
Self-Adaptive Edge Services: Enhancing Reliability, Efficiency, and
Adaptiveness under Unreliable, Scarce, and Dissimilar Resources

Zheng Song

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Applications

Eli Tilevich, Chair

Ali R. Butt

Christine Julien

Dimitrios S. Nikolopoulos

Francisco Servant

May 12, 2020

Blacksburg, Virginia

Keywords: Edge Computing, System and Programming Support, Execution Equivalence

Copyright 2020, Zheng Song

Self-Adaptive Edge Services: Enhancing Reliability, Efficiency, and
Adaptiveness under Unreliable, Scarce, and Dissimilar Resources

Zheng Song

(ABSTRACT)

As compared to traditional cloud computing, edge computing provides computational, sen-

sor, and storage resources co-located with client requests, thereby reducing network trans-

mission and providing context-awareness. While server farms can allocate cloud computing

resources on demand at runtime, edge-based heterogeneous devices, ranging from stationary

servers to mobile, IoT, and energy harvesting devices are not nearly as reliable and abun-

dant. As a result, edge application developers face the following obstacles: 1) heterogeneous

devices provide hard-to-access resources, due to dissimilar capabilities, operating systems,

execution platforms, and communication interfaces; 2) unreliable resources cause high fail-

ure rates, due to device mobility, low energy status, and other environmental factors; 3)

resource scarcity hinders the performance; 4) the dissimilar and dynamic resources across

edge environments make QoS impossible to guarantee.

Edge environments are characterized by the prevalence of equivalent functionalities, which

satisfy the same application requirements by different means. The thesis of this research

is that equivalent functionalities can be exploited to improve the reliability, efficiency, and

adaptiveness of edge-based services. To prove this thesis, this dissertation comprises three

key interrelated research thrusts: 1) create a system architecture and programming support

for providing edge services that run on heterogeneous and ever changing edge devices; 2)

introduce programming abstractions for executing equivalent functionalities; 3) apply equiv-

alent functionalities to improve the reliability, efficiency, and adaptiveness of edge services.

We demonstrate how the connected devices with unreliable, dynamic, and scarce resources

can automatically form a reliable, adaptive, and efficient execution environment for sensing,

computing, and other non-trivial tasks.

This dissertation is based on 5 conference papers, presented at ICDCS’20, ICWS’19, EDGE’19,

CLOUD’18, and MobileSoft’18.

Self-Adaptive Edge Services: Enhancing Reliability, Efficiency, and
Adaptiveness under Unreliable, Scarce, and Dissimilar Resources

Zheng Song

(GENERAL AUDIENCE ABSTRACT)

As mobile and IoT devices are generating ever-increasing volumes of sensor data, it has

become impossible to transfer this data to remote cloud-based servers for processing. As

an alternative, edge computing coordinates nearby computing resources that can be used

for local processing. However, while cloud computing resources are abundant and reliable,

edge computing ones are scarce and unreliable. This dissertation research introduces novel

execution strategies that make it possible to provide reliable, efficient, and flexible edge-based

computing services in dissimilar edge environments.

Dedication

To my family:

My Wife, Tianzi Wang

My Father, Laihui Song

My Mother, Yuhua Huang

v

Acknowledgments

I would like to sincerely thank all those who have helped me complete my Ph.D.

First, I would like to express my deepest appreciation to my advisor, Dr. Eli Tilevich, for

his support and guidance throughout my doctoral studies. I am deeply impressed by his

penchant for innovative thinking and brainstorming ideas with his students, as well as his

tireless workaholism and strong self-discipline. His valuable and selfless advice not only

makes me a better researcher, but also a better person, both mentally and physically. I am

very fortunate to have an excellent mentor like him and I would like to thank him for an

enriching Ph.D. experience.

I would also like to thank my committee members, Drs. Ali Butt, Christine Julien, Dimitrios

Nikolopoulos, and Francisco Servant for their constructive feedback and valuable insights that

made it possible for me to improve the overall quality of this dissertation.

My academic job search would not have been as successful if not for the recommendation let-

ters and fruitful advice from Drs. Eli Tilevich, Shiyi Wei, and Christine Julien. It is thanks

to their invaluable guidance and strong support, I am looking forward to commencing my

own academic career this fall.

I am grateful to all CS@VT friends and Software Innovations Lab mates for their friendship

and countless help. I was able to develop many research ideas and improve my communica-

tion skills by following their comments raised during seminars and technical discussions.

My graduate journey would not have been possible without my family. I would like to thank

my family for their love, support, and encouragement. I would like to thank my wife, Tianzi

Wang, for everything. Her encouragement and support have helped me overcome many ob-

stacles in the past 6 years.

vi

This research received support from National Science Foundation through the Grant 1717065

(SHF:CSR:Small:“PerpetuumMobile: Orchestrating the Provisioning of Pervasive Resources

for Emerging Mobile Applications”) and Grant 1649583 (SHF: EAGER: “Addressing Re-

source Scarcity via Distributed Mobile Services”).

vii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Major Research Contributions and Scope . 4

1.2 Broader Impact . 6

1.3 Structure . 6

2 Literature Review 8

2.1 Edge Computing Application Scenarios . 8

2.1.1 Latency-Sensitive Applications . 9

2.1.2 Data-Intensive Applications . 9

2.1.3 Privacy-Sensitive Applications . 10

2.2 Edge Computing System Designs . 10

2.2.1 What functionalities does an edge system provide? 11

2.2.2 Whom an edge system benefits? . 11

2.2.3 Where does processing take place? 12

2.2.4 Which devices provide edge resources? 13

viii

2.2.5 What development model is used for edge applications? 14

3 Self-Organized Edge Systems 15

3.1 Mobile Service Market . 18

3.1.1 System Design . 19

3.1.2 Service Market . 20

3.1.3 Service Execution Model (Middleware) 23

3.1.4 Development Support for Mobile Application Developers 24

3.2 Resource Query Language: A P2P Approach 25

3.2.1 RQL Design . 27

3.2.2 Runtime Design . 30

3.2.3 Reference Implementation . 35

3.2.4 Evaluation . 35

3.3 Programmable Mobile Device Cloud . 41

3.3.1 System Architecture . 42

3.3.2 MCL Definition and Use Case . 45

3.3.3 Device Selection Mechanism . 47

3.3.4 Reference Implementation and Evaluation 50

3.3.5 Implementation Specifics . 50

3.4 Related Work . 56

ix

3.5 Conclusion . 57

4 Microservice Orchestration Language with Support for Equivalence 59

4.1 Problem Analysis . 61

4.1.1 High Resource Variability at the Edge 61

4.1.2 Complexity of Orchestrating Edge Microservices 63

4.2 MOLE Overview . 64

4.2.1 System Architecture . 64

4.2.2 Service Suite Execution Model . 65

4.3 MOLE DSL Design . 66

4.4 MOLE Compiler and Runtime . 69

4.4.1 Execution Graph Definition . 70

4.4.2 Generating Execution Graphs . 71

4.4.3 MOLE Runtime . 73

4.5 Evaluation . 74

4.5.1 Setups . 74

4.5.2 Service Suite Execution . 75

4.5.3 Programming Effort . 76

4.5.4 Reliability Evaluation . 77

4.5.5 Efficiency Evaluation . 78

x

4.6 Related Work . 79

4.7 Conclusion . 80

5 Workflow Support for Equivalent Functionalities 81

5.1 Equivalence-Enhanced Microservice Workflow 82

5.1.1 Background and Related Work . 84

5.1.2 Problem Analysis . 86

5.1.3 Workflow and DSL for Equivalence 90

5.1.4 Evaluation . 97

5.1.5 Discussion . 101

5.1.6 Conclusion . 102

5.2 Workflow Meta-Pattern for Equivalent Microservices 102

5.2.1 Background . 105

5.2.2 Motivating Scenario . 108

5.2.3 Meta-pattern Design and Implementation 110

5.2.4 Reference Implementation and Evaluation 117

5.2.5 Conclusion . 123

6 Adaptive Edge Services 124

6.1 Problems in Provisioning Edge Services . 126

6.1.1 Motivating Example: Detecting Fire 127

xi

6.1.2 MOLE: Reliability-enhanced Edge Services 129

6.1.3 Customizing Execution Strategies to Optimize QoS 130

6.2 Execution Strategies for Equivalent Microservices 131

6.2.1 Determining all Possible Strategies 131

6.2.2 Estimating the QoS of a Strategy . 133

6.2.3 Execution Strategy Examples . 136

6.3 System Design and Strategy Generation . 137

6.3.1 System Components and Edge Service Execution 137

6.3.2 Major Enhancements Over MOLE 139

6.3.3 QoS Utility Index . 139

6.3.4 Generation Heuristic . 142

6.4 Reference Implementation and Evaluation 143

6.4.1 Simulation . 144

6.4.2 System Performance . 149

6.5 Related Work . 152

6.6 Conclusion . 154

7 Summary and Future Work 155

Bibliography 157

xii

List of Figures

3.1 Scenario 1: Photo Recognition . 16

3.2 Scenario 2: GPS Sharing . 16

3.3 Scenario 3: Data Plan Sharing . 17

3.4 Proposed MSM Architecture. 20

3.5 Service Market overview . 22

3.6 Screen shots of the IDE-plugin support . 26

3.7 Defined RQL Verbs . 29

3.8 RQL Examples . 30

3.9 General Design of Runtime Support . 30

3.10 Flow of Reversed Auction . 34

3.11 Possible Attacks . 34

3.12 Mobile Application Code using RQL . 36

3.13 Various local and remote RQL command energy usage 38

3.14 Various local and remote request latency use 40

3.15 Median Energy and Latency Across Various Requests 41

3.16 System Architecture Overview. 42

3.17 MCL EBNF Definition. 45

xiii

3.18 MCL Example for Claiming Shared Capability. 47

3.19 MCL Example for Executing Facial Recognition. 47

3.20 Capability Registration Interface . 48

3.21 Microservice Selection Interface . 49

3.22 Estimating NFR Satisfaction (in Scala) . 49

3.23 Hardware for the Implementation and Evaluation. 50

3.24 Execution UI. 52

4.1 Increasing Dependability by Increasing Redundancy. 62

4.2 Execution Sequence of Example Edge Application. 63

4.3 Solution Overview. 64

4.4 DSL EBNF Definition. 67

4.5 Source File of getTemp Service Suite . 67

4.6 DSL Parsing and Execution. 69

4.7 Execution Time of Different Availability of Microservices. 75

4.8 New Execution Graph. 77

4.9 Adding a new localization method to the service suite 77

4.10 Reliability W/ W/O MOLE. 78

4.11 Efficiency W/ W/O MOLE. 79

5.1 Data Dependencies of Use Case 1 . 88

xiv

5.2 Dataflow-based Workflow Specification for Use Case 1’ 89

5.3 Parallel Pair State Transition . 94

5.4 fail-over Pair State Transition . 94

5.5 Speculative Parallel Pair State Transition 94

5.6 DSL EBNF Definition. 95

5.7 Example Service Suite . 96

5.8 Source File of fireDetection Service Suite 98

5.9 Generated Workflow for Use Case 1 . 98

5.10 Generated Workflow for Use Case 2 . 98

5.11 Combined Execution of Equivalent Microservices A, B, and C 107

5.12 Fine-grained Combined Execution of Microservices A, B, and C 109

5.13 Meta-Pattern for Expressing Fine-Grained Pattern 2 111

5.14 EBNF Definition for Invocation Sequence Specification 112

5.15 Expressing Fine-grained Pattern 3 With Meta-Pattern 115

5.16 Runtime Support for Executing Generated Patterns 116

5.17 System Components for Provisioning Mobile Services 119

5.18 Specifying Mobile Service in Scala Library 120

5.19 Specifying Mobile Service in YAML Script 121

6.1 Edge Services in Dissimilar Edge Environments 128

xv

6.2 Execution Strategies for Eqv MS (a, b, and c) 132

6.3 System Design for Provisioning Edge Services 138

6.4 Exp1: Varying avg [c, l, r] . 143

6.5 Exp2: Varying QoS Range(∆) . 144

6.6 Exp3: Varying Number of Eqv. Microservices 145

6.7 UI Distribution for Exp1 . 146

6.8 UI Distribution for Exp2 . 147

6.9 UI Distribution for Exp3 . 148

6.10 Number of Services with Fully Satisfied QoS of Different Generated Strategies 149

6.11 Average Utility Values of Generated Strategies 150

6.12 Strategy Generation Time . 151

6.13 QoS Satisfaction Ratio of Strategies for More than 5 Eqv MS 152

6.14 Utility Values of Strategies for More than 5 Eqv MS 153

6.15 Average QoS in Different Runs . 154

xvi

List of Tables

3.1 Lines of Code . 36

3.2 Study Results . 38

3.3 Energy Consumption per Second . 38

3.4 Gateway’s Average Response Time. 53

3.5 Properties of Device Selection Mechanisms. 54

3.6 Remaining Battery Percentage Over Time. 55

3.7 ULOC for Each Function. 55

5.1 Microservices Used in purchaseItemDetection 88

5.2 Average Results of 1000 Runs with Varying Execution Time 99

5.3 Average Results of 1000 Runs with Varying Reliability 100

5.4 Comparison among Three Solutions for Use Case 1 101

5.5 Comparison among Three Solutions for Use Case 2 101

5.6 QoS of Facial Detection Microservices . 121

5.7 QoS of Facial Detection Services . 122

5.8 QoS of Service “getTemp” . 122

6.1 Execution Strategies for M Eqv MS . 132

xvii

6.2 Execution Strategies and Estimated QoS . 137

6.3 Simulation Configurations . 146

6.4 Execution Results of Setting 1 . 150

xviii

Chapter 1

Introduction

The rapid growth of the Internet of Things (IoT) has changed multiple application domains,

including healthcare, home, environment, and transportation. The increasing deployment

of IoT sensors generates huge amounts of context-related sensor data to be processed by

algorithms for sense-making, event monitoring, assisting humans, and automated control.

In 2018, 17 billion of mobile and IoT devices were in use, producing more than 200 ZB of

sensor data. By 2021, the connected things are predicted to rise to 25 billion, producing

more than 800 ZB of sensor data [105, 121]. However, the estimated IP traffic will only be

able to reach 20 ZB by that time. Even assuming that 10% of all generated sensor data

is useful (i.e., 80 ZB), this amount still exceeds the cloud data center traffic by a factor of

four [121]. Edge computing is expected to bridge this gap.

Edge computing processes massive amounts of sensing and personal data collected by mobile

and IoT devices “at the edge of the network,” thereby reducing network transmission and

communication latency. For example, a large scale video surveillance system can preprocess

the videos and only upload the useful clips to the cloud, thereby reducing the network trans-

mission load [155]. Augmented reality can boost its responsiveness by offloading the com-

putationally intensive procedures to edge servers [134]. Moreover, edge computing devices

often cooperate with IoT devices, to provide low-latency sense-making and smart control for

manufacture, smart vehicle, and smart home environments [109].

Some edge systems are designed to provide domain-specific applications. For example,

1

2 Chapter 1. Introduction

OPENVDAP [191] analyzes the driving data of autonomous vehicles; LAVEA [188] and

VideoEdge [65] delegate video analytic tasks for nearby users; MUVR [94] aggregates the

power of nearby devices used for VR gaming to accelerate their collective performance.

Many other edge platforms provide system and programming support for edge applications

and their developers, so an arbitrary edge application can be deployed and executed on de-

mand in ubiquitous edge environments. Examples of such systems include Cloudlet [66, 95],

PCloud [67], ParaDrop [98], and Cloud-sea [182].

These general-purpose edge platforms can be divided into two major categories, based on

how they provide their resources. In the first category (e.g., Cloudlet and ParaDrop), edge

resources are pre-deployed and sometimes managed by Internet Service Providers ([157]). In

the second category (PCloud and Cloud-sea), edge devices at the scene (i.e., mobile and IoT

devices, edge servers) form a collaborative computing environment [107, 123, 148] without

involving a cloud-based controller. For these available edge devices to provide additional

computational, networking, and sensor power, we must address the following challenges:

1. Existing system architectures lack safe and convenient support for mobile application

developers to leverage opportunistic edge resources. While cloud computing has em-

braced the service-oriented architecture, the vast dissimilarities between cloud and edge

environments make this architecture not directly applicable to edge-based solutions.

For a mobile device to leverage the resources provided by its collocated edge devices,

it needs to first allocate the appropriate devices energy- and latency-efficiently. Edge-

based efficient resource allocation is particularly hard, as heterogeneous edge devices

feature dissimilar network interfaces, application programming models, and system

architectures. Besides, the executable code must either be pre-installed on the edge

devices or be transferred from the requester device, thus reducing the utility or safety

of edge computing.

3

2. Edge computing applications use the computational, sensor, and networking resources

of nearby mobile and stationary computing devices. Because dissimilar devices can

provide these resources, one cannot predict which exact combinations of resources will

be available at runtime. The resulting variability renders edge applications unreliable

and inefficient.

3. Fortunately, edge environments are characterized by ever-growing equivalent function-

alities that satisfy the same requirements by different means. We explore the combined

execution of equivalent functionalities to improve QoS. However, the existing service-

oriented programming models cannot effectively orchestrate equivalent functionalities

to execute them efficiently.

4. The vast dissimilarities in resource availability and capability across edge environments

cause edge applications to suffer from inconsistent QoS.

How can one improve the reliability, efficiency, and adaptiveness of edge execution? This

research’s answer to this question is to exploit functional equivalence. Different implementa-

tions can satisfy the same functional requirement. For example, by implementing any of the

following widely adopted methods, developers can satisfy the requirement of obtaining the

user’s geolocation [176]: 1) GPS-based: read the GPS sensor of the user’s mobile device; 2)

Cell-ID-based: read the unique Cell ID of a nearby cellular network access point, and retrieve

the access point’s location; 3) dead-reckoning-based: estimate the location by adjusting the

last-obtained GPS location, as based on the user’s motion, reported by the mobile device’s

motion sensors; 4) WiFi-fingerprint-based: collect the received signal strength (RSS) of the

surrounding WiFi access points to form a fingerprint; compare it with a set of pre-trained

location-marked fingerprints, and output the location of the closest fingerprint; and 5) some

ad-hoc methods (e.g., camera-based, geomagnetic sensor-based, RFID-based localization,

4 Chapter 1. Introduction

etc.). All these implementation options are equivalent in satisfying the requirement of ob-

taining the user’s geolocation, albeit with vastly dissimilar non-functional characteristics,

such as energy consumption, accuracy, reliability, and response latency.

1.1 Major Research Contributions and Scope

The thesis of this research is that functional equivalence can be exploited to improve the

reliability, efficiency, and adaptiveness of edge-based services. Hence, our goal is to provide

system and programming support for: 1) encapsulating the execution on edge devices as

edge services; 2) leveraging equivalent functionalities in edge services to enhance reliability,

efficiency, and adaptiveness. To achieve these goals, this dissertation includes three key

interrelated research thrusts:

1. To design and develop support for edge-service provisioning with heteroge-

neous and ever-changing edge devices

Edge computing leverages the resource capabilities (computation, storage, sensing, net-

work, etc.) of co-located mobile devices at the edge of the network. However, enabling

edge executions on heterogeneous mobile devices presents a number of difficulties,

including the need to coordinate and steer the execution on devices with dissimilar

resource capabilities, application programming models, and system architectures. Be-

sides, the environment changes constantly due to the mobility and usage/energy status

of co-located mobile devices. Hence, edge services provisioning with such heterogeneous

and ever-changing edge devices requires system and programming support for discov-

ering edge devices and finding a suitable device to execute a given functionality, as well

as delivering the functionality’s executable code to the discovered devices. We achieve

this goal by comprehensively comparing an ad-hoc device-to-device approach and an

1.1. Major Research Contributions and Scope 5

edge-gateway-based approach. These findings enable us to complete the basic design

of an edge-based service provisioning system, to be used in the rest of this dissertation

research [151, 154].

2. To systematically support equivalent executions

Several software domains have applied equivalent execution to enhance various non-

functional characteristics, including reliability, latency, cost efficiency, and accuracy [76,

82, 125, 184]. However, functional equivalence has never been fully supported as

explicit programming abstractions that can be expressed, compiled, and executed.

Although some languages (e.g., BPEL [103], Orc [77]) provide built-in support for

predefined execution strategies, the increasing number of functionalities in each equiv-

alent set can make it impossible to maximize performance via predefined execution

strategies. To systematically support equivalent executions, this dissertation explores

1) a dedicated programming abstraction for declaratively specifying flexible execution

strategies for equivalent functionalities; 2) how execution strategies can be generated

automatically to fulfill given non-functional requirements; 3) new equivalence workflow

constructs to execute equivalent functionalities efficiently [152].

3. To apply equivalence for enhancing reliability, efficiency, and adaptiveness

Some edge resources are supplied by mobile or energy harvesting devices, which are

failure-prone because of their mobility and limited energy budgets. To improve relia-

bility and efficiency, we first explore how to enable edge service developers to specify

equivalent functionalities and their execution strategies [153]. The vast resource dis-

similarity across edge execution environments causes these executions to yield different

QoS, so a service that follows the same execution strategy across pervasive environ-

ments is bound to deliver unpredictable and inconsistent QoS to the user. To improve

adaptiveness, we involve a feed-back loop in the edge system design, to collect the

6 Chapter 1. Introduction

environment-specific non-functional attributes of equivalent functionalities and gener-

ate execution strategies for given QoS requirements.

1.2 Broader Impact

This dissertation research is concerned with providing system and programming support

for mobile application developers, with the goal of enabling them to efficiently leverage dis-

tributed resources at the edge of the network. The resource provisioning of edge systems is

fundamentally different from that of cloud systems, as edge systems rely on the available

resources provided by a variety of stakeholders at runtime, instead of allocating resources

statically pre-deployed by vendors. The heterogeneity, resource scarcity, and unreliability

of edge devices make the performance tuning methodologies for cloud-based distributed sys-

tems no longer applicable to edge-based systems. Meanwhile, the availability of equivalent

functionalities provides unique but currently not utilized opportunities for enhancing the

performance of edge applications. By tapping into the full potential of edge computing,

ubiquitous IoT and mobile devices can collect enormous volumes of environmental and user

data, to be processed by ever more sophisticated algorithms to enable novel intelligent appli-

cations. Besides, the findings presented in this dissertation can further be explored in other

opportunistic computing environments with dynamic, scarce, and heterogeneous resources.

1.3 Structure

The rest of this dissertation is structured as follows. Chapter 2 compares multiple edge

platforms and their programming supports. Chapter 3, 4, 5, and 6 covers our system de-

sign for edge-based service provisioning, programming support for enhancing the reliability,

1.3. Structure 7

efficiency, adaptiveness of edge services, as well as programming support for equivalent

functionalities. Chapter 7 presents concluding remarks, summarizes the contributions of

this research, and discusses future work directions

Chapter 2

Literature Review

In contrast to cloud computing, edge computing utilizes local resources, deployed at the

edge of the network. With these local resources offering low-latency low-cost near-field

wireless communication, edge computing is also considered a key enabler of the emerging

5G standard [61, 157]. An important variant of this computing modality is mobile edge

computing [54, 95] (also known as collaborative edge computing [148]), in which nearby mobile

devices perform distributed computational tasks. In this chapter, we first summarize main

application scenarios of edge computing, and then compare and contrast the state-of-the-art

approaches that provide runtime and programming support for edge computing.

2.1 Edge Computing Application Scenarios

Edge computing has been applied to fulfill the requirements in several emerging application

scenarios that can be roughly categorized as follows: latency-sensitive, data-intensive, and

privacy-sensitive. Some scenarios fall into more than one of these categories. We describe

these categories in turn next.

8

2.1. Edge Computing Application Scenarios 9

2.1.1 Latency-Sensitive Applications

A typical example of this category of edge applications is VR/AR gaming. The human

response time in mobile games can tolerate a latency of at most 100 milliseconds, while

immersive VR and AR can only tolerate around 20 milliseconds [35]. Li et al. reported that

the average round-trip time from 260 global vantage points to their optimal Amazon Elastic

Compute Cloud (EC2) instances is 74 ms, while Ha et al. demonstrated that the average

round-trip latency of transmitting to a nearby edge server is twice as fast as transmitting to

Amazon EC2. Based on these observations, edge computing has been explored in VR/AR

gaming [189]. Other examples of such latency-sensitive applications include edge-enabled

self-driving cars [97, 99] and industrial IoT[146].

2.1.2 Data-Intensive Applications

With the emergence of the Internet of Things (IoT), more and more data collection devices

are generating vast amounts of local context-specific data. Transmitting all this data to

cloud servers for analysis has become infeasible, so the gap between the volumes of locally

generated data and the WAN throughput gave rise to another important category of edge-

computing applications — data-intensive applications. For example, to avoid transmitting

raw high-quality video streams to cloud servers, Long et al. studied how to cooperatively

process video for IoT systems in edge networks; Tortonesi et al. designed a service model for

processing IoT data in edge/fog networks; Team is an open-source framework, hosted by the

Linux Foundation, that provides a common open platform for IoT edge computing. EdgeX

involves an edge gateway that coordinates nearby data collecting devices, and deploys data

processing methods at nearby computing devices.

To more efficiently process the ever increasing volumes of sensing data, a recent development

10 Chapter 2. Literature Review

of machine learning— federated learning [79]—enables deep learning models to be updated

in a decentralized manner. Instead of requiring all raw sensing data to be transmitted to

a cloud-based server, federated learning trains a model across multiple decentralized edge

devices that have collected the sensing data, so these devices never share their raw data with

each other.

2.1.3 Privacy-Sensitive Applications

Another increasingly common category are applications in which users place a high demand

on preserving their privacy. In smart home environments, ubiquitous sensors collect personal

data (e.g., user activities, preferences, and whereabouts), to be analyzed to provide better

services to the user. Some users may not feel comfortable to upload their private data via a

public network to a third-party remote server. Hence, some smart home applications utilize

edge computing to prevent private data from being transmitted out of the household [162,

164]. Another typical usage scenario is mobile health, with its emphasis on protecting

patients privacy [25].

2.2 Edge Computing System Designs

Edge computing systems have been designed in a variety of ways. These designs target dis-

similar usage scenarios, relying on the presence of different system components. Next, we

describe the main designs on the examples of several well-known edge systems, including:

1) Cloudlet [66]; 2) CloudPath [117]; 3) PCloud [67]; 4) Paradrop [98]; 5) SpanEdge [139];

6) Cloud-Sea [182]; 7) Cachier and Precog [38]; 8) FocusStack [5]; 9) AirBox [14]; 10) Fire-

work [192]. To describes these designs, we categorize them based on their handling of the

2.2. Edge Computing System Designs 11

following design questions.

2.2.1 What functionalities does an edge system provide?

Most existing edge systems are designed for storing and processing sensing data. For exam-

ple, Cloudlet demonstrates its applications in cognitive assistance systems, IoT data analysis,

and hostile environments. CloudPath is also designed for storing data along the path from

edge to cloud, while providing data aggregation, caching, and processing services. PCloud

stores and processes personal data at the edge. Precog provides caching services for recog-

nition applications.

Some other edge systems further integrate sensing and sensor control capabilities. ParaDrop

and Cloud-Sea are designed with considerations for connecting the pervasive resources in

IoT, smart home, and industrial Internet of Everything environments. Some edge systems

further provide networking capabilities. Examples include SpanEdge, in which the network

capability is considered in scheduling the streaming of raw sensing data.

2.2.2 Whom an edge system benefits?

Some edge systems are designed to enhance the execution of nearby mobile devices, while oth-

ers are designed to enhance cloud-based applications. The first category includes Cloudlet,

PCloud (both accelerate mobile applications), and Precog (accelerates mobile recognition

tasks). The second category includes CloudPath, ParaDrop, SpanEdge, and FocusStack.

These two categories mainly differ in whether they rely on a central server to coordinate

their execution. The systems in the second category all feature a central server (or say

central controller), while those in the first category are designed for decentralized coordina-

tion. Cloud-sea combines these two categories: it provides both edge-based functionalities

12 Chapter 2. Literature Review

for mobile applications and data analysis functionalities for cloud applications.

2.2.3 Where does processing take place?

Based on the answer to this question, we categorize edge systems into four types:

• Entirely at local/edge devices: Examples include Cloudlet, Precog, and FocusStack.

Cloudlet uses dedicated edge servers, one hop away from mobile devices. This design

ensures that the communication latency between Cloudlet and its clients is low and

that they share the same context. Precog uses edge servers to request prefetching, and

FocusStack deploys containers on edge devices.

• At both edge and cloud: Examples include PCloud and ParaDrop. Such systems divide

the tasks among the available edge devices and the cloud to maximize QoS charac-

teristics, including latency, privacy, and throughput. An interesting property of these

systems is their fairly straightforward system architecture, due to their uniform treat-

ment of both edge and cloud computing resources.

• At edge, cloud, and in-between: Examples include CloudPath and SpanEdge. Cloud-

Path executes tasks on hierarchical network components, which range from traditional

data centers to core networks and fogs [186] to user terminal devices. From top to

bottom, the device capability decreases, while the number of devices increases. Sim-

ilar to CloudPath, SpanEdge optimizes the scheduling of computational tasks based

on the communication latency and computational power of layered network devices

processing the raw data.

• At local edge and nearby edges: The design of this type of edge systems is driven by

the insight that mobile devices can benefit not only from the edge devices one hop

2.2. Edge Computing System Designs 13

away, but also the edge devices two, three, or even more hops away, with acceptable

latency [174, 181].

2.2.4 Which devices provide edge resources?

Based on the answer to this question, edge systems can be divided into two major categories:

• any available devices at the edge: Examples include PCloud, Cloud-Sea, and Fo-

cusStack. One common feature shared by all these systems is that they need to effi-

ciently discover collocated devices, and deploy executable code on them. PCloud forms

a distributed resource pool to discover new resources and monitor resource changes.

FocusStack involves a Geocast subsystem to find nearby devices and an OpenStack

subsystem to deploy, execute, and manage containers on edge devices. To efficiently

allocate tasks to devices, these systems also need to determine how the available device

resources fit task requirements.

• statically deployed devices at the edge: Examples include CloudPath, SpanEdge, Pre-

ocog, Cloudlet, and ParaDrop. One key feature of these systems is that they have no

need to discover available edge devices at runtime. However, CloudPath, SpanEdge,

and Precog operate under the assumption that edge resources may turn insufficient —

if the edge servers lack resources to process a given task, these systems move the task

further to the cloud for processing. In contrast, Cloudlet and ParaDrop (designed for

multi-tenants) operate under the assumption that edge resources are sufficient to sat-

isfy application requirements. In particular, Cloudlet assumes that edge servers have

sufficient computing resources and stable power supplies.

14 Chapter 2. Literature Review

2.2.5 What development model is used for edge applications?

In terms of the programming models, edge systems can be categorized into two major cate-

gories.

• VM/Container based: Examples include Cloudlet, ParaDrop, and FocusStack. Cloudlet

enables developers to configure and deploy the service VM that contains the server

code on the cloudlet, so that it is ready to be used by the clients. ParaDrop employs

lightweight containers for resource virtualization. FocusStack is also container-based.

The VM/Container based model may require additional resources and setup time, but

it provides better isolation, security, and privacy protection.

• Service based: Examples include CloudPath, PCloud, Cloud-Sea, AirBox, and Fire-

work. These systems ship executable service code to devices on demand, and expose

as services aggregated/orchestrated microservices provided by multiple devices. Cloud-

Sea is based on the existing RestFUL2.0 architecture, which could be too heavy-weight

for IoT devices. AirBox enhances the security of edge-based execution by relying on

hardware security mechanisms (e.g., Intel SGX).

Our own answers to the questions above lead to a design, in which an edge system provides

on-demand computing, sensing, and communication capabilities to nearby mobile clients. To

realize our design, we explore how all available devices at the edge can be engaged in com-

putational scenarios. This dissertation research takes into account the possibility of device

mobility, insufficient processing capacity, and power supply. Recognizing the dissimilarity

and heterogeneity of edge devices and resources, the overriding goal of this research is to

provide reliable, efficient, and consistent edge services under the above conditions.

Chapter 3

Self-Organized Edge Systems

The modern computing landscape is marked by several rapidly evolving realities. A typical

user owns multiple mobile devices that differ in their types, platforms, and capabilities. For

example, a user may simultaneously own a smartphone, a tablet, an e-reader, each of which

runs a different operating system and offers vastly dissimilar processing capabilities, sensory

functionalities, and networking interfaces. Furthermore, the number and variety of mobile

devices in a typical household is even greater. Finally, the rapid developments in wearable

computing and the Internet of Things (IoT) have the potential to increase these numbers

for a typical user by as much as an order of magnitude in the near future.

Mobile devices have traditionally used the cloud as a means of enhancing their execution

[85, 86, 160], both to improve the quality of service and to provide novel functionalities.

However, accessing cloud-based resources could be infeasible, unsafe, and inefficient. On

the other hand, with the rapid growth of the capacity and amount of mobile devices, the

computational power could be provided by nearby mobile devices instead. All these scenarios

give rise to the potential of leveraging nearby mobile devices, often owned by the same user

or a community of users, as an alternative means of gaining additional resources.

Figures 3.1, 3.2 and 3.3 depict three scenarios exemplifying the conditions described above.

In Figure 3.1, a smartphone application needs to search for a given face from all photos in

the phone’s album. Facial recognition is known to be computation/energy-intensive thus

causing high latency/battery consumption, especially when the user has hundreds of photos.

15

16 Chapter 3. Self-Organized Edge Systems

In Figure 3.2, the driver is navigated through a smart glasses interface. However, keeping

the glasses’ GPS module on continuously could drain the device’s battery quickly. In Figure

3.3, a smartphone user on a short-term trip to a foreign country needs to access the Internet.

However, without a local mobile account, the phone cannot access any mobile data services

provided by the available cellular network providers.

Although the users mentioned above are all short of either computational resources, context-

Search a face In

In

using

using

using

using

Search a face

Figure 3.1: Scenario 1: Photo Recognition

GPS data

Figure 3.2: Scenario 2: GPS Sharing

17

AT&T Phone of
 a Vistor

Cell Tower of
China Mobile

Cell Tower of
China Mobile

Local phone using
China Mobile

Local phone using
China Mobile

Nearfield W
ireless

Com
m

unication

Figure 3.3: Scenario 3: Data Plan Sharing

related resources, or network resources, various mobile devices (e.g., tablets, e-readers, and

wearables, etc.), owned by themselves or their acquaintances may be in the immediate vicin-

ity. These devices could provide the external resources required to solve the problems above.

One could rewrite the mobile applications, so as to enable them to take advantage of such

external resources. In scenario 1, one can reduce the execution time of computationally in-

tensive tasks if they are run in a piecemeal fashion on nearby devices. In scenario 2, one can

request GPS sensory reading from a nearby mobile device with larger battery capacity. In

scenario 3, one can access the Internet by using a nearby mobile device, with a local mobile

data plan, as a proxy that forwards the network requests and responses.

The aforementioned scenarios demonstrate how by sharing the resources of nearby devices,

mobile applications can not only improve their quality of service, but also provide new func-

tionality. However, several conceptual obstacles stand in the way of such resource sharing

across heterogeneous mobile devices. For example, in scenario 1, one cannot execute of-

floaded mobile functionality on a different platform (e.g., running Android code on iOS). In

scenario 2, one needs to be able to dynamically locate a nearby mobile device, whose battery

capacity can accommodate long-lasting GPS sensor reading. In scenario 3, the programming

18 Chapter 3. Self-Organized Edge Systems

interface to another user’s mobile device must provide access to the device’s voluntarily

shared resources, while preventing misuse. The runtime in all scenarios must properly adapt

to the mobility of the devices involved, ensuring efficiency and robustness.

In this chapter, we introduce two dissimilar approaches for supporting mobile edge comput-

ing, and compare their performance characteristics. In Section 3.1, we present our design

of a mobile service market, a novel component for distributed edge computing systems that

delivers the required executable code to edge devices on demand. In Section 3.2, we present

a domain-specific language and its runtime system for decentralized P2P communication at

the edge. In Section 3.3, we present and evaluate our system architecture for gateway-based

edge computing.

3.1 Mobile Service Market

In mobile edge computing, a mobile or IoT device requests a nearby device to execute some

functionality and return back the results. However, the executable code must either be pre-

installed on the nearby device or be transferred from the requester device, reducing the utility

or safety of device-to-device computing, respectively. To address this problem, we present

a micro-service middleware that executes services on nearby mobile devices, with a trusted

middleman distributing executable code. Our solution comprises (1) a trusted store of vetted

mobile services, self-contained executable modules, downloaded to devices and invoked at

runtime; and (2) a middleware system that matches service requirements to available devices

to orchestrate the device-to-device communication. Our experiments show that our solution

(1) enables executing mobile services on nearby devices, without requiring a device to receive

executable code from an untrusted party; (2) supports mobile edge computing in practical

settings, increasing performance and decreasing energy consumption; (3) reduces the mobile

3.1. Mobile Service Market 19

development workload by reusing services.

3.1.1 System Design

Micro-mobile services1 extends the notion of the Service Oriented Architecture (SOA) for

the needs of ad-hoc mobile execution on nearby devices. Unlike a traditional service that

is hosted at a location identified by a fixed domain name (e.g., an IP address), mobile ser-

vices reside at a mobile service market and deployed on devices for execution on demand

at runtime. For a mobile service, its developers are supposed to provide several equivalent

implementations for different targeting platforms. Since mobile services are expected to be

executed on devices with limited resources, service developers have to design their solution

with resource scarcity in mind. The acceptance criteria for hosting a service in a Mobile Ser-

vice Market must be necessarily more stringent than those for accepting mobile applications

to application markets.

As shown in Fig. 3.4, our solution contains three novel components: (1) The Mobile Service

Market (MSM): an online service market for hosting and deploying mobile services; (2)

Service Middleware that matches services with suitable devices at runtime as well as manages

the communication across heterogeneous devices; (3) Programming model that provides a

convenient interface for mobile application developers to choose the needed services and

configure their requirements. We next describe the novel parts of our contribution in turn.

1For brevity, in the rest of the presentation we shall use the terms micro-mobile services and mobile
services interchangeably.

20 Chapter 3. Self-Organized Edge Systems

Application Developer

Service Developer

Provide Service Files

Find service; download its
service descriptor

Download Service
Implementation for Execution

Service Runtime

Mobile Service Market (MSM)

App. Code
Service
Runtime
Interface

Comm.
Library Service

Descriptor

APK

Figure 3.4: Proposed MSM Architecture.

3.1.2 Service Market

Figure 3.4 shows the main components of the MSM architecture that codifies interactions

across three different roles: service developer, application developer, and mobile user.

The mobile service developer identifies those pieces of application functionality that can be

represented as mobile services. A service submitted to a service market must adhere to a

format detailed below.

The application developer incorporates mobile services into their applications. To that end,

they need to browse through the catalogs of mobile services of the MSMs that their users

are likely to trust. They select the services that solve the resource scarcity problem at hand,

and are able to change the constraints of the invoked services for the specific needs of their

3.1. Mobile Service Market 21

applications.

The mobile user will need to configure their device to be willing to accept the execution

of services, dynamically downloadable from a given MSM. The middleware will manage the

service’s lifecycle, such as obtaining the latest version of the service execution package for

further invocations.

In essence, the MSM combines the features of application markets and service repositories.

Following the application market model makes it possible for users to rely on the reputation

of a given market to have enough trust to allow the automatic installation and execution

of such mobile services. At the same time, service developers would have to comply with

the service market requirements, which likely would have to be more stringent than those of

application markets.

Service Representation

Our design of MSM defines a typical mobile service as a collection of three elements:

Service Description: uniquely identifies a service as a combination of service name, ver-

sion, usage scope, and parameters.

Service Execution Package (SEP): is a self-contained executable package that can be

downloaded from the service market and executed on a mobile device. A service can be de-

signed for one particular platform, several platforms, or all platforms by means of JavaScript

execution. Platform availability is one of the selection criteria that mobile developers need

to consider when deciding to use a mobile service in their applications.

Constraints: are requirements on the device that can be selected by the runtime to exe-

cute a service. Constraints are defined by service developers, with some of their parameters

configured by application developers for the needs of a given application. Currently, our

22 Chapter 3. Self-Organized Edge Systems

Local Network
(Wi-Fi Direct or Bluetooth)

Callee

Middleware

Caller (Android)

Middleware

Caller
(Windows Phone)

Middleware

Callee

Middleware

(1) dispatchJob(serviceId,data) (2) requestService(serviceId)

(4) service returned
(5) results

Callee

Middleware

Service
Constraints

Service Market

(3) searchService(serviceId)

Market
Center Server

Execution
Package

(SEP)

Network
Routers

Figure 3.5: Service Market overview

reference implementation makes use of the following constraints:

• Sensor availability: REQ or NREQ. For example, a service may require a GPS sensor for

execution.

• Battery threshold: N(%) – device does not respond to a service execution request if

the remaining battery level is lower than N%.

• Expected QoS Level: (N) – the detailed definition of expected QoS level (EQS) will

be given in the next subsection. Generally speaking, EQS is a metrics of a mobile

device’s resource status.

• Network availability: HIGH, LOW, or N.A.

• Number of required devices: N, the number of required mobile devices to execute a

service (e.g, N > 1: collaborative execution)

3.1. Mobile Service Market 23

3.1.3 Service Execution Model (Middleware)

The middleware system provides a communication infrastructure for mobile devices, coordi-

nating the execution of services between clients and servers. In this section, we explain each

component of the middleware system in turn.

Discovering Available Nearby Devices

To discover available devices, a client device first sends out a peer discovery message to

nearby devices, and then each device replies with its availability that represents resource

capacities. The following JSON format shows a response message to the peer discovery

message.

1 JSON : DeviceInfo {

2 "availability": Boolean, "gps": Boolean,

3 "network": ["low"|"high"|"off"], "EQS": Double}

where availability indicates whether the device is ready for any execution; gps shows the

availability of GPS; network shows the network state, which is either high, low or off; and

EQS is used for expressing the level of service execution capacity, which will determine service

quality.

Selecting Available Devices

The middleware system’s ability to select the most suitable devices is crucial for ensuring low

energy consumption and high performance. To address this problem, we introduce a quality-

and constraints-based peer selection mechanism that works as follows. First, after collecting

EQS values from nearby devices, the client updates these values with the latest latency

information. Then, if a service requires only one device, the middleware system selects the

24 Chapter 3. Self-Organized Edge Systems

device that has the largest EQS value and meets the other selection criteria. Otherwise, it

selects a number of suitable devices following the descending order of EQS values.

Once the client device has collected all the response messages from nearby devices, the most

favorable devices for the given service execution are selected in accordance with the EQS

value defined in the previous section. The EQS value is computed using the resource usage

information including CPU, memory, battery, and network.

Service Execution and Fault Handling

The service execution procedure contains the following steps: (1)the client send the service

execution request to the selected server devices; (2) the server devicess download the service

execution package from MSM, and execute the SEP; (3) the server devices send the service

execution results back to the client.

Due to the volatile nature of mobile networks, failures are a constant presence of mobile

execution. As a failure handling strategy for mobile service execution, the Service Middleware

on the client listens to the network-related updates. When there are any failures reported,

the middleware, if possible, will attempt to by resume the service execution locally at the

client for any reported failures. A simple checksum mechanism is used to verify the integrity

of the execution results.

3.1.4 Development Support for Mobile Application Developers

To become a pragmatic solution to the resource scarcity problem of mobile devices, device-to-

device mobile services must provide a convenient programming model to the mobile develop-

ers for them to invoke mobile services in their applications. In our reference implementation,

we experimented with integrating the notion of mobile services with a modern Integrated

3.2. Resource Query Language: A P2P Approach 25

Development Environment (To support custom tools, modern IDEs offer an extensibility

mechanism realized as plug-ins). The provided IDE plug-in provides three basic functionali-

ties: searching for mobile services, generating sample code for invoking mobile services, and

specifying service constraints.

Fig. 3.6(a) shows the main menu of our plugin, which provides three basic functionalities:

searching for services, generating sample code for invoking services, and specifying service

constraints.

Fig. 3.6(b) shows the search panel for mobile services, through which application developers

can search for the required functionalities based on keywords. Upon submitting a search

query, the plugin connects to the MSM repository, obtains a list of all services, and filters

those ones that match the specified keywords. The developer can further drill down into the

returned services to learn about their version, usage scope and parameter sets.

Fig. 3.6(c) shows an example of generated service invocation code. This generated code

snippet can be copied and pasted into the application project with minimal adjustments.

Fig. 3.6(d) shows the procedure of obtaining and modifying service constraints. The plugin

downloads the service constraint specification for a given service and displays the constraints

in a panel shown. The developer can specify the values of the constraints on the right side

of the constraints view.

3.2 Resource Query Language: A P2P Approach

In this section, we present solutions that address the deep, conceptual challenges of enabling

mobile devices to provide/use resources for/of nearby heterogeneous mobile devices. These

solutions embrace heterogeneity, working with any pair of mobile devices, irrespective of their

26 Chapter 3. Self-Organized Edge Systems

(a) Menu of IDE-plugin supporting mobile ser-
vices

(b) Searching a mobile service in MSM

(c) Mobile service usage guideline. (d) Traversing a project to detect invoked mo-
bile services.

Figure 3.6: Screen shots of the IDE-plugin support

platforms, operating systems, or installed applications. Also, the presented solutions reduce

the programmer’s effort in creating reliable and efficient functionality for sharing resources.

This work makes the following contributions:

• We study and reveal how existing applications can benefit from shared resources of

nearby devices.

• We design the Resource Query Language (RQL)—a declarative domain-specific lan-

guage for accessing shared resources of nearby devices. RQL makes it possible to

declaratively express resource sharing requests by simply specifying the preferred de-

vices, resource types, and the actions to be carried out. The RQL runtime is designed

3.2. Resource Query Language: A P2P Approach 27

with provisions for energy efficiency, latency optimization, and privacy preservation

when executing across heterogeneous mobile devices.

• We provide a reference implementation of the RQL language and runtime support

on major mobile platforms, including iOS and Android. We also describe example

applications that make use of RQL to access resources across the iOS and Android

platforms.

• We evaluate the programmability and efficiency of our technical approach through a

case study and experiments. Our results indicate that the presented solutions can im-

prove the productivity of mobile programmers, as well as improve the performance/en-

ergy efficiency of mobile applications.

3.2.1 RQL Design

RQL is a platform-independent, domain-specific language that enables heterogeneous devices

to seamlessly share their resources. We designed RQL around the RESTful architecture

[42], a proven solution for many of the complexities of engineering dynamic, heterogeneous

distributed systems, including the WWW.

In our target domain, we leverage the flexibility of this architecture to hide the complexity

of the inherent heterogeneity of mobile devices that need to participate in device-to-device

resource sharing scenarios. We observe that in this domain, the actual operations on the

shared resources are limited to a small set, and exploit this observation to provide a concise

yet powerful DSL for resource sharing. Specifically, the design of RQL follows the verb/nouns

paradigm: nouns express the requested resources, while verbs express the actions performed

on these resources.

We next present RQL by example. Consider an RQL statement: pull glass:sensor/orientation.

28 Chapter 3. Self-Organized Edge Systems

This statement will retrieve the readings of the orientation sensor of a glass device, if it hap-

pens to be in the vicinity; it will return a null reading otherwise. The specific details of

locating a glass device, connecting to it, retrieving its readings, etc. are handled by the RQL

runtime.

Nouns: RQL represents the resource intention with nouns. Specifically, the nouns comprise

the following parts: “device description:resource description/specific name”.

Device description defines device types (e.g., glass, smartphone, tablet, etc.) or specific

characteristics (e.g., name, owner, OS, etc.). Resource description defines the type of re-

source (e.g., sensors, services, files, etc.) followed by specific names (e.g., sensor/orientation,

sensor/gps, service/facerecognition, service/httpsend, etc.).

Verbs: Following the RESTful design principles, a small number of verbs manipulates an

infinite number of nouns. In particular, RQL defines only four verbs: pull, push, delegate,

and bind. As shown in Fig. 3.7, “pull” retrieves data from the service interface of an-

other device immediately; “push” sends data from the source device to the target device;

“delegate” sends some parameters and then gets the execution results back; finally, “bind”

establishes a persistent connection to a device to obtain the value changes of a specific sensor.

Adverbs: Although traditional RESTful interfaces consists of only verbs and nouns, RQL

integrates adverbs as informed by some prior research on fault-tolerant RESTful services

[40]. In RQL, adverbs can express how commands should be executed in terms of time

or quality constraints. For example, an adverb can express the timeout value for a pull

command (in ms) (e.g., pull external:alg/OCR -latency < 500ms). Another adverb is

-blocking (e.g., pull external:sensor/GPS -blocking, which expresses that the RQL

call to retrieve the GPS reading should block, to return only when a GPS reading becomes

available or the call has failed. By default, all RQL statements are non-blocking with the

3.2. Resource Query Language: A P2P Approach 29

Pull:

Push:

Get Data Once

1. Send parameter

Delegate:

1.Send parameter

2.Get Result

Bind:

Get Data
persistently

2. Send Data

Figure 3.7: Defined RQL Verbs

results communicated via an asynchronous callback mechanism. We discuss a programming

scenario involving the -blocking adverb in Section 3.2.3.

Fig. 3.8 depicts several examples of using RQL. The first example is concerned with getting

GPS readings from another device. The second example sends a data file to a remote device

(belonging to user John) to use as a parameter to a facial recognition algorithm. The third

example directs a remote device to perform an HTTP request for a given URL and sends

back the obtained output. The fourth example establishes a persistent connection to get

orientation sensor updates from John’s smart glasses device.

Sometimes the source device may need to execute a sequence of RQL statements on the

same target device consecutively. To that end, RQL features the “|” binary operator, which

specifies that its operands are to be transmitted in bulk to the target device and executed

in sequence. Consider the source device needing to execute both the OCR and language

translation algorithms one after another on the same target device. The programmer can

express this functionality in RQL as shown in line 2 of Fig. 3.8. Batching RQL requests

may also reduce their aggregate latency.

30 Chapter 3. Self-Organized Edge Systems

1 1. pull any:sensor/GPS
2 2. push John:file/myphoto.jpg -i /DCIM/20170319323.jpg | delegate service/

faceRecognition
3 3. delegate any:service/http -t http://www.google.com
4 4. bind John/glasses:sensor/orientation

Figure 3.8: RQL Examples

Device A

Third Party
APPs

Runtime

RQL Calls

Device B

Runtime

Results

Decision makerRQL parser

Device Monitor
Task Monitor

RQL parser

Device Monitor
Task Monitor

Service Provider

Results

Figure 3.9: General Design of Runtime Support

3.2.2 Runtime Design

To meet its design goals, RQL requires sophisticated runtime support for mainstream plat-

forms (i.e., Android, iOS, and Windows Phone). In this section, we identify the requirements

and outline design of such runtime support. With respect to requirements, the RQL runtime

must reconcile the need for efficiency with that of portability and ease of implementation.

Hence, we have deliberately constrained our runtime design to the application space, so as to

avoid low-level, platform-specific system changes. In other words, the user should be able to

install the RQL runtime as if it were a regular mobile application, albeit with extended per-

missions (e.g., access to all sensors, the ability to connect to remote services via all available

network interfaces, access to local application data and external storage, etc.)

The runtime support, whose basic flow appears in Figure 3.9, includes three basic modules:

client, server, and monitor. The client module of Device A accepts an RQL request and

determines whether the request can be executed by a nearby device (Device B) by querying a

3.2. Resource Query Language: A P2P Approach 31

distributed registry of nearby devices and resources they provide. The devices communicate

by means of near field communication interface (e.g., Bluetooth). The server module of

Device B parses the request, executes it, and returns the result back to the client module

of Device A. The monitor module comprises two parts: device and service status. The

device status monitor keeps track of the battery levels, resource usage status, and locations

of nearby devices. The service status module monitors the energy consumption/latency of

the services provided by the nearby devices.

Choosing Communication Channels: In our runtime design, Bluetooth Low Energy

(BTLE) serves as the major communication mechanism for two reasons: 1) BTLE is known

to be the most energy efficient way to discover/announce external services. Although WiFi

and Bluetooth are popular device-to-device communication mechanisms, their energy con-

sumption levels are larger than that of BTLE, both in active and idle modes; 2) to support

heterogeneity, the runtime must be able to use a communication mechanism supported by

major mobile platforms. Mainstream mobile communication mechanisms, including WiFi-

direct and traditional Bluetooth, cannot connect a recent (i.e., 4.4.2 and up) Android device

with an iOS device.

However, BTLE does have some limitations. Chief among them is the primary use-case

for BTLE: command transmission and small data-size transmissions. The main purpose of

BTLE is to send small bursts of data for extended periods of time while consuming minimal

energy. The largest size package BTLE will send is 20 bytes. Therefore, when the runtime

needs to send a data file to another device, using a different communication mechanism can

provide performance advantages.

To overcome the limitations of BTLE when transferring larger data volumes, our design

includes an optimization that makes use of edge servers. When transferring a data file, the

32 Chapter 3. Self-Organized Edge Systems

runtime at the source device uploads the file to an edge server, and send the URL of that file

to the target device via a BTLE connection for the target device to download. Nevertheless,

it is worth noting that, with both Android and iOS constantly improving the relatively

new inter-device communication mechanisms, our runtime is capable of communicating via

WiFi-direct, once it becomes available for heterogeneous devices.

Choosing Target Device: When multiple devices can be used for a given task, selecting

the correct device could save the overall energy consumption of all devices. For tasks that

require the service to send HTTP requests, as the 3G chips would still cost energy when

the data transmission is finished, combining multiple requests and sending them at once

could greatly save the overall energy consumption. For tasks that require a specific sensory

reading like GPS, the major energy consumption happens when the target device tries to

obtain the sensory reading. Therefore, combining multiple sensory requirement tasks to the

same device could also reduce the overall energy consumption.

We intend to use an incentive strategy to encourage batching HTTP requests and sensory

data requests to the same target device. The basic idea is to let the device which has already

been the delegation of such requests to ask for lower bid prices for other tasks of the same

kind.

Reducing Latency: Different from the HTTP requests and sensory data requests, RQL

requests which need to perform computationally intensive tasks can not be energy-optimized

by being batched to a same delegation. On the contrary, when such tasks are combined to

the same target device, their time/latency usually gets larger. Therefore, in the runtime,

for those RQL requests that want to process an amount of computation intensive tasks

through multiple devices, the runtime needs to act as the load balancer: it needs to divide

3.2. Resource Query Language: A P2P Approach 33

the necessary tasks into chunks between multiple devices in a way that the overall waiting

time is minimized.

The most accurate way to balance loads across numerous available devices is to get real-time

loads from each devices and also the execution time of each task in advance. However, the

frequent communication among devices costs extra energy and clogs the channel as it is

occupied for a larger amount of time. In such cases, the solution we take is to log the load

of each device in the format of how many tasks are running or waiting. The running tasks

of surrounding devices are updated through the device monitor’s scanning action. When the

runtime assigns one task to a device, the device’s load of is incremented by one; when it get

the result back from a device, its load is decremented by one. Therefore, each time when the

runtime needs to assign a task, it assigns it to one of all the devices providing that service

with the lowest load.

Incentive Strategy In the presence of multiple unrelated mobile users, the adopters of

this technology may face the problem of having to motivate them to share the resources of

their devices. One possible approach is putting in place an incentive strategy that employs

micro-transactions for devices to pay for the external resources consumed. The payments

can be represented as marketplace credits to pay for using shared resources in the future or

even as a standard currency.

The RQL runtime’s design includes an incentive strategy based on the reversed auction

model, as shown in Fig. 3.10. Before a device can issue an RQL request, the runtime scans

all nearby devices and gets their bid prices for the required service. It then chooses a device

with the lowest bid price as the target of offloading. When other devices have the same

bid prices, it randomly picks one, or chooses one according to their loads. After the task is

finished and the results are returned, it pays the chosen device the bid price as incentive.

34 Chapter 3. Self-Organized Edge Systems

Device 2Device 1

Two other devices
subscribing GPS

Bid Price: 1 Bid Price: 5

1. Bid 1. Bid

2. Select

No other devices
subscribing GPS

Figure 3.10: Flow of Reversed Auction
Device A

Third Party
APPs

Runtime

RQL Calls

Device B

Decision makerRQL parser

Device Monitor
Task Monitor

BroadCastBroadCast

Send Data

Figure 3.11: Possible Attacks

This strategy would help motivate unrelated users to make the resources of their devices

available for sharing.

An incentive strategy can also take energy consumption into consideration when offering

bids. For example, a mobile device already delegating HTTP or sensory tasks, should be

able to offer lower bid prices than idle devices, as performing additional tasks would incur

smaller energy costs. Therefore, the probability of forwarding the majority of HTTP requests

or sensory reading tasks to the same device would increase. In such cases, the energy con-

sumption of all the participating devices becomes minimized. Hence, the initial investment

into recruiting mobile users to participate in resource sharing will be amortized by the future

improvements in usability and performance. Incentive strategies thus constitute a promising

future research direction for this work.

Privacy and Security Fig. 3.11 describe the potential threat of privacy leakage and

security issues, where device A and device B are the source and the target, respectively. The

3.2. Resource Query Language: A P2P Approach 35

security threats could arise in the following scenarios: 1) When the runtime on device A

broadcasts the result of some third party application, it could be wiretapped by a malware

installed on that device. 2) when the runtime on device A receives the broadcast from device

B through Bluetooth, another device C binding to the same Bluetooth channel might get

that message as well. One can counter this security threat by encrypting the message. To

solve the problem, the third party application will need to provide a public encryption key

for each RQL request, so that the runtime can encrypt the result with that key. This way, it

is only the third party application with the private key that can decrypt the result. Although

our reference implementation does not yet include this security mechanism, our design makes

it possible to straightforwardly add it to the runtime.

3.2.3 Reference Implementation

Our reference implementation of RQL and its runtime concretely reifies the design decisions

we described in Sections 3.2.1 and 3.2.2. While we have implemented all the described

features of RQL including the required runtime support, some of the optimization and privacy

provisioning features of the runtime remain a work in progress.

To demonstrate our implementation, we next describe how we used it to address the resource

sharing needs in the three motivating examples mentioned in the beginning of this chapter.

The snippets of Java code in Fig 3.12 show how the three source devices use RQL to access

resources of nearby target devices.

3.2.4 Evaluation

In this section, we describe how we evaluated various aspects of the reference implemen-

tation of RQL, detailed in Section 3.2.3. Our evaluation comprises a small user study,

36 Chapter 3. Self-Organized Edge Systems

:Connect to runtime

:Send RQl calls for querying GPS data
and record Task ID

Send RQl calls for face recognition
and record Task ID

Send RQl calls for http delegation
and record Task ID

Check if the broadcast is sent from RQL runtime

Get results with Task ID

Handle the result for each task

Figure 3.12: Mobile Application Code using RQL
Table 3.1: Lines of Code

Runtime Based Built from scratch
GPS request 20 370
HTTP request 20 556
Facial Recognition 32 883

various performance/energy efficiency micro-benchmarks, and a robustness assessment of

our retrofitting approach.

Programmability First, we evaluated the software engineering benefits of our program-

ming model. To that end, we compared two different implementations of the same resource-

sharing scenario: original with all resource sharing functionality implemented from scratch

and RQL-based with the major functionality provided by the RQL runtime. In Table 3.1,

for each implementation, we report the total lines of uncommented code (ULOC).

As one can see, using RQL reduces the amount of code the programmer has to write by

3.2. Resource Query Language: A P2P Approach 37

a factor ranging between 20 and 28. Considering that the written code involves complex

asynchronous, distributed processing, this code size reduction is likely to have a high positive

impact on the code quality.

To empirically assess how well RQL can assist the programmer in putting in place the

inter-device resource sharing functionality, we conducted a user study. To that end, we re-

cruited 10 Junior to Senior level Computer Science students from an intermediate Android

development class at Virginia Tech. We divided the recruited students into 2 groups, the

experimental and control groups, for novice and experienced Android developers, respec-

tively. The experimental group comprised 6 students with no prior experience in Android

programming, while the control group comprised 4 students with several years of Android

development experience.

In the beginning, we briefly introduced the concepts of AIDL services, broadcast receivers,

and Bluetooth LE. Then, each group was given 90 minutes to complete the programming

task of obtaining the GPS sensor reading from an iOS device to an Android device. The

experimental group was asked to use RQL, while the control group was asked to use any

existing, mainstream Android API. The control group was also given an Android chat sample

application as an example from which to draw device-to-device coding idioms.

Table 3.2 presents the results of the study. To our surprise, none of the students in the control

group were able to complete the task successfully, which demonstrates the non-trivial nature

of device-to-device communication. The results of the experimental group, armed with RQL,

were mixed, with 3 students successfully completing the task, with the remaining 3 giving up

before the experiment concluded. Because the group using RQL comprised non-experienced

Android programmers, the results above indicate that our programming abstraction provide

value by streamlining the process of implementing device-to-device interactions and can

become a pragmatic tool for future applications.

38 Chapter 3. Self-Organized Edge Systems

Table 3.2: Study Results

Group 1 2
Familiarity with Android Development Beginner Familiar
Number of students 6 4
Number of students completed the task 3 0

Table 3.3: Energy Consumption per Second
Status Energy (mA) Status Energy (mA)
ScreenOn 100
BluetoothOn 1 BluetoothActive 66
CpuIdle 92 CpuActive 242
WiFiOn 6 WiFiActive 102
GpsOn 60 GpsActive 300
3GOn 10 3GActive 250

Experiment Setup The hardware setup for the following experiments include 4 Android

mobile devices (1.5GHz dual-core CPU, 2GB RAM) used as source devices, and 2 iOS devices

(1 iPhone 6 and an iPad mini) used as target devices.

To evaluate the energy consumption of these devices, we recorded the execution time between

“Start” and “Stop” tags, adding tags for actions, such as “Screen On”, “Bluetooth On”,

“Bluetooth Active”, “3G Active”, “GPS Active”, “CPU Idle/Active” etc. Table 3.3 shows

the manufacturer provided values for energy consumption of these operations. For all graphs,

we refer to ’local’ and ’remote’ meaning requests processed on the user’s local device and

some external nearby device, respectively.

0

1000

2000

3000

4000

5000

6000

7000

0

200

400

600

800

1000

1200

1400

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

M
IL

LI
A

M
PE

R
ES

A
M

P
ER

ES

CONTINOUS API CALLS (1-100)

Local Application Calls' Energy Use

Local HTTP Local Face Recognition Local HTTP Heavy Local Baseline Local GPS

(a) Local Energy Tests

1

10

100

1000

10000

100000

1000000

10000000

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

M
IL

LI
A

M
PE

R
ES

CONTINOUS API CALLS (1-100)

Remote Application Calls' Energy Use

Local Baseline Remote GPS Remote Face Recognition Remote HTTP

(b) Remote Energy Tests
Figure 3.13: Various local and remote RQL command energy usage

3.2. Resource Query Language: A P2P Approach 39

Local and Remote Energy Evaluation First, we examine the motivating examples’

performance in terms of the energy usage in both the local API calls and the corresponding

remote RQL calls. Figure 3.13 shows the energy used by 100 identical RQL requests on

the same and across different devices, respectively. Because of the vastly different energy

consumption levels between sensor data and heavy HTTP requests, we use both linear and

logarithmic vertical scales to present the results.

The graphs show that, excluding some outliers, both local and remote RQL calls consume

energy consistently throughout the experiments. The baseline of both figures is identical

and essentially shows how an idle application would be consuming energy. In both local and

remote calls, the GPS sensor retrieval consumes far less energy than either of HTTP requests

or Facial recognition. To compare various protocols, we also benchmark a “Heavy” HTTP

request, representative of work-intensive web-based processing. Given the extensible nature

of the RQL runtime, one can easily add emerging communication mechanisms, which can

outperform BTLE when executing heavy HTTP requests or other high-throughput processes.

Because communicating with nearby devices consumes additional energy, local RQL calls in-

crease their energy efficiency when processing small loads of requests. However, for requests

that can be distributed across several available devices, both energy costs and processing

latencies decrease precipitously. Figure 3.13 also reveals cache correspondences between the

same device, primarily for sensor data (GPS). Thus reading the GPS data incurs a sin-

gle large, upfront cost of connecting to the device, but internally optimizes the subsequent

request via the assumption that the GPS readings have not changed. This internal op-

timization explains the plummet in energy costs of accessing remote sensor data, such as

GPS.

40 Chapter 3. Self-Organized Edge Systems

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

1

10

100

1000

10000

CONTINUOUS API CALLS (1-100)

M
IL

LI
SE

CO
N

D
S

Local Application Calls' Latency

Latency GPS Latency HTTP Latency Heavy HTTP Latency Face Recognition

(a) Local Latency Tests

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

1

10

100

1000

10000

100000

1000000

CONTINUOUS API CALLS (1-100)

M
IL

LI
SE

CO
N

D
S

Remote Application Calls' Latency

Latency HTTP Remote Latency GPS Remote Latency FR

(b) Remote Latency Tests
Figure 3.14: Various local and remote request latency use

Local and Remote RQL Latency Experiments Consider Figure 3.14 that shows local

and remote latency, respectively. These two graphs demonstrate an important practical ad-

vantage of accessing resource of nearby devices. When examining GPS, latency drops steeply

similar to energy in the previous section, after incurring the upfront cost of connection. This

amortization of initial connect requests ensures far better median latency for these remote

calls. In fact, we see that for a computationally intensive operation, such as Facial Recog-

nition, the latency is smaller in remote RQL calls by a factor of nearly 1.4 for only a small

request size. If we consider sending large requests for Facial Recognition across even a small

subset of nearby devices (say only 3 external devices), the resulting latency reduction far

outweighs the additional energy use incurred across all devices in use.

Figure 3.15 presents a full comparison of median energy and latency measurements. This

graph supports our initial assumption about the trade off in energy for decreased latency

when processing various request types. It is clear that the only outlier is processing HTTP

requests remotely. Given the nature of BTLE small packet transmission size restriction,

we observe a larger latency since each piece of the HTTP request is broken up and sent

individually. Referring back to one of our motivating examples, consider the traveler to a

foreign country who is unable to access local mobile data towers. Providing this functionality

to the end user is important irrespective of the resulting performance, as long as it is not

prohibitively poor. In other words, not outperforming local requests is a minor hindrance in

comparison with not being able to process any requests at all. Nevertheless, this limitation

3.3. Programmable Mobile Device Cloud 41

0

2000

4000

6000

8000

10000

12000

14000

16000

0

200000

400000

600000

800000

1000000

1200000

Baseline GPS HTTP Face Recognition Heavy HTTP

M
IL

LI
SE

CO
N

D
S

M
IL

LI
A

M
PE

R
ES

SERVICE TYPE

Median Energy and Latency

Local Energy Remote Energy Local Latency Remote Latency

Figure 3.15: Median Energy and Latency Across Various Requests

of BTLE motivated our efforts to optimize the RQL runtime.

3.3 Programmable Mobile Device Cloud

Leveraging the resource capabilities (computation, storage, sensing, network, etc.) of co-

located mobile devices at the edge of the network to execute tasks is generally referred to

as Mobile Device Computing (MDC) [118]. In this section, we introduce a novel system

architecture, based on microservices. Although known for their applications in cloud-based

scenarios [169, 170], microservices also fit naturally for the MDC environments. Microservice

architectures express application functionality as a collection of interacting micro function-

alities, each represented and managed as an external service. Similarly, our architecture

represents and manages remote functionalities as microservices, which can be invoked on

demand. Further, our architecture delivers the executable packages to the available MDC

devices by downloading them from a trustworthy microservice market.

In particular, our software architecture facilitates the process of finding the most suitable

device to execute a microservice. Programming support is provided via a domain-specific

language that makes it straightforward to express: 1) capabilities offered by the available

MDC devices, 2) microservice demands and their non-functional requirements (NFRs) (e.g.,

latency, reliability, cost, or any other microservice-specific aspects). We also notice that it

would be impossible to directly translate device capabilities into NFR satisfiability, without

42 Chapter 3. Self-Organized Edge Systems

Application Programmer

microservice Developer

Provide microservice Files

(5)Download Microservice Execution Package

3) Runtime on Devices

1) Microservice Market

2) Local Gateway

Mobile App

(1)MCL Scripts

(3)Download NFR Estimation Package

MDC

(4)Microservice
Invocation

Develop Mobile apps

Figure 3.16: System Architecture Overview.

the domain-specific knowledge possessed by microservice developers. Hence, the architecture

features a novel network component, the microservice gateway, responsible for collecting

device capabilities in order to estimate how they satisfy the NFRs.

The major contribution of this work is three-fold:

• A microservice-based software architecture that lowers the barrier for mobile app de-

velopers to use MDCs.

• A domain-specific language and its distributed runtime for expressing and matching

the application’s functionality demand and the MDC resource supply.

• A realistic use case implementation and performance evaluation of the aforementioned

architecture.

3.3.1 System Architecture

Our software architecture is supported by the system runtime, which comprises four parts

(see Fig.3.16): 1) a client device that requests a functionality from MDC; 2) a local device

3.3. Programmable Mobile Device Cloud 43

that serves as gateway by maintaining an up-to-date mappings between the available MDC

devices and their capacities; 3) a microservice market (MSM for short), a cloud-based repos-

itory that delivers the executable code of a given microservice; 4) a set of MDC devices that

share their capabilities, as detailed next.

MicroService Market (MSM) MSM(see Section 3.1) combines features of application

markets and service repositories. Following the application market model enables devices to

automatically download and execute the required microservices, while following the service

repository model enables application developers of the client apps to implement the required

functionalities as microservice invocations, to be executed by MDC devices.

In the original design of MSM, a mobile device must download the microservices before it

can be allocated to provide them. The devices are responsible for estimating their fitness to

satisfy the NFRs of a given task and report the results to the gateway. By contrast, our new

design enables the gateway to estimate how well the available devices can satisfy a task’s

NFRs, prior to deploying any microservices.

Local Gateways A typical cloud-based microservice architecture features a centralized

service registry, a collection of registered device-to-microservice mappings, with a remote

interface through which clients can bind themselves to the microservices they want to invoke.

Notice that MDC applications need to invoke microservices on the devices reachable via

short-range communication methods (e.g., WiFi, Bluetooth), rendering cloud-based registries

inapplicable.

Hence, our system architecture features a novel system component: a local gateway that

replaces the standard cloud-based service registries. Each mobile device cloud should have a

local gateway that could be either a stationary device, connected to a permanent power sup-

44 Chapter 3. Self-Organized Edge Systems

ply, or a battery-operated mobile device. Unlike its cloud-based counterparts, local gateways

maintain a registry of available device capacities of the MDC, instead of the microservices

provided by the devices.

Runtime Support on Devices The runtime runs as a regular mobile app on the server

and client devices. In general, the runtime accepts an MCL script to execute, either from

the application via inter component communication (ICC), or from other devices via socket-

based HTTP requests. On an MDC device, the programmer can specify the capability to

share by interacting with the device’s runtime using an MCL script. On a functionality

demanding device, an app can first find the MDC device by querying the local gateway

using an MCL script, and then invoke the microservice on the MDC device by passing it an

MCL script with execution parameters.

Execution Flow Fig.3.16 also introduces our system architecture’s execution flow. The

mobile devices periodically register their shared capabilities to the connected gateway (step

0). When a mobile app requires to execute a microservice on MDC, it first sends MCL

scripts to the runtime on the client (step 1). The runtime then interacts with the reachable

gateway in its vicinity, to query the most suitable device for microservice execution (step

2). The gateway downloads the NFR estimation algorithm of the required microservice

from MSM (step 3), applies it to select the most suitable MDC device(s), and sends the

connectivity information of the selected devices back to the client. Then, the client connects

to the selected device to initialize the microservice execution (step 4). The selected device

downloads the execution package from MSM, and sends the execution results back to the

client (step 5).

3.3. Programmable Mobile Device Cloud 45

1 <MCL Script> ::= <Action> <Target> <Parameters>
2 <Action> ::= "reg"|"stop"|"query"|"exec"
3 <Target> ::= {<Resource> ","}+ | <Microservice>
4 <Resource> ::= "network"|"compute"|"sensor/"<Sensor>
5 <Sensor> ::= "GPS"|"Cam"|"Mic"|"Motion"|"Light"|String
6 <Microservice> ::= String
7 <Parameters> ::= <Lease>|<Device Selection>|<Execution Param>
8 <Lease> ::= "-t=" Numeric "-c=" Numeric
9 <Device Selection> ::= ["-n=" Numeric]["-h="String]["-l="String]

10 <Execution Param> ::= [String "=" String|Numeric]+

Figure 3.17: MCL EBNF Definition.

3.3.2 MCL Definition and Use Case

We first introduce the grammar of MCL, and explain its semantics for expressing the supply

of device capabilities and the demand for microservices.

Functional Requirement We first summarize what functions MCL provides:

1. Specify device capability to share: The MDC devices need to specify what capabilities

to share.

2. Find device for executing a microservice: The functionality demanding device needs

to obtain one or more MDC devices, whose capabilities 1) fulfill the general execution

requirements of a microservice (e.g., in use case 2, taking picture requires the device

to share camera), and 2) best satisfy the NFRs (e.g., in use case 1, the app prefers an

MDC device that can finish facial recognition most quickly).

3. Execute a microservice on a device: The functionality demanding device can start

microservice execution on a selected MDC device.

Grammar Definition AnMCL script comprises three parts: Action, Target, and Parameters.

Action stands for the method, which includes (1) register device capabilities, and remove

46 Chapter 3. Self-Organized Edge Systems

the registered information (reg/stop), (2) query microservice provisioning (query), and (3)

execute microservice (exec). The Target can be either Resources (for reg and Stop), or

Microservice (for query and Exec). The Resources includes network, computing, and

sensors (e.g., GPS, camera, microphone, motion sensors, light sensors, etc.). Microservice

is a string representing a unique ID of the related microservice function (e.g., “faceReco”).

Parameters describes the action. When registering device capabilities, MCL enables speci-

fying the leasing time (-t, for how long the capabilities will still be available), the incentive

multiplier (-c, to be used to calculate the overall incentive for invoking microservice), and

the device’s status (e.g., CPU power, memory, CPU usage status, accuracy of sensors).

When querying the device for microservice invocation, Parameters can be used to describe

how many devices are requested (-n), as well as the NFRs(-h=feature indicates to select

device with the highest value of feature,-l for the lowest). When executing a microservice,

Parameters can be used to specify the runtime parameters to be bound to the microservice’s

execution.

Use Cases Register/Stop Resources: An MDC device can register its device capability as

available for remote execution, as well as stop such sharing. By leveraging such function, the

programmers can decide what capabilities to share, based on the device owner’s permission

and the device’s real-time status. The example program given in Fig. 3.18 shows two proce-

dures: 1) reading the user’s permission, and get all available device capabilities for remote

execution (line 1-3); 2) specifying that when some computationally intensive applications are

running and the CPU load is high, stop sharing the compute capability for remote execution

(line 4-5).

Query and Execute Microservice: The functionality demanding devices can query for the

most suitable MDC devices to execute a microservice, and request to execute the microservice

3.3. Programmable Mobile Device Cloud 47

1 initialize registry
2 read user's permission and get available resource
3 reg.run("reg compute, sensor/Cam -t=1800")
4 if CPU.usage>50
5 reg.run("stop compute")

Figure 3.18: MCL Example for Claiming Shared Capability.

on the selected device. The example program given in Fig. 3.19 shows how the motivating

example 1 can be implemented in MCL. It also comprises two procedures: 1) query and

get three devices for executing microservice “faceReco”, with the highest estimation of the

execution speed (line 4); 2) split all photos into three equal shares for the three devices,

execute “facoReco” microservices for each photo (line 6).

1 initialize registry
2 read images: imgs = readDirectory("...");
3 separate into 3 shares: imgs_0, imgs_1, imgs_2
4 devices = reg.run("query faceReco -l=time -n=3");
5 for (IMAGE img : imgs_0) {
6 devices.get(0).run("execute facoReco -img="+img);}

Figure 3.19: MCL Example for Executing Facial Recognition.

3.3.3 Device Selection Mechanism

When processing a microservice request, the local gateway first selects a device most suitable

to service the request through the device selection procedure. The procedure matches be-

tween the requirements of executing a given microservice and the capabilities of the available

devices.

Revisiting the facial recognition example: a gateway collects information about the available

devices, including their CPU frequencies, memory sizes, and current workloads. Upon receiv-

ing a request to recognize a face in an image, the gateway consults the collected information

to predict how well each device would satisfy the NFRs of the face recognition microservice

48 Chapter 3. Self-Organized Edge Systems

(in this case, total execution time). However, predicting how fast a device can execute the

facial recognition microservice is non-trivial: not only must the gateway be aware of the

device’s status, but it must also be able to determine how each aspect of that status would

affect the total execution time, which is domain-specific knowledge possessed only by the

developers of the face recognition microservice.

In our system design, it is the microservice developers who are expected to provide this

domain-specific knowledge alongside the microservice itself. Specifically, microservices in-

clude an NFR estimation component. Local gateways download microservice packages from

the MSM and execute their NFR estimators to select the most suitable device for the corre-

sponding microservices. Next, we describe the device selection procedure in detail.

Web Interface on Local Gateways The local gateway provides two web interfaces, for

MDC devices to register their capabilities, and for microservice demanding devices to query

for suitable server devices.

1 Interface 1: resourceRegistry
2 Parameters: resource = String
3 t = numeric
4 c = String
5 {device status = numeric} +
6 Return: [Registration Success|Fail]

Figure 3.20: Capability Registration Interface

Fig. 3.20 demonstrates the interface for registering device capabilities. The device status

currently includes CPU frequency, remaining energy status, memory usage, network speed,

and sensor accuracy.

Fig. 3.21 demonstrates the interface for querying for suitable server devices. The client

needs to provide a microservice ID, how many devices to select(n), and the NFRs (h/l for

the highest/lowest estimated value).

3.3. Programmable Mobile Device Cloud 49

1 Interface 2: deviceSelection
2 Parameters: Microservice = String
3 n = numeric
4 h = String
5 l = String
6 Return: [Connection info of Devices|null]

Figure 3.21: Microservice Selection Interface

Estimating NFR Satisfaction Upon receiving a device selection request from a client,

the gateway downloads the NFR estimation component of the required microservice from

the MSM, and starts matching the device capability and execution requirements. Fig. 3.22

demonstrates an example of the NFR estimation package for microservice faceReco. Method

isCapable checks whether a device is capable of executing a given microservice, and methods

energy and time estimate how a device would satisfy these two NFRs, respectively.

1 class FaceRecoEstimator(val d: Device)
2 extends Estimator {
3
4 override def isCapable(): Boolean =
5 { d.compute().available() }
6
7 def energy(): Int = 100 - d.battery.toInt
8
9 def time(): Int = {

10 var ret: Int = d.CPU * (1 - d.CPUusage)
11 if (d.memory > 2000) ret *= 2
12 ret
13 }}

Figure 3.22: Estimating NFR Satisfaction (in Scala)

Revisit the device selection request expressed in MCL script, as shown in Fig.3.19. Upon

receiving the request, the gateway first finds a set of nearby devices, whose isCapable meth-

ods return true. Then, it executes the time method on each device, selects the three devices

with the lowest expected execution times, and returns the information to the requester about

how to connect to these three devices.

50 Chapter 3. Self-Organized Edge Systems

3.3.4 Reference Implementation and Evaluation

We report on 1) the reference implementation of the described architecture; 2) the perfor-

mance of the implementation; 3) the comparison between our device selection procedure and

that of key other designs. We implement the local gateway on a off-the-shelf WiFi router,

a generally available infrastructure component, thus indicating the wide applicability of our

system design.

3.3.5 Implementation Specifics

WiFi Router as
Local Gateway

Power Monitor

MDC
Devices

Figure 3.23: Hardware for the Implementation and Evaluation.

Fig.3.23 shows our evaluation’s hardware components, which include two Nexus 6 phones,

3.3. Programmable Mobile Device Cloud 51

two Huawei Honor 5x, one LG Volt Phone, a Monsoon power monitor, and a TP-LINK

TL-WDR3600 router. To make the WDR3600 router serve as the local gateway, we flush

openWRT system image to replace the system image provided by the vendor. openWRT

system is a Linux distribution for embedded devices. We further install PHP, MySQL and

nginx to provide web services, and develop the corresponding PHP script files for the afore-

mentioned interfaces.

For evaluating MCL, we develop a distributed app, whose client and server parts run on mi-

croservice invoking devices and the MDC devices, respectively. For MDC devices, their user

decides whether to start or stop sharing device capabilities via a simple button click, which

sends the corresponding MCL script to the local gateway. For the microservice invoking

devices, their users generate different request combinations of microservices and NFRs. We

implement and evaluate three microservice packages: file download, face recognition, and

get GPS. To simplify the device selection requests, we define the same NFRs for all these

three microservices, namely QoS, cost, and efficiency (QoS/cost).

Fig.3.24 shows the runtime procedure of executing the microservice of face detection. The

cost of performing face detection is determined by the remaining battery level: a lower

battery level leads to a higher cost. The QoS of the service execution is determined by the

frequency of the CPU: a higher CPU frequency leads to faster execution, and thus higher QoS.

One Nexus 6 serves as the client device, and the other four devices serve as available devices.

After receiving the service request, the client device first queries the connected router, and

obtains the IP address of the assigned server device. It then connects to the assigned device

via a socket and sends the package’s and function’s names, the input parameters, and the

image files to process to the server device. After execution, the results are passed back to

the client device.

52 Chapter 3. Self-Organized Edge Systems

(a) Client Device (b) Server Device

Task Input

Start
Registration

Assigned
Server

Devices

Execution
Results

Received Task

Figure 3.24: Execution UI.

Performance Evaluation Device Selection: For each microservice, we test different

NFRs, to simulate the dissimilar requirements that can be imposed on the device selection

criteria (e.g., some may want the service to be executed as fast as possible, while others may

want to incur the smallest costs). When the criteria is QoS optimal, the Nexus 6 is selected,

because it has the highest CPU frequency. When the criteria is Cost optimal, the LG Volt

is selected, because it is connected to an external power supply.

Execution Time: We repeat the experimental execution 10 times, and calculate the average

time taken by each procedure on the client device. We observe that, the time consumption

for microservice execution device selection is low (0.15s), compared with the time cost of

establishing a connection to the selected device(0.61s), and executing the microservice(1.26s).

For the MDC device, the average time consumed to register its capabilities is 0.87s, because

3.3. Programmable Mobile Device Cloud 53

Number of Devices 1 10 20 50 100
Server Device Query (ms) 14 90 171 377 531
Capability Registration (ms) 18 110 192 461 563

Table 3.4: Gateway’s Average Response Time.

it needs to obtain the device’s real-time status. Although the registration time is close to one

second, this latency should not affect the perceived system performance; while the device

information is being updated, the old device information can still be used simultaneously.

Energy Consumption: We record the energy consumption of the LG Volt device in the

idle state for 30 seconds, and record the energy consumed by querying the microservice

execution device/registering device capability once per second for 30 seconds. To protect

the result from being distorted by the caching strategy of the Android Volley library, we add

a random parameter to each request.

Our experiment shows that, the energy consumption for the client device to parse the MCL

request and obtain the assigned MDC device from the WiFi router is 0.009 mAh; the energy

consumed by the MDC device to register with the WiFi router is 0.023mAh. If an MDC

device registers with the gateway once per minute for one day, the overall energy consumed

would be 33mAh, and this energy expense should not affect the experience of mobile users,

given that the battery capacity of a typical modern smartphone is at least 2000mAh.

Performance of the Gateway: We use ab to benchmark the performance of the HTTP

services, including registering device capability and querying for microservice execution de-

vices, provided by the WiFi router. We run this test on a notebook that connects to the

router via WiFi. We simulate 1, 10, 20, 50, 100 devices connecting to the router simultane-

ously, and Table 3.4 shows the average execution time. As the bulk of the processing load

takes place in the WiFi router, the obtained results show high scalability even when stress

testing the system with an unrealistic number of requests to the router.

54 Chapter 3. Self-Organized Edge Systems

Device Selection Procedure We also experiment with comparing our device selection

procedure with that of other state-of-the-art systems. Table 3.5 gives the description of three

key competing designs with 3) being our system.

Device Discovery Energy Latency Programmability
BLE Broadcast Low 1.26s Low
UDP Broadcast Middle 0.38s Low
Router as Gateway Middle 0.2s High

Table 3.5: Properties of Device Selection Mechanisms.

1) BLE Broadcast Based [88]: The functionality demanding devices use the BLE broadcast

to announce their requirements. When the MDC devices receive the broadcast, they connect

to the broadcasting device, and transfer their device capability to it. For the broadcasting

device, if multiple MDC devices can provide the required functionality, it needs to wait for all

MDC devices to respond, and then select one device that best fits the NFRs, and establish

a BLE connection with that device for executing functionality remotely.

2) UDP Broadcast Based [70, 89]: MDC devices are all connected to a local network. The

functionality demanding device sends out a UDP broadcast, with the required functionality,

the NFRs, and the IP address of the device included in the broadcast message. When an

MDC device receives the broadcast and determines that it fits the requirements, it sends its

information back to the broadcasting device. The broadcasting device waits for all nearby

devices to respond, and then starts a socket connection with the device that best fits the

NFRs.

Here we compare the performances and applicability of all the considered device selection

strategies:

1. Energy. Table 3.6 shows the comparison of the amount of energy consumed by each

strategy over time. BLE is the most energy-efficient, while the other two methods consume

3.3. Programmable Mobile Device Cloud 55

slightly more energy.

Execution Time 2h 4h 6h 8h
Stand By 93 % 87 % 79 % 71 %
BTLE D2D Broadcast 93% 86% 78% 70%
Node in WiFi Cluster 92% 84% 76% 68%

Table 3.6: Remaining Battery Percentage Over Time.

2. Latency. Table 3.5 shows the latency result of our experimental implementation, with

an MDC comprising three devices. We conclude that 1) The latency of BLE is the highest,

because all MDC devices need to connect to the resource requesting device, and pass their

capacity to the device via BLE communication, which is rather slow. 2) the UDP broadcast

strategy also incurs higher latency than the gateway-based ones. We further increase the

number of the MDC devices to 5, and observe that the latency of both UDP and BLE

broadcasts increase accordingly.

3. Programmability. We evaluate the programmability of these strategies, in terms of

uncommented lines of code it takes to implement each functionality. When registering device

capabilities, our strategy takes 33 ULOC, with the majority of the code written to obtain the

device’s status. The two broadcast based strategies take 57 and 86 ULOC, respectively, due

to them needing to manage the D2D communication. When selecting devices, our strategy

takes only 5 lines of code, with the broadcast based strategies taking over 200 ULOC.

Based on this evaluation, one can conclude that our gateway-based system architecture

enables mobile apps to leverage MDCs with low latency and high energy efficiency. In

ULOC Register & Stop Device Selection
Router-based 33 5
BLE Broadcast 86 231
UDP Broadcast 57 208

Table 3.7: ULOC for Each Function.

56 Chapter 3. Self-Organized Edge Systems

addition, our architecture’s device selection procedure requires fewer lines of programmer-

written code as compared to the broadcast-based alternatives.

3.4 Related Work

Using nearby mobile devices to cooperatively implement new functionality was originally

proposed as a means of exchanging private information over devices for data sharing and

data mining [81]. Subsequent research took user mobility into account [64, 83, 126].

Besides data sharing, another avenue for device cooperation is running map reduce [183] on

mobile devices to execute computational-intensive tasks [36, 112, 147]. These approaches,

however, are oblivious to device mobility and the preference of users to participate.

In addition to traditional mobile devices, the IoT setups can provide resources for device-to-

device resource sharing. Computational tasks have been offloaded to such setups (e.g., Road

Side Unit) [52], while mobile messages have been stored and forwarded by a wall-mounted

Estimote device [11]. The proposed project will focus on the software engineering aspects

of mobile device cooperation, thus benefiting the implementation practices of many of the

prior state-of-the-art approaches.

Traditional middleware has been adapted for peer-to-peer resource sharing, including Open

CORBA[106], Globe[166] and JXTA[48], although without taking device mobility into ac-

count. The UPnP protocol[150] enables network devices to provide service to other devices

in the network.

Device mobility-aware peer-to-peer resource sharing has started from content sharing [127],

with numerous subsequent approaches [7, 19, 39, 69, 78, 120, 122, 140]. Special purpose

middleware support face-to-face interactions [142] and cooperative display[12]. These mid-

3.5. Conclusion 57

dleware approaches are platform-specific and require modifications at the system level. By

contrast, the proposed project aims at heterogeneous device-to-device applications running

on top of unmodified system stacks.

The MANET project leverages assistance from devices through multi-hop wireless commu-

nication [33]. Various middleware approaches have focused on various aspects of inter-device

cooperation, including LIME[119], TOTA[110], Limone[44], CAST[136], MESHmdl[56], Preom

[80], MobiPeer [16], Peer2Me [173], Steam [115], Transhumance [128], QAM [45], and Mobi-

Cross [34]. These middleware approaches provide programming to control network topolo-

gies, network traffic, peer management, etc. By contrast, the proposed approach focuses

on supporting mobile application programmers, who are primarily concerned with obtaining

the hardware resources they need for their applications.

To support platform independence, [129] proposed using an HTTP server. By contrast,

this project focuses on P2P communication, thus reducing communication latencies and

processing overhead.

3.5 Conclusion

This chapter is concerned with the problem of how to improve the performance, energy

consumption, and latency of mobile applications by sharing resources across nearby mobile

devices. Although many prior research publications have focused on cooperatively sharing

resources across devices to enable new functionalities or to optimize energy consumption and

runtime performance, application developers lack software engineering support for seamlessly

sharing resources between heterogeneous mobile devices. To address this problem, we first

study how to encapsulate remote execution on collocated devices as mobile microservices,

supported by a novel distributed system component. Second, we explore a D2D approach

58 Chapter 3. Self-Organized Edge Systems

and an edge-gateway based approach for executing services on collocated devices. We also

empower developers in creating applications that integrate such remote executions in mobile

applications by providing intuitive programming models. We carefully compare the perfor-

mance characteristics of these two approaches, and conclude that the edge-gateway based

approach is more efficient in terms of latency and energy consumption. Hence, the rest of

this dissertation research is built upon the edge gateway system architecture. By facilitat-

ing the process of implementing cooperative resource sharing among devices, our ultimate

objective is to add this support to the standard toolset for mobile application developers.

Chapter 4

Microservice Orchestration Language

with Support for Equivalence

In contrast to cloud computing, edge computing processes data locally near its source (i.e.,

at the “edge” of the network), thereby reducing the network transmission load and commu-

nication latency. In addition, by leveraging the edge environment’s sensor and networking

resources, edge computing applications can take advantage of the local context and accelerate

data transfer [6, 13, 27, 28, 73, 96, 102, 156].

The need to access nearby sensors and to reduce communication latencies requires that edge

resources be orchestrated for a reliable and efficient execution. Nevertheless, software de-

velopers lack adequate programming support to be able to engineer such edge computing

applications [167, 168, 187]. In recent years, microservices [116] have been embraced as an

architecture that structures distributed systems modularly to clearly separate concerns. Mi-

croservices fit naturally the domain of edge computing, which coordinates the execution of

multiple dissimilar computing devices. However, extant microservice frameworks are inher-

ently cloud-based, and cannot be directly applied to edge-based environments.

Two primary factors hinder the use of microservices at the edge: (1) Cloud-based microser-

vice architectures require that all executable resources be pre-deployed on the participating

devices, which can be accessed by querying an Internet-based registry service. However, con-

nected via local-area networks, edge-based resources can only be accessed within a limited

59

60 Chapter 4. Microservice Orchestration Language with Support for Equivalence

physical area. (2) As a result, edge environments differ in their setups, making it impossible

to rely on any standard set of edge-based resources. Hence, robust and efficient edge com-

puting applications should be able to adapt to the available sets of resources in dissimilar

runtime environments.

Consider obtaining environmental sensor data, such as temperature, humidity, or CO2. A

mobile application may need to keep track of up-to-date environmental data, specific to the

device’s current geo location. However, edge environments often possess dissimilar resources

that can provide the necessary data. For instance, temperature can be read from a local

sensor or be obtained by passing the location parameter to a web-based weather service. To

fulfill these application requirements, developers need to either implement complex logic that

covers all possible combinations of available edge resources, or hardcode the implementation

for a particular edge environment with pre-deployed resources.

In this chapter, we present a novel programming model for orchestrating reliable and efficient

execution in edge environments with variable resources. Our model features a declarative

domain-specific language (DSL) for orchestrating the execution of microservices at the edge.

Our language is called MOLE (Microservice Orchestration LanguagE). The MOLE com-

piler takes as input the declarative specification of microservices and produces a platform-

independent execution plan. The MOLE runtime takes the generated execution plan as

input, and adaptively steers the execution of the expressed functionality on the set of avail-

able devices.

The contribution of this chapter is four-fold:

1. We present MOLE—a declarative DSL that enables programmers to express edge-

based application as an ensemble of microservice executions; MOLE naturally supports

redundant execution to adapt to opportunistically available resources.

4.1. Problem Analysis 61

2. We describe the MOLE compiler that generates platform-independent execution plans;

the compiler automatically parallelizes microservice execution.

3. We design a novel microservice-based runtime architecture that supports MOLE pro-

grams to execute microservices on the available edge devices.

4. We evaluate MOLE, its compiler, and runtime system on a set of benchmarks and case

studies.

4.1 Problem Analysis

In this section, we demonstrate the difficulties of programming edge computing applications.

4.1.1 High Resource Variability at the Edge

Developing software for edge computing environments differs from that for the cloud. De-

velopers can reasonably assume the high availability and reliability of cloud-based resources.

Cloud providers are bound by the terms of Service Level Agreements (SLAs) to ensure their

services remain up and running. Hence, because most failures in cloud-based systems are

recovered from quickly, a simple retry to contact a temporarily inaccessible cloud service is a

reasonable fault handling strategy [62]. However, in edge-based environments, the resource

availability is likely to cause execution failures, triggered by the differences in the resource

setups of edge environments.

Nevertheless, edge programming models [62, 130] continue to follow the fault handling strate-

gies, originally introduced for cloud-based microservices — handling faults by retries and ad-

justing minor configuration setups (e.g., switching network connectivity methods, switching

62 Chapter 4. Microservice Orchestration Language with Support for Equivalence

to devices capable of providing the same functionalities).

require: temperature

read from nearby sensor read from Internet

require: null require: current location

get location from GPS get Location from Cell-ID

preferable

Figure 4.1: Increasing Dependability by Increasing Redundancy.

We observe that edge environments can provide the same application functionality in a va-

riety of ways. In the motivating example, the developer can either read a local temperature

sensor or parameterize a web-based weather service with the user’s geo location. As an-

other example, consider detecting the breakout of fire in a building, different sensors (e.g.,

temperature, dust level, CO2 level, etc.) can be combined to ascertain whether there is fire.

Hence, given the high variability at the edge, our programming model centers around the

concept of resource redundancy and makes it natural for the developer to specify alternative

ways to provide the same functionality. Continuing with the temperature example above, Fig.

4.1 shows a possible design flow, in which the developer first considers obtaining temperature

by reading a local sensor, but then realizing that such sensors may be unavailable or disabled,

would specify a back-up alternative of obtaining the required information from a web-service.

Both alternatives provide equivalent functionalities with minor caveats. Local sensors are

likely to provide higher accuracy, while weather web services are highly reliable, even when

given a coarse-grained geo location. To obtain the location, multiple localization methods

(e.g., GPS based, cell-id based, WiFi based) are equally suitable.

4.1. Problem Analysis 63

4.1.2 Complexity of Orchestrating Edge Microservices

To implement the redundancies, developers typically need to engineer high-complexity code,

particularly if the resulting execution has efficiency requirements.

Read temperature from Sensor

Parallel Start

Parallel End

Get GPS Location Other Localization Methods

Read temperature from web

Start

Success

FailSuccess

Figure 4.2: Execution Sequence of Example Edge Application.

Let us revisit the temperature example above. Some localization methods can experience

unexpectedly high latencies. To accelerate the overall execution, the developer may want

to take advantage of speculative parallelism: spawn multiple localization methods at once,

and proceed once any one of them returns successfully. Fig. 4.2 shows how speculative

parallelism can be integrated into the execution flow.

There is an impedance mismatch between the simplicity of how developers can divide a re-

quired functionality into distinct functions (Fig. 4.1), and the complexity of orchestrating

these functions to execute correctly and efficiently (Fig. 4.2). Existing programming mod-

els require that functions be explicitly arranged into an execution flow, thus unnecessarily

burdening the developers.

64 Chapter 4. Microservice Orchestration Language with Support for Equivalence

Microservice Gateway

Mobile Devices

IoT Devices

Wearable Devices

Edge Server

Cloud Server

Client Resource Provisioning Devices

Cloud-based Microservice Market

Programmer

1.Call “getTemp” Service Suite

2.Download Executable File of Service Suite

3. Invoke Microservices

MOLE Script of “getTemp”

Figure 4.3: Solution Overview.

4.2 MOLE Overview

Next, we give a brief overview of how developers can use MOLE to provision for edge

applications. First we briefly introduce the system architecture, and then explain the basic

system execution flow of MOLE applications.

4.2.1 System Architecture

Fig. 4.3 shows the MOLE system architecture, which comprises four major components: 1)

a client device that requires distributed resources to accomplish an application functionality;

2) a local device that serves as a gateway by maintaining an up-to-date mapping between

the available nearby devices and their resource capacities; 3) a microservice market, a cloud-

based repository of executable code of all available microservices; 4) a set of local devices

that provide their resources to applications.

Gateways: A typical microservice architecture features a centralized service registry, a col-

lection of registered microservice-to-device mappings, with a remote interface through which

clients can bind themselves to the microservices they want to invoke. Notice that if the

registry is not replicated, it becomes vulnerable to the single point of failure. Besides, edge-

4.2. MOLE Overview 65

based applications need to invoke microservices on the devices reachable via short-range

communication methods (e.g., WiFi, Bluetooth), rendering cloud-based registries inappli-

cable. To meet these requirements, MOLE features a novel system component: an edge

gateway, thus replacing the standard cloud-based service registry. Similarly to its cloud-

based counterparts, the edge gateway maintains a registry of all the microservices provided

by edge devices. At runtime, clients interact with the reachable gateway in its vicinity to

execute microservices; the gateway interacts with the available devices on its clients’ behalf.

Since gateways form a network, in case a device hosting a gateway fails, clients proceed

contacting the remaining gateways until reaching one of them.

Cloud-based Microservice Market: Our design leverages the MicroService Market

(MSM for short), a cloud-based network component that combines features of application

markets and service repositories 3.1. By following the application market model, MSMs en-

able devices to automatically download the needed microservices for execution. By following

the service repositories model, MSMs enable edge application developers to implement the

needed functionalities as microservices, to be executed by the available devices in a given

edge computing environment.

4.2.2 Service Suite Execution Model

To understand the general MOLE system flow, recall the “getting the temperature” example.

An application running on a client device sends the request to execute getTemp service suite

to a nearby gateway (Step 1). The gateway downloads the getTemp service suite from a cloud-

based MSM (Step 2), and executes it by orchestrating the microservice invocations on the

available devices at the edge (Step 3). The gateway continuously collects the microservice

execution results, which drive the orchestration of the microservice invocations involved.

66 Chapter 4. Microservice Orchestration Language with Support for Equivalence

Upon completing the service’s execution, the gateway returns the final results to the client.

In the example above, getTemp comprises a collection of microservice invocations, which can

be initiated by edge applications to obtain the functionality at hand. In the rest of the

manuscript, we refer to such collections as a service suite.

Definition 1. Service Suite: implements an application functionality by orchestrating a

collection of microservices.

The MOLE programming model enables service suite developers to declaratively specify how

to orchestrate the execution of microservices. The MOLE compiler then translates these

specifications into an execution graph, while optimizing the resulting edge based execution

via speculative parallelism. The MOLE distributed runtime finally discovers the available

devices to execute the specified microservices on them, as directed by the compiled MOLE

specifications.

4.3 MOLE DSL Design

Fig. 4.4 defines the syntax of MOLE in EBNF. Some of the key features are as follows:

• Each service suite is identified by a unique id, Service Identity. Service suites may

take Service Parameter, which must be passed when the suite is invoked.

• A service suite comprises one or more Microservice Invocation’s, identified by

unique IDs, and containing additional attributes explained next.

• Amicroservice invocation comprises the following attributes: 1) the Device Selection

rules that guide how to select a device to run on; 2) the Input Params that specify

the microservice’s invocation parameters, some of which are hardcoded (indicated by

4.3. MOLE DSL Design 67

1 <Service_Suite> ::= <Service_Identity> <Service_Description>
2 <Service_Identity> ::= "Service "String
3 <Service_Description> ::= "{"[<Service_Parameter>] <Microservice_Invocations>"}"
4 <Service_Parameter> ::= "global_input: "[<Input_Parameter_Name> ","]
5 <Microservice_Invocations> ::= [Microservice_Invocation]+
6
7 <Microservice_Invocation> ::= "MS:" <MS_Identity> "{" [<MS_Detail>]+ "}"
8 <MS_Identity> ::= String
9

10 <MS_Detail>::= <Device_Selection>|<Input_Params>|<After_Execution_Rules>
11 <Device_Selection> ::= "device:" [<Select_Rule> "."]+
12 <Select_Rule> ::= "select"|"sort" "(" String ")"
13 <Input_Params> ::= ("req": [<Param Name> ","]+)|("set:" [<Param_Name> "to" <Param_Value>

","]+)
14 <After_Execution_Rules> := "on." <Condition> ":" [<return> ";"] [<redirection>]
15 <Condition> ::= "success"|"fail"|"res."<Param_Name><Operation><Value> |"ep."<Param_Name

><Operation><Value>
16 <return> ::= "ret" [String ["as" String] ","]+
17 <redirection> :== <MS_Identity>|"exit"

Figure 4.4: DSL EBNF Definition.
1 Service getTemp {
2 MS: getTempSensorReading {
3 device: select("Sensor.Temperature")
4 on.success: ret temp
5 on.fail: getTempbyLocation
6 }
7 MS: getTempByLocation {
8 device: select("Internet")
9 req: location

10 set: ep.max_retry to 3
11 on.success: ret temp
12 }
13 MS: getLocationByGPS {
14 device: select("Location.GPS_PROVIDER")
15 on.success: ret loc as location
16 }
17 MS: getLocationByCellID {
18 device: select("Location.NETWORK_PROVIDER")
19 on.success: ret loc as location
20 }
21 }

Figure 4.5: Source File of getTemp Service Suite

set) while others are passed at runtime (indicated by req – short of “require”); 3)

the After Execution Rules that specify what results should be returned (ret), and

what the next suite execution step should be (could be either exiting service suite ,

68 Chapter 4. Microservice Orchestration Language with Support for Equivalence

or invoke another MS).

• The execution procedure of a microservice can be controlled by execution parameters

(ep), which is a special kind of Input Params. ep contains a fixed set of directives:

maxExecutionTime, maxRetry, retryOnOtherDevices, and counter.

As a concrete example, consider the MOLE script in Fig. 4.5, which describes the getTemp

service suite. Service Identity is getTemp, a service suite that takes no parameters. It com-

prises four Microservice Invocation: getTempSensorReading (m1), getTempbyLocation

(m2), getLocationbyGPS (m3), and getLocationbyCellID (m4). Each microservice has

Device Selection rules and After Execution Rules, while only m2 needs Input.

A pair of microservices (m1, m2) can relate to each other in two ways: 1) forward relationship:

m1 invokes m2 based on the suite’s business logic; 2) backward relationship: m1 has an input

parameter, whose value must first be computed by invoking m2. In a given suite, developers

orchestrate the execution of microservices based on the concepts of forward and backward

relationships.

To provide an intuitive programming model, MOLE requires that only the forward rela-

tionship be explicitly defined (e.g.,invoke m2 iff m1 fails). Backward relationships are

automatically inferred based on the naming correspondences between the input and output

parameters of the microservices in a suite (e.g., m2 requires input parameter ‘a’, m3 produces

‘a’ as its execution result, so the compiler orchestrates the correct execution sequence of {m1,

m3, m2}).

4.4. MOLE Compiler and Runtime 69

MOLE Service Suite Script

MS Objects Execution Graph

MSM: Compile MOLE Script

Mobile Client at the Edge

AST Parse Generate
Execution Graph

Execution Graph

Serialialize

Request
Service Suite

Download Corresponding Service Suite

Gateway on the Edge

MS invocationsService Suite
Execution Runtime

Available Edge Devices

Figure 4.6: DSL Parsing and Execution.

4.4 MOLE Compiler and Runtime

Fig. 4.6 shows how a MOLE script file is compiled, optimized, and executed. Upon com-

pleting a microservice suite, developers upload them to the mobile service market (MSM)

containing the referenced microservices. Recall that MSMs are network components that

combine features of service repositories and app markets. An MSM has the facilities for

error checking, compiling, and optimizing MOLE suite specifications. The end result of pro-

cessing a specification is an executable containing the service suite’s Execution Graph,

a self-contained repository for all the information required to efficiently execute the suite.

Once a client invokes the edge application, the edge’s gateway component downloads the

compiled Execution Graph from the MSM and starts executing it. The execution also in-

volves downloading the referenced microservices to the devices selected to execute them.

If the gateway fails for any reason, the edge app’s client can always start interacting with

an alternate gateway component, thus providing a fail-over fault handling strategy. Upon

successfully completing its execution, the suite returns the results back to the client, or an

error if the execution failed for any reasons.

We first describe execution graphs, and then explain how MOLE scripts are compiled into

execution graphs. Finally, we discuss how the MOLE distributed runtime executes execution

graphs using a distributed microservice gateway.

70 Chapter 4. Microservice Orchestration Language with Support for Equivalence

4.4.1 Execution Graph Definition

An execution graph G = (N,E, P) comprises a set N = {n|n = (t,m, d, p)} of nodes, a set

E = {e|e = (ns, nt, c, a)} of edges, and a set of global parameters P that must be bound

before an execution can start.

A node n = (t,m, d, p) comprises the type t of the node, the microservice m related to the

node, the device selection rules d of the node, and a set of required execution parameters p.

An edge e = (ns, nt, c, a), also written as:

e = ns
c−→
a

nt

indicates that when the execution results of a microservice node s fits a condition c (c = null

if the type of ns is not a microservice), the next microservice node to visit is nt, with a set

of arguments a passed to it. ns is called the source of e, nt is called the target of e, e is an

outgoing edge of ns, and e is an incoming edge of nt.

The possible type of nodes t ∈ [M,E,ES,EF, PS, PE], where M stands for a microservice

node, E for the entry node of the service suite, ES for the successful exit node, EF for the

failure exit node, PS for a parallel start node, PE for a parallel end node. There can be

only one entry node (nE), one successful exit node (nES) and one failure exit node (nEF).

The PS and PE nodes designate the start and the end of a speculative parallel execution

block, respectively. Upon entering a PS node, all parallel branches start executing their first

nodes (linked by the outgoing edge of the PS node) in parallel. A parallel branch may have

multiple MS nodes to execute, and all parallel branches aggregate at the peer PE node.

When all required parameters of the PE node have been provided by any combination of

branches, the PE node starts to execute its next MS node, disregarding the completion

4.4. MOLE Compiler and Runtime 71

statuses of the remaining parallel branches.

4.4.2 Generating Execution Graphs

The MOLE compiler transforms an input script file into an execution graph. The key idea

of the transformation is to run a two-phase analysis: (1) control-flow analysis adds edges

between pairs of microservices on the control path (e.g., if ns fails, invoke nt) and (2) data-

flow analysis adds edges between microservices with data dependencies, (e.g., nt takes as

input the ns’s execution result). The required parallel blocks are added into the execution

graph during the second phase.

Algorithm 1 controls the transformation in four basic steps:

(1) Initialize Nodes (Line 3 - 5): convert each microservice declared in the source script into

“MS” nodes. The node structures encapsulate the microservice invocations, device selection

rules, and required input parameters. Each graph also includes four special nodes: NE (entry

node), NES (execution success) , NEF (execution failure), and Null Node NN , a temporary

placeholder used at graph construction time.

(2) Initialize Edges via Control Flow Analysis (Line 6 - 17): parse the MOLE script to extract

the conditional statement for each “MS” node. Recall that only the forward relationships

must be defined explicitly. If a node’s conditional statement is linked to another node (could

be either “MS”, NES, or NEF node, which define the forward relationships), add an edge to

the execution graph connecting the two nodes; otherwise, if it only generates data as output

(e.g., ‘on.success: ret loc as location”, which can be used to infer the backward relationships),

add an edge to the graph, connecting the node with the special NN node.

(3) Add Edges via Data Flow Analysis (Line 18 - 21): generate a set, initialized with the

“MS” nodes, except those connected to the NN node. All edges leading to the NN node

72 Chapter 4. Microservice Orchestration Language with Support for Equivalence

Algorithm 1 Generate Execution Graph.
1: function generateExecutionGraph()
2: ExecutionGraph eg ← ExecutionGraph()
3: // Step 1: init nodes
4: eg.nodes ← ParseMicroserviceNodes()
5: eg.nodes ← eg.nodes + NE , NES , NEF � NN

6: // Step 2: init edges by control flow analysis
7: for all node ∈ eg.nodes do
8: for all c ∈ node.conditions do
9: if c.type == “invoke microservice” then

10: e ← Edge(node, c.target, c.condition, c.params)
11: eg.edges ← eg.edges + e
12: else
13: e ← Edge(node, NN , c.condition, c.params)
14: eg.edges ← eg.edges + e ▷ link to node Null
15: end if
16: end for
17: end for
18: // Step 3: add edges by data flow analysis
19: dataEdges ← NN .getIncomingEdges() ▷ GIE() for short
20: loopNodes ← eg.nodes - specialNodes - dataEdges.s
21: loopNodes.BFS() ▷ Breadth-First-Search for adding edges
22: // Step 4: find entry node
23: entryNodeSet ← EmptySet
24: for all n ∈ eg.nodes do
25: if n.type==”ms” AND n ̸∈ dataEdges.s AND n.GIE()=null then
26: entryNodeSet ← entryNodeSet + n
27: end if
28: end for
29: if entrySet.size!=1 then
30: Raise CompileError(”Cannot Find Entry Node”)
31: else
32: eg.edges ← eg.edges + (NE , entrySet[0], null, null)
33: end if
34: return eg
35: end function

become “dataEdges” to provide missing arguments for other microservices. For each node’s

incoming edges, calculate whether the incoming edge’s bound arguments can serve as the

microservice’s required parameters. If not, check if the missing parameters can be provided

by “dataEdges”. If only one “dataEdge” can provide the missing parameter(s), add the

source of the “dataEdge” to the graph, between the current node’s source node and the

current node. If more than one “dataEdge” can provide the missing parameter(s), add a

4.4. MOLE Compiler and Runtime 73

pair PS, PE of parallel blocks between the source node of the current node and the current

node, and then add all “dataEdges” into the parallel blocks. When new edges are added,

the edges’ source nodes are added to the set, so they can be also properly processed. This

step is actually applying the breadth-first search algorithm.

(4) Find Entry Node (Line 22 - 34): for all “MS” nodes, find those without any incoming

edges or connected by “dataEdges”. If only one such node is found, add an edge between

the entry node and the found node. Otherwise, throw a compile error.

4.4.3 MOLE Runtime

MOLE features a distributed runtime system that efficiently and reliably executes com-

piled scripts. The runtime’s pivotal component is an edge gateway, responsible for collecting

the real-time status of surrounding edge devices, accepting service suite execution requests,

downloading the corresponding compiled MOLE scripts from MSMs, and invoking the con-

stituent microservices. Each microservice-executing device runs a light-weight HTTP server,

which dispatches the referenced microservices by invoking their execution packages, provided

on demand by MSMs.

To execute a compiled MOLE script, the edge gateway’s runtime starts the execution at

the entry node, moving through the connected nodes to the end node. The execution goes

from node to node as follows. When visiting a microservice node, the runtime invokes

the microservice, and determines what the next node should be based on the invocation

results. For a parallel start node, the runtime spawns concurrent branches, with each branch

proceeding along its own path and finally aggregating at the following parallel end node.

For a parallel end node, the runtime waits until either the concurrent branches provide the

required parameters, or all of them experience faults or timeouts.

74 Chapter 4. Microservice Orchestration Language with Support for Equivalence

4.5 Evaluation

In this section, we evaluate the MOLE programming model and performance in a realistic

use cases. Our evaluation seeks answers to the following questions:

• Can MOLE programs adapt to resource variability?

• Does MOLE offer acceptable execution efficiency?

• How hard is it to develop a MOLE program?

4.5.1 Setups

The following discussion first describes the experimental setup, then introduces the executed

service suites, and finally reports on the performance characteristics.

The evaluation hardware setup comprises: 1) a wireless router, running the OpenWrt OS; 2)

a Chromebook; 3) two Android smartphones; 4) a Raspberry PI; 5) a Dell desktop serving

as the edge server, and 6) an AWS cloud-based server (not shown in the Figure). Devices

2)-5) are connected to the wireless router, thus forming a wireless local area network.

A DS18B20 temperature sensor is connected to the Raspberry Pi via general purpose in-

put/output (GPIO). The Raspberry PI hosts a web server that handles POST requests

by invoking the corresponding microservice executables. “getSensoryTemperature” is pre-

deployed on this device.

The NanoHttpd servers on Android devices invoke the corresponding microservices via re-

flection in response to incoming HTTP POST requests. One of these devices is configured

to provide a fine-grained location, while the other one a coarse-grained one.

4.5. Evaluation 75

The Dell desktop plays two roles: the edge gateway and the edge server. It runs an HTTP

server, and a MySQL database. Each edge device communicates with the edge gateway

via HTTP to register their microservices; the gateway then persists this information in its

database. As an edge server, it runs microservices, such as querying a web service to get the

temperature in a given location.

4.5.2 Service Suite Execution

Read temperature from Sensor

Parallel Start

Parallel End

Get GPS Location Cell-ID Location

Read temperature from web

Start

Success

FailSuccess

Execution Flow 1: 1.28s
Execution Flow 2: 1.77s
Execution Flow 3: 3.40s

Figure 4.7: Execution Time of Different Availability of Microservices.

End users access a dynamic web page from the Chromebook, which contains a JavaScript

function that retrieves the service suite’s name, connects to the local gateway (by querying

the wireless router), sends the service suite execution request to the gateway, and blocks

until receiving the results.

To evaluate how MOLE programs adapt to resource variability, we run our experiments in

three dissimilar execution environments. The execution results fit the generated execution

graph, as shown in Fig. 4.7:

A Make the Raspberry PI and the temperature sensor available. In this execution envi-

ronment, the overall execution result obtained by the Chromebook is the temperature

76 Chapter 4. Microservice Orchestration Language with Support for Equivalence

measured by the temperature sensor. The average execution time of 5 runs is 1.28

seconds.

B Shut down the Raspberry PI, to make the temperature sensor unavailable. In addition,

enable the fine/coarse-grained localizations for the two Android devices. In this run,

the overall execution result is the temperature of a geo-area, which differs from the

first result. The overall execution takes 1.77 seconds. Please note that in our imple-

mentation, the GPS localization takes 2 seconds and the cell-network localization takes

less than 1 seconds. This result indicates that even though two localization methods

are all initialized, the execution continues when the cell-network location is returned.

C Disable both the temperature sensor and two localization methods. In this run, the

parallel start node initializes two threads for two localization methods, but none of

them goes to the parallel end node. The timeout for the latch count down is set to 3

seconds, with the parallel end node being reached after the timeout. The parallel end

node fails to collect all necessary parameters for its connected node (getTempByLocation

), so it triggers the execution fail condition of its connected node, thus causing the

“Execution Failure” of the service suite. The average execution time of 5 runs is 3.4

seconds.

4.5.3 Programming Effort

Fig. 4.5 lists the source code of the getTemp service suite. It takes only 21 lines of code

to specify the parameterization of and control-flow between 4 realistic microservices. Under

any programming model, programmers have to implement the application functionalities,

but representing them as microservices eases reuse. Each microservice is likely usable in

multiple scenarios.

4.5. Evaluation 77

Read temperature from Sensor

Parallel Start

Parallel End

GPS Location Cell ID Location

Read temperature from web

Start

Success

FailSuccess

IP to Location

Get IP

Location

New Localization Method

Figure 4.8: New Execution Graph.

A particular strength of the MOLE programming model is how it accommodates change.

Consider adding an alternate localization method for MS getTemperatureByLocation. Unlike

the current two localization methods, the new method operates in two steps: 1) obtain the

current IP address; 2) get the location from the IP address using a web service. This change

requires only 6 additional lines of code.

1 Service GetTemp {
2 ...
3
4 MS: getIP{
5 device:has("INTERNET")
6 on.success:ret ip;
7 }
8
9 MS: IP2Location{

10 req:ip
11 on.success:ret location;
12 }
13 }

Figure 4.9: Adding a new localization method to the service suite

4.5.4 Reliability Evaluation

To assess how reliable MOLE programs are, we simulate the execution of a suite under differ-

ent failure conditions. This simulation varies the failure rate of each microservice execution

78 Chapter 4. Microservice Orchestration Language with Support for Equivalence

between 10%, 20%, 30%, and 90%. Two types of failures apply: (1) no device is available

to execute a given microservice; (2) the selected device fails to successfully execute a given

microservice. We compare the resulting reliability levels of three scenarios: 1) obtain tem-

perature from a temperature sensor; 2) execute service suite GetTemp with two localization

methods; 3) execute this service suite with one additional IP-based localization method. Fig.

4.10 shows that compared with scenario 1, the service suite improves its reliability, espe-

cially when the failure rate is around 50% (it improves the reliability of scenario 1 by 37.5%).

Besides, by comparing scenarios 2 and 3, we see how introducing an alternative localization

method increases the overall reliability of the service suite execution. When two existing

localization methods fail, the suite can still successfully complete its execution. However,

the increase may not seem as striking, as the two alternative localization methods already

exhibit considerable reliability.

37.5%

40.6%

Figure 4.10: Reliability W/ W/O MOLE.

4.5.5 Efficiency Evaluation

Next, we measure how efficient a MOLE program is. We set the execution failure rate of

each microservice between 10%, 20%, 30%, and 90%. We compare the total execution time

of three scenarios: 1) sequential execution, which runs one microservice at a time; 2) the

GetTemp service suite executing its two localization methods in parallel; 3) the improved

4.6. Related Work 79

39.0%

Figure 4.11: Efficiency W/ W/O MOLE.

GetTemp service suite executing three localization methods in parallel. For each failure level,

we repeat each execution scenario 100 times, and record the average execution time. Fig.

4.11 shows that MOLE can increase the base line of the sequential execution by 12-17% by

leveraging speculative parallelism. At most, MOLE saves 39% of execution time when the

failure rate is 30%. Besides, because IP-based localization is known to be more efficient than

other location methods, MS getTemperatureByLocation can proceed without waiting for the

other two slower localization methods to complete, thus improving the overall efficiency.

4.6 Related Work

Recent survey papers treat the issue of programming edge applications as both a serious

technical challenge and a research opportunity [167, 168]. [59] introduces a P2P message

exchange based programming model, by which programmers develop functionalities for each

distributed component and handle their communication. However, such programming mod-

els can only be applied to execution environments with fixed resources. [149] considers the

resource dynamicity of edge computing environments, and models edge service provision

as a QoS-constrained resource selection problem. [47] provides a data-flow based program-

ming model, also applicable to edge environments with dynamic resources. However, these

80 Chapter 4. Microservice Orchestration Language with Support for Equivalence

approaches neglect failure handling, an essential provision given the high failure ratio of

edge-based execution.

4.7 Conclusion

This chapter presents MOLE, a declarative DSL for developing reliable and efficient edge

computing applications. MOLE adopts the microservice architecture, with edge functional-

ities provided as microservices, downloaded and executed by available devices at runtime.

MOLE enables developers to concisely express how to parameterize microservices, and au-

tomatically orchestrates their execution flow. MOLE exploits the presence of equivalent

microservices to orchestrate both fail-over and speculatively parallel execution workflows.

Our evaluation has demonstrated the expressiveness, reliability, and efficiency of the MOLE

programming model.

Chapter 5

Workflow Support for Equivalent

Functionalities

The previous chapters demonstrate that the applicability of the microservice architecture

has extended beyond traditional web services, making steady inroads into the domains of

IoT and edge computing. A QoS-optimal service balances reliability, execution costs, and

latency to satisfy application requirements. In emerging distributed environments, with their

unreliable and resource-scarce mobile/IoT devices, it is hard but essential to optimize the

QoS of mobile services. Fortunately, these environments are characterized by ever-growing

equivalent functionalities that satisfy the same requirements by different means. The com-

bined execution of equivalent microservices has been used to improve QoS (e.g., majority

voting for accuracy, speculative parallelism for latency, and failover for reliability). These

executions are commonly described as workflow patterns, crude-grained recurring interac-

tions across microservices within a service. However, the current workflow patterns provide

limited support for equivalent microservices, causing services with equivalent microservices

to suffer from unsatisfied and severely unbalanced QoS. In this chapter, we present two

works that introduce dedicated workflow support for equivalent microservices, one auto-

matically enhances service execution efficiency and reliability, and the other automatically

generates fine-grained workflow patterns for QoS-optimal combined execution of equivalent

microservices.

81

82 Chapter 5. Workflow Support for Equivalent Functionalities

5.1 Equivalence-Enhanced Microservice Workflow

Service-oriented software development has embraced the microservices architecture [4], di-

viding a complex software system into coherent and lightweight microservices, each of which

performing a cohesive business function. Although traditionally the microservice architecture

is used mainly for composing web services/applications[90], emerging application domains,

including IoT and edge computing, have started to increasingly apply this architecture as

well[144, 171].

If different microservices fulfill the same application requirement, these microservices pro-

vide equivalent functionalities that can be used in place of each other. Known application

patterns that use equivalence include improving reliability via fail-over and reducing latency

via speculative parallelism. In the realm of web applications, service equivalence has been

applied to select services: choose the one with the optimal QoS features from its equivalent

set [158]. Little prior research has focused on simultaneously executing multiple services

to improve reliability, as web services are already quire reliable and the additional costs of

simultaneous executions cannot be justified by the expected reliability improvements [57].

Unlike web-based microservices, the ones executed in IoT and edge environments often suffer

from partial failures and performance bottlenecks, as is expected for distributed execution

environments with naturally dynamic and volatile resources. This work adapts the microser-

vice architecture for such unreliable execution environments by systemically supporting the

execution equivalence in microservice-based distributed applications.

The support for equivalence in existing microservice-based programming models [68, 77, 124]

is limited: they either cannot explicitly express equivalent microservices or cannot effi-

ciently execute them (i.e., minimize the resources consumed by executing workflows con-

taining equivalent microservices). Without intuitive programming support for equivalence,

5.1. Equivalence-Enhanced Microservice Workflow 83

a non-trivial development effort is required to cost-efficiently increase the reliability of a

microservice-based application.

In this section, we describe a dataflow-based programming model that adds support for

equivalence in orchestrations of microservice-based applications. Our programming model

extends the dataflow programming pattern in [68]: programmers declaratively specify mi-

croservices and their dataflow relationships; the compiler automatically generates a workflow

that schedules the execution plan for these microservices, with different execution strategies

expressed as workflow constructs; and the runtime steers the execution of microservices

based on the workflow and their execution results. In particular, we extend the dataflow

specifications and workflow constructs with support for equivalent microservices, and pro-

vide rules to generate and execute such workflows. Our evaluation demonstrates that our

solution simplifies the expression of equivalent functionalities and suites particularly well for

adapting distributed executions to dynamic contexts.

As a summary, the contribution of this work is three-fold:

• We introduce a dataflow-based microservice orchestration language that explicitly sup-

ports execution equivalence.

• We introduce workflow constructs for executing equivalent microservices that provide

a fine-grained control over the life cycle of microservice execution.

• Through case studies, we demonstrate how our solution can be applied to develop

real applications, and how the resulting workflows can increase their reliability cost-

efficiently. We also show that our solution outperforms prior approaches in striking

the right trade-offs between reliability improvements and resource consumption.

84 Chapter 5. Workflow Support for Equivalent Functionalities

5.1.1 Background and Related Work

This work focuses on providing programming support for orchestrating services containing

equivalent microservices. We first discuss how microservice-based applications have taken

advantage of equivalence, and then summarize major programming models for engineering

such applications.

Equivalent Microservices Hosted at different cloud servers with dissimilar QoS charac-

teristics, various microservices can provide the same functionality. In the research domain

of cloud-based microservice composition, such equivalent microservices are referred to as

competing microservices [158]. This domain focuses on how to choose a set of services that

maximize the overall QoS while satisfying the QoS requirements of each service [3]. Hiratsuka

et al. [57] further explore the combined use of functional-equivalent microservices to enhance

the QoS. They leverage two general orchestration patterns for equivalent microservices: fail-

over for reliability enhancement and speculative parallel for efficiency enhancement. In the

edge and IoT domains, Osmotic computing [171] switches between cloud/edge-based mi-

croservice deployments to optimize the overall QoS.

In edge/IoT environments, equivalent microservices can also deliver the same functionality.

However, these microservices can differ not only in their respective QoS characteristics, but

also in the way they are implemented, including the hardware/software resource utilization,

algorithms, and compositions. For example, [84] demonstrates that the environmental tem-

perature can be captured by a temperature sensor, or be inferred from the CPU temperature;

both wireless methods [145] and optical methods [114] have been used to obtain the indoor

location of individuals. As an edge application is expected to run in dissimilar edge envi-

ronments that feature different available sensor and computational resources and runtime

contexts, it is hard to guarantee the overall reliability given the low reliability of individual

5.1. Equivalence-Enhanced Microservice Workflow 85

microservice executions [148]. The combined use of equivalent microservices can improve

reliability while striking a good balance between the response time and costs. Therefore,

when extending the microservice architecture to the domains of IoT and edge computing,

microservice equivalence can increase the power and expressiveness of existing programming

models.

Programming Models for Orchestrating Microservices Workflow languages (e.g.,

WS-BPEL [124]) are widely used in engineering service-oriented systems and applications,

due to their ease of use and ability to manage complexity [37]. A service/application workflow

can be represented as a set of microservices and assist workflow control nodes, together

with their order of invocation and data passing relationships [1]. In general, the assist

workflow nodes consist of a start node, an end node, and any number of repeatable pre-

defined workflow constructs. Such constructs represent different workflow control patterns

(some researchers use different terms to represent the same concept, e.g., structured activities

[124] or operational semantics [24]). At runtime, an execution engine runs workflows by

following the operational semantics of the contained workflow constructs.

BPEL is a block-structured workflow description language that helps developers to express

and execute workflows. The workflow patterns that can be expressed by BPEL are: se-

quential processing, conditional behavior (if), repetitive execution (while), selective event

processing (pick), parallel processing and processing multiple branches (foreach) [124]. Ac-

cordingly, the supported workflow constructs are: sequence, parallel (AND-fork/join), ex-

clusive choice (XOR-fork/join), loop, and multi-choice [137]. Although over 40 workflow

patterns (including structured discriminator, which supports speculative parallel execution)

have been developed, most of them are not explicitly supported in general workflow orches-

tration languages, such as BPEL [137].

86 Chapter 5. Workflow Support for Equivalent Functionalities

The sheer number of BPEL features complicates the language’s functional semantics. Be-

sides, designed for machine processing, BPEL requires its developers to master graphical com-

position tools. Several novel domain-specific languages improve programmability. Orc [77]

is a structured language, in which service orchestrations are specified by means of functional

programming idioms. It also provides semantic support for handling concurrency, time-outs,

exceptions, and priority. The workflow patterns in Orc (specified as combinators) support

fail-over (otherwise) and speculative parallel (pruning) execution strategies. Although these

strategies can be used to orchestrate the execution of equivalent operations, the language

provides no facilities to control the fine-grained lifecycles of these operations.

Both BPEL and Orc require the programmers to specify the control logic of concurrency and

failure handling. To further shift the burden of workflow orchestration from the programmer

to the compiler, dataflow-based domain-specific languages are introduced for orchestrat-

ing workflows automatically [68]. Such DSLs enable the programmers to specify the data

dependencies between microservices, and generate the workflow accordingly, for “data de-

pendencies equivalent to scheduling” [71]. Dataflow programming has been widely adopted

by IoT/edge computing [29, 46, 47, 131, 138] and stream processing [58]. However, these

dataflow languages have no support for equivalence.

5.1.2 Problem Analysis

We start analyzing the problem domain by giving two example use cases that demonstrate

how equivalent microservices can be used to satisfy reliability requirements. These use cases

are a fire detection system and an offline digital store.

5.1. Equivalence-Enhanced Microservice Workflow 87

Use Cases of Leveraging Equivalent Microservices (1) Use Case 1, fireDetection

: One important security task of smart homes is detecting fire. Flame sensors have been

commonly used in private homes and office buildings for a long time [43]. However, in those

cases in which a flame sensor is temporally unavailable or absent altogether, sensor data

fusion can also accurately detect fire. For example, one alternative method can combine

a temperature sensor and a camera (two most widely deployed sensors in smart homes)

to detect fires [30]. Specifically, if both the smoke density level extracted from captured

environment images and the room temperature captured by the sensor exhibit unusually

high levels, these two conditions happening simultaneously indicate the presence of fire.

Hence, we have two equivalent strategies for detecting fires: (1) read a flame sensor, and

(2) (a) read a temperature sensor; (b) capture and process image. As fire detection must

be both time efficient and reliable, the strategies (1) and (2) can be executed speculatively

parallel to fulfill these requirements.

The use case above can be expressed modularly as individual microservices. Microservice

thresholdCheck takes as input firePossibility, and returns a boolean value isFireDetected

. Microservice readFlameSensor takes no input, checks the states of flame sensors, and

outputs confidence, which can be used as firePossibility. Microservice sensorFusion

takes as input smokeDensity and temperature, and outputs firePossibility. Microser-

vice getTemperature queries the temperature sensor and outputs temperature. Microservice

getImage captures images by camera, and outputs imageUrl. Microservice inferSmokeDensity

takes as input imageUrl, processes the image and outputs smokeDensity. Fig. 5.1 lists the

input/output relationships of these microservices.

(2) Use Case 2, purchaseItemDetection: In offline digital stores, a customer purchases mer-

chandise by picking up items from shelves; upon exiting the store, the customer’s credit card

is charged for the purchases. An enabling technology for such stores is purchase detection,

88 Chapter 5. Workflow Support for Equivalent Functionalities

inferSmoke
Density

Threshold
Check

sensorFusion

readFlameSensor

getImage

getTemperature

imageUrl

firePossibility
smokeDensity

temperature

Figure 5.1: Data Dependencies of Use Case 1

using sensors to track purchases in real time.

Table 5.1: Microservices Used in purchaseItemDetection

Microservice Input Output
getBarcodeFromVideo video barcode
getItemIDFromBarcode barcode itemID
getShelfFromVideo video shelfID
estimateItemLocation video, shelfID row, line
getItemIDFromLocation row, line, shelfID itemID
getWeightChange shelfID weight
estimateItemIDbyWeight shelfID, weight itemID

The purchaseItemDetection application takes a video clip of a purchase as input and outputs

the itemID of the purchased item. To recognize the purchased item, the application first

analyzes the video clip for the item’s barcode. If this method fails, it infers the itemID by

processing sensor data in two equivalent ways: (1) use the shelf’s id and the purchased item’s

location on the shelf to infer what the purchased item is; (2) obtain the delta of weight from

the shelf’s scale, and based on the delta infer what the purchased item is.

Deficiencies of Existing Programming Models Existing programming models lack

explicit equivalence facilities and cannot support the above application scenarios.

(1) No semantic and syntactic facilities for equivalence in dataflow specification languages.

An approach presented in [57] provides the pipeline, data distribution and data aggregation

patterns. When translated to workflows, pipelines are converted to execute sequentially,

and data distributions/aggregations are converted to execute in parallel (AND-fork/join).

Hence, this dataflow specification has no semantic and syntactic support for the fail-over

5.1. Equivalence-Enhanced Microservice Workflow 89

and speculative parallel workflow patterns that leverage execution equivalence.

(2) Inability to handle exceptional execution conditions systematically: Consider removing

the equivalent microservice readFlameSensor to generate use case 1’ without any equivalent

microservices. Fig. 5.2 shows how use case 1’ can be expressed in a dataflow language.

Notice that the dataflow contains no processing rules that specify how to handle execution

failures. That is, when a microservice fails, no alternate microservice can be invoked to

continue the execution, thus causing the overall execution to terminate.

1 //...binding microservices
2 getImage -> inferSmokeDensity
3 inferSmokeDensity -> smokeDensity
4 getTemperature -> temperature
5 (smokeDensity,temperature) -> sensorFusion
6 sensorFusion -> thresholdCheck

Figure 5.2: Dataflow-based Workflow Specification for Use Case 1’

However, with equivalence, the terminate-by-default failure handling rule no longer applies.

For example, if the workflow of use case 1’ is extended with an equivalent microservice

readFlameSensor, the failure of getTemperature no longer terminates the overall execution.

(3) Poor cost efficiency: Although prior approaches, including Orc [77] and the“ 1 out-of-m

join” [137] can express the execution strategies of equivalent microservices, these approaches

were not designed to provide a fine-grained control over the life cycle of microservices.

When executing workflows with equivalence, this lack of control may lead to using com-

putational resource unproductively. Consider the following examples: 1) readFlameSensor

finishes its execution at time t1, while getImage and getTemperature remain in operation.

To steer the execution cost efficiently would necessitate passing firePossibility returned

by readFlameSensor to thresholdCheck, and immediately terminating both getImage and

getTemperature. Although the “1-out-of-m join” pattern does execute thresholdCheck, it

does nothing to stop the now unnecessary execution of getImage and getTemperature; 2)

90 Chapter 5. Workflow Support for Equivalent Functionalities

getTemperature times-out at time t2, while getImage remains in operation. As sensorFusion

requires both temperature and smokeDensity, missing either one of these required inputs

would make it impossible to execute sensorFusion. Hence, efficiency would necessitate ter-

minating getImage and waiting for readFlameSensor to complete. However, Orc would wait

for getImage to finish its execution and then proceed to executing inferSmokeDensity.

5.1.3 Workflow and DSL for Equivalence

We first introduce special equivalence-supporting workflow constructs and discuss how they

are supported in the runtime. As a specific example of supporting equivalence programmat-

ically, we discuss the design and implementation of our dataflow DSL.

Workflow Overview The main distinction of workflows with equivalence is that the

successful/failed execution of microservices may affect the execution status of other mi-

croservices currently in operation or to be invoked. In traditional workflow graphs, nodes

denote microservices, and a directed edge between them denotes their execution order. Al-

though handling equivalence requires storing and executing additional control flows for each

microservice, we maintain the basic structure of traditional workflows, adding to it new work-

flow constructs and notification rules. Unlike the operational semantics of general workflows,

our new workflow control constructs collect the necessary execution states of the microser-

vices within their scope and react accordingly.

Workflow Constructs A workflow graph, representing a service, contains a set of nodes

as a set of directed edges, G =< N,E >.

Edges: A directed edge e(n,m, d) connects node n to node m, ∀n,m ∈ N , and specifies the

data d passed from n to m. We call n predecessor and m successor.

5.1. Equivalence-Enhanced Microservice Workflow 91

Nodes: N = Nms ∪ Ncontrol, where Nms denotes a set of microservice nodes and Ncontrol

denotes a set of control nodes. Ncontrol contains one service start node start, one service

end node end, and any number of pairs of workflow control nodes. For any microservice

node in Nms, n(i, o, timeout) maintains its required input i, generated output o, and allowed

execution time timeout.

Workflow Patterns: C(k) denotes a pair of control nodes, with Cstart, Cend, and k repre-

senting the start node, the end node and the start node’s out-degree, respectively. A pair of

control nodes can be one of the following three types:

• parallel, where k represents the number of concurrent branches. A parallel pair starts all

k branches simultaneously, until all executions complete. If one branch fails, the pair fails,

terminating the executions of the remaining branches.

• fail-over, where k represents the number of equivalent branches. It starts one branch at

a time and outputs the results of the first successful execution.

• speculative parallel, where k represents the number of equivalent branches. It starts all

the k branches simultaneously, and outputs the first obtained result. If one branch succeeds,

the pair terminates the executions of the remaining branches.

Multi-threading and Execution State The workflow’s execution can be described as a

finite state automata of states and transitions [178]. We introduce the operational semantics

from the perspective of states and transitions. In particular, we introduce how the states

and transitions are combined with concurrency (thereafter, we use threads to demonstrate

all general concepts).

A service’s execution starts from the root thread. Multiple child threads can be spawned

by and joined to one parent thread. Each spawned child thread maintains a parent handle,

92 Chapter 5. Workflow Support for Equivalent Functionalities

synchronized across all its siblings, used to notify the parent of whether the child’s execution

succeeded or failed. Each thread maintains a counter and a currentNode. The currentNode

indicates the current node being executed by this thread. An executing thread can be termi-

nated by its currentNode or interrupted by its parent thread, with the currentNode handling

the interruption. The counter indicates the number of successfully executed branches if the

thread is executing a parallel control pair, the current executed branch for a fail-over pair,

and the number of failed branches for a speculative parallel pair.

Our workflow design possesses the following features:

• Each microservice node has only one direct predecessor and one direct successor. In other

words, the control node pairs control all the spawning and joining concurrency actions.

• For a pair of control nodes, the start node’s out-degree equals the end node’s in-degree.

Although the control nodes can be nested (e.g., a pair of control node is contained in another

pair of control nodes), the number of spawned threads at the start node of the pair equals

to the number of joined threads at the end node.

A node’s execution status can be in one of the three states: running, succeeded, and failed.

The start and end nodes can be only in the running state. The start nodes of control pairs

can be in the running and succeeded states, while other nodes can be in any of the three

states. A running state can transition to either succeeded or failed. In the succeeded

or failed state, the currentNode runs as dictated by the operational semantics of its type,

which comprises terminating the current thread, sending notifications to the parent thread,

interrupting child threads, and setting the currentNode to another node.

Workflow Operational Semantics The semantics is implemented by following these

state transition rules. If the current state is:

5.1. Equivalence-Enhanced Microservice Workflow 93

running: A microservice node starts the microservice’s execution. The node transitions to

the failed state if the execution fails or times out, and transitions to the succeeded state

if the execution succeeds. The start node sets the currentNode to its successor, and end

outputs the results.

The start node of a parallel pair and a speculative parallel pair set the counter to k (the

number of branches), spawn k child threads, set the currentNode of the child threads to the

first nodes of these threads, and transition to the succeeded state (see Fig. 5.3.a and Fig.

5.5.a). The start of a fail-over pair sets counter to k if it equals 0, executes the counterth

branch, and transitions to succeeded (see Fig. 5.4).

The end node of a control pair waits to be signaled by its child threads. Upon receiving

a succeeded signal, 1) the end of a parallel pair decrements the counter, and transitions

to the succeeded state if counter == 0, or maintains the running state if counter>0 (see

Fig. 5.3.b); 2) the end of a fail-over pair or a speculative parallel pair transitions to the

succeeded state; Upon receiving a failed signal, 1) the end of a parallel pair transitions to

the failed state; 2) the end of a fail-over or speculative parallel pair decrements the counter,

and transitions to the failed state if counter==0 (see Fig. 5.5.b). If otherwise counter>0,

the end of a fail-over pair sets the currentNode to its pair start (see Fig. 5.4), and the end

of a speculative parallel pair maintains the running state. If the thread is interrupted, the

end node of its control pair interrupts all child threads in turn.

succeeded: 1) A microservice node sets the currentNode to its direct successor. If the direct

successor is the end node of a control pair, the thread sends a succeeded signal to its parent

and terminates itself. Otherwise, it continues to execute the new currentNode. 2) the start

node of a control pair sets the currentNode to its pair end node. 3) a pair end node sets

counter to 0, interrupts all child threads if the pair is speculative parallel, and follows the

microservice node’s processing rules.

94 Chapter 5. Workflow Support for Equivalent Functionalities

failed: 1) A microservice node checks if it is executed by the root thread: if so, it sets the

currentNode to the end node; otherwise, the thread sends a failed signal to its parent and

terminates itself. 2) an end node of a control pair sets the counter to 0, interrupts all child

threads if the pair is parallel, and follows the microservice node’s processing rules.

Parallel Start
Parallel End

Succeeded: Counter --
Failed: Counter =0

MS 1

succeeded
MS ...

MS k

counter>0
counter==0

Next MS

failed failed

Counter = k

(a) Parallel Start Node (b) Parallel End Node

Figure 5.3: Parallel Pair State Transition

Failover Start
if(counter==0) counter=k

Failover End
Succeeded: counter=0

Failed: counter --

succeededStart Branch
counter

failed

succeeded

failed, if counter==0counter>0

Figure 5.4: fail-over Pair State Transition

Speculative
Parallel Start

Specu. Parallel End
Succeeded: counter=0

Failed: counter--

Equivalent 1

succeeded
Equivalent ...

Equivalent k

counter>0

Next MS

failed
failed, if counter==0

Counter = k

(a) Speculative Parallel Start Node

succeeded

(b) Speculative Parallel End Node

Figure 5.5: Speculative Parallel Pair State Transition

DSL and Workflow Generation To demonstrate how dataflow specifications can sup-

port equivalence, we create a domain specific language, MDLE (Microservice Dataflow

Language with Equivalence). A MDLE script declaratively specifies a collection of microser-

vices. Aliases implicitly define the data flow between microservices. Multiple microservices

providing the same input are considered equivalent. MDLE EBNF:

5.1. Equivalence-Enhanced Microservice Workflow 95

1 <Service> ::= <ID> <Description>
2 <ID> ::= "Service "String
3 <Description> ::= "{"[<Params>] <MSs>"}"
4 <Params> ::= "input:"|"output:" [<Variable> ","]
5 <MSs> ::= [Microservice]+
6
7 <Microservice>::="MS:"<MSID>"{" [<MSDetail>]+ "}"
8 <MSID>::=String
9

10 <MSDetail>::=<Timeout>|<Input>|<Output>|<Prior>
11 <Timeout>::="timeout:" [<Select_Rule> "."]+
12 <Input>::="input": [<MS_input> ","]+
13 <Output>::="output": [<MS_output> ","]+
14 <MS_output>::=<output_Variable> ["as" <Alias>]
15 <MS_input>::=[<Alias> "as"] <input_Variable>
16 <Alias>::=String
17 <Prior>:="priority:" "high"|"low"|"medium"

Figure 5.6: DSL EBNF Definition.

Fig. 5.6 defines the syntax of MDLE in EBNF. Some of the key features are as follows:

• Each service is identified by a unique id, ID. Params can either be input, which must be

passed when the service is invoked, or output, which is the returned execution result.

• A service comprises Microservices, identified by unique MSIDs, and containing additional

attributes.

• A microservice invocation comprises the following attributes: 1) the Input parameters

that specify the microservice’s invocation parameters; 2) the Output that specify what results

should be returned, which can be renamed to Alias; 3) the Priority of a microservice, which

can be high, medium, or low. Programmers can use the priority parameter to indicate which

equivalent microservice should be preferred to provide the required input; 4) the optional

timeout rules that specify the timeout values for each microservice. If the value is not

specified, a default timeout value is used.

Fig.5.7 shows an example MDLE script. The original outputs of microservices A, B, C

are a, b, c, and are aliased to x. Microservices A, B, and C are equivalent, and unless

96 Chapter 5. Workflow Support for Equivalent Functionalities

1 Service example {
2 output: y
3 MS: A { output: a as x
4 //priority: medium}
5 MS: B { output: b as x
6 //priority: medium}
7 MS: C { output: c as x
8 //priority: high}
9 MS: D {

10 input: x; output: y}}

Figure 5.7: Example Service Suite

explicitly specified, their priorities are medium by default. Hence, they should be executed

in a speculative parallel way. If line 4, 7 and 10 are uncommented, microservice C and the

speculative parallel of A and B should be orchestrated as fail-over.

Aliasing Output and Input: Amicroservice may require multiple inputs, and can generate

multiple outputs. To differentiate these inputs and outputs, a microservice developer assigns

different names to these inputs and outputs. In a service script, these names are identified as

input_Variable and output_Variable. MDLE uses alias to implicitly specify equivalent

microservices. Two or more microservices are considered equivalent if their output is set to

the same alias, which is a required input for another microservice.

Compiling a MDLE Script to a Workflow Graph: The MDLE compiler converts

dataflows into a workflow graph, via a bottom-up procedure. The compiler maintains a

dynamic set of nodes to process. The end node is inserted into the set first. Each node in

the set is processed in turn, with the newly added nodes replacing the processed ones: 1) if

the processed node requires more than one input, the parallel start and end nodes are added

to the graph, with each required input becoming a special single-input branch node; 2) if

multiple microservices can provide the input of the current node, a pair of corresponding

execution control nodes are added, so the data providing microservices become the branch

nodes of these control nodes; 3) if only one microservice provides the required input of the

5.1. Equivalence-Enhanced Microservice Workflow 97

current node, it is added to the graph directly. While adding these nodes to the graph, if

the current node already has an incoming edge, the new nodes are added between the edge’s

source node and the current node. The graph generation algorithm terminates once the

dynamic set is empty. If the same microservice is invoked in all branches of a control pair,

while being directly connected to the pair’s start node, the microservice is removed from all

branches and added before the pair’s start node.

5.1.4 Evaluation

We start with a case study of generating and executing a workflow. Then, we assess how our

solution improves reliability and efficiency, as compared with workflows without equivalence

and those without fine-grained lifecycle control.

Case Study Continuing with the aforementioned use case, Fig. 5.8 shows the MDLE

source code of the fireDetection service. Our workflow compiler and runtime are imple-

mented in Java. Figs. 5.9 and 5.10 show the generated workflows of fireDetection and

purchaseItemDetection, respectively.

Our execution parameters are 80% for the microservice execution success rate and a random

number from 1-500ms for the microservice execution time. To demonstrate how the runtime

works, we analyze the trace of one execution.

For use case 1, the ’Speculative Parallel Start’ node starts executing at 1ms by forking two

threads to execute the ’Parallel Start’ node and readFlameSensor. At 4ms, the ’Parallel

Start’ node forks two threads to execute getTemperature and getImage. At 318ms, getImage

finishes its execution, with inferSmokeDensity continuing on the same thread. At 471ms,

readFlameSensor finishes its execution, passing a succeeded signal to the ’Speculative Parallel

98 Chapter 5. Workflow Support for Equivalent Functionalities

1 Service fireDetection {
2 output:isFireDetected
3 MS: readFlameSensor {
4 output: confidence as firePossibility
5 priority: medium
6 }
7 MS: SensorFusion {
8 input: smokeDensity, temperature
9 output: firePossibility

10 priority: medium
11 }
12 MS: getTemperature {output: temperature}
13 MS: getImage {output: imageUrl}
14 MS: inferSmokeDensity {
15 input: imageUrl
16 output: smokeDensity
17 }
18 MS: thresholdCheck {
19 input: firePossibility
20 output: isFireDetected
21 }}

Figure 5.8: Source File of fireDetection Service Suite

EndStart

inferSmoke
Density

Threshold
Check

sensorFusion

readFlame
Sensor

Speculative
Parallel End

Parallel End

getImage

getTemperatureSpeculative
Parallel Start

Parallel Start

Figure 5.9: Generated Workflow for Use Case 1

EndStart

getItemID
FromLocation

getItemID
fromBarcode

Failover End

Speculative
Parallel End

estimateItem
Location

Failover Start

Speculative
Parallel Start

getBarcode
FromVideo

getShelf
fromVideo

estimateItemID
byWeight

getWeight
Change

Figure 5.10: Generated Workflow for Use Case 2

End’ node, waiting on the main thread. Upon receiving the signal, the ’Speculative Parallel

End’ interrupts its child threads, and then executes thresholdCheck. Upon receiving the

interrupt, the ’Parallel End’ node further interrupts its child threads, thus terminating the

execution of inferSmokeDensity. At 722ms, thresholdCheck finishes its execution, and the

5.1. Equivalence-Enhanced Microservice Workflow 99

Table 5.2: Average Results of 1000 Runs with Varying Execution Time

avg execution time 100 200 300 400 500
successful rate 0.714 0.706 0.695 0.721 0.687
ms execution 380 719 1072 1444 1845
finish time 226 433 652 844 1139

’End’ node outputs the result of thresholdCheck.

For use case 2, the ’Start’ node transitions to the ’fail-over Start’ node, which sets the

counter to 2 and the currentNode to ’fail-over End’, spawning a new thread to execute

the second branch, getBarcodeFromVideo. The microservice fails at 203ms, terminating its

thread and sending a failed signal to ’fail-over End’, which transitions to the ‘fail-over Start’

node to execute the first branch. At 327ms, getShelfFromVideo finishes its execution, and

the connected ‘Speculative Parallel Start’ node spawns two threads. At 790ms, the weight

change based approach finishes its execution and sends a succeeded signal to ‘Speculative

Parallel End’, which passes the output to the end node and terminates its child threads, still

executing estimateItemLocation.

Reliability and Cost efficiency To evaluate the reliability and cost efficiency of our

workflow framework, we first set the microservice success rate to 0.8, while varying the

average execution time between 100, 200, 300, 400, and 500 (ms). Table 5.2 shows the

results of 1000 runs for each parameter combination. We observe that the overall successful

rate is almost stable. The overall execution (i.e., cost) and completion times are proportional

to the average microservice execution time.

Then, we set the average microservice execution latency to 200ms, varying the microservice

success rate between 0.2, 0.4, 0.6, 0.7, 0.8 and 0.9. Table 5.3 shows the results of 1000 runs.

With the increase of the microservice success rate, the overall reliability and the overall

execution time increase. The successful execution of the first microservice causes additional

100 Chapter 5. Workflow Support for Equivalent Functionalities

Table 5.3: Average Results of 1000 Runs with Varying Reliability

reliability 0.2 0.4 0.6 0.7 0.8 0.9
ms execution 542 600 680 710 750 753
finish time 379 398 441 431 443 424
successful rate 0.034 0.193 0.363 0.543 0.718 0.872

microservice invocations.

We further compare our use case 1 solution with two alternatives: 1) without equivalence—

randomly execute one of the two equivalent methods; 2) without terminating—execute

the generated workflow graph without terminating any microservices in operation. We set

the microservice reliability to 0.8 and the average latency to 100ms, repeating the simula-

tion 1000 times. Table 5.4 shows that in comparison to without equivalence, our solution

improves the reliability by 45.9%, reduces the completion time by 24.7%, with the cost of

the overall microservice execution time (which can be taken as the resource cost) increasing

by 37.7%. Compared to without terminating, our solution reduces execution time (i.e.,

cost) by 27.3%.

We compare use case 2’s execution results with those of the aforementioned two alternatives,

parameterized identically. Table 5.5 shows that compared with without equivalence, our

solution improves the reliability by 60%, while the overall cost and completion time increase

by 11.4% and 3.8%, respectively. Compared to without terminating, our solution reduces

the execution time (i.e., cost) by 3.9%.

The results of both use cases show that our solution enhances the reliability of microservice-

based applications. Due to its fine-grained lifecycle execution control, our solution eliminates

the costs of executing microservices that have become unnecessary, a particularly effective

optimization for the parallel and speculative parallel execution patterns.

5.1. Equivalence-Enhanced Microservice Workflow 101

Table 5.4: Comparison among Three Solutions for Use Case 1

successful rate execution time finish time
our method 0.706 380 226
without equivalence 0.484 223 300
without terminating 0.706 523 226

Table 5.5: Comparison among Three Solutions for Use Case 2

successful rate execution time finish time
our method 0.888 308 259
without equivalence 0.555 276 250
without terminating 0.888 320 259

5.1.5 Discussion

Based on the evaluation results, we revisit some of the design decisions behind our workflow

and MDLE.

Supported Workflow Constructs Although our workflow lacks the “if-else” switch and

the “while” loop control patterns, in line with other dataflow-based DSLs [68], we discuss

how they can be added to the workflow and MDLE. Adding the “while” loop to the workflow

can be treated as a special variant of sequential execution, without spawning any threads.

The the switch branches of “if-else” can join in one microservice. For example, to identify

a person in a video: if a face image is detected, invoke a face recognition microservice;

otherwise, invoke a gait recognition microservice. With the two branches in a “if-else”

switch generating the same output, the runtime can execute these switches sequentially. A

dataflow-based DSL can encapsulate the “while” conditions within microservices and express

the “if-else” switch by conditionally aliasing microservice outputs.

Syntactic Support for Equivalence To support equivalence, programmers must specify:

1) which microservices are equivalent; and 2) how to orchestrate their execution. A dataflow-

based DSL can use other alternatives as well. For example, a ∗ b− c can denote that a, b, c

102 Chapter 5. Workflow Support for Equivalent Functionalities

are equivalent and orchestrated to execute a, b first speculatively parallel and then execute

c if both a, b fail.

However, we choose aliasing and priority to implicitly denote equivalence and orchestrations

as: 1) an alias has a unique meaning throughout an application. Aliasing the output in a

microservice clearly expresses that the output has its correct physical meaning, thus avoiding

programming errors; 2) in the presence of multiple equivalent microservices, programmers

only have to decide which microservice’s QoS features express the requirements, without

having to explicitly orchestrate microservice execution. Our design shifts the burden of

orchestrating equivalent microservices from the programmer to the compiler.

5.1.6 Conclusion

We add programming support for equivalence in microservice-based applications by intro-

ducing a dataflow-based DSL that extends the notion of dataflow with declarations of equiv-

alent microservices and their execution patterns. Our new equivalence workflow constructs

enable the automatic generation of reliable and efficient microservice execution workflows.

Supporting equivalence enhances the reliability of microservice-based applications, while our

workflow design enhances their cost efficiency.

5.2 Workflow Meta-Pattern for Equivalent Microser-

vices

One of the major challenges in provisioning mobile services is achieving QoS-optimality [41,

168]. Because edge and IoT environments are less dependable than traditional cloud envi-

ronments, mobile services are often unreliable and untrustworthy. When it is mobile and

5.2. Workflow Meta-Pattern for Equivalent Microservices 103

energy-harvesting devices that provide edge resources, the resulting services become vulnera-

ble to partial failure and low reliability [41, 168]. Besides, operated in physically unprotected

environments, devices can be compromised to report false information, so the services they

provide become untrustworthy [31]. Moreover, the resource constraints of these devices

render their services more sensitive to execution cost and latency.

The microservice architecture isolates business functionalities into fine-grained building blocks [55],

and applies workflow patterns [165] to assemble the resulting microservices into services. Mi-

croservices are considered equivalent if they satisfy the same requirements by different means

(e.g., authenticating a user via a password, biometrics, SMS, or touchscreen patterns). The

reliability and trustworthiness of mobile services can be improved by exploiting the combined

execution of equivalent microservices [15, 153].

Workflow patterns describe common execution strategies that solve recurrent problems in

process-oriented applications. Workflow patterns that describe combined executions of

equivalent microservices include failover, speculative parallel, and majority voting. These

workflow patterns provide the same functionality, while enhancing certain QoS characteris-

tics (e.g., speculative parallelism for performance, failover for reliability, and majority voting

for trustworthiness). However, intended for a small number of equivalent microservices, these

workflow patterns’ crude-grained execution strategies cannot achieve optimal QoS for larger

microservice numbers. Consider improving accuracy: with up to several equivalent microser-

vices, majority voting improves accuracy without incurring unreasonable microservice usage

fees. However, with a larger number of equivalent microservices, their usage fees to execute

this pattern can become prohibitive.

As compared to coarse-grained patterns, fine-grained patterns can balance QoS character-

istics better. For example, to better balance cost and accuracy as compared to majority

voting, some equivalent microservices can be executed first, with their results’ coherence

104 Chapter 5. Workflow Support for Equivalent Functionalities

examined to determine whether to execute the remaining ones [15]; to improve reliability

while controlling for costs and latency, approximation algorithms are applied to discover an

optimal execution strategy [20, 57].

However, fine-grained workflow patterns are hard and error-prone to express, implement,

and maintain. Customizing workflow patterns in general-purpose programming languages is

tedious, as it requires synchronizing multi-threaded execution and data exchanges. A fine-

grained pattern can also be formed by nesting crude-grained patterns, but this approach

suffers from several drawbacks: 1) some fine-grained patterns need to access the execution

results of all constituent microservices, while some crude-grained patterns may not output

their intermediate results; 2) nesting workflow patterns is hard to express and understand

(i.e., to elucidate a nested workflow pattern, workflow expressions are accompanied by flow

charts [20]).

This work introduces a workflow meta-pattern that declaratively specifies fine-grained work-

flow patterns for the combined execution of equivalent microservices. In particular, our

meta-pattern describes a fine-grained workflow pattern as 1) an algebraic expression that

denotes the invocation sequences of equivalent microservices and 2) a Boolean function that

determines whether to terminate the execution. To demonstrate how our meta-pattern can

concisely and flexibly express the combined execution of equivalent microservices on differ-

ent programming platforms, we implemented it as a Scala library and a YAML-based DSL.

We further integrated the resulting workflow patterns into realistic mobile services. We

evaluated these integrations to determine how effectively our approach optimizes the QoS of

mobile services and how much programmer effort it requires as compared to the state of the

art.

The contribution of this work is three-fold:

5.2. Workflow Meta-Pattern for Equivalent Microservices 105

(1) We introduce a meta-pattern for declaratively specifying fine-grained patterns that de-

scribe the combined execution of equivalent microservices to improve QoS.

(2) We concretely implement our meta-pattern in Scala and YAML to provide programming

support for composing QoS-optimal mobile services.

(3) We apply our reference implementation to compose several practical mobile services and

empirically evaluate their QoS characteristics in dissimilar execution environments.

5.2.1 Background

We introduce workflow patterns as well as mobile and IoT services, background required to

understand our contribution.

Workflow Patterns In SOA, workflow patterns serve as basic building blocks. Based

on their application targets, workflow patterns divide into multiple categories: control flow,

resource, data, and error handling patterns. We use the following control flow [179] to

introduce a meta-pattern for generating fine-grained workflows for the combined execution

of equivalent microservices:

• XOR Split: connects to multiple microservices that can be invoked. Only one branch

executes given a condition.

• AND Split: connects to multiple microservices that can be invoked, with all branches

executing in parallel.

• AND Join: connects from multiple microservices; the following process continues only

upon receiving all results.

106 Chapter 5. Workflow Support for Equivalent Functionalities

• Cancelling Discriminator: connects from multiple microservices; the following process

continues upon receiving any result, with the remaining branches terminated.

• Cancelling Partial Join (a.k.a, M-out-of-N join): connects from N microservices; the

following process continues upon receiving M results, with the remaining branches

terminated.

Existing Patterns for Equivalent Microservices Several well-known workflow pat-

terns describe the combined execution of equivalent microservices. As shown in Fig. 5.11,

failover [2] improves reliability by switching to equivalent microservices upon failure; specu-

lative parallel execution [82, 153] executes multiple equivalent microservices simultaneously

and uses the first result to improve both reliability and latency; majority voting [185] com-

pares the execution results of multiple equivalent microservices and outputs the mostly likely

result to improve trustworthiness.

Mobile and IoT services As edge computing technologies evolve, mobile and IoT services

become possible [29, 131]: mobile and IoT devices at the edge expose their sensing and

computing capabilities as services, accessed by nearby client devices.

Equivalent microservices are common in mobile environments: 1) recognizing facial images

using services provided by different vendors [15]; 2) authenticating users by means of a

password, biometrics (fingerprint, iris or facial image), SMS, or touchscreen patterns [108,

135]; 3) detecting atmospheric particulate matter value (PM2.5) by reading from a portable

PM2.5 sensor, estimating from images [100], or invoking the web service of the nearest

environmental station; detecting crowds by reading a weight sensor, recognizing persons

from the area’s camera image[92], using an entrance-exit counting device, or counting WiFi

beacons[143].

5.2. Workflow Meta-Pattern for Equivalent Microservices 107

Start Eqv MS A XOR
Split Eqv MS B XOR

Split Eqv MS C

Succeed

FailXOR
Split

(a) the Fail-over Pattern

Start AND
Split

Eqv MS A

Eqv MS B

Eqv MS C

Cancelling
Discriminator End

(b) the Speculative Parallel Pattern

Start AND
Split

Eqv MS A

Eqv MS B

Eqv MS C

AND
Join End

(c) the Majority Voting Pattern

Result
Process

Figure 5.11: Combined Execution of Equivalent Microservices A, B, and C

When provisioning mobile services, QoS-optimality is hard to achieve [41, 168]. The mo-

bility and diversified ownership of these devices lead to low reliability and trustworthiness.

The combined execution of equivalent microservices can improve these QoS characteristics.

However, compared with web service composition, mobile services pose two unique chal-

lenges: 1) the variety and number of equivalent mobile services are significantly larger as

compared with web services, as data-rich mobile environments feature multiple ways to sat-

isfy the same requirement while microservices provided by different mobile devices are also

considered equivalent [152]; 2) mobile services are provided in resource constrained environ-

ments, rendering them more in need of QoS optimality. Next, we demonstrate by example

how a larger number of equivalent microservices requires a fine-grained workflow pattern to

optimize service QoS.

108 Chapter 5. Workflow Support for Equivalent Functionalities

5.2.2 Motivating Scenario

Authentication, expression analysis, and emotion recognition rely on detecting and locating

faces in images and videos. Facial detection are provided as web services by different vendors

and as deployable mobile services [15]. However, none of these equivalent microservice is

100% accurate, as the quality of input images and videos affect the accuracy of these func-

tionalities [74]. To improve accuracy, the majority voting pattern has been applied [172],

which executes all alternatives simultaneously, and waits till receiving all results to determine

the final output. We use facial detection as an example to demonstrate how fine-grained

patterns improve overall QoS as compared with majority voting and the problems in con-

structing such patterns.

Fine-Grained Patterns for Optimizing QoS Alas, majority voting improves accuracy

at the expense of increasing execution latency and cost: the additional latency is incurred

by the necessity to wait for those microservices that takes longer to execute, while the

additional cost is incurred by the necessity to invoke all equivalent microservices. In the

presence of equivalent microservices whose execution latency or cost is unusually high, a

more fine-grained workflow pattern can better optimize the QoS of the combined execution

of equivalent microservices.

To demonstrate how fine-grained workflow patterns work, we denote three equivalent mi-

croservices as “A”, “B”, and “C”. To increase accuracy while reducing the overall execution

latency, example pattern 1 executes “A”, “B”, and “C” simultaneously, and terminates

upon receiving two coincident results. If the first two results are the same, the execution can

terminate without waiting for the third result, which could incur unusually high latency. To

increase accuracy while reducing the overall cost, example pattern 2 first executes “A”

and “B” simultaneously, and waits for both of their results. If “A” and “B” return the same

5.2. Workflow Meta-Pattern for Equivalent Microservices 109

result, output it as final; otherwise, execute “C” and output the results agreed upon by any

two microservices.

Start AND
Split

Eqv MS A

Eqv MS B

Eqv MS C

Canceling
Partial Join End

(a) Fine-grained Pattern 1: Optimized for Latency Efficiency

Result
Process

condition: x% of results are consistent

Start AND
Split

Eqv MS A

End

(b) Fine-grained Pattern 2: Optimized for Cost Efficiency

Eqv MS B

AND
Join

XOR
Split Eqv MS C

Start AND
Split

Eqv MS A

Succeed

Eqv MS D

AND
Join

XOR
Split

Eqv MS B

Eqv MS C

80% Results are Coincident

AND
Split

Eqv MS E

Eqv MS H

AND
Join

Eqv MS F

Eqv MS G

XOR
Split

80% Results are Coincident

Fail

(c) Fine-grained Pattern 3: 8 Equivalent Microservices

Figure 5.12: Fine-grained Combined Execution of Microservices A, B, and C

Problems with Expressing Fine-Grained Patterns Fig. 5.12 demonstrates how work-

flow constructs can express the aforementioned fine-grained patterns. For the pattern in Fig.

110 Chapter 5. Workflow Support for Equivalent Functionalities

5.12.a, we change the semantics of the standard construct “M-out-of-N join” from “terminat-

ing upon receiving M results from N branches” to “terminating upon a certain condition,”,

i.e., “two received results coincide” in our case.

Although standard pattern constructs can fully support the pattern in Fig. 5.12.b, the re-

quired number and complexity of workflow constructs would be much higher than in the

standard majority voting pattern. As the number of equivalent microservices grows, ex-

pressing such patterns would become unwieldy. For example, example pattern 3 can be:

for 8 equivalent microservices, execute every four in a row, and continue to execute the next

row of four microservices only if less than “80%” of previous results coincide. It takes 6

workflow constructs to express this pattern, while the condition of “80% of all results coin-

cide” needs to be repeated twice (Fig. 5.12.c). To make things worse, the “XOR split” needs

the execution results of all equivalent microservices to determine the next step, while these

results serve as intermediate information and are not exposed to these external “XOR split”

constructs.

The necessity to change the semantics and data access of basic workflow constructs makes

nesting workflow constructs tedious and error-prone, while unwieldy nested workflow pat-

terns are hard to understand and maintain. These shortcomings motivate the need for

dedicated programming support for the fine-grained combined execution of equivalent mi-

croservices.

5.2.3 Meta-pattern Design and Implementation

To express and manage the combined execution of equivalent microservices, we design a

meta-pattern that generates workflow patterns with the following properties:

1. Applicable to microservices that are equivalent;

5.2. Workflow Meta-Pattern for Equivalent Microservices 111

2. The generated workflow shares the same input and output with its constituent mi-

croservices, thus providing the same functionality;

3. Compared with its constituent microservices, the generated workflow improves at least

one QoS characteristic.

Next, we introduce the syntax, semantics, design rationale, and visualization of our meta-

pattern, as well as its applicability and runtime support.

Meta-Pattern Syntax and Semantics Formally, the meta-pattern expresses a pattern

as a triple m =< θ, ζ, ω >:

• θ: a set of equivalent microservices;

• ζ: an invocation sequence, an expression that denotes the complete execution order of

the equivalent microservices;

• ω: a terminating condition, a Boolean function that takes as input the receive results

of microservices’ executions and outputs whether to terminate the workflow execution.

For example, the workflow pattern in Fig. 5.12.b can be expressed by Fig. 5.13. It describes

a sequence of “executing A and B in parallel first (i.e., A∗B), and then C (i.e., −C)”, which

can be short-circuited upon reaching the condition: the mostly agreed upon result should

reach at least 60% of all received votes.

1 m_1=< θ = (A, B, C),
2 ζ = A*B-C,
3 ω = mostVotedResult.votes/totalVotes>=0.6 >

Figure 5.13: Meta-Pattern for Expressing Fine-Grained Pattern 2

An invocation sequence is expressed by a set of equivalent microservices and the operators

connecting them into an expression. The binary operators − and ∗ denote a sequential and

112 Chapter 5. Workflow Support for Equivalent Functionalities

a parallel execution, respectively. For example, given two equivalent microservices a and b,

a− b expresses that the microservices are to be executed in sequence from left to right, while

a ∗ b expresses that the microservices are to be executed in parallel. Notice that because the

− and ∗ operators take equivalent microservices as their operands, the traditional built-in

operator precedence is slightly altered. For example, for the invocation sequence a − b ∗ c,

a is executed first; then b and c are executed in parallel. The parentheses operators denote

that the invocation sequence inside a pair of parentheses is considered as one equivalent

microservice. For example, a ∗ b − c means to execute a and b in parallel first and then c,

while a ∗ (b− c) means to treat b− c as an equivalent microservice, and execute a and b− c

in parallel. Fig. 5.14 gives the EBNF grammar of an invocation sequence.

1 invokeSeq(ζ) ::= f|(f)|f-f|f*f, ∀f ∈ θ

Figure 5.14: EBNF Definition for Invocation Sequence Specification

An invocation sequence can terminate at different points between runs. In the example in

Fig. 5.13, “C” would be executed only of “A” and “B” return different results. Terminating

conditions control such variability across runs.

Design Considerations Our meta-pattern for the combined execution of equivalent mi-

croservices describes a workflow pattern as an invocation sequence of microservices that is

short-circuited upon reaching a specified condition. Two observations inform our design:

1. For the combined execution of equivalent microservices, different terminating condi-

tions determine which QoS characteristic to enhance, while different invocation se-

quences determine how to balance the remaining QoS characteristics. Common ter-

minating conditions include: any results is received (to enhance reliability) and the

received results coincide (to enhance trustworthiness). The equivalent microservices

5.2. Workflow Meta-Pattern for Equivalent Microservices 113

are executed either in parallel or in sequence; the parallel execution incurs additional

cost but shortens latency, and the sequential execution is vice versa. To optimize

service QoS, one can vary the terminating conditions and the invocation sequences of

equivalent microservices.

2. An invocation sequence cannot be altered, only continued or discontinued. The gener-

ated patterns only apply to equivalent microservices, so a microservice’s result cannot

serve as a control flow condition that determines which microservice to execute next.

Hence, an invocation sequence is expressed with no control flow constructs, with “-”

and “*” denoting sequential and parallel invocations, respectively.

Specifying and Visualizing Patterns We first reflect on three intrinsic properties of

invocation sequences, and then describe how these properties inform the rules for expressing

patterns. Finally, we show how patterns can be depicted as flowcharts.

Observation 1: The parallel operation is commutative, while the sequential one is not, e.g.:

a ∗ b = b ∗ a, while a− b ̸= b− a.

Whether two invocation sequences are equivalent depends on whether they express the same

execution control logic. a ∗ b means to execute a and b in parallel, while b ∗ a also means

to execute a and b in parallel. In contrast, a− b means to execute a first and then b, while

b− a means to execute b first and then a. Hence, a ∗ b = b ∗ a, while a− b ̸= b− a.

Observation 2: Both the parallel and sequential operators are associative, e.g.: a− b− c =

(a− b)− c = a− (b− c), and a ∗ b ∗ c = (a ∗ b) ∗ c = a ∗ (b ∗ c).

a − b − c means to execute a first, then b, and then c. (a − b) − c and a − (b − c) express

exactly the same execution control logic. The same argument applies to a ∗ b ∗ c, (a ∗ b) ∗ c

and a ∗ (b ∗ c).

114 Chapter 5. Workflow Support for Equivalent Functionalities

Observation 3: Parenthesis are only required to disambiguate expressions that contain the

“−” operator (not nested in other parenthesis), with the “∗” operator appearing right before

or after the expression’s parenthesis. E.g.: (a− b) ∗ c ̸= a− b ∗ c, (a ∗ b− c) ∗ d ̸= a ∗ b− c ∗ d,

while a− (b ∗ c) = a− b ∗ c.

There are three different possible operator combinations inside and outside parenthesized

expressions: (1) no un-nested − inside, e.g., (a∗ b)− c, a− (b∗ c)−d, (a∗ b)∗ c, a∗ (b∗ c)∗d,

a− (b∗ c)∗d, or
(
(a− b)∗ c

)
−d (the outside parenthesis); (2) an un-nested − inside, with no

direct connections to ∗ right outside, e.g., (a ∗ b− c)− d, or a− (b− c)− d; (3) an un-nested

− inside, with at least one connected ∗ right outside, e.g., (a − b) ∗ c, a ∗ (b − c) − d, or

a− (b− c)∗d. The parentheses in (1) and (2) can be removed based on observations 1 and 2

above. However, the parentheses in (3) cannot be removed, as (a−b)∗c and a−b∗c expresses

different execution logic: (a− b)∗ c executes a and c in parallel, and will not execute b unless

a returns a failure before c successfully returns; a− b ∗ c executes a first and then b and c in

parallel.

Based on these observations, the following conventions should be followed to ease readability

and maintainability:

1. If equivalent microservices can be switched without altering the semantics, an invoca-

tion sequence should list the microservices in the alphabetical order of their names.

2. An invocation sequence should contain only irremovable parentheses (see Observation

2 and 3).

Visual programming interfaces commonly integrate workflow patterns. To ease the integra-

tion of the generated patterns, we introduce the following visual abstractions to express an

generated pattern: 1) an “Eqv Start” Node that connects to all equivalent branches, speci-

fying the invocation sequence (i.e., M.ζ); 2) a set of equivalent branches (M.θ); 3) an “Eqv

5.2. Workflow Meta-Pattern for Equivalent Microservices 115

End” Node that connects from all equivalent branches, specifying the terminating condition

(M.ω). Fig. 5.15 demonstrates how these abstractions visualize the aforementioned example

pattern 3. To express this fine-grained pattern, our visual abstractions are more flexible and

concise than those offered by the nested workflow patterns shown in Fig. 5.12.c.

Start Eqv Start:
A*B*C*D - E*F*G*H

Eqv MS A

Eqv End:
80% Results are Coincident

Succeed

Fail

Eqv MS B

Eqv MS H

...

Figure 5.15: Expressing Fine-grained Pattern 3 With Meta-Pattern

Runtime Support for Executing Patterns Executing the workflow patterns specified

by our meta-pattern requires dedicated runtime support. The flowchart in Fig.5.16 explains

the execution logic for this runtime support:

• S0: to start executing, a workflow pattern receives input parameters and then transi-

tions to state S1, “execute next equivalent microservices”.

• S1: based on ζ, determine which microservices to execute next and initialize them,

transitioning to state S2, “waiting for any results to be returned”.

• S2: wait to receive any microservice execution result or for the overall execution to

timeout. Upon timeout, transition to the“failure” state. Upon receiving a result,

persist it with the other microservice execution results, transition to state S3, “applying

the terminating condition.”

116 Chapter 5. Workflow Support for Equivalent Functionalities

S1: Execute next
Equivalent Microservices

R
ec

ei
ve

d

Timeout

No

YesS3: Is Terminating
Condition Satisfied?

StartS0: Start

StartFail

StartSucceed&
Pruning

S4: Microservice
Still Running?

Yes

S5: Unfinished
 Sequence?

No

NoYes

Add Result to
Set

S2: Wait for Results

Figure 5.16: Runtime Support for Executing Generated Patterns

• S3: apply the terminating condition ω, output a Boolean value indicating whether to

terminate the execution. If true, transition to the final state,“success and pruning”,

which terminates all unfinished microservices and outputs the final result; Otherwise,

transition to state S4, “checking whether there is any microservice running.”

• S4: If no microservices are still running, transition to state S5, “checking if the invo-

cation sequence has reached the end;” otherwise, transition to state S1.

• S5: check if there are still microservices in ζ waiting to be executed. If true, transition

to state S0; otherwise, transition to the “failure” state.

5.2. Workflow Meta-Pattern for Equivalent Microservices 117

5.2.4 Reference Implementation and Evaluation

We implement our meta-pattern design as a Scala library for functional programming and a

YAML DSL for edge services, respectively. We demonstrate that the meta-pattern is expres-

sive enough to generate fine-grained workflows that enhance the performance of mobile/IoT

services. Our evaluation shows that compared with crude-grained patterns, the generated

fine-grained patterns improve the overall QoS.

Reference Implementations Scala: The Scala-based reference implementation (Scala

SDK 2.12.8) comprises approximately 870 lines of code (ULOC). To allow any set of functions

with the same signature to represent equivalent microservices, the library features a generic

function container and an invocation sequence class. Each constituent function is wrapped

into a container object, whose operators - and * are overloaded to generate an invocation

sequence. The Scala compiler checks if all functions forming an invocation sequence share

the same signature. An invocation sequence sets its terminating condition by calling the

terminate method, and executes the equivalent functions by calling the overridden apply

method, returning a mapping of (functionName, executeResult).

We observe that an invocation sequence naturally maps into a tree structure that can serve

as its runtime representation. The tree structure’s nodes have three types: leaf, sequential,

and parallel. A leaf is an equivalent functionality. A sequential node has its left and

right children, and a parallel node has two or more child nodes.

Algorithm 2 explains how to implement the runtime using the tree structure. To create and

manage concurrency, our implementation uses the Future, Promise, and concurrentMap APIs.

A concurrent access protected key-value data structure (resultMap) maps the completed

equivalent functions and their results. A recursive procedure starts from the tree structure’s

118 Chapter 5. Workflow Support for Equivalent Functionalities

Algorithm 2 Execute a Specified Meta-pattern
Input: p: execution parameter; < θ, ζ, ω >
Output: r: result
1: execute(ζ.root)
2: function execute(t:Tree)(Boolean)
3: switch t.Type do
4: case Leaf(v)
5: resultMap ← resultMap + (v.funcName, v.func(p))
6: return terminator.check(resultMap)
7: case SequentialNode(left, right)
8: if execute(left) then
9: return true
10: else
11: return execute(right)
12: end if
13: case ParallelNode(chidren)
14: fSet← ∅
15: for each c ∈ children do
16: fSet ← fSet + Future(execute(c))
17: end for
18: Wait any f ∈ fSet.Complete:
19: if f==True then
20: return True ▷ Early Termination
21: else if fSet.all.isCompleted then
22: return False
23: else
24: continue Wait
25: end if
26: end function

root node, and returns true, as soon as the terminating condition is fulfilled. Upon reaching

a leaf node, its equivalent function is executed, with the result stored in the key-value

structure. All the stored results are checked after each completed function if the pattern’s

terminating condition has been fulfilled (line 6). For a sequential node, its left node is

executed first, followed by executing its right node if the recursive procedure of its left

node returns false. For a parallel node, all child nodes are executed in parallel, and the

parallel node waits for the results of these recursive procedures. If any of the child nodes

fulfills the terminating condition and returns true, the parallel node returns true (line 20)

and the parallel execution is terminated without waiting for the other branches to complete.

Otherwise, it continues to wait, until all child nodes’ executions fail to fulfill the terminating

condition and return false. After the recursive procedure completes, it returns the stored

final results to the caller.

5.2. Workflow Meta-Pattern for Equivalent Microservices 119

YAML: To demonstrate how our meta-pattern can be integrated into the state of the

practice workflow orchestration languages, we apply the BPEL design to implement a YAML-

based procedural language for declaratively specifying patterns. A YAML parser in Scala

parses YAML scripts to be further processed by our Scala library.

GatewayEnd User Mobile and IoT devices
owned by individuals

Mobile
Microservices

Mobile
Service

Figure 5.17: System Components for Provisioning Mobile Services

Applying Meta-Pattern to Mobile Service We adopt the mobile services provisioning

system model introduced in [151]. In particular, the system features a local gateway that

collects the available microservices, provided by mobile and IoT devices. For a given mobile

service request with reliability, trustworthiness, and QoS-optimality requirements, the gate-

way orchestrates the combined execution of equivalent microservices, provided by mobile

and IoT devices, which can be unreliable and untrustworthy.

Enhancing Service’s Accuracy: To detect faces, developers can choose proprietary cloud

services (IBM1, Microsoft2, and Face++3) or deploy open-source libraries as edge services

(deep learning based4 and openCV Cascade classifier based5). Fig. 5.18 shows how with

our Scala library, a fine-grained workflow pattern that enhances service accuracy can be

implemented in 4 lines of code. Lines 1-11 implement microservices ibm, ms, face, dl

, opencv, taking a String (i.e., image file) and returning a Boolean (i.e., face detected).
1https://www.ibm.com/watson/services/visual-recognition/
2https://azure.microsoft.com/en-us/services/cognitive-services/face/
3https://www.faceplusplus.com/face-detection/
4https://github.com/ageitgey/face_recognition
5https://docs.opencv.org/3.4/d1/de5/classcv_1_1CascadeClassifier.html

https://www.ibm.com/watson/services/visual-recognition/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://www.faceplusplus.com/face-detection/
https://github.com/ageitgey/face_recognition
https://docs.opencv.org/3.4/d1/de5/classcv_1_1CascadeClassifier.html

120 Chapter 5. Workflow Support for Equivalent Functionalities

1 // invoke a web service:
2 def ibm(image:String):Boolean = {...}
3 def ms(image:String):Boolean = {...}
4 def face(image:String):Boolean = {...}
5 // invoke an edge service:
6 def dl(image:String):Boolean = {
7 val reg = new EdgeReg() //connect to an edge gateway
8 val edgeService = reg.query("deepLearningFaceDetection")
9 result = edgeService.execute(image)

10 }
11 def opencv(image:String):Boolean = {...}
12 // Specify equivalent microservices
13 val (e1, e2, e3, e4, e5) = (eqv(ibm), eqv(ms), eqv(face), eqv(dl), eqv(opencv))
14 // Specify an invocation sequence
15 val seq = e4*e5 - e1*e2*e3
16 // Specify a terminating condition
17 seq.terminate(majorityVoting())
18 // Execute and process result
19 val result = seq('img.jpg').groupBy(_._2).maxBy(_._2.size)._1

Figure 5.18: Specifying Mobile Service in Scala Library

Line 13 wraps them up in equivalent microservice containers. Line 15 uses the overloaded

operators to declare an invocation sequence, and Line 17 sets the terminating condition for

the invocation sequence. Line 19 executes the specified pattern with the input of “img.jpg”

and obtains the execution result that is agreed by most microservices.

Enhancing Service’s Reliability: Edge environments typically feature multiple sensors,

whose input can be used to satisfy the data requirements of an edge service. Consider a

service that obtains ambient temperature. Ambient temperature can be obtained by: 1)

directly reading a local temperature sensor (readTempSensor); 2) estimating based on the

CPU temperature of an edge computer [84] (estTemp); 3) reading from a web service based

on the current location (readLocationTemp). In most edge environments, the readTempSensor

microservice is first executed to provide a low-latency, low-cost, and accurate temperature

reading. However, if some microservices are unavailable in a given environment, estTemp

and readLocationTemp are executed next in parallel as fail-over to guarantee an acceptable

latency. Fig. 5.19 shows a YAML script file that expresses the workflow pattern for imple-

5.2. Workflow Meta-Pattern for Equivalent Microservices 121

menting service getTemp. In particular, the invocation sequence is specified in Line 2, and

the terminating condition is specified in line 3.

1 id: getTemp
2 executionSeq: e1 - e2*e3
3 terminate: anyResult
4 microservices:
5 - {id: e1, microservice:readTempSensor}
6 - {id: e2, microservice: estTemp}
7 - {id: e3, microservice: getLocationTemp}

Figure 5.19: Specifying Mobile Service in YAML Script

Performance Evaluation Enhancing Accuracy:
id func cost latency (ms) accuracy
e1 IBM 400 95 0.918
e2 MS 100 74 0.737
e3 Face++ 50 96 0.898
e4 DL-based 2 56 0.642
e5 openCV-based 2 66 0.676

Table 5.6: QoS of Facial Detection Microservices

To verify how the generated workflow patterns work for the aforementioned application

scenario, we use the image dataset collected from WiKi [74] as an alternative for human

labeling, in which each image contains a face. We deploy the edge services on a Dell desktop

with a i7-4790@3.6GHz processor and 16GB RAM. Table 5.6 shows the average latency,

accuracy, and cost of each equivalent microservice. The cost of invoking the web services

provided by IBM, Microsoft, and Face++ are $0.004, $0.001, and $0.0005 per request, re-

spectively. Assuming the average electricity rate of $0.12 per kWh, and the power supply of

the experimental desktop of 0.65kW, the costs of microservices become 400, 100, 50, 2, and

2, respectively.

Table 5.7 compares the QoS of crude-grained majority voting and fine-grained patterns

generated by our meta-pattern. We observe that: 1) the generated plan can be extremely

cost/latency efficient by first executing the two open source implementations deployed at the

122 Chapter 5. Workflow Support for Equivalent Functionalities

invocation sequence accuracy cost latency
Crude-grained Majority Voting 0.859 554 97
e4 ∗ e5 − e2 0.739 23 81
e4 ∗ e5 − e3 0.812 13 85
e1 ∗ e3 ∗ e5 0.908 452 95
e3 ∗ e5 − e1 0.908 110 110
e2 ∗ e3 − e1 0.939 311 134

Table 5.7: QoS of Facial Detection Services

edge. Compared with invoking the IBM web service, the generated pattern saves as much

as 97% of the execution cost, while reducing the accuracy by 13%; 2) the workflow pattern

e3 ∗ e5 − e1 strikes a good balance between accuracy and cost. By invoking a low-cost web

service and an open-source implementation first, the execution gains more accuracy than

when using the two cost-efficient open source implementations. Compared with invoking

the IBM service, the generated pattern saves 72.5% of execution cost, while the accuracy

only decreases by 3.2%; 3) compared with the crude-grained majority voting pattern, the

generated patterns on average reduce the cost by 67.6%, with less than 3% differences in

accuracy and latency. This observation confirms our motivation: fine-grained workflow

patterns do optimize performance.

Pattern Invocation Sequence Reliability Latency Cost
Speculative Parallel e1 ∗ e2 ∗ e3 100% 56 ms 148
Fine-Grained e1 − e2 ∗ e3 99% 69 ms 74.5

Table 5.8: QoS of Service “getTemp”

Enhancing Reliability: The execution environment features a mobile device (Moto G6)

that queries the “getLocationTemp” microservice, a temperature sensor (Raspberry Pi 3

and DS18B20) for “readTempSensor”, and an edge server (ThinkCentre M900 Tiny) for

“estTemp”. The sensor is only available for 60% of all requests. We further set the cost for

executing each microservice to 50 points. Table 5.8 compares the reliability, latency, and cost

of the speculative parallel execution and the fine-grained workflow pattern. The fine-grained

pattern reduces the average latency by 49.7%, at the expense of 23.2% additional latency,

as compared with the speculative parallel workflow pattern.

5.2. Workflow Meta-Pattern for Equivalent Microservices 123

5.2.5 Conclusion

We have presented a meta-pattern that declaratively expresses fine-grained workflow patterns

for the combined execution of equivalent microservices to improve QoS. The meta-pattern

declaratively specifies a fine-grained pattern as a set of equivalent microservices, an invoca-

tion sequence, and a terminating condition. Our evaluation demonstrates that our approach

is expressive and effective, presenting a viable solution that helps conquer the complexity of

reliable, accurate, and efficient execution in distributed execution environments with scarce

and unreliable resources.

Chapter 6

Adaptive Edge Services

Edge computing coordinates sensing, computation, and data storage resources at the edge of

the network [148]. Being within the direct communication range of each other and the client,

resource-providing edge devices offer the communication latency lower than that of cloud-

based servers [47]. One way to expose edge-based resources to application programmers is via

the service-oriented architecture (SOA). A service coordinates the execution of edge-based

distributed tasks, implemented as edge microservices [153].

When it comes to provisioning services, cloud-based systems coordinate the execution of

abundant and reliable resources. In contrast, edge-based systems coordinate the execution

of unreliable and dynamic resources. The execution failure ratio of edge services tends to

be higher than that of cloud services [9, 87], as it is often mobile or energy-harvesting [49,

111, 180] devices that supply edge resources. In edge environments, an execution can fail for

multiple reasons: a mobile device moves out of communication range; an energy harvesting

device becomes temporally unavailable, driven into sleep mode; a speech recognizer fails

due to noise. Besides, cloud service vendors can always cost-efficiently allocate the required

amount of pre-deployed resources, while edge services may need to be provided in diverse

edge environments with dissimilar and often scarce resources [17].

To improve reliability, the state of the practice for cloud systems is to deploy replicated

services on redundant cloud resources. On the contrary, edge systems rely on resource-

scarce edge devices, rendering the replication solution inapplicable. Considering the wide

124

125

range of sensors and data processing methods at the edge, our previous work MOLE [153]

takes advantage of equivalent microservices, which provide the same functionality by different

means and rely on dissimilar resources (e.g., (1) camera/image analysis, (2) motion sensors,

and (3) wireless signal, used in place of each other for indoor localization [26]). These

equivalent microservices can be executed in the fail-over pattern to improve reliability with

minimal costs or in the speculative parallel pattern to improve reliability with minimal

latency; we call such patterns execution strategies.

However, MOLE cannot always deliver QoS-consistent edge services, as it follows the speci-

fied fixed execution strategy across edge environments with vastly dissimilar resources. The

resource dissimilarity across different environments yields constituent equivalent microser-

vices with uncertain QoS, which in turn results in edge services that execute these microser-

vice in predefined patterns delivering unpredictable and inconsistent QoS to the client. The

state of the art lacks a frame of reference for identifying and expressing highly customized

strategies for executing equivalent microservices, whose QoS performance can be estimated

accurately.

In the approach presented herein, we provide reliable and QoS-consistent edge services with

unreliable and dynamic resources. In particular, rather than follow predefined execution

strategies (as in MOLE), we provide highly customized execution strategies that increase the

QoS-consistency of edge services across edge environments. Our system employs a feedback

loop [18, 32] to monitor the environment-specific performance of edge microservices and

dynamically generate execution strategies based on the service’s QoS requirements.

The insight that motivates our system design is the dissimilar QoS of executing equivalent

microservices by different strategies. To be able to generate a customized execution strategy

that best fits the QoS requirements in a given edge environment, we explore the following

system design questions: 1) how to express customized execution strategies; 2) how to deter-

126 Chapter 6. Adaptive Edge Services

mine all possible strategies for a given set of equivalent microservices; and 3) how to estimate

the QoS of a strategy.

The contribution of this work is threefold:

• System Design: We introduce an edge system design that provides reliable services

with consistent QoS. Our design features a feedback loop that collects the environment-

specific performance of microservices, as well as a generator that customizes execution

strategies to best satisfy services’ QoS requirements. To the best of our knowledge, this

paper is the first to identify, define, and solve the problem of providing QoS-consistent

services in dissimilar edge environments with dynamic resources.

• Customized Execution Strategies: We explore how to customize execution strate-

gies of equivalent functionalities to best satisfy given QoS requirements. To the best

of our knowledge, we are the first to be able to 1) formulate any customized execu-

tion strategy for equivalent functionalities; 2) determine what all possible execution

strategies for any number of equivalent functionalities are and estimate their QoS.

• Evaluation: We systematically evaluate the efficiency and scalability of our system

design as well as its actual performance by benchmarking edge services deployed and

executed in real execution environments.

6.1 Problems in Provisioning Edge Services

By embracing the service-oriented architecture (SOA), edge executions across heterogeneous

distributed devices are exposed as service invocations, thus shielding application developers

from the necessity to implement low-level, platform-specific functionalities and D2D commu-

nication. Although SOA has become an industry standard for cloud computing [163], edge

6.1. Problems in Provisioning Edge Services 127

computing operates in fundamentally different execution environments, rendering cloud-

based SOA designs inapplicable. While to meet the service level agreements for cloud ser-

vices, their vendors only need to appropriately configure the abundant computational and

network resources, edge service providers often have scarce, unreliable, and dynamic re-

sources at their disposal, with which to meet the QoS requirements. To demonstrate the

problems that these realities of edge computing present, consider the following example.

6.1.1 Motivating Example: Detecting Fire

One of the key functionalities of personal mobile assistants is to keep their owners safe. Such

assistants can have a feature that periodically checks for the potential presence of fire to

be able to alert its users and guide them to an escape route. To detect the presence of fire

in the surrounding environment, the edge service detectFire can be queried in dissimilar

environments that can range from office buildings to apartments, shopping malls, and even

campgrounds. This service must be reliable, responsive, and cost efficient.

What hinders the QoS-guaranteed provisioning of such a service in dissimilar edge envi-

ronments is their unreliable and dynamic resources [8, 21, 22, 87, 133, 153]. Fig. 6.1

demonstrates how a mobile device queries edge services in edge environments with dissimilar

resources:

1) Edge resources can be provided by mobile devices [10, 118] or energy harvesting stationary

devices [111, 180]. With multiple mobile devices in the vicinity, they can be organized into a

computing ensemble that can execute demanding edge services [10, 118]. However, typically

owned by individuals, mobile devices are hard to predict or control, as their owners can move

away or use them at any time, thus causing service failures. Besides, IoT devices increasingly

rely on the energy harvesting technology [75], which accumulates ambient recyclable energy,

128 Chapter 6. Adaptive Edge Services

Sensors:
Computational:
Networking:

Sensors:
Computational:
Networking:

Edge Gateway in
Office Building

Mobile User

Edge Gateway in
Apartments

Sensors:
Computational:
Networking:

Edge Gateway in
Campgrounds

Resources Provided by Mobile
or Energy Harvesting Devices

Figure 6.1: Edge Services in Dissimilar Edge Environments

including solar radiation, wind, human motion energy, and WiFi signals. However, these

devices can be operated only intermittently: energy may be unavailable to harvest, taking

time to accumulate to allow execution [104]. As a result, when executed on such devices,

microservices cannot guarantee satisfactory reliability.

2) Besides, different edge execution environments may possess resources with dissimilar ca-

pabilities and capacities. For example, an office building may have built-in flame sensors for

detecting fire, while apartments may only have smoke detectors; an indoor environment may

have high-performance edge servers for computationally intensive tasks, while an outdoor

environment may only have a solar-powered Raspberry Pi with much lower computational

power. The resource difference across edge environments causes the dissimilar availability

and performance of edge-based microservices.

6.1. Problems in Provisioning Edge Services 129

6.1.2 MOLE: Reliability-enhanced Edge Services

Our previous work MOLE [153] presented in Chapter 4, demonstrates that equivalent func-

tionalities can be executed to improve the reliability of edge computing. Edge computing

environments feature a wide range of sensors and data processing methods, so an applica-

tion requirement can be fulfilled in multiple equivalent ways. MOLE enables edge service

developers to specify the execution strategies for equivalent microservices, which include the

fail-over and speculative parallel strategies. The fail-over strategy first tries executing a

microservice; if it is unavailable or disabled, the execution switches to a back-up microservice.

The speculative parallel execution strategy spawns the execution of all microservices si-

multaneously, proceeding as soon as any of them returns successfully. With both strategies

improving reliability, fail-over is cost-efficient and speculative parallel is latency-efficient.

In the aforementioned example, to improve its reliability, detectFire can execute the equiva-

lent microservices that detect 1) smoke by a surveillance camera; 2) smoke by smoke sensors;

3) flame by flame sensors; 4) the change of CO/CO2 level by gas sensors; 5) the temperature

change by a temperature sensor. We assume that the output of any one of these microser-

vices, rather than their fusion, can detect fire. When one microservice fails, MOLE switches

to its equivalent pair. Even if one or more microservices are unreliable, the edge service’s

overall reliability can still be guaranteed.

However, the overall performance of MOLE-specified services differs across edge environ-

ments with predefined execution strategies. For example, assume the detectFire service is

developed in an environment A with edge-based small-scale data centers providing the com-

putational power. Considering the latency of each equivalent microservice is pretty low, the

developer specifies the execution strategy as “fail-over” for better cost-efficiency. However,

while being executed in a different edge environment B with a Raspberry Pi providing the

130 Chapter 6. Adaptive Edge Services

computational power, the “fail-over” execution may lead to an extremely long latency which

is unexpected. Hence, our solution extends MOLE’s reliability enhancement by introducing

a novel system design that uses a feedback loop to generate environment-tailored execution

strategies.

6.1.3 Customizing Execution Strategies to Optimize QoS

Due to the proliferation of unreliable execution environments (e.g., edge, IoT, etc.), the

problem of optimizing their QoS has come to the forefront of distributed system design. This

problem is exacerbated by these environments being unable to take advantage of existing

designs that rely on standard resource deployments. In the approach presented herein, we

put forward a novel optimization methodology that customizes the execution strategies for

equivalent microservices.

Several prior approaches make use of the combined execution of equivalent functionalities.

To improve service responsiveness, several cloud service instances are deployed and exe-

cuted simultaneously [50, 132]. To improve reliability, automatic Workarounds provide

automatic fail over with equivalent functionalities [23]. The emergence of IoT and edge

computing gives rise to distributed execution environments that feature a wide range of sen-

sors and processing methods, thus greatly increasing the variety and number of equivalent

functionalities. However, all these existing approaches can execute equivalent functionalities

in predefined execution patterns. The state of the art lacks a frame of reference for iden-

tifying and expressing highly customized strategies for executing equivalent microservices,

whose QoS performance can be estimated accurately. The exploding numbers of equivalent

functionalities of the emerging distributed environments present an untapped potential for

optimization QoS by fully exploiting their customized execution.

6.2. Execution Strategies for Equivalent Microservices 131

6.2 Execution Strategies for Equivalent Microservices

Consider the aforementioned example: we use a, b, c, d, e to denote the five equivalent mi-

croservices for detectFire. For example, possible execution strategies for five equivalent

microservices (a, b, c, d, e) include, but are not limited to: 1) fail-over: execute a, b, c, d, e in

turns if the previous microservice fails; 2) speculative parallel: execute a, b, c, d, e simulta-

neously, returning the first obtained result; 3) first execute a and b simultaneously; if any

of them succeeds, return the results; otherwise, execute c, d, e simultaneously and return

the first available result; 4) first execute a, then b and c simultaneously; if none of them

succeed, execute d first then e. To generate execution strategies that best satisfy given QoS

requirements, we need to 1) find all possible execution strategies and 2) compare their QoS.

6.2.1 Determining all Possible Strategies

The problem we solve in this subsection is, given a number of equivalent microservices (i.e.,

3 microservices a, b, and c), how to find all possible strategies to execute them?

Our solution is inspired by the exhaustive search solution for the 24 game, which is a classic

math game: given 4 numbers in the range from 1 to 9, binary operators (+, -, *, /), and

parentheses, form an arithmetic expression that equals to 24. The exhaustive search solu-

tion [177] lists all possible expressions and removes duplicates. To generate all expressions,

the solution proceeds in three steps: 1) put all digits into 4 slots, resulting in P(9, 4) ar-

rangements; 2) for each arrangement, put any one of the 4 operators into each of the 3 slots

between the digits, resulting in (P(9, 4)*43) arrangements; 3) to process parentheses, alter

the precedence of the 3 operator slots. The number of final expressions is P(9, 4)*43*P(3,3).

We convert the problem of “finding all possible execution plans for an equivalent set of

132 Chapter 6. Adaptive Edge Services

size n” to “finding all execution plan equations that contain m (1 ≤ m ≤ n) equivalent

functionalities out of n, with m − 1 operators out of − and ∗, and parentheses.” We first

apply the aforementioned exhaustive search to find P (n,m) ∗ 2m−1 ∗ (m− 1)! expressions of

execution plans for all m ∈ [1, n], remove the duplicate expressions, and put them together

to produce the answer. The duplication removal procedure takes advantage of the three

observations above to identify duplicate expressions.

For each 2 ≤ n ≤ 6, Table 6.1 gives the number of distinct execution strategies for an

equivalent set of size n. F (M) denotes the size of strategies that contains all M microser-

vices, while F ′(M) denotes the size of the strategies that contains 1 to |M | microservices.

We observe that as few as four equivalent functions can have over 200 possible execution

strategies.

M 2 3 4 5 6
F (M) (with M microservices) 3 19 207 3211 64743
F ′(M) (∀n ∈ [1,M] ms) 5 31 305 4471 87545

Table 6.1: Execution Strategies for M Eqv MS

Fig. 6.2 lists all possible strategies (separated by “;”) to execute all three equivalent microser-

vices a, b, and c. Given the QoS of these microservices, executing all of them following these

different strategies may lead to 19 dissimilar values of overall QoS in an edge environment.

1 1.a - b - c; 2.a - c - b; 3.b - a - c;
2 4.b - c - a; 5.c - a - b; 6.c - b - a;
3 7.a * b - c; 8.a * (b - c); 9.a * c - b;
4 10.a * (c - b); 11. a - b * c; 12. a * b * c;
5 13.b * (a - c); 14.b * c - a;
6 15.b * (c - a); 16.b - a * c;
7 17.c * (a - b); 18.c * (b - a); 19.c - a * b;

Figure 6.2: Execution Strategies for Eqv MS (a, b, and c)

6.2. Execution Strategies for Equivalent Microservices 133

6.2.2 Estimating the QoS of a Strategy

This subsection presents a solution to the following problem: given the QoS of a, b, c, what

is the average QoS of executing a ∗ b ∗ c multiple times? Some existing solutions estimate

the overall QoS of an execution strategy by folding the QoS calculation over a collection of

equivalent services [57]. We will compare our results with theirs. We are not estimating the

QoS of one execution, as any microservice could fail or succeed, leading to dissimilar per-

formance. Instead, we estimate the average QoS of running an execution strategy multiple

times.

QoS Model and Assumptions

We consider three major QoS attributes for edge services and microservices: cost, latency

(or say, response time), and reliability. The cost attribute is estimated as the amount

of energy consumed to execute edge microservices. The latency attribute refers to the time

taken to execute microservices and services. The reliability attribute refers to the probability

of finishing an execution successfully. As the execution status in edge environments differs

across runs, we compute the QoS as the average value of multiple executions in an edge

environment.

M = {m = 1, 2, ...M} denotes a set of equivalent microservices, while rm, lm, cm denote

the average reliability, latency, and cost of ∀m ∈ M in an edge environment. Our QoS

estimation is based on the following assumptions:

Assumption 1: although multiple devices can provide a microservice in an edge environ-

ment, our system only selects the one with the best QoS;

Assumption 2: once an edge device receives a microservice execution request, it charges

134 Chapter 6. Adaptive Edge Services

the microservice’s full execution cost, irrespective of whether the execution is to succeed,

fail, or terminate midway.

QoS Estimation Algorithm

We estimate the QoS of a strategy as follows. The overall reliability of a strategy can be

directly estimated as r = 1−
∏m∈M

m (1− rm), as a strategy only fails when all its constituent

microservices fail. For cost and latency, we first convert the expression of an execution

strategy to a tree structure, which has three node types: leaf, sequential, and parallel.

A leaf is an equivalent microservice. A sequential node has its left and right children,

and a parallel node has two or more child nodes.

Algorithm 3 shows how to estimate the cost and latency using a tree. Starting from the

root of the tree, it recursively calculates the timelines for all microservices (Lines 15 to 33).

A timeline (τ = (m, s, e)) denotes a microservice m, its start time s and end time e. For a

leaf node, m points to its microservice, with start time set to 0 (s = 0) and end time set

to the latency of the microservice (e = lm). For a sequential node, the time lines of its

left and right children are generated. The longest end time of microservices belonging to

the left child is added to the start time and end time of each microservice belonging to the

right child (Lines 23 to 25), as the right child of a sequential node is only executed when

all microservices in the left child fail. For a parallel node, the timelines of all its children

are generated.

Lines 3 to 7 calculate the latency of a strategy. The timelines are sorted by their end

time in ascending order to form a list ϕ. The overall latency is calculated as follows: for

each microservice (ϕ(i)), add up its end time multiplied by the probability that the overall

execution terminates upon the microservice completing its execution (the probability that

6.2. Execution Strategies for Equivalent Microservices 135

Algorithm 3 Estimate Cost, Latency for a Strategy
Input: es: strategy
Output: l: latency, c: cost

1: l← 0, c← 0
2: τ ← GetTimelines(es.root)
3: ϕ← τ .sortBy(e) ▷ sort by endTime
4: for i← 0 to |ϕ| − 2 do
5: l+ =

(∏i
j=0 (1− rϕ(j).m)

)
∗ rϕ(i).m ∗ ϕ(i).e

6: end for
7: l+ =

(∏|ϕ|−2
i=0 (1− rϕ(i).m)

)
∗ ϕ(|ϕ| − 1).e

8:
9: for (m, s, e) ∈ τ do

10: ξ ← τ .filter(_.e < s) ▷ any ms finishs before m starts
11: c+ =

∏|ξ|−1
j=0 (1− rξ(j).m) ∗ cm

12: end for
13: return l, c
14:
15: function GetTimelines(t:Tree)({τ = (m, s, e)})
16: switch t.Type do
17: case Leaf
18: return {(t.func, 0, t.func.latency)}
19: case SequentialNode
20: τl ← GetTimelines(t.left)
21: tleft ← max(τl.e)
22: τr ← GetTimelines(t.right)
23: for i ∈ τr do
24: i.e← i.e+ tleft, i.s← i.s+ tleft
25: end for
26: return τl ∪ τr
27: case ParallelNode
28: τ ← ∅
29: for i ∈ t.children do
30: τ ← τ∪ GetTimelines(i)
31: end for
32: return τ
33: end function

136 Chapter 6. Adaptive Edge Services

all microservices in front of ϕ(i) fail and ϕ(i) succeeds). Lines 9 to 12 calculate the cost of

a strategy. The overall cost is calculated as follows: for each microservice m, add up its cm

multiplied by the probability that the overall execution would not terminate before it has

a chance to execute (i.e., all microservices in ξ fail, with ξ denoting all microservices that

finish before m starts).

QoS Estimation Example

For example, consider the a ∗ b ∗ c strategy, in which la = 10ms, ra = 10%, lb = 90ms,

rb = 90%, lc = 70ms, and rc = 70%. By using our QoS estimation method, the latency of

the aforementioned a ∗ b ∗ c would be estimated as: 10 ∗ 10%+ 70 ∗ (1− 10%) ∗ 70%+ 90 ∗

(1− 10%)(1− 70%) = 69.4ms

The folding based method [57] has also been applied to estimate the QoS of a strategy. It first

calculates the latency and reliability attributes of θ = a∗b as: lθ = 10∗10%+90∗(1−10%) =

82ms, rθ = 1− (1− 10%) ∗ (1− 90%)=91%. Then it computes θ ∗ c, leading to an estimated

overall latency of 70 ∗ 70% + 82 ∗ (1 − 70%) = 73.6ms. However, this estimation fails to

consider how the execution status of services that appear later on the list affect the execution

of services preceding them. If, for example, c successfully completes its execution first, its

result will be used right away, without waiting for b to complete its execution. Our evaluation

in Section 6.4 confirms the correctness of our method.

6.2.3 Execution Strategy Examples

For the aforementioned fire detection example, we set the QoS, [cost, latency, reliability]

of microservices a − e to [50, 50, 60%], [100, 100, 60%], [150, 150, 70%], [200, 200, 70%], and

[250, 250, 80%]. Table 6.2 lists example strategies and their resulting QoS, calculated by

6.3. System Design and Strategy Generation 137

the methodology introduced in this section. We observe that compared with the predefined

strategies (strategies 1 & 2), the customized strategies (strategies 3 & 4) strike better balance

between the QoS attribute values. For example, if latency is the major concern, strategy 2 is

the most latency-efficient but cost-inefficient, while strategy 4 reduces the cost by 50.6% with

a minor increase on the latency (5%). This example demonstrates how executing equivalent

microservices by different strategies leads to vastly dissimilar QoS.

id Execution Strategy cost latency reliability
1 a-b-c-d-e 126 126 99.7%
2 a*b*c*d*e 750 81 99.7%
3 a-b*c-d-e 162 111 99.7%
4 c*(a*b-d*e) 372 85 99.7%

Table 6.2: Execution Strategies and Estimated QoS

6.3 System Design and Strategy Generation

The design of our edge-based service provisioning system follows and extends that of MOLE [153].

In particular, we extend the edge gateway to support new workflows to provision QoS-

consistent edge services.

6.3.1 System Components and Edge Service Execution

Fig 6.3 shows the main components and service provisioning workflow of our design, which

features a client, an edge gateway, multiple edge devices for executing microservices, and a

cloud-based market that hosts self-describing scripts for services and microservice executa-

bles.

A client device sends edge service requests, identified by a unique ServiceID, to its connected

gateway. The gateway follows a service script describing the dataflow of constituent microser-

138 Chapter 6. Adaptive Edge Services

Edge

Cloud

Service
Request H

TTP S
erver

Execution Strategy
Generator

Service
Script

MS QoS

S
trategy

E
xecutor

Edge Devices
Edge Gateway

Service Market

Client

Microservice
Executables

Microservice
Request

Eqv MS

Required QoS

Figure 6.3: System Design for Provisioning Edge Services

vices and the QoS requirements to invoke microservices that are further being executed on

edge devices. The service scripts required by the gateway and microservice executables re-

quired by the edge devices can be downloaded from a service market, and cached locally for

further executions. Hence, if a recently executed service is invoked again, the request can

be processed entirely within the edge’s local environment, without needing to interact with

the cloud.

The runtime starts executing a service by following the default execution strategy to collect

the environment-specific non-functional performance attributes for each invoked microser-

vice. As the service continues being invoked, a generator (on the gateway) synthesizes an ex-

ecution strategy that satisfies the QoS requirements more closely by adapting to the changed

performance of the constituent microservices. That strategy executes until a successor with

better QoS replaces it, so the system self-adapts to dissimilar edge environments.

6.3. System Design and Strategy Generation 139

6.3.2 Major Enhancements Over MOLE

In MOLE, a service script specifies a prioritized list of equivalent microservices. A script is

then uploaded to a cloud-based service market to be transformed into an execution strat-

egy, based on the priorities of the constituent equivalent microservices and the developer

specified execution strategies. Different from MOLE, our system generates the execution

strategies locally at the edge gateway, to accommodate the edge-specific performance of the

microservices.

In addition, the edge gateway now involves a feedback loop that comprises an execution

strategy generator, a collector for recording microservice QoS characteristics, and a strategy

executor. Upon receiving a service request, the gateway imports the corresponding service

script, reading the QoS of microservices and the service’s QoS requirements. An execution

strategy generator retrieves the QoS of constituent microservices from the collector, and

outputs an execution strategy. The strategy executor follows the strategy to invoke mi-

croservices. The collector keeps updating the QoS characteristics of microservices until their

executions complete.

6.3.3 QoS Utility Index

The QoS satisfaction model for cloud services is binary: given a set of QoS requirements and

a service’s SLA, the service either satisfies the requirements or not. Application developers

select to integrate only those services that satisfy the QoS requirements. However, with edge

applications, developers may have no alternatives and can only use the available edge services,

rendering the binary QoS satisfaction model inapplicable. Although QoS requirements are

still imposed, applications may need to integrate with edge services that approximate the

requirements most closely, and that is what our strategy generation aims for. If a generated

140 Chapter 6. Adaptive Edge Services

strategy fails to reach one or multiple required QoS attributes specified in service scripts, the

gateway reports the estimated unsatisfied QoS to the client, which then determines whether

the service request with this expected QoS should be continued.

QoS has multiple attributes. For generality, we consider N QoS attributes, with n = |N |.

For example, in our system model, N = {c, l, r}, so n = 3. Qn denotes the requirement

of QoS attribute n imposed on an edge service. In our system model, Qr, Qc, Ql denote

the requirements on reliability, cost, and latency, respectively. S = {s = 1, 2, ..., |F (M)|}

denotes all possible strategies, while Q(s) = {q1(s), q2(s), ..., qn(s)} denotes the estimated

QoS of strategy s. QoS attributes can be placed in the following two categories, as based on

their optimization criteria: 1) the smaller the better, denoted as N− (i.e., cost and latency);

2) the higher the better, denoted as N+ (i.e., reliability and trust level). For any QoS

attribute n ∈ N , qn ⪯ q′n denotes qn is worse than or equals to q′n (i.e., qn ≤ q′n if n ∈ N+,

or q′n ≤ qn if n ∈ N−), and qn ≻ q′n denotes qn is better than q′n.

Among S, the QoS of a subset of strategies are Pareto optimal[113]. A strategy s is Pareto

optimal iff no other strategies in S can improve any of the QoS attributes without worsening

the remaining QoS attributes
(
i.e., ∄s′ ∈ S, that satisfies: ∀n ∈ N , qn(s) ⪯ qn(s

′) and

∃n ∈ N , qn(s
′) ≻ qn(s)

)
. To evaluate how these Pareto optimal strategies satisfy the QoS

requirements, we introduce a utility index U(s) =
∑N

n un(s), where

un(s) =

−k |qn(s)−Qn|

Qn

, if qn(s) ⪯ Qn

|qn(s)−Qn|
Qn

, if qn(s) ≻ Qn

∀n ∈ N , k > 1 (6.1)

In the equation above, |qn(s)−Qn|
Qn

denotes the normalized distance between a strategy’s esti-

mated value and the requirement imposed on the QoS attribute n. un(s) is positive when

qn(s) ≻ Qn, negative when qn(s) ≺ Qn, and zero otherwise. However, when the requirement

6.3. System Design and Strategy Generation 141

is not satisfied (i.e., qn(s) ≻ Qn), un(s) changes at a higher rate due to the system param-

eter k. The reasoning behind this index is that even for a fully satisfied QoS attribute, its

improvement can still increase the overall utility; however, the rate of the increase would be

slower than when the QoS attribute is unsatisfied.

To demonstrate how the utility index metric works, consider two strategies s1 and s2. s1

delivers exactly the required cost, latency, and reliability, while s2 improves cost and re-

liability by 5% each at the expense of 10% additional latency. With k as a penalty for

unsatisfied QoS attributes, the utility of s1 is higher than that of s2. A higher k value can

be specified to incur a higher penalty for unsatisfied QoS attributes. For example, assume s2

improves cost and reliability by 10% each at the expense of 10% additional latency; hence,

u(s1) = u(s2) = 0 if k = 2, while u(s1) = 0 > u(s2) = −0.1 if k = 3.

Algorithm 4 Strategy Generation
Input: M: equivalent microservices
Output: es: execution strategy

1: if |M| > θ then
2: es← exhaustiveSearch

(
strategies(|M|)

)
3: else
4: M′ ← sortByUtility(M)
5: es←M′(0)
6: for i← 1 to |M′| − 1 do
7: es1 ← es−M′(i) , es2 ← (es) ∗M′(i)
8: if utility

(
es1

)
>utility

(
es2

)
then

9: es← es1
10: else
11: es← es2
12: end if
13: end for
14: end if
15: return es

142 Chapter 6. Adaptive Edge Services

6.3.4 Generation Heuristic

The pseudo code in Alg. 4 shows our strategy generation heuristic. To generate execution

strategies time-efficiently, we use the exhaustive search when the number of equivalent mi-

croservices is small, and switch to an approximation heuristic when the number exceeds a

threshold causing the exhaustive search to take too long to finish. For a set of M equiva-

lent microservices, the exhaustive search estimates the QoS performance for each possible

execution strategy that contains all M microservices (i.e., F (M)), and selects the one with

the highest utility index (i.e., argmaxU(s),∀s ∈ F (M)). However, as the number of pos-

sible execution strategies grows exponentially with the number of equivalent microservices,

estimating the QoS for each of them may take too long.

The approximation heuristic first sorts the equivalent microservices by their utility values

(i.e., the microservices appear in the order of their overall performance). The initial execution

strategy only includes the first microservice from that list. Then, in each iteration, the first

microservice on the list is removed and included into the strategy, thus passing through the

entire list.

Both algorithms generate strategies that contain all M equivalent microservices. Another

generation heuristics could generate strategies that contain only a subset of these microser-

vices. The exhaustive search can include all possible strategies F ′(M) (with 1 to M microser-

vices) instead of F (M), while the approximation heuristic can terminate when including a

microservice into a strategy fails to improve the utility index. However, as the execution

resources in an environment may change over time, executing a generated plan that includes

only a subset of equivalent microservices may cause the remaining microservices to stay ex-

cluded from being executed. If an originally included microservice becomes unavailable, the

strategy generator may fail to switch to an alternative superior strategy, due to the lack of

6.4. Reference Implementation and Evaluation 143

historical execution data for the microservices excluded from the original strategy.

6.4 Reference Implementation and Evaluation

Figure 6.4: Exp1: Varying avg [c, l, r]

Our evaluation seeks answers to the following questions:

• Does changing execution strategies substantially impact QoS?

• Is our QoS estimation accurate? How does our generated strategy compare with the

predefined strategies in terms of their estimated QoS?

• How does the approximation heuristic perform compared with the exhaustive search?

• How does our system perform in real setups? Does it outperform MOLE in dissimilar

edge environments?

In the following, our evaluation confirms that our QoS estimation can reliably predict the ex-

pected service performance. Compared with the predefined strategies, our generated strate-

144 Chapter 6. Adaptive Edge Services

Figure 6.5: Exp2: Varying QoS Range(∆)

gies increase the ratio of QoS-satisfied services by 2× for fewer than 5 equivalent microser-

vices, and by 2.6 × for 5 to 10 equivalent microservices. In a given edge environment, our

system outperforms MOLE in terms of cost, latency, and reliability by 31%, 52%, and 4%,

respectively. Besides, our system dynamically optimizes the overall QoS by adapting to the

resource changes of edge environments.

6.4.1 Simulation

The simulation runs on a ThinkCentre M900 Tiny desktop (i7-6700T CPU and 32G memory).

We randomly assign QoS values to a number of equivalent microservices.

Utility of all Possible Execution Strategies

As shown in Table 6.3, we conduct three sets of experiments, exp1, exp2, exp3, each with a

number of configurations. We use [c, l, r] to denote the average value of cost, latency, and

reliability, respectively, and use ∆ to denote the value range (e.g., cost = rand(c − ∆
2
, c +

6.4. Reference Implementation and Evaluation 145

Figure 6.6: Exp3: Varying Number of Eqv. Microservices

∆
2
)). For each configuration, we simulate 100 services. The QoS requirements in all three

experiments are Qc = 100 (units), Ql = 100 (ms), Qr = 97 (%).

For exp1, exp2, and exp3, Fig. 6.4, 6.5, and 6.6 show the utility distribution of all possible

strategies for all randomly generated 100 services in each configuration, respectively. Dif-

ferent lines in each graph denote different configurations. In general, we observe that for all

configurations, different execution strategies lead to vastly dissimilar utilities. With higher

average QoS, higher ∆ (the varying range of QoS), and more equivalent microservices, more

execution strategies show higher utility index values.

Correctness of QoS Estimation

We randomly select 100 execution strategies from different configurations, and compare

their execution performance with our QoS estimations. We use system.sleep to imitate

each microservice’s execution latency, with each strategy executed 300 times. To filter out

the costs of scheduling multi-threaded executions, we use “second” as the latency unit of

146 Chapter 6. Adaptive Edge Services

Exp ID Config ID Num of Eqv MS avg c, l, r ∆

exp1

1

4

60, 60, 80

502 70, 70, 70
3 80, 80, 60
4 90, 90, 50

exp2

1

4 70, 70, 70

50
2 40
3 30
4 20

exp3
1 3

90, 90, 50 1002 4
2 5

Table 6.3: Simulation Configurations

microservices. For example, to verify the execution latency of a ∗ b ∗ c with the QoS settings

in Section III.C, we set the average execution time of a, b, and c to 10, 90, and 70 seconds,

respectively, and then observe the average overall execution latency of 69.43 seconds. For the

other executions, the difference between the average execution latency and our estimations

are less than 1%, thus confirming the correctness of our QoS estimation.

Figure 6.7: UI Distribution for Exp1

Then, we calculate the utility values of strategies generated by the exhaustive search and

6.4. Reference Implementation and Evaluation 147

Figure 6.8: UI Distribution for Exp2

approximation heuristics, and those of the predefined sequential and parallel strategies, as

shown in Fig. 6.7, 6.8, and 6.9. From the UI value distribution, we observe that: 1) our

strategies obviously outperform the predefined strategies for all three experiments, as more of

their utilities fall into the range of high values; 2) the exhaustive search and Approximation

produce strategies with comparable performance in terms of their utility values. Fig. 6.10

and 6.11 show the number of services whose QoS requirements are satisfied and the average

utility values of various generation heuristics under each configuration. Compared with the

predefined strategies, our heuristic increases the ratio of QoS-satisfied services by an average

of 2×.

Besides, from Fig.6.10 we also observe that the overall performance of the generated strategies

is impacted by the number of equivalent microservices and their average performance, but

is not impacted by the QoS range (∆) of these microservices.

148 Chapter 6. Adaptive Edge Services

Figure 6.9: UI Distribution for Exp3

Comparing Exhaustive Search and Approximation

To evaluate how our generation heuristic scales, Fig. 6.12, 6.13, and 6.14 show the per-

formance of edge services with more than 5 equivalent microservices. Fig. 6.12 shows the

generation time of different algorithms. With the increase of equivalent microservices in an

edge service, the exhaustive search’s time increases exponentially, while the time taken by

the approximation heuristic and that by the default strategy (either sequential or parallel,

represented as a tree) increase only moderately. Fig. 6.13 and 6.14 show the number of QoS-

satisfied services and the average utility values of different strategies. Hence, as the number

of equivalent microservices increases, our generator continues outperforming the predefined

strategies (2.6 × QoS-satisfied services) without incurring much additional execution latency

(10% extra time).

6.4. Reference Implementation and Evaluation 149

Figure 6.10: Number of Services with Fully Satisfied QoS of Different Generated Strategies

6.4.2 System Performance

To support the cross-platform deployment on edge gateways, our runtime system is imple-

mented in Java. In our experimental setup, a ThinkCentre M900 Tiny desktop (i7-6700T

CPU and 32G memory) serves as the gateway, while a Raspberry Pi 3 (BCM2837 CPU and

1G RAM) and two ThinkCentre M92p Tiny desktops (i5-6500T CPU and 8G memory) serve

as edge devices. Each edge device registers its available microservices and their usage costs

with the gateway.

To compare with MOLE, we reimplement its evaluation use cases. Three microservices are

deployed to detect the ambient temperature, including 1) read a DS1820 temperature sen-

sor; (readTempSensor) 2) read a CPU temperature sensor and estimate the environmental

temperature [84] (estTemp); 3) query a web service for the location of the current IP ad-

dress, and query another web service for the location’s temperature (readLocTemp). We

deploy readTempSensor on the Raspberry Pi with a DS1820 sensor connected via GPIO. The

execution time for reading the DS1820 sensor is around 950ms, so the microservice reads the

150 Chapter 6. Adaptive Edge Services

Figure 6.11: Average Utility Values of Generated Strategies

sensor every 30 seconds, caches the results, and uses the cached readings as output. estTemp

and readLocTemp are deployed separately on the two M92p Tiny desktops.

We simulate 100 service invocations per a time slot. In the first time slot, the gateway

has no previous microservice execution history, so it follows the default speculative parallel

strategy. In the next time slots, the gateway uses the execution records in the previous

time slot to generate execution strategies and execute them. We set the reliability of these

three microservices to 70%, and their cost to 50. The generated strategy is “readTempSensor

-estTemp-readLocTemp”. Table 6.4 shows the execution results. We observe that: 1) the

measured QoS of the generated strategy is better than that of the default strategy; 2) the

difference between the measured QoS and the estimated QoS is minor.

QoS Default Strategy Estimation of Gen. Strategy Measured
cost 100 70 69
latency 163 81 78
reliability 94 97 98

Table 6.4: Execution Results of Setting 1

We further show how our system adapts to the changes in microservice QoS in an edge

6.4. Reference Implementation and Evaluation 151

Figure 6.12: Strategy Generation Time

environment. We adopt the microservice QoS and service QoS requirements of the setting

above, and emulate the resource change by: 1) after being executed 230 times (a randomly

selected number), the reliability of readTempSensor drops to 20%; 2) after being executed 430

times, the reliability of readTempSensor recovers back to 70%. Figure 6.15 shows the QoS of

different time slots, each comprising 100 executions. The execution strategy generated after

executing the default speculative parallel strategy is readTempSensor-estTemp-readLocTemp

. At time slot 1, the reliability of readTempSensor drops to 20%. Hence, the execution

strategy for slots 2 to 5 is estTemp-readTempSensor-readLocTemp. Then, the reliability of

readTempSensor recovers at slot 5, so the execution strategy for slots 6 and 7 gets back to

the previous strategy. We observe that: 1) the QoS of slots 2, 3 and 4 is better than that

of slot 1; 2) the QoS of slots 6 and 7 is better than that of slot 5. This experiment shows

that switching between the execution strategies of equivalent microservices of an edge service

indeed adapts to the QoS fluctuations of these microservices.

152 Chapter 6. Adaptive Edge Services

Figure 6.13: QoS Satisfaction Ratio of Strategies for More than 5 Eqv MS

6.5 Related Work

The resources in edge environments are typically scarce, unreliable, and dynamic. To guaran-

tee QoS with scarce resources, most recent edge system designs [111, 141, 174, 193, 194] take

advantage of remote resources by offloading computationally intensive tasks to the cloud or

nearby edges. To improve reliability and handle unpredictable failures in edge networks, [63]

deploys redundant resources as fail-over backups. To adapt to resource dynamicity across

edge environments, [60, 72, 175] dynamically adjusts the computational load of edge-based

executions by controlling their runtime parameters to fit the available resource budgets, while

[93, 190] provide uniform interface to abstract dissimilar hardware and their capabilities.

However, none of the aforementioned designs would be applicable under the following con-

straints. Remote resources cannot be relied on in the absence of network connectivity or

when the local context is required; redundant identical resources may not always be deployed

in resource scarce environments; configuring executions self-adaptively may incur runtime

failures. To the best our knowledge, our own MOLE[153] is the first attempt to exploit

6.5. Related Work 153

Figure 6.14: Utility Values of Strategies for More than 5 Eqv MS

the widely occurring resource/functionality equivalence in edge environments to address the

resource scarcity and execution unreliability issues. Instead of relying on identical resources

to recover from failures, MOLE relies on resources that provide equivalent functionalities.

However, MOLE cannot customize execution strategies on demand to adapt for dissimilar

resources across edge environments.

Having not been explored in edge computing, web service compositions apply the combined

execution of equivalent services [20, 51, 57], albeit with crude-grained QoS estimation meth-

ods. Our work improves the precision of estimating the QoS of execution strategies. To

compose equivalent web services, a utility function in [51] normalizes the utility of a QoS at-

tribute by considering its lowest and highest values across all services. In contrast, our utility

index normalizes the utility of a QoS attribute in accordance with its QoS requirements, so

as to avoid being impacted by the QoS attribute outliers of equivalent microservices.

154 Chapter 6. Adaptive Edge Services

Figure 6.15: Average QoS in Different Runs

6.6 Conclusion

This chapter introduces a novel system design that provides edge services with best effort

QoS. Our design improves reliability by executing equivalent functionalities and adapts to

resource dissimilarity by varying execution strategies. Through a feedback loop, our design

generates environment-specific strategies on demand. As an alternative to adding additional

resources, our system design provides best effort edge services by better utilizing the un-

reliable and dynamic resources at hand. For future work, we plan to apply our system

design to improve the scalability and trustworthiness of edge services. Edge systems could

invoke equivalent microservices to process multiple concurrent service requests that rely on

the same execution resources but are bound by their scarcity, or to protect from malicious

devices that return fake results.

Chapter 7

Summary and Future Work

As compared to cloud computing, edge computing provides computational, sensor, and stor-

age capabilities by utilizing resources at the edge of the network, thereby reducing the

network traffic and providing context-awareness. However, unlike cloud computing, which

relies on resources hosted by server farms and can be allocated to satisfy the demand at

runtime, edge computing relies on the resources in the vicinity provided by heterogeneous

devices, ranging from stationary edge servers to mobile, IoT, and energy harvesting devices.

The following obstacles stand on the way of developing edge computing applications: 1) the

heterogeneity of resource provisioning devices, including different device capability, various

operating systems and execution platforms, dissimilar communication interfaces, makes it

hard for developers to leverage their resources; 2) the high failure ratio of edge executions,

caused by device mobility and low energy status, or other environmental related factors,

makes edge computing unreliable; 3) the scarcity of resources makes it hard for edge sys-

tems to handle execution requests efficiently; 4) the dynamicity of resources across edge

environments makes it impossible to guarantee the QoS of edge executions by relying on the

existence of a standard set of resources.

To tackle the aforementioned problems, this dissertation research has two main thrusts: first,

it designs and develops system architecture and programming support for providing edge

services by using heterogeneous and ever changing edge devices. Secondly, it systemically

studies how to leverage equivalent functionalities to enhance the reliability, efficiency, and

155

156 Chapter 7. Summary and Future Work

adaptiveness of edge-based services.

With the rapid growth of IoT, wearable computing, and smart home setups and applications,

there is growing demand for novel programming and system support for mobile and edge

computing applications. The resource provisioning of edge systems is fundamentally different

from that of cloud systems, as edge systems rely on the available resources provided by a

variety of stakeholders at runtime, instead of allocating resources pre-deployed by vendors.

The heterogeneity, resource scarcity, and unreliability of edge devices make the performance

tuning methodologies for cloud-based distributed systems no longer applicable to edge-based

systems. Meanwhile, the prevalence of equivalent functionalities in this domain provides

unique but underestimated opportunities for enhancing the performance of edge applications.

To enhance mobile edge computing by systemically leveraging equivalent functionalities,

several potential future research directions include: (a) advancing the theoretical models for

how equivalent executions can enhance the scalability and trustworthiness of edge systems: as

equivalent functionalities consume dissimilar resources, edge systems can adjust the request

handling methods to accommodate to the available resources in an edge system; besides, by

executing multiple equivalent functionalities and comparing their output, an edge system can

detect those devices that report untrustworthy results; (b) integrating equivalent executions

into major cluster-computing platforms (i.e., docker swarm) to provide built-in support for

enhancing the reliability, efficiency, adaptiveness, scalability, and trustworthiness of edge-

based services.

Bibliography

[1] Nabil R Adam, Vijayalakshmi Atluri, and Wei-Kuang Huang. Modeling and analysis of

workflows using petri nets. Journal of Intelligent Information Systems, 10(2):131–158,

1998.

[2] Yasser Aldwyan and Richard O Sinnott. Latency-aware failover strategies for con-

tainerized web applications in distributed clouds. Future Generation Computer Sys-

tems, 101:1081–1095, 2019.

[3] Mohammad Alrifai and Thomas Risse. Combining global optimization with local selec-

tion for efficient qos-aware service composition. In Proceedings of the 18th international

conference on World wide web, pages 881–890. ACM, 2009.

[4] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping study in mi-

croservice architecture. In Service-Oriented Computing and Applications (SOCA), 2016

IEEE 9th International Conference on, pages 44–51. IEEE, 2016.

[5] Brian Amento, Bharath Balasubramanian, Robert J Hall, Kaustubh Joshi, Gueyoung

Jung, and K Hal Purdy. Focusstack: Orchestrating edge clouds using location-based

focus of attention. In 2016 IEEE/ACM Symposium on Edge Computing (SEC), pages

179–191. IEEE, 2016.

[6] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. Rio: a system

solution for sharing i/o between mobile systems. In MobiSys’14, pages 259–272. ACM,

2014.

[7] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. Rio: a system

157

158 BIBLIOGRAPHY

solution for sharing i/o between mobile systems. In Proceedings of the 12th annual

international conference on Mobile systems, applications, and services (MobiSys’14),

pages 259–272. ACM, 2014.

[8] Hany Atlam, Robert Walters, and Gary Wills. Fog computing and the internet of

things: a review. big data and cognitive computing, 2(2):10, 2018.

[9] Saurabh Bagchi, Muhammad-Bilal Siddiqui, Paul Wood, and Heng Zhang. Depend-

ability in edge computing. Communications of the ACM, 63(1):58–66, 2019.

[10] Venkatraman Balasubramanian, Moayad Aloqaily, Faisal Zaman, and Yaser Jararweh.

Exploring computing at the edge: a multi-interface system architecture enabled mo-

bile device cloud. In 2018 IEEE 7th International Conference on Cloud Networking

(CloudNet), pages 1–4. IEEE, 2018.

[11] Fehmi Ben Abdesslem and Anders Lindgren. Demo: mobile opportunistic system for

experience sharing (moses) in indoor exhibitions. In Proceedings of the 20th annual

international conference on Mobile computing and networking (MobiCom’14), pages

267–270. ACM, 2014.

[12] Christian Berkhoff, Sergio F Ochoa, José A Pino, Jesus Favela, Jonice Oliveira, and

Luis A Guerrero. Clairvoyance: A framework to integrate shared displays and mobile

computing devices. Future Generation Computer Systems, 34:190–200, 2014.

[13] Ketan Bhardwaj, Sreenidhy Sreepathy, Ada Gavrilovska, and Karsten Schwan. Ecc:

Edge cloud composites. In MobileCloud’14, pages 38–47. IEEE, 2014.

[14] Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada Gavrilovska, Taesoo Kim, and

Karsten Schwan. Fast, scalable and secure onloading of edge functions using airbox.

In 2016 IEEE/ACM Symposium on Edge Computing (SEC), pages 14–27. IEEE, 2016.

BIBLIOGRAPHY 159

[15] Aabhas Bhatia, Shuangyi Li, Zheng Song, and Eli Tilevich. Exploiting equivalence

to efficiently enhance the accuracy of cognitive services. In 2019 IEEE International

Conference on Cloud Computing Technology and Science (CloudCom), pages 143–150.

IEEE, 2019.

[16] Mario Bisignano, Giuseppe Di Modica, and Orazio Tomarchio. Jmobipeer: a middle-

ware for mobile peer-to-peer computing in manets. In Proceedings of the 25th IEEE

International Conference on Distributed Computing Systems Workshops (ICDCS’05

Workshop), pages 785–791. IEEE, 2005.

[17] Antonio Brogi and Stefano Forti. QoS-aware deployment of IoT applications through

the fog. IEEE Internet of Things Journal, 4(5):1185–1192, 2017.

[18] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger

Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering self-

adaptive systems through feedback loops. In Software engineering for self-adaptive

systems, pages 48–70. Springer, 2009.

[19] Mauro Caporuscio, P-G Raverdy, and Valerie Issarny. ubisoap: A service-oriented

middleware for ubiquitous networking. Services Computing, IEEE Transactions on, 5

(1):86–98, 2012.

[20] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci,

Francesco Lo Presti, and Raffaela Mirandola. Moses: A framework for qos driven

runtime adaptation of service-oriented systems. IEEE Transactions on Software En-

gineering, 38(5):1138–1159, 2011.

[21] Francisco Carpio, Admela Jukan, Roman Sosa, and Ana Juan Ferrer. Engineering a

QoS provider mechanism for edge computing with deep reinforcement learning. arXiv

preprint arXiv:1905.00785, 2019.

160 BIBLIOGRAPHY

[22] Alessandro Carrega, Matteo Repetto, Giorgio Robino, and Giancarlo Portomauro.

Openstack extensions for QoS and energy efficiency in edge computing. In 2018 Third

International Conference on Fog and Mobile Edge Computing (FMEC), pages 50–57.

IEEE, 2018.

[23] Antonio Carzaniga, Alessandra Gorla, Nicolo Perino, and Mauro Pezze. Automatic

workarounds: Exploiting the intrinsic redundancy of web applications. ACM Trans-

actions on Software Engineering and Methodology (TOSEM), 24(3):16, 2015.

[24] Fabio Casati, Stefano Ceri, Barbara Pernici, and Giuseppe Pozzi. Conceptual modeling

of workflows. In International Conference on Conceptual Modeling, pages 341–354.

Springer, 1995.

[25] Alberto Huertas Celdrán, Félix J García Clemente, James Weimer, and Insup Lee.

Ice++: improving security, qos, and high availability of medical cyber-physical systems

through mobile edge computing. In 2018 IEEE 20th International Conference on e-

Health Networking, Applications and Services (Healthcom), pages 1–8. IEEE, 2018.

[26] Kongyang Chen, Chen Wang, Zhimeng Yin, Hongbo Jiang, and Guang Tan. Slide:

Towards fast and accurate mobile fingerprinting for wi-fi indoor positioning systems.

IEEE Sensors Journal, 18(3):1213–1223, 2017.

[27] Xu Chen. Decentralized computation offloading game for mobile cloud computing.

IEEE TPDS, 26(4):974–983, 2015.

[28] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user computation

offloading for mobile-edge cloud computing. IEEE/ACM TON, 2015.

[29] Bin Cheng, Gürkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, and

BIBLIOGRAPHY 161

Atsushi Kitazawa. Fogflow: Easy programming of iot services over cloud and edges for

smart cities. IEEE IoT Journal, 5(2):696–707, 2018.

[30] Jimin Cheon, Jeonghwan Lee, Inhee Lee, Youngcheol Chae, Youngsin Yoo, and Gunhee

Han. A single-chip cmos smoke and temperature sensor for an intelligent fire detector.

IEEE Sensors Journal, 9(8):914–921, 2009.

[31] Mung Chiang and Tao Zhang. Fog and iot: An overview of research opportunities.

IEEE Internet of Things Journal, 3(6):854–864, 2016.

[32] Xuewen Cui andWu-chun Feng. Iterative machine learning (iterml) for effective param-

eter pruning and tuning in accelerators. In Proceedings of the 16th ACM International

Conference on Computing Frontiers, pages 16–23. ACM, 2019.

[33] Eduardo da Silva and Luiz Carlos P Albini. Middleware proposals for mobile ad hoc

networks. Journal of Network and Computer Applications, 43:103–120, 2014.

[34] Mieso K Denko, Elhadi Shakshuki, and Haroon Malik. A mobility-aware and cross-layer

based middleware for mobile ad hoc networks. In Proceedings of the 21st International

Conference on Advanced Information Networking and Applications (AINA’07), pages

474–481. IEEE, 2007.

[35] Western Digital. How edge computing will revolutionize mobile gaming, 2019. https:

//datamakespossible.westerndigital.com/edge-computing-mobile-gaming/.

[36] Adam Dou, Vana Kalogeraki, Dimitrios Gunopulos, Taneli Mielikainen, and Ville H

Tuulos. Misco: a mapreduce framework for mobile systems. In Proceedings of the 3rd

International Conference on Pervasive Technologies related to Assistive Environments,

page 32. ACM, 2010.

https://datamakespossible.westerndigital.com/edge-computing-mobile-gaming/
https://datamakespossible.westerndigital.com/edge-computing-mobile-gaming/

162 BIBLIOGRAPHY

[37] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fab-

rizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday, today,

and tomorrow. In Present and Ulterior Software Engineering, pages 195–216. Springer,

2017.

[38] Utsav Drolia, Katherine Guo, and Priya Narasimhan. Precog: Prefetching for im-

age recognition applications at the edge. In Proceedings of the Second ACM/IEEE

Symposium on Edge Computing, pages 1–13, 2017.

[39] Daniel J Dubois, Yosuke Bando, Konosuke Watanabe, and Henry Holtzman. Shair:

Extensible middleware for mobile peer-to-peer resource sharing. In Proceedings of

the 2013 9th Joint Meeting on Foundations of Software Engineering (FSE’13), pages

687–690. ACM, 2013.

[40] John Edstrom and Eli Tilevich. Improving the survivability of restful web applica-

tions via declarative fault tolerance. Concurrency and Computation: Practice and

Experience, pages n/a–n/a, 2014. ISSN 1532-0634. doi: 10.1002/cpe.3197. URL

http://dx.doi.org/10.1002/cpe.3197.

[41] Hesham El-Sayed, Sharmi Sankar, Mukesh Prasad, Deepak Puthal, Akshansh Gupta,

Manoranjan Mohanty, and Chin-Teng Lin. Edge of things: The big picture on the

integration of edge, iot and the cloud in a distributed computing environment. IEEE

Access, 6:1706–1717, 2017.

[42] Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, Irvine, 2000.

[43] flame sensor. Special issue ”sensors for fire detection”. https://www.mdpi.com/

journal/sensors/special_issues/SFD, 2016. [Online; accessed 13-Feb-2019].

http://dx.doi.org/10.1002/cpe.3197
https://www.mdpi.com/journal/sensors/special_issues/SFD
https://www.mdpi.com/journal/sensors/special_issues/SFD

BIBLIOGRAPHY 163

[44] Chien-Liang Fok, Gruia-Catalin Roman, and Gregory Hackmann. A lightweight coor-

dination middleware for mobile computing. In Coordination Models and Languages,

pages 135–151. Springer, 2004.

[45] Abhrajit Ghosh, Shih-wei Li, C Jason Chiang, Ritu Chadha, Kimberly Moeltner, Syeed

Ali, Yogeeta Kumar, and Rocio Bauer. Qos-aware adaptive middleware (qam) for

tactical manet applications. In MILCOM’10, pages 178–183. IEEE, 2010.

[46] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor CM Leung. Developing

iot applications in the fog: a distributed dataflow approach. In Internet of Things

(IOT), 2015 5th International Conference on the, pages 155–162. IEEE, 2015.

[47] Nam Ky Giang, Rodger Lea, Michael Blackstock, and Victor CM Leung. Fog at the

edge: Experiences building an edge computing platform. In IEEE EDGE’18, pages

9–16. IEEE, 2018.

[48] Li Gong. Jxta: A network programming environment. Internet Computing, IEEE, 5

(3):88–95, 2001.

[49] Maria Gorlatova, John Sarik, Guy Grebla, Mina Cong, Ioannis Kymissis, and Gil

Zussman. Movers and shakers: Kinetic energy harvesting for the internet of things.

IEEE Journal on Selected Areas in Communications, 33(8):1624–1639, 2015.

[50] Huipeng Guo, Jinpeng Huai, Huan Li, Ting Deng, Yang Li, and Zongxia Du. Angel:

Optimal configuration for high available service composition. In IEEE International

Conference on Web Services (ICWS 2007), pages 280–287. IEEE, 2007.

[51] Yan Guo, Shangguang Wang, Kok-Seng Wong, and Myung Ho Kim. Skyline service

selection approach based on qos prediction. International Journal of Web and Grid

Services, 13(4):425–447, 2017.

164 BIBLIOGRAPHY

[52] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and Ma-

hadev Satyanarayanan. Towards wearable cognitive assistance. Technical report, DTIC

Document, 2013.

[53] Kiryong Ha, Padmanabhan Pillai, Grace Lewis, Soumya Simanta, Sarah Clinch, Nigel

Davies, and Mahadev Satyanarayanan. The impact of mobile multimedia applica-

tions on data center consolidation. In 2013 IEEE international conference on cloud

engineering (IC2E), pages 166–176. IEEE, 2013.

[54] Karim Habak, Mostafa Ammar, Khaled A Harras, and Ellen Zegura. Femto clouds:

Leveraging mobile devices to provide cloud service at the edge. In CloudCom’15, pages

9–16. IEEE, 2015.

[55] Sara Hassan and Rami Bahsoon. Microservices and their design trade-offs: A self-

adaptive roadmap. In 2016 IEEE International Conference on Services Computing

(SCC), pages 813–818. IEEE, 2016.

[56] Klaus Herrmann. Meshmd1-a middleware for self-organization in ad hoc networks. In

ICDCS’03 Workshop, pages 446–451. IEEE, 2003.

[57] Nobuaki Hiratsuka, Fuyuki Ishikawa, and Shinichi Honiden. Service selection with

combinational use of functionally-equivalent services. In Web Services (ICWS), 2011

IEEE International Conference on, pages 97–104. IEEE, 2011.

[58] Martin Hirzel and Guillaume Baudart. Stream processing languages and abstractions.

Encyclopedia of Big Data Technologies, 2018.

[59] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder, and

Boris Koldehofe. Mobile fog: A programming model for large-scale applications on the

BIBLIOGRAPHY 165

internet of things. In Proceedings of the second ACM SIGCOMM workshop on Mobile

cloud computing, pages 15–20. ACM, 2013.

[60] Miao Hu, Lei Zhuang, Di Wu, Yipeng Zhou, Xu Chen, and Liang Xiao. Learning

driven computation offloading for asymmetrically informed edge computing. IEEE

Transactions on Parallel and Distributed Systems, 2019.

[61] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. Mobile

edge computing—a key technology towards 5g. ETSI White Paper, 11(11):1–16, 2015.

[62] Yung-Li Hu, Yuo-Yu Cho, Wei-Bing Su, David SL Wei, Yennun Huang, Jiann-Liang

Chen, Yi Chen, and Sy-Yen Kuo. A programming framework for implementing fault-

tolerant mechanism in iot applications. In International Conference on Algorithms and

Architectures for Parallel Processing, pages 771–784. Springer, 2015.

[63] Huawei Huang and Song Guo. Proactive failure recovery for nfv in distributed edge

computing. IEEE Communications Magazine, 57(5):131–137, 2019.

[64] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and

Christophe Diot. Pocket switched networks and human mobility in conference en-

vironments. In Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant

networking (WDTN’05), pages 244–251. ACM, 2005.

[65] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik, Minlan

Yu, Paramvir Bahl, and Matthai Philipose. Videoedge: Processing camera streams

using hierarchical clusters. In 2018 IEEE/ACM Symposium on Edge Computing (SEC),

pages 115–131. IEEE, 2018.

[66] Shadi Ibrahim, Hai Jin, Bin Cheng, Haijun Cao, Song Wu, and Li Qi. Cloudlet:

towards mapreduce implementation on virtual machines. In Proceedings of the 18th

166 BIBLIOGRAPHY

ACM international symposium on High performance distributed computing, pages 65–

66, 2009.

[67] Minsung Jang, Karsten Schwan, Ketan Bhardwaj, Ada Gavrilovska, and Adhyas

Avasthi. Personal clouds: Sharing and integrating networked resources to enhance

end user experiences. In IEEE INFOCOM 2014-IEEE Conference on Computer Com-

munications, pages 2220–2228. IEEE, 2014.

[68] Ward Jaradat, Alan Dearle, and Adam Barker. A dataflow language for decentralised

orchestration of web service workflows. In Services (SERVICES), IEEE Ninth World

Congress on, pages 13–20. IEEE, 2013.

[69] Peng Jiang, John Bigham, Eliane Bodanese, and Emmanuel Claudel. Publish/sub-

scribe delay-tolerant message-oriented middleware for resilient communication. Com-

munications Magazine, IEEE, 49(9):124–130, 2011.

[70] Guo Jie, Cheng Bo, Zhao Shuai, and Chen Junliang. Cross-platform android/ios-based

smart switch control middleware in a digital home. Mobile Information Systems, 2015,

2015.

[71] Wesley M Johnston, JR Hanna, and Richard J Millar. Advances in dataflow program-

ming languages. ACM comp. surveys (CSUR), 36(1):1–34, 2004.

[72] Albert Jonathan, Abhishek Chandra, and Jon Weissman. Locality-aware load sharing

in mobile cloud computing. In Proceedings of the10th International Conference on

Utility and Cloud Computing, pages 141–150. ACM, 2017.

[73] Brennan Jones, Kody Dillman, Richard Tang, Anthony Tang, Ehud Sharlin, Lora

Oehlberg, Carman Neustaedter, and Scott Bateman. Elevating communication, col-

BIBLIOGRAPHY 167

laboration, and shared experiences in mobile video through drones. In DIS’16, pages

1123–1135. ACM, 2016.

[74] Soon-Gyo Jung, Jisun An, Haewoon Kwak, Joni Salminen, and Bernard Jim Jansen.

Assessing the accuracy of four popular face recognition tools for inferring gender, age,

and race. In Twelfth International AAAI Conference on Web and Social Media, 2018.

[75] Tony Kauffmann. Solar power for raspberry pi. https://blog.voltaicsystems.com/

powering-a-raspberry-pi-from-solar-power/, 2017.

[76] John E Kelly III and Steve Hamm. Smart machines: IBM’s Watson and the era of

cognitive computing. Columbia University Press, 2013.

[77] David Kitchin, Adrian Quark, William Cook, and Jayadev Misra. The orc program-

ming language. In Formal techniques for Distributed Systems, pages 1–25. Springer,

2009.

[78] David Koll, Jun Li, and Xiaoming Fu. Soup: an online social network by the people,

for the people. In Proceedings of the 2014 ACM conference on SIGCOMM, pages

143–144. ACM, 2014.

[79] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha

Suresh, and Dave Bacon. Federated learning: Strategies for improving communication

efficiency. arXiv preprint arXiv:1610.05492, 2016.

[80] Gerd Kortuem. Proem: a middleware platform for mobile peer-to-peer computing.

ACM SIGMOBILE Mobile Computing and Communications Review, 6(4):62–64, 2002.

[81] Gerd Kortuem, Jay Schneider, Dustin Preuitt, Thaddeus G Cowan Thompson, Stephen

Fickas, and Zary Segall. When peer-to-peer comes face-to-face: Collaborative peer-

https://blog.voltaicsystems.com/powering-a-raspberry-pi-from-solar-power/
https://blog.voltaicsystems.com/powering-a-raspberry-pi-from-solar-power/

168 BIBLIOGRAPHY

to-peer computing in mobile ad-hoc networks. In Proceedings of 1st International

Conference on Peer-to-Peer Computing (P2P’01), pages 75–91. IEEE, 2001.

[82] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.

Thinkair: Dynamic resource allocation and parallel execution in the cloud for mo-

bile code offloading. In Infocom, 2012 Proceedings IEEE, pages 945–953. IEEE, 2012.

[83] Niko Kotilainen, Matthieu Weber, Mikko Vapa, and Juori Vuori. Mobile chedar-a peer-

to-peer middleware for mobile devices. In Proceedings of the 3rd IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom’05

WorkShop), pages 86–90. IEEE, 2005.

[84] Chandra Krintz, Rich Wolski, Nevena Golubovic, and Fatih Bakir. Estimating outdoor

temperature from cpu temperature for iot applications in agriculture. In Proceedings

of the 8th International Conference on the Internet of Things, page 11. ACM, 2018.

[85] Young-Woo Kwon and Eli Tilevich. Energy-efficient and fault-tolerant distributed mo-

bile execution. In Proceedings of the 32th IEEE International Conference on Distributed

Computing Systems (ICDCS’12), pages 586–595. IEEE, 2012.

[86] Young-Woo Kwon and Eli Tilevich. Cloud refactoring: automated transitioning to

cloud-based services. Automated Software Engineering, 21(3):345–372, 2014.

[87] Minh Le, Zheng Song, Young-Woo Kwon, and Eli Tilevich. Reliable and efficient

mobile edge computing in highly dynamic and volatile environments. In 2017 Second

International Conference on Fog and Mobile Edge Computing (FMEC), pages 113–120.

IEEE, 2017.

[88] Thinh Le Vinh, Samia Bouzefrane, Jean-Marc Farinone, Amir Attar, and Brian P

BIBLIOGRAPHY 169

Kennedy. Middleware to integrate mobile devices, sensors and cloud computing. Pro-

cedia Computer Science, 52:234–243, 2015.

[89] Jaehun Lee, Hochul Lee, Young Choon Lee, Hyuck Han, and Sooyong Kang. Platform

support for mobile edge computing. In IEEE CLOUD’17, pages 624–631. IEEE, 2017.

[90] Avraham Leff and James T Rayfield. Wso: Developer-oriented transactional orches-

tration of web-services. In Web Services (ICWS), 2017 IEEE International Conference

on, pages 714–720. IEEE, 2017.

[91] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: comparing

public cloud providers. In Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, pages 1–14, 2010.

[92] Min Li, Zhaoxiang Zhang, Kaiqi Huang, and Tieniu Tan. Estimating the number of

people in crowded scenes by mid based foreground segmentation and head-shoulder

detection. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference

on, pages 1–4. IEEE, 2008.

[93] Yong Li and Wei Gao. Interconnecting heterogeneous devices in the personal mobile

cloud. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications,

pages 1–9. IEEE, 2017.

[94] Yong Li andWei Gao. Muvr: Supporting multi-user mobile virtual reality with resource

constrained edge cloud. In 2018 IEEE/ACM Symposium on Edge Computing (SEC),

pages 1–16. IEEE, 2018.

[95] Yujin Li and Wenye Wang. Can mobile cloudlets support mobile applications? In

INFOCOM’14, pages 1060–1068. IEEE, 2014.

170 BIBLIOGRAPHY

[96] Huiguang Liang, Hyong S Kim, Hwee-Pink Tan, and Wai-Leong Yeow. Where am

i? characterizing and improving the localization performance of off-the-shelf mobile

devices through cooperation. In NOMS’16, pages 375–382. IEEE, 2016.

[97] Jianqi Liu, Jiafu Wan, Bi Zeng, Qinruo Wang, Houbing Song, and Meikang Qiu. A

scalable and quick-response software defined vehicular network assisted by mobile edge

computing. IEEE Communications Magazine, 55(7):94–100, 2017.

[98] Peng Liu, Dale Willis, and Suman Banerjee. Paradrop: Enabling lightweight multi-

tenancy at the network’s extreme edge. In 2016 IEEE/ACM Symposium on Edge

Computing (SEC), pages 1–13. IEEE, 2016.

[99] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. Edge

computing for autonomous driving: Opportunities and challenges. Proceedings of the

IEEE, 107(8):1697–1716, 2019.

[100] Xiaoyang Liu, Zheng Song, Edith Ngai, Jian Ma, and Wendong Wang. Pm2: 5 mon-

itoring using images from smartphones in participatory sensing. In Computer Com-

munications Workshops (INFOCOM WKSHPS), 2015 IEEE Conference on, pages

630–635. IEEE, 2015.

[101] Changchun Long, Yang Cao, Tao Jiang, and Qian Zhang. Edge computing framework

for cooperative video processing in multimedia iot systems. IEEE Transactions on

Multimedia, 20(5):1126–1139, 2017.

[102] Radhika Loomba, Ruairi de Frein, and Brendan Jennings. Selecting energy efficient

cluster-head trajectories for collaborative mobile sensing. In GLOBECOM’15, pages

1–7. IEEE, 2015.

BIBLIOGRAPHY 171

[103] Panagiotis Louridas. Orchestrating web services with bpel. IEEE software, 25(2):

85–87, 2008.

[104] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel. In-

termittent computing: Challenges and opportunities. In 2nd Summit on Advances

in Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2017.

[105] Knud Lasse Lueth et al. State of the iot 2018: Number of iot devices now at 7b–market

accelerating. IoT Analytics, 2018.

[106] Chaoying Ma and Jean Bacon. Cobea: A corba-based event architecture. In Proceed-

ings of the 4th conference on USENIX Conference on Object-Oriented Technologies

and Systems-Volume 4, pages 9–9. USENIX Association, 1998.

[107] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architecture and

computation offloading. IEEE Communications Surveys & Tutorials, 19(3):1628–1656,

2017.

[108] Ahmed Mahfouz, Tarek M Mahmoud, and Ahmed Sharaf Eldin. A survey on behav-

ioral biometric authentication on smartphones. Journal of information security and

applications, 37:28–37, 2017.

[109] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. Fog computing:

A taxonomy, survey and future directions. In Internet of everything, pages 103–130.

Springer, 2018.

[110] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Tuples on the air: A mid-

dleware for context-aware computing in dynamic networks. In Proceedings of 23rd

172 BIBLIOGRAPHY

International Conference on Distributed Computing Systems Workshops (ICDCS’03

Workshop), pages 342–347. IEEE, 2003.

[111] Yuyi Mao, Jun Zhang, and Khaled B Letaief. Dynamic computation offloading for

mobile-edge computing with energy harvesting devices. IEEE Journal on Selected

Areas in Communications, 34(12):3590–3605, 2016.

[112] Eugene E Marinelli. Hyrax: cloud computing on mobile devices using mapreduce.

Technical report, DTIC Document, 2009.

[113] R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimization methods

for engineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.

[114] Rainer Mautz and Sebastian Tilch. Survey of optical indoor positioning systems. In

Indoor Positioning and Indoor Navigation (IPIN), 2011 International Conference on,

pages 1–7. IEEE, 2011.

[115] René Meier and Vinny Cahill. Steam: Event-based middleware for wireless ad hoc

networks. In ICDCS’02 Workshop, pages 639–644. IEEE, 2002.

[116] microservice definition. What are microservices, 2005. http://microservices.io/.

[117] Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb Phillips,

and Eyal de Lara. Cloudpath: A multi-tier cloud computing framework. In Proceedings

of the Second ACM/IEEE Symposium on Edge Computing, pages 1–13, 2017.

[118] Abderrahmen Mtibaa, Afnan Fahim, Khaled A Harras, and Mostafa H Ammar. To-

wards resource sharing in mobile device clouds: Power balancing across mobile devices.

In ACM SIGCOMM Computer Communication Review, volume 43, pages 51–56. ACM,

2013.

http://microservices.io/

BIBLIOGRAPHY 173

[119] Amy L Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A coordination

model and middleware supporting mobility of hosts and agents. ACM Transactions

on Software Engineering and Methodology (TOSEM), 15(3):279–328, 2006.

[120] Kazuhiro Nakao and Yukikazu Nakamoto. Toward remote service invocation in an-

droid. In Proceedings of the 9th International Conference on Ubiquitous Intelligence

& Computing and 9th International Conference on Autonomic & Trusted Computing

(UIC’12), pages 612–617. IEEE, 2012.

[121] Cisco Visual Networking. Cisco global cloud index: Forecast and methodology, 2016–

2021. White paper. Cisco Public, San Jose, 2016.

[122] Andrés Neyem, Sergio F Ochoa, José A Pino, and Rubén Darío Franco. A reusable

structural design for mobile collaborative applications. Journal of Systems and Soft-

ware, 85(3):511–524, 2012.

[123] Zhaolong Ning, Xiangjie Kong, Feng Xia, Weigang Hou, and Xiaojie Wang. Green and

sustainable cloud of things: Enabling collaborative edge computing. IEEE Communi-

cations Magazine, 57(1):72–78, 2018.

[124] OASIS Standard. BPEL 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.html#_Toc164738514, 2007. [Accessed 13-Feb-2019].

[125] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Cloudav: N-version antivirus in

the network cloud. In USENIX Security Symposium, pages 91–106, 2008.

[126] Jörg Ott, Esa Hyytia, Pasi Lassila, Tobias Vaegs, and Jussi Kangasharju. Floating

content: Information sharing in urban areas. In Proceedings of the 2011 IEEE Interna-

tional Conference on Pervasive Computing and Communications (PerCom’11), pages

136–146. IEEE, 2011.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc164738514
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc164738514

174 BIBLIOGRAPHY

[127] Maria Papadopouli and Henning Schulzrinne. Design and implementation of a peer-

to-peer data dissemination and prefetching tool for mobile users. In Proceedings of the

first NY Metro Area Networking workshop (NYMAN’01), 2001.

[128] Guilhem Paroux, Ludovic Martin, Julien Nowalczyk, and Isabelle Demeure. Transhu-

mance: A power sensitive middleware for data sharing on mobile ad hoc networks. In

Proceedings of the 7th international Workshop on Applications and Services in Wireless

Networks (ASWN’07), 2007.

[129] Pierluigi Plebani, Cinzia Cappiello, Marco Comuzzi, Barbara Pernici, and Sandeep

Yadav. Micromais: executing and orchestrating web services on constrained mobile

devices. Software: Practice and Experience, 42(9):1075–1094, 2012.

[130] Soheil Qanbari, Samim Pezeshki, Rozita Raisi, Samira Mahdizadeh, Rabee

Rahimzadeh, Negar Behinaein, Fada Mahmoudi, Shiva Ayoubzadeh, Parham Fazlali,

Keyvan Roshani, et al. Iot design patterns: Computational constructs to design, build

and engineer edge applications. In IoTDI’16, pages 277–282. IEEE, 2016.

[131] Yuansong Qiao, Robert Nolani, Saul Gill, Guiming Fang, and Brian Lee. Thingnet:

A micro-service based iot macro-programming platform over edges and cloud. In

2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops

(ICIN), pages 1–4. IEEE, 2018.

[132] Zhan Qiu. Enhancing response time and reliability via speculative replication and

redundancy. Ph.D. thesis, 2016.

[133] Simone Raponi, Maurantonio Caprolu, and Roberto Di Pietro. Intrusion detection

at the network edge: Solutions, limitations, and future directions. In International

Conference on Edge Computing, pages 59–75. Springer, 2019.

BIBLIOGRAPHY 175

[134] Pei Ren, Xiuquan Qiao, Junliang Chen, and Schahram Dustdar. Mobile edge

computing–a booster for the practical provisioning approach of web-based augmented

reality. In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages 349–350.

IEEE, 2018.

[135] Marcin Rogowski, Khalid Saeed, Mariusz Rybnik, Marek Tabedzki, and Marcin

Adamski. User authentication for mobile devices. In Computer Information Systems

and Industrial Management, pages 47–58. Springer, 2013.

[136] Gruia-Catalin Roman, Radu Handorean, and Rohan Sen. Tuple space coordination

across space and time. In Coordination Models and Languages, pages 266–280. Springer,

2006.

[137] Nick Russell, Arthur HM Ter Hofstede, Wil MP Van Der Aalst, and Nataliya Mulyar.

Workflow control-flow patterns: A revised view. BPM Center Report BPM-06-22,

BPMcenter. org, pages 06–22, 2006.

[138] Larisa Safina, Manuel Mazzara, Fabrizio Montesi, and Victor Rivera. Data-driven

workflows for microservices: Genericity in jolie. In Advanced Information Networking

and Applications (AINA), 2016 IEEE 30th International Conference on, pages 430–

437. IEEE, 2016.

[139] Hooman Peiro Sajjad, Ken Danniswara, Ahmad Al-Shishtawy, and Vladimir Vlassov.

Spanedge: Towards unifying stream processing over central and near-the-edge data

centers. In 2016 IEEE/ACM Symposium on Edge Computing (SEC), pages 168–178.

IEEE, 2016.

[140] Ahmed Salem and Tamer Nadeem. Colphone: A smartphone is just a piece of the

puzzle. In Proceedings of the 2014 ACM International Joint Conference on Pervasive

and Ubiquitous Computing: Adjunct Publication, pages 263–266. ACM, 2014.

176 BIBLIOGRAPHY

[141] Amit Samanta, Zheng Chang, and Zhu Han. Latency-oblivious distributed task

scheduling for mobile edge computing. In 2018 IEEE Global Communications Confer-

ence (GLOBECOM), pages 1–7. IEEE, 2018.

[142] Genaro Saucedo-Tejada, Sonia Mendoza, and Dominique Decouchant. F2fmi: A toolkit

for facilitating face-to-face mobile interaction. Expert Systems with Applications, 40

(15):6173–6184, 2013.

[143] Lorenz Schauer, Martin Werner, and Philipp Marcus. Estimating crowd densities and

pedestrian flows using wi-fi and bluetooth. In MobiQuitous 2014, pages 171–177, 2014.

[144] Johannes M Schleicher, Michael Vogler, Christian Inzinger, Waldemar Hummer, and

Schahram Dustdar. Nomads-enabling distributed analytical service environments for

the smart city domain. In 2015 IEEE International Conference on Web Services

(ICWS), pages 679–685. IEEE, 2015.

[145] Fernando Seco, Antonio R Jiménez, Carlos Prieto, Javier Roa, and Katerina Kout-

sou. A survey of mathematical methods for indoor localization. In Intelligent Signal

Processing, 2009. WISP 2009. IEEE International Symposium on, pages 9–14. IEEE,

2009.

[146] Chenhua Shi, Zhiyuan Ren, Kun Yang, Chen Chen, Hailin Zhang, Yao Xiao, and Xi-

angwang Hou. Ultra-low latency cloud-fog computing for industrial internet of things.

In 2018 IEEE Wireless Communications and Networking Conference (WCNC), pages

1–6. IEEE, 2018.

[147] Cong Shi, Vasileios Lakafosis, Mostafa H Ammar, and Ellen W Zegura. Serendip-

ity: enabling remote computing among intermittently connected mobile devices. In

MobiHoc’12, pages 145–154. ACM, 2012.

BIBLIOGRAPHY 177

[148] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[149] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar. Towards qos-

aware fog service placement. In Fog and Edge Computing (ICFEC), 2017 IEEE 1st

International Conference on, pages 89–96. IEEE, 2017.

[150] Hyungjoo Song, Daeyoung Kim, Kangwoo Lee, and Jongwoo Sung. Upnp-based sen-

sor network management architecture. In Proc. International Conference on Mobile

Computing and Ubiquitous Networking, 2005.

[151] Zheng Song and Eli Tilevich. Pmdc: Programmable mobile device clouds for convenient

and efficient service provisioning. In 2018 IEEE 11th International Conference on

Cloud Computing (CLOUD), pages 202–209. IEEE, 2018.

[152] Zheng Song and Eli Tilevich. Equivalence-enhanced microservice workflow orchestra-

tion to efficiently increase reliability. In 2019 IEEE International Conference on Web

Services (ICWS), pages 426–433. IEEE, 2019.

[153] Zheng Song and Eli Tilevich. A programming model for reliable and efficient edge-

based execution under resource variability. In 2019 IEEE International Conference on

Edge Computing (EDGE), pages 64–71. IEEE, 2019.

[154] Zheng Song, Sanchit Chadha, Antuan Byalik, and Eli Tilevich. Programming support

for sharing resources across heterogeneous mobile devices. In 2018 IEEE/ACM 5th

International Conference on Mobile Software Engineering and Systems (MOBILESoft),

pages 105–116. IEEE, 2018.

[155] Hui Sun, Weisong Shi, Xu Liang, and Ying Yu. Vu: Edge computing-enabled video

178 BIBLIOGRAPHY

usefulness detection and its application in large-scale video surveillance systems. IEEE

Internet of Things Journal, 2019.

[156] Sanjib Sur, Teng Wei, and Xinyu Zhang. Autodirective audio capturing through a syn-

chronized smartphone array. In Proceedings of the 12th annual international conference

on Mobile systems, applications, and services, pages 28–41. ACM, 2014.

[157] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and

Dario Sabella. On multi-access edge computing: A survey of the emerging 5g network

edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials,

19(3):1657–1681, 2017.

[158] Tian Huat Tan, Manman Chen, Jun Sun, Yang Liu, Étienne André, Yinxing Xue, and

Jin Song Dong. Optimizing selection of competing services with probabilistic hierarchi-

cal refinement. In Software Engineering (ICSE), 2016 IEEE/ACM 38th International

Conference on, pages 85–95. IEEE, 2016.

[159] EdgeX Team. Edgex foundry, 2019. https://www.edgexfoundry.org/.

[160] Eli Tilevich and Young-Woo Kwon. Cloud-based execution to improve mobile appli-

cation energy efficiency. Computer, 47(1):75–77, 2014.

[161] Mauro Tortonesi, Marco Govoni, Alessandro Morelli, Giulio Riberto, Cesare Stefanelli,

and Niranjan Suri. Taming the iot data deluge: An innovative information-centric

service model for fog computing applications. Future Generation Computer Systems,

93:888–902, 2019.

[162] Rahmadi Trimananda, Ali Younis, Bojun Wang, Bin Xu, Brian Demsky, and Guoqing

Xu. Vigilia: Securing smart home edge computing. In 2018 IEEE/ACM Symposium

on Edge Computing (SEC), pages 74–89. IEEE, 2018.

https://www.edgexfoundry.org/

BIBLIOGRAPHY 179

[163] Wei-Tek Tsai, Xin Sun, and Janaka Balasooriya. Service-oriented cloud computing

architecture. In 2010 seventh international conference on information technology: new

generations, pages 684–689. IEEE, 2010.

[164] Carlo Vallati, Antonio Virdis, Enzo Mingozzi, and Giovanni Stea. Mobile-edge com-

puting come home connecting things in future smart homes using lte device-to-device

communications. IEEE Consumer Electronics Magazine, 5(4):77–83, 2016.

[165] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and Alistair P

Barros. Workflow patterns. Distributed and parallel databases, 14(1):5–51, 2003.

[166] Maarten Van Steen, Philip Homburg, and Andrew S Tanenbaum. Globe: A wide-area

distributed system. IEEE concurrency, 7(1):70–78, 1999.

[167] Blesson Varghese and Rajkumar Buyya. Next generation cloud computing: New trends

and research directions. arXiv preprint arXiv:1707.07452, 2017.

[168] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dimitrios S

Nikolopoulos. Challenges and opportunities in edge computing. In IEEE SmartCloud,

pages 20–26. IEEE, 2016.

[169] Nicolas Viennot, Mathias Lécuyer, Jonathan Bell, Roxana Geambasu, and Jason Nieh.

Synapse: a microservices architecture for heterogeneous-database web applications. In

Proceedings of the Tenth European Conference on Computer Systems, page 21. ACM,

2015.

[170] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano, Lorena Salamanca,

Rubby Casallas, and Santiago Gil. Evaluating the monolithic and the microservice

architecture pattern to deploy web applications in the cloud. In Computing Colombian

Conference (10CCC), 2015 10th, pages 583–590. IEEE, 2015.

180 BIBLIOGRAPHY

[171] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, and Rajiv Ranjan.

Osmotic computing: A new paradigm for edge/cloud integration. IEEE Cloud Com-

puting, 3(6):76–83, 2016.

[172] Jeroen Vuurens, Arjen P de Vries, and Carsten Eickhoff. How much spam can you

take? an analysis of crowdsourcing results to increase accuracy. In Proc. ACM SIGIR

Workshop on Crowdsourcing for Information Retrieval (CIR’11), pages 21–26, 2011.

[173] Alf Inge Wang, Tommy Bjornsgard, and Kim Saxlund. Peer2me-rapid application

framework for mobile peer-to-peer applications. In Proceedings of the 2007 Interna-

tional Symposium on Collaborative Technologies and Systems (CTS’07), pages 379–388.

IEEE, 2007.

[174] Lin Wang, Lei Jiao, Ting He, Jun Li, and Max Mühlhäuser. Service entity placement

for social virtual reality applications in edge computing. In IEEE INFOCOM 2018-

IEEE Conference on Computer Communications, pages 468–476. IEEE, 2018.

[175] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya,

Ting He, and Kevin Chan. Adaptive federated learning in resource constrained edge

computing systems. IEEE Journal on Selected Areas in Communications, 37(6):1205–

1221, 2019.

[176] Shu Wang, Jungwon Min, and Byung K Yi. Location based services for mobiles: Tech-

nologies and standards. In IEEE international conference on communication (ICC),

volume 19, 2008.

[177] Yun Wang. 24 game solution project on github, 2019. https://github.com/

MaigoAkisame/enumerate-expressions.

[178] Andreas Wombacher, Peter Fankhauser, and Erich Neuhold. Transforming bpel into

https://github.com/MaigoAkisame/enumerate-expressions
https://github.com/MaigoAkisame/enumerate-expressions

BIBLIOGRAPHY 181

annotated deterministic finite state automata for service discovery. In Web Services,

2004. Proceedings. IEEE International Conference on, pages 316–323. IEEE, 2004.

[179] workflow. Workflow patterns. http://www.workflowpatterns.com/, 2017.

[180] Jie Xu, Lixing Chen, and Shaolei Ren. Online learning for offloading and autoscal-

ing in energy harvesting mobile edge computing. IEEE Transactions on Cognitive

Communications and Networking, 3(3):361–373, 2017.

[181] Jie Xu, Lixing Chen, and Pan Zhou. Joint service caching and task offloading for mobile

edge computing in dense networks. In IEEE INFOCOM 2018-IEEE Conference on

Computer Communications, pages 207–215. IEEE, 2018.

[182] Zhi-Wei Xu. Cloud-sea computing systems: Towards thousand-fold improvement in

performance per watt for the coming zettabyte era. Journal of Computer Science and

Technology, 29(2):177–181, 2014.

[183] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D Stott Parker. Map-reduce-

merge: simplified relational data processing on large clusters. In Proceedings of the

2007 ACM SIGMOD international conference on Management of data, pages 1029–

1040. ACM, 2007.

[184] Stephen S Yau and Junwei Liu. Service functionality indexing and matching for service-

based systems. In Services Computing, 2008. SCC’08. IEEE International Conference

on, volume 1, pages 461–468. IEEE, 2008.

[185] I-Ling Yen, Farokh Bastani, Nidhiben Solanki, and Yongtao Huang. Trustworthy

computing in the dynamic iot cloud. In 2018 IEEE International Conference on In-

formation Reuse and Integration (IRI), pages 411–418. IEEE, 2018.

http://www.workflowpatterns.com/

182 BIBLIOGRAPHY

[186] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Platform and

applications. In Hot Topics in Web Systems and Technologies (HotWeb), 2015 Third

IEEE Workshop on, pages 73–78. IEEE, 2015.

[187] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: concepts, applications

and issues. In Proceedings of the 2015 Workshop on Mobile Big Data, pages 37–42.

ACM, 2015.

[188] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun Li.

Lavea: Latency-aware video analytics on edge computing platform. In Proceedings of

the Second ACM/IEEE Symposium on Edge Computing, pages 1–13, 2017.

[189] Chit Wutyee Zaw, Nway Nway Ei, Han Yeo Reum Im, Yan Kyaw Tun, and

Choong Seon Hong. Cost and latency tradeoff in mobile edge computing: A dis-

tributed game approach. In 2019 IEEE International Conference on Big Data and

Smart Computing (BigComp), pages 1–7. IEEE, 2019.

[190] Daniel Yue Zhang, Tahmid Rashid, Xukun Li, Nathan Vance, and Dong Wang. Het-

eroedge: Taming the heterogeneity of edge computing system in social sensing. In

Proceedings of the International Conference on Internet of Things Design and Imple-

mentation, pages 37–48. ACM, 2019.

[191] Qingyang Zhang, Yifan Wang, Xingzhou Zhang, Liangkai Liu, Xiaopei Wu, Weisong

Shi, and Hong Zhong. Openvdap: An open vehicular data analytics platform for

cavs. In 2018 IEEE 38th International Conference on Distributed Computing Systems

(ICDCS), pages 1310–1320. IEEE, 2018.

[192] Quan Zhang, Xiaohong Zhang, Qingyang Zhang, Weisong Shi, and Hong Zhong. Fire-

work: Big data sharing and processing in collaborative edge environment. In 2016

BIBLIOGRAPHY 183

Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),

pages 20–25. IEEE, 2016.

[193] Tianchu Zhao, Sheng Zhou, Xueying Guo, and Zhisheng Niu. Tasks scheduling and

resource allocation in heterogeneous cloud for delay-bounded mobile edge computing.

In 2017 IEEE International Conference on Communications (ICC), pages 1–7. IEEE,

2017.

[194] Chao Zhu, Jin Tao, Giancarlo Pastor, Yu Xiao, Yusheng Ji, Quan Zhou, Yong Li, and

Antti Ylä-Jääski. Folo: Latency and quality optimized task allocation in vehicular fog

computing. IEEE Internet of Things Journal, 2018.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Major Research Contributions and Scope
	Broader Impact
	Structure

	Literature Review
	Edge Computing Application Scenarios
	Latency-Sensitive Applications
	Data-Intensive Applications
	Privacy-Sensitive Applications

	Edge Computing System Designs
	What functionalities does an edge system provide?
	Whom an edge system benefits?
	Where does processing take place?
	Which devices provide edge resources?
	What development model is used for edge applications?

	Self-Organized Edge Systems
	Mobile Service Market
	System Design
	Service Market
	Service Execution Model (Middleware)
	Development Support for Mobile Application Developers

	Resource Query Language: A P2P Approach
	RQL Design
	Runtime Design
	Reference Implementation
	Evaluation

	Programmable Mobile Device Cloud
	System Architecture
	MCL Definition and Use Case
	Device Selection Mechanism
	Reference Implementation and Evaluation
	Implementation Specifics

	Related Work
	Conclusion

	Microservice Orchestration Language with Support for Equivalence
	Problem Analysis
	High Resource Variability at the Edge
	Complexity of Orchestrating Edge Microservices

	MOLE Overview
	System Architecture
	Service Suite Execution Model

	MOLE DSL Design
	MOLE Compiler and Runtime
	Execution Graph Definition
	Generating Execution Graphs
	MOLE Runtime

	Evaluation
	Setups
	Service Suite Execution
	Programming Effort
	Reliability Evaluation
	Efficiency Evaluation

	Related Work
	Conclusion

	Workflow Support for Equivalent Functionalities
	Equivalence-Enhanced Microservice Workflow
	Background and Related Work
	Problem Analysis
	Workflow and DSL for Equivalence
	Evaluation
	Discussion
	Conclusion

	Workflow Meta-Pattern for Equivalent Microservices
	Background
	Motivating Scenario
	Meta-pattern Design and Implementation
	Reference Implementation and Evaluation
	Conclusion

	Adaptive Edge Services
	Problems in Provisioning Edge Services
	Motivating Example: Detecting Fire
	MOLE: Reliability-enhanced Edge Services
	Customizing Execution Strategies to Optimize QoS

	Execution Strategies for Equivalent Microservices
	Determining all Possible Strategies
	Estimating the QoS of a Strategy
	Execution Strategy Examples

	System Design and Strategy Generation
	System Components and Edge Service Execution
	Major Enhancements Over MOLE
	QoS Utility Index
	Generation Heuristic

	Reference Implementation and Evaluation
	Simulation
	System Performance

	Related Work
	Conclusion

	Summary and Future Work
	Bibliography

