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An interaction function is defined for lattice models in statistical mechanics. A correlation function
expansion is derived, giving a direct proof of the duality relations for correlation functions.

A general theory of duality transformations between
pairs of classical spin-3 lattice models has been de-
veloped by Gruber and Merlini' and independently by
Wegner.? The theory of Gruber and Merlini is construc-
tive, providing explicitly a family of “dual” lattices and
Hamiltonians for any given spin-% system. These duals
are exact, all requisite boundary terms being provided
for, which is necessary in considerations of correla-
tion functions below criticality.

We define in this article the interaction functions
u+(A,B) of lattice duals G and G*, and express them in
terms of correlation functions. This gives an easy de-
rivation of the relationship between correlation functions
of a lattice and its duals. The notation in this article,
while somewhat different from Ref. 1 and some current
usage, has the advantage, in addition to simplifying the
derivations, of generalizing to higher spin lattices.?

The reader is referred to Ref. 1 for details on the con-
struction of dual spin-3 lattices.

1. DUAL LATTICES

We suppose we are given a finite set A of lattice sites
in a v-dimensional space, along with a Hamiltonian H
defined on the configuration of A. It is convenient to
take as the configuration space the group P,(A) of func-
tions from A to Z,, the integers modulo 2, with group
multiplication

Fe) =f(0) +g(A) mod2 .

Considering H as a function H:P,(A)~
composition

H(g)=23Ho(g), gcP,(h)
oG

C, its Fourier de~

in terms of the elements of the character group Gof G
=P,(A) is just the usual decomposition of H into a sum
of products of spin matrices, since the characters of G
are products of characters of Z,. Define the set of
nonzero interactions

B={oe G|H, #0}.

Dual lattices are constructed with the set B. Defining
P,(B) as the group of functions from B to Z,, let p be the
group homomorphism

PP, (B) =G by p(f)= ]I flo)
o=BY
and denote its kernel by K,. Suppose X is any set which
generates K, as a group. Then X defines a dual of A,
with configuration space G*=P,(X) and dual Hamiltonian
H* defined as follows. Let
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q:B~B*CG* by g(o):h—h(0)

for ceB and he XC P,(B). ¢{0) is indeed a character on
G*, and these g(0) are to be the nonzero interactions of
the dual. The coefficients H (,, are given by

H,,=38log Il tanhsH (1)
0'€ B

q o’ )7=q (o)

and

H*= Q)Ha(o)q(o) .

In most models of physical interest, g is one—one, ex-
cept perhaps near the boundary. Thus

H log tanh8H,

1
qlo) =ﬁ
except near the boundary, where (1) must be used.

The partition functions Z (3H) =Egt, cexp{-BH(g)) of G
and Z (BH*) =Eghc exp(—BH*(g)) of its duals G* are re-
lated then by

N7 II [sinb(-B8H,) cosh(—BH )]*/ ?Z (BH*)

260="ey IL

where N(S) is the cardinality of S, and K* is defined
after Eq. (2).
2. THE INTERACTION FUNCTION
The correlation functions p{(¢) of G are defined by
plo)=Z (BH)™ Ec exp(-BH ()W (g), oeC
&
with H* replacing H for the correlation functions p(o*)

of G*, o*e G*. Note that p(0) =0 if ¢ is not a product of
elements of B.!

Define the characteristic projection #:G*—~ P,(B*) by
tg*)o-3z(1-0(g*)), ocB*. @)

The support of #(g*) is precisely those characters ¢ c B*
whose value at g* is —1. Now if the kernel and range of
¢ are denoted, respectively, by K} and R}, then the map
Q:K, — P,(B*) given by

Q(MNglo))=1(o},

is a group isomorphism K, -~ R%. In particular, feK,,

ceB,

fo)=b 9ES, if and only if Q(f) R},
)0, geY-S§,
‘1 _
Q(f)(q(o))=$ s O’CS;
0, ocY-S,
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and then
I tanh(-8H)= I

o~y 0 Q ()71

exp(28H,) .

Let the symbol 25,(S, T) with S, TC B indicate that the
summation [over f e P,(B), say] is to be restricted to f
satisfying f(c)=0 if 0 S, f(o)=1if 6= T. Then the in-
teraction function u 4«(4,C) is given by

u (A, C)= e I exp(28H,)

FERY o f )
for A,CCB*,

We wish to evaluate uy+ in terms of the correlation
functions of G*. Thus, suppose Y and W are any disjoint
subsets of B*. Writing ¥ for 70, 0 ¥, etc., obtain
from (2):

< I e-BHu>-IZ (T UW)

o B*

H e-BHo.(u(g )=1)

I o'(g)

¢’ YUW

=2

“NED LTI o ] (<27(0")+1)

fe R;“ o £l (1) o< Y

x JT @-2f(c")-1).

g W

Now, expanding the product
OIIY (-2f(6)+1)= L

Lef~lany

(_2)N(L)

and similarly with I,._,(2 - 2f(¢") - 1), this becomes

N(K?‘) Z; uH*W’L)(__z)N(L)+N(M)(_1)N(W) .

Lcy
Mcw

Therefore, with a change in summation variable,
-1
(H e-BHa> Z* 3 (=1 DT UW)

o B¥ Ycc
WCA

=N(K;“) E E uH*(M’L)zN(L)#N(M) (_1)N(Z)+N(V)

LCC ZcC-L
MCA VCA=-M

=.2N(A)+N(C)N(K:=)uH*CA’c), (3)

which gives the desired expression.

3. DUAL CORRELATION FUNCTIONS

The interaction functions can be used to derive direct-
ly the duality relations for correlation functions. Let
YCB. Then, using
exp(—BH (g))=cosh(-BH,) +0(g) sinh(-BH )
and the orthonormality of the characters,
Zp(¥)=N(G) I] cosh(-gH,) 2 1I

ocB FEPL(B) s'cfmlr)
plf)=Y

tanh(-BH,,) .
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From the one—one correspondence between f < P,(B)
with p(f)=Y and f' € K, with

f,:o-(f(o), if Y,
).f(c)+1 , if oY,

the expansion can be written as

Z<N(G) I COSh(-BHU)>-1p(I7)

acB

- E E(S,Y—S) H

SCY fEPy(B) oefl)
pifI=Y

E(Y—S,S) H tanh(—ﬁﬁor) H [tanh(—BHo)]'l

o’c fl1) eSS

tanh(-BH_,)

=2

SctY fEKp

x I tanh(-BH,)

occY-8

= 2 up(Y*=5* S]] (tanh(—BH )"
scy EER)
S*n(Y-S)r*¥=¢

x I tanh(-gH),

geY=8

where it has been necessary to consider in the sum over
S only sets SC Y for which S*={g(0)|oc S} and (¥ - §)*
are disjoint. Thus, the interaction function expansion
(3) gives the general relation between the correlation
functions of G and the correlation functions of a dual G*,

pcP)= 3 Pe*xT*K (W, T*), )

T* CW*

where

K(W T*)=2-N(W*) > (_1)}\1(8*0'}'*)
’
sScw
s*n(w=51*=0

X TI (tanh(-BH)y' ]I tanh(-BH,)

(=) o W=-S

for any WC B such that W=7.

In the event that the duality map ¢ is one-one, Eq. (4)
simplifies to the path formula of Kadanoff and Ceva.*
Injectivity of g is equivalent to requiring that the ele-
ments of K, separate the bonds ¢ of B, and is satisfied,
for example, by a hexagonal Ising lattice with periodic
boundary conditions, or with an external field at the
boundary, but is not satisfied by this lattice with open
boundary conditions.
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