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The interaction function and lattice duals 
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Department of Mathematics, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061 
(Received 29 April 1975) 

An interaction function is defined for lattice models in statistical mechanics. A correlation function 
expansion is derived, giving a direct proof of the duality relations for correlation functions. 

A general theory of duality transformations between 
pairs of classical spin-4 lattice models has been de­
veloped by Gruber and Merlinil and independently by 
Wegner.2 The theory of Gruber and Merlini is construc­
tive, providing explicitly a family of "dual" lattices and 
Hamiltonians for any given spin-4 system. These duals 
are exact, all requisite boundary terms being provided 
for, which is necessary in considerations of correla­
tion functions below criticality. 

We define in this article the interaction functions 
uH*(A,B) of lattice duals G and G*, and express them in 
terms of correlation functions. This gives an easy de­
rivation of the relationship between correlation functions 
of a lattice and its duals. The notation in this article, 
while somewhat different from Ref. 1 and some current 
usage, has the advantage, in addition to simplifying the 
derivations, of generalizing to higher spin lattices.3 

The reader is referred to Ref. 1 for details on the con­
struction of dual spin-4 lattices. 

1. DUAL LATTICES 

We suppose we are given a finite set A of lattice sites 
in a v-dimensional space, along with a Hamiltonian H 
defined on the configuration of A. It is convenient to 
take as the configuration space the group P2(A) of func­
tions from II. to Z2' the integers modulo 2, with group 
multiplication 

fg(lI.) =f(lI.) +g(lI.) mod2 . 

Considering H as a function H:P2 (1I.)-C, its Fourier de­
composition 

H(g)=6~Hau(g), gEP2 (1I.) 
aeG 

in terms of the elements of the character group G of G 
=P2 (1I.) is just the usual decomposition of H into a sum 
of products of spin matrices, since the characters of G 
are products of characters of Z2' Define the set of 
nonzero interactions 

Dual lattices are constructed with the set B. Defining 
Pz(B) as the group of functions from B to Z2' let p be the 
group homomorphism 

P:P2 (B)-G by p(j)= IT f(a) 
a-:::B(1 

and denote its kernel by Kp. Suppose X is any set which 
generates Kp as a group. Then X defines a dual of 11., 
with configuration space G* =P2 (X) and dual Hamiltonian 
H* defined as follows. Let 
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q:B -B*C G* by q(u):h- h(u) 

for uEB and hEXCP2 (B). q(a) is indeed a character on 
G*, and these q(u) are to be the nonzero interactions of 
the dual. The coefficients H.<a) are given by 

and 

o'f=B 
.<a' )=.<a) 

tanh,BHa, (1) 

In most models of physical interest, q is one-one, ex­
cept perhaps near the boundary. Thus 

1 
H.<a)=2f3 log tanh{3Ha 

except near the boundary, where (1) must be used. 

The partition functions Z({3H) =6g G exp(-f3H(g» of G 

and Z ((3H*) =6g ,_G exp(-f3H*(g» of its duals G* are re­
lated then by 

Z ((3H) = ~K(J» IT [sinh(-.BHa) cosh(-.BH a)]11 2Z ((3H*) 
acB 

where N(S) is the cardinality of S, and Ki is defined 
after Eq. (2). 

2. THE INTERACTION FUNCTION 

The correlation functions pea) of G are defined by 

p(a)=Z({3H)-1 6 exp(-i3H (g»a(g) , aEG 
g_G 

with H* replflcing H for the correlation functions p(u*) 
of G*, u* E G*. Note that pea) = ° if a is not a product of 
elements of B .1 

Define the characteristic projection t:G*-P2 (B*) by 

t(g*):u-H1-u(g*», uEB*. (2) 

The support of t(g*) is precisely those characters uEB* 
whose value at g* is -1. Now if the kernel and range of 
t are denoted, respectively, by Ki and Ri, then the map 
Q:Kp -P2 (B*) given by 

Q(j)(q(a»=f(u) , uEB, 

is a group isomorphism Kp-Ri. In particular, fEKp, 

feu) = p, aE S, if and only if Q(j) ERi, 
1o, uEY-S, 

Q(t)(q(a»= {1 , 
° , 

UES, 

aE Y -S, 
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and then 

II tanh(-J3Ha ) = II exp(2J3Ha) . 
ar1 (l) acQ(!>-l(l) 

Let the symbol 6 / (S, T) with S, TeB indicate that the 
summation [over fEP2(B), say] is to be restricted tof 
satisfying f(a) = 0 if a E S, f(a) = 1 if a E T. Then the in­
teraction function uH*(A, C) is given by 

forA,CeB*. 

I",R* 
t 

We wish to evaluate uH* in terms of the correlation 
functions of G*. Thus, suppose Yand Ware any disjoint 
subsets of B*. Writing Y for rra, a E Y, etc., obtain 
from (2): 

( II e-aHa)-1z *p(yU W) 
cr· B* 

II a'(g) = 6 II e-aHa(a(f)-1) 
g,_C* (J. B* a'· YUW 

=N(Ki) 6 II e2aHa II (-2f(a') + 1) 
ft R; (J'- ,-I (1) a'~. Y 

x II (2 -2f(a") -1). 
u"· W 

Now, expanding the product 

II (-2f(a') + 1)= 6 (_2)NIL) 
e" Y Lerl (1 )nY , 

and similarly with TI a"Ew(2 - 2f(a") -1), this becomes 

N(Ki) 6 uH*W,L)(_2)N(L)+NIM)(_1)NIW). 

LeY 
Mew 

Therefore, with a change in summation variable, 

-1 

( II e-aHa) Z* 6 (_l)N(Y)p(YU W) 
e B* YeG 

WeA 

=N(Ki) 6 6 uH*(M,L)2 N(L)+NIM) (_l)NIZ)+N(V) 
LeG ZeG-L 
MeA veA-M 

=2N(A)+N(G )N(Ki)uH*(A, C), 

which gives the desired expression. 

3. DUAL CORRELATION FUNCTIONS 

(3) 

The interaction functions can be used to derive direct­
ly the duality relations for correlation functions. Let 
Y e B. Then, using 

exp(-J3H e(g»= cosh(-J3Ha) + a(g) sinh(-J3H a) 

and the orthonormality of the characters, 

Zp(y)=N(G) II cosh(-{3Ha) 6 II 

1986 

IEP2(B) a'Er1(l) 
PI!>=Y 
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From the one-one correspondence between f E P 2 (8) 
with p(j)= Y andf' EKp with 

f':a_1f(a), if a,EY, 

I!(a) + 1 if a E Y , 

the expansion can be written as 

Z(N(G) II cosh(-J3H a»)-1 p(Y) 
aEB 

6 6(S,y-S) II tanh( -(3H a') 
ScY fEP2IB) 

p(f):Y 
e'Er1 (1) 

x II tanh(-{3Ha) 
aEY-S 

6 uH*(y* - S*, S*) II (tanh(-!3Ha»-l 
sc y 

s*n(Y-s )*=4> 

x II tanh(-!3He), 
eEY-S 

where it has been necessary to consider in the sum over 
S only sets se Y for which S* = {q(a) I a E S} and (Y - S)* 
are diSjoint. Thus, the interaction function expansion 
(3) gives the general relation between the correlation 
functions of G and the correlation functions of a dual G*, 

Pc(Y)= 6 Pc*Cf*)K(W, T*)' (4) 

T*cW* 

where 

sew 
s * n( w-s )*=4> 

for any we B such that W = Y. 

In the event that the duality map q is one-one, Eq. (4) 
simplifies to the path formula of Kadanoff and Ceva. 4 

Injectivity of q is equivalent to requiring that the ele­
ments of Kp separate the bonds a of B, and is satisfied, 
for example, by a hexagonal Ising lattice with periodic 
boundary conditions, or with an external field at the 
boundary, but is not satisfied by this lattice with open 
boundary conditions. 
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