

TWITTER METADATA
CS 6604 Final Report

Michael Shuffett
mshuffett@gmail.com

Abstract
The Twitter Metadata project was a class project as part of CS 6604. In it, I created TweetID, a

tool for twitter collection collaboration and I define standards for collection level and tweet level
metadata.

1

Table of Contents
Table of Figures ... 2

Executive Summary ... 3

Users’ Manual ... 4

Developer's Manual .. 4

Technologies Used .. 5

Setup Guide ... 5

Prerequisites ... 5

Instalation Requirements .. 5

Before Running for the first time .. 5

Running command-line commands .. 5

High-level explanation of files ... 6

Current Limitations (next steps) ... 6

Lessons Learned .. 7

Proposed Timeline .. 7

Problems and Solutions .. 7

Tweet-Level Metadata .. 7

Collection-Level Metadata .. 8

TweetID ... 11

Acknowledgements ... 15

References .. 16

Apendix A: Screenshots .. 17

2

Table of Figures
Figure 1: TweetID Hompeage ... 4

Figure 2: Proposed Timeline ... 7

Figure 3: Example Namespaced JSON Extracted Using TweetID .. 8

Figure 4: Who, What, When, Where, How of Metadata .. 9

Figure 5: Core Prov Objects .. 10

Figure 6: PROV-O Starting Point Classes ... 12

Figure 7: Example Collection Level Metadata in Turtle Syntax... 13

Figure 8: YourTwapperKeepr JSON File .. 14

Figure 9: Tab Seperated Value Input File .. 14

Figure 10: Upload Screen .. 17

Figure 11: Collections View ... 18

Figure 12: Collection Details View .. 19

Figure 13: Merged Collection Details View ... 20

Figure 14: Tweets Screen .. 21

Figure 15: Tweet Detail Screen ... 22

file:///C:/Users/Michael/Dropbox/VT/2014%20Spring/Digital%20Libraries/Project/Twitter%20Metadata%20-%20Final%20Report.docx%23_Toc387452273
file:///C:/Users/Michael/Dropbox/VT/2014%20Spring/Digital%20Libraries/Project/Twitter%20Metadata%20-%20Final%20Report.docx%23_Toc387452279

3

Executive Summary
A number of projects and research efforts work with collections of tweets. Of particular interest is the

collection of tweets related to world events. Many organizations have their own individual tweet

collections regarding specific events; however, there is currently no effective support for collaboration.

Metadata standards foster collaboration by allowing groups to adhere to a unified format and seamless

interoperate. In part one of the Twitter Metadata project, I define a tweet-level metadata standard that

leverages the Twitter API format, as well as a collection-level metadata standard which combines Dublin

Core and PROV-O. By combining two diverse existing standards (Dublin Core and PROV-O) into a single

RDF document, the proposed standard is able to capture both the descriptive metadata as well as

provenance of the collections. In part two of the Twitter Metadata project, I create a tool called TweetID

in order to further foster collaboration with tweet collections. TweetID is a web application that allows

its users to upload tweet collections. TweetID extracts, and provides an interface to, the underlying

tweet-level and collection-level metadata. Furthermore, TweetID also provides the ability to merge

multiple collections together, allowing researchers to compare their collections to others’, as well as

potentially augment their event collections for higher recall.

4

Users’ Manual
A video demo can be found through the file Michael Shuffett – TweetID demo.mp4 which goes step by

step through each screen and piece of functionality of TweetID.

TweetID is a project which supports the open sharing of Twitter metadata. With TweetID, you can

upload tweet collections, view uploaded tweets and collections, and merge collections. TweetID

extracts collection level metadata from the uploaded collection. For user’s interested in metadata,

TweetID also provides unique uri’s for collections as well as tweets. TweetID also extracts the standard

Twitter JSON from a variety of formats (useful for converting for collaboration).

FIGURE 1: TWEETID HOMPEAGE

5

Developer's Manual

Technologies Used
git. Python 2.7. Flask for the server. sqlite3 for the db. SQLAlchemy with Flask-SQLAlchemy for the

ORM. jinja2 for the templates. WTForm and Flask-WTForm for forms, validation, and uploading.

Bootstrap and Flask-Bootstrap for the CSS. jQuery for the client side scripting. Flask-Script for easy

management.

Most of the code is pretty self-explanatory and serves as the best natural documentation. The challenge

is understanding the large array of technologies used.

For an introduction to Flask, I recommend that you go through the documentation on the flask website.

Setup Guide
Prerequisites
• Python 2.7

• pip

Instalation Requirements
The requirements have been listed in requirements.txt. In order to install all of the requirements,

simply run pip install -r requirements.txt. (You might need sudo).

Before Running for the first time
You will need to edit the tweetid/config.py file. Change UPLOAD_FOLDER to the absolute path to

the folder to store the uploads in and change INSTANCE_FOLDER_PATH to a temporary folder. On

windows I recommend C:/Users/<user name>/AppData/Local/Temp/ and on Linux I recommend

/tmp. You will then need to initialize the database as shown below.

Running command-line commands
TweetID uses Flask-Script for runnable commands from the command line. You can find these

commands in manage.py. To see the command line help just type python manage.py. To see the

help for a specific command type python mange.py command -h.

To start out, cd into the same directory that manage.py is in.

Initializing the database
First we need to init the database (currently sqlite3 through SQLAlchemy and Flask-SQLAlchemy).

python manage.py init_db

Clearing the database

python manage.py drop_all

Starting the server

python manage.py run

http://flask.pocoo.org/docs/
http://flask-script.readthedocs.org/en/latest/

6

By default the server runs only on the localhost. In order to specify a different ip address or port you can

use the following command. Again, to see the help information for this or other commands you can pass

the –h flag.

python manage.py runserver –t HOST –p PORT

Load a YourTwapperKeepr JSON file from stdin
Note: Some of the collection level metadata may be hard coded.

cat file.json | python manage.py import_json

Load a tsv file of the format provided by QCRI from stdin
Note: Some of the collection level metadata may be hard coded.

cat file.tsv | python manage.py load_tsv

Downloading json files from YourTwapperKeeper
Currently files are simply downloading using the json API and wget (not programmatically). You can use

a call like follows. (Replace the variables between <>). Any tweet limit above ~80000 was found to cause

a server error.

wget http://spare05.dlib.vt.edu/apiGetTweets.php\?id\=<archive id>\&l\=<tweet
 limit> –O <output filename>

High-level explanation of files
The main file is app.py. The setup of the server and all of the routing happens there. models.py is

where the SQLAlchemy models are setup. load_json.py and tsv.py are utility files for loading the

respective files. All of the templates are in the templates/ folder. They all inherit from base.html.

The static/ folder is where all of the static files that are loaded are stored (js, css). tweetid.db in

the root folder is the sqlite database. It isn’t in the git but I will include a copy of it in the files so the

developer has some test data to work with.

Current Limitations (next steps)
• Currently upload only works on the tsv files with the format from QCRI. Loading the

YourTwapperKeeper JSON files should be extremely easy since the code is already largely
there.

• Extra input metadata should go into an extra field in the database and populate the
organization's namespace.

• Merged collections aren't persisted.

• The name of a collection is being used as the unique id but that might not be desirable.

• After a collection has been merged it would be nice to still know where the tweets came
from.

• If the server is to be used for more than research purposes, we should use an enterprise
level server not the internal Flask server.

7

Lessons Learned

Proposed Timeline

Task Date

Reach out to stakeholders Feb 5

Initial meeting with Mohamed Feb 14

Gain access to QCRI Twitter collections Feb 16

Gain access to VT Twitter collections Feb 26

Proposal for metadata fields Mar 6

Have base architecture for metadata extraction implemented Mar 20

Extracted desired features from collections April 10

Allow for merging of collections April 25

Turn in deliverables May 8

FIGURE 2: PROPOSED TIMELINE

Problems and Solutions

Tweet-Level Metadata
I spent some time evaluating potential solutions to a tweet-level metadata standard. Two design goals

emerged that help inform the final decision. 1) Make conversion to the new standard as straightforward

as possible for all varieties of stored formats. 2) Make the standard flexible enough to support any

metadata fields an organization might have.

A key insight emerged that leads to the effective support of the first goal. No matter what format the

tweets end up being stored as, they were all initially ingested from the standard twitter API format

(Twitter, Inc., 2013). The format behind this API is well defined and inclusive.

However, the Twitter API format is rigid. In order to meet the second goal, the approach of namespacing

the JSON by organization was taken. The JSON which would have originated from the Twitter API is

nested under a {Twitter:} object, while the fields unique to any organization are listed under the

name of the organization (see Figure 3 for an example that was automatically extracted using TweetID).

This approach maintains the high detail and interoperability of the Twitter API standard, while allowing

organizations to specify any additional fields they may desire.

Recommended Format
The recommended metadata format for a tweet is to use JSON where under the root object there is a

mandatory “twitter” object and optional objects for each organization. Under the “twitter” object,

either “id” or “id_str” should always appear. All other fields are optional. The organization objects are

meant to be a catchall for any items that are not representable by the Twitter API format. The idea is to

define a mapping from your native format to the Twitter format within TweetID. Anything that is not

8

mappable can be automatically contained in the organization-level metadata. Figure 3 is an example of

the desired JSON that was extracted automatically using TweetID. The tweetid object has a single entry,

collections, which automatically has a list of all of the collections the tweet belongs to.

FIGURE 3: EXAMPLE NAMESPACED JSON EXTRACTED USING TWEETID

Collection-Level Metadata
In addition to the Tweet-Level Metadata standard, a collection-level standard was required. The

standard needed to include metadata covering a wide variety of areas.

The following are some of the fields that were identified that the standard should support:

 start and end, time and date stamps, indicating the time coverage of the collection

 geographic coverage of the collection

o of those tweeting

o of what is discussed in the tweets

 names and other information on the person, group, and institution that did the collecting

 keyword lists or other query characterizations used to get the tweets

9

 other details on how the tweet collection was prepared

o if there was filtering of the original raw tweets collected

o name/URI of raw tweet collection

o format of that collection

o details on how this collection was obtained from the raw tweet collection e.g., features

and classifiers and parameters employed

o if additional metadata has been added after the raw collecting, e.g., labels -- and details

about that process

FIGURE 4: WHO, WHAT, WHEN, WHERE, HOW OF METADATA

It was clear that the typical metadata standards such as Dublin Core (DCMI Usage Board, 2012), were

not sufficiently expressive to capture some of the details about the preparation of the collections. As

you can see in Figure 4, the metadata was split into the who, what, when, where, and how, of the

collection. “The what” of the collection could be addressed using typical metadata representations such

as the Dublin Core Terms (DCMI Usage Board, 2012) but the who, when, and how of the collection

would need to be expressed using a different type of metadata standard.

PROV is a set of W3 technical reports about provenance. In PROV-Overview, provenance is defined as

“information about entities, activities, and people involved in producing a piece of data or thing, which

can be used to form assessments about its quality, reliability or trustworthiness (Groth & Moreau,

2013).” Within the PROV family of documents, I identified PROV-O an OWL2 ontology allowing the

mapping of the PROV data model to RDF (Belhajjame, et al., 2013).

Descriptive
Metadata

• What

Provenance

• Who

• When

• How

10

FIGURE 5: CORE PROV OBJECTS

In PROV Model Primer, the authors present a conceptual overview of PROV which includes three main

types of objects: entity, agent, and activity as seen in Figure 5. PROV-O defines a set of Starting Point

Classes, which are analogous to Dublin Core Terms—the key set of classes and predicates that can

express the majority of applications, shown in Figure 6.

Recommended Format
By combining Dublin Core and PROV-O, we can achieve the desired collection-level metadata standard.

The turtle representation for RDF is recommended but the format is syntax agnostic. For each collection,

a prov:Collection should be defined that represents it. Under this collection there are five required

fields:

Field Description

dcterms:title The title of the collection

dcterms:description A brief description of the collection

prov:hadMember A list of one or more tweets identifiable by a
unique uri. (TweetID uri recommended)

prov:attributedTo Minimally a single attributedTo entry mapping to
a prov:Organization which describes the
organization behind the collection. Multiple
entries describing additional organizations or
people (prov:Person) are optional.

prov:wasGeneratedBy A prov:activity that describes how the collection
was created. Further described below.

One or more prov:atLocation fields is also recommended for each location in the underlying tweets.

Each location should be represented using ISO 3166-2 (International Organization for Standardization,

2012).

11

An activity should also be defined which precisely describes the process used to collect the tweets. It

mandatorily includes prov:startedAtTime and prov:endedAtTime which are represented by the

dateTime datatype from the W3 XMLSchema (Biron & Malhotra, 2004).

The standard requires that all of the above constraints be met; however, it does not limit the use of

additional PROV-O Starting Point Classes or Dublin Core Terms. Currently, all tweet collections examined

have used keyword queries as their source. A full example of a metadata representation in turtle syntax

is presented in Figure 7.

TweetID
TweetID was the tool I created to support the unique identification of collections and tweets, the

automatic standardization of tweet metadata, the extraction of new metadata fields from tweets and

collections, the presentation of collections and tweets, and the merging of tweet collections. See figures

2-7 and the video, Michael Shuffett – TweetID demo.mp4, for an overview of TweetID. I made TweetID a

web application to potentially support the tool being accessed by multiple organizations with zero setup

required. The main challenge here was the amount of work required for implementation. Creating a

polished and styled web application proved to be much more work than creating an equivalent one time

script.

Different File Formats
One of the challenges presented in the implementation of TweetID was the fact that there were

multiple heterogeneous input formats (see Figure 8 and Figure 9). The way I addressed this was to

define a mapping between each format and the backend representation (which in turn maps to the

standards I defined previously). Currently the extra metadata fields that were unexpected are being

thrown away, but the design of the twitter-level standard allows for them to be stored under the

organization’s namespace.

12

FIGURE 6: PROV-O STARTING POINT CLASSES

Collection Merging
Each field in the collection-level metadata needs to be merged when two collections are merged.

However, each field might have unique aggregation logic. For example, the set of organizations needs to

be unioned, the set of keywords needs to be unioned, the minimum start date should be taken, and the

maximum end date needs to be taken. This is currently how it works; however, I am defining these

aggregate operations in a more or less, ad-hoc manner. One of the visions I have for TweetID, should it

undergo further development, is to allow for the definition of new metadata fields, including input

mappings, persistence mappings, and aggregation operations in a declarative manner—through the use

of meta-programming.

Agent

Entity

Activity

wasGeneratedBy

wasDerivedFrom

wasAttributedTo

startedAtTime

used

informedBy

endedAtTime

wasAssociatedWith

actedOnBehalfOf

13

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix tid: <http://www.tweetid.org/tweet/> .
@prefix : <http://example.com/> .

:vt-oklahoma-tornado

 a prov:Collection;

 dcterms:title "Oklahoma Tornado"

 dcterms:description "Tweets about Oklahoma Tornado";

 prov:hadMember

 tid:295450465339064321, tid:3954504653346069327, tid:5829504653346069829, ...;

 prov:wasAttributedTo :mark;

 prov:wasAttributedTo :vt;

 prov:atLocation "US OK" # ISO 3166-2

 prov:wasGeneratedBy :keyword-query;

.

:mark a prov:Person, prov:Agent, prov:Entity .

:vt a prov:Organization, prov:Agent, prov:Entity .

:keyword-query

 a prov:Activity;

 prov:startedAtTime "2013-06-07T16:28:17Z"^^xsd:dateTime;

 prov:endedAtTime "2013-06-07T16:28:17Z"^^xsd:dateTime;

 prov:used :keyword-list;

.

:keyword-list
 a prov:Collection;

 prov:hadMember

 "oklahoma tornado", "oklahoma storm", "#okc flood" ...;

.

FIGURE 7: EXAMPLE COLLECTION LEVEL METADATA IN TURTLE SYNTAX

14

FIGURE 8: YOURTWAPPERKEEPR JSON FILE

FIGURE 9: TAB SEPERATED VALUE INPUT FILE

15

Acknowledgements

Project Client – Mohamed Magdy (mmagdy@vt.edu)

Class Instructor/Project Advisor Dr. Edward Fox (fox@vt.edu)

NSF IIS - 1319578: Integrated Digital Event Archiving and Library (IDEAL)

Thanks to Carlos Castillo and Muhammad Imran for providing reference metadata.

mailto:mmagdy@vt.edu
mailto:fox@vt.edu

16

References
Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., & Zhao, J. (2013, April 30).

PROV-O: The PROV Ontology. Retrieved from World Wide Web Consortium:

http://www.w3.org/TR/2013/REC-prov-o-20130430/

Biron, P. V., & Malhotra, A. (2004, October 28). XML Schema Part 2: Datatypes Second Edition. Retrieved

from World Wide Web Consortium: http://www.w3.org/TR/xmlschema-2/#dateTime

DCMI Usage Board. (2012, June 6). DCMI Metadata Terms. Retrieved from Dubin Core Metadata

Initiative: http://dublincore.org/documents/2012/06/14/dcmi-terms/

Groth, P., & Moreau, L. (2013, April 30). PROV-Overview. Retrieved from World Wide Web Consortium:

http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

International Organization for Standardization. (2012). ISO 3166 - Country codes. Retrieved from

International Organization for Standardization:

http://www.iso.org/iso/home/standards/country_codes.htm#2012_iso3166-2

Twitter, Inc. (2013, August 13). Tweets. Retrieved from Tweets | Twitter Developers:

https://dev.twitter.com/docs/platform-objects/tweets

17

Apendix A: Screenshots
See Figure 1 for a screenshot of the homepage.

FIGURE 10: UPLOAD SCREEN

18

FIGURE 11: COLLECTIONS VIEW

19

FIGURE 12: COLLECTION DETAILS VIEW

20

FIGURE 13: MERGED COLLECTION DETAILS VIEW

21

FIGURE 14: TWEETS SCREEN

22

FIGURE 15: TWEET DETAIL SCREEN

