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Mathematical Modeling for Data Envelopment Analysis with

Fuzzy Restrictions on Weights

Amit Kabnurkar

(ABSTRACT)

Data envelopment analysis (DEA) is a relative technical efficiency measurement tool,

which uses operations research techniques to automatically calculate the weights assigned

to the inputs and outputs of the production units being assessed. The actual input/output

data values are then multiplied with the calculated weights to determine the efficiency

scores. Recent variants of the DEA model impose upper and lower bounds on the weights

to eliminate certain drawbacks associated with unrestricted weights. These variants are

called weight restriction DEA models. Most weight restriction DEA models suffer from a

drawback that the weight bound values are uncertain because they are determined based

on either incomplete information or the subjective opinion of the decision-makers. Since

the efficiency scores calculated by the DEA model are sensitive to the values of the

bounds, the uncertainty of the bounds gets passed onto the efficiency scores. The

uncertainty in the efficiency scores becomes unacceptable when we consider the fact that

the DEA results are used for making important decisions like allocating funds and taking

action against inefficient units.

In order to minimize the effect of the uncertainty in bound values on the decision-making

process, we propose to explicitly incorporate the uncertainty in the modeling process

using the concepts of fuzzy set theory. Modeling the imprecision involves replacing the

bound values by fuzzy numbers because fuzzy numbers can capture the intuitive

conception of approximate numbers very well. Amongst the numerous types of weight

restriction DEA models developed in the research, two are more commonly used in real-

life applications compared to the others. Therefore, in this research, we focus on these
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two types of models for modeling the uncertainty in bound values. These are the absolute

weight restriction DEA models and the Assurance Region (AR) DEA models.

After developing the fuzzy models, we provide implementation roadmaps for illustrating

the development and solution methodology of those models. We apply the fuzzy weight

restriction models to the same data sets as those used by the corresponding crisp weight

restriction models in the literature and compare the results using the two-sample paired t-

test for means. We also use the fuzzy AR model developed in the research to measure the

performance of a newspaper preprint insertion line.
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Chapter 1

INTRODUCTION

1.1 OBJECTIVE

This research has five objectives. The first objective is to minimize the effect of bound

uncertainty on the decision-making in Data Envelopment Analysis (DEA) by explicitly

incorporating the uncertainty in the modeling process through fuzzy weight restriction

DEA models. The second objective is to develop a solution methodology for those fuzzy

models. The third objective is to provide implementation roadmaps for illustrating the

proposed fuzzy models. The fourth objective is to apply the proposed models to the same

data sets as those used by corresponding crisp weight restriction models from the

literature and compare their results. The fifth objective is to use the results of the fuzzy

models to modify the specified bounds so that the borderline 1 decision-making units

(DMUs) become part of the efficient set.

1.2 MOTIVATION

Since it's conception by Charnes et al. (1978), the original DEA model has undergone

many modifications and developments. Most of the developments occurred when some of

the deficiencies of the original model were exposed during its application to solving real

life problems. One such development occurred when the complete flexibility accorded by

the original model to the input/output weights was found to be unacceptable when using

DEA for certain applications (see Thompson et al. 1986). Thompson et al. (1986) tried to

use DEA to choose one best site from amongst six probable sites for locating a high-

energy physics lab. The original DEA model with complete weight flexibility identified

five out of the six sites to be efficient. To identify one best site, Thompson et al. (1986)

had to modify the existing model by imposing suitable Assurance Region (AR)

constraints on the input/output weights. This led to the genesis of a whole new series of

models called weight restriction DEA models in which constraints imposing bounds on
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the input/output weights are added to the original model. A number of weight restriction

models have been proposed in the literature so far (see Dyson and Thanassoulis 1988,

Wong and Beasley (1990), Thompson et al. (1990)). These models differ from one

another in the purpose and form of the weight restriction constraints. Chapter 2 provides

a comprehensive review of all the weight restriction DEA models proposed in the

literature so far.

In this research, we focus our attention only on the following two weight restriction DEA

models:

1. The absolute weight restriction DEA model and

2. The Assurance Region DEA model.

The reason we choose these models is that they are implemented in most real-life

applications of weight restriction DEA models and they are discussed most commonly in

the literature on DEA with weight restrictions.

The absolute weight restriction model involves adding additional constraints to the

existing DEA model, which impose upper and lower limits on the weights of the inputs

and outputs. This model is used when the objective is to minimize the disparity in the

weights assigned to the different inputs and outputs. In other words, absolute weight

restrictions ensure that the model does not assign excessively high weights to certain

factors while completely ignoring other factors. The first step in the procedure for

determining the values of absolute bounds is to run the unbounded model. This is

followed by a close scrutiny of the results of the model to identify anomalies in the

weight values calculated. Finally, appropriate bounds are assigned to deal with the

identified anomalies.

Several methods are available to the decision-maker to calculate the weight bound values.

However, the choice of the method, which governs the bound values and the subsequent

                                                                                                                                           
1 These are DMUs whose membership in the efficient set is highly sensitive to slight changes in bound
values.
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efficiency scores calculated, rests entirely with the decision-maker. This introduces an

element of subjectivity in the DEA analysis, which until this point was entirely objective.

In fact Farrell (1957) introduced the concept of the empirical production frontier, which

forms the basis of DEA, so as to eliminate the use of human judgement for determining

factor weights, the main drawback of previous efficiency measurement techniques.

To compound the problem of subjectivity associated with the choice of the method for

determining the bounds, there are several opportunities for the subjectivity to make its

appearance in every step of the existing procedures used for setting the bounds. We

elaborate this statement by using the method proposed by Roll and Golany (1993) as an

illustrative example. The authors clarify that their procedure is intended only to provide

general guidelines for setting bounds. Obviously, there are several steps in the procedure

where the decision-makers have to use their own discretion. Examples of such steps are:

•  Step 1, in which the decision-maker has to choose a value n which is the number of

extreme weight values that he/she wishes to truncate from the top and the bottom of

the unbounded weight matrix before taking the average -- The decision-maker could

choose to eliminate any number of values.

•  Step 2, which requires the decision-maker to take an average of the weight values

remaining after truncation -- Some decision-makers might choose to use the median

as a measure of central tendency.

•  Step 3, which requires the decision-maker to choose a ratio (d:1) between the upper

and lower bounds -- Since there are no guidelines for choosing a particular value of d,

different decision-makers could choose different values of d.  In fact Roll and Golany

(1993), while demonstrating their proposed method, themselves use two different

values of d (2 and 3) to produce two different sets of bounds and two different sets of

efficiency scores for the same data set.
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Based on the above discussion, we can conclude that overall subjectivity 2 is introduced in

the values of absolute weight bounds because of two primary reasons:

•  absence of a single standardized technique for setting the bounds and

•  presence of ambiguity in several steps of the existing techniques.

Let us now turn our attention to the other type of weight restriction model -- the

assurance region (AR) DEA model. The Assurance Region (AR) model involves setting

bounds on the ratios of weights (see Thompson et al. (1990) for the definition of

Assurance Regions.) There are two ways in which the AR bound values are determined.

1. One method is based on expert opinion. It involves setting AR bounds on the basis of

the magnitude of relative importance of the different inputs/outputs as perceived by

the experts. Zhu (1996) used the analytic hierarchy process (AHP) to gather expert

opinion when setting the AR bounds for the model, which measures the efficiencies

of the different plants of the Nanjing Textile corporation. In Chilingerian and

Sherman (1997), the bounds were determined by first running the unbounded DEA

model and then using the ranges of the multipliers assigned by the efficient DMUs

(primary care physicians) which satisfied certain performance conditions stipulated

by the HMO (health maintenance organization) director.

2. Another method for setting AR bounds involves utilizing the fact that the

input/output weight (or multiplier) values in the dual of the DEA model are the

prices/costs of the inputs/outputs. Therefore, economic information about the

price/cost ranges of the inputs/outputs can be used to set AR bounds. Setting AR

bounds of this type represents a move from pure technical efficiency measurement to

overall efficiency measurement.

The drawback with the first procedure is that the bound values are highly subjective

because they are based on human judgment. Moreover, the expert may not have sufficient

                                               
2 Subjectivity is the dependence of the bound values on the judgement of a particular decision-maker.
When the decision-maker changes, the bound values also change.
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information about the underlying process to make precise judgements about the relative

importance of the factors.

The drawback of the second procedure is that the bound values are influenced by factors

such as price volatility and presence of inflation (see Taylor et al. (1997).) Another

drawback is that the price information is often inaccurate or incomplete. For example,

Thompson et al. (1996b), in the absence of price information for natural gas, determine

the bounds for natural gas by multiplying the bounds for crude oil by the gas to oil price

ratio. In another application, Thompson et al. (1996c) in the absence of price information

for one of the input (total number of branches) weights, use the same bounds as those for

another input (total physical capital) weight. The overall effect of price volatility,

inflation and absence of sufficient information about prices is that the AR bounds based

on prices are imprecise.

Based on the discussion so far of the different weight restriction DEA models we can

draw the following conclusions about the weight bound values used in the models:

1. The bound values are imprecise3.

2. The bound values are subjective4.

Statements 1 and 2 above are supported by the following quote from Schaffnit et al. pp.

281 (1997) "In some cases, the information introduced in the models through the

multiplier constraints is highly subjective or contains a considerable degree of inaccuracy

or uncertainty."

Lewin et al. (1982) point out that since DEA requires only a single observation for each

output and input per DMU to construct the efficiency frontier, it is more sensitive

compared to statistical techniques to errors in the data. Also Epstein and Henderson

(1989) point out that since DEA is an estimation technique relying on extremal points, it

could be extremely sensitive to variable selection, model specification, and data errors.

                                               
3 The values are not precisely known.
4 Values vary from decision-maker to decision-maker
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We would like to extend this discussion further by saying that DEA is also sensitive to

the weight bound values whose uncertainty (imprecision + subjectivity) gets passed onto

the results. This becomes unacceptable when we consider the fact that DEA is a decision-

making tool whose results are used for making important decisions like allocating funds

or taking stringent action against inefficient DMUs.

1.3 METHODOLOGY

The objective of this research is to explicitly incorporate the uncertainty in the modeling

process so that the effect of the uncertainty on the decision-making process is minimized.

Two approaches exist in the literature for modeling uncertainty. The more conventional

approach is the stochastic approach that involves specifying a probability distribution

function (e.g. Normal) for the error process (Sengupta (1992)). However, as pointed out

by Sengupta (1992), the stochastic approach has certain drawbacks associated with

modeling the uncertainty in DEA problems. These drawbacks are:

1. When using the stochastic approach, one has to assume a specific error distribution

e.g. normal or exponential to derive specific results and this assumption may not be

realistic because on a priori basis there is very little empirical evidence to choose one

type of distribution over another.

2. Stochastic DEA models always emphasize point solutions whereas from the point of

view of carrying out a sensitivity analysis, one would be more interested in DEA

models that provide interval solutions.

3. Small sample sizes in DEA make it difficult to use stochastic models.

The more recent approach for modeling uncertainty has been fuzzy set theory. Sengupta

(1992) who was the first to incorporate fuzzy set theory in DEA proposed a fuzzy

mathematical programming approach for dealing with imprecise data in DEA problems.

According to Sengupta (1992) the advantages of using such an approach are:

1. Fuzzy set theory allows us to apply the "principle of incompatibility," which has the

ability to arrive at decisions based on qualitative data and linguistic information.
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2. Fuzzy set theory lends itself easily to be incorporated in LP models. Since DEA

involves solving a series of LP models, relatively fewer changes have to be made,

under conditions of uncertainty, to the original DEA formulation to incorporate the

methods of fuzzy mathematical programming.

Due to these advantages, it is proposed to use fuzzy set theory in the current research for

modeling the uncertainty in weight bound values. Fuzzy set theory is introduced in the

analysis by replacing the crisp weight bounds by fuzzy numbers. The justification is that

the imprecise weight bounds need to be represented as approximate numbers (i.e.

"numbers close to the specified values") and fuzzy numbers capture the intuitive concept

of approximate numbers very well (Yuan and Klir (1995)).

A fuzzy number is a set of values (instead of a single value) close to the value that is

being approximated. All values encompassed by the fuzzy number do not belong to it to

the same degree. The degree of belongingness of each value is dependent upon the degree

of closeness of that value to the value being approximated. Since a fuzzy number

represents a range of values (instead of a single value), fuzzy numbers representing the

bounds specified by different decision-makers are likely to be a compromise between the

different bounds. Therefore, it is hypothesized that using fuzzy numbers for bounds will

have an added advantage of minimizing the sensitivity of the results to the subjectivity

in the bound values.

Using fuzzy numbers instead of crisp numbers for the bounds has an added advantage of

increasing the flexibility in the bound setting process because it allows the decision-

maker to specify a range of values instead of one value. The lack of flexibility in the crisp

weight restriction models can often put the decision-maker in a tight spot especially when

sufficient information does not exist for him/her to make a crisp judgement.

From this point onwards, the models obtained by replacing the crisp weight bounds by

fuzzy numbers will be referred to as fuzzy weight restriction DEA models or simply
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fuzzy models. In this research, we develop fuzzy models to capture the bound uncertainty

in the two most commonly used weight restriction DEA models:

1) The DEA model with absolute weight restrictions (see Dyson and Thanasoulis

(1988), Roll et al. (1991), and Roll and Golany (1993).)

2) The Assurance Region (AR) DEA model (see Thompson et al. (1986), Thompson et

al. (1990).)

We also provide implementation roadmaps for illustrating the development and solution

methodology of the fuzzy models. The roadmaps are developed in response to Almond's

(1995) criticism that a number of fuzzy approaches lack implementation roadmaps.

Finally, we apply the fuzzy weight restriction models to the same data sets as those used

by the corresponding crisp weight restriction models in the literature. This is so that we

can compare the results of the two models. We also apply the fuzzy AR model to a real

life manufacturing system because sufficient information is available to set the crisp and

fuzzy bounds. For comparing the results of the fuzzy models with those of the

corresponding crisp models, we use the two-sample paired t-test for means (Bain and

Englehardt (1992)).

1.4 Research Results

In this section, we provide a high-level overview of the research results. The results of

the two sample paired t tests in each case show that the efficiency scores calculated by

the fuzzy model are significantly different from the efficiency scores calculated by the

corresponding crisp model. This implies that the operational decisions based on the

results of the fuzzy models will be different from those taken based on the results of the

crisp models. The fuzzy models ensure that the decisions are taken after the uncertainty

has been accounted for. The efficiency scores calculated by the fuzzy model represent a

compromise between maximization of the efficiency scores and the satisfaction of the

decision-maker with the bounds.
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In some cases, it is found that DMUs move from the inefficient set to the efficient set

when the bounds are changed from crisp to fuzzy. In some of those cases, even a

relaxation of bounds to a 90% satisfaction level of the original values (i.e. just a 10%

relaxation of the bounds) is enough to move some DMUs (referred to as borderline

DMUs) from the inefficient set to the efficient set. Since the bound values are based on

incomplete information, the decision-maker is not expected to resist changing the existing

values to values that are at the 90% satisfaction level. Thus, the fuzzy model gives the

decision-maker a second chance to revise the bounds and make them favorable to the

borderline DMUs.

1.5 ORGANIZATION OF THE DOCUMENT

This chapter provided an overview of the research undertaken in this thesis. The

remainder of the document is organized as follows.  Chapter 2 entitled "Literature

Review" summarizes research in the area of efficiency measurement, data envelopment

analysis, data envelopment analysis with weight restrictions, fuzzy set theory, fuzzy

linear programming and fuzzy data envelopment analysis.  Chapter 3 entitled

"Methodology" describes the fuzzy weight restriction DEA models that are developed in

this research. Chapter 3 also describes how those fuzzy models are converted into crisp

equivalent models. Finally, it illustrates the development and solution methodology of the

fuzzy models using implementation roadmaps. Chapter 4, entitled "Application, Results

and Discussion", presents and analyzes the results obtained from solving the fuzzy weight

restriction models for the data sets used by corresponding crisp weight restriction models

in the literature. Chapter 5 entitled "Conclusion" concludes the discussion by highlighting

the salient contributions of the research and making recommendations for future research.
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Chapter 2

LITERATURE REVIEW

This chapter reviews the literature in all fields that are germane to this research. It

touches on all topics in the evolution of Data Envelopment Analysis (DEA) right from

the traditional efficiency measurement techniques through the seminal work of M.J.

Farrell (1957) to the first DEA model developed by Charnes et al. (1978). It then delves

into the literature on weight restriction DEA models. A part of the section on weight

restriction models is dedicated to describing the applications of those models to real-life

examples. The last two sections of the chapter contain a discussion on fuzzy set theory,

fuzzy numbers, fuzzy linear programming and applications of fuzzy set theory in DEA.

The chapter has been divided into the following six sections:

2.1 Traditional definitions of efficiency.

2.2 Technical efficiency using the production function - Review of Michael Farrell’s

(1957) seminal work in the field of efficiency measurement.

2.3 Introduction to Data Envelopment analysis (DEA).

2.4 Review of literature on weight restrictions and value judgements in DEA.

2.5 Introduction to concepts of fuzzy set theory, fuzzy numbers and fuzzy linear

programming.

2.6 Review of literature on fuzzy set theory and fuzzy decision-making used in DEA.

2.1 TRADITIONAL DEFINITIONS OF EFFICIENCY

Since DEA is a technical efficiency measurement technique, we start this chapter with a

review of the traditional techniques used for efficiency measurement. The objective of

this and the subsequent section of this chapter is to trace the evolution of the DEA

approach.
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2.1.1 Average Productivity of Labor

For a long time, efficiency was assessed by measuring the average productivity of labor

(Farrell (1957)). Though this was a very popular measure, it had a drawback. The

drawback was that it ignored all inputs except labor and was found to be unsatisfactory

when the process or organization being evaluated had multiple inputs and outputs.

2.1.2 Indices of Efficiency

Because of the unsatisfactory nature of the labor productivity measure, attempts were

made to develop measures of efficiency, which combined all the factors by aggregating a

firm's inputs. One set of measures developed as a result of those efforts is called indices

of efficiency. Here, the input vectors are first stripped of their dimensions. The

dimensionless quantities are weighted and then added up. Thus, indices of efficiency

involve a comparison of weighted-average of inputs with the output. The weighted-

average is equivalent to a valuation of the inputs at prices proportional to the weights in

the index. Thus, an attempt to compare efficiency by this measure can be regarded as

making a cost comparison. The choice of a set of prices introduces an arbitrary element

into the measure and the difficulty lies in choosing a suitable set of weights. Even if all

the firms use the same set of prices, the measure still boils down to a mere cost

comparison (Farrell (1957)).

2.2 TECHNICAL EFFICIENCY USING THE PRODUCTION

FUNCTION

To eliminate the above mentioned drawbacks associated with traditional efficiency

measures, Farrell (1957) introduced a new measure of (technical) efficiency, which

employs the concept of the efficient production function. This method of measuring

technical efficiency of a firm consists in comparing it with a hypothetical perfectly

efficient firm represented by the production function. The efficient production function is

some postulated standard of perfect efficiency and is defined as the output that a perfectly

efficient firm could obtain from any given combination of inputs.
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The first step in calculating the technical efficiency by this method is determining the

efficient production function. There are two ways in which the production function can

be determined. It could either be a theoretical function or an empirical one. The problem

with using a theoretical function is that it is very difficult to define a realistic theoretical

function for a complex process. The empirical efficient production function, on the other

hand, is estimated from observations of inputs and outputs of a number of firms.

Therefore, it is far easier to compare performances with the best actually achieved (the

empirical production function) than to compare with some unattainable ideal (the

theoretical function).

To understand the concept of an efficient production function, we take the example of a

set of firms employing two factors of production (inputs) to produce a single product

(output) under conditions of constant returns to scale. Constant returns to scale means

that increase in the inputs by a certain proportion results in a proportional increase in the

output. An isoquant diagram is the one in which all firms producing the same output lie

in the same plane. Each firm in an isoquant diagram is represented by a point so that a set

of firms yields a scatter of points. An efficient production function is a curve, which joins

all the firms in an isoquant diagram utilizing the inputs most efficiently.

While drawing the isoquant from the scatter plot, two more assumptions, in addition to

constant returns to scale are made:

1. The isoquant is convex to the origin. This means that if two points are attainable in

practice then so is their convex combination.

2. The slope of the isoquant is nowhere positive which ensures that an increase in both

inputs does not result in a decrease in the output.
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Figure 2.1 Representation of the Production Function (Isoquant) SS’

In Figure 2.1, isoquant SS’ represents a production function. Point P represents an

inefficient firm, which uses the two inputs per unit of output in a certain proportion. Point

Q represents an efficient firm which produces the same output as P, uses the two inputs in

the same proportion as P but uses only a fraction OQ/OP as much of each input. Point Q

could also be thought of as producing OP/OQ times as much output from the same inputs.

Therefore, the ratio OQ/OP is defined as the technical efficiency of firm P. This measure

of efficiency ignores the information about the prices of the factors. To incorporate the

price information, use is made of the other type of efficiency measure called price (or

allocative) efficiency. Price efficiency is a measure of the extent to which a firm uses the

various factors of production in the best proportions, in view of their prices.

In Figure 2.1, if AA’ has a slope equal to the ratio of the prices of the two input factors,

then Q’ and not Q is an optimal method of production. Although both Q and Q’ represent

100 percent technical efficiency, the costs of production at Q’ will only be a fraction

OR/OQ of those at Q.  Therefore, the ratio OR/OQ is called the price efficiency of both

firms P and Q.  The product of technical efficiency and price efficiency is called overall

efficiency. In Figure 2.1, the ratio OR/OP represents the overall efficiency of firm P.

We see that an important feature of Farrell's (1957) method outlined above is the

distinction between price and technical efficiency. While the price efficiency measures a
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firm's success in choosing an optimal set of inputs which minimize the cost of

production, the technical efficiency measures its success in producing maximum output

from a given set of inputs.

2.3 DATA ENVELOPMENT ANALYSIS (DEA)

DEA is an extension of Farrell's (1957) idea of linking the computation of technical

efficiency with production frontiers. The first DEA model was developed by Charnes

Cooper and Rhodes (1978) (CCR). The CCR model is a fractional programming model,

which measures the relative technical efficiency of a firm by calculating the ratio of

weighted sum of its outputs to the weighted sum of its inputs. The fractional program is

run for each firm to determine the set of input-output weights, which maximizes the

efficiency of that firm subject to the condition that no firm can have a relative efficiency

score greater than unity for that set of weights. Thus, the DEA model calculates a unique

set of factor weights for each firm. The set of weights has the following characteristics:

•  It maximizes the efficiency of the firm for which it is calculated and

•  It is feasible for all firms.

Since DEA does not incorporate price information in the efficiency measure, it is

appropriate for not for profit organizations where price information is not available.

These not for profit organizations are referred to as Decision-Making Units (DMUs) by

Charnes Cooper and Rhodes (1978).

Since the efficiency of each DMU is calculated in relation to all other DMUs and using

actual observed input-output values, the efficiency calculated in DEA is called relative

efficiency. Charnes, Cooper and Seiford (pp.6, 1994) define DEA as "DEA produces a

piecewise empirical extremal production surface which in economic terms represents the

revealed best-practice production frontier – the maximum output empirically obtainable

from any DMU in the observed population, given its level of inputs."

In addition to calculating the efficiency scores, DEA also determines the level and

amount of inefficiency for each of the inputs and outputs. The amount of inefficiency is
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determined by comparison with a convex combination of two or more DMUs, which lie

on the efficient frontier, utilize the same level of inputs, and produce the same or higher

level of outputs.

Several models have been proposed in the DEA field. All DEA models utilize the

concept mentioned above. Differences amongst the various models occur only in the

shape of the frontier and in the method used for projecting the inefficient DMUs onto the

frontier. The very first model proposed in the DEA literature is called the Charnes

Cooper and Rhodes (1978) model also known as the CCR model. This model is still the

most commonly referenced one in the literature and will be used in the proposed research

for demonstrating the fuzzy weight restrictions method.

2.3.1 The CCR Model

Model Definition

This model is an extension of the ratio technique used in traditional efficiency

measurement approaches. The measure of efficiency of any DMU is obtained as the

maximum of a ratio of weighted output to weighted input subject to the condition that

similar ratios for every DMU be less than or equal to unity.

In a more precise form:
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Where n represents the number of DMUs, s, the number or outputs and m, the number of

inputs.  yrj, xij (all positive) are the known outputs and inputs of the jth DMU and ur, vi

>=0 are the variable weights to be determined by the solution of this problem. The input-

output values are obtained by collecting information on the resourcs used and outputs

produced from past observations.

The efficiency of one of the DMUs from the set j = 1, .., n is to be evaluated relative to

the others. It is therefore represented in the objective function (for optimization) as well

as in the constraints. In the objective function it is distinguished by assigning the

subscript 0 to its inputs and outputs,.

Reduction to Linear Programming Forms

Model (2.1) is a fractional programming problem. In its current form, it is

computationally intractable when the number of DMUs (n) is large and the number of

inputs (m) and outputs (s) is small. Therefore, Charnes et al. (1978) convert it into a

linear programming form which is as follows:
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The purpose of the dual is to determine the amount of inefficiency of the inefficient

DMUs by projecting them onto the efficient frontier. From this point onwards, to keep

the naming convention in line with that used in the DEA literature, the dual will be

referred to as the primal and the primal will be referred to as the dual.

The drawback with the CCR model is that it compares DMU’s only based on overall

efficiency assuming constant returns to scale. It ignores the fact that different DMU’s

could be operating at different scales.  To overcome this drawback, Banker, Charnes and

Cooper (1984) developed the BCC model, which considers variable returns to scale and

compares DMUs purely on the basis of technical efficiency. The discussion of the BCC

model is beyond the scope of this document. Interested readers are referred to Banker et

al. (1984) for details of the BCC model.

2.3.2 Classification Scheme for the DMUs

At this point, we would like to take a minor digression and discuss a scheme for

classifying DMUs based on where they are projected onto the efficient frontier.

According to Charnes et al. (1986), all DMUs can be classified into two broad sets –

Efficient (RE) and Inefficient (N). The set RE further partitions into sets E, E' and F. Set

E is the set of extreme efficient DMUs. These are the DMUs that form the vertices of the

efficiency frontier. The DMUs belonging to set E' are non-extreme efficient because they

can be represented as a convex combination of extreme-efficient DMUs. The DMUs in

set F have some slack and hence lie on the extended frontier.
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Set N partitions into sets NF, NE', and NE. The DMUs in NF are inefficient DMUs that

project onto the extended frontier. The inefficient DMUs in NE' project onto the set E'

and the DMUs in NE project onto the vertices of the efficiency frontier i.e. the set E. For

a better understanding of this classification scheme, we have illustrated it using an

example consisting of eight DMUs. Each of these DMUs consumes two inputs and

produces one output. Both inputs have been divided by the output to obtain inputs per

unit output and have been plotted in Figure 2.2.
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Figure 2.2 Scatter Plot Illustrating Efficiency Classification of DMUs

Based on the classification scheme discussed, we make the following observations:

•  DMUs 2, 4 and 8 belong to set E.

•  DMU 6 is in set F.

•  DMU 5 is in set E' because it can be expressed as a convex combination of DMUs 2

and 4.

•  DMU 1 lies in set NE, DMU 3 in NE' and DMU 7 in the set NF.
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2.4 WEIGHT RESTRICTIONS AND VALUE JUDGEMENTS IN

DEA

Most of the methodological extensions of DEA have been application driven i.e. they

have been a result of the application of the method to real life problems (Allen et al.

1997). One such development is the use of weight restrictions and value judgements. The

intention of incorporating value judgements is to incorporate prior views or information

regarding the assessment of efficiency of DMUs. In this section we seek to review the

evolution of the methodology of weight restrictions.

2.4.1 Motivation for Incorporating Value Judgements in DEA

A conventional DEA model involves calculating the relative efficiency of a DMU by

assigning such weights to its inputs and outputs so that the ratio of its weighted output to

weighted input is maximized. Apart from the condition that the weights should be non-

zero (type I), the only other condition that restricts the weights is that the efficiency of

none of the DMUs should exceed unity (type II). Thus, DEA in its purest form allows

almost total flexibility in the selection of weights, especially if fewer5 DMUs are included

in the analysis. This allows each DMU to achieve the maximum feasible efficiency rating

with its existing levels of inputs and outputs. An argument in favor of total weight

flexibility is that if a DMU is identified as inefficient in spite of using a favorable set of

weights, it is a strong statement about the inefficiency of that DMU. Another argument in

favor of total flexibility is that the efficiency of different DMUs is evaluated using

different sets of weights allowing DMUs to express their different circumstances and

different objectives.

Total weight flexibility, however, also has numerous drawbacks. The salient drawbacks

are:

•  The efficiency measure in DEA is derived relative to the performance of other DMUs

and not to some ideal production frontier. As a result, a DMU that is superior to all

other units in only a single output - input ratio will receive an efficiency score of one

                                               
5 With fewer DMUs, there are fewer constraints of type II and hence more freedom to the weights.
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by placing very high weights on that particular output-input ratio. Thus, factors of

secondary importance may dominate a DMU's efficiency assessment and some

factors may be ignored. This may be unacceptable given the fact all factors are

meticulously selected. In addition, the relative efficiency of a DMU may not really

reflect its performance with respect to the inputs and outputs taken as a whole. There

might also be an unfounded emphasis on efficient use of relatively unimportant inputs

or on a higher production of relatively unimportant outputs, thus concealing

inefficiencies in the most important activities undertaken by the DMU (Pedraja et al.

(1997)).

•  Weight flexibility allows different DMUs to assign vastly different weights to the

same factor. The argument in favor of this is that different DMUs have different

circumstances and therefore one factor may be more important to one DMU

compared to another DMU. Thus, some degree of weight flexibility may be desirable

to allow DMUs to reflect their particular circumstances. However, complete

flexibility becomes unacceptable as most of the DMUs employ similar technologies,

pay similar prices for inputs, produce the same kind of outputs and have the same

overall objectives (Pedraja et al. (1997)).

•  Unbounded weight restriction models do not allow us to incorporate into the analysis

any a priori information that might be available regarding the importance of inputs

and outputs.

The other extreme of unbounded weight restriction models is the complete lack of

flexibility, which converts the problem to that of ratio analysis and obviates the need for

DEA. An in between solution involves setting upper and lower bounds within which

factor weights are allowed to vary. The imposition of restrictions on the weights implies

the formulation of value judgements about the relative importance of the different outputs

and about the relative opportunity costs of the inputs that produce these outputs. Weight

restrictions reduce the region of search for the weights thus possibly reducing the

efficiency of the DMUs. As the restrictions become increasingly severe, the measure of

efficiency derived moves from one of relative technical efficiency to one of relative

overall efficiency. At the extreme, with no flexibility in weights, DEA becomes classical
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ratio analysis, in which a unit's efficiency is measured as the ratio of weighted outputs to

weighted inputs with weights being equal to the prices (Pedraja et al. (1997)).

In addition to eliminating the drawbacks of unbounded DEA models, weight restrictions

also serve some additional purposes. Listed below are some of the purposes for which

weight restriction models could be used or have already been used in real-life

applications:

•  To ensure incorporation of all inputs and outputs in the assessment of performance

By putting upper and lower bounds on the weights, weight restriction models ensure that

all factors are considered in the analysis.

•  To incorporate prior views on the values of individual inputs and outputs

By assigning specific values to weight bounds, the decision-maker can express his/her

opinion about the relative importance of the factors. In this way weight restriction

models, overcome the drawback of unbounded models of not allowing a priori

information to be incorporated in the analysis. For example, in Chilingerian and Sherman

(1997), weight restrictions were used to enclose the factor weights in a cone, which

represented a particular physician practice pattern. This cone was constructed using

criteria specified by the health maintenance office (HMO) director. This ensured that

only those primary care physicians (DMUs) whose practice styles lay inside the preferred

cone i.e. were in line with the preference of the HMO director were identified as efficient.

In another example, Dyson and Thanassoulis (1988) imposed restrictions on the weights

to incorporate the audit commission's management's perspectives on the relative

importance of the inputs and outputs used in the assessment.

•  To relate values of certain inputs with values of certain outputs

Thanassoulis et al. (1995) assessing the efficiency of perinatal care units in the U.K.,

required the weight on "babies at risk" (input) to be the same as the weight on "number of

survivals" (output). The unbounded model allowed them to vary the importance of the

ratio of the number of survivals to number of babies at risk relative to other output-input
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ratios but it did not allow them to vary the relative importance of the individual

components of the ratio. To address this problem, Thanassoulis et al. (1995) developed a

weight restriction model in which one of the constraints equated the weight on babies at

risk with the weight on number of survivals.

•  To incorporate prior views on efficient and inefficient DMUs

Often management has prior perceptions as to which DMUs it considers to be "good" and

which ones it considers to be "poor" performers. Weight restriction models allow

management to incorporate these prior perceptions into the analysis. For example, while

assessing the performance of banks, Charnes et al. (1990) found that the original CCR

model (1978) recognized some notoriously inefficient banks as efficient. Therefore,

Charnes et al. (1990) developed the cone-ratio weight restriction model, which assessed

the performance of all banks based on input/output values of three preselected banks,

which were recognized by management as very good performers. In Chilingerian and

Sherman (1997), the weight bounds for the AR/cone-ratio model were determined based

on weight values assigned to the factors by those efficient DMUs (PCPs) whose practice

styles met the criteria specified by the HMO director.

•  To move from technical efficiency measurement to overall efficiency measurement

Traditional DEA models measure only technical efficiency i.e. they ignore the

information about input/output prices. Farrell (1957) defined overall efficiency as the

product of technical efficiency and allocative efficiency. Allocative efficiency attempts to

measure how well a DMU selects the combination of inputs so that the total cost is

minimized. Obviously for measuring allocative efficiency one requires information about

the prices of inputs and outputs. Since DEA is used for non-profit organizations,

obtaining price information is difficult in most situations. However in almost all cases, it

is certainly possible to determine ranges of prices if not exact values and this fact is

leveraged by weight restriction models called Assurance Region (AR) models

(Thompson et al. (1990)). The AR model recognizes the fact that the input/output

multipliers in the dual DEA model are the prices of the inputs/outputs. Therefore, the

price ranges obtained from the market can be used to set bounds on the multipliers. Quite
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often, however, market information may not be readily available (Zhu (1996)). In such

circumstances, AR bounds are determined using expert opinion. Zhu (1996) uses the

analytic hierarchy process (AHP) to gather expert opinion for setting AR bounds.

•  To switch from the points of view of the individual DMUs to that of central

management.

DEA models with complete weight flexibility weigh the same factor differently while

evaluating different DMUs (Roll et al. (1991)). This difference in weights may not be

acceptable to central management, as they would be interested in knowing how the

DMUs perform using similar sets of weights. Appropriate weight restrictions ensure that

all the DMUs are evaluated with similar (if not common) sets of weights. This represents

a switch from the points of view of individual DMUs to that of central management and

offers a compromise between complete weight flexibility on one hand and fixed weights

on another.

•  To enable discrimination among efficient units.

Sometimes DEA may be used to choose one best DMU from amongst the available

alternatives. For example, Thompson et al. (1986) tried to use DEA to determine the best

location for a nuclear physics facility in Texas and discovered that five out of six

alternative facilities were found relatively efficient by the free weights model. To narrow

the choice down to a single site, Thompson et al. (1986) determined assurance region

constraints based on expert opinion. The AR model identified only one DMU as efficient.

2.4.2 Approaches for Imposing Weight Bounds

In this section, we will use the same classification scheme as that used by Allen et al.

(1997) for classifying the different approaches for imposing weights restrictions.

The approaches for imposing restrictions on weights can be classified into the following

three broad categories:

1. Direct Restrictions on weights (Absolute Weight Restrictions, Assurance Region I,

Assurance Region II)



41

2. Adjusting the observed input-output levels to capture value judgements (Cone-Ratio

and Ordinal Relations).

3.  Restricting weight flexibility by restricting the weighted inputs and outputs.

Let us now look at each of the approaches in detail. All the approaches use the CCR

(1978) model as the base model.

2.4.2.1     Direct Restrictions on Weights

Direct restrictions on the weights are applied by adding additional constraints involving

the weights to the existing DEA model. There are three ways in which direct restrictions

have been applied in the literature.

2.4.2.1.1 Absolute Limits on Weights

This type of model uses constraints, which impose upper and lower limits on the input-

output weights (see Roll et al. (1991) and Roll and Golany (1993)). These constraints are

primarily employed to prevent the inputs or outputs from being over or under

emphasized. In usual notation, a CCR model with absolute limits on weights can be

represented as:
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where 
i

v
−

and iv are the user-specified lower and upper bounds respectively on input

weights and 
r

u
−

and ru are the lower and upper bounds respectively on the output

weights. The key difficulty in using this approach is the determination of the values of

the bounds. Roll and Golany (1993) recommend three methods for specifying absolute

weight bounds:

1. General restriction of weight variation

This method is used when no information (about the relative importance of weights) is

available. It should be noted that incorporating information about the relative importance

of the different factors is not the only purpose of using weight bounds. An equally

important purpose of introducing weight bounds could be to limit the span of variation of

the weights and ensure that the weights do not take extreme values. The method

recommended below taken from Roll and Golany (1993) serves this exact purpose.

a) Run an unbounded CCR model, compile a "weight matrix" and find the average

weights ru '  and iv'  given to each factor, across all DMUs.

b) Determine the amount of allowable variation in weights for each factor. For example,

let the ratio of the highest value to the lowest one is d: 1.

c) Extend the basic CCR model by adding a set of bounding constraints of the type6:

d

du
u

d

u r
r

r

+
≤≤

+ 1

'2

1

'2

Apply similar constraints on the input weights.

d) Run the "bounded" model.

As a possible variation to this technique, Roll and Golany (1993), propose cutting off

certain percentage of extreme values from both sides of each vector of weights before

finding the average in step a).

                                               
6 The intuition behind using these formulas for the upper and lower bounds is that they cause the lower

bound to take a value smaller than 1 and the upper bound to take a value greater than 1 with the ratio

between the bounds being d:1.
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2. Judgmental Restriction of weight variation

This method is used when some a priori information about the relative importance of the

factor weights exists. Just like the previous method, this method also uses the "weight

matrix" obtained from the unbounded runs as a starting point. The analyst's opinion about

relative importance is brought forward by adopting central values that are different from

the arithmetic average (i.e. are either above or below the average) and by choosing

different ratios (dr ) between upper and lower bounds for different factors. Graphically

these weight bounds are represented in Figure 2.3. Factors, which, in the analyst's view,

are more important, will have higher weight spans compared to the less important ones.

Factor

Weight

Values

Figure 2.3 Judgmental Restrictions on Weights produce Weight Bounds with Different
Spans for Different Factors

3. Advance setting of bounds

Sometimes bounds are determined a priori without running the unbounded model. This

implies a strong initial position on the relative importance of factors and the allowed

spread of weights.

2.4.2.1.1.1 Modification to Absolute weight bound model proposed by Podinovski

and Athanassopoulos (1998)

Podinovski and Athanassopoulos (1998) argue that adding weight restrictions to the CCR

model underestimates the relative efficiency of the DMUs. Before we proceed to explain

OU1

OL1

OU2

OL2

IU1

IL1

IL2

IU2
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this point let us define the notation that will be used throughout this sub-section. The

efficiency of any DMU j will be defined as:

j
T

j
T XvYuvujE /),,( =

where Xj and Yj are input and output vectors respectively and uT and vT are the vectors

representing the output and input weights respectively. Using this notation, the CCR

model can be represented as:

ε≥
=≤

vu

njvujE

vujE

,

;,...,1       ,1),,(

 subject to

),,(max      0

(2.5)

Now consider the maximin DEA model

)),,(/),,(( min   max 0
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∈
∈

ε
ε

(2.6)

 Although the objective function of (2.5) maximizes absolute efficiency and the objective

function of (2.6) maximizes the relative efficiency, both forms are equivalent because

both get converted to the same LP form. Thus, in the absence of weight restrictions, the

CCR model and the maximin model both maximize the relative efficiency of DMUs.

However, when weight restrictions are added to the CCR model, it maximizes only the

absolute efficiency of the assessed DMU and may not maximize its relative efficiency,

which is the only important measure. This is because in the presence of weight

restrictions, models (2.5) and (2.6) are no longer equivalent and get converted to different

LP forms. Since the objective function of (2.5) maximizes the absolute efficiency, it

continues to do so in the presence of weight restrictions. This may lead to an

underestimation of the relative efficiency of the DMUs being assessed when weight

restrictions are added to the CCR model. Therefore, Podinovski and Athanassopoulos

(1998) recommend adding weight restrictions to the maximin model instead of the

fractional CCR model because the objective function of the maximin model is set

explicitly to maximize the relative efficiency of the assessed DMU. To explain the

difference between the two models let us first consider the following fractional CCR

model with absolute weight restriction constraints:
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When (2.7) is converted into an LP form, we get the following model:
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ii

rr

pv

pu

=
=

η
µ

)1(  and )1( sxmx ηµ  are the new output and input weights; X (mxn) and Y (sxn) are input

and output vectors respectively; and X0 and Y0 are vectors representing input and output

levels for the assessed DMU0.

If instead of starting with the CCR model, we start with the maximin model and then

place weight restrictions, then the resulting LP will be as follows:
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where
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η
µ

Comparing model (2.8) with model (2.9) we notice that (2.9) has two independent scaling

variables p and q, while (2.8) has one. Model (2.8) may not find the most favorable set of

weights for the assessed DMU within the feasible set and may end up underestimating the

relative efficiency of the named DMUs.

2.4.2.1.2 Assurance Regions of Type I (AR I)

These relations are introduced in the analysis to accomplish either of the following two

purposes:

•  Incorporate the relative ordering of inputs/outputs

•  Incorporate information on prices or values of inputs/outputs.

In these types of constraints, upper and lower bounds are imposed on the ratios of factor

weights. Bounds are determined using market price information (see Thompson et al.

(1990), Thompson et al. (1996a), Thompson et al. (1996b), Taylor et al. (1997)). Thus,

an AR model represents a move from measurement of technical efficiency to

measurement of overall efficiency. If price information is not available then expert

opinion on the relative importance of the inputs/outputs is used to determine the bounds

(see Zhu (1996)). The AR model can be mathematically represented as follows:
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where Ai and Bi are the lower and upper bounds on the ratios of input weights and ar and

br are the lower and upper bounds on the ratios of output weights.

Usually, one of the inputs (say x1) is selected as an input numeraire and one of the outputs

(say y1) is selected as output numeraire. Then an AR may be specified as a set of (m + s -

2) homogeneous linear inequalities for separable cones (see section 2.4.2.2.1 for a better

understanding of cones):
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Rearranging the terms in (2.10) we get the following most commonly used form of AR

constraints:

mivBvvA

srubuua

iii

rrr

,...,2    

 ,...,2     

11

11

=≤≤
=≤≤

(2.12)

2.4.2.1.3 Assurance Regions of Type II (AR II)

In this type of AR model, the input and output weights are linked together i.e. bounds are

set on the ratios of output weights to input weights. These types of AR constraints are

also called linked AR constraints because the input – output cones are linked as opposed
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to be being separable as in case of AR I constraints. AR II models can be used for two

purposes. Either to incorporate information about the relative importance of an output

with respect to an input (see Thanassoulis et al. (1995)) or to determine the profitability

of DMUs (see Thompson et al. (1996b)). When the model measures profitability of the

DMUs, the bounds are set using market price information.

An ARII DEA model can be mathematically represented as:
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where γ is the upper bound on the ratio of the output weight ur to the input weight vi.

2.4.2.2 Adjusting the Observed Input-Output Levels to Capture Value

Judgements – The Artificial Data Sets Methods

In the previous section, we discussed models in which weight restrictions were imposed

by adding additional constraints to the original basic DEA model. In this section we will

discuss models in which the weight restriction is imposed by modifying (multiplying by a

vector) the existing input-output data. There are two such approaches where transformed

input-output data are used to simulate weight restrictions.

2.4.2.2.1 The "Cone Ratio" Model

The cone-ratio model is another method of bringing expert relative valuational

knowledge into the analysis. It involves generating a cone (smaller than the non-negative

orthants) spanned by the optimal virtual multipliers of efficient DMUs which satisfy

certain conditions specified by the decision-maker. The assurance region constraints

(discussed previously) are special cases of intersections of half-spaces restricting the
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virtual multipliers to closed convex cones. The meaning of half-spaces and closed convex

cones will become clearer from the discussion that follows in this section as well as in

Section 3.2.1 of Chapter 3.

The cone ratio model was first introduced by Charnes et al. (1990). We use the following

example to illustrate the concept of convex cones graphically. Consider a company

having six (6) factories in six different locations in the country. Let each factory utilize

two primary inputs - machine hours (X1) and labor hours (X2) and produce a single

product as output. Let the machine hour rate be less than the labor hour rate. Naturally,

the management of the company would prefer factories to use more machine hours and

fewer labor hours. Let us also assume that it is possible to substitute labor hours by

machine hours. The change in labor hours (∆X2) per unit change in machine hours (∆X1)

is defined as the marginal rate of technical substitution. Let us assume that each of the six

factories produce the same quantity of output of comparable quality. Figure 2.4 shows the

scatter plot of the data with the production possibility set identifying efficient and

inefficient factories.

Figure 2.4 Geometric Representation of Convex Cones
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Each factory has a "management style" which represents the proportion in which it uses

the two inputs. In figure 2.4, convex cones (represented by dotted lines) are used to

linearly partition the management styles based on a set of linear constraints such as the

ranges of substitution ratios. For example, the ray joining the origin (0) and the point F1

represents all points that use the two inputs in the same ratio as F1. Similarly, the ray

joining the origin and the point F3 represents all points that use the inputs in the same

proportion as F3. Therefore, a factory lying inside the "Management Style 2" cone will

have a ratio of machine hours to labor hours that lies between the corresponding ratios for

factories F1 and F3. In general, styles 1 and 2 include factories which use more machine

hours compared to labor hours and style 4 contains factories which use relatively more

labor hours compared to machine hours. Obviously, since the machine hour rate is lower

than the labor hour rate, styles 1 and 2 are more desirable to the company management

compared to style 4. Thus, we see that although all factories on the efficiency frontier are

technically efficient, not all of them have management styles that would satisfy the

company management (example, factory F7). This points out the weakness of using

unbounded DEA models when decision-makers have certain preferences or when

information about prices exists. Cone-ratio constraints eliminate this drawback of

standard models by allowing cones of virtual multipliers to be defined so that decision-

makers can incorporate qualitative or price information into the analysis.

Now let's turn to the mathematical representation of cone-ratio constraints. Suppose

21  and vv are input multipliers and suppose that market information sets the range of their

ratio as 2211 / cvvc ≤≤ , with 0 12 >≥ cc . Then we have:

0  and   0 221211 ≤−≤+− vcvvcv (2.14)

The polyhedral convex cone V for the input multipliers would then be defined as:

}0,0:{ ≥≥=∈ vCvvVv . (2.15)
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Similarly if F is the matrix equivalent to C for the output weights, then the output closed

convex cone will be defined as:

}0,0:{ ≥≥= uFuuU       (2.16)

When the input-output weights are enclosed in cones, the resulting cone-ratio DEA

model is as follows:
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where X (mxn) and Y (sxn) are input and output vectors respectively, u (sx1) and v (mx1)

are output and input weight vectors respectively, X0 and Y0 are vectors representing input

and output levels for the assessed DMU j0. The closed convex cones V ⊆  Em and U ⊆  Es

that have already been defined in (2.15) and (2.16) contain the weight restriction

information. Em and Es are the non-negative orthants used in the unbounded DEA model.

Thus if V = Em and U = Es, then the model becomes equivalent to the standard DEA

model (Charnes et al. (1990)). The matrix representation of cones shown in (2.15) and

(2.16) is called the intersection form and is used in assurance region models. An

alternative representation defined in Charnes et al. (1990) is called sum form. For small

matrices, the intersection form can be easily converted to the sum form and vice-versa.

For example, if C and F are 2 x 2 matrices in intersection form, then the equivalent

matrices A and B in sum form can be obtained by carrying out the following

transformations:

AT = (CTC)-1 C and BT = (FTF)-1 F.

Charnes et al. (1990) introduced the sum form because by multiplying the input-output

data by the matrices in sum form (A and B), the cone-ratio model (2.17) is converted into

a form similar to the standard DEA model. The advantage of converting the cone-ratio

model to the standard form is that it can be solved using standard DEA packages. Such a



52

cone-ratio model with modified data sets is referred to as the cone-ratio model with

artificial data sets and will be represented as follows:
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For more details on this discussion, see Charnes et al. (1990)

2.4.2.2.2 The Ordinal Relations Approach

Golany (1988) proposed imposing ordinal relations of the form ε≥≥≥ 321 vvv  among

the DEA weights. Golany (1988) also proposed equivalent transformations on the data

which would allow us to incorporate ordinal relations without adding additional

constraints. For example the equivalent of the constraint ε≥≥≥ 321 vvv  is replacing x2j

by x2j + x1j and x3j by x3j + x2j + x1j ∀ j, where xij is the level of ith input for the jth DMU.

2.4.2.3  Restricting Weight Flexibility by Restricting the Weighted Inputs and

 Outputs

Two approaches proposed in the literature impose limitations on weights by restricting

the weighted inputs and outputs. One is the "contingent weight restrictions" approach

proposed by Pedraja et al. (1997) and the other is the approach proposed by Wong and

Beasley (1990) which imposes limitations on the "relative importance of factors to a

DMU."

2.4.2.3.1 Contingent Restrictions on Weights

Pedraja et al. (1997) argue that weight restrictions ought to be imposed taking into

account the DMU's level of inputs and outputs to ensure that only those inputs or outputs

which contribute "significantly" to the total costs or benefits of a DMU are included in

the analysis.

For an input space, Pedraja et al. (1997) propose the following form for the constraints:
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where ci and di are to be chosen by the analyst. Similar constraints can be applied in the

output space. Constraints of this sort require the proportion of total benefits ascribed to

one input (output) to not exceed those ascribed to another input (output) by more than a

certain multiple.

Pedreja et al. (1997) term this approach "contingent" weight restriction approach to

emphasize the fact that the pattern of weights selected depends on the levels of inputs and

outputs chosen by the DMU. Because of the dependence, the DMU puts more weight on

inputs whose levels are low (i.e. ones which it consumes efficiently) and less weight on

inputs whose levels are high (i.e. ones that increase its inefficiency). Thus, the efficiency

calculated by the contingent model tends to be more than that calculated by models,

which put limits on prices of inputs and outputs.

2.4.2.3.2 Restrictions on Relative Importance of Factors

This method was developed by Wong and Beasley (1990) and involves putting

restrictions on the "importance" attached to a certain output (or input) measure by a

DMU. The importance attached by a DMU to a particular output is the proportion of the

total output devoted to that output. Thus, the importance attached by DMU j to output

measure r can be given by 
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 where ur is the weight on the rth (r=1,.., s) output and

yrj is the level of output r for DMU j.

Wong and Beasley (1990) assume that the decision-maker can set limits [ar, br] on the

importance of output measure r in DMU j. Using these values of the bounds, the

following constraint can be added to the original DEA model.
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Specification of [ar, br] is a value judgement and is arrived at by seeking a consensus

amongst those familiar with the situation being modeled, on the relative importance of

each output measure in the total output.

2.4.3 Applications of Weight Restriction Models

This section describes in detail the various applications of weight restriction models that

have been published in the DEA literature. For each application, we have tried to provide

such details as how the bound values were determined, how the weight restrictions

affected the results, etc.

2.4.3.1  A DEA Model for Measuring the Relative Efficiency of Highway

 Maintenance Patrols – Cook et al. (1990)

This is the only real-life application of the absolute weight restrictions DEA model. The

rest of the applications that follow in this section are applications of the AR-DEA model.

In this application, a pilot DEA study was carried out to measure the efficiency of 14

highway maintenance patrols. Two inputs and two outputs were included in the analysis.

The first output called the assignment size factor was a composite measure of all factors

that were indicators of the "size of the system" such as surface, shoulder, right of way and

median, and winter operations. The other output was the Average Traffic Serviced. The

two inputs included in the analysis were Total Expenditure and Average Pavement

condition Rating. In the first run of the model, the weights were allowed to vary freely.

After investigating the weight matrix of the unbounded run, the authors found that

different DMUs were assigning vastly different weights to the same factor. To control

this variation, the authors determined an absolute set of bounds based on the unbounded

weight matrix (see Roll et al. (1993) for different methods for determining absolute

bounds based on the unbounded weight matrix). The model was solved again with the

weight controlled by bounds.

The consequences of imposing weight bounds were:

•  All efficiency ratings fell below the previous (unbounded) levels.
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•  Two of the DMUs, which were on the frontier in the unbounded model, fell under the

frontier.

•  There were fewer different peer groups compared to the unbounded model.

2.4.3.2  DEA/AR Efficiency and Profitability of Mexican Banks - A Total

 Income Model - Taylor et al. (1997)

DEA and linked-cone assurance region models were used in this paper to investigate the

efficiency and profitability potential of Mexican banks as they engaged in activities that

incurred interest and non-interest expenses and produced income. The study had only one

output called total income which was the sum of a bank's interest income, which included

interest from loans and non-interest income, which in turn included dividends, fees, and

others.

The two inputs in the study were:

•  Total deposits, which included the banks' interest paying deposit liabilities.

•  Total non-interest expense, which included personnel and administrative costs,

commissions paid, banking support fund contributions and other non-interest

operating costs.

The bounds were set using price/cost data. The price information was obtained from the

range of nominal interest rates for the loan and deposit portfolios of all the banks, so they

were consistent with the market interest rates for the data years. Since the second input

and the single output were expressed as total nominal pesos, their upper and lower

bounds were both equal to one.

2.4.3.3  Comparative Site Evaluations for Locating a High-Energy Physics

 Lab in Texas - Thompson et al. (1986)

In this paper a comparative evaluation of six competing sites was carried out using Data

Envelopment analysis to determine the ideal site for locating a high energy physics lab.

The inputs that were incorporated in the study were project cost, user time delay and

environmental impact.
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1. The project cost included capital cost of the tunnel, land costs, real estate

improvement costs, operating costs for 20 years, and cost of main ring and injector.

2. The user time delay index measured the percentage increase in the time required for

the user to complete a given research plan when the lab is located at a site other than

the ideal site - where an ideal site is the one which is close to the airport and has a

large center of technical support. Index values greater than 1.00 represented a

measure of the site's inefficiency.

3. The environmental index measured the effect of the facility on the environment and

the effect of the environment on the viability of the facility. Factors representing both

the effect of the facility on the environment and that of the environment on the SSC

were determined and each site was ranked for each factor. The environmental index

was constructed for each site by computing the weighted average of the assigned

ranks.

The objective of the project was to select a site, which maximized the net benefit i.e. the

difference between the benefits and costs. For that purpose all costs and benefits had to

be estimated in dollars and this caused problems because user time delay and

environmental impacts are not generally expressed in dollars. This is where DEA came to

the rescue because the DEA method, while consistent with the criterion of maximizing

the net benefit, did not require that all costs and benefits be denoted in dollars. However,

the drawback with applying the basic DEA model, which measures only the technical

efficiency, to the existing data was that it identified more than one site (in fact 5 out of 6)

as efficient.

To identify the preferred site from amongst the technically efficient sites, Thompson et

al. (1986) resorted to economics i.e. they modified the DEA model so that it would

identify the most economically efficient site. To determine the economically efficient

site(s), Thompson et al. (1986) carried out an analysis7 of the space consisting of virtual

weights (or prices) of inputs. Before carrying out the weight space analysis, the virtual

weights for the user-cost and environmental indices were normalized on facility costs,

                                               
7 For more details on weight space analysis refer to section 3.2.1 in Chapter 3
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which was the only input measured in dollars. With the normalization on facility costs,

the weight space became two-dimensional and could be divided into regions of site

preference i.e. each site had its own region of dominance in the weight space. To

determine the best site an assurance region of weights was defined. The site whose region

of dominance in the weight space contains the assurance region would be the best site.

The "assurance region" was delineated by determining upper and lower bounds for the

weights (prices). In the model, v1 was the price on facility cost; v2 was the price on user

costs and v3 was the price on environmental costs. Because v2 and v3 were uncertain,

variations in the values of these prices had to be allowed.

To determine the "assurance interval" for v2, an expected value of 5 was used for v2.

Using a confidence level of 99 percent and the value of standard error of the mean for the

ideal site plus the underlying literal loss of efficiency assumption, the assurance interval

for v2 was determined as (3.6, 6.5). The "assurance interval" for v3 was found by using

the upper bound for ameliorating the environmental impact which was provided by the

Texas A&M environmental study for the project. The Texas A&M environment study

concluded that the negative environmental impacts at each site can be ameliorated at a

cost which will not exceed the costs of tunnel construction. The cost for ameliorating the

environmental impact would be given by (x3)* (v3) where x3 is the environmental index.

The maximum difference between the worst and the best values of the cost of

ameliorating the environmental impact will be (∆x3) (v3) where ∆x3 is the maximum

difference between the worst and best values of the environmental index. Using the

conclusion arrived at by Texas A&M environmental study we can say that:

(∆x3) (v3) ≤  maximum difference in tunneling costs between the worst site and the best

site.

The value of ∆x3 was known to be 1.6 and the value of "maximum difference in tunneling

costs between the worst site and the best site" was known to be $5.4 million (say 0.5

billion). Thus, v3 ≤  .313. Assuming an error of magnitude of 3 in the environmental

index (x3), the relevant range for v3 was found to be 0.104 to 0.939. Thus, the assurance

region constraints for the SSC site location problem were:
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When this assurance region was applied to the site location problem, it was found that the

region of dominance of one of the sites, in the weight space, completely enclosed the

assurance region. Therefore, this site was the only one with efficiency score of 1 and was

also the preferred site.

2.4.3.4  DEA/AR Efficiency and Profitability of 14 Major Oil companies in

 U.S. Exploration and Production  - Thompson et al. (1996b)

In this paper, the efficiency and profit potential of 14 integrated oil companies were

measured using data envelopment analysis. The definitions of the outputs and inputs for

the producers were as follows:

Outputs

y1, y3 - Additions made to crude oil (Mbbls) and natural gas (MMCF) reserves,

respectively by exploration.

y2, y4 - Crude oil (Mbbls) and natural gas (MMCF) production for sale from its respective

proved reserves.

Inputs

x1 - Total costs incurred (M$); and

x2, x3 - proved crude oil (Mbbls) and natural gas (MMCF) reserves at previous year-end.

Separable input and output AR bounds were placed on the modeled prices (multipliers) to

proceed from technical toward overall efficiency. The "price/cost" data used for setting

the AR bounds in this paper were organized from several sources. The following points

explain how the price/cost ranges for the inputs and outputs were determined:

1. For y1, the lower and upper endpoints of the range values were estimated by use of

Arthur Anderson's annual minimum and maximum discounted after-tax future net

cash flows per barrel of crude oil for the majors.
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2. For y2, the lower and upper-endpoints of the range of values were the smallest and

largest respective monthly crude oil prices (1st domestic) reported by the U.S.

Department of Energy (DOE) in its Monthly Energy Review.

3. For y4, the lower and upper-endpoints of the value range were the smallest and largest

respective monthly natural gas prices (wellhead dry) reported by DOE in its Monthly

Energy Review.

4. For y3, the ratio of the average annual wellhead natural gas price (dry) to the average

annual first domestic crude oil price was multiplied times the lower and upper-

endpoints of the value range for y1 in each year to derive the respective range for y3.

5. For x1, the lower and upper-endpoints of the value range were equal to one in each

year, presuming that each dollar of costs paid for inputs, e.g. labor, was worth a

dollar;

6. For x2, product of the respective largest values for y1 and the monthly Corporate Bond

AAA interest rate, as reported in the Economic Report of the President, was used to

specify the upper-bound for the second input. Similarly, the product of the smallest

respective values was used to specify the lower-bound for x2.

7. For x3, the upper and lower-endpoints of the value range were derived from the upper

and lower-endpoints for x2 by the use of gas to oil price ratio as for y4 above.

The bounds for x2 and x3 were specified to reflect the rental cost of carrying a unit of the

respective reserves from year t-1 into year t.

2.4.3.5  DEA/AR Efficiency of U.S. Independent Oil/Gas Producers over Time

 - Thompson et al. (1992)

In this study, a DEA/AR efficiency analysis of 7 years (1980 - 1986) was made for 45 oil

/ gas firms called independents. The outputs were y1 (total crude oil production in barrels

(bbls)) and y2 (total natural gas production in thousand cubic feet (MCF)). The inputs

were x1 (total production costs in dollars), x2 (total proven crude oil reserves in bbls), x3

(total proven natural gas reserves in MCF) and x4 (total net wells drilled). Total oil/gas

wells drilled was the sum of all wells drilled (wet and dry), including fractions drilled as

joint ventures i.e. it was the total net wells drilled.
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The AR constraints on output multipliers were of the following form:

2122 / BuuA ≤≤

where 12 / uu was the oil/gas muliplier ratio and the nonnegative numbers A2, B2 were

based on the historical price/cost data and expert opinion.

The AR constraints on the input multipliers were as follows:
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where the nonnegative numbers 4 3, 2, , , =iii βα were based on historical price/cost data

and expert opinion.

Determination of the AR bounds for output virtual multipliers:

In estimating A2 and B2, the monthly minimum and maximum "spot" natural gas prices

were divided by the monthly average wellhead West Texas Intermediate crude oil prices

for all months from Nov. 1983 - Sept. 1988. For each of the years 1984-1986, the annual

minimum and maximum price ratios (A2, B2) were estimated by averaging the

corresponding monthly ratios.

For the years 1980 - 1983, comparable monthly gas/oil price data were not available,

except for Nov. and Dec. 1983. Hence use was made of regression analysis to estimate

the values of the maximum and minimum gas/oil price ratios. The monthly minimum and

maximum gas/oil prices ratios for the period Nov. 1983 to Sept. 1988 were regressed

against the monthly Index of Industrial Production. This Index of Industrial production

was then used to calculate the monthly minimum and maximum gas/oil price ratios for

the period 1980 - Oct. 1983. For the years 1980 - 1983, A2 and B2 were estimated by

averaging the respective monthly estimates.

Determination of the AR bounds for input virtual multipliers:

For each year 1980 - 1986, the minimum reserve value and also the maximum reserve

value was found from the data of Arthur Anderson for all the firms analyzed; and these
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minimum and maximum values were used to estimate 22  , βα , respectively. Pair wise, the

bounds A2, B2 were multiplied times 22  , βα , respectively to estimate 33  , βα .

Similarly, for each year, the onshore and offshore drilling cost data represented the

lower- and upper bounds for the range of observed costs per well. The range endpoints

were used to estimate/specify 44  , βα , respectively, year by year. The variable production

cost x1 was measured in dollars and the value of its multiplier v1 was specified to be 1

because a dollar of labor cost is worth a dollar.

2.4.3.6  DEA/AR Analysis of the 1988 - 1989 Performance of the Nanjing

 Textiles Corporation - Zhu (1996)

This article employed the data envelopment analysis/assurance region (DEA/AR)

methods to evaluate the efficiency of the 35 textile factories of the Nanjing Textiles

Corporation (NTC), Nanjing China. By specifying input and output cones, a cone-ratio

assurance region (CR-AR) was set up. While most existing approaches involving

Assurance Regions use "price/cost" data to determine values of the bounds, that approach

was not used in this paper because the concepts of price and cost could not be used in

Chinese economic planning. The problem being that the prices of many important

industrial raw materials and products, and necessities, etc., were controlled by the

government and were fixed at certain levels for relatively long periods (e.g. five years or

more).

Therefore, in this article, AR's were developed based on expert opinions on the relative

importance between various inputs/outputs. NTC uses the Analytic Hierarchy Process

(AHP) to gather and present expert opinion for systematically evaluating the overall

industrial performance. The results from the AHP were used in this paper to set bounds

on the weights. Two CR-ARs (CR-AR1 and CR-AR2) were developed to reflect two

different economies (central planning and market) as China was transitioning from

central planning economies to a mixture of central planning and market economies. CR-

AR1 reflected the evaluation under the assumption of central planning economies which

laid more emphasis on net industrial output value while CR-AR2 reflected the evaluation
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under the assumption of market economies which laid more emphasis on profit/taxes and

revenue.

The two AR's were useful in studying the effect of change in the economic conditions on

the performance of the factories and also in identifying the factories, which were more

flexible than others in adopting the change. Thus, the CR-ARs not only refined the DEA

efficiency results but also could be used to analyze the textiles industrial behavior in the

face of evolving market economies in Chinese economic reforms.

2.4.3.7  Best Practice Analysis of Bank Branches: An Application of DEA in a

 Large Canadian Bank - Schaffnit et al. (1997)

This paper presents a best practice analysis of the Ontario based branches of a large

Canadian bank. The analysis was focused on the performance of branch personnel. To

sharpen the efficiency estimates, constraints were imposed on the output multipliers. To

find cost efficient branches, i.e. to measure allocative efficiency, a model with similar

constraints on the input multipliers was used. The inputs considered in the analysis were

the number of personnel of each type (there were total five types) working in the

branches and the outputs were the number of transactions and number of maintenance

activities of each type. The values of the average standard times for all output activities

were used for setting the AR bounds on the output multipliers. Management estimated

that the large majority of transaction and maintenance activities fell within a ± 25% range

of the standard times. Using this information, the upper and lower time bounds were

determined as follows: for each output yr. r = 1, …, s with standard time rt , upper and

lower time bounds were rr tpt )1( ±=± , with p = 25%. From this, the following sets of

s*(s-1) / 2 constraints in the output multipliers were obtained:
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To study the cost-minimizing behavior of the branches, values or "prices" were

introduced for each of the inputs. The salary range for each type of staff was used to set
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the bounds. The range of the salaries was estimated by management to be ± 20% of the

average salaries. The input multiplier constraints were similar to the output multiplier

constraints shown in (2.20). When these input multiplier constraints were added to the

model with output multiplier constraints, the resulting model measured the overall

efficiency. The ratio of the score given by this model to that given by the model with only

output weight constraints measured the allocative efficiency.

2.4.3.8  Exploring Output Quality Targets in the Provision of Perinatal Care

 in  England using Data Envelopment Analysis - Thanassoulis et al.

 (1995)

This paper explores the use of Data Envelopment Analysis to assess units providing

perinatal care (District health Authorities, DHAs) in England. The input set for the DHAs

consisted of five controllable inputs and one uncontrollable input. The controllable inputs

were (for more details see Thanassoulis et al. (1995)):

•  Whole Time Equivalent (WTE) obstetricians;

•  WTE pediatricians;

•  General Practitioner's (GP) fees;

•  WTE midwives;

•  WTE nurses;

The uncontrollable input was Number of babies at risk. This input was included because

it was important for monitoring the survival rate of babies at risk.

The output set incorporated both activity levels and quality measures. The output set was

classified into three categories:

1. Outputs related to activity levels (these were exogenously fixed):

•  Total number of birth episodes performed in the DHA;

•  Number of Deliveries to mothers resident in the DHA;

•  Number of special care consultant episodes;

•  Number of intensive care consultant episodes;

•  Number of abortions.
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2. Outputs related to service quality:

•  Number of very satisfied mothers;

•  Number of satisfied mothers.

3. Output related to Quality of medical outcome:

•  Number of babies at risk surviving.

Conventional DEA model allows complete flexibility to the weights assigned to the

inputs and outputs. However, this freedom of choice of weights was found unacceptable

in this case because of the presence of output quality measures in the model. Therefore to

incorporate information on relative importance of outputs and inputs, additional

constraints were added to the original DEA model. Four alternative preference structures

over weights on the input-output variables were applied. The structures in tabular form

have been reproduced here:

Constraint Set Constraints

I No weight constraints imposed

II

DHAin  episodesDelivery Survivals

AbortionsSurvivals

mothersResident   toDeliveriesSurvivals

Survivals

µµ
µµ
µµ

µ

≥
≥
≥

=Riskv

III

SatisfiedVery Survivals

mothersResident   toDeliveriesSatisfied

SatisfiedsatisfiedVery 

Survivals

25.1

5.1

5.1

µµ
µµ

µµ
µ

≥
≥

≥
=Riskv

IV

DHAin  episodesDelivery Satisfied

SatisfiedVery Survivals

mothersResident   toDeliveriesSatisfied

SatisfiedsatisfiedVery 

Survivals

5

100

5

5

µµ
µµ

µµ
µµ

µ

≥

≥
≥

≥
=Riskv

The first set allowed complete freedom to the input-output weights. The first constraint in

the second set required that babies at risk (input) have the same weight as number of
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survivals (output). The logic behind equating the two weights was that those two factors

jointly defined the survival rate of babies at risk, which was an important quality measure

of medical outcome. The other constraints in set II were of the ordinal type and simply

ensured that the weight on the number of survivals was at least equal to that on the other

outputs. In sets III and IV, the preference information was further restricted to reflect the

strength of the preferences. In both cases, the measures of quality (of both service and

medical outcomes) were given more importance than the measures of outcome levels and

amongst quality measures, the outcome quality was given a stronger emphasis than

service quality. The difference between sets III and IV was that set IV represented a

situation where strong information on preferences was available. The information on

preferences and their strengths was gathered from expert opinion.

2.4.3.9  DEA and Primary Care Physician Report Cards: Deriving Preferred

 Practice Cones from Managed Care Service Concepts and Operating

 Strategies – Chilingerian, J.A. and H.D. Sherman (1997)

Chilingerian and Sherman (1997) used the assurance region model to spot inefficiencies

in the practice patterns of primary care physicians (PCPs). The primary inputs were the

number of primary care visits, number of medical/surgery visits, number of referrals to

sub-specialists and the number of ambulatory surgery visits. Tradeoffs existed amongst

these inputs. For example, for many patients, the office visits and ambulatory surgeries

were substitutes for expensive hospitalizations. The preferred practice pattern for the

physicians according to the director of the health maintenance organization (HMO) had

two dimensions – financial and clinical. The financial dimension required the PCPs to

operate within their budgets and the clinical dimension required them to use fewer than

average hospital days and referrals, and provide neither too few, nor too many office

visits. The average values of all the inputs were determined by analyzing one year of

utilization data. The AR bounds (bounds on marginal rates of substitutions of the inputs)

were determined by running the unbounded DEA model for the data. The ratios of input

multipliers for PCPs who were on the efficient frontier in the unbounded run and satisfied

certain conditions specified by the HMO director were used to set the bounds. Satisfying
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the HMO director's conditions implied operating within the budget, below the mean

medical surgical days and mean referral rates, and at or above mean primary care visits.

Although a standard CCR model produces a proportional reduction of inputs, the purpose

of the cone ratio model was to force more than a proportional reduction in hospital days

to align the physician practice styles with the preferences of the HMO director. Large

deviations from the unbounded to the bounded models helped the medical director to

identify trouble spots in the primary care physicians who were practicing outside the

preferred practice cone.

2.4.3.10 Computing DEA/AR Efficiency and Profit Ratio Measures with an

   Illustrative Bank Application – Thompson et al. (1996c)

Thompson et al. (1996c) solved the AR-DEA model for 48 banks for the years 1980 –

1990. The inputs and outputs included in the analysis were are follows:

Outputs

Y1 – Total loans including commercial/industrial, installment, and real estate loans.

Y2 – Total non-interest income.

Inputs

X1 – Total labor in terms of number of employees

X2 – Total physical capital in terms of book value of bank premises, furniture, and

equipment.

X3 – Total purchased funds including federal funds purchased, large (> $100k)

certificates of deposits (CDs), foreign deposits, and other liabilities for borrowed money.

X4 – Total number of branches, including main office.

X5 – Total deposits including demand deposits, time and savings deposits, and small CDs.

The information that was used to determine the AR bounds is summarized in the

following table:
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Factor Factor Multiplier Values used in CR – AR
y1 u1 Interest rate on loans expressed as total interest income

divided by total loans.
y2 u2 Both upper and lower bound equal 1, because a dollar

of non-interest income is worth a dollar
x1 v1 Price of labor expressed as total salary plus employee

benefits divided by total number of employees
x2 v2 Price of capital in user cost terms (cost of office space

replacement).
x3 v3 Interest rate on purchased funds
x4 v4 Same as for x2

x5 v5 Interest rate paid on deposits
Table 2.1 Information used to determine AR bounds in Thompson et al. (1996c)

Due to the application of the ARs, the number of efficient DMUs reduced significantly.

In fact, the AR eliminated 90% of the extreme-efficient DMUs.

2.5 INTRODUCTION TO CONCEPTS OF FUZZY SET THEORY,

FUZZY NUMBERS AND FUZZY LINEAR PROGRAMMING

This section provides an overview of the fuzzy mathematical programming approach,

which has been used in this research. The following concepts are important for

understanding the fuzzy mathematical programming approach.

2.5.1 Fuzzy Sets

The concept of fuzzy sets was first introduced by Zadeh (1965) to deal with the issue of

uncertainty in systems modeling. Zadeh defined fuzzy sets as sets with boundaries that

are not precise. "The membership in a fuzzy set is not a matter of affirmation or denial,

but rather a matter of degree." The concept of fuzzy set theory challenged conventional

two-valued logic as follows:

When A is a fuzzy set and x is a relevant object, the proposition "x is a member of A" is

not necessarily either true or false, as required by two-valued logic, but it may be true

only to some degree - the degree to which x is actually a member of A.
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The degrees of membership in fuzzy sets are most commonly expressed by numbers in

the closed unit interval [0,1]. Thus fuzzy sets express gradual transitions from

membership (membership value of 1) to non-membership (membership value of 0) and

vice versa.

Suppose X is a space of positive real values associated with a variable and x is a generic

element of X. Mathematically, a fuzzy set A in X is defined as the set of ordered pairs:

A = {(x, µA(x)) | x∈ X},

where µA: X      M is the membership function and M is the membership space. M is

usually assumed to vary in the interval [0,1].

2.5.2 Membership Functions

A membership function is a function which assigns to each element x of X a number,

µA(x), in the closed unit interval [0,1] that characterizes the degree of membership of x in

A. The closer the value of µA(x) is to one, the greater the membership of x in A. Thus, a

fuzzy set A can be defined precisely by associating with each element x, a number

between 0 and 1, which represents its grade of membership in A. The membership

function of a fuzzy set A can also be represented as A(x).

2.5.3 αααα-cut and Strong αααα-cut (Klir and Yuan (1995))

Given a fuzzy set A defined on X and any number α ∈  [0,1], the α -cut of the fuzzy set A

is the crisp set αA that contains all the elements of the universal set X whose membership

grades in A are greater than or equal to the specified value of α.

Mathematically: })(|{ αα ≥= xAxA

On the other hand, the strong α-cut of a fuzzy set A is the crisp set α+A that contains all

the elements of the universal set X whose membership grades in A are greater than the

specified value of α.

Mathematically: })(|{ αα >=+ xAxA
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2.5.3.1  Special Cases of αααα-cuts:

1-cut: The 1-cut of a fuzzy set A is the crisp set which contains all elements of X whose

membership grades in A are equal to 1. The 1-cut is often called the core of A.

Mathematically: }1)(|{1 == xAxA .

Support: The support of a fuzzy set A within a universal set X is the crisp set that

contains all the elements of X that have nonzero membership grades in A. Clearly the

support of A is exactly the same as the strong α-cut of A for α=0.

2.5.4 Intersection of Fuzzy Sets

The intersection of fuzzy set A and fuzzy set B is the largest fuzzy set contained in both

A and B. Such a set is denoted A ∩ B. The membership function of A ∩ B, for all x ∈  X,

can be given by:

)()(                  );())(),(min()( xBxAifxAxBxAxBA ≤==∩

     )()(                );())(),(min( xBxAifxBxBxA ≥==

2.5.5 Fuzzy Numbers

Fuzzy sets that are defined on the set R of real numbers are called fuzzy numbers (Klir

and Yuan (1995)). Membership functions of these sets have a quantitative meaning and

are represented as:

A: R → [0,1]

The membership functions of fuzzy numbers tend to capture the intuitive conception of

approximate numbers i.e. "numbers close to a given real number." Therefore, they are

useful for characterizing states of fuzzy variables.

To qualify as a fuzzy number, a fuzzy set A on R must possess at least the following

three properties:

1. A must be a normal fuzzy set as defined in section 2.5.1;

2. αA must be a closed interval for every α ∈  (0,1];
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3. The support of A, 0+A, must be bounded.

The most commonly used shapes for fuzzy numbers are the triangular and trapezoidal.

The triangular functions express the proposition "close to a real number r." The

trapezoidal membership function represents a fuzzy interval. Graphically the triangular

and trapezoidal membership functions are represented as follows:

     1

 R(x)

R(x)=α

      LαR RαR

     0   x

  Figure 2.5  Triangular Fuzzy Number R    Figure 2.6  Crisp Number r
            "close to crisp number r"

   Figure 2.7  Fuzzy Interval - r - s    Figure 2.8  Crisp Interval r - s

2.5.5.1  αααα-Cuts of Fuzzy Numbers

The α-cut of a fuzzy number is a closed interval and is defined completely by specifying

its ends. The ends of an α-cut are points of intersection of the line "membership degree =

α" and the rightmost and leftmost lines in the graphical representation of the membership

function of the fuzzy number. Refer to figure 2.5 where the α-cut of the fuzzy number R

r
r

r + pr - q

r rs + pr-q ss
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approximating the real number r is the crisp set (marked by sloping lines) containing x

values between LαR and RαR. LαR is the left end of the α-cut given by the intersection of

the line R(x) = α and the line x = r - q + qR(x), representing the change in the

membership function between r - q and r. Similarly the right-end of the α-cut, RαR, is the

intersection of the line R(x) = α and the line x = r + p - pR(x). Therefore:
αR = [LαR , RαR]

     = [r - q + αq, r + p - αp]

The 1-cut of R will be:
1R = [r, r]

The support R will be:
0+R = [r - q, r + p]

Note that the 1-cut of the fuzzy number contains only its most desirable element (r),

while the support contains all elements belonging to the fuzzy number. Obviously, the

ends of the support are the least desirable elements of the fuzzy number. This concept

will be utilized later in the discussion in Chapter 3.

2.5.5.2  Arithmetic Operations on Fuzzy Numbers

Fuzzy arithmetic is based on two properties of fuzzy numbers (Klir and Yuan (1995)):

Each fuzzy number can fully and uniquely be represented by its α- cuts and;

All α-cuts (α ∈  [0,1]) of each fuzzy number are closed intervals of real numbers.

Arithmetic operations on fuzzy numbers are therefore defined in terms of arithmetic

operations on their α-cuts i.e. arithmetic operations on closed intervals.

Let fuzzy numbers A and B be represented in terms of their α-cuts as:
αA = [a, b]
αB = [c, d]

In general, if  * represents an arithmetic operation between two fuzzy numbers, then we

define a fuzzy set A*B on R by defining its α-cut α(A*B) as
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α(A*B) = αA * αB

for any α ∈  (0,1].

Since α(A*B) is a closed interval for each α ∈  (0,1] and A, B are fuzzy numbers, A*B is

also a fuzzy number.

In terms of α-cuts, the four arithmetic operations on the fuzzy numbers A & B would

then be defined as follows:

Addition:
α(A + B) = αA + αB

 = [a, b] + [c, d]

 = [a + c, b + d]

Subtraction:
α(A - B) = αA - αB

  = [a, b] - [c, d]

  = [a - c, b - d]

Multiplication:
α(A*B) = αA * αB

 = [a, b]*[c, d]

 = [min(ad, ac, bd, bc), max(ad, ac, bd, bc)]

Division:
α(A/B) = αA / αB

 = [a, b]/[c, d]

 = [min(a/d, a/c, b/d, b/c), max(a/d, a/c, b/d, b/c)]

c, d ≠0

2.5.5.3  Lattice of Fuzzy Numbers

Klir and Yuan (1995) define the MIN and MAX operations on fuzzy numbers A & B as

follows:

MIN (A, B)(z) = 
),min(

sup
yxz=

min [A(x),B(y)]

MAX (A, B)(z) = 
),max(

sup
yxz=

min [A(x),B(y)]
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for all z ε R

2.5.5.4  Partial Ordering of Fuzzy Numbers

Klir and Yuan (1995) define the partial ordering between those two numbers as

A ≤ B iff αA ≤ αB for all α ∈  (0,1].

A ≥  B iff αA ≥  αB for all α ∈  (0,1],

where the partial ordering of closed intervals is defined in the following way:

[a1, a2]≤[b1, b2] iff 2211  and baba ≤≤ ,

[a1, a2] ≥ [b1, b2] iff 2211 baba ≥≥  and ,

2.5.5.5  Fuzzy Relations between Real Numbers and Fuzzy Numbers

While comparing a real number with a fuzzy number, we cannot say, like in the crisp

case, that one is strictly greater than the other. A real number can be greater (or smaller)

than a fuzzy number to only a certain degree. In this research, we define this degree in the

following way:

The fuzzy relation Bax ≤~  (where B is a fuzzy number and ax is a real number) will be

defined in the following way:

ax satisfies Bax ≤~ to a degree equal to λ iff  λ = sup {α: ax≤  RαB}.

Similarly, the fuzzy relation Cax ≥~  (C is a fuzzy number) will be defined in the

following way:

ax satisfies Cax ≥~ to a degree equal to λ iff λ = sup {α: ax≥ LαC}.

The following statements follow from the above definitions:

1. Bax ≤~ is satisfied to a degree greater than or equal to λ if ax ≤  RλB.

2. Cax ≥~ is satisfied to a degree greater than or equal to λ if ax ≥  LλC.

2.5.6 Fuzzy Decision-making

According to Zimmerman (1996) a decision is characterized by:



74

•  A set of decision alternatives (the decision space). The decision space can be

described by enumeration or be defined by a number of constraints.

•  A set of states of nature (the state space);

•  A relation assigning to each pair of a decision and state a result;

•  A utility function or objective function that orders the decision space via the one-to-

one relationship of results to decision alternatives.

Bellman and Zadeh (1970) suggest a model for decision making in a fuzzy environment.

They consider a situation of decision making in which the objective function as well as

the constraint(s) are fuzzy. The fuzzy objective function and the fuzzy constraints are

both characterized by their membership functions. Since we want to satisfy the objective

function as well as the constraints, a decision in a fuzzy environment is defined as the

selection of activities that simultaneously satisfy the objective function "and" the

constraints. In other words, decision making in a fuzzy environment seeks a compromise

between satisfying the objective function and satisfying the constraints.

Assuming that the constraints are non-interactive (independent), the logical "and"

corresponds to intersection. Thus a fuzzy decision can be viewed as the intersection of

fuzzy constraints and fuzzy objective function. We see that the relationship between

objective functions and constraints is fully symmetric because both can be represented

using membership functions. The relationship would have been unsymmetrical if one of

them was not expressed as a membership function.

A formal definition of a decision in a fuzzy environment stated by Bellman and Zadeh

(1970) is as follows:

Assume that we are given a fuzzy goal8 G
~

and a fuzzy constraint C
~

in a space of

alternatives X. Then G
~

and C
~

combine to form a decision D
~

, which is a fuzzy set resulting

from intersection of G
~

and C
~

. In symbols, D
~

 = ∩G
~

C
~

 and correspondingly,

D(x) = min {G(x), C(x)}.

                                               
8 A Goal is a broader notion than an Objective Function
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More generally, suppose that we have n goals nGG
~

,...,
~

1 and m constraints mCC
~

,...
~

1 . Then

the resultant decision is the intersection of the given goals nGG
~

,...,
~

1 and the given

constraints mCC
~

,...
~

1 . That is,

mn CCCGGGD
~

...
~~~

...
~~~

2121 ∩∩∩∩∩∩∩=

and correspondingly.

))(),...,(),(),(),...,(),(min()( 2121 xCxCxCxGxGxGxD mn=

          = min {Gi(x), Cj(x)}

          = min {Ai (x)}

Where Ai (x) is a generalized representation for the membership functions of goals and

constraints.

According to Zimmerman (1996), the above definition implies essentially three

assumptions:

1. The "and" connecting the goals and the constraints in the model corresponds to the

"logical and".

2. The logical "and" corresponds to the set-theoretic intersection.

3. The intersection of fuzzy sets is defined by the "min"-operator.

Bellman and Zadeh (1970) indicated that the min-interpretation of the intersection might

have to be modified depending upon the context. Therefore, they stated the following

broad definition of the concept of decision: "Decision = Confluence of Goals and

Constraints."

2.5.7 Fuzzy Linear Programming

Linear programming models are special kinds of decision models where the decision

space is defined by linear constraints and the "goal" is defined by a linear objective

function.
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A typical linear programming model (Bazaraa et al. (1990)) is expressed as follows: Find

x which:

nmmn

T

RARbRxc

x

bAx

xcxf

x,, ,with 

0               

 subject to

)( maximizes

∈∈∈

≥
≤

=

(2.21)

where xcxf T=)(  defines the objective function, bAx ≤  the constraints, and 0≥x , the

decision variables. c= (c1,c2,….,cn) is known as the revenue coefficient vector, x =

(x1,x2,….,xn) as the vector of decision variables, b = (b1,b2,…,bm) as the right-hand-side

(resource) vector, and A = [aij] as the n x m constraint matrix. The aij elements of A are

called technological coefficients.

The above classical model makes the following assumptions:

•  All the coefficients A, b, and c are crisp numbers,

•  ≤  is meant in a crisp sense,

•  "Maximize" is a strict imperative.

If the classical linear program in (2.21) is used to model decisions in a fuzzy

environment, Zimmerman (1996) suggests quite a number of possible modifications to it.

Firstly, the decision-maker might not want to actually maximize or minimize the

objective function. He/she might just be interested in "improving the present cost

situation." Therefore, he/she might end up specifying some aspiration levels for the

objective function that may not be definable crisply.

Secondly, the constraints might be vague in one of the following ways:

•  The constraints may represent aspiration levels or sensory requirements that cannot

adequately be approximated by a crisp constraint. The ≤  sign may not be meant in

the strictly mathematical sense and smaller violations might well be acceptable.

•  The coefficients of the vectors b or c or of the matrix A can have fuzzy character

either because they are fuzzy in nature or because the perception of them is fuzzy.
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Finally, the decision-maker might attach different degrees of importance to violations of

different constraints. As a result, the role of the constraints in fuzzy linear programming

can be different from that in classical linear programming, where the violation of any

single constraint by any amount renders the solution infeasible.

2.5.7.1  Types of Fuzzy Linear Programming Models

In contrast to classical linear programming, "fuzzy linear programming" is not a uniquely

defined type of model and many variations are possible, depending on the assumptions or

features of the real situation being modeled. In this thesis, we use two types of fuzzy LP

models:

1. Zimmerman’s (1996) basic fuzzy LP models which can be either symmetric or

unsymmetrical and

2. Fuzzy models with fuzzy coefficients of the matrix A.

Depending upon whether the objective function is crisp or fuzzy, Zimmerman (1996)

classifies his basic fuzzy LPs into the following two types:

•  Symmetric Fuzzy LP where both the objective function and the constraints are fuzzy.

•  Unsymmetrical Fuzzy LP where the constraints are fuzzy but the objective function is

crisp.

2.5.7.1.1 Symmetric Fuzzy LP (Zimmerman (1996))

In this model, it is assumed that the decision maker can establish an aspiration level, z,

for the value of the objective function and that each of the constraints is modeled as a

fuzzy set. The fuzzy LP then becomes:

Find x such that

0 

~
 z~ 

≥
≤
≥

x

bAx

xcT

(2.21)
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Here the relation ≤~ 9denotes the fuzzified version of ≤ and has the linguistic

interpretation "the real number on the LHS is essentially smaller than or equal to the real

number on the RHS." The relation ≥~ 10denotes the fuzzified version of ≥ and has the

linguistic interpretation "the real number on the LHS is essentially greater than or equal

to the real number on the RHS". Model (2.22) is fully symmetric with respect to objective

function and constraints. This can be made more obvious by substituting

d
b

-z
B

A

c
=








=







 −
 and . After making these substitutions, model (2.22) becomes:

Find x such that

0 

~

≥
≤

x

dBx
(2.23)

Each of the (m+1) rows of model (2.23) shall now be represented by the fuzzy set µi(x).

µi(x) can be interpreted as the degree to which x fulfills (satisfies) the fuzzy inequality

ii dxB ≤~ (where Bi denotes the ith row of B).

Zimmerman assumes µi(x) to take a value 0 if the constraints (or the objective function)

are strongly violated and a value 1 if they are very well satisfied i.e. satisfied in the crisp

sense. The values between 0 and 1 represent the “in between” satisfaction.








+>
+≤<∈

≤
=

iii

iiii

ii

i

pdxB

pdxBd

dxB

x

 if           0

 if   ]1,0[

 if            1

)(µ (2.24)

where pi are subjectively chosen constants of admissible violations of the constraints and

the objective function. Zimmerman (1996) assumes that the membership function of the

fuzzy set corresponding to constraint (or objective function) i increases linearly over the

"tolerance interval" [di, di + pi] and is given by:

                                               
9&6 These fuzzy relations are different from those defined in Section 2.5.5.5. The relations in 2.5.5.5
compare real numbers with fuzzy numbers whereas the relations in (2.21) compare two real numbers. We
use the same notations for both types of relations but their definitions are clearly different.



79











+>

+≤<
−

≤

=

iii

iiii
i

ii

ii

i

pdxB

pdxBd
p

dxB

dxB

x

 if                   0

 if   -1

 if                   1

)(µ (2.25)

The membership function of the fuzzy set "decision" of model (2.23) is equal to the

intersection of the fuzzy sets µi and is given by.

D (x) = I
1

1

+

=

m

i
iµ = min {µi(x)}            (2.26)

Since the decision-maker is interested not in a fuzzy set but in a crisp "optimal" solution,

Zimmerman (1996) suggests finding the "maximizing solution" to equation (2.26). The

maximizing solution to (2.26) would be the solution to the following problem:

 Max D(x) = Max min {µi(x)}                                   (2.27)

Replacing D(x) by a new variable λ, we arrive at the following aggregate model:

0                  

                1                  

such that 

 maximize

≥
≤

+≤+

x

pdxBp iiii

λ
λ

λ

(2.28)

The aggregate model (2.28) is a problem of finding a point (say x0), which satisfies all the

constraints and the goal (objective function) with the maximum degree. The point x0 is

the maximizing solution of model (2.22).

2.5.7.1.2 Unsymmetrical Fuzzy LP (Fuzzy LP with Crisp Objective Function)

If the objective function HAS to be either maximized or minimized, it is considered crisp.

A model, in which the constraints are fuzzy and the objective function is crisp, is no

longer symmetric because the constraints and the objective function play different roles

(Zimmerman (1996)). The former define the decision space and the latter induces an

order of decision alternatives just like in classical LP models. Therefore, the approach

used for arriving at the solution in the symmetric case is not applicable here. To arrive at
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a solution in unsymmetrical models, we need to somehow aggregate the crisp objective

function with fuzzy constraints. For that purpose, Zimmerman (1996) proposes

determining an extremum of the crisp function over a fuzzy domain. To determine the

extremum of the objective function, we use the notion of "maximizing set" introduced by

Zadeh (1972). After the maximizing set for the objective function is determined, the

model becomes symmetric and can be solved like the symmetric case by determining a

"maximizing solution." Let us now digress a little and understand the concepts of

extremum of fuzzy functions and maximizing sets.

Traditionally, the extremum (maximum or minimum) of a crisp function f over a domain

D is attained at the same point x0 at which the function achieves an optimal value when it

is the objective function of a decision model. The point x0 in the latter case is called the

"optimal decision." Thus, in classical theory, there is an almost unique relationship

between the extremum of a function and the notion of optimal decision of the decision

model. However, in case of fuzzy models, this unique relationship does not exist

(Zimmerman (1996)). According to Bellman and Zadeh (1970, p.150), "In decision

models, the optimal decision is often considered to be the crisp set, Dm, that contains

those elements of the fuzzy set decision attaining the maximum degree of membership."

When considering functions in general (not as part of a decision model), the concept of a

"maximizing set" is equivalent to the notion of an optimal decision defined above.

Zadeh (1972) provides the following definition for the maximizing set:

Let f be a real-valued function in X. Also, let f be bounded from below by inf (f) and from

above by sup (f). The fuzzy set XxxMxM ∈= )},(,{(
~

where

)( inf)( sup

)( inf)(
)(

ff

fxf
xM

−
−= (2.29)

is called the maximizing set.

where

•  sup stands for supremum (upper bound or maximum);

•  inf stands for infrenum (lower bound or minimum)
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Let us now return to our unsymmetrical fuzzy LP. Using the concept of maximizing set,

Werners (1984) provides the following definition for the membership function of the goal

(objective function) given a fuzzy solution space:

Let f: X → R1 be the objective function, R
~

= fuzzy feasible region, S( R
~

) = support of R
~

,

and R1=1-cut of R
~

. Then the membership function of the goal (objective function) given

solution space R
~

is defined as















≤

<<
−

−

≤

=

)( sup if                                1

 sup)( sup if           
 sup sup

 sup)(

 sup)( if                               0

)(

)R
~

S(

)
~

(R
)R

~
S(

1

1

1

1

xff

fxff
ff

fxf

fxf

xG
RS

R

R

R

 (2.30)

where

•  f
R

 sup
1

represents the supremum of f over R1 (1-cut of the fuzzy region);

•  f
RS

 sup
)

~
(

represents the supremum of f over S( R
~

) (the support of the fuzzy region).

S ( R
~

) includes all possible values in a fuzzy number (or set) while R1 includes only those

values which belong to the set to a degree of 1. Therefore, S ( R
~

) encompasses the largest

possible area of the fuzzy constraint space whereas R1 encompasses the smallest area

possible. This implies that S ( R
~

) represents constraints when they are most relaxed and

R1 represents the constraints when they are most restrictive. Obviously, if the objective

function is of the maximization type, then its value over S ( R
~

) is the highest value

possible (upper bound) and its value over R1 is the lowest value possible (lower bound).

This explanation makes it clear why Werners' (1984) definition of maximizing set in

(2.30) is equivalent to Zadeh's (1972) definition of it in (2.29).

Zimmerman (1996), leverages Werners' (1984) definition of maximizing set for

determining the solution to the unsymmetrical fuzzy LP. To illustrate Zimmerman's

(1996) approach, let us consider an unsymmetrical fuzzy LP model having a crisp

objective function, some crisp constraints and some fuzzy constraints.
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R

x

bDx

bAx

xcxf T

~

0

'

~

                that     such

)(                  maximize









≥
≤
≤

=

             (2.31)

The fuzzy sets corresponding to the fuzzy constraints will be again:











+>

+≤<
−

−

≤

=

iii

iiii
i

ii

ii

i

pbxA

pbxAb
p

bxB

bxA

x

 if                      0

 if   1

 if                      1

)(µ (2.32)

µi(x) is the degree to which x satisfies the ith (i=1,…, m) constraint. The intersection of

these fuzzy sets I
m

i
i

1=

µ , is a fuzzy feasible set.

The membership function of the objective function can be determined by solving the

following two crisp LPs:

0                                

'                                

                  such that 

)(                  maximize

≥
≤
≤

=

x

bDx

bAx

xcxf T

                       (2.33)

yielding 1)(sup
1

fxcf opt
T

R

== ; and

0                                 

'                                 

                  such that 

)(                  maximize

≥
≤

+≤
=

x

bDx

pbAx

xcxf T

        (2.34)

yielding 0
)

~
(

)(sup fxcf opt
T

RS

==

The membership function of the objective function using Werners' (1984) definition

(2.30) is:
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









≤

<<
−
−

≤

=

1

01
10

1

0

   if                     0

  if         

   if                     1

)(

fxc

fxcf
ff

fxc

xcf

xG

T

T
T

T

                       (2.35)

Then the maximizing solution to the problem involves finding x such that

I I
m

i
i xG

1

)]([(
=

µ

reaches the maximum value; that is, a problem of finding a point which satisfies the

constraints and goal with the maximum degree. Now (2.31) becomes the following

classical optimization problem:

0,                                            

1                                                 

'                                             

                                      

)(             such that 

                            maximize

110

≥
≤
≤

+≤+
−≤−−

x

bDx

pbAxp 

fxcff T

λ
λ

λ
λ
λ

 (2.36)

2.6 FUZZY DEA

Sengupta (1992) was the first to explore the use of fuzzy set theory in DEA. He used the

concepts of fuzzy linear programming to fuzzify the objective function and the

constraints of a CCR model under conditions of imprecise data. Following Sengupta’s

(1992) work, there has been considerable research in the fuzzy DEA field. Triantis and

Girod (1998) modified the radial DEA model and the FDH model to incorporate

imprecision in measurement of data (i.e. values of inputs and outputs). Triantis (1999)

fuzzified the non-radial DEA models to incorporate imprecise data. Sheth (1999)

developed a fuzzy GoDEA model, which uses goal programming to solve the DEA

problem in a fuzzy environment.

During the review of fuzzy Linear Programming (LP), it was mentioned that LP's can be

fuzzified in two ways. One approach is to represent the fuzzy objective function and each
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of the fuzzy constraints by fuzzy sets. The other approach involves replacing the

coefficients A, b and c of the LP by fuzzy sets. To deal with the issue of imprecise data in

DEA, Sengupta (1992) uses the former approach while Triantis and Girod (1998) use the

latter approach. We will now review the fuzzy DEA model proposed by Sengupta (1992)

and the fuzzy radial model with imprecise production plans proposed by Triantis and

Girod (1998). The review of the fuzzy FDH model (Triantis and Girod (1998)), the fuzzy

non-radial model (Triantis 1999) and the fuzzy GoDEA model (Sheth 1999) is beyond

the scope of this document.

2.6.1 Sengupta’s (1992) Fuzzy DEA model

Sengupta (1992) proposes two approaches for solving DEA models, which have input-

output data subject to inadequate knowledge. One is the stochastic approach i.e. the one

that uses a probabilistic efficiency frontier. The other is the fuzzy systems approach. If

one assumes that the imprecise data is generated by a stochastic generating mechanism, it

seems logical to use stochastic DEA models with a probabilistic efficiency frontier.

However there are some drawbacks associated with using probabilistic efficiency

frontier:

1. One has to assume a specific error distribution e.g. normal, exponential, etc. to

compute specific results and this assumption may not be realistic because on a priori

basis there is very little empirical evidence to choose one type of distribution. In

addition, the normal distribution cannot be used due to non-negativity restrictions on

the input-output space.

2. The lack of robustness of the stochastic efficiency frontier and the probabilistic

feasibility of the inequality constraints of the DEA model, cause problems.

3. Stochastic DEA models always emphasize point solutions whereas from the point of

view of carrying out a data sensitivity analysis, one would be more interested in DEA

models, which give interval solutions.

4. Because the sample sizes in DEA are small, it becomes difficult to use the stochastic

models.
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Sengupta (1992) proposes using the fuzzy mathematical programming approach in DEA

problems with imprecise data because of the above disadvantages associated with

stochastic methods and the following advantages of the fuzzy systems approach:

1. Fuzzy set theory allows us to apply the "principle of incompatibility," which has the

ability to arrive at decisions based on qualitative data.

2. Fuzzy set theory lends itself to be incorporated in LP models. Since DEA involves

solving a series of LP models, it is more robust to apply the methods of fuzzy

mathematical programming and determine an optimal solution under conditions of

inadequate knowledge.

3. By using suitable membership functions, the stochastic transformations of the DEA

model may be given a fuzzy programming interpretation, which may be more robust

in suitable cases.

Sengupta (1992) proposes two types of membership functions for the fuzzy mathematical

programming model - Linear Membership function and Non-linear Membership function.

In this review we will only look at the model with linear membership function. For the

model with nonlinear membership functions, the reader is referred to Sengupta (1992). In

the linear case, the DEA model is written as:

0

        ,~'

s.t.

' 
~

min 0

≥

∈≥

β
β

β

njj IjyX

X

 (2.37)

where Xj' is the vector of inputs for DMU j and yj is the output of DMU j. The notation ~

indicates fuzziness in both the objective function and the n constraints. By making the

constraints fuzzy, we accept tolerances in their realization. Sengupta (1992) assumes that

it is possible to specify an aspiration level (g0) for the efficiency score. He also assumes

that it is possible to specify maximal levels of tolerance violations for the constraints (dj, j

∈  In ) and the efficiency score (d0). Using the information on aspiration level, equation

(2.37) can be rewritten as:
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0

        ,~'

s.t.

~' 00

≥

∈≥

≤

β
β

β

njj IjyX

gX

(2.38)

Using the information on maximal levels of tolerance violations, the membership

functions of the fuzzy sets corresponding to all the constraints can be written as:

n
j

jj
j Ij

d

Xy
∈

−
−=         ,

'
1)(

β
βµ (2.39)

Similarly the membership function for the fuzzy objective function will be given by:

0

00'1)(
d

gX −−= ββµ (2.40)

The decision problem (2.37) is then to find a solution vector β, which maximizes the

membership function of the decision, which is given by:

m

0
0

0
1

R        )],([min)()()( ∈===
=

==

ββµβµβµβµλ j

n

j

n

j
j

n

j
j II I

The solution can be reformulated as an LP model:

0          1,0       

,        ,'       

'    s.t.

 max

0000

≥≤≤

∈−+≤
+≤+

βλ
βλ

βλ
λ

njjjj IjyXdd

dgXd
(2.41)

Sengupta (1992) proposes to parametrically analyze the sensitivity of the optimal β* =

β* (d0, d1, …, dn) to tolerance variations. It is clear that there will always exist an optimal

solution β* (d) for some tolerance vector d.

2.6.2 Triantis and Girod (1998) Radial DEA Models with Fuzzy

Production Plans
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Triantis and Girod (1998) proposed an approach that uses traditional data envelopment

analysis framework and then merges concepts developed in fuzzy parametric

programming by Carlsson and Korhonen (1986). Traditional technical efficiency studies

assume that production plans (input output data) are known precisely. This may not

always be the case. The approach proposed in this paper considers production plans that

are not crisp but fuzzy. Since the input-output data values appear as coefficients in the

constraints and the objective function (i.e. matrix A and vector c) of the DEA model, the

fuzzy approach proposed in this paper is the one of replacing the coefficients by fuzzy

sets.

The approach presupposes that the decision-maker can define the risk free and impossible

bounds for each fuzzy input and output. Risk-free bounds are the conservative values that

are most realistically attainable in production, whereas impossible bounds are associated

with those values, which represent production scenarios that are the least realistic. The

risk-free and impossible bounds are used for determining the membership functions for

the input and output data. All membership functions are assumed to vary linearly between

the bounds. In addition, all membership functions have a value equal to zero at the

impossible bounds and a value equal to one at the risk-free bounds.

If superscripts 0 and 1 represent impossible and risk-free bounds for input data, then the

membership function associated with the ih fuzzy input (xi,h) for the kth DMU is given by:

},...,2,1{    },...,2,1{           )(
,

1
,

0
,,

0

, NhIi
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xx
x

hihi

hihi

hiX ==
−
−

=µ (2.42)

Further if superscripts 0 and 1 represent risk-free and impossible bounds for output data,

then the membership function associated with the jth output (yj,h) for the hth DMU is given

by: },...,2,1{          },...,2,1{            )( 1
,

0
,

1
,,

, NhJj
yy

yy
y

hjhj

hjhj
hjY ==

−
−

=µ (2.43)
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Figure 2.9 Input Membership Function used by Triantis and Girod (1998)

Figure 2.10 Output Membership Function used by Triantis and Girod (1998)

Both xi,h and yj,h can be expressed in terms of the risk-free and impossible bounds and the

membership functions as follows:

1
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Using these definitions, the original Charnes, Cooper and Rhodes (1978) model can be

modified as follows: Find u and v such that,

xX0 X1
0

µx

µy

yY1Y00

1

1
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The fractional model (2.45) can be easily converted into a linear form (see Charnes and

Cooper (1962)) as follows: Find vectors η and ω such that
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where 1
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From Carlsson and Korhonen (1986), the decision for the above model is reached when

µX = µY = µ = min (µX,µY). The above equation can therefore be rewritten as:
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Finally, the membership function µ (which is the parameter here) is varied at pre-

specified intervals to observe the variations of the efficiency profile. µ = 0 would yield

overly optimistic values of technical efficiency and µ = 1 would yield ultra conservative

values.
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Chapter 3

METHODOLOGY

In Chapter 2, we looked at the various weight restriction DEA models. Two of those

models are more commonly used compared to other models. These models are:

1. The DEA model with absolute weight restrictions (see Dyson and Thanasoulis

(1988), Roll et al. (1991), and Roll and Golany (1993).)

2. The Assurance Region (AR) DEA model (see Thompson et al. (1986), Thompson et

al. (1990).)

In this chapter, we develop fuzzy models for modeling the uncertainty in bound values

for these two types of models. It should be noted that the approach is a general one and

with slight modifications can be easily applied to all types of weight restriction DEA

models discussed in Chapter 2.

This chapter is divided into two sections. In section 3.1, we develop and solve the fuzzy

model for the absolute weight restriction DEA problem and in section 3.2, we develop

and solve the fuzzy model for the AR-DEA problem.

3.1 FUZZY MODEL FOR THE ABSOLUTE WEIGHT

RESTRICTION DEA PROBLEM

The purpose of the absolute weight restriction model is to put upper and lower bounds on

factor weights so that none of the factors are ignored or assigned excessively high

weights. In order to determine appropriate values for the bounds, one has to first run the

unbounded model, identify the anomalies in the results and then calculate the bounds.

Once determined, the bounds are added as upper and lower boundconstraints to the

original DEA (CCR) model to obtain the absolute weight restriction model.

This section is divided into three main sub-sections. The first sub-section is dedicated to

developing and solving the fuzzy model for modeling the uncertainty in the absolute
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weight restriction DEA model. The second sub-section contains a discussion on the

geometric representation of the fuzzy absolute weight bounds and their effect on the

efficiency frontier. The third sub-section provides a roadmap for illustrating the

development and implementation methodology of the fuzzy model. The roadmap is

developed in response to Almond's (1995) criticism that a number of fuzzy approaches

lack implementation roadmaps.

3.1.1 Development and Solution Methodology for the Fuzzy Absolute

Weight Restriction DEA Model

Mathematically, the absolute weight restriction model as developed by Roll, Cook and

Golany (1991) is represented as follows:
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There are N DMUs i.e. j = 1… N; s outputs i.e. r = 1 … s; and m inputs i.e. i = 1 … m.
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 To model the uncertainty of the bound values, we replace the crisp bounds

iirr LBUBLBUB ,,,  by the fuzzy numbers  r
fUB , r

fLB ,  ifUB , i
fLB respectively. The

superscript f signifies a fuzzy number. The resulting fractional fuzzy model is as follows:
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3.1.1.1 Definitions of the Fuzzy Numbers

The fuzzy numbers in (3.2) express the concept "close to the original crisp bounds." To

express such a concept, Yuan and Klir (1995) propose using triangular membership

functions. To completely describe triangular membership functions we need to specify

the following:

•  The most desirable value, which gets a membership grade of 1;

•  Two least desirable values - one on either side of the most desirable value which are

assigned membership grades of 0; and

•  The form of the membership function as it varies between the most desirable and the

least desirable values.

For our model, the most desirable bound values are those specified by the decision-

maker. The least desirable values are determined by using one of two methods proposed

by us later in this section. The membership function is assumed to be linear because

linear membership functions are sufficient in most practical applications and are easy to

use (Kaufmann and Gupta (1988)). Based on this description, the membership functions

of the fuzzy weight bounds can be graphically depicted as:
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       1        1

  r
fUB (x)              r

fLB (x)

( i
fUB (x))            ( i

fLB (x))

 0     'rr pUB −          rUB          rr pUB +      x     0   'rr pLB −           rLB       rr pLB + x

              ( 'ii pUB − )        ( iUB)       ( ii pUB + )       ( 'ii pLB − )        ( iLB )    ( ii pLB + )

Figure 3.1  Proposed  Figure 3.2  Proposed
Membership Function of UB        Membership Function of

                   LB

pr (or pi) and p'r (or p'i) are the differences between the most desirable and the least

desirable bound values.

Referring to equation (3.2), we note that the fuzzy numbers in Figures 3.1 and 3.2 are

right-hand sides of constraints whose left-hand sides are crisp. Therefore, the bounds

have the effect of relaxing the weight restriction constraints when they take the values

11 pUB +  and 'pLB −  and tightening the constraints when they take the values 'pUB −

and pLB + . The value of the objective function of a linear program (or a fractional

program) is optimized (maximized in this case) when the constraints are most relaxed.

Therefore, the membership function (which does not exist yet) of the objective function

of (3.2) will favor the bound values which relax the constraints. On the other hand, the

membership functions of the fuzzy constraints will favor the bounds specified by the

decision-maker. Neither of them will favor the tight bounds. The maximizing solution

(solution which maximizes the desirability of both the objective function and the

constraints – see section 2.5.7.1.1) of the fuzzy model will be a compromising solution

between the relaxed bounds and the specified (most desirable) bounds. This will make the

                                               
11 We have dropped the subscripts r and i which distinguish between the output and input values because
the same discussion applies to both.
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tight bounds redundant. Accordingly, we drop the tight bounds from further analysis by

modifying the membership functions of the fuzzy numbers as follows:

    

1             1

     r
fUB (x)    r

fUB (x)=α               r
fLB (x)

 ( i
fUB (x)) rUB   αrrr ppUB −+   ( i

fLB (x))

                0     rUB         rr pUB +    x         0     'rr pLB −        rLB x

              ( iUB)       ( ii pUB + )              ( 'ii pLB − )      ( iLB )

Figure 3.3  Membership Function of UB Figure 3.4  Membership Function
       of LB

Thus, the least desirable bounds in our model will always be more relaxed compared to

the specified bounds. We propose two methods for determining least desirable bounds

with such a characteristic.

Method I: Use the same procedure as that used for determining the most desirable bounds

but make a different choice in each step of the procedure. Let us use the procedure

proposed by Roll et al. (1991) (described in section 2.4.2.1.1) to illustrate this point. In

step 2 of the procedure, the authors recommend selecting a ratio d: 1 between the upper

and lower bounds and then plugging the value of d in a formula in Step 3 for determining

the bounds. Let’s say that in a particular situation, the decision-makers choose d = 2 to

determine the (most desirable) bounds. We recommend using d =3 to determine the least

desirable bounds. Our justification for labeling the bounds determined using d = 3 as least

desirable is that d=3 is not the first choice of the decision-maker.

Method II: Use the highest and lowest values of optimal multipliers obtained for efficient

DMUs in the unbounded weight matrix as the least desirable upper and lower bounds

respectively. In other words, the least desirable bounds will be bounds, which are just
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permissible enough so as not to affect the efficiency scores of any of the efficient DMUs.

Our justification for calling these bounds as least desirable is that they do not affect the

efficiency scores of the pseudo12 efficient DMUs.

The membership functions can be mathematically represented as:
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where x ∈  R (Figure 3.3) are the values of the bounds










=

<<−+−
>−≤

=

 LBif x  

 LBxpif LB  
p

pLBx

LBxp LB if x                 

  xLB

r

rrr
r

rr

rrr

r
f

                        1

'     
'

'

; '         0

)( (3.5)











=

<<−+−
>−≤

=

 LBif x  

 LBxpif LB  
p

pLBx

LBxp LB if x                 

  xLB

i

iii
i

ii

iii

i
f

                        1

'      
'

'

; '         0

)( (3.6)

Where x ∈  R (Figure 3.4) are the values of the weight bounds.

The α-cut of r
fUB is given by (refer to section 2.5.5.1 for the definition of α-cut of a

fuzzy number)

 r
fUBα = [L

r
fUBα , R r

fUBα ]

 ],[ αrrrr ppUBUB −+=  (3.7)

Graphically, r
fUBα  is represented using hatched lines in Figure (3.3).

                                               
12 These are DMUs which appear efficient because of their good performance on a single output-input ratio.
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Similarly, the α-cut representations of the other fuzzy numbers will be:

],''[ rrrrr
f LBppLBLB αα +−=             (3.8)

],[ αα
iiiii

f ppUBUBUB −+=             (3.9)

],''[ iiiii
f LBppLBLB αα +−=             (3.10)

3.1.1.2 Degrees of Satisfaction of the Constraints

Replacing the RHS of a constraint by a fuzzy number is equivalent to replacing the

constraint by a fuzzy set (Klir and Yuan (1995)). The membership function of this fuzzy

set is called the degree of satisfaction of the fuzzy constraint13. The degree of satisfaction

of a fuzzy constraint can be obtained from the membership function of the fuzzy number

(on its RHS) by replacing the argument (x) in that membership function by the LHS of

the constraint (Klir and Yuan (1995)). For example, the degree of satisfaction of the

constraint r
f

r UBu ≤  can be obtained from the membership function of r
fUB  defined in

(3.3) by replacing the x by ur:
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The right-end of the α-cut of this fuzzy set will be:

R UB
rDα  = UBr+ pr - prα

The right-end of the 1-cut of this fuzzy set will be:

R UB
rD1  = UBr

The right-end of the support will be:

R UB
rD+0  = UBr+ pr

Refer to section 2.5.3.1 for definitions of 1-cut and support.

                                               
13 A constraint whose RHS is a fuzzy number.
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Note that the above definition of the satisfaction of the constraint r
f

r UBu ≤  is

equivalent to the definition of the fuzzy relation “ ≤~ ” comparing a real number with a

fuzzy number introduced in section 2.5.5.5.

On similar lines, the degree of satisfaction of the constraint r
f

r LBu ≥ will be:
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Left-end of the α-cut of the fuzzy set for r
f

r LBu ≥~ will be:

L LB
rDα  = LBr – pr' + pr'α

Left-end of the 1-cut will be: L LB
rD1  = LBr

Left-end of the support will be: L LB
rD+0  = LBr - p'

Note that the definition of the satisfaction of the constraint r
f

r LBu ≥ , coincides with the

definition of the fuzzy relation “ ≥~ ” introduced in section 2.5.5.5.

The degrees of satisfaction of the input weight constraints are defined as:
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The definitions of the 1-cuts and the supports for the input weight constraints will be

similar to those for the output weight constraints.
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The membership functions defined in (3.11) to (3.14) are of fuzzy sets corresponding to

fuzzy constraints on n. The intersection of those fuzzy sets given by k

ms

k
D

22

1

+

=
∩ is a fuzzy

feasible set )
~

(R (Yuan and Klir (1995)).

The 1-cut of R
~

, denoted as R1, consists of 1-cuts of the fuzzy sets corresponding to all

the fuzzy constraints contained in R
~

. Based on the discussion in section 2.5.5.1, the 1-

cuts of the fuzzy sets will contain only the most desirable (specified) bounds (UBr).

The support of R
~

, denoted as S )
~

(R consists of supports of fuzzy sets corresponding to all

the fuzzy constraints contained in R
~

. The supports of the fuzzy sets will contain all

possible bound values enclosed between the least and most desirable bound values ( UBr+

pr).

3.1.1.3 Linear Fuzzy Formulation

Model (3.2) is a fractional programming model and is difficult to solve in its current

form. To make it easier to solve, we convert it into a linear programming model by

•  equating the denominator of the objective function to 1 and adding it as a constraint

(see Charnes et al. (1978)),

•  rearranging the constraints with ratio terms to eliminate the fractions and

•  multiplying the objective function and all the constraints by the transformation factor

1
00 )( −= XvT T  where 0XvT  is the denominator of the objective function (see Charnes

et al. (1962)).

The resulting linear fuzzy formulation is as follows:
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iirr vTuTw 00  and  here == ηµ

Multiplication of both sides of the fuzzy constraints by the positive real number T0 does

not affect the definitions of the fuzzy relations.

3.1.1.4 Conversion to Crisp Linear Formulation

Fuzzy models in which a fuzzy aspiration level is specified for the objective function are

called symmetrical models because one can determine a fuzzy set for both the objective

function and the constraints (Zimmerman (1996)). Symmetrical models are easy to solve

because the membership function of the fuzzy set "decision" is simply the intersection of

the fuzzy sets of the objective function and the constraints. The "maximizing solution"

(see section 2.5.7.1.1) of the decision equation gives the crisp optimal solution to the

model (Zimmerman (1996)).

In model (3.15), there is no basis for determining an aspiration level for the objective

function and therefore it is not possible to represent it as a fuzzy set. Such models in

which the constraints are represented as fuzzy sets but the objective functions remain

crisp are called unsymmetrical fuzzy models. Unsymmetrical fuzzy models can be solved

using the same technique as the symmetric models if the crisp objective function can be

represented as a "maximizing set" (concept proposed by Zadeh (1972)). The maximizing

set is constructed by determining the extremum (upper and lower bounds) of the crisp

function over the fuzzy domain. The reader is referred to section 2.5.7.1.2 for more
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details on the concept of extremum of functions. For model (3.15), we use Werners'

(1984) definition to determine the maximizing set of the objective function. Once the

maximizing set is determined, we proceed in the same way as we would for symmetric

models and determine the crisp "maximizing solution" of the decision equation.

Werners' (1984) definition of "maximizing set" is:

Let f: X → R1 be the objective function, R
~

= fuzzy feasible region, S ( R
~

) = support of

R
~

, and R1=1-cut of R
~

. The membership function of the goal (objective function) given

solution space R
~

is then defined as
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where sup stands for supremum.

Let ff
RS

 sup
)

~
(

0 = and ff
R

 sup
1

1 =

To determine the maximizing set for any objective function using (3.16), we need to

determine two values of the objective function by solving two LPs. The two LPs have the

same set of fuzzy constraints but satisfied to different degrees.

3.1.1.4.1 Determination of f1

f1 is the supremum of f (the objective function) over 1R . Using the definitions of 1-cuts of

the fuzzy sets derived in section 3.1.1.2, 1R  will be given by:
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The supremum of f over this region is:

1opt0
R
~

)( sup
1

fYf T == µ

3.1.1.4.2 Determination of f0

f0 is the supremum of f over )
~

(RS , which is the support of the fuzzy region. Using the

definitions of the supports of the fuzzy sets derived in section 3.1.1.2, )
~

(RS will be given

by:
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The supremum of f over this region is:

0opt0
)R

~
S(

)( sup fYf T == µ

3.1.1.4.3 Membership Function of the Objective Function

Using (3.16), the fuzzy set of optimal values or the membership function of the objective

function will be given by:



103











≤

<<
−

−

≤

=

10

001
10

10

00

   if                           0

    if           

  if                            1

  )(

fY

fYf
ff

fY

Yf

wG

T

T
T

T

µ

µµ
µ

            (3.19)

where w= the set of all factor weights = (µ, η)

f0 is the value of the objective function when the weight bound constraints are the most

relaxed i.e. when they have p added to their upper bounds and p' subtracted from their

lower bounds (see (3.18)).  f1 is the value of the objective function when the weight

bound constraints are the tightest i.e. they have the specified bounds on their RHS (see

(3.17)). Since the objective function is of the maximization type, f0 will be its upper

bound and f1 will be its lower bound. In addition, the upper bound (f0) will be most

desirable (G (w) = 1) and the lower bound (f1) will be least desirable (G (w) = 0). When

the bounds are in-between the most relaxed and the tightest values, the objective function

takes a value ( 0YTµ ) in-between f0 and f1 and the degree of satisfaction with that value is

determined using (3.19). The following figure graphically depicts the variation of the

membership function G (w) between 0 and 1 as the objective function varies between f0

and f1.

   

          1

    G (w)

           0      1f              0f

Figure 3.5 Membership function of the goal

3.1.1.4.4 Equivalent Crisp Formulation
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Now that we have achieved "symmetry" between the constraints and the objective

function, the crisp formulation equivalent to (3.15) is simply a problem of finding the set

of weights, w ∈  2s+2m that give the "maximizing solution" i.e. a solution in which the

constraints and the objective are satisfied to the maximum degree. Mathematically it is a

problem of finding a set of weights so that

λ = )]([
22

1
wGDk

ms

k
∩∩

+

=
(3.20)

reaches its maximum value. Using the min operator to represent intersection, we can say

that the objective of the crisp equivalent model is to

Maximize λ = min )}(),({ wGw
k

D ; k = 1 to 2s + 2m (3.21)
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Thus, the crisp model equivalent of (3.15) is as follows:

ir

i
pT

pLBT

r
pT

pLBT

i
pT

-pUBT

r
pT

-pUBT

ff

fY

jXY

X

i

iii

r

rrr

i

iii

r

rrr

T

TT

 
T

,                                      0,,

1

                     
'

)'(
 

                  
'

)'(
 

)(

)(

                              0

1  

such that 

Max 

0

0

0

0

                                           

0

0

                                    

0

0

10

10

0

∀≥
≤

∀
−−

≤

∀
−−

≤

∀
+

≤

∀
+

≤

−
−≤

∀≤−
=

ληµ
λ

ηλ

µ
λ

ηλ

µλ

µλ

ηµ
η

λ

(3.23)



105

Rearranging the terms in (3.23), we get:
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(3.24)

(3.24) is a quadratic programming model since the weight bound constraints are non-

linear. Since λ is one of the variables in those constraints and we have information about

the bounds on λ, we can use the parametric algorithm from Sakawa (1984) to solve the

model. Solving (3.24) using the parametric algorithm simply means checking the

feasibility of the model for different values of λ (determined by the algorithm) and

choosing the solution corresponding to the maximum feasible value of λ. The parametric

algorithm provides an efficient method for jumping from one λ value to another and

reaching the maximum feasible value in the fastest way. The parametric algorithm is

described below:

1. Set λ=0 and check the feasibility of the problem.

2. If the problem is feasible, go to 3. Otherwise STOP.

3. Set λ=1. Check the feasibility.

4. If the problem is feasible, that is the solution – STOP. Otherwise, go to 5.

5. Set λmax=1, λmin = 0.

6. If  λmax - λmin< ε, STOP, otherwise go to 7.

7. Set λ=(λmax + λmin)/2

8. Check the feasibility for λ.

9. If the problem is infeasible, set λmax=λ and go to 6. Otherwise set λmin=λ and go to 6.
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The solution of the parametric algorithm gives the optimal weight values which when

plugged into the expression 0YTµ  give the efficiency scores of the DMUs. In the next

section we look at how replacing the crisp bounds by fuzzy bounds affects the efficiency

frontier.

3.1.2 Geometric Representation of Fuzzy Bounds and their Effect on the

Efficiency Frontier

Using an example with two inputs and one output, Roll et al. (1991) geometrically

illustrate how crisp absolute weight bounds affect the efficiency frontier. In this section,

we extend that discussion to illustrate how fuzzy absolute weight bounds affect the

efficiency frontier.

We start by repeating the discussion from Roll et al. (1991). Roll et al. (1991) modify the

existing DEA problem by dividing both the inputs by the single output. The CCR model

for a two input-one output problem with the inputs divided by the outputs will be as

follows:

2,1                   

        1        ST

      Min 0

=≤≤

∀≥∑
∑

iubvlb

jXv

Xv

iii

i iji

i ii

(3.25)

To see the effect of the lower bound constraints on the efficiency frontier, Roll et al.

(1991) convert them to the form v1(1/lb1) ≥ 1 and v2(1/lb2) ≥  1. These are the same as

v1(1/lb1) + 0v2 ≥ 1 and 0v1 + v2(1/lb2) ≥  1. Now the lower bound constraints have become

exactly like the main set of constraints v1X1j + v2X2j≥ 1. There is one main constraint for

each DMU j. Therefore we can say that the two constraints introduced by the lower

bounds are equivalent to adding two more DMUs (j+1 and j+2) to the model where X1(j+1)

= 1/lb1 and X2(j+1)=0 and X1(j+2) = 0 and X2(j+2)=1/lb2. Like the other DMUs, these two

DMUs can be represented as points on the efficiency frontier.
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Now let us turn to the upper bound constraints. The upper bound constraints can be

converted to the form v1(1/ub1) + 0v2 ≤ 1 and 0v1 + v2(1/ub2) ≤ 1. These are not

equivalent to the main set of constraints. Thus, the upper bound constraints are not

equivalent to adding additional DMUs to the analysis and therefore cannot be directly

used to modify the frontier. However, Roll et al. (1991) show that using the main set of

constraints ( ∑ ≥
i iji Xv  1 ), for a two input problem, the upper bound on the weight of

one input can be converted into an equivalent lower bound on the weight of the other

input and vice-versa. The formula for converting the upper bound of v1 into an equivalent

lower bound on v2 is as follows:

}/)1{(Max}{ boundLower 211j2 jj XXubv −=

The reason we choose the maximum of the RHS as a lower bound is that the maximum

value is always the most binding as a lower bound.

Once the upper bound on a particular input weight is converted to an equivalent lower

bound, the value of the specified lower bound for that input weight is compared with the

value determined using the upper bound on the other input weight. The maximum of the

two values is then used an effective lower bound on that input weight.

The data set used by Roll et al. (1991) for the single-output two-input example is shown

in Table 3.1.

j 1 2 3 4 5 6

X1j 2 3 4 2 1 5

X2j 3 2 1 2 4 1

Table 3.1 Data set14 used by Roll et al. (1991) for illustrating the Absolute Weight
Restriction DEA Model Geometrically

Roll et al. (1991) use the following absolute weight bound constraints for their example:

                                               
14 All the inputs have been divided by the single output to give input values per unit of

output.
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Before proceeding, we need to convert the upper bounds into equivalent lower bounds.

The upper bound of 0.3 on v1 is equivalent to a lower bound of 0.2 on v2. Since a lower

bound of 0.2 on v2 is more binding than the original lower bound of 0.1, we use 0.2 as the

new lower bound on v2. The upper bound of 0.6 on v2 however does not impose a more

binding lower bound than the existing value of 0.15 on v1. Therefore, we retain 0.15 as

the lower bound on v1. The effective weight bound constraints are:

2.0        ,15.0 21 ≥≥ vv

The above constraints add two points (or DMUs) - (1/0.15,0) and (0,1/0.2) to the frontier.

In Figure 3.6, we join these points to the rest of the frontier using dotted lines. Therefore

the frontier represented by dotted lines is the frontier for the bounded model.
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Figure 3.6 Geometric Representation of Crisp and Fuzzy Absolute Weight Bounds
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Since Roll et al. (1991) do not specify how the weight bound values were determined, we

assume that they were arbitrarily determined and are therefore imprecise. To model this

imprecision, we propose to replace the specified bounds by fuzzy numbers. The fuzzy

numbers will be bounded by the specified values (treated as most desirable) on one end

and least desirable bounds on the other end. Restating the conclusion of our discussion in

section 3.1.1.1, the least desirable bounds will be less binding compared to the specified

bounds.

For this example, we use Method II proposed by us in section 3.1.1.1 to determine the

least desirable bound values. In other words, the least desirable bounds will be bounds,

which are just permissible enough so as not to affect the efficiency scores of any of the

efficient DMUs.

On running the unbounded model, we observe that:

•  DMU 3 is efficient for all values of v1 between 0 and 0.16667,

•  DMU 4 is efficient for all values of v1 between 0.16667 and 0.5, and

•  DMU 5 is efficient for all values of v1 between 0.333 and 1.

Thus, a lower bound of 0.1667 and an upper bound of 0.333 for v1 will not alter the

efficiency scores of any of the efficient DMUs.

Similarly,

•  DMU 3 is efficient for any value of v2 between 0.333 and 1.0,

•  DMU 4 is efficient for any value of v2 between 0 and 0.333, and

•  DMU 5 is efficient for any value of v2 between 0 and 0.1667.

Thus lower and upper bounds of 0.1667 and 0.333 respectively for v2 will not alter the

efficiency scores of any efficient DMUs.

The upper bound of 0.333 on v1 is equivalent to a lower bound of 0.1667 on v2. In

addition, the upper bound of 0.333 on v2 is equivalent to a lower bound of 0.1667 on v1.

Thus, the effective LEAST desirable bounds on v1 and v2 will be:

1667.0 and 1667.0 21 ≥≥ vv
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Comparing these with the effective MOST desirable bounds, 2.0 and 15.0 21 ≥≥ vv , we

note that the least desirable lower bound of 0.1667 on v1 is tighter than the most desirable

lower bound of 0.15. If we were to choose 0.1667 as the least desirable bound for v1, we

would be violating the definitions of the fuzzy numbers from section 3.1.1.1, which

require that the least desirable bound be more relaxed than the most desirable bound. In

case of v2, the least desirable lower bound of 0.1667 is more relaxed than the existing

lower bound of 0.2 and in line with our definitions of the fuzzy numbers. Accordingly,

we choose to keep the lower bound on v1 crisp and only replace the lower bound on v2 by

a fuzzy number.

In Figure 3.6, the least desirable lower bound of 0.1667 on v2 introduces an additional

point (0,1/0.1667). We join this point to the rest of the frontier by a solid line thinner than

that used for the unbounded frontier. The (shaded) region enclosed between this line and

the dotted line representing the frontier corresponding to the specified bounds is called

the fuzzy region. The optimal bound value calculated by the fuzzy model will lie between

these two extreme values and seek a compromise between maximization of the efficiency

score (of DMU 5 in this case) and maximization of proximity to the specified bounds.

The following subsection uses a roadmap to illustrate the implementation methodology of

the fuzzy model.

3.1.3 Roadmap for Developing and Solving the Fuzzy Absolute Weight

Restriction DEA Model

We demonstrate the roadmap for developing and solving the fuzzy model for the absolute

weight restriction DEA model with the use of an example. This example is the same as

that used by Roll and Golany (1993) to demonstrate the absolute weight restriction DEA

model. The implementation of the fuzzy model has the following steps:

Step 1: Collect the raw data



111

As mentioned earlier, the raw data consisting of input and output values are taken directly

from Roll and Golany (1993). There are 15 DMUs each using 4 inputs to produce three

outputs. The data are presented in Table 3.2.

DMU O1 O2 O3 I1 I2 I3 I4

1 15500 460 0.85 521 3130 1859 80

2 13700 340 0.63 747 5075 3491 44

3 18000 1080 0.37 935 1483 2984 93

4 8900 490 0.56 205 4583 1736 65

5 10800 960 0.14 177 2990 1823 87

6 17300 890 0.47 584 5467 1775 98

7 21000 2930 0.91 634 7734 1700 58

8 9500 240 0.78 456 6552 503 73

9 9100 370 0.74 471 1855 2528 42

10 6600 800 0.52 325 4579 818 51

11 11800 610 0.87 364 5713 1178 80

12 26200 3600 0.41 585 4217 2012 84

13 11400 470 0.55 343 4061 2957 91

14 7200 1350 0.39 597 3242 665 73

15 38000 2470 0.68 1126 7658 1541 57

Table 3.2 Input / Output Data for the Roadmap Example illustrating the Fuzzy
Absolute Weight Restriction DEA Model

Step 2: Run the unbounded model and determine the most and least desirable bounds

The data presented in Table 3.2 are plugged into a CCR model without weight

restrictions. The optimal input/output weights and efficiency scores for all DMUs

calculated by the CCR model are presented in Table 3.3. Looking at the table we realize

that on numerous occasions, some inputs and/or outputs are assigned zero weights. By

assigning zero weights to some of the inputs and outputs, the conventional DEA model

completely ignores these factors and in this way disregards (not intentionally) the

decision-maker's opinion that all factors are important for the efficiency evaluation of the

given DMUs. Not only that, the model also assigns high values to the weights of some

other inputs and outputs. To eliminate the extreme weight values and to minimize the

variation between the weights assigned to different inputs and outputs, the decision-
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maker sets bounds on the weight values. In this example we use the same procedure as

that used by Roll and Golany (1993) to set bounds. Although this procedure was already

described in section 2.4.2.1.1, we would like to reiterate it here. The steps for setting the

bounds are enumerated below:

•  Eliminate the extreme values. As proposed by Roll and Golany (1993), we eliminate

the topmost and bottommost extreme values from all columns. In Table 3.3, the

values marked with a * are the ones that are eliminated.

•  Take the average of the remaining values.  The averages ru and iv of the remaining 13

values of all weights are taken. The averages are also presented in Table 3.3 in the

row titled "Average after Truncation."

•  Choose the desirable ratio between the largest and the smallest weight values.  This

will be the same as the ratio between the upper and lower bounds and will be used to

determine the bound values based on the averages. Roll and Golany (1993) use two

different ratios, 2:1 and 3:1 to determine two different sets of bounds and produce

two different sets of efficiency scores. For our roadmap, we choose the ratio 2:1 to

calculate the most desirable bounds (or the specified bounds) and use the ratio 3:1 to

calculate the least desirable bounds required by the fuzzy model.

•  Determine the values of the bounds. Using a value of d=2 and using the formulas

      
d

ud
UB

d

u
LB r

r
r

r +
=

+
=

1

2
     ,

1

2
,  we calculate the most desirable bounds UB and LB.

For determining the least desirable bounds required by the fuzzy model, we use the

two methods already described in section 3.1.1.1. The methods are restated below:

Method I: In this method, we use the same procedure as that used to determine the

most desirable bounds except that we make different choices than those made while

determining the most desirable bounds in every step of the procedure. In this case, the

only change we make is we choose 3:1 (instead of 2:1) as the ratio between the least

desirable upper and lower bounds. For example, since 1u = 3.38E-05,

UB1 = (2* 3.38E-05)/(1+3) = 5.069E-05 and LB1 = (2*3*3.38E-05)/(1+3) = 1.69E-05.
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Method II: As explained in 3.1.1.1, we use the highest and lowest values of optimal

weights assigned to the factors by efficient DMUs in the unbounded runs as the least

desirable upper and lower bounds respectively. Since u1 varies between 0 and

.0000926 for efficient DMUs, UB1 + p1 will be .0000926 and LB1 - p1' will be 0.

DMU u1 U2 u3 v1 v2 v3 v4 Efficiency

1 3.669E-05 0* 0.50738 1.522E-03 6.622E-05 0* 0* 1

2 1.411E-05 0 1.11636 0* 0* 0 2.273E-02* 0.89667

3 5.556E-05 0 0* 6.693E-04 2.523E-04* 0 0 1

4 8.644E-05 0 0.41195 3.566E-03 0 0 4.139E-03 1

5 9.259E-05* 0 0 5.650E-03* 0 0 0 1

6 3.629E-05 0 0.2411 1.090E-03 0 2.047E-04 0 0.74111

7 3.428E-05 0 0.30787 1.272E-03 0 0 3.333E-03 1

8 0* 0 1.28205 2.912E-04 3.061E-05 1.658E-04 7.990E-03 1

9 1.237E-05 0 1.19925 1.740E-03 9.732E-05 0 0 1

10 0 2.987E-04 1.2458 1.673E-03 0 5.579E-04* 0 0.8868

11 5.586E-05 0 0.39181 2.285E-03 0 1.430E-04 0 1

12 3.817E-05 0 0 1.248E-03 6.397E-05 0 0 1

13 4.617E-05 0 0.65064 1.940E-03 8.238E-05 0 0 0.88417

14 0 3.020E-04* 1.51888* 2.064E-04 1.902E-04 3.911E-04 0 1

15 2.341E-05 0 0.16251 7.388E-04 0 0 2.949E-03 1

Average 3.546E-05 4.005E-05 0.602373 1.593E-03 5.220E-05 9.750E-05 2.743E-03

Average after

Truncation

3.380E-05 2.298E-05 0.5782 1.403E-03 4.082E-05 6.959E-05 1.416E-03

UB 4.495E-05 3.056E-05 0.769018 1.866E-03 5.430E-05 9.255E-05 1.884E-03 =1.33 x Avg

LB 2.264E-05 1.540E-05 0.3874 9.401E-04 2.735E-05 4.662E-05 9.489E-04 =0.67 x Avg
1UB + pr 5.069E-05 3.447E-05 0.867314 2.105E-03 6.124E-05 1.044E-04 2.124E-03 =1.5 x Avg.
1LB - p' 1.690E-05 1.149E-05 0.289105 7.016E-04 2.041E-05 3.479E-05 7.081E-04 =0.5 x Avg.
2UB + pr 9.26E-05 3.02E-04 1.51888 5.65E-03 2.52E-04 3.91E-04 7.99E-03
2LB - p' 0 0 0 2.06E-04 0 0 0

Table 3.3 Results of the Unbounded Runs and Bound Values calculated using those
Results for Roadmap Example illustrating the Fuzzy Absolute Weight
Restriction DEA Model

Note:  1UB + p and 1LB - p' are the least desirable bounds determined using Method I and 2UB + p and 2LB - p' are the

least desirable bounds determined using Method II.
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Step 3: Solve the fuzzy model

DEA models with weight restrictions of the type (3.17) are solved using values of UB and

LB from Table 3.3 to obtain f1 values. Similarly DEA models with weight restrictions of

the type (3.18) are solved (twice) with (two different sets of) values of UB + p and LB -

p' from Table 3.3 to obtain (two sets of) f0 values. These values are plugged into the

equivalent crisp model (3.24), which is solved using the parametric algorithm with an ε

value of 0.1. Model (3.24) is solved twice, once with the set of least desirable bounds

determined using Method I and once with those determined using Method II. Table 3.4

compares the results of both models with the results of the crisp weight bound model.

Alongside the efficiency scores calculated by the fuzzy models, Table 3.4 also displays λ

values obtained in the final iteration of the algorithm. The λ values represent the degree

to which the bounds specified by the decision-maker were satisfied in the final solution.

Efficiency

DMU Crisp bounds [UB, LB] &

[1UB+p, 1LB-p']

λ [UB, LB] &

[2UB+p, 2LB-p']

λ

1 1 1 1 1 1

2 0.60241 0.6181 0.4 0.72273 0.4

3 0.57492 0.6015 0.4 0.86451 0.5

4 1 1 1 1 1

5 0.94847 0.97581 0.6 1 0.9

6 0.70723 0.70952 0.5 0.73066 0.5

7 1 1 1 1 1

8 0.82149 0.84767 0.4 0.98496 0.6

9 0.92411 0.95947 0.4 1 0.8

10 0.75715 0.77026 0.5 0.83474 0.5

11 1 1 1 1 1

12 1 1 1 1 1

13 0.81186 0.82269 0.5 0.85659 0.6

14 0.52383 0.54678 0.4 0.78929 0.5

15 0.96241 0.99039 0.6 1 0.9

Average 0.842259 0.856146 0.918899

Table 3.4 Comparison of Results of Crisp and Fuzzy Absolute Weight Bound Models
applied to the Roadmap Example
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To show that the difference between the efficiency scores obtained using the crisp model

and the fuzzy models is statistically significant, we use the "paired – sample t test" (Bain

and Engelhardt (1992)) with H0 : E2 – E1 = 0 versus Ha : E2 – E1>0, where E2 is the

average efficiency calculated by the fuzzy model and E1 is the average efficiency

calculated by the crisp model. When we apply the paired-sample t test to the values in

columns 2 and 3 of Table 3.4, we obtain a p-value of 0.000487. This means that we can

reject the null hypothesis with an α (probability of type I error) value as low as 0.0005.

This allows us to accept the alternative hypothesis that there is a significant difference in

the efficiency scores obtained using the two models. Applying the same test to the values

in columns 2 and 5, we get a p-value of 0.0033. This means that we can reject the null

hypothesis with an α value of 0.005 allowing us to accept the alternative hypothesis that

there is a significant difference between the efficiency scores calculated by the crisp and

fuzzy models.

Visually comparing the results of columns 2 and 5, we see that three of the DMUs (5,9

and 15) which were not part of the efficient set in the original crisp model, entered the

efficient set when the weight bounds were made fuzzy. In fact, two of them (5 & 15)

entered the efficient set while satisfying the specified bounds to a degree as high as 90%.

Thus, if the decision-maker were willing to change the original bounds to values

calculated by the 90% satisfaction level, the state of some of the DMUs would change.

We do not anticipate any resistance from the decision-maker to making these slight

changes to the bounds since the bounds were determined by subjective methods in the

first place. We change the original set of bounds in Table 3.5 to the new set in Table 3.6

using the criterion of 90% satisfaction of the original bounds.

 Factor u1 u2 u3 v1 v2 v3 v4

Upper bound 4.495E-05 3.056E-05 0.769018 1.866E-03 5.430E-05 9.255E-05 1.884E-03

Lower bound 2.264E-05 1.540E-05 0.3874 9.401E-04 2.735E-05 4.662E-05 9.489E-04

Table 3.5 Original Set of Bounds for Roadmap Example illustrating the Fuzzy
Absolute Weight Restriction DEA Model
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Factor u1 u2 u3 v1 v2 v3 v4

Upper bound 4.97E-05 5.77E-05 0.8440042 2.24E-03 7.41E-05 1.22E-04 2.49E-03

Lower bound 2.21E-05 1.50E-05 0.3775705 9.16E-04 2.67E-05 4.54E-05 9.25E-04

Table 3.6 Modified Set of Bounds (at the 90% Satisfaction Level of Original Bounds)

Using the new set of bounds (from Table 3.6), we solve the crisp weight bound DEA

model. Table 3.7 compares the results of this model with the results of the model with the

original bounds from Table 3.5.

Efficiency ScoresDMU

With Original
set of bounds

With Modified
set of bounds

1 1 1
2 0.60241 0.6227
3 0.57492 0.61306
4 1 1
5 0.94847 1
6 0.70723 0.71048
7 1 1
8 0.82149 0.8555
9 0.92411 0.97298

10 0.75715 0.78203
11 1 1
12 1 1
13 0.81186 0.82952
14 0.52383 0.57358
15 0.96241 1

Avg. 0.842259 0.86399

Table 3.7 Comparison of Efficiency Scores obtained using Original and Modified Sets
of Bounds for Absolute Weight Bound Roadmap Example

DMUs 5 & 15 are perfect examples of DMUs that were penalized by the imprecision in

the bounds. It took only a little tweaking of the bounds in order to restore them to the

efficient set.

3.2 FUZZY MODEL FOR THE ASSURANCE REGION (AR) DEA

PROBLEM

The AR weight restrictions are bounds on the ratios of the weights. They may be

introduced in the analysis
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•  to align the calculated efficiency scores with the preference of the decision-maker by

restricting the multipliers into cones (Chilingerian and Sherman (1997)) or

•  to incorporate information about the prices and costs of the inputs and outputs

(Thompson et al. (1986), (1990), (1992), (1996a), (1996b), and (1996c)) or

•  to incorporate expert opinion about relative importance of the factors (Zhu (1996))

This section is divided into three main sections. In the first section, the concepts of AR

and fuzzy AR are explained geometrically using the concept of weight space analysis

proposed by Seiford and Thrall (1990). In the second section, we distinguish between two

different types of AR I constraints and call them AR I constraints in Form 1 and AR I

constraints in Form 2. The second section is accordingly divided into two major

subsections with each sub-section dedicated to developing a fuzzy model for each form

of AR I constraint. The third section contains implementation roadmaps for both types of

fuzzy AR models.

3.2.1 Geometric Representation of AR and Fuzzy AR

To geometrically illustrate the concept fuzzy AR, we use the notion of multiplier space

W, first introduced by Seiford and Thrall (1990) and then used by Thompson et al. (1990)

to demonstrate their crisp AR approach. The data set for our example is the same as that

used by Thompson et al. (1990) in their example.

1 2 3 4 5 6
Output, y 1 1 1 1 1 1
Input 1, x1 4 2 1 5 4 3

Input 2, x2 1 2 4 1 4 1.5

DMU

Table 3.8 Data set from Thompson et al. (1990) used for the Geometric Illustration of
the AR Approach

Figure 3.7 shows the input-output graph and the efficiency frontier for the data set in

Table 3.8. From the graph we see that DMUs 1,2,3 and 6 are DEA efficient because they

lie on the frontier. DMU 5 is DEA inefficient and DMU 4 is DEA-slack-inefficient.

Amongst the DEA efficient DMUs, 1, 2 and 3 are extreme efficient while 6 is non-
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extreme efficient because it can be expressed as a linear combination of DMUs 1 and 2.

For more details on this classification scheme, refer to Seiford and Thrall (1990).

1 2 3 54

1

2

3

5

4 1

43

6

2

5

X 2

X 1

Figure 3.7 Efficiency Frontier for the Example from Thompson et al. (1990) for
illustrating the AR Approach

Seiford and Thrall (1990) define the concept of optimal multiplier space Wj for each

DMUj as:

Wj = {(u, v) for which hj (u, v) is maximal}

where hj (u, v) is the objective function.

The entire space W of multipliers is the union of multiplier spaces Wj of individual

DMUs.

For our example, the multiplier spaces for the various DMUs obtained by solving the

ratio form of DEA model are as follows:

DMU1: W1 = (1, v1, (1 - 4v1)), 6/11 ≤v

DMU2: W2 = (1, v1, 1/2(1 - 2v1)), 3/16/1 1 ≤≤ v

DMU3: W3 = (1, v1, 1/4(1 - v1)), 13/1 1 ≤≤ v

DMU4: W4 = (1, 0, 1)

DMU6: W6 = (1, 1/6, 1/3)
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In the above definitions of multiplier spaces, we have substituted v1 for v2 using the

constraints of the DEA model. The ranges for v1 are the values of v1 between which the

DMU under consideration remains efficient.

From the definitions of the multiplier spaces, we can make the following observations:

•  Since v1 and v2 are not fixed in the definitions of W1, W2, and W3, we can conclude

that the dimension of W1, W2, and W3 is 3. This is the maximal dimension15 possible

(3= 2+1).

•  Values of v1 and v2 are fixed in the definitions of W4 and W6. Therefore, dim W6 = dim

W4 = 2 < 3, thus proving that DMUs 4 and 6 are not extreme efficient.

•  236 WWW ∩= . This proves that we can express the multiplier space of any efficient

DMU as the intersection of multiplier spaces of DMUs which are extreme efficient

and contain it.

Figure 3.8 illustrates the partition of the multiplier space W into sets W1, W2, W3, and W6.

Since dim W1 = dimW2 = dimW3 = 3, they appear as cones in the figure and since dim W6

= dim W4 = 2, they appear as lines.

When the DEA model is solved as an LP (instead of ratio form) by adding the

normalization constraint 10 =vX , the multiplier sets obtained previously, reduce in

dimension by one and are represented using the same symbols as those from the ratio

form with a superscript m added to the symbols. Thus W1
m, W2

m, W3
m

 appear as lines and

W6
m

 and W4
m appear as points in the multiplier space.

W1
m is the line joining the points (1/3,1/6) and (1,0),

W2
m is the line joining (1/6,1/3) and (1/3,1/6),

W3
m is the line joining the points (0,1) and (1/6,1/3)

W4
m is the point (0,1) and

                                               
15 Maximal dimension is the sum of total number of inputs and total number of outputs
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W6
m is the point (1/6,1/3).

The multiplier sets of DMUs 1,2 and 3 are straight lines instead of points because of the

existence of alternative solutions. Any combination of v1 and v2 which satisfies the

equation of the line joining (0,1) and (1/6,1/3) will be optimal for DMU3. Similar remarks

hold for DMU1and DMU2. Suppose market price information puts the following

restrictions on the weights:

75.0/

5.1/

12

12

≥
≤

vv

vv

This gives the AR = {(v1, v2): -1.5v1 + v2 ≤ 0, 0.75v1 - v2 ≤ 0, v1>0, v2>0}, which may be

adjoined to the LP. In Figure 3.8, the AR is the shaded region enclosed by the dotted

lines. We notice that the AR only partially encloses the region W2 and completely

excludes the regions W1 and W3. Naturally, only DMU2 will be AR efficient. The results

obtained by running this AR-DEA model are shown in Table 3.9.

.25
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.75

1.25

1.0

.25 .5 .75 1.251.0

W 4
m

W 3
m

A R

W 1
m

W 2
mW 6

m

v 2

v 1

W 3

W 2

W 1

v 1
=1

/6

v 1
=1/3

v 2
=1

.5
v 1

v 2
=.75v 1

W 6

W 4

Figure 3.8 Geometric Representation of Multiplier Space and AR
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DMU AR efficiency score
1 0.90909
2 1
3 0.875
4 0.76923
5 0.5
6 0.95238

Table 3.9 Results of the Illustrative AR Model from Thompson et al. (1990)

As expected, DMUs 1, 3 and 6 are no longer efficient given the AR. At this point it is

appropriate to introduce the definitions of Assurance Regions (AR) and AR efficiency

proposed by Thompson et al. (1990) pp. 100.

"Assurance Region (AR) Definition - For DEA problems with a finite number of DMUs

and a well-defined data domain, an AR is a subset of W such that vectors v excluded from

AR are not reasonable input and output virtual multipliers."

"AR Efficiency Definition - A DMUj in E (set of extreme efficient DMUs) is said to be AR-

efficient, relative to an AR, if the intersection of Wj (j=1,2,...,n) and AR is not empty; and

it is said to be not AR-efficient otherwise."

Our results for the example AR-DEA model are consistent with the above definition of

AR efficiency. Since the AR does not intersect with W1, W6 and W3, DMUs 1,6 and 3

become AR-inefficient.

The results provoke us to question the accuracy of the market information which was

used to determine the ARs because if the value of the lower bound of the ratio v2/v1 had

been 0.5 instead of 0.75, DMU1 would have been AR-efficient. For that matter if the

upper bound of the same ratio had been 2 instead of 1.5, DMUs 3 and 6 would have been

AR-efficient. Thus, given the fact that the efficiency scores of the DMUs are so sensitive

to the values of the bounds, it seems inappropriate to use crisp numbers for those bounds

when the information for determining them is not accurate. In this research, we propose

to replace the bound values by fuzzy numbers so that we can model the imprecision in the

bound values. The fuzzy numbers will allow the model to explore a broader region for
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locating the bounds while still treating the specified bounds as most desirable. The region

spanned by the fuzzy numbers will have the specified values at one end and the least

desirable values at the other end. The least desirable upper and lower bounds on the ratios

will be the highest and lowest values respectively of the ratios of the optimal factor

weights for the efficient DMUs in the unbounded runs. The objective of the fuzzy model

is to seek a compromise between the solution that maximizes the satisfaction of the

decision-maker with the bounds and the solution that maximizes the efficiency scores of

all the DMUs.

Coming back to our illustrative example, the fuzzy region is the shaded region in Figure

3.9. At one end of the fuzzy region we have the specified bounds determined from market

information and at the other end we have bounds determined from ratios of weights

assigned to the factors by the efficient DMUs in the unbounded runs.

.25

.5

.75

1.25

1.0

.25 .5 .75 1.251.0

Fuzzy
reg ion

v 2

v 1

Figure 3.9 Geometric Representation of the Fuzzy AR Region

In the next subsection, we develop and solve the fuzzy AR DEA model.
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3.2.2 Development and Solution Methodology of the Fuzzy AR Model

The AR constraints impose bounds on the ratios of the weights. While the absolute

weight bounds, discussed in section 3.1, are added to the fractional DEA model, the

Assurance Region (AR) constraints are added to the linear form of the DEA model.

Therefore, the weights in the AR model are represented using the symbols ηµ  and instead

of the symbols u and v. The bounds are determined using value data like market price

information or expert opinion. This value data typically exists in the following form:

"Price/cost" data
Factor Multiplier Lower bound Upper bound

y1 µ1 lb1 ub1

. . . .

. . . .
ys µs lbs ubs

x1 η1 LB1 UB1

. . . .

. . . .
xm ηm LBm UBm

Table 3.10 Price/Cost Information or Expert Opinion used for Setting AR bounds

At this point, we would like to distinguish between two forms of AR constraints that can

be obtained using the information in Table 3.10:

Form 1 is the one in which the upper and lower bounds on the ratios of weights are not

themselves in ratio form. Expressing the AR in this form becomes inevitable when

information is available in the form of relative importance of inputs and outputs. For

example, if the experts specify that input one is 1.5 times more important than input two,

then the AR constraint expressing this opinion appears as 21 5.1 vv ≥ . More generally, AR

of this form is expressed as:

.,...,1,         ,          ,/ strtrba rttrrt =<≤≤ µµ (3.26)

.,...,1,         ,          ,/ mjijiBA ijjiij =<≤≤ ηη

If using "price/cost" information or expert opinion from Table 3.10 for setting AR bounds

of Form 1, then jiijjiijtrrttrrt UBUBBLBLBAububblblba / and / ,/ , / ==== .
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Quite often (see Thompson et al. (1986) and (1990)), one of the inputs, say x1, may be

selected as an input numeraire and one of the outputs, say y1, may be selected as an

output numeraire. The AR in (3.26) can then be specified as a set of (m + s - 2)

homogeneous linear inequalities for separable cones:

cone)(input       ,...,3,2                     ,

         cone)(output     ,...,3,2                      ,

11

11

miBA

srba

iii

rrr

=≤≤
=≤≤

ηηη
µµµ

    (3.27)

Form 2 is the one in which the bounds on the ratios of multipliers are also expressed as

ratios. It is easy to obtain the constraints in this form when information is available in the

form shown in Table 3.10. Constraints of this type are represented as:

.,...,1,         ,          , strtr
ub

ub

lb

lb

t

r

t

r

t

r =<≤≤
µ
µ

(3.28)

.,...,1,         ,          , mjiji
UB

UB

LB

LB

j

i

j

i

j

i =<≤≤
η
η

Expressing in the form of separable input/output cones we get:

.,...,1,         ,        ,         , strtrubublblb trrtrttr =<≤≤ µµµµ  (output cone) (3.29)

.,...,1,         ,      ,     , mjijiUBUBLBLB jijiijji =<≤≤ ηηηη  (input cone)

We make this distinction between the two forms of AR constraints because the fuzzy

approach proposed in this paper differs markedly for solving models with these two types

of constraints. The fuzzy relations in the fuzzy model with AR constraints in Form 1

compare real numbers on the LHS with fuzzy numbers on the RHS. On the other hand,

the fuzzy relations in the fuzzy model with AR constraints in Form 2 compare two fuzzy

numbers. Since the constraints in Form 2 can be easily converted to Form1, the decision-

maker has a choice of two methods for solving the fuzzy AR model when the original

constraints are in Form 2 and one method when they are in form 1.

Since the two forms of AR constraints are different mathematically, the fuzzy models for

solving them are also markedly different and therefroe dealt with in separate subsections

– section 3.2.2.1 and section 3.2.2.2.
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3.2.2.1 Fuzzy Model for AR Constraints in Form 1

The constraints in Form 1, when added to a CCR model give the following CCR-AR

model:

 ,...,2  

 ,...,2  

             0

1

Subject to

Max 

1

1

0

0

miBA

srba

XY

X

Y

i
i

i

r
r

r

TT

T

T

=≤≤

=≤≤

≤−

=

η
η
µ
µ

ηµ
η

µ

(3.30)

where input 1 (X1) and output 1 (Y1) are input and output numeraire respectively.

As stated earlier, the values of the bounds are imprecise. To model the imprecision

associated with the bound values, we propose to replace the crisp bound values with

fuzzy numbers that express the concept of approximate numbers close to the specified

bounds.

3.2.2.1.1 Definitions of Fuzzy Numbers

Let r
f

r
f ba  , , i

f
i

f BA  and be the fuzzy numbers corresponding to the crisp bounds rr ba  , ,

ii BA  and respectively. Then the fuzzy model corresponding to (3.30) will be:

 ,...,2  

,...,2  

                                  0

1

Subject to

Max 

1

1

0

0

miBA

srba

XY

X

Y

f
i

if
i

f
r

rf
r

TT

j
T

j
T

=≤≤

=≤≤

≤−

=

η
η
µ
µ
ηµ

η

µ

(3.31)

The fuzzy constraints in the above model are similar in form to the ones in the absolute

weight restriction model (3.2) i.e. they have fuzzy numbers on their RHS and crisp

numbers on their LHS. Hence, we can use the same argument presented in section 3.1.1.1
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to say that the membership functions of the fuzzy numbers in (3.31) will vary between

the specified (most desirable) bounds and the more relaxed least desirable bounds.

Graphically, the membership functions can be represented as follows:

))((

)(

xB

xb
f

i

f
r

))((

)(

xA

xa
f

i

f
r

  rb     rr pb + x        'rr pa −     ra x

( iB )     ( ii pB + )       ( 'ii pA − )     ( iA )

Figure 3.10  Membership Functions Figure 3.11  Membership Functions
                     of Fuzzy Numbers           of Fuzzy Numbers
                     )( ),( xBxb f

i
f

r           )( ),( xAxa f
i

f
r

p and p' are the differences between the most and the least desirable bound values.

Mathematically, the fuzzy bounds can be represented as:

           

                        1
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where x ∈  R (Figure 3.10) are the values of the ratios of the bounds

1 1

0 0
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Where x ∈  R (Figure 3.11) are the values of the ratios of the weight bounds.

The α-cut representations of the fuzzy numbers are as follows:

],[ αα
rrrr

f
r ppbbb −+=        (3.36)

],''[ rrrr
f

r appaa αα +−=        (3.37)

],[ αα
iiii

f
i ppBBB −+=        (3.38)

],''[ iiii
f

i AppAA αα +−=        (3.39)

3.2.2.1.2 Degrees of Satisfaction of the Constraints

Fuzzy constraints that contain fuzzy numbers on their RHS can be represented as fuzzy

sets. The membership functions of these fuzzy sets, called the “degrees of satisfaction of

the constraints”, can be derived from the membership functions of the fuzzy numbers by

replacing the argument (x) by the LHS of the constraint (Klir and Yuan (1995)).

The degree of satisfaction of the fuzzy constraint f
r

r b≤
1µ

µ
obtained by replacing x by 

1µ
µ r

in (3.32) is given by:
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(3.40)
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The definition of  satisfaction of the constraint f
r

r b≤
1µ

µ
 coincides with the definition of

the fuzzy relation “ ≤~ ”from section 2.5.5.5 comparing a real number on the LHS with a

fuzzy number on the RHS.

The degree of satisfaction of the fuzzy constraint f
r

r a≥
1µ

µ
is defined as:
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The definition of satisfaction of the constraint f
r

r a≥
1µ

µ
 coincides with the definition of

the fuzzy relation “ ≥~ ” from section 2.5.5.5.

The degrees of satisfaction of the input weight constraints are defined as:

B
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The membership functions defined in (3.40) to (3.43) are of the fuzzy sets representing

the fuzzy constraints.  The intersection of these fuzzy sets, k

ms

k
λ

22

1

+

=
∩ , gives the fuzzy

feasible set )
~

(R (Yuan and Klir (1995)).

3.2.2.1.3 Conversion to Crisp Linear Formulation

Model (3.30) is an unsymmetrical fuzzy model. To convert it to an equivalent crisp form

we construct the maximizing set of its objective function using Werners' (1984)

definition. To determine the maximizing set for the objective function we first need to

determine its upper (f0) and lower (f1) bounds.

3.2.2.1.3.1 Determination of f1

f1 is the supremum of f (the objective function) over 1R , the 1-cut of R
~

. As in the case of

the absolute weight restriction model, 1R consists of fuzzy constraints satisfied to a

degree 1 i.e., constraints having the most desirable bound values (e.g., ar) on their RHS.

Therefore f1 is found by solving the following LP:

ir

miBA

srba

XY

X

Yf

ir

iii

rrr

TT

j
T

j
T

,             0,

,...,2  

,...,2  

                                       0

1

Subject to

Max   

11

11

0

01

∀≥
=≤≤

=≤≤
≤−

=

=

ηµ
ηηη
µµµ

ηµ

η

µ

(3.44)

3.2.2.1.3.2 Determination of f0

f0 is the supremum of the objective function over )
~

(RS ,which is the support of R
~

. )
~

(RS

consists of constraints that have the least desirable bound values (e.g., ar – p'r) on their

RHS. Therefore, f0 is obtained by solving the following LP:
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3.2.2.1.3.3 The Equivalent Crisp Model

As in the case of the absolute weight restriction model, the crisp model equivalent to

(3.30) is a problem of finding the set of weights which give a "maximizing solution" i.e. a

solution which satisfies the constraints and the goal with the maximum degree.

The equivalent crisp model is as follows:
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(3.47) is a quadratic programming model since the weight bound constraints are non-

linear. Since λ is one of the variables in the weight bound constraints and we know that it

is bounded between 0 and 1, we can solve (3.47) using the parametric algorithm

described in section 3.1.1.5.4. The solution of the parametric algorithm gives the optimal

weight values which when plugged into the expression 0YTµ  give the efficiency scores of

the DMUs. 

3.2.2.2 The Fuzzy Model with AR Constraints in Form 2

Adding the AR-DEA constraints in (3.28) to the DEA model gives the following AR-

DEA model:
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Rearranging the terms in (3.43) to eliminate the fractions, we get the following model:
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The values of the price ranges are determined using economic information, which may be

either inexact or volatile (Taylor et al. (1997)). In fact, the reason we use price “ranges”

instead of “exact values” is that enough information is not available to determine exact

price values. In this research, we assume that even the price ranges cannot be accurately

determined using the available information. To represent the imprecision in the values of

the price ranges (referred to as weight bounds from this point onwards), we replace them

with fuzzy numbers, which express the concept of approximate numbers. The fuzzy

numbers are represented by adding a superscript f (signifying fuzziness) to the existing

symbols of the crisp bounds which they replace. The resulting model called the fuzzy AR

(Form 2) model is as follows:
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3.2.2.2.1 Definitions of the Fuzzy Numbers and their αααα-cuts

The fuzzy weight bound constraints in (3.50) are different from those in the previous two

types of fuzzy weight restriction models (3.2) and (3.31). The difference is that in (3.2)

and (3.31), the fuzzy inequalities compare crisp LHS's with fuzzy RHS's whereas in

(3.50), they compare two fuzzy numbers. Therefore, the argument made in section 3.1.1.1

to drop the tighter side of the triangular membership functions of the fuzzy numbers does

not hold in this case. The membership functions of the fuzzy bounds in (3.50) are defined

by specifying least desirable bounds that are both tighter and more relaxed than the

specified bounds. In other words, the least desirable values lie on either side of the most

desirable value in the graphical representations of the membership functions of the fuzzy

bounds.

For example, the fuzzy number corresponding to the bound lbr will be: f
rlb  ={lbr, p’r, q’r}

where p'r and q'r are the differences between lbr and the least desirable values on either

side of it.

Graphically, the membership function of f
rlb is depicted as:

    1

)(xlb f
r          
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       0      

      lbr – p'r                 lbr          lbr+q'r x

      lbr – p'r + α p'r lbr+q'r - α q'r
(Lαlbf

r)             (Rαlbf
r)

Figure 3.12 Graphical Representation of Fuzzy Number coresponding to lbr

The mathematical representation of the membership function )(xlb f
r is:
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Similarly, we can define the fuzzy numbers corresponding to the other bound values as:
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The α-cut of f
rlb  is given by:

]'',''[ rrrrrr
f

r qqlbpplblb ααα −++−= (3.55)

Similarly, the α-cuts of the other fuzzy numbers are:

],[ rrrrrr
f

r qqubppubub ααα −++−= (3.56)
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],[ iiiiii
f

i qqUBppUBUB ααα −++−= (3.57)

]'',''[ iiiiii
f

i qqLBppLBLB ααα −++−= (3.58)

3.2.2.2.2 Crisp Linear Programming Model

Using the definition of partial orders in terms of α-cuts from section 2.5.5.4 and the

definitions of the α-cuts in (3.55) - (3.58), we get the following equivalent of model

(3.50).
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(3.59)

Since all numbers in (3.59) are real numbers, this is a crisp parametric linear

programming model. The α in each case represents the degree of proximity to the

specified bound. According to the principle of confluence of goals and constraints

proposed by Bellman and Zadeh (1972), the maximizing solution of (3.59) will be

attained when all goals and constraints are satisfied to the maximum degree. Therefore,

we solve (3.59) for the same degree of satisfaction (λ) of all constraints and try to

maximize λ. The model equivalent to (3.59) is then given by:
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The model (3.60) will always be feasible for all values of λ between 0 and 1. Since 1 is

the maximum value possible for λ, we can replace λ by 1 in (3.60).  However, we refrain

from doing so because leaving λ in the model and varying it between 0 and 1 allows us to

determine the efficiency scores for different degrees of closeness to the specified bounds.

3.2.3 Roadmaps for Fuzzy AR Models

In this section, we illustrate the implementation methodology of the fuzzy AR models of

both forms using roadmaps. Section 3.2.3.1 contains the roadmap for the fuzzy model

with AR constraints in Form 1 and section 3.2.3.2 contains the roadmap for the fuzzy

model with AR constraints in Form 2.

3.2.3.1 Roadmap for Developing and Solving the Fuzzy Model with AR

Constraints in Form 1

The example used in this section from Roll and Golany (1993) is the same as that used in

the roadmap for illustrating the fuzzy absolute weight restriction model. The steps

involved in developing and solving the fuzzy AR (Form 1) model are as follows:
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Step1: Normalize the raw data

When AR constraints are used, close attention needs to be paid to the units in which the

respective factors are measured (Roll and Golany (1993)). To resolve this difficulty, Roll

and Golany (1993) recommend bringing all factor values to the same order of magnitude

through normalization (make the average of all columns 100). The normalized version of

the data in Table 3.2 is shown in Table 3.11 below:

DMU y1 y2 y3 x1 x2 x 3 x4

1 103 40 144 97 69 101 112

2 91 30 107 139 111 190 61

3 120 95 63 174 33 162 130

4 59 43 95 38 101 94 91

5 72 84 24 33 66 99 121

6 115 78 79 109 120 97 137

7 140 258 154 118 170 92 81

8 63 21 132 85 144 27 102

9 61 33 125 88 41 138 59

10 44 70 88 60 101 45 71

11 79 54 147 68 125 64 112

12 175 317 69 109 93 109 117

13 76 41 93 64 89 161 127

14 48 119 66 111 71 36 102

15 253 217 115 209 168 84 79

Avg. 100 100 100 100 100 100 100

Table 3.11 Normalized Input /Output Data for the Roadmap Example Illustrating the
Fuzzy AR (Form 1) Model

Step 2: Determine the most desirable bounds on the ratios of weights

Roll and Golany (1993) treat input 1 as the input numeraire and output 1 as the output

numeraire. Although it's not explicitly stated how the bounds on the ratios of weights are

determined, we assume that expert opinion is used. The AR bounds used by Roll and

Golany (1993) are shown in Table 3.12.
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Factor Upper bound
(b, B)

Lower bound
(a, A)

µ2/µ1 1.0 0.2

µ3/µ1 0.5 0.1

η2/η1 4.0 0.25

η3/η1 4.0 0.25

η4/η1 0.4 0.1

Table 3.12 AR Bounds Used by Roll and Golany (1993)

Step 3: Determine the fuzzy bounds

Since the bound values are based on human judgement, there is uncertainty associated

with their values. To minimize the effect of uncertainty on the results of the model, we

replace the crisp bounds by fuzzy bounds. The fuzzy bounds use the values specified in

Table 3.12 as the most desirable. The least desirable bounds are determined from the

results of the unbounded model. Table 3.13 shows the results of the unbounded model

along with the ratio of each input weight to the weight of input 1 (numeraire) and of each

output weight to the weight of output 1. The least desirable upper and lower bounds are

the highest and lowest values of these ratios for efficient DMUs.

µ1 µ2 µ3 η1 η2 η3 η4 µ2/µ1 µ3/µ1 η2/η1 η3/η1 η4/η1

1 0.0025 0 0.0052 0.0079 0.0033 0 0 1 0 2.0616 0.4177 0 0
2 0.0021 0 0.0067 0 0 0 0.0164 0.9077 0 3.2711 - - -
3 0.0069 0 0.0027 0.0037 0.0107 0 0 1 0 0.3824 2.8623 0 0
4 0 0 0.0105 0.0263 0 0 0 1 - - 0 0 0
5 0.0049 0.0077 0 0.0303 0 0 0 1 1.5885 0 0 0 0
6 0.0054 0 0.0014 0.0058 0 0.0038 0 0.7349 0 0.2634 0 0.648 0
7 0 0.0024 0.0025 0.0083 0 0 0.0002 1 - - 0 0 0.0277
8 0 0 0.0076 0.0033 0 0.0029 0.0063 1 - - 0 0.8741 1.8874
9 0 0 0.008 0.0073 0 0 0.0061 1 - - 0 0 0.8328

10 0 0.0034 0.0074 0.0091 0 0.0101 0 0.884 - - 0 1.1203 0
11 0 0 0.0068 0.0095 0.0028 0 0 1 - - 0.294 0 0
12 0 0.0032 0 0.0092 0 0 0 1 - - 0 0 0
13 0.0069 0 0.0039 0.0104 0.0038 0 0 0.8847 0 0.5561 0.3611 0 0
14 0.0034 0.009 0.0011 0.0087 0.0071 0 1 - - 7.5648 6.1741 0
15 0.0035 0 0.001 0.004 0 0 0.0021 1 0 0.2775 0 0 0.529

Table 3.13 Results of the Unbounded DEA model for the AR (Form 1) Roadmap
Example

Note: The “-“ in the table represents a value with a 0 denominator. These values are ignored in the analysis.
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Considering only efficient DMUs, the lowest value of the ratio µ2/µ1 is 0 and the highest

value is 1.5885. Therefore, the least desirable lower and upper bounds on the ratio µ2/µ1

for the purpose of the fuzzy model will be 0 and 1.5885 receptively. Similarly, the least

desirable lower and upper bounds on the ratio µ3/µ1 will be 0 and 2.06216 respectively.

The rest of the values calculated similarly are shown in Table 3.14.

Factor
Ratio

Least Desirable
Upper bound
(b +p, B +p)

Least Desirable
Lower bound
(a – p', A – p')

µ2/µ1 1.5885 0

µ3/µ1 2.062 0

η2/η1 7.56 0

η3/η1 6.17 0

η4/η1 1.89 0

Table 3.14 Least Desirable Weight Bound Values used in the Roadmap Example for
Illustrating the Fuzzy AR (Form 1) Model

Step 4: Solve the crisp equivalent model

f1 is obtained by solving the AR-DEA model with bound values from Table 3.12. f0 is

obtained by solving the AR-DEA model with bound values from Table 3.14. Using the f0

and f1 values, the crisp model (3.47) is solved using the parametric algorithm described

earlier. ε is chosen to be 0.1. The results of the fuzzy model are compared with the results

of the crisp model in Table 3.15.

                                               
16 Although the ratio 3.27 is higher than 2.062, it is not considered because it is obtained from the weights
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DMU Efficiency Scores
Crisp

bounds
Fuzzy
bounds

λ

1 0.85155 1 0.8
2 0.47673 0.67941 0.6
3 0.90362 1 0.8
4 0.75333 0.96234 0.7
5 0.73712 0.9116 0.5
6 0.63773 0.69607 0.5
7 0.99046 1 0.9
8 0.93607 1 0.9
9 0.8533 1 0.8

10 0.70533 0.81129 0.7
11 0.88081 1 0.8
12 1 1 1
13 0.58903 0.77286 0.6
14 0.77929 0.87624 0.5
15 1 1 1

Average 0.806291 0.913987

Table 3.15 Comparison of Results of Crisp and Fuzzy AR (Form 1) Weight Bound
Models for the Roadmap Example

Applying a paired two sample t test (H0: E2 – E1 = 0 versus Ha: E2-E1>0) to the two sets

of efficiency scores in Table 3.15, we get a p-value of 0.00002. Thus, with an α value as

low as 0.00005, we can reject the null hypothesis. This implies that we accept the

alternative hypothesis that there is a significant difference between the efficiency scores

calculated by the two models.

We see that several DMUs move from the inefficient set to the efficient set when the

bounds are made fuzzy. Two of those DMUs (7 & 8) become efficient at a 90% degree of

satisfaction with the specified bounds. Therefore, as in section 3.1.3, we modify the

existing bounds so that they are at the 90% satisfaction level in order to restore DMUs 7

and 8 to the efficient set. The original set of bounds is shown in Table 3.12. The modified

set of bounds is shown in Table 3.16.

                                                                                                                                           
assigned to the factors by an inefficient DMU.
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Factor Upper bound
(b, B)

Lower bound
(a, A)

µ2/µ1 1.05885 0.18

µ3/µ1 0.6562 0.09

η2/η1 4.356 0.225

η3/η1 4.217 0.225

η4/η1 0.549 0.09

Table 3.16 Modified Set of Bounds at a 90% Level of Satisfaction of Original Bounds
for the AR (Form 1) Roadmap Example

Note that there is only a small difference between bound values in the two tables. Table

3.17 compares the results of the AR model with specified bounds with those of the AR

model with the modified bounds.

Efficiency Scores

DMU Original crisp
bounds

Modified set of
bounds

1 0.85155 0.94179
2 0.47673 0.54552
3 0.90362 0.96566
4 0.75333 0.85255
5 0.73712 0.76305
6 0.63773 0.66127
7 0.99046 1
8 0.93607 0.963
9 0.8533 0.98115
10 0.70533 0.76341
11 0.88081 0.96944
12 1 1
13 0.58903 0.65236
14 0.77929 0.81145
15 1 1

Avg. 0.842259 0.86051

Table 3.17 Comparison of results of AR (Form 1) Models with Original and Modified
Bounds applied to the Roadmap Example

We see that just a slight modification of the bounds allowed DMU 7 to move from the

inefficient set to the efficient set.  DMU 8 however did not move to the efficient set as

expected.
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3.2.3.2 Roadmap for Developing and Solving the Fuzzy Model with AR

Constraints in Form 2

 For demonstrating this roadmap, we use the AR-DEA model developed by Taylor et al.

(1997) for calculating the efficiencies of 13 Mexican banks.

Step 1: The Bank Model and the Data

The model used in this study had total income (y1) as the single output. Total deposits (x1)

and total non-interest expense (x2) were the two inputs used to generate the output. The

data for thirteen Mexican commercial banks are shown in Table 3.18. These data were

obtained from the annual financial reports from these banks. Although Taylor et al.

(1997) solve the AR DEA problem for 3 years of data from 1989 to 1991 we develop and

solve the fuzzy model only for the year 1989 since the roadmap is for illustration

purposes only.

Bank Bank Deposits Non-int. Int. income
# Name (X1) expense plus non-int.

(X2) income (Y1)

1 Banamex 31451.9 1540.8 9648.5
2 Bancomer 24267.8 1491.1 9396.9
3 Serfin 16609 1072.6 6884.8
4 Internac 4109.14 561.6 1924
5 Cremi 1657.57 1842.5 2427.9
6 Banceser 2124 85.2 617.3
7 MercNort 1540 198.3 737.7
8 BCH 1750 152.3 907.9
9 Confia 1728.88 151.2 65.5
10 Bancern 1313.48 129.7 705.4
11 Promex 1410.97 173.5 674.3
12 Banoro 586.29 127.3 505.1
13 Banorie 302.14 45.3 211

Table 3.18 Input / Output Values for 13 Mexican banks in 1989 (Billions of Nominal
Pesos) – from Taylor et al. (1997)

Step 2: Determine "price/cost" ranges or AR bounds

The AR bounds are obtained from the range of nominal interest rates charged on loans

and paid on deposits in the portfolios of the thirteen banks. The nominal interest rate

ranges were determined using the following information:

•  The weighted average cost-of-funds for mortgage finance institutions,
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•  The average deposit rate on three-month term deposits and

•  The dealer money-market interest rate.

Table 3.19 shows the upper and lower bounds for the input and output multipliers that

were used in the AR analysis by Taylor et al. (1997). Since the second input (non-interest

expense) and the single output (total income) are expressed in price units (total nominal

pesos), their multipliers (weights) will not be prices. Therefore, we cannot use price

information to put bounds on the multipliers. The bounds are accordingly set to one.

1989 1990 1991
LB (lb) UB (ub) LB (lb) UB (ub) LB (lb) UB (ub)

Y1 1 1 1 1 1 1
X1 0.20874 0.51356 0.2207 0.60871 0.14973 0.42784
X2 1 1 1 1 1 1

Table 3.19 Upper and Lower "price/cost" Data Bounds for Multipliers in the Roadmap
Example illustrating the Fuzzy AR (Form 2) Model

The inflation rate in Mexico was relatively high during the study period. Due to this, the

interest rates were very volatile. The volatility makes the ranges of prices shown in Table

3.19 uncertain. To model the uncertainty in the bounds, we replace them by fuzzy

numbers.

Step 3: Determine the fuzzy bounds

In order to define the fuzzy numbers used in the model, we need to define the most

desirable bound values and the least desirable values. Since the model is being solved for

the 1989 data, the price/cost ranges prevalent in that year (from Table 3.19) will be used

as the most desirable values for the fuzzy bounds. For determining the least desirable

bounds, we need price/cost values that are different from values prevalent in 1989. Since

the price/cost information for the years 1990-91 is readily available, we use it to

determine the least desirable bound values. From Table 3.19, we observe that the 1991

price/cost values are lower than those for 1989 and therefore can be used as the least

desirable lower ends (lb – p and ub – p) of the fuzzy numbers. We also observe that the

1990 values are higher than those for 1989 and can be used as the least desirable upper
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ends (lb + q and ub + q) of the fuzzy numbers. Table 3.20 shows the bound values that

are plugged into model (3.61).

lb ub lb + q ub + q lb - p ub - p

X1 0.20874 0.51356 0.2207 0.60871 0.14973 0.42784

X2 1 1 1 1 1 1

Table 3.20 Least Desirable Weight Bound Values for the Roadmap Example Illustrating
the Fuzzy AR (Form 2) Model

Model (3.61) is solved for six different values of λ (0, 0.2, 0.4, 0.6, 0.8, 1) where λ

represents the degree of closeness to the specified bound value. Table 3.21 compares the

results of the model using different values of λ with the results obtained by Taylor et al.

(1997) for the crisp AR model (λ=1).

Bank Bank
# Name Unbounded Crisp AR

CCR
1 Banamex 0.914 0.588 0.58625 0.58415 0.58209 0.58007 0.57808
2 Bancomer 0.971 0.708 0.70617 0.70394 0.70174 0.69959 0.69747
3 Serfin 1 0.75 0.74737 0.74508 0.74283 0.74062 0.73844
4 Internac 0.709 0.67 0.66921 0.66835 0.66751 0.66667 0.66585
5 Cremi 1 0.764 0.75446 0.74426 0.73385 0.72321 0.71233
6 Banceser 1 0.577 0.57503 0.57278 0.57058 0.56843 0.56631
7 MercNort 0.751 0.702 0.70057 0.69956 0.69857 0.69758 0.69661
8 BCH 1 0.867 0.86495 0.86286 0.8608 0.85878 0.85678
9 Confia 0.74 0.642 0.64085 0.6393 0.63779 0.63629 0.63482

10 Bancern 0.972 0.863 0.86152 0.85969 0.8579 0.85613 0.85439
11 Promex 0.769 0.712 0.71106 0.70995 0.70885 0.70777 0.70671
12 Banoro 1 1 1 1 1 1 1
13 Banorie 1 0.962 0.96147 0.96047 0.95949 0.95853 0.95757

Average 0.9021667 0.736917 0.734787 0.732493 0.730209 0.727928 0.725649

Efficiency Scores
Fuzzy AR

0=λ2.0=λ4.0=λ6.0=λ8.0=λ1=λ

Table 3.21 Comparison of Efficiency Scores of Unbounded CCR model, Crisp AR
model and the Fuzzy AR (Form 2) model for the Roadmap Example

We use the two sample paired t test to compare the results of the crisp AR model with

those of the fuzzy AR model. The results of the t tests are shown in Table 3.22.
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λ=0.8 λ=0.6 λ=0.4 λ=0.2 λ=0
P – value 0.005014 0.004491 0.004605 0.004852 0.005162
Result of
hypothesis

Reject null
at α=0.01

Reject null
at α=0.005

Reject null
at α=0.005

Reject null
at α=0.005

Reject null
at α=0.01

Conclusion Difference
in efficiency

scores
significant

Difference
in efficiency

scores
significant

Difference
in efficiency

scores
significant

Difference
in efficiency

scores
significant

Difference
in efficiency

scores
significant

Table 3.22 Results of the Two Sample Paired t Test comparing the Efficiency Scores of
the Crisp and Fuzzy AR (Form 2) Models for the Roadmap Example

Although the difference between the efficiency scores using the fuzzy AR and crisp AR

models is statistically significant, the difference is not very obvious when one eyeballs

the results. The difference is apparent only beyond the second decimal place. Because of

the small difference between the efficiency scores, the results do not provide the

decision-maker with as much insight as did the results of the previous two fuzzy models.

This is in direct contrast to the assumptions made by us (not stated) that the fuzzy model

corresponding to AR in Form 2 is more elegant and easier to solve compared to the one

corresponding to Form 1 AR. We call the fuzzy model with AR constraints in Form 2 as

more elegant because it uses triangular membership functions, which represent the true

notion of "close to the specified bounds" and allow us to model the imprecision on both

sides of the specified bounds. The reason we think this type of model is easier to solve

compared to the fuzzy model with Form 1 AR constraints is that it does not require

solving three LP's before getting to the solution and it does not require using the

parametric algorithm.

The triangular membership function, which was thought to be this model’s greatest

strength, turned out to be it’s greatest weakness. That’s because, while one end of the

triangular membership function which tightens the bounds has the effect of decreasing

the objective function (efficiency scores), the other end which relaxes the bounds has the

effect of increasing the objective function. The overall effect is that the objective function

changes very little. This explains why the efficiency scores calculated by the fuzzy (Form

2) AR model are not very diferent from those calculated by the corresponding crisp

model.
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Chapter 4

APPLICATION, RESULTS, AND DISCUSSION

In this chapter, we illustrate the three fuzzy models developed in Chapter 3 by applying

them to data sets from the DEA literature on crisp weight restriction models. Table 4.1, at

a glance, provides information about the source of the data set used for illustrating each

fuzzy weight restriction model.

Fuzzy Weight Restriction Model Source of Data Set

Absolute Weight Restriction Model (see

Section 3.1)

A DEA Model for Measuring the Relative

Efficiency of Highway Maintenance Patrols

– Cook et al. (1990)

AR-DEA model with AR Bounds in

Form 1 (usually determined based on

expert opinion) (see Section 3.2.1)

Measuring Technical Efficiency in a Fuzzy

Environment 17– Girod (1996)

AR-DEA model with AR Bounds in

Form 2 obtained Using "price/cost" Data

(see Section 3.2.2)

DEA/Assurance region SBDC Efficiency and

Unique Projections – Thompson et al.

(1996a)

Table 4.1 Sources of Data Sets for Illustrating the Fuzzy Weight Restriction Models

This chapter is divided into three sections, with each section dedicated to one type of

fuzzy weight restriction model. At the beginning of each section, some background

information about the data set is provided. This is followed by a discussion on how the

weight bounds for that data set were determined. Then, fuzzy weight bounds are

determined and applied to the same data set. Finally, the section is concluded by

comparing the results of the fuzzy weight restriction model with those of the

corresponding crisp model.

                                               
17 In this reference, no weight restriction model is solved. However, information about the relative
importance of the inputs was available. This information was used to set crisp and fuzzy bounds.
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4.1 FUZZY ABSOLUTE WEIGHT RESTRICTION MODEL

APPLIED TO MEASURING RELATIVE EFFICIENCY OF

HIGHWAY MAINTENANCE PATROLS

4.1.1 Background

Cook et al. (1990) used DEA to measure the relative efficiency of 14 highway

maintenance patrols. Two inputs and two outputs were included in the analysis. The first

output called the assignment size factor was a composite measure of all factors that were

indicators of the "size of the system" such as surface, shoulder, right of way and median,

and winter operations. The other output was the Average Traffic Serviced. The two

inputs included in the analysis were Total Expenditure and Average Pavement condition

Rating. In the first run of the model, the weights were allowed to vary freely. The results

of the unbounded runs are shown in Table 4.2.

DMU Efficiency u1x105 u2 x105 v1 x105 v2 x105

1 1 1436 10 913 4690
2 0.999 1621 10 1030 5292
3 0.803 1760 10 1688 1312
4 1 1623 10 1557 1210
5 0.86 1535 10 976 5013
6 0.931 2087 10 2246 10
7 0.885 1585 2501 1804 10
8 1 2032 10 2187 10
9 0.913 1635 10 1039 5339
10 0.724 1778 10 1130 5806
11 0.874 708 17883 1697 10
12 1 389 9815 930 10
13 1 808 3291 90 12208
14 0.619 742 13041 1114 2805

Table 4.2 Unbounded Weight Matrix for Highway Maintenance Patrol Data from Cook
et al. (1990)

After investigating the weight matrix of the unbounded run, the authors found that

different DMUs were assigning vastly different weights to the same factor. For example

u2 = 0.00001 for DMU#1 but u2 = 0.017883 for DMU#11 i.e. patrol #11 was allowed to
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attach much greater importance to the second output compared to patrol #1. Based on this

observation, the authors reached the agreement that although some degree of flexibility is

desirable to enable the DMUs to express their own circumstances, the flexibility should

fall within some reasonable limits. These limits were imposed in the absolute weight

restrictions model.

4.1.2 Crisp Absolute Weight Restrictions Model

Using the weight matrix in Table 4.2, Cook et al. (1990) determined the absolute weight

bounds, which are shown in Table 4.3.

u1 u2 v1 v2

Upper Bounds 2100 10000 2500 6000
Lower Bounds 800 500 900 300
Table 4.3 Absolute Weight Bounds Used by Cook et al. (1990)

The model was solved again with the weights controlled by bounds. The results of the

bounded model are shown in Table 4.4.

DMU Efficiency
1 1
2 0.995
3 0.8
4 1
5 0.854
6 0.929
7 0.884
8 1
9 0.91
10 0.722
11 0.803
12 0.913
13 0.876
14 0.614

Table 4.4 Results of the Crisp Absolute Weight Restrictions Model from Cook et al.
(1990)

The consequences of imposing weight bounds were:

•  All efficiency ratings fell below the previous (unbounded) levels.
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•  DMUs 12 and 13, which were on the frontier in the unbounded model, fell below the

frontier.

4.1.3 Fuzzy Absolute Weight Restrictions Model

To model the uncertainty associated with the bound values shown in Table 4.3, we

replace them with fuzzy numbers. Fuzzy numbers are sets in which different members

have different degrees of membership. As stated in section 3.1.1.1, the most desirable

values (values with highest degree of membership) in the fuzzy numbers will be the user

specified crisp bounds from Table 4.3. As stated in section 3.1.1.1, the least desirable

values will be determined from the unbounded weight matrix using Method II.

The least desirable upper and lower bounds will be the highest and lowest values

respectively assigned to the weights by the efficient DMUs. In other words, the least

desirable bound values are such that they allow all efficient DMUs in the unbounded run

to remain efficient in the bounded run. They are referred to as least desirable bounds

because by allowing unreasonable multipliers to dominate the analysis, they defeat the

purpose of imposing weight bounds. Looking at the unbounded weight matrix in Table

4.2, we see that u1 varies from 389 to 2032 for efficient DMUs. Therefore, we assign 389

as the least desirable lower bound and 2032 as the least desirable upper bound for u1. The

least desirable bounds for other factors are calculated on similar lines and displayed in

Table 4.5.

Multiplier u1 u2 v1 v2

Least
Desirable
Upper Bound

2032 9815 2187 12208

Least
Desirable
Lower Bound

389 10 90 10

Table 4.5 Least Desirable Upper and Lower Bounds for the Absolute Weight Bound
Model from Cook et al. (1990)

Comparing Table 4.5 with Table 4.3, we see that in some cases (e.g. upper bounds on u 1,

u2, and v1), the most desirable bounds are more permissive than the least desirable
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bounds. In section 3.1.1.1, we showed that for the fuzzy model to seek a compromise

between maximization of the efficiency scores and maximization of the satisfaction of the

decision-maker with the bounds, the least desirable bounds should be more relaxed

compared to the most desirable bounds. Hence, we do not use the values in Table 4.5 as

least desirable upper bounds on u1, u2 and v1. In fact, since we think that the existing

bounds themselves are so lenient, we allow the upper bounds on u1, u2 and v1 to remain

crisp. Thus, the only bounds, which we replace by fuzzy numbers, are the lower bounds

of all weights and the upper bound of v2.

The lower bound on the objective function, f1, is obtained by using the following weight

bound constraints:

6000300

2500900

10000500

2100800

2

1

2

1

≤≤
≤≤
≤≤
≤≤

v

v

u

u

(4.1)

Similarly, the upper bound of the objective function, f0, is obtained when the following

weight bound constraints are used:
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Finally, the objective function of the crisp equivalent of the fuzzy model is obtained by

using the following set of constraints:
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The coefficients of λ in equation (4.3) are the differences between the bound values in

(4.2) and (4.1). Table 4.6 compares the results of the fuzzy model with those of the crisp

model from Table 4.3.

Efficiency
DMU

Crisp model Fuzzy model λ
1 1 1 1
2 0.995 0.997 0.5
3 0.8 0.802 0.4
4 1 1 1
5 0.854 0.857 0.5
6 0.929 0.930 0.4
7 0.884 0.884 0.4
8 1 1 1
9 0.91 0.912 0.5
10 0.722 0.723 0.5
11 0.803 0.840 0.4
12 0.913 1.000 0.7
13 0.876 0.952 0.5
14 0.614 0.617 0.6

Avg. 0.879 0.894
Table 4.6 Comparison of Efficiency Scores of Crisp and Fuzzy Absolute Weight

Restriction models applied to the Highway Maintenance Patrol Data from
Cook et al. (1990)

Note that for each DMU, the efficiency score obtained using the fuzzy model is greater

than that obtained using the crisp model. Especially notable is DMU 12, which moved

from the inefficient set to the efficient set when the bounds were changed from crisp to

fuzzy. DMU 12 is the best example of a borderline DMU that was penalized by the

imprecision in bound values and was rescued by the fuzzy model. The average efficiency

using crisp bounds is 0.879 while that using fuzzy bounds is 0.894.

To check if the difference in efficiency scores calculated by the two models is

significantly greater than 0, we use the paired two Sample t-Test for means (Bain and

Engelhardt (1992)). The details of the test are H0: E2-E1=0; Ha: E2-E1>0 where E2 is the

average efficiency score generated by the fuzzy model and E1 is the average efficiency

score generated by the crisp bounded model. The result of the test is a p-value of 0.037
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allowing us to reject the null hypothesis using an α value of 0.05. Consequently, we

accept the alternative hypothesis that the efficiency scores obtained using the fuzzy

model are significantly greater than those obtained using the crisp model. The detailed

results of the test are shown in Table 4.7.

Fuzzy
Model

Crisp
Model

Mean 0.894 0.879
Variance 0.014 0.013
Observations 14 14
Pearson Correlation 0.968
Hypothesized Mean Difference 0
Df 13
t Stat 1.938
P(T<=t) one-tail 0.037
t Critical one-tail (assuming α = 0.05) 1.771
Table 4.7 Results of t-Test: Paired Two Sample for Means comparing the Efficiency

Scores of the Crisp and Fuzzy Absolute Weight Restriction Models applied
to the Highway Maintenance Patrol Data from Cook et al. (1990)

Clearly, t stat > t critical allowing us to reject the null hypothesis.

4.2 FUZZY AR (Form 1) DEA MODEL APPLIED TO

EVALUATING  PRODUCTIVE  EFFICIENCY OF A

NEWSPAPER PREPRINT INSERTION PROCESS

4.2.1 Background

Girod (1996) uses a fuzzy set-based methodology to accommodate the measurement

inaccuracies associated with production plans generated by a newspaper preprint

insertion manufacturing process. Because the values of the inputs and outputs are

imprecise, he replaces them with fuzzy numbers. The membership functions of these

fuzzy numbers vary between the risk free and impossible bounds. The risk free bound for

a particular input or output is the most pessimistic value of that input or output. The

impossible bound is the most optimistic value. Naturally, the risk free bound corresponds

to a membership grade of 1 and the impossible bound corresponds to a membership grade
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of 0. In addition to the risk-free and impossible values for all inputs and outputs, Girod

(1996) also calculates intermediate values, which he obtains by varying the membership

grade between 0 and 1 in increments of 0.2.

In the current research, we are looking at fuzzy weight bounds and not fuzzy input/output

data. Therefore, we assume that the input/output data is crisp. To be able to use the data

from Girod (1996) for this research, we need to pick one set of values for each factor

from the available range. The natural choice is the central value, which happens to be the

value corresponding to a membership grade of 0.6.

The production process analyzed in this paper is the “Newspaper preprint insertion

process”. Newspaper preprint insertion involves merging incoming newspaper sections

and commercial preprints into bundles ready for delivery to newspaper distributors. All

newspapers are divided into two major sections - the news section and the nonnews

sensitive section. The commercial preprints are inserted in the nonnews sensitive section

referred to as NNSS from this point onwards. The preprint insertion typically occurs only

once a week. Production data was gathered for 48 weeks. The preprint insertion line

analyzed by Girod (1996) works as follows.

Two line operators manually position NNSS’s on a mechanical loader that conveys them

to a feeding hopper that in turn feeds them into the preprint insertion machine’s steel

pockets. Once in the steel pocket, the NNSS fold is mechanically opened. In the

meantime, other line-operators position commercial pamphlets into the preprint insertion

hoppers which drop the inserts in the NNSS fold, producing the intermediate packages.

Girod (1996) considered three inputs and one output for the study. The first input is direct

labor and is defined as the number of hourly workers dedicated to the preprint insertion

production line multiplied by the total production time and the worker hourly rate. This

input is fuzzy because the varying package mix causes the manpower requirements to

fluctuate from week to week.
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The second input used is rework. Rework represents the number of packages that would

have to be reprocessed if the preprint-inserting machine produced only accurate

packages. It is a proxy variable for the amount of labor that would have to be committed

to retrieving nonconforming packages from the production stream and reworking them.

The objective of including this input is to minimize the number of defective packages.

There are two types of preprint defects – "preprint misses" (no preprint inserted) and

"preprint multiples" (more than one preprint inserted). Therefore, rework is defined as the

number of "preprint misses" plus the number of "preprint multiples". Both types of

defects are recorded by sensors. Unfortunately, the sensor for only one of the types is

accurate. The sensor for the other type is inaccurate and therefore this input is treated as

fuzzy.

The third input, called raw material, is included to ensure that the waste of NNSS’s due to

defects is minimized. The NNSS waste, which is the difference between the number of

NNSS’s at the start and the number of defect-free packages at the end, is captured by the

raw material variable. There are three types of NNSS defects: miss, multiple; or

unopened. These defects are detected and recorded by a sensor at the end of the line.

Since the sensor is inaccurate, this input is also treated as fuzzy.

The output variable for the line is defined as the quantity of packages produced by the

preprint insertion line per production day minus the amount of incomplete packages.

Incomplete packages are caused by preprint shortages.

4.2.2 Crisp AR (Form 1) DEA Model

In Girod (1996), no bounds were imposed on the multipliers. For the purpose of this

research, the decision-makers were asked to provide pertinent information for setting the

AR bounds. The decision-makers were of the opinion that conserving the labor input was:

a) 1.5 as important as conserving the rework input and

b) twice as important as conserving the raw material input.
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Based on this information, the following crisp AR bounds were applied to the

Washingtonpost production data.
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vv

vv
(4.4)

The data had to be normalized before applying the above bounds. The pre and post

normalization data can be found in Appendix A. Table 4.8 compares the results of the

bounded model with the results of the unbounded model calculated by Girod (1996).
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Efficiency ScoresDMU
Unbounded Bounded

1 1.000 0.744
2 0.716 0.665
3 0.892 0.871
4 0.605 0.582
5 0.716 0.591
6 0.956 0.836
7 0.815 0.729
8 0.845 0.539
9 0.939 0.809

10 0.642 0.560
11 0.716 0.715
12 0.759 0.540
13 0.673 0.645
14 0.677 0.523
15 0.772 0.522
16 0.705 0.439
17 0.631 0.489
18 0.713 0.537
19 1.000 1.000
20 0.582 0.536
21 0.510 0.508
22 0.438 0.431
23 0.805 0.765
24 0.893 0.693
25 0.928 0.750
26 0.872 0.613
27 1.000 0.879
28 0.620 0.566
29 0.983 0.777
30 0.932 0.825
31 0.955 0.789
32 0.862 0.639
33 0.740 0.623
34 0.908 0.748
35 0.964 0.691
36 0.927 0.776
37 0.936 0.835
38 0.758 0.624
39 0.848 0.746
40 0.807 0.731
41 0.720 0.644
42 0.816 0.782
43 0.726 0.585
44 0.614 0.437
45 0.687 0.537
46 0.690 0.394
47 0.962 0.801
48 1.000 1.000

Average 0.797 0.668
Table 4.8 Comparison of Results of Unbounded and AR DEA Models for the

Washingtonpost Data from Girod (1996)
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4.2.3 Fuzzy AR (Form 1) DEA Model

The decision-makers admit that conditions a) and b) are based on subjective opinion as

opposed to precise information. This implies that the bound values in (4.4) could be

imprecise. To model the imprecision, we propose to replace the crisp bounds by fuzzy

bounds. According to the decision-makers, condition a) can be violated to the extent of

0.5 and condition b) can be violated to the extent of 1. Based on this information, the

following fuzzy AR constraints are created:
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In Table 4.9, the results of the fuzzy AR model, which applies these constraints to the

Washingtonpost data, are compared with the results of the crisp AR model.
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Efficiency ScoresDMU
Crisp AR Fuzzy AR

1 0.744 0.779
2 0.665 0.676
3 0.871 0.886
4 0.582 0.594
5 0.591 0.612
6 0.836 0.849
7 0.729 0.751
8 0.539 0.570
9 0.809 0.823

10 0.560 0.576
11 0.715 0.716
12 0.540 0.574
13 0.645 0.655
14 0.523 0.556
15 0.522 0.571
16 0.439 0.485
17 0.489 0.520
18 0.537 0.578
19 1.000 1.000
20 0.536 0.558
21 0.508 0.510
22 0.431 0.436
23 0.765 0.771
24 0.693 0.736
25 0.750 0.778
26 0.613 0.643
27 0.879 0.923
28 0.566 0.597
29 0.777 0.809
30 0.825 0.865
31 0.789 0.833
32 0.639 0.682
33 0.623 0.657
34 0.748 0.785
35 0.691 0.739
36 0.776 0.819
37 0.835 0.874
38 0.624 0.659
39 0.746 0.773
40 0.731 0.752
41 0.644 0.674
42 0.782 0.806
43 0.585 0.616
44 0.437 0.463
45 0.537 0.563
46 0.394 0.430
47 0.801 0.845
48 1.000 1.000

Average 0.668 0.695
Table 4.9 Comparison of Efficiency Scores of Crisp and Fuzzy AR Models applied to

the WashingtonPost Data from Girod (1996)



159

We observe that for each DMU, the efficiency score increases when we change the

bounds from crisp to fuzzy. To check if the increase in efficiency scores is significant, we

apply the paired two-sample t test for means (Bain and Engelhardt (1992)). The results of

the test are shown in Table 4.10 below.

Fuzzy AR Crisp AR
Mean 0.695137 0.667951
Variance 0.020684 0.021151
Observations 48 48
Pearson Correlation 0.995366
Hypothesized Mean
Difference

0

Df 47
t Stat 13.43801
P(T<=t) one-tail 5.15E-18
t Critical one-tail 1.677927
Table 4.10 Results of Paired Two sample t-test for Means comparing the Efficiency

Scores of the Crisp and Fuzzy AR Models applied to the WashingtonPost
Data

Based on the above table, we can reject the null hypothesis and accept the alternative

hypothesis that the efficiency scores obtained using the fuzzy AR model are significantly

greater than the efficiency scores obtained using the crisp AR model.

4.3 FUZZY AR (Form 2) DEA MODEL APPLIED TO MEASURING

THE EFFICIENCY OF SMALL BUSINESS DEVELOPMENT

CENTERS (SDBCs)

4.3.1 Background

Thompson et al. (1996a) used the DEA and AR methods to measure the relative

efficiency of 13 Small Business Development Centers (SDBCs) of the University of

Houston (UH) for the years 1991 and 1992. An SBDC conducts research; consults with

business owners at no cost; provides training to business people in management, finance,

and operations of small businesses; and provides comprehensive information services and

access to experts in numerous fields. It was decided to measure the efficiency of the
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SDBCs to ensure efficient allocation of resources, which had been far exceeded by the

demand for the services of the SDBCs. However, no standardized objective for a fair

evaluation of all SBDC programs could be arrived at because SDBCs in different

locations had different objectives and different priorities. Because of this variety and

flexibility in the SBDC services, DEA was an ideal tool for evaluating their performance.

The objective of applying the DEA/AR model to the UH SBDC data, according to the

authors, was to evaluate the relationship of an efficient use of distributed resources to a

quantifiable result.

The study period was three years (1990-92). Two models were considered in the study --

Model I and Model II. The difference between these models was that Model II had an

additional input for which data was available only for the last year of the study period.

Thus, Model I was applied to all three years of study (1990-92) and Model II was applied

to only the third year (1992). In this research, we will focus only on Model II, applied to

the data for 1992 since Model II has more number of inputs and the year 1992 has more

number of DMUs. The outputs and inputs used in Model II, are as follows:

Outputs:

•  Total number of clients – y1

•  Total number of training hours – y2

•  Total number of counseling hours – y3

Inputs:

•  Total amount of federal funds allocated – x1

•  Population density – x2

The actual data values for the year 1992 can be found in the Appendix A. The results of

the unbounded Model II are shown in Table 4.11:
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DMU CCR Efficiency
- 1992

1 1
2 0.57
3 0.69
4 0.66
5 1
6 1
7 0.76
8 1
9 0.54
10 1
11 0.68
12 1
13 0.66

Avg. 0.81
Table 4.11 Efficiency Scores for the Unbounded Model II applied to the SBDC Data

from Thompson et al. (1996a)

4.3.2 The Crisp AR (Form 2) Model

The AR bounds were determined using the price/cost data ranges displayed in Table 4.12.

Factor Multiplier "Price/Cost" data range

y1 u1 $120 to $8,030

y2 u2 $87 to $4,075

y3 u3 $114 to $750

x1 v1 7.7%/yr to 15%/yr

x2 v2 10,000 to 15,300

Table 4.12 "Price/Cost" Data Ranges from Thompson et al. (1996a) for the SBDC Data

The AR constraints added to the CCR model based on the price/cost ranges stated in

Table 4.12 are as follows:
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In matrix (intersection) form, these constraints are represented as:
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It was found that when the AR model with the above set of constraints was solved, the

efficiency scores were very much different (much smaller) compared to those obtained by

Thompson et al. (1996a). Therefore, it was decided to drop the AR constraints on the

input weights. The results of the AR model with the AR constraints applied to just the

output weights are shown in Table 4.13.
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DMU AR Efficiency
1 1
2 0.383
3 0.367
4 0.263
5 1
6 1
7 0.370
8 0.835
9 0.448
10 0.993
11 0.646
12 0.333
13 0.628

Avg. 0.636
Table 4.13 Results of the AR DEA Model for 1992 SBDC Data from Thompson et  al.

(1996a)

4.3.3 The Fuzzy AR (Form 2) Model
In the proposed research, we assume that the price/cost ranges used to set AR bounds are

imprecise and to incorporate the imprecision in the modeling process, we replace the

crisp AR bounds by fuzzy AR bounds. Ideally, additional information about the

price/cost ranges should have been used to determine the fuzzy AR bounds. However,

Thompson et al. (1996a), do not provide any information as to how the price/cost ranges

were determined. Therefore, to determine the fuzzy bounds, we assume the imprecision

amount to be a certain percentage of the specified bound value. The following table gives

the percentage imprecision values assumed18 for each output price and the values of price

variations (p and q) calculated based on those percentages.

Output Multiplier Percentage
variation  on
either side

Lower bound on
price varies
between

p
and
q

Upper bound on
price varies
between

p and
q

y1 u1 5% 114 and 126 6 7628.5 and 8431.5 401.5

y2 u2 10% 78.3 and 95.7 8.7 3667.5 and 4482.5 407.5

y3 u3 15% 96.9 and 131.1 17.1 637.5 and 862.5 112.5

Table 4.14 Variation in Price/Cost Ranges assumed for determining Fuzzy Bounds on
the SBDC Data from Thompson et al. (1996a)

                                               
18 The percentages are arbitrarily assigned.



164

Figure 4.1 graphically depicts the fuzzy number corresponding to u1. Since we assume an

imprecision of 5% on either side of the price/cost range for y1, the lower bound on the

price, instead of being fixed at 120, will vary between 114 and 126 with the desirability

increasing between the values 114 and 120 (most desirable value) and then diminishing

between the values 120 and 126.

     1

     p = 6  q = 6

     0      114    120 126 Fuzzy lower bound on u1

Figure 4.1 Fuzzy Lower bound on u1 (price of output 1 for the SBDC Data from
Thompson et al. (1996a))

The values calculated in Table 4.14 are used as the least desirable values in the

definitions of the fuzzy numbers. The most desirable values are the ones specified by the

decision-makers in Table 4.12.

The fuzzy AR constraints added to the CCR model are as follows:
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Table 4.15 compares the results of the fuzzy AR model (for different values of λ) with

those of the crisp AR model from Table 4.13. Since λ represents the degree of

satisfaction of the decision-maker with the bounds, the higher the value of λ, the higher is

the degree of satisfaction.

Efficiency
Fuzzy ARDMU

λ=0.2 λ=0.4 λ=0.6 λ=0.8
Crisp AR

1 1 1 1 1 1
2 0.378 0.379 0.380 0.381 0.383
3 0.364 0.364 0.365 0.366 0.367
4 0.260 0.261 0.261 0.262 0.263
5 1 1 1 1 1
6 1 1 1 1 1
7 0.365 0.366 0.368 0.369 0.370
8 0.820 0.824 0.827 0.831 0.835
9 0.444 0.445 0.446 0.447 0.448

10 0.985 0.987 0.989 0.991 0.993
11 0.646 0.646 0.646 0.646 0.646
12 0.330 0.331 0.332 0.332 0.333
13 0.625 0.625 0.626 0.627 0.628

Average 0.632 0.633 0.634 0.635 0.636
Table 4.15 Comparison of Efficiency Scores of Crisp and Fuzzy bounds applied to the

1992 SBDC Data from Thompson et al. (1996a)



166

Notice that the efficiency scores obtained using the crisp AR model are higher than those

obtained using the fuzzy AR. This is contrary to the results of the previous two fuzzy

models (absolute weight restriction and AR Form 1). The explanation lies in the fact that

the forms of the membership functions of the fuzzy bounds in the previous models are

different from those used in this model. The membership functions of the fuzzy bounds

(see Figure 4.1) in this model allow variation on both sides of the specified bound while

the membership functions in the previous models allow variation in only that direction

which has the effect of relaxing the constraints. Therefore, the efficiency scores

calculated by the fuzzy model considered in this section could be either higher or lower

compared to the corresponding crisp model while those calculated by the fuzzy models

discussed earlier will always be higher compared to the corresponding crisp models.

To check if the efficiency scores obtained using the fuzzy models are significantly

different from those obtained using the crisp model, we use the paired two-sample t-test

for means. The results of the tests are shown in Tables 4.16 to Table 4.19.

Crisp AR Fuzzy AR -
Mean 0.6359 0.632001
Variance 0.08652 0.086597
Observations 13 13
Pearson Correlation 0.999906
Hypothesized Mean 0
Df 12
t Stat 3.476479
P(T<=t) one-tail 0.002288
t Critical one-tail 1.782287
Table 4.16 Results of Paired Two Sample t-Test comparing the Efficiency scores of the

Crisp AR and Fuzzy AR with λ=0.2 for the SBDC Data from Thompson et
al. (1996a)
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Crisp AR Fuzzy AR-
Mean 0.6359 0.6329285
Variance 0.08652 0.086576
Observations 13 13
Pearson Correlation 0.999945
Hypothesized Mean 0
Df 12
t Stat 3.4708382
P(T<=t) one-tail 0.0023119
t Critical one-tail 1.7822867
Table 4.17 Results of Paired Two Sample t-Test comparing the Efficiency scores for the

Crisp AR and Fuzzy AR with λ=0.4 for the SBDC Data from Thompson et
al. (1996a)

Crisp AR Fuzzy AR-
Mean 0.6359 0.6338854
Variance 0.08652 0.0865568
Observations 13 13
Pearson Correlation 0.9999747
Hypothesized Mean 0
Df 12
t Stat 3.4688929
P(T<=t) one-tail 0.0023202
t Critical one-tail 1.7822867
Table 4.18 Results of Paired Two Sample t-Test comparing the Efficiency scores of

Crisp AR and Fuzzy AR with λ=0.6 for the SBDC Data from Thompson et
al. (1996a)

Crisp AR Fuzzy AR -
Mean 0.6359 0.634875
Variance 0.08652 0.086537
Observations 13 13
Pearson Correlation 0.999993
Hypothesized Mean 0
Df 12
t Stat 3.467247
P(T<=t) one-tail 0.002327
t Critical one-tail 1.782287
Table 4.19 Results of Paired Two Sample t-Test comparing the Efficiency scores of the

Crisp AR and Fuzzy AR with λ=0.8 for the SBDC Data from Thompson et
al. (1996a)

In each of the above tests, we reject the null hypothesis thus accepting the alternative

hypothesis that there is a significant difference between the mean efficiency scores of the

crisp and fuzzy models.
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4.4 CONCLUSION

For each type of fuzzy model, it is found that the efficiency scores calculated by the

fuzzy model are significantly different from the efficiency scores calculated by the

corresponding crisp model. This implies that the operational decisions based on the

results of the fuzzy models will be different from those taken based on the results of the

crisp models. The fuzzy models ensure that the decisions are taken after the uncertainty

has been accounted for. The efficiency scores calculated by the fuzzy models represent a

compromise between maximization of the efficiency scores and the satisfaction of the

decision-maker with the bounds.
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Chapter 5

CONCLUSION

This chapter concludes the presentation of this research with the following three sections.

The first section summarizes the research effort of this thesis.  The second section

describes the major contribution of this research and includes some concluding

comments.  The third section outlines some recommendations for future research.

5.1 SUMMARY

This research has five objectives. The first objective is to minimize the effect of bound

uncertainty on the decision-making in Data Envelopment Analysis (DEA) by explicitly

incorporating the uncertainty in the modeling process through fuzzy weight restriction

DEA models. The second objective is to develop a solution methodology for those fuzzy

models. The third objective is to provide implementation roadmaps for illustrating the

proposed fuzzy models. The fourth objective is to apply the proposed models to the same

data sets as those used by corresponding crisp weight restriction models from the

literature and compare their results. The fifth objective is to use the results of the fuzzy

models to modify the specified bounds in order to move the borderline19 decision-making

units (DMUs) from the inefficienct set to the efficient set.

Although numerous types of weight restriction models have been developed in the DEA

literature, the following two are more commonly used compared to the rest:

1. The absolute weight restriction DEA model and

2. The Assurance Region DEA model.

Therefore, in this research, we focus our attention on only these two models.

Both these models suffer from the following two shortcomings:

1. Their weight bound values are imprecise and
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2. Their weight bound values are subjective. The subjectivity leads to different

decision-makers specifying different values for the bounds thus producing different

efficiency scores even though the data set is the same.

The results of the model are sensitive to the values of the bounds, and therefore, the

uncertainty (imprecision + subjectivity) in bound values gets passed onto the results of

the model. This becomes unacceptable when we consider the fact that DEA is a decision-

making tool whose results are used for making important decisions like allocating funds

or taking stringent action against inefficient DMUs.

The objective of this research is to explicitly incorporate the uncertainty in the modeling

process so that the effect of the uncertainty on the decision-making process is minimized.

Two approaches have been commonly used in the past to model uncertainty. The more

conventional approach is the stochastic approach that involves specifying a probability

distribution function (e.g. Normal) for the error process (Sengupta 1992). However, when

it comes to using stochastic processes for modeling the uncertainty in DEA problems,

there are certain drawbacks, as pointed out by Sengupta (1992). The more recent

approach for dealing with uncertainty has been the use of fuzzy set theory. Sengupta

(1992) was the first to incorporate fuzzy set theory in DEA by proposing a fuzzy

mathematical programming approach for dealing with imprecise data in DEA problems.

In the current research also, we propose to use fuzzy set theory for modeling the

uncertainty in weight bound values. Fuzzy set theory is introduced by replacing the crisp

weight bounds by fuzzy numbers. The justification is that the imprecise weight bounds

need to be represented as approximate numbers (i.e. "numbers close to the specified

values") and fuzzy numbers capture the intuitive concept of approximate numbers very

well (Yuan and Klir 1995).

                                                                                                                                           
19 These are DMUs whose membership in the efficient set is highly sensitive to slight changes in bound
values.
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A fuzzy number is a set of values (instead of a single value) close to the value that is

being approximated. Because a fuzzy number represents a range of values (instead of a

single value), it is likely to be a compromise between the bounds set by different

decision-makers. It is hypothesized that using fuzzy numbers for bounds will have an

added advantage of minimizing the sensitivity of the results to the subjectivity in the

bound values.

Using fuzzy numbers instead of crisp numbers for the bounds has an added advantage of

increasing the flexibility in the bound setting process because it allows the decision-

maker to specify a range of values instead of one value. The lack of flexibility in the crisp

weight restriction problems can often put the decision-maker in a tight spot especially

when enough information does not exist for him/her to make a crisp judgement.

In this research, we develop fuzzy models to model the bound uncertainty in the two most

commonly used weight restriction models, discussed earlier:

1. The DEA model with absolute weight restrictions (See Dyson and Thanasoulis

(1988), Roll et al. (1991), and Roll and Golany (1993)).

2. The Assurance Region (AR) DEA model (see Thompson et al. (1986), Thompson et

al. (1990)).

To illustrate the development and solution methodology of the fuzzy models, we make

use of implementation roadmaps. We further illustrate the fuzzy weight restriction

models by applying them to data sets from the weight restriction DEA literature. The

reason we choose the same data sets as those used by the crisp models in the literature is

to enable us to compare the results of the crisp models with those of our fuzzy model. We

also apply the fuzzy AR model to a real life manufacturing system in which sufficient

information is available to define both crisp and fuzzy bounds.

We compare the results of the fuzzy models with those of the corresponding crisp models

using the two sample paired t test for means (Bain and Engelhardt (1992)). In each case,

it is found that the difference between the efficiency scores generated by the fuzzy model
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are significantly different from the efficiency scores calculated by the corresponding

crisp model. This implies that the operational decisions based on the results of the fuzzy

models will be different from those taken based on the results of the crisp models. The

fuzzy models ensure that the decisions are taken after the uncertainty has been accounted

for. The efficiency scores calculated by the fuzzy model represent a compromise between

maximization of the satisfaction of the decision-maker with the bounds and maximization

of the efficiency scores.

In some cases, it is also found that DMUs move from the inefficient set to the efficient set

when the bounds are changed from crisp to fuzzy. In some of those cases, even a

relaxation of bounds to a 90% satisfaction level of the original values (i.e. just a 10%

relaxation of bounds) is enough to move some DMUs (referred to as borderline) from the

inefficient set to the efficient set. It is assumed that since the bound values are based on

incomplete information, the decision-maker would not resist changing them slightly if the

change is going to allow some DMUs to move from the inefficient set to the efficient set.

Thus, the fuzzy model gives the decision-maker a second chance to revise the bounds.

The objective of the proposed fuzzy model of trying to move the borderline DMUs from

the inefficient set to the efficient set is contrary to the objective of the research that has

been carried out so far in the field of weight restriction DEA. The objective of all past

weight restriction models has been to discriminate between the DMUs by reducing the

efficiency scores by making the bounds tighter and tighter. However, we are of the

opinion that since the results of DEA are used for making important decisions like

allocating funds or taking stringent action against inefficient DMUs, the model should be

fair to all DMUs. The conventional DEA model, in its purest form, is fair to all DMUs

since it does not impose any synthetic constraints on the weights and allows each DMU

to choose a set of weights which optimizes its performance. Imposing the bounds takes

away the fairness and brings in the bias of the decision-maker. On the other hand, getting

rid of the bounds, takes away the only opportunity the decision-maker has to express

his/her opinion about the relative importance of the factors. To resolve this dilemma, we

propose the fuzzy weight restriction model, which seeks a compromise between a
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bounded and unbounded DEA model. The proposed fuzzy model satisfies the decision-

maker by treating the bounds specified by him/her as most desirable and also allows all

DMUs to express their different circumstances to the best extent possible by stretching

the bounds.

5.2 RESEARCH CONTRIBUTION AND CONCLUDING

COMMENTS

Prior to this research, fuzzy set theory in DEA was restricted to modeling either the

imprecision in the realization of constraints and objective function (Sengupta (1992)) or

the imprecision in the input/output data (Triantis and Griod (1998)). This is the first time

fuzzy set theory was used to model the imprecision in the weight (multiplier) bound

values. In fact, this is the first time imprecision in bound values was ever considered or

modeled in DEA. The proposed approach ensures that decisions are taken after the

uncertainty has been accounted for.

As mentioned in the previous section, the fuzzy model helps in identifying borderline

DMUs i.e. DMUs, which could move from the inefficient set to the efficient set if the

bounds were only slightly relaxed. This gives the decision-maker a second chance to

change the bounds and do justice to the borderline DMUs. It should be noted that this

approach is very much different from a sensitivity analysis. In a sensitivity analysis, the

decision-maker studies the effect of moving the bounds on the efficiency scores.

Sensitivity analysis produces a range of efficiency scores for the given range of bound

values. The fuzzy approach produces only one value of efficiency score, which is the

maximum possible efficiency value at which the satisfaction of the decision-maker with

the bounds is maximized.

The research elucidates the fuzzy approach by providing a geometric representation of

the fuzzy bounds. The geometric representation helps bring out the intuition behind the

fuzzy approach.
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5.3 RECOMMENDATIONS FOR FUTURE RESEARCH

The current research can be extended and further investigated with respect to one or more

of its components, namely, fuzzy set theory, DEA, and weight restriction DEA.

With respect to fuzzy set theory, the suitability of the form of the membership function is

an issue of interest.  Moreover, the impact of the form of the membership function on the

efficiency results also warrants attention.  The physical interpretation of the membership

functions requires investigation. The linear membership function may not be satisfactory

in all applications. As further research, one could experiment with other forms of

membership functions like hyperbolic, logistic, S-shaped, etc.

In this research, we used the “intersection” or the “min” operator for aggregating the

degrees of satisfaction of the constraints and the membership function of the objective

function and arriving at the membership function of the fuzzy set “decision.” One of the

objections against the min operator (see Zimmermann and Zysno (1980)) is the fact that

neither the logical "and" nor the min operator is compensatory i.e. increases in the degree

of membership in the "intersected" fuzzy sets do not influence the membership in the

resulting fuzzy set (aggregated fuzzy set or intersection). To cure this weakness, the

(limitational) min operator as a model for the logical "and" can be combined with the

fully compensatory “max” operator as a model for the inclusive "or." Developing a model

in which the min and max operators are combined has a potential for further research.

There is also potential for combining the proposed approach with other fuzzy DEA

approaches like the one proposed by Sengupta (1992) or the one proposed by Triantis and

Girod (1998). If all constraints (including weight bound) and the objective function are

capable of being violated, we can combine our approach with Sengupta’s (1992)

approach. On the other hand, if in addition to the weight bound values, even the

input/output data are imprecise; we can combine our approach with the Triantis and

Girod (1998) approach.
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With respect to DEA, the approach could be applied to other DEA models apart from the

CCR model (e.g. BCC, FDH, etc.).

With respect to weight restriction DEA, the approach could be applied to other types of

weight restriction models like the Wong and Beasley (1990) model; the "contingent

weight restrictions" model proposed by Pedraja et al. (1997); or the "ordinal relations"

model proposed by Golany et al. (1990).
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Appendix A

DATA SETS

Table A.1 Highway Maintenance Patrol Data from Cook et al. (1990)

Table A.2 WashintonPost Preprint Insertion Line Data from Girod

(1996)

Table A.3 WashingtonPost Data Normalized.

Table A.4 Small Business Development Center (SBDC) Data from

Thompson et al. (1996a)
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182

183

184
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Patrol Assignment
Size Factor

Average
Traffic

Serviced

Total
Expenditure

Average
Pavement

Condition Rating
1 751 67 696 39
2 611 70 616 26
3 538 70 456 17
4 584 75 616 31
5 665 70 560 16
6 445 75 446 16
7 554 76 517 26
8 457 72 492 18
9 582 74 558 23
10 556 64 407 18
11 590 78 402 33
12 1074 75 350 88
13 1072 74 581 64
14 696 80 413 24

Table A.1 Highway Maintenance Patrol Data from Cook et al. (1990)
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Prod.
Period

Labor Rework RM Package

1 81 891 3105 68290
2 137 8245 7535 135912
3 71 11232 5709 112072
4 125 9634 7451 113281
5 121 6889 5548 100288
6 94 2997 5239 109138
7 147 11237 7725 159789
8 115 2837 3324 70314
9 86 2466 4473 93620
10 134 7989 6689 108329
11 104 5517 6458 114816
12 154 9938 5707 110757
13 100 6727 5830 98913
14 184 24813 7821 136878
15 187 25019 6581 131440
16 213 19589 6740 122799
17 170 13224 7197 116327
18 157 13559 6386 117373
19 41 5414 4154 82693
20 180 18193 10214 150834
21 176 15038 13391 153800
22 173 20424 14589 137414
23 113 4991 6302 126152
24 173 22727 7410 171139
25 127 6976 5635 132051
26 124 7515 4506 100233
27 129 14990 6646 171852
28 142 19470 7972 125699
29 147 9944 6375 159379
30 159 20673 8321 200038
31 158 16950 7377 182109
32 125 15161 5005 111538
33 140 14512 6783 129451
34 165 14393 7692 179118
35 187 32664 7132 177811
36 144 22463 6864 164597
37 155 18944 8248 198428
38 179 22150 8342 163419
39 174 14359 8930 192897
40 177 13359 9499 194364
41 200 28483 10694 197582
42 187 21969 12399 243260
43 232 20471 10485 195572
44 292 17521 10794 168828
45 233 17935 9988 175602
46 295 18632 8072 144030
47 87 10502 4145 103106
48 95 4742 5807 145253

Table A.2 WashintonPost Preprint Insertion Line Data from Girod (1996)
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Prod.
Period

Labor Rework RM Package

1 53.21 6.34 42.18 48.21
2 90.30 58.69 102.38 95.96
3 46.93 79.95 77.56 79.13
4 82.24 68.58 101.24 79.98
5 79.83 49.04 75.38 70.81
6 61.98 21.33 71.18 77.05
7 96.81 79.98 104.95 112.82
8 75.52 20.20 45.16 49.64
9 56.87 17.55 60.78 66.10
10 88.35 56.86 90.88 76.48
11 68.33 39.27 87.75 81.06
12 101.65 70.74 77.54 78.20
13 66.11 47.88 79.22 69.84
14 121.01 176.62 106.26 96.64
15 122.99 178.08 89.41 92.80
16 140.32 139.43 91.57 86.70
17 112.16 94.12 97.79 82.13
18 103.02 96.51 86.77 82.87
19 26.85 38.54 56.44 58.38
20 118.35 129.49 138.77 106.49
21 115.71 107.04 181.93 108.59
22 113.78 145.37 198.22 97.02
23 74.66 35.52 85.62 89.07
24 114.15 161.76 100.68 120.83
25 83.85 49.66 76.57 93.23
26 81.63 53.49 61.22 70.77
27 84.99 106.69 90.30 121.33
28 93.63 138.58 108.32 88.75
29 97.00 70.78 86.61 112.53
30 104.95 147.15 113.05 141.23
31 103.66 120.64 100.22 128.57
32 82.17 107.91 67.99 78.75
33 92.26 103.30 92.16 91.40
34 108.51 102.45 104.51 126.46
35 122.99 232.49 96.90 125.54
36 94.58 159.89 93.26 116.21
37 102.30 134.84 112.06 140.10
38 117.71 157.66 113.33 115.38
39 114.33 102.20 121.33 136.19
40 116.73 95.09 129.06 137.23
41 131.65 202.73 145.29 139.50
42 122.99 156.37 168.46 171.75
43 152.79 145.71 142.46 138.08
44 192.33 124.71 146.66 119.20
45 153.64 127.65 135.70 123.98
46 194.09 132.62 109.67 101.69
47 57.59 74.75 56.31 72.80
48 62.31 33.76 78.90 102.55

Table A.3 WashingtonPost Data Normalized
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SBDC # of Clients # of Training
Hrs.

# of Counseling
Hrs.

Federal Funds Population
Density

1 162970 4872 1454 128 10087
2 95960 3610 421 47 1173
3 115314 2987 434 69 1611
4 115573 1431 288 59 844
5 70450 303 496 43 3582
6 69637 75 159 18 985
7 54275 295 186 26 500
8 108553 1235 960 52 1984
9 93207 273 257 10 1014
10 48800 43 106 17 359
11 39209 112 110 13 886
12 46000 1475 148 54 597
13 36482 52 71 8 334

Table A.4 Small Business Development Center (SBDC) Data from Thompson et al.
(1996a)
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Appendix B

SAS CODES

B.1 SAS CODE FOR THE ROADMAP EXAMPLE OF SECTION

3.1.3 ILLUSTRATING THE FUZZY ABSOLUTE WEIGHT

RESTRICTION DEA MODEL

B.2 SAS CODE FOR ROADMAP EXAMPLE OF SECTION

3.2.3.1 ILLUSTRATING THE FUZZY MODEL WITH AR

CONSTRAINTS IN FORM 1

B.3 SAS CODE FOR THE ROADMAP EXAMPLE OF SECTION

3.2.3.2 ILLUSTRATING THE FUZZY MODEL WITH AR

CONSTRAINTS IN FORM 2

B.4 SAS CODE FOR SOLVING THE FUZZY ABSOLUTE

WEIGHT RESTRICTION DEA MODEL APPLIED TO THE

HIGHWAY MAINTENANCE PATROL DATA FROM

COOK ET AL. (1990)

B.5 SAS CODE FOR THE FUZZY AR (FORM 1) DEA MODEL

APPLIED TO THE WASHINGTONPOST DATA

B.6 SAS CODE FOR THE FUZZY AR (FORM 2) DEA MODEL

APPLIED TO THE SDBC DATA FROM THOMPSON ET

AL. (1996a)

186

198

211

215

227

238
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B.1 SAS CODE FOR THE ROADMAP EXAMPLE OF SECTION

3.1.3 ILLUSTRATING THE FUZZY ABSOLUTE WEIGHT

RESTRICTION DEA MODEL

The roadmap example in section 3.1.320 used to illustrate the fuzzy absolute weight

restriction DEA model, requires solving the following three LPs in the given sequence.

The first LP, which is used to calculate f1 values for all DMUs, uses the most desirable

weight bound values in the weight bound constraints (B):
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The following LP, which is used for obtaining f0 values, uses the least desirable weight

bound values in the weight bound constraints ( B):

                                               
20 Although this roadmap example is solved with two different sets of least desirable bounds, here we
describe the SAS code only for the model with least desirable bounds determined using Method II. The
SAS code for the model with the least desirable bounds determined using Method I is the same with the
exception of the values of the bounds.
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Finally, the following crisp equivalent of the fuzzy model is solved:

 

0,

10

)006106.0001884.0()0009489.00009489.0(

)0002985.000009255.0()00004662.000004662.0(

)0001977.00000543.0()00002735.000002735.0(

)003784.0001866.0()0007341.00009401.0(

.............................)7499.0769018.0()3874.03874.0(

)0002714.000003056.0()0000154.00000154.0(

)00004765.000004495.0()00002264.000002264.0(

...............       0  -

....................................1

....................)(

..

 

040

030

020

010

030

020

010

T

0

1010

≥
≤≤

+≤≤−
+≤≤−

+≤≤−
+≤≤−

+≤≤−
+≤≤−

+≤≤−

∀≤

=

−≤

ηµ
λ

ληλ
ληλ

ληλ
ληλ

λµλ
λµλ

λµλ

ηµ

η

µλ

λ

TT

TT

TT

TT

BTT

TT

TT

MjXY

NX

FfY -  - ff

ts

Max

T

T

T



188

Note that this model is a quadratic-programming model because its weight bound

constraints (B) contain expressions in which two variables are multiplied to each other.

Since one of these variables is λ and we know the range of variation of λ, we can use the

parametric algorithm described in section 3.1.1.5.4 to solve it. Steps 1,3 and 8 of the

algorithm require us to solve the model with λ fixed at a certain value. This is tantamount

to solving an LP with a fixed objective function since λ is the objective function of the

crisp equivalent LP. We cannot solve an LP with a fixed objective function. Therefore,

we need to modify the model so that the objective function contains an expression

involving decision variables as opposed to a fixed value. The most logical choice for the

objective function is the efficiency term. The modified model, which can now be solved

using the parametric algorithm, is as follows:
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Instead of using the parametric algorithm directly, we solve the model for different values

of λ between 0 and 1 at intervals of 0.1 and choose the solution corresponding to the

maximum feasible value of λ. The justification is that this technique is easier to
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implement using SAS compared to the parametric algorithm and gives the same solution

as the parametric algorithm using ε = 0.1.

The description of the constraint types used in the three LP's is as follows:

F – Constraint introduced by the membership function of the objective function

N – Normalization Constraint

M – Main set of Constraints

B – Weight Bound Constraints

All three LPs are solved in the same SAS code. The code with embedded descriptions of

the data sets is as follows:

data bound1;
input UM1 UM2 UM3 UN1 UN2 UN3 UN4 LM1 LM2 LM3 LN1 LN2 LN3 LN4 pUM1
pUM2 pUM3 pUN1 pUN2 pUN3 pUN4 pLM1 pLM2 pLM3 pLN1 pLN2 pLN3 pLN4;
cards;
0.0000926 0.000302 1.51888 0.00565 0.000252 0.000391 0.00799 0 0 0 0.000206 0 0 0
0.00004765 0.00027144 0.749862 0.003784 0.0001977 0.00029845 0.006106
0.00002264 0.0000154 0.3874 0.0007341 0.00002735 0.00004662 0.0009489
;
**This data set contains the least desirable weight bounds determined using Method II 21.
The values with prefix 'p' are the differences between the least desirable upper (most
desirable lower) bounds and the most desirable upper (least desirable lower) bounds.
These values will be the coefficients of lambda in the weight bound constraints (B) of the
final LP.

data bound2;
input UM1 UM2 UM3 UN1 UN2 UN3 UN4 LM1 LM2 LM3 LN1 LN2 LN3 LN4;
cards;
0.00004495 0.00003056 0.769018 0.001866 0.0000543 0.00009255 0.001884
0.00002264 0.0000154 0.3874 0.0009401 0.00002735 0.00004662 0.0009489;

                                               
21 The data set corresponding to least desirable bounds determined using Method I is:
data bound1;
input UM1 UM2 UM3 UN1 UN2 UN3 UN4 LM1 LM2 LM3 LN1 LN2 LN3 LN4 pUM1 pUM2 pUM3
pUN1 pUN2 pUN3 pUN4 pLM1 pLM2 pLM3 pLN1 pLN2 pLN3 pLN4;
cards;
0.00005069 0.00003447 0.867314 0.002105 0.00006124 0.0001044 0.002124 0.0000169 0.00001149
0.289105 0.0007016 0.00002041 0.00003479 0.0007081 0.00000574 0.00000391 0.098296 0.000239
0.00000694 0.00001185 0.00024 0.00000574 0.00000391 0.098296 0.000239 0.00000694 0.00001185
0.00024
;
This is the only difference between the SAS codes for solving models with bounds determined using the
two methods.



190

**This data set contains the most desirable bounds.

data lambda;
input l1 l2 l3 l4 l5 l6 l7;
cards;
0.4 0.5 0.6 0.7 0.8 0.9 1
;
**This data set contains the different lambda values for which the final LP will be solved.

data dea;
input y1 y2 y3 x1 x2 x3 x4;
cards;
15500 460 0.85 521 3130 1859 80
13700 340 0.63 747 5075 3491 44
18000 1080 0.37 935 1483 2984 93
8900 490 0.56 205 4583 1736 65
10800 960 0.14 177 2990 1823 87
17300 890 0.47 584 5467 1775 98
21000 2930 0.91 634 7734 1700 58
9500 240 0.78 456 6552 503 73
9100 370 0.74 471 1855 2528 42
6600 800 0.52 325 4579 818 51
11800 610 0.87 364 5713 1178 80
26200 3600 0.41 585 4217 2012 84
11400 470 0.55 343 4061 2957 91
7200 1350 0.39 597 3242 665 73
38000 2470 0.68 1126 7658 1541 57
;
**This data set contains the input-output data.

data constr;
set dea;
array x{4} x1-x4;
array y{3} y1-y3;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

_type_ = 'LE';
_row_ = 'DMU'||put(_n_,2.);
_col_='_rhs_';
_coef_=0;
output;
do i=1 to 4;
_col_ = 'v'||put(i,1.);
_coef_= -x{i};
output;
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end;

do i=1 to 3;
_col_='u'||put(i,1.);
_coef_=y{i};
output;
end;
run;
**This data set constructs the main set of constraints.

data final;
input _value_;
cards;
;
run;
**This data set will be eventually used for displaying the results of the model.

%macro runbound;
%do c=1 %to 2;
**This macro constructs the weight bound constraints for the first two LPs.

data bounds&c;
set bound&c;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
array UM{3} UM1-UM3;
array LM{3} LM1-LM3;
array UN{4} UN1-UN4;
array LN{4} LN1-LN4;

do i = 1 to 3;
_row_='uubound'||put(i,1.);
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
_col_='u'||put(i,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-UM{i};
output;
end;

do j=1 to 4;
_row_='vubound'||put(j,1.);
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_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
_col_='v'||put(j,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-UN{j};
output;
end;

do i = 1 to 3;
_row_='ulbound'||put(i,1.);
_type_='GE';
_col_='_rhs_';
_coef_=0;
output;
_col_='u'||put(i,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-LM{i};
output;
end;

do j=1 to 4;
_row_='vlbound'||put(j,1.);
_type_='GE';
_col_='_rhs_';
_coef_=0;
output;
_col_='v'||put(j,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-LN{j};
output;
end;
run;
**This data set constructs the input & output weight bound constraints (B) for the first
two LPs.

%end;
%mend runbound;
%runbound;
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%macro runlp;
%do a=1 %to 15;
**This macro constructs and runs all three LPs for all 15 DMUs.

data obj&a;
set dea;
array x{4} x1-x4;
array y{3} y1-y3;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

if _n_ = &a then do;
do i = 1 to 3;
_type_ = 'MAX';
_row_ = 'obj';
_col_='u'||put(i,1.);
_coef_= y{i};
output;
end;

_row_='DMU0';
_type_='EQ';
_col_='_rhs_';
_coef_= 1;
output;
do i=1 to 4;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set constructs the objective function and the normalization constraint (N) for
the first two LPs.

data main&a.1;
set obj&a constr bounds1;
run;
**This data set aggregates the objective function and the constraints and constructs the
LP with the least desirable bounds.

proc lp data=main&a.1 printlevel = -2 sparsedata primalout = prim&a.1;
run;
**This statement solves main&a.1 and stores the results in prim&a.1.
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data main&a.2;
set obj&a constr bounds2;
run;
**This data set constructs the LP with the most desirable bounds.

proc lp data=main&a.2 printlevel = -2 sparsedata primalout = prim&a.2;
run;
**This statement runs main&a.2 and stores the results in prim&a.2.

data difobj&a;
keep f0 f1 diff;

set prim&a.1;
if _VAR_='obj' then f0 = _VALUE_;

set prim&a.2;
if _VAR_='obj' then f1 = _VALUE_;

diff= f0 - f1;
output;
run;
**This data set extracts the f1 and f0 values and calculates their difference.

data newobj&a;
keep newf1 newdiff;
set difobj&a;
if f1>0 then do;
newf1 = f1;
newdiff = diff;
output;
end;
run;
**This data set gets rid of all the null values from difobj&a.

data objective&a;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set dea;
array y{3} y1-y3;
if _n_ = &a then do;
_type_ = 'MAX';
_row_ = 'obj';
do i = 1 to 3;
_col_='u'||put(i,1.);
_coef_= y{i};
output;
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end;
end;
run;
**This data set constructs the objective function of the third & final LP.

%macro runlam;
%do b=1 %to 7;
**This macro causes the final LP to run for seven different values of λ.

data firstcons&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_ lam f1 diff;
set lambda;
array l{7} l1-l7;
lam = l{&b};

set newobj&a;
f1 = newf1;
diff = newdiff;

_type_ = 'GE';
_row_ = 'fuzzy';
_col_='_rhs_';
_coef_= f1 + diff*lam;
output;
run;
**This data set constructs part of the constraint F for the final LP.

data secondcons&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set dea;
array x{4} x1-x4;
array y{3} y1-y3;

if _n_ = &a then do;
_type_ = 'GE';
_row_ = 'fuzzy';
do i = 1 to 3;
_col_='u'||put(i,1.);
_coef_= y{i};
output;
end;

_row_='DMU0';
_type_='EQ';
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_col_='_rhs_';
_coef_= 1;
output;

do i=1 to 4;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set constructs the remaining part of constraint F and the normalization
constraint for the final LP.

data aggbound&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_ lam;

set lambda;
array l{7} l1-l7;
lam = l{&b};

set bound1;
array UM{3} UM1-UM3;
array LM{3} LM1-LM3;
array UN{4} UN1-UN4;
array LN{4} LN1-LN4;
array pUM{3} pUM1-pUM3;
array pLM{3} pLM1-pLM3;
array pUN{4} pUN1-pUN4;
array pLN{4} pLN1-pLN4;

do i = 1 to 3;
_row_='uubound'||put(i,1.);
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
_col_='u'||put(i,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-UM{i} + pUM{i}*lam;
output;
end;



197

do j=1 to 4;
_row_='vubound'||put(j,1.);
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
_col_='v'||put(j,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-UN{j}+pUN{j}*lam;
output;
end;

do i = 1 to 3;
_row_='ulbound'||put(i,1.);
_type_='GE';
_col_='_rhs_';
_coef_=0;
output;
_col_='u'||put(i,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-LM{i}-pLM{i}*lam;
output;
end;

do j=1 to 4;
_row_='vlbound'||put(j,1.);
_type_='GE';
_col_='_rhs_';
_coef_=0;
output;
_col_='v'||put(j,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-LN{j}- pLN{j}*lam;
output;
end;
run;
**This data set constructs the weight bound constraints (B) of the final LP.

data aggregate&a&b;
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set objective&a firstcons&a&b (keep = _type_ _row_ _col_ _coef_ lam)
secondcons&a&b constr aggbound&a&b;
**This data set aggregates all constraints and the objective function to construct the final
LP.

proc lp data = aggregate&a&b printlevel=-2 sparsedata primalout = final&a&b (keep =
_VAR_ _Value_);
run;
**This statement runs the final LP and stores the results in final&a&b.

data temp (keep=_VALUE_);
set final&a&b;
if _VAR_='obj';
run;
**This data set temporarily stores the objective function value of the final LP.

proc append base=final data=temp;
run;
%end;
**This statement appends the objective function values from 'temp' to 'final'.

%mend runlam;
%runlam;
%end;

%mend runlp;
%runlp;

proc print data=final;
run;
**This statement prints the results of the model.

B.2 SAS CODE FOR ROADMAP EXAMPLE OF SECTION 3.2.3.1

ILLUSTRATING THE FUZZY MODEL WITH AR

CONSTRAINTS IN FORM 1

The roadmap example in section 3.2.2.1 used to illustrate the fuzzy AR (Form 1) DEA

model, requires solving the following three LPs in the given sequence.

The first LP, which is used to calculate f1 values, uses the most desirable weight bound

values in the weight bound constraints (B):
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The following LP, which calculates f0 values, uses the least desirable weight bound

values in the weight bound constraints (B):
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Finally, the following crisp equivalent of the fuzzy model is solved.
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Note that this model is a quadratic-programming model because its weight bound

constraints (B) contain expressions in which two variables are multiplied to each other.

Since one of these variables is λ and we know the range of variation of λ, we can use the

parametric algorithm described in section 3.1.1.5.4 to solve it. Steps 1,3 and 8 of the

algorithm require us to solve the model with λ fixed at a certain value. This is tantamount

to solving an LP with a fixed objective function since λ is the objective function of the

crisp equivalent LP. We cannot solve an LP with a fixed objective function. Therefore,

we need to modify the model so that the objective function contains an expression

involving decision variables as opposed to a fixed value. The most logical choice for the
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objective function is the efficiency term. The modified model, which can now be solved

using the parametric algorithm, is as follows:
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Instead of using the parametric algorithm directly, we solve the model for different values

of λ between 0 and 1 at intervals of 0.1 and choose the solution corresponding to the

maximum feasible value of λ. The justification is that this technique is easier to

implement using SAS compared to the parametric algorithm and gives the same solution

as the parametric algorithm using ε = 0.1.

The description of the constraint types used in the three LP's is as follows:

F – Constraint introduced by the membership function of the objective function

N – Normalization Constraint
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M – Main set of Constraints

B – Weight Bound Constraints

All three LPs are solved in the same SAS code. The code with embedded descriptions of
the data sets is as follows:

data ubound;
input UM1 UM2 UM3;
cards;
-1 1 0
.2 -1 0
-.5 0 1
.1 0 -1
;
**This data set contains the coefficients of the most desirable output weight AR
constraints.

data vbound;
input VM1 VM2 VM3 VM4;
cards;
-4 1 0 0
.25 -1 0 0
-4 0 1 0
.25 0 -1 0
-.4 0 0 1
.1 0 0 -1
;
**This data set contains the coefficients of the most desirable input weight AR
constraints.

data fuzzyubound;
input UM1 UM2 UM3 p1 p2 p3;
cards;
-1.5885 1 0 .5885 0 0
0 -1 0 .2 0 0
-2.062 0 1 1.562 0 0
0 0 -1 .1 0 0
;
**This data set contains the coefficients of the least desirable output weight AR
constraints.

data fuzzyvbound;
input VM1 VM2 VM3 VM4 p1 p2 p3 p4;
cards;
-7.56 1 0 0 3.56 0 0 0
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0 -1 0 0 .25 0 0 0
-6.17 0 1 0 2.17 0 0 0
0 0 -1 0 .25 0 0 0
-1.89 0 0 1 1.49 0 0 0
0 0 0 -1 .1 0 0 0
;
**This data set contains the coefficients of the least desirable input weight AR
constraints.

data dea;
input y1 y2 y3 x1 x2 x3 x4;
cards;
103      40      144      97      69      101      112
91      30      107      139      111      190      61
120      95      63      174      33      162      130
59      43      95      38      101      94      91
72      84      24      33      66      99      121
115      78      79      109      120      97      137
140      258      154      118      170      92      81
63      21      132      85      144      27      102
61      33      125      88      41      138      59
44      70      88      60      101      45      71
79      54      147      68      125      64      112
175      317      69      109      93      109      117
76      41      93      64      89      161      127
48      119      66      111      71      36      102
253      217      115      209      168      84      79
;
**This is the normalized input-output data set

data lambda;
input l1 l2 l3 l4 l5 l6 l7;
cards;
0.4 0.5 0.6 0.7 0.8 0.9 1
;
**This is the data set of all λ values for which the crisp equivalent model is solved.

data final;
input _VALUE_;
cards;
;
**This creates an empty data set which will be used later to display the results.

data constr;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
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set dea;
array x{4} x1-x4;
array y{3} y1-y3;
_type_ = 'LE';
_row_ = 'DMU'||put(_n_,2.);
_col_='_rhs_';
_coef_=0;
output;
do i=1 to 4;
_col_ = 'v'||put(i,1.);
_coef_= -x{i};
output;
end;

do j = 1 to 3;
_col_='u'||put(j,1.);
_coef_=y{j};
output;
end;
run;
**This data set constructs the main set of constraints (M)

data ubounds;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set ubound;
array UM{3} UM1-UM3;
_type_='LE';
_row_ = 'aru'||put(_n_,1.);
_col_='_rhs_';
_coef_=0;
output;
do i = 1 to 3;
_col_='u'||put(i,1.);
_coef_=UM{i};
output;
end;
run;
**This data set constructs the most desirable output weight AR constraints (B) using the
coefficients from 'ubound'.

data vbounds;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set vbound;
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array VM{4} VM1-VM4;
_type_='LE';
_row_ = 'arv'||put(_n_,1.);
_col_='_rhs_';
_coef_=0;
output;
do i = 1 to 4;
_col_='v'||put(i,1.);
_coef_=VM{i};
output;
end;
run;
**This data set constructs the most desirable input weight AR constraints (B) using the
coefficients from 'vbound'.

data fuzzyubounds;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set fuzzyubound;
array UM{3} UM1-UM3;
_type_='LE';
_row_ = 'aru'||put(_n_,1.);
_col_='_rhs_';
_coef_=0;
output;
do i = 1 to 3;
_col_='u'||put(i,1.);
_coef_=UM{i};
output;
end;
run;
**This data set constructs the least desirable output weight AR constraints (B) using the
coefficients from 'fuzzyubound'.

data fuzzyvbounds;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set fuzzyvbound;
array VM{4} VM1-VM4;
_type_='LE';
_row_ = 'arv'||put(_n_,1.);
_col_='_rhs_';
_coef_=0;
output;
do i = 1 to 4;
_col_='v'||put(i,1.);
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_coef_=VM{i};
output;
end;
run;
**This data set constructs the least desirable input weight AR constraints (B) using the
coefficients from 'fuzzyubound'.

%macro runlp;
%do a=1 %to 15;
**This macro runs the same LPs for all 15 DMUs.

data obj&a;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

set dea;
array x{4} x1-x4;
array y{3} y1-y3;

if _n_ = &a then do;
_type_ = 'MAX';
_row_ = 'obj';
do i = 1 to 3;
_col_='u'||put(i,1.);
_coef_= y{i};
output;
end;

_row_='DMU0';
_type_='EQ';
_col_='_rhs_';
_coef_= 1;
output;
do i=1 to 4;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set constructs the objective function and the normalization constraint (N) for
the LPs used for obtaining f1 and f0 values.

data main&a.1;
set obj&a constr fuzzyubounds fuzzyvbounds;
run;
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**This data set aggregates all the constraints and the objective function to construct LPs
that are used for calculating f0 values.

proc lp data=main&a.1 printlevel = -2 sparsedata primalout = prim&a.1;
run;
**This statement solves the LP main&a.1 and saves the results in prim&a.1

data main&a.2;
set obj&a constr ubounds vbounds;
run;
**This data set aggregates all the constraints and the objective function to construct LPs
that are used for calculating f1 values.

proc lp data=main&a.2 printlevel = -2 sparsedata primalout = prim&a.2;
run;
**This statement solves main&a.2 and saves the results in prim&a.2

data difobj&a;
keep f0 f1 diff;

set prim&a.1;
if _VAR_='obj' then f0 = _VALUE_;

set prim&a.2;
if _VAR_='obj' then f1 = _VALUE_;

diff= f0 - f1;
output;
run;
**This data set extracts the f0 and f1 values from prim&a.1 and prim&a.2 and calculates
their difference.

data newobj&a;
keep newf1 newdiff;
set difobj&a;
if f1>0 then do;
newf1 = f1;
newdiff = diff;
output;
end;
run;
**This data set is 'difobj&a' without the null values.

data objective&a;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
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set dea;
array y{3} y1-y3;
if _n_ = &a then do;
_type_ = 'MAX';
_row_ = 'obj';
do i = 1 to 3;
_col_='u'||put(i,1.);
_coef_= y{i};
output;
end;
end;
run;
**This data set constructs the objective function of the final LP.

%macro runlam;
%do b=1 %to 7;
**This macro runs the final LP for seven different values of λ.

data firstcons&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_ lam f1 diff;
set lambda;
array l{7} l1-l7;
lam = l{&b};

set newobj&a;
f1 = newf1;
diff = newdiff;

_type_ = 'GE';
_row_ = 'fuzzy';
_col_='_rhs_';
_coef_= f1 + diff*lam;
output;
run;
**This data set constructs part of the constraint (F).

data secondcons&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set dea;
array x{4} x1-x4;
array y{3} y1-y3;
if _n_ = &a then do;
_type_ = 'GE';
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_row_ = 'fuzzy';
do i=1 to 3;
_col_='u'||put(i,1.);
_coef_= y{i};
output;
end;

_row_='DMU0';
_type_='EQ';
_col_='_rhs_';
_coef_= 1;
output;

do i=1 to 4;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set constructs the normalization constraint and the remaining part of the
constraint F.

data aggubound&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

set lambda;
array l{7} l1-l7;
lam=l{&b};

set fuzzyubound;
array UM{3} UM1-UM3;
array p{3} p1-p3;

_row_='fuzzyaru'||put(_n_,1.);
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
do i = 1 to 3;
_col_='u'||put(i,1.);
_coef_=UM{i}+p{i}*lam;
output;
end;
run;
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**This data set constructs the constraints (B) pertaining to the output weights for the
final LP.

data aggvbound&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

set lambda;
l{7}=l1-l7;
lam=l{&b};

set fuzzyvbound;
array VM{4} VM1-VM4;
array p{4} p1-p4;
_row_='fuzzyarv'||put(_n_,1.);
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
do i = 1 to 4;
_col_='v'||put(i,1.);
_coef_=VM{i}+p{i}*lam;
output;
end;
run;
**This data set constructs the constraints B pertaining to input weights for the final LP.

data aggregate&a&b;
set objective&a firstcons&a&b (keep = _type_ _row_ _col_ _coef_ lam)
secondcons&a&b constr aggubound&a&b aggvbound&a&b;
run;
**This data set aggregates the objective function and the constraints to construct the
final LP.

proc lp data = aggregate&a&b printlevel=-2 sparsedata primalout = final&a&b (keep =
_VAR_ _Value_);
run;
**This statement solves the final LP for different DMUs and different values of lambda
and saves the results in the data set 'final&a&b'. 'a' indicates the DMU and 'b' indicates
the value of lambda.

data temp (keep=_VALUE_);
set final&a&b;
if _VAR_='obj';
run;
**This data set temporarily stores the values of the objective function.
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proc append base=final data=temp;
run;
%end;
%mend runlam;
%runlam;
**This statement appends the objective function values to the data set 'final'.

%end;
%mend runlp;
%runlp;

proc print data=final;
run;
**This statement prints the results of the model.

B.3 SAS CODE FOR THE ROADMAP EXAMPLE OF SECTION

3.2.3.2 ILLUSTRATING THE FUZZY MODEL WITH AR

CONSTRAINTS IN FORM 2

The fuzzy AR (Form 2) model for the roadmap example in section 3.2.3.2 is as follows:

0,

10

0)095.0609.0(

0)011.022.0(

0514.0

........................0209.0

0)086.0428.0(

0)059.015.0(

...............       0  -

....................................1

..

 

21

21

21

21

21

21

T

0

0

≥
≤≤

≤+−
≤−+−

≤−
≤+−

≤−−
≤++−

∀≤

=

ηµ
λ

ηλη
ηλη

ηη
ηη

ηλη
ηλη

ηµ

η

µ

B

MjXY

NX

ts

YMax

T

T

T



212

The SAS code used for solving this model is as follows:

data bound;
input VM1 VM2 p1 p2 l1 l2 l3 l4 l5 l6;
cards;
-1 .15 0 .059 0 .2 .4 .6 .8 .9
1 -.428 0 -.086 0 .2 .4 .6 .8 .9
-1 .209 0 0 0 .2 .4 .6 .8 .9
1 -.514 0 0 0 .2 .4 .6 .8 .9
-1 .22 0 -.011 0 .2 .4 .6 .8 .9
1 -.609 0 .095 0 .2 .4 .6 .8 .9
;
**This data set represents the coefficients of the variables in the weight bound
constraints (B). The p's which are the differences between the least desirable and most
desirable bounds, are the coefficients of λ.

data dea;
input x1 x2 y1;
cards;
31451.9 1540.8 9648.5
24267.8 1491.1 9396.9
16609 1072.6 6884.8
4109.14 561.6 1924
1657.57 1842.5 2427.9
2124 85.2 617.3
1540 198.3 737.7
1750 152.3 907.9
1728.88 151.2 665.5
1313.48 129.7 705.4
1410.97 173.5 674.3
586.29 127.3 505.1
302.14 45.3 211
;
**This is the input-output data set.

data constr;
set dea;
array x{2} x1-x2;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

_type_ = 'LE';
_row_ = 'DMU'||put(_n_,2.);
_col_='_rhs_';
_coef_=0;
output;
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do i=1 to 2;
_col_ = 'v'||put(i,1.);
_coef_= -x{i};
output;
end;

_col_='u1';
_coef_=y1;
output;
run;
**This data set constructs the main set of constraints (M).

%macro alpha;
%do b=1 %to 6;

data vbound;
set bound;
array VM{2} VM1-VM2;
array p{2} p1-p2;
array l{6} l1-l6;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

_type_ = 'LE';
_row_='arv'||put(_n_,1.);
_col_='_rhs_';
_coef_=0;
output;

do i = 1 to 2;
_col_= 'v'||put(i,1.);
_coef_=VM{i}+l{&b}*p{i};
output;
end;
run;
**This data set constructs the weight bound constraints (B).

%macro runlp;
%do a=1 %to 13;
**This macro runs the LP for each of the thirteen DMUs.

data obj&a&b;
set dea;
array x{2} x1-x2;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
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if _n_ = &a then do;
_type_ = 'MAX';
_row_ = 'obj';
_col_='u1';
_coef_= y1;
output;

_row_='DMU0';
_type_='EQ';
_col_='_rhs_';
_coef_= 1;
output;

do i=1 to 2;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set constructs the objective function and the normalization constraint (N).

data main&a&b;
set obj&a&b constr vbound&b;
run;
**This data set constructs the LP by aggregating all the constraints and the objective
function.

proc lp sparsedata data = main&a&b primalout = final&a&b;
run;
**This statement solves the LP and saves the results in the data set 'final&a&b'.

proc print data=final&a&b;
run;
**This statement prints the results of the model.

%end;
%mend runlp;
%runlp;

%end;
%mend alpha;
%alpha;
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B.4 SAS CODE FOR SOLVING THE FUZZY ABSOLUTE

WEIGHT RESTRICTION DEA MODEL APPLIED TO THE

HIGHWAY MAINTENANCE PATROL DATA FROM COOK

ET AL. (1990)

The fuzzy model corresponding to the absolute weight restriction DEA model applied to

the highway maintenance patrol data is solved in three steps.

In the first step, the following model is solved for each DMU to obtain f1 values:
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In the next step, the following model is solved for each DMU to obtain f0 values:
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Finally, the following crisp equivalent of the fuzzy model is solved:
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Note that this model is a quadratic-programming model because its weight bound

constraints (B) contain expressions in which two variables are multiplied to each other.

Since one of these variables is λ and we know the range of variation of λ, we can use the

parametric algorithm described in section 3.1.1.5.4 to solve it. Steps 1,3 and 8 of the

algorithm require us to solve the model with λ fixed at a certain value. This is tantamount

to solving an LP with a fixed objective function since λ is the objective function of the

crisp equivalent LP. We cannot solve an LP with a fixed objective function. Therefore,

we need to modify the model so that the objective function contains an expression

involving decision variables as opposed to a fixed value. The most logical choice for the

objective function is the efficiency term. The modified model, which can now be solved

using the parametric algorithm, is as follows:
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Instead of using the parametric algorithm directly, we solve the model for different values

of λ between 0 and 1 at intervals of 0.1 and choose the solution corresponding to the

maximum feasible value of λ. The justification is that this technique is easier to

implement using SAS compared to the parametric algorithm and gives the same solution

as the parametric algorithm using ε = 0.1.

The description of the constraints used in the three above models is as follows:

F – Constraint introduced by the membership function of the objective function

N – Normalization Constraint

M – Main set of Constraints

B – Weight Bound Constraints

The three LPs are solved within the same SAS code. The SAS code is described below.

data bound1;
input UM1 UM2 UN1 UN2 LM1 LM2 LN1 LN2 pUM1 pUM2 pUN1 pUN2 pLM1
pLM2 pLN1 pLN2;
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cards;
2100 10000 2500 12208 389 10 90 10 0 0 0 6208 411 490 810 290
;
**This data set represents the least desirable bound values. 'U' represents upper bound
and 'L' represents lower bound. Also M represents output weight and N represents input
weight. For example 'UM1' represents upper bound on output weight 1. The values with
the prefix 'p' represent the differences between the least (most) desirable bounds and the
most (least) desirable bounds. For example, 'pUM1' represents the difference between
the least desirable and most desirable values of 'UM1' and 'pLM1' represents the
difference between the most desirable and least values of 'LM1'.

data bound2;
input UM1 UM2 UN1 UN2 LM1 LM2 LN1 LN2;
cards;
2100 10000 2500 6000 800 500 900 300
;
**This data set represents the most desirable bound values. It uses the same notation as
the data set for least desirable bound values.

data lambda;
input l1 l2 l3 l4 l5 l6 l7;
cards;
0.4 0.5 0.6 0.7 0.8 0.9 1
;
**This data set represents the different values of λ for which the crisp equivalent of the
fuzzy model will be solved.

data dea;
input x1 x2 y1 y2;
cards;
751 67 696 39
611 70 616 26
538 70 456 17
584 75 616 31
665 70 560 16
445 75 446 16
554 76 517 26
457 72 492 18
582 74 558 23
556 64 407 18
590 78 402 33
1074 75 350 88
1072 74 581 64
696 80 413 24
;
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**This data set represents the input – output data values.

data constr;
set dea;
array x{2} x1-x2;
array y{2} y1-y2;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

_type_ = 'LE';
_row_ = 'DMU'||put(_n_,2.);
_col_='_rhs_';
_coef_=0;
output;

do i=1 to 2;
_col_ = 'v'||put(i,1.);
_coef_= -x{i};
output;
end;

do i=1 to 2;
_col_='u'||put(i,1.);
_coef_=y{i};
output;
end;
run;
** This data set is used for constructing the main set of constraints (M). Since the main
set of constraints are the same for all three LP's, this data set will be used for all three
LP's.

data final;
input _value_;
cards;
;
run;
**This statement is used to initiate a data set called 'final' which will be used later.

%macro runbound;
%do c=1 %to 2;
**This macro is used to construct the weight bound constraints (B). The macro runs
twice and creates data sets 'bounds1' and 'bounds2'. 'bounds1' constructs the bound
constraints for calculating f1 values while 'bounds2' constructs the bound constraints for
calculating f0 values.

data bounds&c;
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set bound&c;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
array UM{2} UM1-UM2;
array LM{2} LM1-LM2;
array UN{2} UN1-UN2;
array LN{2} LN1-LN2;

do i = 1 to 2;
_row_='uubound'||put(i,1.);
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
_col_='u'||put(i,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-UM{i};
output;
end;

do j=1 to 2;
_row_='vubound'||put(j,1.);
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
_col_='v'||put(j,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-UN{j};
output;
end;

do i = 1 to 2;
_row_='ulbound'||put(i,1.);
_type_='GE';
_col_='_rhs_';
_coef_=0;
output;
_col_='u'||put(i,1.);
_coef_=1;
output;
_col_='T0';
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_coef_=-LM{i};
output;
end;

do j=1 to 2;
_row_='vlbound'||put(j,1.);
_type_='GE';
_col_='_rhs_';
_coef_=0;
output;
_col_='v'||put(j,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-LN{j};
output;
end;
run;

%end;
%mend runbound;
%runbound;

%macro runlp;
%do a=1 %to 14;
**This macro is used for solving the LP's corresponding to f1 and f0 for all DMUs.

data obj&a;
set dea;
array x{2} x1-x2;
array y{2} y1-y2;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

if _n_ = &a then do;
do i = 1 to 2;
_type_ = 'MAX';
_row_ = 'obj';
_col_='u'||put(i,1.);
_coef_= y{i};
output;
end;

_row_='DMU0';
_type_='EQ';
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_col_='_rhs_';
_coef_= 1;
output;

do i=1 to 2;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set is used for constructing the objective function and the normalization
constraint (N) for LP's used for calculating f1 and f0.

data main&a.1;
set obj&a constr bounds1;
run;
**This data set combines all the constraints (N, M, and B) and the objective function for
obtaining f1 values.

proc lp data=main&a.1 printlevel = -2 sparsedata primalout = prim&a.1;
run;
**This statement solves the LP 'main&a.1' and saves the results in 'prim&a.1'.

data main&a.2;
set obj&a constr bounds2;
run;
**This data set combines all the constraints (N, M, and B) and the objective function for
obtaining f0 values.

proc lp data=main&a.2 printlevel = -2 sparsedata primalout = prim&a.2;
run;
**This statement solves the LP 'main&a.2' and saves the results in 'prim&a.2'.

data difobj&a;
keep f0 f1 diff;

set prim&a.1;
if _VAR_='obj' then f0 = _VALUE_;

set prim&a.2;
if _VAR_='obj' then f1 = _VALUE_;

diff= f0 - f1;
output;
run;
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**This data set extracts f0 and f1 values from prim&a.1 and prim&a.2 respectively. It
also calculates the difference between f0 and f1.

data newobj&a;
keep newf1 newdiff;
set difobj&a;
if f1>0 then do;
newf1 = f1;
newdiff = diff;
output;
end;
run;
**'newobj&a' is a cleaner version of 'difobj&a' without the null values.

data objective&a;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set dea;
array y{2} y1-y2;
if _n_ = &a then do;
_type_ = 'MAX';
_row_ = 'obj';
do i = 1 to 2;
_col_='u'||put(i,1.);
_coef_= y{i};
output;
end;
end;
run;
**This data set constructs the objective function of the third LP - the crisp equivalent of
the fuzzy model.

%macro runlam;
%do b=1 %to 7;
**This macro is used for running the crisp equivalent LP 7 times for seven different
values of λ.

data firstcons&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_ lam f1 diff;
set lambda;
array l{7} l1-l7;
lam = l{&b};

set newobj&a;
f1 = newf1;
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diff = newdiff;

_type_ = 'GE';
_row_ = 'fuzzy';
_col_='_rhs_';
_coef_= f1 + diff*lam;
output;
run;
**This data set is used for constructing part of the constraint F.

data secondcons&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set dea;
array x{2} x1-x2;
array y{2} y1-y2;

if _n_ = &a then do;
_type_ = 'GE';
_row_ = 'fuzzy';
do i = 1 to 2;
_col_='u'||put(i,1.);
_coef_= y{i};
output;
end;

_row_='DMU0';
_type_='EQ';
_col_='_rhs_';
_coef_= 1;
output;
do i=1 to 2;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set is used for constructing the normalization constraint (N) and the
remaining part of the constraint F.

data aggbound&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_ lam;
set lambda;
array l{7} l1-l7;
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lam = l{&b};

set bound1;
array UM{2} UM1-UM2;
array LM{2} LM1-LM2;
array UN{2} UN1-UN2;
array LN{2} LN1-LN2;
array pUM{2} pUM1-pUM2;
array pLM{2} pLM1-pLM2;
array pUN{2} pUN1-pUN2;
array pLN{2} pLN1-pLN2;
do i = 1 to 2;
_row_='uubound'||put(i,1.);
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
_col_='u'||put(i,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-UM{i} + pUM{i}*lam;
output;
end;

do j=1 to 2;
_row_='vubound'||put(j,1.);
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
_col_='v'||put(j,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-UN{j}+pUN{j}*lam;
output;
end;

do i = 1 to 2;
_row_='ulbound'||put(i,1.);
_type_='GE';
_col_='_rhs_';
_coef_=0;
output;
_col_='u'||put(i,1.);
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_coef_=1;
output;
_col_='T0';
_coef_=-LM{i}-pLM{i}*lam;
output;
end;

do j=1 to 2;
_row_='vlbound'||put(j,1.);
_type_='GE';
_col_='_rhs_';
_coef_=0;
output;
_col_='v'||put(j,1.);
_coef_=1;
output;
_col_='T0';
_coef_=-LN{j}-pLN{j}*lam;
output;
end;
run;
**This data set constructs the weight bound constraints (B) for the crisp equivalent of the
fuzzy LP.

data aggregate&a&b;
set objective&a firstcons&a&b (keep = _type_ _row_ _col_ _coef_ lam)
secondcons&a&b constr aggbound&a&b;
**This data set joins all the constraints and the objective function and creates the crisp
equivalent LP.

proc lp data = aggregate&a&b printlevel=-2 sparsedata primalout = final&a&b (keep =
_VAR_ _Value_);
run;
**This statement runs the crisp equivalent LP and saves the results in final&a&b.

data temp (keep=_VALUE_);
set final&a&b;
if _VAR_='obj';
run;
**This data set temporarily stores the objective function value of final&a&b before it is
appended to the data set 'final' which was created earlier.

proc append base=final data=temp;
run;
**This statement appends the objective function value from 'temp' to 'final'.
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%end;
%mend runlam;
%runlam;

%end;
%mend runlp;
%runlp;

proc print data=final;
run;
**This statement prints the results of the model.

B.5 SAS CODE FOR THE FUZZY AR (FORM 1) DEA MODEL

APPLIED TO THE WASHINGTONPOST DATA

The fuzzy model corresponding to the AR (Form 1) DEA model applied to the

Washingtonpost production data requires solving the following three LP's.

The first LP is used to obtain f1 values for all DMUs:
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Then the following LP is used to obtain f0 values:
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Finally, the following crisp equivalent of the fuzzy model is solved using the parametric

algorithm:
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Note that this model is a quadratic-programming model because its weight bound

constraints (B) contain expressions in which two variables are multiplied to each other.

Since one of these variables is λ and we know the range of variation of λ, we can use the

parametric algorithm described in section 3.1.1.5.4 to solve it. Steps 1,3 and 8 of the

algorithm require us to solve the model with λ fixed at a certain value. This is tantamount

to solving an LP with a fixed objective function since λ is the objective function of the

crisp equivalent LP. We cannot solve an LP with a fixed objective function. Therefore,
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we need to modify the model so that the objective function contains an expression

involving decision variables as opposed to a fixed value. The most logical choice for the

objective function is the efficiency term. The modified model, which can now be solved

using the parametric algorithm, is as follows:
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Instead of using the parametric algorithm directly, we solve the model for different values

of λ between 0 and 1 in increments of 0.1 and choose the solution corresponding to the

maximum feasible value of λ. The justification is that this technique is easier to

implement using SAS compared to the parametric algorithm and gives the same solution

as the parametric algorithm at ε = 0.1.

The description of the constraint types used in the three above LP's is as follows:

F – Constraint introduced by the membership function of the objective function

N – Normalization Constraint

M – Main set of Constraints

B – Weight Bound Constraints

All three LPs are solved in the same SAS code. The code with embedded descriptions of

the data sets is as follows:
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data dea;
input x1 x2 x3 y1;
cards;
53.21      6.34      42.18      48.21
90.30      58.69      102.38      95.96
46.93      79.95      77.56      79.13
82.24      68.58      101.24      79.98
79.83      49.04      75.38      70.81
61.98      21.33      71.18      77.05
96.81      79.98      104.95      112.82
75.52      20.20      45.16      49.64
56.87      17.55      60.78      66.10
88.35      56.86      90.88      76.48
68.33      39.27      87.75      81.06
101.65      70.74      77.54      78.20
66.11      47.88      79.22      69.84
121.01      176.62      106.26      96.64
122.99      178.08      89.41      92.80
140.32      139.43      91.57      86.70
112.16      94.12      97.79      82.13
103.02      96.51      86.77      82.87
26.85      38.54      56.44      58.38
118.35      129.49      138.77      106.49
115.71      107.04      181.93      108.59
113.78      145.37      198.22      97.02
74.66      35.52      85.62      89.07
114.15      161.76      100.68      120.83
83.85      49.66      76.57      93.23
81.63      53.49      61.22      70.77
84.99      106.69      90.30      121.33
93.63      138.58      108.32      88.75
97.00      70.78      86.61      112.53
104.95      147.15      113.05      141.23
103.66      120.64      100.22      128.57
82.17      107.91      67.99      78.75
92.26      103.30      92.16      91.40
108.51      102.45      104.51      126.46
122.99      232.49      96.90      125.54
94.58      159.89      93.26      116.21
102.30      134.84      112.06      140.10
117.71      157.66      113.33      115.38
114.33      102.20      121.33      136.19
116.73      95.09      129.06      137.23
131.65      202.73      145.29      139.50
122.99      156.37      168.46      171.75
152.79      145.71      142.46      138.08
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192.33      124.71      146.66      119.20
153.64      127.65      135.70      123.98
194.09      132.62      109.67      101.69
57.59      74.75      56.31      72.80
62.31      33.76      78.90      102.55
;
**This is the input – output data set.

data lambda;
input l1 l2 l3 l4 l5 l6 l7;
cards;
0.4 0.5 0.6 0.7 0.8 0.9 1
;
**This data set contains the different λ values for which the fuzzy model is solved.

data final;
input _VALUE_;
cards;
;
**This data set will be used later to append to and display the results of the model.

data constr;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

set dea;
array x{3} x1-x3;
_type_ = 'LE';
_row_ = 'DMU'||put(_n_,2.);
_col_='_rhs_';
_coef_=0;
output;

do i=1 to 3;
_col_ = 'v'||put(i,1.);
_coef_= -x{i};
output;
end;

_col_='u1';
_coef_=y1;
output;
run;
**This data set constructs the main set of constraints (M).

data bounds1;
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length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

_type_='LE';
_row_ = 'ar1';
_col_='_rhs_';
_coef_=0;
output;

_col_='v1';
_coef_=-1;
output;

_col_='v2';
_coef_=1.5;
output;

_type_='LE';
_row_ = 'ar2';
_col_='_rhs_';
_coef_=0;
output;

_col_='v1';
_coef_=-1;
output;

_col_='v3';
_coef_=2;
output;
run;
**This data set constructs the weight bound constraints (B) for the LP, which is used for
calculating the f1 values.

data bounds2;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

_type_='LE';
_row_ = 'ar1';
_col_='_rhs_';
_coef_=0;
output;

_col_='v1';
_coef_=-1;
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output;

_col_='v2';
_coef_=1;
output;

_type_='LE';
_row_ = 'ar2';
_col_='_rhs_';
_coef_=0;
output;

_col_='v1';
_coef_=-1;
output;

_col_='v3';
_coef_=1;
output;
run;
**This data set constructs the weight bound constraints (B) for the LP used for
calculating the f0 values.

%macro runlp;
%do a=1 %to 48;
**This macro is used for running the three LP's for all 48 DMUs.

data obj&a;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

set dea;
array x{3} x1-x3;

if _n_ = &a then do;
_type_ = 'MAX';
_row_ = 'obj';
_col_='u1';
_coef_= y1;
output;

_row_='DMU0';
_type_='EQ';
_col_='_rhs_';
_coef_= 1;
output;
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do i=1 to 3;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set constructs the objective function and the normalization constraints (N)
for all three LP's.

data main&a.1;
set obj&a constr bounds1;
run;
**This data set joins the objective function and the constraints to create the LP for
calculating f1 values.

proc lp data=main&a.1 printlevel = -2 sparsedata primalout = prim&a.1;
run;
**This statement runs the LP and extracts the results into the data set 'prim&a.1'.

data main&a.2;
set obj&a constr bounds2;
run;
**This data set joins the objective function and the constraints to create the LP for
calculating f0 values.

proc lp data=main&a.2 printlevel = -2 sparsedata primalout = prim&a.2;
run;
**This statement runs the LP and stores the results in 'prim&a.2'.

data difobj&a;
keep f0 f1 diff;

set prim&a.1;
if _VAR_='obj' then f0 = _VALUE_;

set prim&a.2;
if _VAR_='obj' then f1 = _VALUE_;

diff= f0 - f1;
output;
run;
**This data set extracts the f1 and f0 values and calculates their difference.

data newobj&a;
keep newf1 newdiff;
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set difobj&a;
if f1>0 then do;
newf1 = f1;
newdiff = diff;
output;
end;
run;
**This data set clears all the null values from the data set 'difobj&a'.

data objective&a;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

set dea;
if _n_ = &a then do;
_type_ = 'MAX';
_row_ = 'obj';
_col_='u1';
_coef_= y1;
output;
end;
run;
**This data set constructs the objective function of the crisp equivalent of the fuzzy
model.

%macro runlam;
%do b=1 %to 7;
**This macro is used for running the crisp equivalent of the fuzzy model seven times with
seven different values of λ.

data firstcons&a&b;

length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_ lam f1 diff;
set lambda;
array l{7} l1-l7;
lam = l{&b};

set newobj&a;
f1 = newf1;
diff = newdiff;

_type_ = 'GE';
_row_ = 'fuzzy';
_col_='_rhs_';
_coef_= f1 + diff*lam;
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output;
run;
**This data set constructs part of the constraint F.

data secondcons&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;
set dea;
array x{3} x1-x3;

if _n_ = &a then do;
_type_ = 'GE';
_row_ = 'fuzzy';
_col_='u1';
_coef_= y1;
output;

_row_='DMU0';
_type_='EQ';
_col_='_rhs_';
_coef_= 1;
output;

do i=1 to 3;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set constructs the normalization constraint (N) and the other part of the
constraint F.

data aggbound&a&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_ lam;

set lambda;
array l{7} l1-l7;
lam = l{&b};

_row_='fuzzyar1';
_type_='LE';
_col_='_rhs_';
_coef_=0;
output;
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_col_='v1';
_coef_=-1;
output;

_col_='v2';
_coef_=1+0.5*l&b;
output;

_type_='LE';
_row_ = 'fuzzyar2';
_col_='_rhs_';
_coef_=0;
output;

_col_='v1';
_coef_=-1;
output;

_col_='v3';
_coef_=1+l&b;
output;
run;
**This data set constructs the weight bound constraints (B) of the crisp equivalent of the
fuzzy model.

data aggregate&a&b;
set objective&a firstcons&a&b (keep = _type_ _row_ _col_ _coef_ lam)
secondcons&a&b constr aggbound&a&b;
run;
**This data set combines all the constraints and the objective function to create the crisp
equivalent of the fuzzy model.

proc lp data = aggregate&a&b printlevel=-2 sparsedata primalout = final&a&b (keep =
_VAR_ _Value_);
run;
**This statement solves the crisp equivalent of the fuzzy model and saves the results in
'final&a&b'.

data temp (keep=_VALUE_);
set final&a&b;
if _VAR_='obj';
run;
**This data set temporarily stores the objective function value.

proc append base=final data=temp;
run;
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**This statement appends the objective function value stored in 'temp' into the data set
'final'.

%end;
%mend runlam;
%runlam;

%end;
%mend runlp;
%runlp;

proc print data=final;
run;
**This statement displays the efficiency scores calculated by the crisp equivalent of the
fuzzy model.

B.6 SAS CODE FOR THE FUZZY AR (FORM 2) DEA MODEL

APPLIED TO THE SDBC DATA FROM THOMPSON ET AL.

(1996a)

The fuzzy AR DEA model applied to the SDBC data is shown below:
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The SAS code for solving this LP is as follows:

data bound1;
input U101 U102 U103 U104 U105 U106 U107 U108 U109 U110 U111 U112 pu101
pu102 pu103 pu104 pu105 pu106 pu107 pu108 pu109 pu110 pu111 pu112;
cards;
78.3 95.7 -3667.5 -4482.5 96.9 131.1 -637.5 -862.5 0 0 0 0 8.7 -8.7 -407.5 407.5 17.1 -
17.1 -112.5 112.5 0 0 0 0
;
**This data set represents the coefficients of output weight u 1 in the weight bound
constraints (B). The values with the prefix 'p' are the coefficients of λ while the values
without the 'p' are the values added to the λ term. The last two digits of all symbols
represent the number of the constraint. For example, 'U101' is the first term in the
coefficient of u1 in constraint 01 and 'pu101' multiplied by λ is the second term. Thus,
'U101 + pu101*λ' is the coefficient of u 1 in constraint 01.
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data bound2;
input U201 U202 U203 U204 U205 U206 U207 U208 U209 U210 U211 U212 pu201
pu202 pu203 pu204 pu205 pu206 pu207 pu208 pu209 pu210 pu211 pu212;
cards;
-114 -126 7628.5 8431.5 0 0 0 0 96.9 131.1 -637.5 -862.5 -6 6 401.5 -401.5 0 0 0 0 17.1 -
17.1 -112.5 112.5
;
**This set represents the coefficients of u2 in B.

data bound3;
input U301 U302 U303 U304 U305 U306 U307 U308 U309 U310 U311 U312 pu301
pu302 pu303 pu304 pu305 pu306 pu307 pu308 pu309 pu310 pu311 pu312;
cards;
0 0 0 0 -114 -126 7628.5 8431.5 -78.3 -95.7 3667.5 4482.5 0 0 0 0 -6 6 401.5 -401.5 -8.7
8.7 407.5 -407.5
;
**This set represents the coefficients of u3 in B.

data lambda;
input l1 l2 l3 l4 l5 l6;
cards;
0.2 0.4 0.5 0.6 0.8 1
;
**This data set represents the different values of λ for which the model will be solved.

data dea;
input x1 x2 y1 y2 y3;
cards;
162970 4872 1454 128 10087
95960 3610 421 47 1173
115314 2987 434 69 1611
115573 1431 288 59 844
70450 303 496 43 3582
69637 75 159 18 985
54275 295 186 26 500
108553 1235 960 52 1984
93207 273 257 10 1014
48800 43 106 17 359
39209 112 110 13 886
46000 1475 148 54 597
36482 52 71 8 334
;
**This data set represents the input – output data values.
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data constr;
set dea;
array y{3} y1-y3;
array x{2} x1-x2;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

_type_ = 'LE';
_row_ = 'DMU'||put(_n_,2.);
_col_='_rhs_';
_coef_=0;
output;
do j=1 to 2;
_col_ = 'v'||put(j,1.);
_coef_= -x{j};
output;
end;

do i = 1 to 3;
_col_='u'||put(i,1.);
_coef_=y{i};
output;
end;
run;
**This data set constructs the main set of constraints (M).

data final;
input _VALUE_;
cards;
;
run;
**Null data set 'final' is created here so that it can be used to append values.

%macro runbounds;
%do b=1 %to 6;
**This macro is used for creating weight bound constraints (B) with different values of λ.

data bounds&b;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

set lambda;
k=l&b;

set bound1;
array U1{12} U101-U112;
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array pu1{12} pu101-pu112;

do i = 01 to 12;
_row_='c'||put(i,2.);
_type_='GE';
_col_='_rhs_';
_coef_=0;
output;
_col_='u1';
_coef_=U1{i}+pu1{i}*k;
output;
end;

set bound2;
array U2{12} U201-U212;
array pu2{12} pu201-pu212;

do i = 01 to 12;
_row_='c'||put(i,2.);
_type_='GE';
_col_='u2';
_coef_=U2{i}+pu2{i}*k;
output;
end;

set bound3;
array U3{12} U301-U312;
array pu3{12} pu301-pu312;

do i = 01 to 12;
_row_='c'||put(i,2.);
_type_='GE';
_col_='u3';
_coef_=U3{i}+pu3{i}*k;
output;
end;

run;
**This data set constructs the weight bound constraints B.

%macro runlp;
%do a=1 %to 13;
**This macro is used for solving the LP for each of the 13 DMUs.

data obj&a;
set dea;
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array y{3} y1-y3;
array x{2} x1-x2;
length _type_ $ 8 _row_ $ 16 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

if _n_ = &a then do;
_type_ = 'MAX';
_row_ = 'obj';
do i=1 to 3;
_col_='u'||put(i,1.);
_coef_= y{i};
output;
end;

_row_='DMU0';
_type_='EQ';
_col_='_rhs_';
_coef_= 1;
output;
do i = 1 to 2;
_col_='v'||put(i,1.);
_coef_= x{i};
output;
end;
end;
run;
**This data set constructs the objective function and the normalization constraint (N)

data main&a;
set obj&a bounds&b constr;
run;
**This data set combines the objective function and the constraints N, B, and M.

proc lp sparsedata printlevel=-2 data = main&a primalout = final&a;
run;
**This statement solve 'main&a' and stores the results in 'final&a'

data temp (keep=_VALUE_);
set final&a;
if _VAR_='obj';
run;
**The data set 'temp' temporarily stores the objective function value of 'final&a'.

proc append base = final data = temp;
run;
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**This statement appends the contents of the data set 'temp' to the data set 'final' which
was created earlier.

%end;
%mend runlp;
%runlp;

proc print data=final;
run;

%end;
%mend runbounds;
%runbounds;
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