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Abstract—Clusters, typically mined by modeling locality of attribute spaces, are often evaluated
for their ability to demonstrate ‘enrichment’ of categorical features. A cluster enrichment procedure
evaluates the membership of a cluster for significant representation in pre-defined categories of
interest. While classical enrichment procedures assume a hard clustering definition, in this paper
we introduce a new statistical test that computes enrichments for soft clusters. We demonstrate an
application of this test in refining and evaluating soft clusters for classification of remotely sensed

images.

1 INTRODUCTION

Clustering is an unsupervised process that models loa@ithata samples in attribute space to identify
groupings: samples within a group are closer to each ottger th samples from other groups. To assess
whether the discovered clusters are meaningful, a typicaigulure is to see if the groupings capture other
categorical informatiomot originally used during clustering. For instance, in microarray bioinformatics,
data samples correspond to genes and their expressionsjedtesters capture locality in expression space,
and they are evaluated to see if genes within a cluster si@aranon biological function/annotations.
(Observe that the functional annotations are not used glwlastering). In text mining, data samples

correspond to documents and their text vectors, clustgptialocality in term space, and are evaluated
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for their correspondence with priori domain information such as topics. In remote sensing, datgkes
correspond to pixels in an image, clusters capture localitpixel intensities, and are evaluated for their
correspondence with land cover classifications.

All of the above applications are essentially determiningether locality in one space preserves
correspondence with information in another space, alserned to as theluster assumption [1]. While
cluster evaluation is typically conducted as a distincttypsscessing stage after mining, recently developed
clustering formulations blur this boundary. For instande, [2], locality information is used along
with background knowledge to influence the clustering. Shabkground knowledge takes the form of
constraints, some of which dictate that certain samplesildhappear in the same cluster, while others
specify that two samples should be in different clusteranil@rly, in [3], clusters are designed using an
objective function that balances compression of the pymandom variable against preservation of mutual
information with an auxiliary variable. With the advent a#rsi-supervised clustering [1], more ways to
integrate labeled and unlabeled information are rapidind@roposed.

The design of both classical and the newer clustering alguos is predicated on the ability to evaluate
clusters for enrichment and using this information to drilie refinement and subsequent discovery of
clusters. However, classical statistical enrichment @doces (e.g., using the hyper-geometric distribution
[4]) assume a hard clustering formulation. Our focus hererissoft clusters where the groupings are
defined by portions of individual samples. We present a neiissical test to enrich soft clusters and

demonstrate its application to a remote sensing context.
2  CLUSTERING

2.1 Hard Clustering

Hard clustering produces clusters that are a collectiomdividual samples. Let th&h sample be
denoted byz(® € R® wherei =1, ..., n. A cluster is typically represented by a prototype, suchhes t
mean of the samples contained in the cluster, and letjttheluster prototype b& () ¢ R wherej =1,
..., K. All clusters taken together form a partition of the datafird by a partition matrixw with
w;; = 1 indicating that theth sample belongs to thgh cluster,w;; = 0 otherwise, anc{jﬁil w;; =1 for

all i. Each sample is a member of exactly one cluster.
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A classic example of a simple hard clustering method iskheeans clustering algorithm that locates
a local minimum point of the objective function
n K
=33 wns 2
i=1 j=1

subject to
K
d wy=1, fori=1,....n,
j=1

where p;; = ||z — UU)||2 [5]. In this case,p;; is a measure of dissimilarity or distance between the
ith sample and thgth cluster. TheK-means clustering algorithm attempts to find the ideal pantithat
minimizes the sum of squared distances between each samplba prototype of the cluster to which the
sample belongs. The algorithm fdf-means required< initial cluster prototypes and iteratively assigns
each sample to the closest cluster using
{ 1, if j =argminp;,
Wij =

1<<K
0, otherwise,

for eachi, followed by the cluster prototype (mean) recalculation

7o) :zn: (wi;2) /wa
=1

oncew has been calculated. This process, guaranteed to terninatinite number of iterations, continues
until no further improvement is possible, terminating abeal minimum point of (1).

In hard clusters, such as those produced Aymeans, the collection of samples that belong to
a particular cluster can be evaluated to determine a clsistdigibility to perform classification. The
class memberships of the labeled samples in a particulatecican be modeled using discrete random
variables generated from binomial, multinomial, or hygengetric distributions, for example. These
random variables form the basis of statistical tests usexvatuate clusters for classification. For example,
let V;. be a Bernoulli random variable where succegs & 1) indicates theith labeled sample is labeled
with the cth class. The number of labeled samples labeled withctheclass in a particular cluster would

be a binomial random variablg, ; = > Vie where I; is the index set of labeled samples belonging

iGIj
to the jth cluster. This binomial random variable can be used as #seslor a statistical hypothesis test
to determine if the number of samples labeled with ttte class (as opposed to all other classes) in the

jth cluster is significant. In practice, th¢h class that would be tested would be the class that is most
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represented in thgth cluster, or mathematically, = argmax ..V, ; for a particularj whereC' is the

number of classes.

2.2 Soft Clustering

Soft clusters are clusters that instead of containing acttin of individual samples, contain portions
of individual samples. Another view of soft clustering isatreach sample has a probability of belonging
to a particular cluster. Soft clustering has advantages baed clustering in that a sample is not simply
assigned to the closest cluster, but information is presemabout relationships to other clusters as well.
Furthermore, these continuous assignments are less aiorestithat discrete assignments, resulting in a less
constrained objective function. Like in hard clustering,; indicates cluster membership, but instead of
being either zero or oney;; € (0, 1), and like in hard clusterinng{:1 w;; = 1 for all i. Some versions of
fuzzy clustering do not impose this requirement, but thase probabilistic methods will not be considered
here.

An example of a soft clustering method analogoudstaneans is fuzzyK-means that locates a local
minimum point of the objective function

J(p) =Y > whpi (2)

i=1 j=1
subject to

K
E Wi; = 1
j=1

wherep;; is still the squared Euclidean distance betweéh andU) andp > 1 [6]. The algorithm that

minimizes this objective function is similar to that &f-means in that it first calculates

(1/piy) @0
ii = R

> @/ p)

k=1
for all ¢« andj followed by calculating updated cluster prototypes

Ul = iwfjx(i) /iwfj
i=1 i=1

The cluster prototype is a weighted average. This iterafrecalculation of the weights followed by

recalculation of cluster prototypes, following by recdition of the weights, etc.) is guaranteed to converge

(with these definitions of;;, U, andw;;) for p > 1 [7].

4



3 SOFT CLUSTER EVALUATION

Evaluation of soft clusters requires taking cluster wesglimito account when examining class
memberships of the labeled samples. Each labeled samgdléavié some positive membership in each
cluster, and a new type of evaluation will be necessary tectly evaluate soft clusters. Soft cluster
memberships could be converted to hard cluster memberghigke purpose of cluster evaluation, but if
soft clustering is warranted, those soft clusters shoulduaduated directly.

Hard cluster evaluation (for classification) is based ondbeposition of the cluster, or what type of
samples are making up the cluster. The question of wheth&rséec should be used for classification can
be answered when some of the samples within the cluster ladedsl and there are a sufficient number
of samples to draw statistical conclusions. Because safitels no longer “contain” samples, the more
important question is whether the relative magnitudes omberships between samples of a particular
class and the cluster are significantly different. In otherds, if the magnitude of cluster memberships
for samples of a particular class appear to be significangizdr than memberships for other classes, then
the cluster is demonstrating characteristics of that clA®&h hard clusters, a cluster is pure if only one
class is contained in the cluster; no samples labeled witlthan class are present in the cluster. This is
impossible in soft clustering as all types of samples wiléh@ositive memberships in all clusters, and in
practice, these memberships, although possibly smallbe@ihonnegligible.

Just as hard clusters that are ideal for classification cowtaly one class, soft clusters that are ideal
for classification will be representative of just one clasbe goal in using soft clustering for classification
is to assign a class label to an entire cluster (the same godidrd clusters), but just as each sample
has a soft membership in a particular cluster, each samplehawe soft membership in a class. The
samples demonstrate characteristics of multiple clags&tHying soft classification, but the clusters (logical
grouping of similar data) should not contain or representtipia classes. The goal of this work is to
associate a soft cluster to one particular class if thasdkslearly dominant within the cluster. Probability
will determine how clearly a particular cluster is composdgdne class, and if this probability passes a

predetermined threshold test, the cluster will be assediatith a class.

3.1 Hypothesis Test

The statistical tests used to evaluate clusters in thisrpagestatistical hypothesis tests, where a null

hypothesis is proposed. If observed evidence stronglycatds the null hypothesis should be rejected,
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the alternate hypothesis will be accepted. In the absen@®mpelling evidence to the contrary, the null
hypothesis cannot be rejected.

The first hypothesis test is based on the average clustemtseig the cluster of interest, thgh
cluster. In order to associate thth cluster to thetth class, the average cluster weight for thie class

1
We,j = . ;chij,

wheren,. is the number of samples labeled with tité class and/. is the index set of samples labeled
with the cth class, should be statistically significantly higher tleaher cluster weights for thgth cluster.
If the weights for samples labeled with th¢h class are higher in general than samples from arbitrary
classes, the cluster is demonstrating a tendency taitthelass, and can be used to discriminate dtie
class from other classes.

The null hypothesis is that the average cluster weightsdormes from the:th class in thejth cluster
is not significantly different from the average cluster weifpr samples from all classes in thth cluster.
The alternate hypothesis is that the average weight for Emnfpom thecth class in thejth cluster is
significantly different (higher) than the average clustaight for all samples. Note that in practice, only
the class with the highest average cluster weight for jtihecluster would be considered. Suppose that a
test statistic derived for this test is normally distribiit@nd is in fact a standard normal random variable
Z. Then if the observed value 5 if P(Z > 2) < a for 0 < a < 1, the null hypothesis is rejected. The

following sections derive appropriate test statistics $e in this hypothesis test.

3.2 Test Statistic 1

Suppose a dataset containsn samplesz(® € RE, i =1, ..., n. For K fixed cluster centers
UK e RB k=1, ..., K, the assigned weight of thgh pixel to thejth cluster is

_ )29 - U3
K 9
D 1/ —u®;3
k=1
which is the inverse of the distance squared over the sumeofrilerse squared distances. (Such inverse

distance weights are widely used, e.g., by Shepard’s éfgorior sparse data interpolation.) Note this is the
specific case in the soft clustering algorithm describedvalweshenp = 2. In many practical applications
where a dataset is to be clustered (such as the clusteringearhately sensed image), it is reasonable to

assume that(”, i = 1, ..., n are generated from a finite number of multivariate normaiithstions. The
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Fig. 1. Distribution of sums of weights in one soft clustet ofitwo.

act of clustering assumes that the data are generated fronitea riumber of distributions. The following
theorem from [8] demonstrates that under these assumpBansples are generated from a finite number of
normal distributions), the Lindeberg condition is satdfand therefore the central limit theorem applies to
the sum of a sequence of cluster weight random variaplgs, ;. Let ¢ = ¢ (i) denote the distribution

from which the random vectak (¥ was sampled.

Theorem: Let X i =1, 2, ..., be B-dimensional random vectors having one@fdistinct multivariate

normal distributions. Fof =1, 2, ... andj =1, ..., K define the random variables
1/]|X% U3
Y VIX® —U®]3°
where K is the number of clusters arid®*) € RE is the kth cluster center (and is considered fixed for

Wi = W;(XW) =

weight calculation). Then for any=1, ..., K,
1 n
P — (Wz — a; ) /
{3 - <~
asn — oo, wherea;; = E[W;;], b, = Var[Wy;], and B}, = 3" | b7;.
Remark: The assumption that th& @, i =1, 2, ..., are generated from a finite number of normal
distributions is stronger than necessary. The proof in @& if X, i =1, 2, ..., are generated from a

finite number of arbitrary distributions.
Experimental clustering results using a dataset describe8ection 4.2 of this paper match this
theoretical result, as illustrated by one experiment in EigThis illustration shows the distribution of sums

of cluster weights for one particular cluster (wh&nh= 2).
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Starting with the normal approximation for the sum of thestdu weights, the standard normal test

statistic would be

where BW;;] is the expected value d¥;; and VaflV;;] is the variance o#V;; for the jth cluster. EWV;;]

and VafW; ;] are unknown, but can be reasonably approximated using thplsanean

and sample standard deviation

The Wald statistic is then

where

Since z is generated (approximately) by the standard normal Higion, this test statistic can be used in

the proposed hypothesis test.

3.3 Test Statistic 2

One potential issue with the above statistic is that the sammgan and standard deviation calculations
assume the sample is identically distributed, which is $igatly not the assumption in this case (clustering
assumes that the data are generated from a number of dismnbuwhere the true number of clusters is
equal to the number of distributions, which is unknown apyio A better statistic acknowledges that
the data are not identically distributed, but are generditech a finite nhumber of distributions. Since
the number of distributions and the distributions are umkmothe number of classes and the individual
class labels, which are assumed to correspond to inhenemtigte of the data, are used to approximate
the true mean and variance of multiple clusters. Precisagume that all labeled sample indigewith

distribution indexy(i) = ¢ correspond to the same class labél) = c. If i € ¢~ 1(q), theni € ¢71(c),
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buti € ¢~1(c) does not implyi € 1»~1(q) (more than one distribution can correspond to one class), an
J.=¢ )= {i| #(i) = c,1 < i <n}. The above statistic requires modification to use classrimdtion.
In the previous statistic,

Z wi; = Z Wij0g(i),cr
i1

i€Je

n

D (wigboiy.e — EIWijba.c)

=1
\l Z Var[Wij 5¢(i),c]

z =

=1

n

D (wijbgiy.c — EIWijd),c])

i=1

= Z(wij5¢(i),c - az’j5¢(i),c>
i=1

=Y (Wi0p(i.c = Qqi0a(i.c);
i=1

recalling that EWV;;] = a;; = oy, for i € I,. Assume whenp(i) = ¢, and distribution index; = (%)
corresponds ta = ¢(i), thena,; can be approximated by,;, the mean of class = ¢(i). Ideally o,
should be approximated directly, but there is no way to knpw (¢), so essentially)=1(q) C ¢~ (c) is
being approximated by—!(c). Unfortunately, using the sample mean of #k class and theth cluster
to approximatey.; and thereforen,; breaks down because the sample mean ofctheclass and thgth
cluster is both the random variable on the left side and tipecqimation of the expected value on the right
side of the minus sign. This is illustrated below. Approximg +.; (andc«,;) with the sample mean for

the cth class,

~

n
PRTIST I
k=1
Yej =~ We,j = )

> Goiy.e
k=1

the numerator of the test statistichecomes

n

> (wigbo(i).c — We,j0s(i).c)

i=1



Z WijOp(k),c
—wa%(z)c— n Z5¢<>c
Z Op(ky,e

=D Wiibpti.e — Y Weidp(iy.c =0
=1 k=1

Thus this test statistic does not work because the valuggliested is the same as the estimated mean for
the cth class.

In order to make use of class information to estimate digtidin statistics (mean and variance), it is
necessary to modify the random variable to model class da#elwell as cluster memberships. Consider
each labeled sample’s membership in a particular classtheayth class, to be a Bernoulli tridl;., where

Vie = 1 indicates theth sample is labeled with theth class, andV;; is defined above. Define
Yo =VieWij + Vo Woj + - + V. Wiy,

wheren is the total number of labeled samples as the random varfablihe sum of weights for samples
in the cth class to thejth cluster. The Central Limit Theorem applies to this sum ofitded random
variables with finite mean and variance (see Theorem 1),Yands approximately normal.

Consider now the test statistic

Yoy — EVey]
VarY, ;|

z =

Fixing 7 andc, assumingV;; andV;. are independent, and definimg, =

which X @ has thegth distribution,

= zn: E[Wi; Vil

i=1

E[Y.;]=E [Z Wi;Vie

i=1

n
= Z E ZJ]E zc Z MgQqijPc = Pc Z MgQqy,
=1

where p.. is the probability thatV;. = 1. Assuming all the samples are independent and recalling that
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Var[W;;] = b, = 32, wherei € I,

n

Z Wi Vie

=1

= i Var[Wij V;c]

=1

VarlY, ;] = Var

n

=) _(EWZVi] — ElW;;Vie]?)

In the above formulap. would be approximated by its maximum likelihood estimatgn = |J.|/n. In

order to estimatey,;, assume that theth distribution corresponds to the¢h class,y~*(¢) € ¢~!(c), and

1
(l/qj%wcdzn— E Wij, CZl,...,C,
€iel.

where(C is the number of classes. Then

Q C
1
E[Y., ] = pe E :qu‘qj “Pcznd ' n_d Z Wi
q=1 d=1

i€Jy
Ne - _
= : Wij = NcWy,
=1

and

Q

vVarYe ;] = pc qu( 2 T (1= pc)ag;)
q=1
c
~pe Y na(S3,, + (1 - p)wh ).

d=1

where




Using these expressions for the mean and varianc¥.gf the Wald statistic for theth class andjth

cluster is

s Ye,j — NcW; 7 (4)

and the null hypothesis is rejectedf(Z > 2) < a.

4  APPLICATION TO REMOTE SENSING

One way to evaluate the above proposed cluster enrichmenbagh is to use it in conjunction with a
classification algorithm that uses soft clusters as a basigléss predictions. Clusters that pass the test
(the null hypothesis is rejected) are used as the basis &ssification, and clusters that fail the test (the
null hypothesis is not rejected) are not used in classificatiSome methods refine these latter clusters,
iteratively, to arrive at better clusters. Although our iehment strategy applies to any algorithm that
outputs (and/or refines) soft clusters, we demonstratesigswith CIGSR, the continuous iterative guided
spectral class rejection (CIGSCR) classification methad ith popular in remote sensing [8], [9]. CIGSCR
provides an example of how soft cluster evaluation can be usehe classification of remotely sensed
images. We hasten to add that our choice of CIGSR is drivenunyfarus on remote sensing applications
and that other clustering algorithms (that output soft telts and classification algorithms (that use soft

clusters) can be readily plugged into our framework.

4.1 CIGSCR

CIGSCR is a classification method used in remote sensingdigras label to each pixel or object
in a remotely sensed image using a small set of labeled pokpécts within the image. CIGSCR uses
clustering to generate a classification mogel;|z) wherez is a multivariate sample to be classified and
¢, 1=1, ..., C, is theith class where there a@ classes in the classification scheme. CIGSCR uses
clustering to estimatg(k;|x) in the expression

K K
pleile) = ples kjlz) = pleilk, z)p(k;|z), (5)
j=1

J=1
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wherek;, j =1, ..., K, is thejth cluster out ofK total clusters. CIGSCR also uses the clusters to train a
decision rule using Bayes’ theorem [10]

Pl lz) If(ilfoj)p(kj) . (6)

> plalki)p(ks)

=1
The prior probabilities of the clusters(k;) are assumed to be equal. While different soft clustering

algorithms could be used in this algorithm, for simplicityzzy k-means is used for this work.

CIGSCR uses labeled data to locate clusters that corredparidsses in a given classification scheme.
CIGSCR requires a labeled set of training data compriseddiidual samples and corresponding class
labels. Rather than using the labeled data to train a decisile directly, the entire image is clustered,
thereby capturing the inherent structure of all the data modjust the labeled samples. The clusters
represent spectral classes, and in remote sensing, eactraspsass ideally corresponds to exactly one
class in the final classification scheme. Once clusters amergted, each cluster must be associated with
one class or rejected as impure. Impure clusters are rdjecté can be further refined in the iterative part
of the algorithm. The test for cluster purity is the clustealaation test presented earlier and is performed
using the labeled training set.

In CIGSCR, the iterative cluster refinement takes place bgctag a target cluster in the set of
existing clusters and then creating a new cluster usingnmétion contained in the target cluster. The target
cluster is selected in one of two ways. First, if a class isreptesented by an associated cluster, a cluster
that contains the best information for that particular €lasselected. If theth class is not represented in
the associated clusters, the cluster that is closest tq@kerociated with theth class is used to generate
a new cluster. The “closest” cluster is determined to be theter with the highest ratio of the average
membership theth class to the average membership of the majority classll tflasses are represented
by associated clusters, if at least one cluster failed tls®cation significance test, the cluster with the
lowest value ofz is selected for further refinement. This is accomplished direg one new cluster using
information contained in a target cluster, which effediveplits the cluster into two clusters. When using
a clustering algorithm based on objective function (2),iagda new cluster guarantees a smaller function
value whenp = 2. The new cluster mean is determined using

Z wikx(i)

gty _ i e ™

)
E Wik

i€p—1(ck)
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where the target cluster is thigh cluster, the class of interest is thgth class (in thekth cluster), and
recall that¢—!(c) is the index set of labeled samples whose label is

Once the iterative clustering is complete, one or more ilesgons is performed. The first
classification is called the iterative stacked (IS) clasaifon and is the result of using cluster assignments
to directly produce a classification. The IS assignment fpixal = = (") using (5) is a vector IS(x) with

ith component
K
pleilz) = pleilky, 2)p(k;|z), (8)
j=1

wherep(k;|x) is estimated using,,; and

|1, if k; is labeledc;,
pleilky, ) = {O, otherwise.
The second possible classification, the decision rule (D&ysdication, uses the associated clusters to
form a decision rule. Recall in (6) that
p(z|k;)
plkjle) = =
Zi—1 p(z|k;)

when all thep(k;) are equal. Traditionally, the maximum likelihood decisiohe, assuming a multivariate

normal distribution
p(x|k;) = 27r_B/2|Ej|—1/26—%(x_U(j))TEj_1(I_U(j)),

is used where_; is the covariance matrix of thgth cluster [11]. The DR classification function is a vector

DR(x) with theith component

K
p(cilz) :Zp cilkj, x)p(kj|)
7j=1

9e~ 1(z— U(J))T Ya—UW)
C’L‘kj7x B/2|E ‘1/2
- K _% (l))T (I U(l)) : (9)
SE—

See [8], [9] for more details on the CIGSCR algorithm.

4.2 Test Data

The first dataset used to obtain experimental results folC&&nd CIGSCR is a mosaicked Landsat

Enhanced Thematic Mapper Plus (ETM+) satellite image tdi@n Landsat Worldwide Reference System
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Fig. 2. Landsat ETM+ path 17/row 34 over Virginia, USA.

(WRS) path 17, row 34, located in Virginia, USA, shown in F&y. This image, hereafter referred to as
VA1734, was acquired on November 2, 2003 and consists lamfeforested, mountainous regions, and
a few developed regions that are predominantly light blud Bght pink in Fig. 2. Fig. 2 contains a
three color representation of VA1734 where the red colordbanFig. 2 corresponds to the near infrared
wavelength in VA1734, the green color band in Fig. 2 corresisoto the red wavelength in VA1734, and
the blue color band in Fig. 2 corresponds to the green wagtien VA1734.

The training data for this image was created by the intesigat of point locations from a systematic,
hexagonal grid over Virginia Base Mapping Program (VBMRjeticolor digital orthophotographs. A two
class classification was performed (forest/nonforest, eassification parameters and results are given in
Table 1 (DR classification) and Table 2 (IS classificationyy. B is a DR classification image of this study
area using 10 initial clusters.

Validation data in the form of point locations at the centetUSDA Forest Service Forest Inventory
and Analysis (FIA) ground plots were used to assess the acgwf this classification. Since these
validation data are typically used to evaluate crisp cfasdgions, only homogeneous FIA plots were used
(either 100 percent forest or nonforest), and these plote wbtained between 1997 and 2001. Accuracy
was assessed based on an error matrix where classificaiolisréor specific points (not included in the

training data set) are compared against known class values.
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Fig. 3. CIGSCR DR classification using 10 initial clusters.

The second dataset used to obtain experimental resultsGF8CR and CIGSCR is a hyperspectral
image of the Appomattox Buckingham State Forest in Virgitd®A. The AVIRIS 224-band, low-altitude
flight lines were acquired in the winter of 1999 and rangednfipproximately 400-2500nm (10nm spectral
resolution) with 3.4m spatial resolution [12]. The AVIRIStd were geometrically and radiometrically
corrected (to level 1B at-sensor radiance, units of micttsvper square centimeter per nanometer per
steradian) by the Jet Propulsion Laboratory (JPL; Pasadeal#ornia, USA). The three flight lines used
for this study were registered (8—12 control points per flighe) to an existing 0.5m orthophoto of the
area. Resampling resulted in root mean square errors (RM8Ig)ng between 0.23 and 0.24 pixels [12].

Training data were acquired by collecting 142 field locadi¢t?] surrounded by homogeneous areas of
single pine species (64 loblollyPgnus taeda), 30 shortleaf Pinus echinata), and 48 Virginia pine Pinus
virginiana)) with differentially corrected global positioning syste(GPS) coordinates. These locations
were used in a region growing algorithm to obtain a sufficrumnber of points for training and validation,
and nonpine training data were acquired using knowledgehefarea and maps of known stands in the
region. The image (shown in Fig. 4 and hereafter referredst&\RSF) contains various tree stands that
include the three species of pines listed above, hardwaoants, mixed (evergreens and hardwoods). 400
points were randomly selected to serve as validation datdahtese four classes (loblolly, shortleaf, and

Virginia pines, and nonpine). The IS classification of tmsage is shown in Fig. 5.
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Fig. 4. AVIRIS image (three flight lines) taken over ApponoattBuckingham State Forest in Virginia,
USA.

4.3 Results

The accuracies reported in Tables 1-2 were obtained by fasvecting all soft classifications to
hard classifications for the purpose of comparing hard dieason values to hard ground truth values.
The classification results reported in Tables 1-2 used 10,205 and 25 initial clusters for CIGSCR.
Experimental runs of CIGSCR used= .0001 (values ofz tend to be high for the association significance
test). All reported CIGSCR classifications used test diat{4). In practice, few classifications are different
when using test statistic (3) instead of (4). Values:dre slightly smaller using (4) than (3), resulting in
more potential for cluster refinement. Classification waggomed using just clustering without the cluster
refinement framework in CIGSCR to evaluate the effect of thelasination of the association significance
test and iteration in CIGSCR on classification accuracies. aéterisk (*) indicates that the classification
failed because at least one class had no associated clusters

In all but one experimental run (IS classification using 2@iah clusters), the combination of soft
cluster evaluation and refinement in CIGSCR significantlprioved final classification accuracies. Note
that for the DR classification in Table 1, classification aecies improved by at least 3.3%, a significant

improvement. In practice, the DR classification often hasnbi®und to be the more accurate CIGSCR and
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Fig. ba. CIGSCR DR classification (loblolly Fig. 5b. CIGSCR DR classification (shortleaf

Fig. 5c. CIGSCR DR classification (Virginia Fig. 5d. CIGSCR DR classification (nonpine).

pines).

IGSCR (the predecessor to CIGSCR that uses hard clusteriaggification ([13], [14], [8], [9]). In some
cases, such as when 10 initial clusters are used, the atasisifi accuracy improvement is dramafover

16%). This evaluation may be especially critical in cases sucthiaswhere the initial clustering does not
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TABLE 1

VA1734 CLASSIFICATION ACCURACIES.

no. init. no. clusters DR IS

clusters| produced, associatedCIGSCR| clustering| CIGSCR| clustering
10 15,13 88.74 72.26 83.63 72.26
15 20,16 80.50 73.72 76.96 72.99
20 25,21 79.87 76.54 75.60 76.85
25 30,25 81.44 77.58 78.52 76.75

TABLE 2
ABSF CLASSIFICATION ACCURACIES.

no. init. no. clusters DR IS

clusters| produced, associatedCIGSCR| clustering| CIGSCR| clustering
10 15,15 47.50 * 51.75 *
15 20,19 62.50 * 51.00 *
20 25,24 66.75 * 51.00 *
25 30,29 63.00 * 51.00 *

produce an accurate classification, likely because theetkislo not conform to a “cluster assumption.”
The asterisks in Table 2 indicate that simply using clustefor classification failed because one or
more classes was not represented by a cluster. This iltasttae fundamental problem with using clusters
for classification without evaluation and/or refinementerthis no guarantee that a set of clusters will
match up with a classification scheme. In this case, thereclasses in the scheme that do not have a
particularly strong presence in any clusters. This clasgifin is a result of both adding new clusters that
will be representative of the missing classes and perfagrthe cluster evaluation and refinement described
above. The classification results are less accurate thae tioo the VA1734 dataset, but classifying ABSF
(a noisier image than VA1734) into four classes, three ofcWhiave some overlap between spectral classes,
is @ much harder problem that classifying VA1734 into twaid classes. Regardless, the comparatively
lower classification accuracies of the ABSF dataset aretareisult than failing to produce a classification

using clustering alone.

5 CONCLUSIONS

We have demonstrated a new cluster enrichment strateggbseiifor soft clusters and applied it in the

context of a remote sensing classification algorithm (CI&p@sing the cluster evaluation presented here,
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CIGSCR produced significantly better classifications (raess by classification accuracy) than clustering
without enrichment evaluation and refinement. Since few clokter enrichment methods exist, we argue

that our framework contributes a key methodology for cliasteand cluster evaluation research.
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