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Abstract—Clusters, typically mined by modeling locality of attribute spaces, are often evaluated

for their ability to demonstrate ‘enrichment’ of categorical features. A cluster enrichment procedure

evaluates the membership of a cluster for significant representation in pre-defined categories of

interest. While classical enrichment procedures assume a hard clustering definition, in this paper

we introduce a new statistical test that computes enrichments for soft clusters. We demonstrate an

application of this test in refining and evaluating soft clusters for classification of remotely sensed

images.

1 Introduction

Clustering is an unsupervised process that models localityof data samples in attribute space to identify

groupings: samples within a group are closer to each other than to samples from other groups. To assess

whether the discovered clusters are meaningful, a typical procedure is to see if the groupings capture other

categorical informationnot originally used during clustering. For instance, in microarray bioinformatics,

data samples correspond to genes and their expression vectors, clusters capture locality in expression space,

and they are evaluated to see if genes within a cluster share common biological function/annotations.

(Observe that the functional annotations are not used during clustering). In text mining, data samples

correspond to documents and their text vectors, clusters capture locality in term space, and are evaluated
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for their correspondence witha priori domain information such as topics. In remote sensing, data samples

correspond to pixels in an image, clusters capture localityof pixel intensities, and are evaluated for their

correspondence with land cover classifications.

All of the above applications are essentially determining whether locality in one space preserves

correspondence with information in another space, also referred to as thecluster assumption [1]. While

cluster evaluation is typically conducted as a distinct post-processing stage after mining, recently developed

clustering formulations blur this boundary. For instance,in [2], locality information is used along

with background knowledge to influence the clustering. Suchbackground knowledge takes the form of

constraints, some of which dictate that certain samples should appear in the same cluster, while others

specify that two samples should be in different clusters. Similarly, in [3], clusters are designed using an

objective function that balances compression of the primary random variable against preservation of mutual

information with an auxiliary variable. With the advent of semi-supervised clustering [1], more ways to

integrate labeled and unlabeled information are rapidly being proposed.

The design of both classical and the newer clustering algorithms is predicated on the ability to evaluate

clusters for enrichment and using this information to drivethe refinement and subsequent discovery of

clusters. However, classical statistical enrichment procedures (e.g., using the hyper-geometric distribution

[4]) assume a hard clustering formulation. Our focus here ison soft clusters where the groupings are

defined by portions of individual samples. We present a new statistical test to enrich soft clusters and

demonstrate its application to a remote sensing context.

2 Clustering

2.1 Hard Clustering

Hard clustering produces clusters that are a collection of individual samples. Let theith sample be

denoted byx(i) ∈ ℜb where i = 1, . . ., n. A cluster is typically represented by a prototype, such as the

mean of the samples contained in the cluster, and let thejth cluster prototype beU (j) ∈ ℜb wherej = 1,

. . ., K. All clusters taken together form a partition of the data, defined by a partition matrix,w with

wij = 1 indicating that theith sample belongs to thejth cluster,wij = 0 otherwise, and
∑K

j=1 wij = 1 for

all i. Each sample is a member of exactly one cluster.
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A classic example of a simple hard clustering method is theK-means clustering algorithm that locates

a local minimum point of the objective function

J(ρ) =
n

∑

i=1

K
∑

j=1

wijρij (1)

subject to
K

∑

j=1

wij = 1, for i = 1, . . . , n,

where ρij = ‖x(i) − U (j)‖2
2 [5]. In this case,ρij is a measure of dissimilarity or distance between the

ith sample and thejth cluster. TheK-means clustering algorithm attempts to find the ideal partition that

minimizes the sum of squared distances between each sample and the prototype of the cluster to which the

sample belongs. The algorithm forK-means requiresK initial cluster prototypes and iteratively assigns

each sample to the closest cluster using

wij =

{

1, if j = argmin
1≤j≤K

ρij ,

0, otherwise,

for eachi, followed by the cluster prototype (mean) recalculation

U (j) =

n
∑

i=1

(wijx
(i))

/

n
∑

i=1

wij

oncew has been calculated. This process, guaranteed to terminatein a finite number of iterations, continues

until no further improvement is possible, terminating at a local minimum point of (1).

In hard clusters, such as those produced byK-means, the collection of samples that belong to

a particular cluster can be evaluated to determine a cluster’s eligibility to perform classification. The

class memberships of the labeled samples in a particular cluster can be modeled using discrete random

variables generated from binomial, multinomial, or hypergeometric distributions, for example. These

random variables form the basis of statistical tests used toevaluate clusters for classification. For example,

let Vic be a Bernoulli random variable where success (Vic = 1) indicates theith labeled sample is labeled

with the cth class. The number of labeled samples labeled with thecth class in a particular cluster would

be a binomial random variableVc,j =
∑

i∈Ij
Vic where Ij is the index set of labeled samples belonging

to the jth cluster. This binomial random variable can be used as the basis for a statistical hypothesis test

to determine if the number of samples labeled with thecth class (as opposed to all other classes) in the

jth cluster is significant. In practice, thecth class that would be tested would be the class that is most
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represented in thejth cluster, or mathematically,c = argmax1≤c≤CVc,j for a particularj whereC is the

number of classes.

2.2 Soft Clustering

Soft clusters are clusters that instead of containing a collection of individual samples, contain portions

of individual samples. Another view of soft clustering is that each sample has a probability of belonging

to a particular cluster. Soft clustering has advantages over hard clustering in that a sample is not simply

assigned to the closest cluster, but information is preserved about relationships to other clusters as well.

Furthermore, these continuous assignments are less constrained that discrete assignments, resulting in a less

constrained objective function. Like in hard clustering,wij indicates cluster membership, but instead of

being either zero or one,wij ∈ (0, 1), and like in hard clustering,
∑K

j=1 wij = 1 for all i. Some versions of

fuzzy clustering do not impose this requirement, but those non-probabilistic methods will not be considered

here.

An example of a soft clustering method analogous toK-means is fuzzyK-means that locates a local

minimum point of the objective function

J(ρ) =
n

∑

i=1

K
∑

j=1

wp
ijρij (2)

subject to
K

∑

j=1

wij = 1

whereρij is still the squared Euclidean distance betweenx(i) andU (j) andp > 1 [6]. The algorithm that

minimizes this objective function is similar to that ofK-means in that it first calculates

wij =
(1/ρij)

1/(p−1)

K
∑

k=1

(1/ρik)1/(p−1)

for all i andj followed by calculating updated cluster prototypes

U (j) =
n

∑

i=1

wp
ijx

(i)
/

n
∑

i=1

wp
ij .

The cluster prototype is a weighted average. This iteration(recalculation of the weights followed by

recalculation of cluster prototypes, following by recalculation of the weights, etc.) is guaranteed to converge

(with these definitions ofρij, U (j), andwij) for p > 1 [7].
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3 Soft Cluster Evaluation

Evaluation of soft clusters requires taking cluster weights into account when examining class

memberships of the labeled samples. Each labeled sample will have some positive membership in each

cluster, and a new type of evaluation will be necessary to directly evaluate soft clusters. Soft cluster

memberships could be converted to hard cluster membershipsfor the purpose of cluster evaluation, but if

soft clustering is warranted, those soft clusters should beevaluated directly.

Hard cluster evaluation (for classification) is based on thecomposition of the cluster, or what type of

samples are making up the cluster. The question of whether a cluster should be used for classification can

be answered when some of the samples within the cluster have labels and there are a sufficient number

of samples to draw statistical conclusions. Because soft clusters no longer “contain” samples, the more

important question is whether the relative magnitudes of memberships between samples of a particular

class and the cluster are significantly different. In other words, if the magnitude of cluster memberships

for samples of a particular class appear to be significantly higher than memberships for other classes, then

the cluster is demonstrating characteristics of that class. With hard clusters, a cluster is pure if only one

class is contained in the cluster; no samples labeled with another class are present in the cluster. This is

impossible in soft clustering as all types of samples will have positive memberships in all clusters, and in

practice, these memberships, although possibly small, will be nonnegligible.

Just as hard clusters that are ideal for classification contain only one class, soft clusters that are ideal

for classification will be representative of just one class.The goal in using soft clustering for classification

is to assign a class label to an entire cluster (the same goal for hard clusters), but just as each sample

has a soft membership in a particular cluster, each sample will have soft membership in a class. The

samples demonstrate characteristics of multiple classes,justifying soft classification, but the clusters (logical

grouping of similar data) should not contain or represent multiple classes. The goal of this work is to

associate a soft cluster to one particular class if that class is clearly dominant within the cluster. Probability

will determine how clearly a particular cluster is composedof one class, and if this probability passes a

predetermined threshold test, the cluster will be associated with a class.

3.1 Hypothesis Test

The statistical tests used to evaluate clusters in this paper are statistical hypothesis tests, where a null

hypothesis is proposed. If observed evidence strongly indicates the null hypothesis should be rejected,
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the alternate hypothesis will be accepted. In the absence ofcompelling evidence to the contrary, the null

hypothesis cannot be rejected.

The first hypothesis test is based on the average cluster weights in the cluster of interest, thejth

cluster. In order to associate thejth cluster to thecth class, the average cluster weight for thecth class

wc,j =
1

nc

∑

i∈Jc

wij ,

wherenc is the number of samples labeled with thecth class andJc is the index set of samples labeled

with the cth class, should be statistically significantly higher thanother cluster weights for thejth cluster.

If the weights for samples labeled with thecth class are higher in general than samples from arbitrary

classes, the cluster is demonstrating a tendency to thecth class, and can be used to discriminate thecth

class from other classes.

The null hypothesis is that the average cluster weights for samples from thecth class in thejth cluster

is not significantly different from the average cluster weight for samples from all classes in thejth cluster.

The alternate hypothesis is that the average weight for samples from thecth class in thejth cluster is

significantly different (higher) than the average cluster weight for all samples. Note that in practice, only

the class with the highest average cluster weight for thejth cluster would be considered. Suppose that a

test statistic derived for this test is normally distributed, and is in fact a standard normal random variable

Z. Then if the observed value iŝz, if P (Z ≥ ẑ) ≤ α for 0 < α < 1, the null hypothesis is rejected. The

following sections derive appropriate test statistics to use in this hypothesis test.

3.2 Test Statistic 1

Suppose a datasetx containsn samplesx(i) ∈ ℜB, i = 1, . . ., n. For K fixed cluster centers

U (k) ∈ ℜB, k = 1, . . ., K, the assigned weight of theith pixel to thejth cluster is

wij =
1/‖x(i) − U (j)‖2

2

K
∑

k=1

1/‖x(i) − U (k)‖2
2

,

which is the inverse of the distance squared over the sum of the inverse squared distances. (Such inverse

distance weights are widely used, e.g., by Shepard’s algorithm for sparse data interpolation.) Note this is the

specific case in the soft clustering algorithm described above whenp = 2. In many practical applications

where a dataset is to be clustered (such as the clustering of aremotely sensed image), it is reasonable to

assume thatx(i), i = 1, . . ., n are generated from a finite number of multivariate normal distributions. The
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Fig. 1. Distribution of sums of weights in one soft cluster out of two.

act of clustering assumes that the data are generated from a finite number of distributions. The following

theorem from [8] demonstrates that under these assumptions(samples are generated from a finite number of

normal distributions), the Lindeberg condition is satisfied and therefore the central limit theorem applies to

the sum of a sequence of cluster weight random variables
∑n

i=1Wij . Let q = ψ(i) denote the distribution

from which the random vectorX(i) was sampled.

Theorem: Let X(i) , i = 1, 2, . . ., beB-dimensional random vectors having one ofQ distinct multivariate

normal distributions. Fori = 1, 2, . . . andj = 1, . . ., K define the random variables

Wij = Wj(X
(i)) =

1/‖X(i) − U (j)‖2
2

∑K
k=1 1/‖X(i) − U (k)‖2

2

,

whereK is the number of clusters andU (k) ∈ ℜB is the kth cluster center (and is considered fixed for

weight calculation). Then for anyj = 1, . . ., K,

P

{

1

Bnj

n
∑

i=1

(Wij − aij) < x

}

→ 1√
2π

∫ x

−∞

e−
z2

2 dz

asn→ ∞, whereaij = E[Wij ], b2ij = Var[Wij ], andB2
nj =

∑n
i=1 b

2
ij .

Remark: The assumption that theX(i), i = 1, 2, . . ., are generated from a finite number of normal

distributions is stronger than necessary. The proof in [8] holds if X(i), i = 1, 2, . . ., are generated from a

finite number of arbitrary distributions.

Experimental clustering results using a dataset describedin Section 4.2 of this paper match this

theoretical result, as illustrated by one experiment in Fig. 1. This illustration shows the distribution of sums

of cluster weights for one particular cluster (whenK = 2).
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Starting with the normal approximation for the sum of the cluster weights, the standard normal test

statistic would be

ẑ =

∑

i∈Jc

(

wij − E[Wij ]
)

√

∑

i∈Jc

Var[Wij ]

,

where E[Wij ] is the expected value ofWij and Var[Wij ] is the variance ofWij for the jth cluster. E[Wij ]

and Var[Wij ] are unknown, but can be reasonably approximated using the sample mean

wj =
1

n

n
∑

i=1

wij

and sample standard deviation

Swj
=

√

√

√

√

1

n− 1

n
∑

i=1

(wij − wj)
2.

The Wald statistic is then

ẑ =

√
nc(wc,j − wj)

Swj

, (3)

where

wc,j =
1

nc

∑

i∈Jc

wij .

Since ẑ is generated (approximately) by the standard normal distribution, this test statistic can be used in

the proposed hypothesis test.

3.3 Test Statistic 2

One potential issue with the above statistic is that the sample mean and standard deviation calculations

assume the sample is identically distributed, which is specifically not the assumption in this case (clustering

assumes that the data are generated from a number of distributions, where the true number of clusters is

equal to the number of distributions, which is unknown apriori) . A better statistic acknowledges that

the data are not identically distributed, but are generatedfrom a finite number of distributions. Since

the number of distributions and the distributions are unknown, the number of classes and the individual

class labels, which are assumed to correspond to inherent structure of the data, are used to approximate

the true mean and variance of multiple clusters. Precisely,assume that all labeled sample indicesi with

distribution indexψ(i) = q correspond to the same class labelφ(i) = c. If i ∈ ψ−1(q), then i ∈ φ−1(c),
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but i ∈ φ−1(c) does not implyi ∈ ψ−1(q) (more than one distribution can correspond to one class), and

Jc = φ−1(c) = {i | φ(i) = c, 1 ≤ i ≤ n}. The above statistic requires modification to use class information.

In the previous statistic,
∑

i∈Jc

wij =

n
∑

i=1

wijδφ(i),c,

ẑ =

n
∑

i=1

(

wijδφ(i),c − E[Wijδφ(i),c]
)

√

√

√

√

n
∑

i=1

Var[Wijδφ(i),c]

,

n
∑

i=1

(wijδφ(i),c − E[Wijδφ(i),c])

=
n

∑

i=1

(wijδφ(i),c − aijδφ(i),c)

=
n

∑

i=1

(wijδφ(i),c − αqjδφ(i),c),

recalling that E[Wij ] = aij = αqj for i ∈ Iq. Assume whenφ(i) = c, and distribution indexq = ψ(i)

corresponds toc = φ(i), thenαqj can be approximated byγcj, the mean of classc = φ(i). Ideally αqj

should be approximated directly, but there is no way to knowψ−1(q), so essentiallyψ−1(q) ⊂ φ−1(c) is

being approximated byφ−1(c). Unfortunately, using the sample mean of thecth class and thejth cluster

to approximateγcj and thereforeαqj breaks down because the sample mean of thecth class and thejth

cluster is both the random variable on the left side and the approximation of the expected value on the right

side of the minus sign. This is illustrated below. Approximating γcj (andαqj) with the sample mean for

the cth class,

γcj ≈ wc,j =

n
∑

k=1

wkjδφ(k),c

n
∑

k=1

δφ(k),c

,

the numerator of the test statistiĉz becomes
n

∑

i=1

(

wijδφ(i),c − wc,jδφ(i),c

)
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=
n

∑

i=1

wijδφ(i),c −

n
∑

k=1

wkjδφ(k),c

n
∑

k=1

δφ(k),c

n
∑

i=1

δφ(i),c

=

n
∑

i=1

wijδφ(i),c −
n

∑

k=1

wkjδφ(k),c = 0.

Thus this test statistic does not work because the value being tested is the same as the estimated mean for

the cth class.

In order to make use of class information to estimate distribution statistics (mean and variance), it is

necessary to modify the random variable to model class labels as well as cluster memberships. Consider

each labeled sample’s membership in a particular class, saythe cth class, to be a Bernoulli trialVic, where

Vic = 1 indicates theith sample is labeled with thecth class, andWij is defined above. Define

Yc,j = V1cW1j + V2cW2j + · · · + VncWnj ,

wheren is the total number of labeled samples as the random variablefor the sum of weights for samples

in the cth class to thejth cluster. The Central Limit Theorem applies to this sum of bounded random

variables with finite mean and variance (see Theorem 1), andYc,j is approximately normal.

Consider now the test statistic

ẑ =
yc,j − E[Yc,j]
√

Var[Yc,j]
.

Fixing j andc, assumingWij andVic are independent, and definingmq = |Iq|, the number of indicesi for

whichX(i) has theqth distribution,

E[Yc,j] = E

[

n
∑

i=1

WijVic

]

=

n
∑

i=1

E[WijVic]

=

n
∑

i=1

E[Wij ]E[Vic] =

Q
∑

q=1

mqαqjpc = pc

Q
∑

q=1

mqαqj,

where pc is the probability thatVic = 1. Assuming all the samples are independent and recalling that
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Var[Wij ] = b2ij = β2
qj wherei ∈ Iq,

Var[Yc,j] = Var

[

n
∑

i=1

WijVic

]

=
n

∑

i=1

Var[WijVic]

=

n
∑

i=1

(

E[W 2
ijV

2
ic] − E[WijVic]

2
)

=

n
∑

i=1

(pcE[W 2
ij ] − p2

ca
2
ij)

=

n
∑

i=1

(pc(b
2
ij + a2

ij) − p2
ca

2
ij)

=

Q
∑

q=1

mq

(

pc(β
2
qj + α2

qj) − p2
cα

2
qj

)

= pc

Q
∑

q=1

mq(β
2
qj + (1 − pc)α

2
qj).

In the above formula,pc would be approximated by its maximum likelihood estimatenc/n = |Jc|/n. In

order to estimateαqj, assume that theqth distribution corresponds to thecth class,ψ−1(q) ⊂ φ−1(c), and

αqj ≈ wc,j =
1

nc

∑

i∈Jc

wij , c = 1, . . . , C,

whereC is the number of classes. Then

E[Yc,j] = pc

Q
∑

q=1

mqαqj ≈ pc

C
∑

d=1

nd ·
1

nd

∑

i∈Jd

wij

=
nc

n

n
∑

i=1

wij = ncwj ,

and

Var[Yc,j] = pc

Q
∑

q=1

mq(β
2
qj + (1 − pc)α

2
qj)

≈ pc

C
∑

d=1

nd(S
2
wd,j

+ (1 − pc)w
2
d,j),

where

S2
wd,j

=
1

nd − 1

∑

i∈Jd

(wij − wd,j)
2.
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Using these expressions for the mean and variance ofYc,j, the Wald statistic for thecth class andjth

cluster is

ẑ =
yc,j − ncwj

√

√

√

√pc

C
∑

d=1

nd

(

S2
wd,j

+ (1 − pc)w
2
d,j

)

, (4)

and the null hypothesis is rejected ifP (Z ≥ ẑ) ≤ α.

4 Application to Remote Sensing

One way to evaluate the above proposed cluster enrichment approach is to use it in conjunction with a

classification algorithm that uses soft clusters as a basis for class predictions. Clusters that pass the test

(the null hypothesis is rejected) are used as the basis for classification, and clusters that fail the test (the

null hypothesis is not rejected) are not used in classification. Some methods refine these latter clusters,

iteratively, to arrive at better clusters. Although our enrichment strategy applies to any algorithm that

outputs (and/or refines) soft clusters, we demonstrate its use with CIGSR, the continuous iterative guided

spectral class rejection (CIGSCR) classification method that is popular in remote sensing [8], [9]. CIGSCR

provides an example of how soft cluster evaluation can be used in the classification of remotely sensed

images. We hasten to add that our choice of CIGSR is driven by our focus on remote sensing applications

and that other clustering algorithms (that output soft clusters) and classification algorithms (that use soft

clusters) can be readily plugged into our framework.

4.1 CIGSCR

CIGSCR is a classification method used in remote sensing to assign a label to each pixel or object

in a remotely sensed image using a small set of labeled pixels/objects within the image. CIGSCR uses

clustering to generate a classification modelp(ci|x) wherex is a multivariate sample to be classified and

ci, i = 1, . . ., C, is the ith class where there areC classes in the classification scheme. CIGSCR uses

clustering to estimatep(kj |x) in the expression

p(ci|x) =

K
∑

j=1

p(ci, kj|x) =

K
∑

j=1

p(ci|kj, x)p(kj|x), (5)
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wherekj , j = 1, . . ., K, is thejth cluster out ofK total clusters. CIGSCR also uses the clusters to train a

decision rule using Bayes’ theorem [10]

p(kj |x) =
p(x|kj)p(kj)

K
∑

i=1

p(x|ki)p(ki)

. (6)

The prior probabilities of the clustersp(kj) are assumed to be equal. While different soft clustering

algorithms could be used in this algorithm, for simplicity,fuzzy k-means is used for this work.

CIGSCR uses labeled data to locate clusters that correspondto classes in a given classification scheme.

CIGSCR requires a labeled set of training data comprised of individual samples and corresponding class

labels. Rather than using the labeled data to train a decision rule directly, the entire image is clustered,

thereby capturing the inherent structure of all the data andnot just the labeled samples. The clusters

represent spectral classes, and in remote sensing, each spectral class ideally corresponds to exactly one

class in the final classification scheme. Once clusters are generated, each cluster must be associated with

one class or rejected as impure. Impure clusters are rejected and can be further refined in the iterative part

of the algorithm. The test for cluster purity is the cluster evaluation test presented earlier and is performed

using the labeled training set.

In CIGSCR, the iterative cluster refinement takes place by selecting a target cluster in the set of

existing clusters and then creating a new cluster using information contained in the target cluster. The target

cluster is selected in one of two ways. First, if a class is notrepresented by an associated cluster, a cluster

that contains the best information for that particular class is selected. If thecth class is not represented in

the associated clusters, the cluster that is closest to being associated with thecth class is used to generate

a new cluster. The “closest” cluster is determined to be the cluster with the highest ratio of the average

membership thecth class to the average membership of the majority class. If all classes are represented

by associated clusters, if at least one cluster failed the association significance test, the cluster with the

lowest value ofẑ is selected for further refinement. This is accomplished by adding one new cluster using

information contained in a target cluster, which effectively splits the cluster into two clusters. When using

a clustering algorithm based on objective function (2), adding a new cluster guarantees a smaller function

value whenp = 2. The new cluster mean is determined using

U (K+1) =

∑

i∈φ−1(ck)

wikx
(i)

∑

i∈φ−1(ck)

wik

, (7)
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where the target cluster is thekth cluster, the class of interest is theckth class (in thekth cluster), and

recall thatφ−1(c) is the index set of labeled samples whose label isc.

Once the iterative clustering is complete, one or more classifications is performed. The first

classification is called the iterative stacked (IS) classification and is the result of using cluster assignments

to directly produce a classification. The IS assignment for apixel x = x(m) using (5) is a vector IS(x) with

ith component

p(ci|x) =

K
∑

j=1

p(ci|kj, x)p(kj|x), (8)

wherep(kj|x) is estimated usingwmj and

p(ci|kj, x) =

{

1, if kj is labeledci,
0, otherwise.

The second possible classification, the decision rule (DR) classification, uses the associated clusters to

form a decision rule. Recall in (6) that

p(kj |x) =
p(x|kj)

∑K
i=1 p(x|ki)

when all thep(kj) are equal. Traditionally, the maximum likelihood decisionrule, assuming a multivariate

normal distribution

p(x|kj) = 2π−B/2|Σj |−1/2e−
1
2 (x−U(j))T Σ−1

j
(x−U(j)),

is used whereΣj is the covariance matrix of thejth cluster [11]. The DR classification function is a vector

DR(x) with the ith component

p(ci|x) =

K
∑

j=1

p(ci|kj, x)p(kj|x)

=

K
∑

j=1

p(ci|kj, x)

[

2e−
1
2 (x−U(j))T Σ−1

j
(x−U(j))

πB/2|Σj|1/2

]

K
∑

l=1

[

2e−
1
2 (x−U(l))T Σ−1

l
(x−U(l))

πB/2|Σl|1/2

] . (9)

See [8], [9] for more details on the CIGSCR algorithm.

4.2 Test Data

The first dataset used to obtain experimental results for IGSCR and CIGSCR is a mosaicked Landsat

Enhanced Thematic Mapper Plus (ETM+) satellite image takenfrom Landsat Worldwide Reference System
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Fig. 2. Landsat ETM+ path 17/row 34 over Virginia, USA.

(WRS) path 17, row 34, located in Virginia, USA, shown in Fig.2. This image, hereafter referred to as

VA1734, was acquired on November 2, 2003 and consists largely of forested, mountainous regions, and

a few developed regions that are predominantly light blue and light pink in Fig. 2. Fig. 2 contains a

three color representation of VA1734 where the red color band in Fig. 2 corresponds to the near infrared

wavelength in VA1734, the green color band in Fig. 2 corresponds to the red wavelength in VA1734, and

the blue color band in Fig. 2 corresponds to the green wavelength in VA1734.

The training data for this image was created by the interpretation of point locations from a systematic,

hexagonal grid over Virginia Base Mapping Program (VBMP) true color digital orthophotographs. A two

class classification was performed (forest/nonforest), and classification parameters and results are given in

Table 1 (DR classification) and Table 2 (IS classification). Fig. 3 is a DR classification image of this study

area using 10 initial clusters.

Validation data in the form of point locations at the center of USDA Forest Service Forest Inventory

and Analysis (FIA) ground plots were used to assess the accuracy of this classification. Since these

validation data are typically used to evaluate crisp classifications, only homogeneous FIA plots were used

(either 100 percent forest or nonforest), and these plots were obtained between 1997 and 2001. Accuracy

was assessed based on an error matrix where classification results for specific points (not included in the

training data set) are compared against known class values.
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Fig. 3. CIGSCR DR classification using 10 initial clusters.

The second dataset used to obtain experimental results for IGSCR and CIGSCR is a hyperspectral

image of the Appomattox Buckingham State Forest in Virginia, USA. The AVIRIS 224-band, low-altitude

flight lines were acquired in the winter of 1999 and ranged from approximately 400-2500nm (10nm spectral

resolution) with 3.4m spatial resolution [12]. The AVIRIS data were geometrically and radiometrically

corrected (to level 1B at-sensor radiance, units of microwatts per square centimeter per nanometer per

steradian) by the Jet Propulsion Laboratory (JPL; Pasadena, California, USA). The three flight lines used

for this study were registered (8–12 control points per flight line) to an existing 0.5m orthophoto of the

area. Resampling resulted in root mean square errors (RMSE)ranging between 0.23 and 0.24 pixels [12].

Training data were acquired by collecting 142 field locations [12] surrounded by homogeneous areas of

single pine species (64 loblolly (Pinus taeda), 30 shortleaf (Pinus echinata), and 48 Virginia pine (Pinus

virginiana)) with differentially corrected global positioning system (GPS) coordinates. These locations

were used in a region growing algorithm to obtain a sufficientnumber of points for training and validation,

and nonpine training data were acquired using knowledge of the area and maps of known stands in the

region. The image (shown in Fig. 4 and hereafter referred to as ABSF) contains various tree stands that

include the three species of pines listed above, hardwoods,and mixed (evergreens and hardwoods). 400

points were randomly selected to serve as validation data for these four classes (loblolly, shortleaf, and

Virginia pines, and nonpine). The IS classification of this image is shown in Fig. 5.
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Fig. 4. AVIRIS image (three flight lines) taken over Appomattox Buckingham State Forest in Virginia,

USA.

4.3 Results

The accuracies reported in Tables 1–2 were obtained by first converting all soft classifications to

hard classifications for the purpose of comparing hard classification values to hard ground truth values.

The classification results reported in Tables 1–2 used 10, 15, 20, and 25 initial clusters for CIGSCR.

Experimental runs of CIGSCR usedα = .0001 (values ofẑ tend to be high for the association significance

test). All reported CIGSCR classifications used test statistic (4). In practice, few classifications are different

when using test statistic (3) instead of (4). Values ofẑ are slightly smaller using (4) than (3), resulting in

more potential for cluster refinement. Classification was performed using just clustering without the cluster

refinement framework in CIGSCR to evaluate the effect of the combination of the association significance

test and iteration in CIGSCR on classification accuracies. An asterisk (*) indicates that the classification

failed because at least one class had no associated clusters.

In all but one experimental run (IS classification using 20 initial clusters), the combination of soft

cluster evaluation and refinement in CIGSCR significantly improved final classification accuracies. Note

that for the DR classification in Table 1, classification accuracies improved by at least 3.3%, a significant

improvement. In practice, the DR classification often has been found to be the more accurate CIGSCR and
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Fig. 5a. CIGSCR DR classification (loblolly

pines).

Fig. 5b. CIGSCR DR classification (shortleaf

pines).

Fig. 5c. CIGSCR DR classification (Virginia

pines).

Fig. 5d. CIGSCR DR classification (nonpine).

IGSCR (the predecessor to CIGSCR that uses hard clustering)classification ([13], [14], [8], [9]). In some

cases, such as when 10 initial clusters are used, the classification accuracy improvement is dramatic(over

16%). This evaluation may be especially critical in cases such asthis where the initial clustering does not
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Table 1

VA1734 classification accuracies.

no. init. no. clusters DR IS

clusters produced, associatedCIGSCR clustering CIGSCR clustering

10 15,13 88.74 72.26 83.63 72.26
15 20,16 80.50 73.72 76.96 72.99
20 25,21 79.87 76.54 75.60 76.85
25 30,25 81.44 77.58 78.52 76.75

Table 2

ABSF classification accuracies.

no. init. no. clusters DR IS

clusters produced, associatedCIGSCR clustering CIGSCR clustering

10 15,15 47.50 * 51.75 *
15 20,19 62.50 * 51.00 *
20 25,24 66.75 * 51.00 *
25 30,29 63.00 * 51.00 *

produce an accurate classification, likely because the clusters do not conform to a “cluster assumption.”

The asterisks in Table 2 indicate that simply using clustering for classification failed because one or

more classes was not represented by a cluster. This illustrates the fundamental problem with using clusters

for classification without evaluation and/or refinement—there is no guarantee that a set of clusters will

match up with a classification scheme. In this case, there areclasses in the scheme that do not have a

particularly strong presence in any clusters. This classification is a result of both adding new clusters that

will be representative of the missing classes and performing the cluster evaluation and refinement described

above. The classification results are less accurate than those for the VA1734 dataset, but classifying ABSF

(a noisier image than VA1734) into four classes, three of which have some overlap between spectral classes,

is a much harder problem that classifying VA1734 into two distinct classes. Regardless, the comparatively

lower classification accuracies of the ABSF dataset are a better result than failing to produce a classification

using clustering alone.

5 Conclusions

We have demonstrated a new cluster enrichment strategy suitable for soft clusters and applied it in the

context of a remote sensing classification algorithm (CIGSCR). Using the cluster evaluation presented here,
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CIGSCR produced significantly better classifications (measured by classification accuracy) than clustering

without enrichment evaluation and refinement. Since few soft cluster enrichment methods exist, we argue

that our framework contributes a key methodology for clustering and cluster evaluation research.
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