”, in 24th Symposium on Foundations of Computer Science.

Berman F’.., D.S. Johnson, T. Leighton, P.W. Shor, and L. Snyder (1990), “Gen-

eralized Planar Matching”, J. of Algorithms, 11, 153-184.

Bondy J.A. and U.S. Murty (1976), Graph Theory with Applications, North Hol-

land.

Colbourn C.J. (1987), The Combinatorics of Network Reliability, Oxford U. Press.

Colbourn C.J. (1988), “Edge-packings of graphs and network reliability”, Discrete
Mathematics, 72, 49-61.

Colbourn C.J. (1984), “The complexity of completing partial latin squares”, Dis-

crete Applied Math, 8, 25-30.

Dyer M.E. and A.M. Frieze (1985), “On the complexity of partitioning graphs into

connected subgraphs”, Discrete Applied Mathematics, 10, 139-153.

Fagin R. (1974), “Generalized first-order spectra and polynomial-time recognizable

sets”, in Karp R. (ed.), Complexity of Computations, SIAM-AMS Proceedings, 7,

43-73,

Fleischner H.J., D.P. Geller and F. Harary (1974), “Outerplanar graphs and weak

duals”, J. Indian Math. Soc., 38, 215-219.

Garey M.R. and D.S. Johnson (1979), Computers and Intractability: A Guide to

the Theory of NP-Completeness, W.H. Freeman.

Goldberg A. and R. Tarjan (1988), “Finding the minimum-cost circulations by

canceling negative cycles”, in 20th Ann. ACM Symposium on Theory of Comput-

ing.

Hall M. (1986), Combinatorial Theory, John Wiley and Sons, Inc.

73

[H2}

[H3]

[J]

[J2]

[J3}

[KH]

[KS]

[MS]

[NW]

[PR]

[PY]

[PL]

Heath L.S. (1990), “Edge coloring planar graphs with two outerplanar subgraphs”,

accepted to 2nd Annual ACM-SIAM Symposium on Discrete Algorithms.

Holyer I. (1981),“The NP-Completeness of some edge-partition problems”, SIAM
J. Computing 10(4), 713-717.

Johnson D.S. (1974), “Approximation algorithms for combinatorial problems”, J.

Computer and System Science, 9, 256-278.

Johnson D.S. (1982), “The NP-completeness column: an ongoing guide”, J. of
Algorithms, 3, 182-195.

Johnson D.S. (1985), “The NP-completeness column: an ongoing guide”, J. of

Algorithms, 16, 434-451.

Kirkpatrick D.G. and P. Hell (1978), “On the completeness of a generalized match-
ing problem”, in 10th Ann. ACM Symposium on Theory of Computing.

Klein P. and C. Stein (1990), “A Parallel algorithm for eliminating cycles in undi-
rected graphs”, to appear in Information Processing Letters.

Lichtenstein D. (1982), “Planar satisfiability and its uses”, SIAM J. Computing,

11, 329-343.

Mirzaian A. and K. Steiglitz (1981), “A note on the complexity of the star-star con-
centrator problem”, IEEE Transactions on Communications, 39(10), 1549-1552.

Nijenhuis A. and H.S. Wilf (1978), “Combinatorial Algorithms”, 2nd ed., Aca-

demic Press.

Panconesi A. and D. Ranjan (1990), “Quantifiers and approximation”, in 22nd

Ann. ACM Symposium on Theory of Computing.

Papadimitriou C.H. and M. Yannakakis (1988), “Optimization, approximation,

and complexity classes”, in 20th Ann. ACM Symposium on Theory of Computing.

Peterson P.A. and M.C. Loui (1988), “The general maximum matching algorithm

of Micali and Vazirani”, Algorithmica, 3, 511-513.

Yap H.P. (1988), “Packing of graphs—a survey”, Discrete Mathematics, 72, 395-
404.

74

VITA

John Paul C. Vergara was born in Manila, Philippines on October 27, 1965. He received

his Bachelor of Science degree in Mathematics and Computer Science at the Ateneo de

Manila University (Quezon City, Philippines) on March, 1986. He is currently attending

Virginia Polytechnic Institute and State University (Blacksburg, Virginia) where he is about

to complete his Master of Science degree in Computer Science.

pet M47
Jijg

S
Q

