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Computer Science 

(ABSTRACT) 

Maximum G Edge-Packing (E Packg) is the problem of finding the maximum number of 

edge-disjoint isomorphic copies of a fixed guest graph G in a host graph H. The problem 

is primarily considered for several guest graphs (stars, paths and cycles) and host graphs 

(arbitrary graphs, planar graphs and trees). We give polynomial-time algorithms when G 

is a 2-path or when H is a tree; we show the problem is NP-complete otherwise. Also, 

we propose straightforward greedy polynomial-time approximation algorithms which are at 

least 1/|EG| optimal.
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Chapter 1 

INTRODUCTION 

An edge-packing of a graph H is a set of edge-disjoint subgraphs of H. An edge-partition of 

Hf is an edge-packing of H with no edges left over (i.e., the union of the subgraphs in the 

packing is exactly H). It is often useful to restrict the subgraphs of H to a certain class or 

property. For instance, edge-partitioning a graph into subgraphs which are all matchings is 

equivalent to the chromatic index problem, a well-known problem which involves minimally 

coloring the edges of a graph such that no two adjacent edges have the same color. There 

are other problems that may be viewed as edge-packings or edge-partitions of graphs. 

Colbourn [C1,C2] used edge-packing in the determination of network reliability. Edge- 

packing the representative graph of a network by spanning trees and then computing sep- 

arately the reliabilities of these trees provide a lower bound for the reliability of the whole 

network. Edge-packing the graph by paths whose ends are on two specific terminals of the 

network provides a bound for the reliability between the two terminals in the same manner. 

Klein and Stein [KS] studied edge-packing graphs by cycles. Finding a maximal set of 

edge-disjoint cycles in a graph aids in solving the minimum-cost circulation problem [GT] 

which involves repeatedly finding a maximal set of weighted cycles in a weighted directed 

graph. 

Other studies in edge-packing include packing by triangle free graphs (Monochromatic
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Figure 1.1: A maximum triangle edge-packing (edges in the packing are in bold). 

Triangle) or by treshold graphs (Treshold Number) [GJ], packing complete graphs by trees 

[Y] and packing planar graphs by outerplanar graphs [H2]. 

In this paper, we investigate Maximum G Edge-Packing (EPackg), the problem of 

finding the maximum number of edge-disjoint copies of a fixed (guest) graph G = (Vg, Eq) 

in a (host) graph H = (Vy, Ex). This is the same as determining the largest edge-packing 

of a graph by subgraphs isomorphic to G. Figure 1.1, for example, exhibits a maximum 

G edge-packing of a graph where G is a triangle. Note that selected triangles may share 

vertices, but never edges. This paper considers E Packg for several instances of G. The 

main goal is to provide a sufficient understanding of this problem so that results could be 

extended to arbitrary guest graphs. In addition, the host graph 4 is restricted to particular 

classes of graphs and the effect on the computational complexity of E Packg is observed. 

We begin by formally defining E Packg as a decision problem: 

MAXIMUM G EDGE-PACKING (EF Packg) 

INSTANCE: A host graph H and an integer K < |Fy|/|Ec|. 

QUESTION: Does H contain K edge-disjoint copies of G, i.e., are there A subsets 

(£,,£2,..., EK) of Ey such that E; 9 E; = 0,Vi # 7 and the graph induced by each 

FE; is isomorphic to G? 

Since E'Packg is clearly trivial when the guest graph G is a single edge, we only consider



cases where G is a graph with at least two edges. Of particular interest are the cases where 

G is a star (graphs isomorphic to A,,), a path or a cycle since these comprise graphs of 

the simplest types and solving the problem for these simple cases provides possibilities for 

extension to guest graphs of more general types. It is also useful to consider restricting the 

host graph H to certain classes. Planar graphs are of special importance since they often 

correspond to suitable applications. The class of planar graphs as well as the subclasses 

of trees and outerplanar graphs are considered in this paper. Restricting the host graph 

G to these classes allows us to more precisely determine the computational complexity of 

E Packg. 

It is sufficient to deal only with connected host graphs since the guest graphs which we 

investigate are themselves connected. The problem (for connected guests and disconnected 

hosts) clearly reduces to edge-packing each connected component of the host graph. Dis- 

connected guest graphs are a different issue altogether since this will mean finding copies 

of different graphs (components of G) in H. We therefore avoid such guest graphs in our 

discussion since they do not immediately follow from the results obtained for connected 

guest graphs. 

In this paper, we obtain NP-completeness results. NP-complete problems are the class 

of problems which are conjectured to have no polynomial-time solution but with the char- 

acteristic that if one problem from that class is polynomial-time solvable, then the entire 

class is polynomial-time solvable. Garey and Johnson [GJ] provide an extensive discussion 

of NP-completeness as well as a list of known NP-complete problems. This paper shows 

that EPackg is NP-complete for particular combinations of guest and host graphs. Also, 

the combinations for which the problem is polynomial-time solvable are investigated. 

We discuss two problems related to EPackg. Oneis G Edge-Partition (E Partg) which 

involves partitioning the edges of H into copies of G. It is not hard to observe that FE Partg is 

just a special case of FE Packg with K = |Ey|/|Eq| (no edges are left over in the packing). 

The second problem is Minimum G Edge-Cover (ECoverg). This problem is another 

generalization of F.Partg and involves finding the minimum number of copies of G (not



necessarily edge-disjoint) that cover all the edges of H. We formally define these as two 

decision problems: 

G EDGE-PARTITION (EPartg) 

INSTANCE: A host graph H such that |Ey| = K|Eg| for some integer K. 

QUESTION: Can the edges of H be partitioned into copies of G? 

MINIMUM G EDGE-COVER (ECoverg) 

INSTANCE: A host graph H and an integer K > |Ey|/|Ec|. 

QUESTION: Can the edges of H be covered with K copies of G? 

EPartg has been studied by Holyer [H3,J2] and by Dyer and Frieze [DF]. For guest 

graphs which are either complete graphs or cycles, Holyer proves that EPartg is NP- 

complete by reducing from 3-Satisfiability (3-SAT), a known NP-complete problem. Dyer 

and Frieze, on the other hand, prove E Partg NP-complete for cases where the guest graph 

is a path or a star (having three or more edges). Their reduction is from 3-Dimensional 

Matching (3DM), known NP-complete problem. They show, in addition, that if the host 

graph is restricted to planar graphs, the problem remains NP-complete for paths and for 

3-stars (stars with 3 edges), but becomes polynomial-time solvable for triangles (3-cycles). 

No conclusions in this case is made for stars or cycles with more than three edges. 

Colbourn [C3] studied FE Partg in terms of the construction of latin squares which is in 

turn useful in experimental design theory. A latin square is an nxn table of entries from the 

set {1,2,...,2} such that no number from this set appears more than once in the same row or 

column of the table. Constructing a latin square corresponds to triangle edge-partitioning 

the complete tripartite graph formed by viewing the rows, columns and entries as the three 

sets (or partitions) of vertices. A partial latin square is the situation where not all slots in 

the table have been occupied. The problem of determining whether a partial latin square 

can be completed, i.e., the unoccupied slots be assigned appropriate entries, is equivalent 

to triangle edge-partitioning a corresponding tripartite graph. This problem (completing



partial latin squares as well as the corresponding Fk’ Partg problem) has been proven to be 

NP-complete in the study. 

The results obtained for E Partg, specifically the NP-completeness results, are relevant 

to EPackg. Since EF Partg is a subproblem of E Packg, it follows that EF Packg is NP- 

complete whenever EF Partg is NP-complete. ECoverg is NP-complete whenever - Partg 

is NP-complete for the same reason. On the other hand, whenever there is a polynomial- 

time algorithm that solves EF Packg or ECoverg, the same algorithm applies to E Parig as 

well. 

Another related problem is the “vertex-disjoint” counterpart of E Packg, Maximum G 

Matching (finding the maximum number of vertex-disjoint copies of Gin H), a problem that 

has been studied quite extensively. In fact, it has been found to be solvable in polynomial 

time when the guest graph is an edge by regular matching [PL,BM] but NP-complete for 

other connected guest graphs even if H is planar. Kirkpatrick and Hell [KH] prove NP- 

completeness for this problem in general (reduction from 3DM) while Berman et al [BJLSS] 

prove NP-completeness for planar hosts (from Planar 3-SAT). The reduction technique used 

on both instances is to cascade copies of the fixed guest graph such that only alternating 

copies may be chosen in a maximum set, thereby corresponding to true-or-false settings for 

the 3-SAT instance. We use a similar technique in this paper and we elaborate on this later. 

Much work has been done on G Matching particularly because of its numerous applications 

in areas such as scheduling, computer network design, and wafer-scale integration [BM,KH, 

MS,BJLSS]. Applications for G Edge-Packing can be conceivably derived from G Matching 

since relaxing the vertex-disjoint constraint to edge-disjoint simply allows the existence of 

repeated or redundant nodes while utilizing as many links (between the nodes) as possible. 

Of course, the application has to be directly concerned with maximally utilizing such links. 

The main results obtained in this paper can be summarized as follows: 

E Packg has a polynomial-time algorithm if: 

G is a path of length 2.



A is a tree. 

G is a triangle (3-cycle) and # is outerplanar. 

E Packg is NP-complete if: 

G is a star, a path or a cycle of 3 or more edges even if H is planar. 

We also discuss ways to extend the NP-completeness results obtained to more general 

types of guest graphs. We, in fact, identify those types of guest graphs where the NP- 

completeness results immediately follow. 

In addition, the paper analyzes the approximability of EPackg. Polynomial-time ap- 

proximation algorithms to solve EF Packg which are at least 1/|KgG| optimal are presented. 

It is also shown that FE Packg is in Max SNP, a class of problems whose members are all 

approximable within bounded ratios. 

This paper is organized as follows: In chapter 2, definitions necessary for the suc- 

ceeding discussions are provided. Chapter 3 discusses 2-path edge-packing and presents 

a polynomial-time algorithm for arbitrary host graphs. Chapters 4 through 7 considers 

E Packg in general (|Eg| > 3) for hosts graphs which are trees, planar graphs, arbitrary 

graphs and outerplanar graphs, in that order. In chapter 8, we investigate the approxima- 

bility of E Packg. The paper concludes in chapter 9 where we present related open problems 

as well as a table summarizing the current status of EF Packg.



Chapter 2 

DEFINITIONS 

A graph G is represented by (Vc, Eq), an ordered pair of vertices and edges, where Vg and 

Eg are the vertex set and edge set of G, respectively. We write ng = |Vg| and mg = |Ea|. 

Each problem considered in this paper involves a guest graph and a host graph. These 

are denoted by G and H, respectively. The guest graphs considered are k-stars, k-paths, k- 

cycles, and forks. The classes of host graphs considered are arbitrary graphs, planar graphs, 

outerplanar graphs, and trees. 

A k-star is a graph isomorphic to Ay,,, a complete bipartite graph on one and k vertices. 

Let {v} and {w1,we,...,we} be these vertices; the k-star formed by these partitions is 

denoted by (v : wi, we,...,w,). A k-path is a path of length k and is denoted by the 

sequence of vertices which form the path. A k-cycle is a cycle of length & and is likewise 

denoted by the sequence of vertices in the cycle. A fork is any tree (a connected graph 

without cycles) which is neither a star nor a path and is denoted by its edge set. We may 

also denote any of the other guest graphs by its edge set (e.g., the path (a,b,c,d) may be 

denoted by {(a,6), (b,c), (c, d)}). 

A planar graph is a graph which can be embedded in a plane in such a way that no two 

edges intersect except at a common vertex. An outerplanar graphs is a planar graph whose 

vertices can be placed on a circle in the plane while its edges are embedded inside the circle;



equivalently, it is a planar graph all of whose vertices lie on one face. 

A tree is just a connected graph without cycles. A tree may be rooted, i.e., a designated 

vertex is considered the root of the tree. The height of a rooted tree is the length of the 

longest path from the root to a vertex in the tree. A rooted tree also imposes a level for 

each vertex of the tree with respect to its distance (length of its connecting path) from the 

root: all vertices which are farthest from the root have level 0 while the root itself has a 

level equal to the height of the tree. The parent of a vertex v, p(v), is the vertex in the 

previous level of the tree which is adjacent to v. The children of v, c(v) are the vertices in 

the next level of the tree which are adjacent to v. Clearly, the root is the only vertex with 

no parent. Vertices with no children are called leaves. 

We may denote particular instances of EPackg by replacing G with the actual 

guest graph considered; e.g., EPackg where G is a 3-cycle is alternatively denoted by 

E Pack3_cycte. Also, whenever the host graph A is restricted to some class or property, P, 

we denote this by EPackg(P); e.g., EPack3_cycie(planar) is EF Pack3~cycie for planar host 

graphs. Analogous notations for EPartg and ECoverg are likewise used.



Chapter 3 

2-PATH EDGE-PACKING 

Maximum G Edge-Packing is solvable in linear time when the guest graph is a 2-path. We 

first provide an algorithm for the case where the host graph is a tree and show how it 

extends to general host graphs. 

Theorem 3.1 E Pack2_ ,atn(tree) is solvable in O(my) time. 

Proof: We describe an algorithm which obtains a maximum set of edge-disjoint 2- 

paths from a tree H. It uses recursion on the subtrees of the tree being processed and is 

summarized in algorithm PACK-2-PATH. The algorithm is initially called with the input 

tree H and its root vertex. Every call to PACK-2-PATH produces a maximum set of 2- 

paths and a possible left-over edge for the subtree rooted at the given vertex. Both the 

packing and the left-over edge are carried over to the next higher-level call to PACK-2- 

PATH. On every call, the algorithm processes the-subtrees rooted at the children and the 

solutions for each (RESULT, LEFT EDGE,) are collected (lines 7-13). The star formed 

by the current vertex and its children is then processed in the following manner: Whenever 

there is a left-over edge for the solutions (LEFTEDGE, # 0) of any of the subtrees rooted 

at the children, it is used to form a 2-path together with an edge of the star (lines 11- 

12). The remaining edges of the star are then matched to form 2-paths themselves (lines 

14-17). Depending on whether there is an odd or even number of edges left in the star, a



Algorithm PACK-2-PATH. 2-path edge-packing for trees. 

INPUT: A rooted tree H = (Vy, Ey) and a vertex v. 

OUTPUT: A 2-path edge-packing of the subtree rooted at v and a left-over edge, if any. 

1 IF (e(v) = @) THEN /* if v is a leaf, return an empty solution and no left-over edge */ 

2 RETURN (9, @) 
3. ELSE 
4 BEGIN 
5 A $; 

6 (W1, W2,--,Wn) — c(v); 

7 FOR:—1TOn DO /* process the subtrees */ 
8 BEGIN 
9 (RESULT, LEFTEDGE;) — PACK-2-PATH(A, w;); 
10 A-~ AU RESULT; 
11 IF (LEFTEDGE,; # 9) THEN /* if there is a left-over edge */ 
12 A AU {{(v,w;), LEFT EDGE;}} 
13 END; 
14 (wy, wh,...,wt,) — all the w; such that LEFTEDGE; = 9; 

15 /* collect remaining edges */ 
16 FOR 7 — 1 tom—1 STEP 2 DO /* match these edges */ 

17 A— AU {{(v, wi), (0, Wiga) HI 

18 IF (m is even) THEN /* all edges were successfully matched */ 

19 RETURN (A, 9) 
20 ELSE /* there was one left over */ 
21 RETURN (A, (v, w!,)) 
22 END; 

10
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Figure 3.1: Recursively extracting 2-paths from a tree. 

left-over edge may result (lines 18-21). Figure 3.1 provides an example of how 2-paths are 

extracted on a call to PACK-2-PATH. Here, PACK-2-PATH is being processed for the tree 

rooted at vertex a and has been completed for the subtrees rooted at vertices 6 through 

h. Left-over edges have resulted for the subtrees rooted at b and g, hence, the 2-paths 

(a,6,z) and (a,g,j) are extracted. The remaining star, (a: c,d,e, f,h), has five edges, four 

of which are extracted as two 2-paths ((c,a,d) and (e,a, f)). (a,h) is the left-over edge for 

this call to PACK-2-PATH. The algorithm is reminiscent of a depth-first search in that the 

children (subtrees) are always processed first, the base cases being the leaves. Leaves are in 

themselves subtrees with no edges so that they return an empty edge-packing as a solution 

ll



with no left-over edge (lines 1-2). 

The result obtained by algorithm PACK-2-PATH is clearly optimal since at most one 

edge is left over after the packing algorithm is applied. It is easy to see that algorithm 

PACK-2-PATH runs in O(mj) time: an edge is either extracted as part of a 2-path or 

carried over to the next call until all edges are exhausted. O 

It should be noted that since it is always the case that at most one edge is left over in 

the edge-packing, the corresponding E Partz— at, problem is likewise solved in linear time. 

ECover2_ pat, also has the same complexity since all that needs to be done is add an extra 

2-path if a left-over edge results. 

Corollary 3.1 FE Partg_patn(tree) and ECoverz_patn(tree) are solvable in O(my) time. 

The algorithm described where the host graph is a tree easily extends to connected host 

graphs in general. As long as the host graph can be modeled as a tree, the algorithm can be 

applied accordingly. Any connected graph can be modeled as a tree as follows: Designate a 

vertex of the graph as the root. Starting with this root, mark all unmarked edges incident 

to it and designate all vertices adjacent toit through these edges as its children. Recursively 

apply this step to each child until all edges are exhausted. What results is a tree where 

some of the leaves may be duplicates of other nodes in the tree (see Figure 3.2). With 

this, we have the following result: 

Theorem 3.2 FE Pack z_ pat, is solvable in O(my) time. 

Proof: Given an arbitrary graph, a corresponding tree model can be obtained by the 

procedure described above and thereby algorithm PACK-2-PATH can be applied. The 

possibility of repeated vertices does not affect how the algorithm works since we are looking 

for edge-disjoint copies of 2-paths so that such repetition is allowed. The process takes 

O(my;,;) time since transforming an arbitrary graph to its tree model likewise takes O(my) 

time (edges are just exhausted). O 

12



  

Figure 3.2: A tree model of a graph. 

As in the case for trees, at most one edge is left over in the packing so that the corre- 

sponding E Partg and ECoverg problems are also solved in linear time. 

Corollary 3.2 EPartz_path and ECovere_patn are solvable in O(my) time. 

The results in this section provide one more interesting observation: If we consider 

the edge graph of the host (i.e., edges in the original graph become vertices which in turn 

are adjacent if their corresponding edges are adjacent in the original graph—sometimes 

called line graphs in other literature), the equivalent problem is to find a maximum set 

of independent (vertex-disjoint) edges in this edge graph. This is the regular matching 

problem which, for general host graphs, are solved in O(n? mi) at best [PL]. We have 

shown in this section that the matching problem is simpler when the host graph is an edge 

graph. 

Corollary 3.3 The matching problem for edge graphs is solvable in O(my) time. 

13



Chapter 4 

TREE HOSTS 

When considering tree hosts, only guest graphs which are themselves trees are relevant. 

This section is divided into three parts, the first two of which deal with special classes 

of trees, namely, stars and paths. The third part addresses tree guests in general (with 

|Eg| > 3), where a less efficient but nevertheless polynomial-time algorithm is presented. 

The results in this section are extensions of the algorithm provided for 2-path edge-packing 

with tree hosts. 

4.1 k-stars as guests 

The algorithm to solve EF Packz_pa:, for trees immediately extends to E Pack,_ star for any 

k > 2. 

Theorem 4.1 FE Pack _star(tree) is solvable in O(my) time. 

Proof: Our revised algorithm is called PACK-K-STAR. We use the same recursive 

technique where each call to PACK-K-STAR produces a maximum set of k-paths and a set 

of left-over edges. However, instead of detecting pairs of edges to form 2-paths, k-tuples of 

edges are matched to form k-stars (lines 16-18). Of course, left-over edges are useful only 

when there are k — 1 of them. If this is indeed the case (lines 19-20), they are used to form 

14



a k-star in the next higher-level call to the algorithm (lines 11-12). When there are less 

than k — 1 left-over edges (lines 21-22), these are simply discarded since these edges can 

not possibly form another k-star unless a previously formed one is sacrificed. Figure 4.1 

illustrates what occurs during a call to PACK-K-STAR. Here, the extracted 4-stars are 

(c:a,2,j,k) and (a: 6,d,e, f) and the left-over edges form the star (a: 9,h). 

Algorithm PACK-K-STAR likewise takes O(m ,) time since edges are either discarded 

or extracted at each call. Note that unlike in the case for 2-path edge-packing where at most 

one edge is left over (there is no way another 2-path can be extracted), the result obtained 

for k-stars presents a possibility that mg or more edges may be discarded in the process so 

a counting argument does not suffice in showing that we indeed obtain a maximum edge- 

packing. Instead, we reason that the recursive method of collecting solutions of subtrees 

rooted at the children of the current vertex is appropriate because at most one k-star can be 

added through any of the children and this is provided for since left-over edges are carried 

over to the next level whenever possible. D 

The corresponding F Partg problem is at least as easy since all that needs to be detected 

is the existence of discarded edges. 

Corollary 4.1 E Partg_ star (tree) is solvable in O(my )time. 

4.2 k-paths as guests 

For guest graphs which are k-paths (k > 2), we present algorithm PACK-K-PATH, which 

is likewise a revision of our 2-path edge-packing algorithm for tree hosts. Although the 

revision is not a simple one, the same general concept is retained. 

Theorem 4.2 E Packy_pa,(tree) is solvable in O(my) time. 

Proof: A call to algorithm PACK-K-PATH still produces an edge-packing for the 

subtree and a set of remaining edges which, this time, form a path down the sub- 
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Algorithm PACK-K-STAR. k-star edge-packing for trees. 

INPUT: A rooted tree H = (Vy, Ey) and a vertex v. 

OUTPUT: A k-star edge-packing of the subtree rooted at v and left-over edges, if any. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

IF (e(v) = 0) THEN /* if vis a leaf, return an empty solution and no left-over edges */ 

RETURN(Q, @) 
ELSE 

BEGIN 
A< $; 

(W1, We, Wn) — e(v); 

FORi—1TOnDO /* process the subtrees */ 
BEGIN 

(RESULT, LEFTEDGES;) — PACK-K-STAR(Z, ui); 
A-AURESULT; 
IF (LEFTEDGES; ~ 9) THEN 

/* if there are k — 1 left-over edges from the subtree */ 
A- AU {{(v,w;)} U LEFTEDGES;} 

END; 

(w}, wh, ...,w),) — all the w; such that LEFTEDGES; = 9; 

/* collect edges which were not used to form k-stars in previous step */ 

left — mmod k; 

FOR 7 —1ltom—k+1STEP k DO /* match these edges */ 

A — AU {{(0,w!), (0, 0h), 5 (0) Why ga HE 
IF (left = k - 1) THEN /* if there were k — 1 edges left over */ 

RETURN (A, {(0,0!y_p41)s(s Why pga) (0, Wh, )}) 
ELSE /* if less than k — 1 edges are left-over, discard */ 

RETURN (A, 0) 
END; 
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Figure 4.1: Recursively extracting k-stars (k = 4).



Algorithm PACK-K-PATH. k-path edge-packing for trees. 

INPUT: A rooted tree H = (Vy, Ex) and a vertex v. 

OUTPUT: A k-path edge-packing of the subtree rooted at v and a left-over path (set of edges). 

1 IF (e(v) #0) THEN 
2 RETURN (@, 9) /* if vis a leaf, return an empty solution and no left-over path */ 

3. ELSE 
4 BEGIN 

5 A 9; 

6 (W1, W2,.,Wn) — c(v); 
f FORi<1TOn DO /* process the subtrees */ 
8 BEGIN 

9 (RESULT, LEFT PATH;) — PACK-K-PATH(Z, w,); 
10 A-~ AU RESULT; 

el IF (\LEFTPATH;| = k — 1) THEN 
12 A-—AU {{(v,w;)} U LEFT PAT H;}; 
13 END; 

14 (w},w9,..., W),) — all the w; such that |LEFTPATH,| < k—-1; 
15 (LEFT PATH!, LEFT PATH),..., LEFTPATH(,) — 

all the LEFT PATH; such that |LEFTPATH;| < k —- 1; 
16 (TEM P,LONGESTLEFT) — EXTRACT-K-PATHS 

((v, w,) U LEFT PAT H!,(v, wi) U LEFT PAT Hi. ..., 
(v,wi,) ULEFT PATH? ); 

17 RETURN(AUTEMP, LONGESTLEFT) 
18 END; 
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Algorithm EXTRACT-K-PATHS. used in k-path edge-packing for trees. 

INPUT: A set of paths {PAT H,, PATH2,..., PATH}. 
OUTPUT: A maximum k-path edge-packing for this set of paths and a longest left-over path. 

1 {PATHLIST,, PATH LIST),.... PATHLIST,} — 

BIN-SORT({PATM, PAT H2,..., PAT H,}) according to |PAT H,|; 
2 Ac; 

3 FORi~1TOk&DO 
4 BEGIN 
5 MATCHED — TRUE; 
6 JOU 

7 WHILE (|PATHLIST;| >0 AND MATCHED) DO 
8 BEGIN 
9 WHILE (|PATHLIST;|=0 ANDJZ < k) DO 

/* look for a matching path */ 

10 jojtl; 
11 IF (j =k +1) THEN 
12 MATCHED — FALSE; 
13 ELSE 

14 BEGIN /* if a match is found, extract the k-path. */ 
15 PATH, — HEAD(PATHLIST;); 
16 PATH, — HEAD(PATHLIST;); 
17 A — AU TRIM(PATH, U PATH,,k) 

/* TRIM the path to be of length k; 

extra edges are discarded */ 
18 PATHLIST; — DELETEHEAD(PATHLIST;); 
19 PATHLIST; — DELETEHEAD(PATH LIST;); 

20 END; 

21 END; 
22 END; 
23 «hk; 

24 WHILE (2 > 0 AND |PATHLIST;| = 0) DO 
/* look for the longest possible left-over path */ 

25 1-i-1; 

26 IF (2 =0) THEN /* all paths were used */ 

27 RETURN(A, 0) 
28 ELSE 

29 RETURN(A, HEAD( PATA LIST;)); 
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tree. As in our previous algorithms, a call to PACK-K-PATH collects the solutions 

(RESULT, LEFT PATH,;) for the subtrees rooted at the children of the current vertex 

(lines 7-13). Whenever |LEFTPATH;| = k — 1 for a subtree, the left-over path is used 

to form a k-path with an edge of the star formed by the current vertex and its children. 

The remaining edges of the star as well as the other left-over paths are then processed by 

the procedure EXTRACT-K-PATHS (line 16). EXTRACT-K-PATHS takes a set of paths 

as input. These paths are exactly the paths formed by connecting the edges of the star 

with their corresponding left-over paths. The idea is to find as many k-paths as possible 

by combining pairs of these paths while leaving a longest possible left-over path. Given a 

particular subtree with a chosen maximum set of k-paths, we can add at most one more 

k-path which is not entirely contained in this subtree to this maximum set. It is guaranteed 

that this possibility is provided for by leaving the longest path down the subtree for use by 

the next higher-level call to PACK-K-PATH. Choosing this correct set of k-paths such that 

indeed a longest path is retained requires sorting the lengths of the paths being processed 

(line 1). Figure 4.2 illustrates how such a choice is made during a call to PACK-K-PATH. 

In the figure, the k-path first extracted is (a,h,p,q,7,$) because (h,p,q,7, 5) is a (k — 1)- 

path. The other extracted k-paths are (b,a,g,m,n,o) and (i,d,a, f,k,1). The retained path 

is (a,e,j) since it is the longest left-over. EXTRACT-K-PATHS repeatedly matches the 

shortest path(s) with another shortest possible path such that the two can form a k-path 

(lines 9-20). This is done until there no longer exists a k-path in the subtree. It is always 

guaranteed that the longest path is retained when possible (line 29) because the longest 

ones are the last to be used in the formation of new k-paths. 

The sorting step in EXTRACT-K-PATHS takes O(mj,,) time since the elements being 

sorted are integral and bounded (by &), hence, a bin sort is appropriate. The same bound 

results in a linear time complexity even for the loop in lines 7-21 of EXTRACT-K-PATHS. 

Since k is fixed, the number of actual iterations performed in this loop is dependent on the 

number of edges of H. 0 
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Figure 4.2: Recursively extracting k-paths (k = 5) 
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The problem’s EF Partg counterpart has, of course, a similar complexity. 

Corollary 4.2 E Part,_pata(tree) is solvable in O(my) time. 

4.3 Tree guests in general 

When the guest graph is an arbitrary tree, the revision becomes even more complicated 

although we still end up with a polynomial time algorithm. 

First, we consider the fixed guest graph G and enumerate all possible ways (up to 

isomorphism) that G can be rooted. We then enumerate all the possible rooted subtrees 

that result from all such rooted trees. Figure 4.3 exhibits an example of a tree G, its 

possible forms as a rooted tree (Jo,7,,72,73), and the resulting possible rooted subtrees 

(So, 51, 52,53,54). Since G is fixed, there is a fixed number of possible rooted trees and 

subtrees for G. Furthermore, each 7; (or $;) corresponds to a collection of subtrees which 

are exactly the subtrees that will result if the root of T; (or S;) is deleted. In the example, 73 

corresponds to the collection of subtrees (59, 59, $1) while 54 corresponds to the collection 

(So, 51). These rooted trees and subtrees of G as well as the collection of subtrees associated 

with them are used by our edge-packing algorithm. 

As in our previous algorithms, algorithm PACK-TREE provides a solution for the sub- 

tree rooted at a given vertex v of the host tree H. This time, for simplicity, a solution 

consists of a number which corresponds to the size of a maximum edge-packing (instead of 

the packing itself) and a set of possible left-over subtrees. The second part may be any sub- 

set of the set of rooted subtrees of G and pertains to all possible parts of G that can be left 

over while retaining the maximum G edge-packing. The result of a call to PACK-TREE 

on a vertex v depends on the sets of possible left-over parts gathered by calling PACK- 

TREE on each of its children (lines 7-11). Algorithm EXTRACT-TREE is a procedure 

which collects as many copies of G from these sets of possible parts. Instead of presenting 

EXTRACT-TREE in algorithm format, we give a sketch on how it works. First, note that 

although there may be more than one possible part (subtree) that may be retained in a call 
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Figure 4.3: Rooted subtrees of G. 
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Algorithm PACK-TREE. G edge-packing for trees. 

INPUT: A rooted tree H = (Vy, Fy) and a vertex v. 

OUTPUT: The size of a maximum G edge-packing of the subtree rooted at v 
and a set of possible left-over subtrees. 

1 IF (ce(v) # 0) THEN 
2 RETURN (0, {5o}); /* if vis a leaf, return 0 and an empty left-over subtree*/ 

3 ELSE 
4 BEGIN 
3 COUNT — 0; 

6 (W1,W2,-.,Wn) — €(v); 

7 FOR i+ 1TOnDO /* process the subtrees */ 
8 BEGIN 
9 (RESULT, LEFTSUBS;) — PACK-TREE(H, vj); 
10 COUNT — COUNT + RESULT 
11 END; 
12 (TEM P,SUBTREES) — EXTRACT-TREES 

(LEFTSUBS,,LEFTSUBS),.... DEFTSUBS,); 
13 RETURN(COUNT +TEMP, SUBTREES); 
14 END; 
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to PACK-TREE on one of the children of v, for instance, only one part can actually be used 

on the current call to PACK-TREE. EXTRACT-TREE therefore involves partitioning the 

children of v into sets of size at most some fixed number (3, in our example). This fixed 

number is the maximum degree of a vertex of G, equivalently, the maximum number of sub- 

trees that combine to form a copy of G. All possible ways to partition c(v) are considered. 

For each possible partition, the algorithm tests whether a copy of G may be detected in each 

part of the partition using any of the rooted forms of G that were previously enumerated. 

The partitions where the most copies of G are detected are then considered. This number 

of copies of G is then kept track of as well as the set of possible left-over subtrees that can 

occur given that any of these maximum solutions were used. Of course, all this requires is, 

for each case, inspect those children of v which were not used to form a copy of G. 

Figure 4.4 illustrates how the partitions are handled as well as how solutions are carried 

over to the next level; we use the example (for G) that we had earlier. Here, the solutions 

for vertices b, c, and d have been gathered and PACK-TREE is being processed for vertex 

a. There are five possible partitions for {b,c,d} and they are {{b}, {c}, {d}}, {{b,c}, {a}}, 

{{b,d}, {c}}, {{c,d}, {b}}, and {{b,c,d}}. The parts which are in bold are those which 

can form some J; (or a copy of G). For example, the part {b,c} form 7; because the set of 

possible left-over subtrees of the solution for 6 includes $2 while the set for c includes So. 

So and S2, in turn, forms a copy of T,. In the example, the partition which exhibits the 

most copies of G is {{b,d}, {c}} which has 2 copies. This, combined with 1, 0, and 2, the 

edge-packing solutions for 6, c, and d, respectively, makes 5 copies of G for the tree rooted 

at a. Since all edges in the star (a: b,c,d) were used up in this maximum G edge-packing, 

So is the only possible left-over subtree. 

We now formally state our result: 

Theorem 4.3 E Packg(tree), where G is a fired tree, is solvable in polynomial time. 

Proof; The exhaustive nature of EXTRACT-TREE guarantees that the result obtained 

by algorithm PACK-TREE is indeed optimal. Using the maximum edge-packings of the 
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Figure 4.4: G-edge-packing for trees. 
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subtrees of a given tree to compute the maximum edge-packing of the tree is appropriate 

because at most one other copy of G can be (partially) contained on each of the subtrees. 

This is handled by the fact that all possible left-over sets of edges which can be part of a 

copy of G are considered and exhausted in the algorithm. The number of possible partitions 

of a set of size n such that each part is at most some size k is equivalent to the number 

of partitions of the set into k parts [H1,NW]. This, in turn, is equivalent to an expression 

which is of order O(n*~1). Therefore, there are O(m*;") possible partitions at each call 

to EXTRACT-TREE where p is the maximum degree of a vertex in G (the maximum size 

of a part in the partition). Since the number of T;’s and S,’s are fixed, EXTRACT-TREE 

takes O(m', ') time and it follows that PACK-TREE takes O(m’,) time. 0 

Stars and paths are special cases because of their unique structure. For a k-star, there 

are only two ways to root such a graph; moreover, there are only two possible subtrees (the 

one-vertex tree and the (k—1)-star). A k-path is also a special case because its subtrees are 

all paths and a longest path always contains the other shorter subtrees so only the longest 

needs to be kept track of in the computation. In addition, the maximum degree for a vertex 

in a k-path is 2; recall that this corresponds to the maximum size of a part in a partition. 

As a result, and as seen in the previous sections, edge-packing with these guest graphs is a 

lot simpler and takes less time. 
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Chapter 5 

PLANAR HOSTS 

Unfortunately, the extension technique used for 2-path edge-packing from tree hosts te 

arbitrary hosts does not apply to guest graphs which are trees in general. This is mainly 

because the algorithm for 2-paths always guaranteed an edge-packing that is maximum 

through a counting argument (at most one edge is left over) so that any tree model of 

a graph will work. However, for trees in general (stars, paths, or otherwise) as guest 

graphs, the edge-packing obtained usually involves leaving over mg or more edges, thereby 

suggesting that the tree model of a graph may not produce the actual maximum set of 

guest graphs. Figure 5.1 is an example of a graph where there are 2 edge-disjoint 3-stars 

({(6: a,c,e),(d: b,c,e)}) as well as 2 edge-disjoint 3-paths ({(a,},d,e),(d,c,6,e)}), but its 

corresponding tree model fails to produce either of these sets. E Packg where G is a star 

or a path is, in fact, NP-complete for arbitrary hosts. This follows from a more restricted 

NP-completeness result which we prove in this section. The result is for planar hosts, a 

subproblem of the arbitrary case. 

Recall that to prove NP-completeness, it has to be shown that F Packg isin NP and that 

it is NP-hard. Clearly, E Packg is in NP: to verify that A’ subgraphs of G are isomorphic 

toa fixed graph G and are edge-disjoint is a polynomial-time task. It remains to show that 

EPackg is NP-hard, that is, it reduces from all problems in NP. Of course, it suffices to 

28



  

Figure 5.1: Counterexample: a graph where its tree model does not produce the correct set 

of 3-stars or 3-paths. 

perform a reduction from a known NP-complete problem. We choose Planar 3-SAT since 

we deal with planar host graphs. Planar 3-SAT is the satisfiability problem with the added 

restrictions that each clause contain at most 3 literals and that the graph formed by the 

variables and clauses is planar. It is formally defined as follows [L}: 

PLANAR 3-SATISFIABILITY (PLANAR 3-SAT). 

INSTANCE: A set V of m variables {v1 v2,...,Um}, and a set C of n clauses {c1,c2,...,¢n} 

over V where |c;| < 3 for each c; in C such that the bipartite graph G, = (V UC, EF), where 

E contains those pairs {(v,c): v or & belongs to the clause c}, is planar. 

QUESTION: Is there a satisfying truth assignment for C? 

Figure 5.2 exhibits a Planar 3-SAT instance. For each particular guest graph G 

where we intend to show the NP-completeness of E Packg(planar), we need to reduce an 

arbitrary Planar 3-SAT instance to an E Packg(planar) instance. Equivalently, we need to 

represent the variables and clauses described above in a graph H and show that for some 

kK, there is a satisfying truth assignment for C' if and only if there are A’ edge-disjoint 

copies of Gin H. The method used is similar to that used by [BJLSS] in their generalized 

planar-matching NP-completeness proofs. The graph H (the E Packg instance) consists of 

gadgets (subgraphs) representing the variables and clauses of the Planar 3-SAT instance. 

These gadgets contain cascaded copies of G so that choosing particular copies of G will 
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Figure 5.2: The graph of (v, + v2)(v + v3 + 04)(v1 + 03 + U4). 

mean excluding others. In fact, the following requirements must be met: 

e For each variable gadget, V;,1 < 7 < m, there must be exactly two ways to choose 

a maximum set of edge-disjoint copies of G which correspond to the true-or-false 

assignment (mode) of a variable. Furthermore, different alternating sets of edges 

must be available (not contained in a copy of G) for each mode. 

e Every clause gadget C;,1 <j < n must contain edges (and therefore, vertices) which 

are shared (identified) with the variable gadgets — corresponding to literal (v or 3) 

membership in a clause. These edges must be independently contained in a copy of G 

within the gadget and must be essential in the formation of that copy — the objective 

being that a copy of G is formed if and only if the clause is satisfied. 

e The guest graphs which are cascaded in a gadget must occur in a circular (cyclic) 

fashion so that the planarity of the graph is retained. 

Provided these requirements are satisfied, it directly follows that C is satisfiable if and only 
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if there are K edge-disjoint copies of G in the constructed graph H. 

In the following subsections, we first provide separate NP-completeness results for guest 

graphs which are stars and paths. We then attempt to extend these results to trees in 

general by addressing guests which are forks (trees which are neither stars or paths). Also, 

since we now investigate planar hosts, there are other possible guest graphs, namely, those 

containing cycles; we provide some results for these as well. 

For each of these guest graphs, we show how the reduction is performed from the Planar 

3-SAT instance, that is, what the graph H and the gadgets V; and Cj look like for the 

different guest graphs. 

5.1 k-stars as guests 

Theorem 5.1 E Packy—star(planar) is NP-complete. 

Proof: Let us first consider the case when G is a 3-star and then explain how to extend 

the proof to k-stars in general. 

For 3-stars, a variable gadget, V;, which corresponds to the variable v;, contains 4n 

vertices, namely, u;[j], #[7], vily] and o[j], where 1 < 7 < n. The edges for this variable 

gadget are those contained in the cycle (w,[1], @,[1], u;[2], @,[2],..., ui[n], w[n]), and those 

of the form (u;[j], vi[y]) and (a[7], v:[7]), which we call spike edges (or spikes). Figure 5.3 

shows what a variable gadget looks like if n = 3. There are exactly two ways to choose 

a maximum set of 3-stars from such a gadget. One way is to extract all stars (there are 

n of them) of the form (u;{j|: o& [7], uly], wily + 1]); the other is to choose those of the 

form (u,(7]: v;[7], u[y], w[7 — 1]). Note that the addition (or subtraction) within the indices 

wrap modulo n. These two choices correspond to true-or-false modes, as shown in the figure 

(chosen edges are in bold). In both cases, all cycle edges and half of the spike edges are 

chosen. The chosen spike edges are precisely one of two sets of alternating spikes; in either 

case, one set is chosen and the other is made available. Also, as will be seen when we 

describe a clause gadget, some of the vertices in V; may be identified with vertices from a 
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clause gadget and from other variable gadgets. 

A clause gadget, Cj, which corresponds to the clause cj, on the other hand, contains 

3 + |e;| vertices, all but 2 of which (c;[1] and c;[2]) are shared (identified) with vertices 

of the variable gadgets. The edges of C; are those of a (2 + |c;|)-star, the formation of 

which depend on which variables are contained in the clause c;. As in figure 5.4, suppose 

Cc; = (v1 + v2 + ¥3). Then, the other vertices involved in C; are [ji], uelje], ta[j3], and 

a vertex (the center of the star) identified with all of x a], val ja] and 03(j3|. The edges 

between these vertices are spike edges of the variable gadgets Vi, V2 and V3. 71, j2 and 

js Tefer to the actual index of the clause c; with respect to its cyclic ordering over the 

respective variables (to preserve the planarity). Since the gadget is a (2 + |c;|)-star and 

since |c;| < 3, at most one 3-star can be extracted from it. 

Figure 5.5 illustrates how H is constructed from our Planar 3-SAT instance in figure 

5.2. 

Since sharing a spike edge with a clause gadget signifies variable membership in a clause, 

it is clear that the only way a 3-star can be extracted from a clause gadget is when at 

least one of these spikes is not being used by a variable gadget, or equivalently, when an 

appropriate true-or-false assignment is made to a variable to satisfy the clause. There are 

n 3-stars that can be extracted from the m variable gadgets; there are n clause gadgets 

which can have at most one 3-star only if the situation described above occurs. This means 

that the value of K in our E Packg instance is mn + n; 1.e., in our reduction from Planar 

3-SAT, C is satisfiable if and only if there are mn + n edge-disjoint 3-stars in the resulting 

FE’ Packg instance. 

This reduction method immediately extends to k-stars, for k > 3. We simply add edges 

to the gadgets to form k-stars instead of 3-stars. For the variable gadgets, the edges that 

are added stem from the vertices in the cycle (u,[j] and w,[j]). For the clause gadgets, they 

stem from the center of the star. Figures 5.6 and 5.7 show what these gadgets look like for 

5-stars. O 
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Figure 5.3: A variable gadget for 3-stars with its true and false modes. 
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Figure 5.4: A clause gadget for 3-stars; assume c; = (v1 + v2 + 03).) 

5.2 k-paths as guests 

Theorem 5.2 E Packg_path(planar) is NP-complete. 

Proof: Dyer and Frieze [DF] have proven that EF Partg (and thus, EPackg) is NP- 

complete for planar host graphs when G is a k-path. Nevertheless, for consistency and 

completeness, we show the variable and clause gadgets of an alternate proof. 

We first deal with guest graphs which are 3-paths and later extend our results to k-paths 

in general. 

For G a 3-path, a variable gadget, Vj, contains 10n vertices: u;[j], w&[7], vi[7], aly], 

wily], 2:7], wily], wily], F: [7], and y;[j7], where 1 <j <n. Edges of a gadget include those 

contained in the paths: (w,{j], u(y], wily], wily], wely], Kl], wily + 1]), for all 7,1 <j <n. 

They also include edges of the following form: (wi{j], zi{y]), (0: [7], Z[7]), (uly), vily]) and 

(a; [7], 0 [7]). We call the last two edges spikes in the same manner that we did with k-stars. 

Figure 5.8 exhibits a variable gadget when n = 3. For simplicity, only one part of the 

gadget is identified and labeled. This subgadget, which corresponds to a clause containing 

the variable v;, is in fact essential in our explanation. 

Note that cascaded copies of the subgadget compose the entire gadget. Furthermore, the 

edges of the form (wi[j], 2i[j]) are shared by neighboring subgadgets, with each subgadget 
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Figure 5.5: Reduction to an E Pack3_star(planar ) instance. 
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Figure 5.7: A clause gadget for 5-stars. 
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having two shared edges, the left and the right. We claim that there are at most 3n 3-paths 

that can be edge-packed in the entire gadget. Each subgadget consists of eleven edges and 

therefore contains at most 3 edge-disjoint 3-paths. Also, the subgadget needs to use at least 

one of the shared edges to obtain these 3 3-paths. It does not help to extract 3-paths across 

subgadgets because an edge (w;[j], 2;[j]) is just discarded when it could have been used 

as part of that 3-path. For example, the path (¥;[1], w;[2], u;[2], v;[2]) is one which spans 

across two sub-gadgets but extracting it causes the edge (w; (2), z;(2]) to be discarded when 

the path (2;[2], w;[2], u,[2], v;[2]) could have been extracted instead. Hence, we can assume 

that 3-paths are always wholly contained within a subgadget. And since a subgadget can 

contain 3 3-paths while using only one shared edge, the maximum number of 3-paths for 

the entire gadget is 3n. 

True or false modes correspond to whether the left or right shared edge is used when 

extracting the 3-paths (the choice of which shared edge is used propagates to all subgadgets). 

Let us suppose that the left shared edge is used. Doing so causes all (u;[j], vi{j]) — alternating 

spike edges — to be used. In fact, there are only two possible ways (per subgadget) to choose 

3 3-paths, namely, the set of paths 

{(ziQ], wild], we], v[9]), (ul), wl). Oi], eH), CD], WO], HO], wild + 1))}, 

or the set of paths 

{(zi[7], wis], wel], e609), (mls), vel], B09], HO), (a), GO), WO], wi + 1)}- 

It can be verified that these are the only possibilities. Moreover, since it is intended that 

the spike edges (either the edge (u;[j], »;[7]) or the edge (a;,[7], 0;[j])) are shared with clause 

gadgets, the second possibility is not relevant (both of the spikes are used). Using a similar 

argument for the case where the right shared edge of a subgadget is used, we end up with 

two possible ways to choose 3n 3-paths which correspond to true or false modes as shown 

in figure 5.9. 

Again, as in the case when we handled 3-stars, it should be noted that the vertices of 
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Figure 5.8: A variable gadget for 3-paths. 
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Figure 5.10: A clause gadget for 3-paths; assume c; = (v1 + v2 + 03). 

a variable gadget may be identified with vertices of other variable gadgets if the variables 

appear together in a clause. 

A clause gadget, Cj, as shown in figure 5.10, contains vertices which include c;([1], ¢;[2], 

and |c;| + 1 other vertices identified with the vertices of variable gadgets associated with 

the variables contained in c;. The edges of Cj; are those of a 2-path formed by c¢;[1], ¢;[2] 

and the outer vertex (v;[j] or v;(j]) of the variable gadgets involved, and those of a |c;|-star 

formed by the spikes of the variable gadgets. The figure provides an example where we use 

the same clause that we have used with 3-stars (cj = (v1 + v2 + 03)). The objective here 
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Figure 5.11: A variable subgadget for 5-paths. 

is that a 3-path can be extracted from the clause gadget if and only if at least one of the 

edges (a spike in the variable gadget) in the star is not being used by a variable gadget. 

The way planarity is preserved is the same as that used when dealing with stars: the cyclic 

ordering over the respective variables is maintained. 

There are 3n 3-paths that can be extracted per variable gadget; there is at most one 

3-path per clause gadget and this occurs only when at least one of the edges shared with the 

variable gadgets is available. Thus, the value of K in our reduction is 3mn +n. Extension 

to k-paths for k > 3 simply involves lengthening the parts of the gadgets to accommodate 

k-paths instead of 3-paths. In particular, the edges of the form (w,[j], z:[7]), (y:[7], WL7]), 

(w; [7], w[z]) and (c;[1],¢;[2]) are magnified accordingly. As an example, figure 5.11 shows 

the variable subgadget for 5-path edge- packing while figure 5.12 shows the clause gadget. 0 

40



  

vj c.[1] c. [2] 

V3[j4 

Uli vel 

Figure 5.12: A clause gadget for 5-paths. 

5.3 Forks as guests 

In this section, we consider tree guests which are neither stars nor paths. We call these 

graphs forks and attempt to extend our results for stars to these guest graphs. We begin by 

examining the structure of a fork. A fork always has at least one vertex of degree greater 

than 2 since the graph is not a path; we call such a vertex a branch. We shall see in the 

following subsections that forks with one branch can easily be modeled by a star so that 

NP-completeness results do follow. Also, for forks with more than one branch, we provide 

a slightly different construction of the gadgets to prove NP-completeness for some cases. 

5.3.1 One-branch forks 

Theorem 5.3 E Packg(planar), where G is a fired one-branch fork, is NP-complete. 

Proof: A one-branch fork can be modeled by a star as follows: the branch—that is, 

the vertex of degree greater than 2—is designated as the center of a k-star. We call this 

branch vertex, u. The paths (at least 3 of them) which stem from wu are then seen as the 

single edges of the star. We arbitrarily choose three of these paths, identify them as parts 

A, B, and C, and group the remaining paths (which may be an empty set) as a fourth part, 

D. Figure 5.13 provides an example of a one-branch fork and illustrates how the division 

4]



  
Figure 5.13: Dividing a one-branch fork into parts. 

into parts is made. We use these paths in the same manner we treat the single edges of 

a star in the construction of gadgets for k-stars. Parts B and C correspond to the cycle 

edges in a variable gadget while C corresponds to a spike edge. Of course, since these paths 

will not always have the same lengths, it is necessary to alternate parts B and C in the 

variable gadget. Also, copies of D are attached to the cycle vertices in order to actually 

form copies of the fork. A clause gadget, on the other hand, contains parts B, C and D, 

and |c;| (the number of literals in the clause) copies of A. Figures 5.14 and 5.15 illustrate 

the corresponding variable and clause gadgets where we use the same assumptions we had 

in our earlier proofs. The value of A’ in our reduction is the same as that for stars, mn +n, 

since there are n forks that can be extracted from each of the m variable gadgets and one 

fork from each of the n clause gadgets if and only if all the clauses are satisfied (copies of 

A are made available by variable gadgets to all clause gadgets). 0 
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Figure 5.14: A variable gadget for one-branch forks. 
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Figure 5.15: A clause gadget for one-branch forks; assume c; = (v1 + v2 + 03). 

5.3.2. Multi-branch forks 

Forks with more than one branch (multi-branch forks) are difficult to model as stars, as 

we shall see in the following analysis. One-branch forks are simpler because the branch 

provides a single choice for the vertex to be designated as the center of the star. Multi- 

branch forks present a difficulty in that no direct choice for the center of the star is apparent. 

We conjecture NP-completeness for these guest graphs on planar hosts, nevertheless, and 

propose gadget constructions which work in some situations. 

Conjecture 5.1 EPackg(planar), where G is a fixed multi-branch fork, is NP-complete. 

Again, we examine the structure of the fork guest, G, and divide it into parts. This 

is done by identifying four vertices in the fork, u,v,w and 2x, such that u is a branch and 

(u,v) is an edge (part A) which disconnects the graph into two components. One component 

must consist entirely of paths, all of which have an end at vertex u. Two paths from this 

component (there must be at least two from the component) are considered as two other 

parts (B and C). Vertices w and z are the other ends of these two paths. The remaining 
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paths in the component comprise another part (part D) which may be empty. Finally, the 

other component obtained by removing (u,v), shall comprise a non-empty fifth part (part 

E). The division into parts is summarized in figure 5.16 where we provide an example of a 

multi-branch fork. It is easily verified that identifying the four vertices uniquely provides 

the division of the fork into parts. 

Of course, it remains to show that all forks indeed contain such vertices. Given a multi- 

branch fork G, we need to detect an edge (u,v) in the fork such that G — (u,v) has two 

non-empty components, one of which (the one containing uw) consists entirely of paths with 

ends at vertex v and contains at least two such paths. This can be systematically detected 

by setting u to be any branch in G. We then pick a vertex v adjacent to u such that v has 

other vertices adjacent toit. It is guaranteed that one such v exists since G is not astar. We 

consider G—(u,v), particularly, the component which contains u. If this consists entirely of 

paths, then the search is complete. If not, there exists a vertex in that component besides 

u which is also a branch. We set u to be that vertex and set v to be the vertex adjacent 

to u and in the path connecting u with the vertex previously set to wu. We then consider 

G — (u,v), and repeatedly reset u and v until the component containing u consists entirely 

of paths. Since G is finite, this must happen eventually. The vertices w and z, which are 

the ends of two of those paths are then chosen arbitrarily. Observe that u, in this case, is a 

branch with a special property: in the construction, the component containing u does not 

have other branches in it. In this respect, we call u an end branch. 

With that, we can now propose a possible construction of variable and clause gadgets. 

We omit the explicit enumeration of vertices and edges for simplicity. 

The variable gadget is similar to the gadget we had for stars. The copies of G are 

cascaded through parts B and C of the fork. As in the construction for one-branch forks, 

these parts are alternated since they may not have the same length. Part E is the set of 

edges shared with the clause gadgets. Figure 5.17 provides an example using our previous 

conventions and assumptions. As in the case for stars, the maximum number of copies of 

G that can be obtained from this gadget is n. Each copy of G must contain an end branch 
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Figure 5.16: Dividing a multi-branch fork into parts. 
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characterized by vertex u in the previous figure (figure 5.16). In the gadget, the possibilities 

are the vertices of the form u,[j] or u;[7], which correspond to the copies of G that we have 

originally cascaded. The true and false modes for this gadget are the same as those for 

stars. This time, instead of spikes, alternating copies of E are either used or made available. 

A clause gadget is illustrated in figure 5.18. We use the same clause example, c; = 

(v1 + vo + 03). The gadget consists of single copies of parts B, C, and D, and |c;| copies of 

parts A and E, where each E is shared with a corresponding variable gadget. Clearly, at 

most one copy of the fork can be obtained from this gadget and this occurs only when a 

copy of Eis not being used by a variable gadget. Of course, the value of A in our reduction 

is, as in the case for stars, mn +n. 

Unfortunately, the construction described above does not always work for any multi- 

branch fork. This is due to the existence of “stray” copies of G that could exist in the 

gadgets. As described, copies of G should contain the end-branch u and we intend that this 

be any of the vertices u;[j], @;[7], or c;[1]. However, it is conceivable that such a branch 

could be found within part E (recall that we have provided no restriction for part FE except 

that it be non-empty). If it is a vertex other than v;[j] or 0;[7], no problems would arise 

since the resulting symmetry in G requires that one of the branches w,[j], a[7], or c;[1] and 

all the edges attached to it be used anyway in the selected copy which is our intention to 

begin with. The problem arises when the copy of G has u being either v;[y] or 0;[7]. If, in G, 

v has degree exactly one less than that of u, then a stray copy of G which does not include 

one of the cascaded parts of the gadget may exist. Fortunately, this may occur only when 

the vertex adjacent to the end-branch u has degree exactly one less than that of u. When 

this is not the case, we call u a proper end-branch. Consequently, we call a multi-branch 

fork proper if it has a proper end-branch. 

Theorem 5.4 EPackg(planar), where G is a fixed proper multi-branch fork, is NP- 

complete. 

Proof: The theorem immediately follows from the discussion above. D 
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Figure 5.17: A variable gadget for multi-branch forks. 
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Figure 5.18: A clause gadget for multi-branch forks; assume c; = (v1 + v2 + 03). 

Although the construction may fail for fork guests with no proper end-branches, we have 

not found such a guest where E Packg(planar) cannot be proven NP-complete by a slight 

modification of the construction. 

5.4 k-cycles as guests 

k-cycle edge-packing is likewise NP-complete for planar host graphs. Similar constructions 

for gadgets are made with a slight difference when dealing with clause gadgets. We formally 

state our result as a theorem: 

Theorem 5.5 EF Packy—cycte(planar) is NP-complete. 

Proof: We first show this for 3-cycles and later extend our results to arbitrary k-cycles. 
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A variable gadget, V;, for 3-cycles contains 2n + 1 vertices which are: »;[j7] and 9;[j], 

where 1 < 7 < n, and an extra vertex u;. The edges for this variable gadget are those 

contained in the cycle (v,[1], ,[1], v;[2], o;[2],..., v;[n], oj[n]), and those contained in the 

star formed by the edges (uj, v;[7]) and (ui, o[y]), 1< 7 <n. 

Figure 5.19 shows the gadget for n = 3. The figure also shows the gadget in its true and 

false modes. These correspond to the two ways that n 3-cycles can be extracted. In each 

case, alternating cycle edges are used and this is significant because these are the edges that 

are shared with the clause gadgets. It can be verified that n is the maximum number of 

3-cycles that can be extracted and that the two ways to do so are exactly those presented 

in the figure. 

A clause gadget for 3-cycles is shown in figure 5.20. As in our previous cases, the 

construction of a clause gadget depends on the variables contained in a particular clause. 

Each C; contains 10 vertices whenever there are 3 variables in the corresponding clause, as 

in the figure. Edges in a clause gadget form a structure similar to the variable gadget: they 

form edges of a cycle and a star. Taking the specific clause example that we have been using 

(ce; = (v1 + v2 + ¥3)), the vertices are c;(0], o [71], [71], ¢;(1], d3 [7a], vslys + 1], ¢;[2], v2V2], 

¥2[j2], and c;[3]. Clearly, some of these vertices are shared with the corresponding variable 

gadgets, specifically, those vertices which are part of a cycle edge in the variable gadget. 

The maximum number of 3-cycles that can be extracted from this particular gadget is 4 

and this is possible only if at least one of the shared edges is not being used by a variable 

gadget. 

For clauses containing 1 or 2 variables, the gadgets look like those in figure 5.21 and the 

maximum number of 3 cycles that can be extracted are 1 and 3, respectively. The value 

for K in our reduction is therefore mn + n, + 3n2 + 4n3, where n; is the number of clauses 

which contain exactly 7 variables. 

Extension to k-cycles in general requires magnifying the cycle edges of the gadgets (those 

which are in the outer cycle) to accommodate for k-cycles instead of 3-cycles. Figure 5.22 

and 5.23 illustrate how this is done for 5-cycles. O 
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Figure 5.19: A variable gadget for 3-cycles with its true and false modes. 
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(a) (b) 

Figure 5.21: Other clause gadgets for 3-cycles: (a) |c;| = 1; (b) |e;| = 2 
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v [2] v [2] 

Figure 5.22: A variable gadget for 5-cycles. 

5.5 Arbitrary guest graphs 

There are other possible planar guest graphs which are neither trees nor cycles. We conjec- 

ture that F Packg(planar) is NP-complete for these guest graphs as well. 

Conjecture 5.2 EPackg(planar), where G is a fized planar graph with 3 or more edges, 

ts NP-complete . 

A possible approach that may be taken to prove the above conjecture is to “model” the 

arbitrary guest graph in terms of a guest graph where the NP-completeness of FE’ Packg is 

already known. For example, if we can model some arbitrary planar guest graph by a cycle 

and pattern the reduction accordingly, the NP-completeness of E Packg for that planar 

guest graph will follow provided that the conditions necessary for the gadgets involved are 

retained. This generalization technique was used by Kirkpatrick and Hell [KH] and Berman 

et al [BJLSS] in proving the completeness of Maximum G Matching. The proofs they had 
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Figure 5.23: A clause gadget for 5-cycles. 
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are both divided into two parts: guest graphs with unique maximum two-connected com- 

ponents and guest graphs which have more than one maximum two-connected component. 

The base cases for these two parts are 3-cycles and 2-paths, respectively. After show- 

ing NP-completeness for these base cases, they modeled arbitrary guest graphs with these 

graphs and concluded NP-completeness for these graphs as well. However, the gadgets 

used were copies of G cascaded through single vertices thereby controlling the possibility 

of creating other copies of G within and across the original copies. Since there is instead 

edge-disjointedness in FE Packg, copies are cascaded through edges and the existence of 

other copies of G is generally less predictable. It is in this respect that the technique used 

in Maximum G Matching does not immediately translate to Maximum G Edge-Packing. 
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Chapter 6 

ARBITRARY HOSTS 

The NP-completeness results obtained with planar hosts carry over to arbitrary hosts since 

the planar case is just a subproblem of the arbitrary case. 

Corollary 6.1 FE Packg, where G is a fized star, path, one-branch fork, proper multi-branch 

fork or cycle, is NP-complete. 

In fact, part of this result has been proven by previous work [H3,DF] where it has been 

shown that the simpler problem, EF Partg, is NP-complete for stars, paths and cycles. What 

their work have essentially provided is a reduction (from 3-SAT or 3DM) to an EPackg 

instance where K is exactly my/mg. 

Of course, we conjecture that NP-completeness follows with arbitrary guest graphs as 

well. 

Conjecture 6.1 EPackc, where G is a fized graph with 3 or more edges, is NP-complete 
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Chapter 7 

OUTERPLANAR HOSTS 

Conjecture 7.1 EPackg(outerplanar), where G is a fired outerplanar graph, is 

polynomial-time solvable. 

We conjecture that EF Packg is solvable in polynomial time when both the guest and 

the host graph are restricted to outerplanar graphs. Many NP-complete graph problems 

which remain NP-complete if the graph involved is planar have been found to be solvable 

in polynomial time when the graph is outerplanar [B,J3]. 

We can, in fact, present a simple algorithm where the guest graph is a triangle (3-cycle). 

Consider the dual of an outerplanar graph which we define as follows: Each face (except for 

the outer face) in the graph is a vertex in the dual. The outer face corresponds to several 

vertices in the dual, depending on the number of edges which lie on the outer face of the 

graph. Each edge in the outerplanar graph is an edge in the dual in the following way: 

whenever faces in the graph are adjacent (separated by an edge), so are the vertices in the 

dual. Figure 7.1 is an example of an outerplanar graph and its dual. 

Observe that the dual of an outerplanar graph is simply a collection of trees [FGH]. Also, 

detecting a maximum set of edge-disjoint triangles in an outerplanar graph is equivalent to 

finding a maximum set of independent (non-adjacent) degree-3 vertices in the dual. This is 

in turn done by treating each tree of the dual separately. It therefore suffices to present an 
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Figure 7.1: An outerplanar graph (white vertices, black edges) and its dual (black vertices, 

dotted edges). 

algorithm which does exactly that—detects a maximum set of independent degree-3 vertices 

in a tree. We choose the tree to be rooted at a vertex of degree one (all trees have at least 

two of these [BM]). 

The algorithm (PACK-DUAL), like our previous algorithms, performs recursion on the 

subtrees of a tree rooted at the current vertex. The call is initially made with the root 

vertex which can never be in the independent set to begin with (it has degree 1). The 

solution at each vertex (subtree) is an independent set of vertices and a flag which indicates 

whether that vertex is in the set or not. At each call to PACK-DUAL, the results from the 

children of the current vertex are collected (lines 7-11). If the current vertex is of degree 3 

(a possible candidate in the set), the children are checked for membership in their respective 

solutions (lines 12-13). If neither is in its respective solutions, then v is included in the set 

(line 14); otherwise, it is not (line 15). Deciding on the latter is appropriate since choosing 

to add v causes one or both of its children to be removed implying no increase in the current 

independent set. Thus, the result at every call to PACK-DUAL is indeed optimal. 
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Algorithm PACK-DUAL. Used in 3-cycle edge-packing for outerplanar graphs. 

INPUT: A rooted tree H = (Vy, Ey) (dual of graph) and a vertex v. 
OUTPUT: A maximum independent set of degree-3 vertices for the tree rooted at v, 

and a flag which indicates whether v is in that set. 

1 IF (c(v) = 0) THEN 
2 RETURN (0, FALSE); /* if v is a leaf, return an empty solution */ 

3 ELSE 
4 BEGIN 

5 Ax $; 

6 (W1, W2,...,Wn) — e(v); 
7 FOR:i—1TOn DO /* process the subtrees */ 
8 BEGIN 
9 (RESULT,USED;) — PACK-DUAL(Z, wi); 
10 A-—AURESULT; 
11 END; 
12 IF (n = 2) THEN /* if vis a degree-3 vertex*/ 
13 IF (NOT (USED, OR USED,)) THEN 

14 RETURN(AU v, TRUE); 
15 RETURN(A, FALSE); 
16 END; 
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Figure 7.2: Finding an independent set of degree-3 vertices in a tree. 

As an example, consider figure 7.2 which is, incidentally, the largest component of the 

dual in our previous example. Here, the independent set of degree-3 vertices is in bold: 

{c,k,1}. When PACK-DUAL is called with vertex 7, the independent sets for its subtrees 

are computed; they are {/} and {k} which, combined, produces {k,/}. Since k is a child of 

2 but is included in the maximum set, 7 is not added even though it is a degree-3 vertex. 

Theorem 7.1 E Pack3_.y-1e(outerplanar) is solvable in O(my) time. 

Proof: Applying algorithm PACK-DUAL to every tree of the dual of an outerplanar 

graph indirectly obtains a maximum 3-cycle edge-packing for the graph as explained above. 

Since edges in the dual correspond to edges in the outerplanar graph, the algorithm takes 

O(m#) time: the edges (or vertices) in the dual are each visited once during the search. 0 
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Figure 7.3: 5-cycles in an outerplanar graph. 

The algorithm unfortunately does not extend to EPackg where G is any non-trivial 

outerplanar graph other than a 3-cycle. Only 3-cycles can independently correspond to 

single regions (vertices in the dual) in an outerplanar graph. For 5-cycles, for example, as 

in figure 7.3, the guest graphs may occur within multiple regions as shown. Moreover, two 

5-cycles may share the same regions even though they are edge-disjoint as in the figure where 

there are two edge-disjoint 5-cycles ((a,b,d,e,c) and (a,d, f,g,e)) which share a region (R). 

A different approach will be necessary for such guest graphs. 
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Chapter 8 

THE APPROXIMABILITY OF 

E Packa 

In those cases where EF Packg is NP-complete, an approximation algorithm which runs in 

polynomial time is appropriate. In this section, we propose such an algorithm and show 

that it always produces at least a fixed fraction of the optimal solution. We also show that 

E Packg is in the class Max SNP, a class of maximization problems which have precisely 

that characteristic. 

8.1 A greedy algorithm 

We present algorithm PACK-G, a greedy polynomial-time algorithm for finding edge- 

disjoint copies of a guest graph G in a host graph H. 

The first step in the algorithm (line 1) is an exhaustive search of all copies of G in H. 

The algorithm proceeds by iteratively selecting copies of G and collecting them into a set 

A (lines 4-11) which is precisely the obtained edge-packing. Edge-disjointedness is enforced 

since every G selected at an iteration never shares an edge with any other copy of G in the 

current packing. NEIGH BORS(G;) refers to the set of other copies of G in S which share 

an edge with G, (this set has to be re-calculated at each iteration). This set is used in the 
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Algorithm PACK-G. An approximation algorithm for E Packg. 

INPUT: A host graph H = (Vy, Ep). 

OUTPUT: An approximate G edge-packing of H. 

1 {G,,Go,...,Gn}— ALL-COPIES-OF-G(4); 
/* identify and obtain all possible copies of Gin H */ 

2 Se {G1, Ge, ...,Gn}; 

3 Ax; 

4 WHILE (5 4 6) DO 
5 BEGIN 

6 G;, — the copy of Gin S such that (|NEIGH BORS(G,)|) is minimum; 
7 A-—A+G;; 

8 FOREACH G; such that G; isin NEIGH BORS(G;,) DO 
9 S—S—Gi; 
10 S—S—G, 

11 END; 

12 RETURN(A); 

exclusion of neighboring copies of a selected copy of G (lines 8-9) and also in the actual 

choice of a copy of G (line 6). 

It is worthwhile to note that the algorithm exhibits E Packg’s resemblance to the In- 

dependent Set problem (finding the largest subset of vertices in a graph such that no two 

vertices are adjacent to each other). Vertices in the Independent Set instance correspond 

to copies of G in the E-Packg instance while edges correspond to the “neighbor” relation. 

In fact, Johnson [J1] proposed an analogous algorithm for independent set and showed that 

there is no finite ratio R such that the result produced by the algorithm is > R + OPT 

(where OPT is the actual optimal solution). 

The above seems to imply that the algorithm we provided is just as bad. However, the 

nature of the EPackg problem imposes a certain restriction (G is fixed) in that at most 

mg independent neighbors can exist for any copy of G. It is this restriction which allows 

us to state the following: 
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Theorem 8.1 Algorithm PACK-G runs in polynomial time and is at least 1/mGg optimal. 

Proof: PACK-G runs in polynomial time because G is fixed. There are at most O(nj,) 

copies of G in an arbitrary host graph, where p = ng. In fact, detecting such copies will 

take O(n{,) time since it will require testing isomorphism (to G) for each possible set of 

p vertices in H. Again, note that G, and therefore p, is fixed. NEIGH BORS(G;) is 

obtained by simply maintaining a list of copies of G for every edge—where copies which 

include an edge are in the list of that edge. Initially, this can be done simultaneously with 

the exhaustive search described above and can be updated in O(1) time at each iteration. 

Lines 3-12 therefore take O(my) time, so the entire algorithm runs in O(nj,) time. 

It remains to show that the algorithm produces at least 1/mg of the optimal solution. 

Consider an optimal solution for an instance of E Packg. For every choice made within each 

iteration of the loop in lines 4-11, at most mg copies of G from the optimal solution are 

discarded (this is because the choice will have to share at least one edge with each discarded 

copy). Upon completion of the algorithm, in the worst case, we end up with 1/mg of the 

optimal. 0 

Note that the “minimum” criterion used in line 6 is not at all used in this proof which 

means there is a possibility that R is actually higher than what we claim. 

8.2 EPackg is in Max SNP 

There have been several attempts to classify problems in NP in terms of their approx- 

imability [PY,PR]. In one such attempt, Papadimitriou and Yannakakis [PY] defined the 

class Max SNP which consists of maximization versions of decision problems in NP. They 

proved, using the characterization of Max SNP, that problems in this class can always be 

approximated within a bounded ratio—that is, there exists an algorithm which produces 

a fixed fraction of the actual optimal solution. The results in the previous section implies 

that even a random algorithm for approximating E Packg (choosing an arbitrary Gy in 
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line 6) is at least 1/mg of the optimal. This leads us to conjecture that EPackg is in 

Max SNP. Problems in Max SNP are those which can be logically expressed as follows: 

mazs|{z : p(z,5,H)}|, where H is the instance of the problem, S is a structure from H, z 

is an element of the set which we intend to maximize, and p is a quantifier-free predicate. 

The expression means that we look for the structure S that produces the set which contains 

the most number of elements such that each element z satisfies the predicate p(z,5, H). 

The notation is derived from the logical representation of NP problems first introduced by 

Fagin [F], 

As an example, consider the maximization version of 3-SATISFIABILITY (MAX-3- 

SAT) where instead of finding the truth assignment which satisfies all the clauses, we look 

for one which satisfies the most number of clauses. Here, H is the set of variables and 

clauses, S is the set of variables that we assign a true value to (the truth assignment), z is a 

clause, and p asserts that at least one of the literals of x is true under the truth assignment 

S. Since MAX-3-SAT restricts a clause to having at most three literals, p can easily be 

written in a finite expression without using quantifiers. 

Note that not all problems in NP can be expressed in the way described above. However, 

E Packg can be expressed in that way which gives us our next result: 

Theorem 8.2 FE Packg is in Mar SNP. 

Proof: It suffices to express E Packg in the general format defined above. We simply 

describe the correspondence of H,S,z, and P with our problem. Particularly, H is the 

input (host) graph, S is a set of sets of mg edges of H, x represents a set of mg edges, 

and p(z,5,H) captures the following assertion: (x induces a graph which is isomorphic to 

G) and (all the edges of x occur exactly once in S). It is not hard to see that such an 

assertion can be finitely expressed without quantifiers. The first part (isomorphism) is a 

finite, quantifier-free expression since G is fixed. The second part (membership and edge- 

disjointedness) involves a test for each of the edges of z (we enforce that no other copy 

of Gin S has that edge), and, since x has the same cardinality as G, this part is also a 
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finite, quantifier-free expression. Finally, it is easily verifiable that the resulting expression 

is indeed a restatement of F Packg. O 

We can go further and show that EF Packg is Max SNP-complete. This means that 

all other Max SNP problems reduce to it while preserving approximability to a constant 

ratio—that is, we need to guarantee that the ratio between the fractions of the optimals 

obtained stays within a constant bound during the reduction. The significance of Max 

SNP-completeness is that whenever there is an improvement that can be made with ap- 

proximating a Max SNP-complete problem, then corresponding improvements can be made 

to all other problems in Max SNP as well. This is more precisely discussed in terms of poly- 

nomial time approximation schemes (PTAS) by Papadimitriou and Yanakakis. In proving 

Max SNP-completeness for EF Packg, a reduction from Bounded Independent Set (BI5;), 

a known Max SNP-complete problem, is probably most appropriate. (BIS, is just the 

Independent Set problem with a constant bound 6 on the maximum degree of the graph 

instance). We, in fact, show that E Packy_ star is Max SNP-complete in the following result: 

Theorem 8.3 E Packy_star is Max SNP-complete. 

Proof: Given a B/S, instance with degree bound 6, we attach edges to those vertices 

with degree less than 6 so that all original vertices will have degree equal to this bound. 

Figure 8.1 illustrates how this is done for b = 4. Choosing edge-disjoint b-stars in the result- 

ing instance corresponds to choosing the centers of the stars to obtain an independent set 

for the sriginal instance. More importantly, whenever there is an approximation algorithm 

for the resulting E Packs_ iq, instance which obtains a fraction of the optimal solution,the 

same fraction (the constant ratio, in this case, is 1) of the optimal solution can be obtained 

for the BIS, instance. This completes the reduction. O 

There is an analogous situation for k-cycles although there is no direct easy generaliza- 

tion for arbitrary guest graphs. 
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Figure 8.1: Reduction example from BIS, to FE Packa_ star. 

8.3. Another greedy algorithm 

We can investigate other ways to approximate E-Packg by simply changing the criterion 

used at line 6 of algorithm PACK-G when selecting a copy of G to be included in the 

maximum set. For instance, instead of selecting the copy which has the least number of 

neighbors in S, the algorithm can select the copy which shares the least number of its 

edges to other copies of G in §. This would seem appropriate specially if we consider the 

proof on why the algorithm performs 1/mg of the actual optimal. Choosing such copies 

of G avoids the exclusion of too many independent copies of G so that it is reasonable to 

predict that this new approximation scheme is an actual improvement. Take the example 

in figure 8.2 where the guest graph is a 6-cycle. Clearly, there are three 6-cycles that can 

be extracted from the figure, in particular, those which surround the regions X, Y, and Z. 

These 6-cycles are indeed chosen first because they share the least number of edges to the 

other 6-cycles (only 2 edges). However, using our first algorithm will cause a wrong first 

choice (particularly, the 6-cycle surrounding region C) and will exclude the actual optimal 

set because although the choice has the least number of neighbors, it shares more edges. 

Unfortunately, there are cases where this new algorithm performs poorly, as in figure 

8.3, where choosing the 6-cycle surrounding region C (the one with the least number of 

edges shared) is incorrect since it will exclude the actual optimal set of 6-cycles (3 of them). 

Incidentally, our first algorithm finds an optimal solution in this example. 
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Figure 8.2: Finding 6-cycles in a graph where the second selection criterion performs better. 
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Figure 8.3: Findi - g 3: Finding 6-cycles in a graph where the first selection criterion performs better. 
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Chapter 9 

CONCLUSIONS AND 

FURTHER RESEARCH 

Maximum G Edge-Packing (EL Packg) is NP-complete for most of the non-trivial guest 

graphs studied. When the guest graph is a 2-path or when the host graph is a tree, the 

problem is solvable in polynomial time. It remains NP-complete, however, for most of the 

guest graphs studied, even if the host is restricted to planar graphs. The straightforward 

polynomial-time algorithms studied which approximates E Packg exhibit solutions which 

are at least 1/mag of actual optimal solutions. The status of F Packg is summarized in 

table 9.1. 

Still open for research is how to extend these results to other instances of F Packg, 

such as for fork guests or cyclic guest graphs (graphs containing cycles) in general. The 

generalization technique used in proving Maximum G-Matching [KH,BJLSS] may serve as 

a suitable starting approach. There also remains the problem of determining the class of 

host graphs where E Packg is solvable in polynomial time (given P # NP). Outerplanar 

graphs are the most likely candidates. Although this has been shown for the case where the 

guest graph is a triangle, the reasoning does not immediately extend to other guest graphs. 

Also, we still have to prove whether 1/mg is indeed a tight bound for the approximation 
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Table 9.1: The current status of EPackg. P: polynomial-time solvable, NPC: NP-complete, 

?: conjectured, (): results are incomplete. 

  

  

  

  

  

  

          

guest graphs arbitrary | planar outerplanar | tree 

2-path P P P P 

star NPC [DF] | NPC P? P 

path NPC [DF] | NPC [DF] | P? P 

arbitrary tree (NPC) (NPC) P? P 

cycle NPC [H3] | NPC (P,k=3) P 

arbitrary cyclic || NPC? NPC? P? P           
algorithms studied. In addition, determining the effects on this bound when the host graph 

is restricted to planar graphs, for instance, is certainly helpful. 

EPackg is in Max SNP and it is very likely that FE Packg is Max SNP-complete for 

the guest graphs discussed. This is because E Packg resembles a bounded independent set 

problem which has been proven to be likewise. Although there is a direct reduction for stars 

and cycles as guest graphs, a complete proof for arbitrary guest graphs remains to be done. 

Another approach is to classify host graphs in a different manner. In this paper, we chose 

to take the hierarchy of trees, outerplanar graphs and planar graphs. We can investigate 

other classes within and without this hierarchy such as grid graphs, bipartite graphs, genus- 

k graphs, etc. Restricting the graphs involved to as many classes as possible clearly aids 

in completely understanding the complexity our problem. This approach has been used in 

numerous other graph-theoretic problems [J3]. 

Disconnected guest graphs is a situation which is also interesting. The NP-completeness 

results obtained in this paper probably extend to disconnected guest graphs (we first select 

a non-trivial connected component of G and use that in the reduction). Complications 

may arise, however, in that we cannot deal with the connected components of the guest 

graph G independently because these have to be disconnected in a selection of a copy of 

G. This becomes a problem specially when we impose connectedness in the host graph. 

The polynomial-time algorithms that were achieved in this paper for simple classes of host 

graphs such as trees do not easily extend to disconnected guests graphs for the same reason. 

71



Another direction we can take is to look for guest graphs of a fixed size (in terms of the 

number of edges) but are not necessarily isomorphic to a given graph. Similar situations 

have been studied by Dyer and Frieze [DF]. Of course, we can on the other hand, restrict 

the guest graphs to particular types such as paths or cycles but relax the restriction on size. 

These are slight deviations from our original problem because the guest graph is not fixed 

in either structure or size but they are clearly related. 
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