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Mathematical Modeling for Data Envelopment Analysiswith
Fuzzy Restrictions on Weights

Amit Kabnurkar

(ABSTRACT)

Data envelopment analysis (DEA) isardative technical efficiency measurement tool,
which uses operations research techniques to automatically calculate the weights assigned
to the inputs and outputs of the production units being assessed. The actud input/output
data values are then multiplied with the cal culated weights to determine the efficiency
scores. Recent variants of the DEA model impose upper and lower bounds on the weights
to eliminate certain drawbacks associated with unrestricted weights. These variants are
called weight restriction DEA models. Most weight restriction DEA models suffer from a
drawback that the weight bound values are uncertain because they are determined based
on either incomplete information or the subjective opinion of the decision-makers. Since
the efficiency scores caculated by the DEA model are sensitive to the valuesof the
bounds, the uncertainty of the bounds gets passed onto the efficiency scores. The
uncertainty in the efficiency scores becomes unacceptable when we consider the fact that
the DEA results are used for making important decisions like allocating funds and taking
action against inefficient units.

In order to minimize the effect of the uncertainty in bound values on the decision-making
process, we propose to explicitly incorporate the uncertainty in the modeling process
using the concepts of fuzzy settheory. Modding the imprecison involves replacing the
bound vaues by fuzzy numbers because fuzzy numbers can capture the intuitive
conception of approximate numbers very well. Amongst the numerous types of weight
restriction DEA models developed in the research, two are more commonly used in real-
life applications compared to the others. Therefore, in this research, wefocus on these



two types of models for modeling the uncertainty in bound values. These are the absolute
weight restriction DEA models and the Assurance Region (AR) DEA models.

After developing the fuzzy models, we provide implementation roadmaps for illustrating
the development and solution methodology of those models. We apply the fuzzy weight
restriction models to the same data sets as those used by the corresponding crisp weight
restriction models in the literature and compare the results using the two-sample paired t-
test for means. We also use the fuzzy AR model developed in the research to measure the
performance of a newspaper preprint insertion line.
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Chapter 1

INTRODUCTION

1.1 OBJECTIVE

Thisresearch has five objectives. The first objective isto minimize the effect of bound
uncertainty on the decision-making in Data Envelopment Analysis (DEA) by explicitly
incorporating the uncertainty in the modeling process through fuzzy weight restriction
DEA models. The second objective isto deve op a solution methodology for thosefuzzy
models. The third objective isto provide implementation roadmaps for illustrating the
proposed fuzzy models. The fourth objective isto apply the proposed models to the same
data sets as those used by corresponding crisp weight restriction models from the
literature and compare their results. The fifth objective is to use the results of the fuzzy
models to modify the specified bounds so that the borderline® decis on-making units
(DMUs) become part of the efficient set.

1.2 MOTIVATION

Since it's conception by Charnes et al. (1978), the original DEA model has undergone
many modifications and devel opments. Most of the deve opments occurred when some of
the deficiencies of the original model were exposed during its application to solving red
life problems. One such development occurred when the complete flexibility accorded by
the original model to the input/output weights was found to be unacceptable when using
DEA for certain applications (see Thompson et al. 1986). Thompson et al. (1986) tried to
use DEA to choose one best site from amongst six probable sites for locating a high-
energy physics lab. The original DEA model with complete weight flexibility identified
five out of the six sitesto be efficient. To identify one best Ste, Thompson et al. (1986)
had to modify the existing model by imposing suitable Assurance Region (AR)
constraints on the input/output weights. This led to the genesis of awhole new series of

models called weight restriction DEA models in which constraints imposing bounds on
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the input/output weights are added to the original model. A number of weight restriction
models have been proposed in the literature so far (see Dyson and Thanassoulis 1988,
Wong and Beasley (1990), Thompson et al. (1990)). These models differ from one
another in the purpose and form of the weight restriction constraints. Chapter 2 provides
acomprehensive review of al the weight restriction DEA models proposed in the

literature so far.

In thisresearch, we focus our attention only on the following two weight restriction DEA
models:

1. The absolute weight restriction DEA model and

2. The Assurance Region DEA model.

The reason we choose these models is that they are implemented in most red-life
applications of weight restriction DEA models and they are discussed most commonly in
the literature on DEA with weight restrictions.

The absolute weight restriction model involves adding additional constraints to the
existing DEA model, which impose upper and lower limits on the weights of the inputs
and outputs. This model is used when the objective isto minimize the disparity in the
weights assigned to the different inputs and outputs. In other words, absolute weight
restrictions ensure that the model does not assign excessively high weightsto certain
factors while completely ignoring other factors. Thefirst stepin the procedure for
determining the values of absolute bounds is to run the unbounded model. Thisis
followed by a close scrutiny of the results of themodd toidentify anomaliesinthe
weight values calculated. Finally, appropriate bounds are assigned to ded with the
identified anomalies.

Several methods are available to the decis on-maker to calculate the weight bound val ues.

However, the choice of the method, which governs the bound values and the subsequent

! These are DMUs whose membership in the efficient set is highly sensitive to slight changesin bound
values.
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efficiency scores calculated, rests entirely with the decision-maker. This introduces an
element of subjectivity in the DEA analysis, which until this point was entirely objective.
In fact Farrell (1957) introduced the concept of the empirica production frontier, which
formsthe basis of DEA, so asto eliminate the use of human judgement for determining

factor weights, the main drawback of previous efficiency measurement techniques.

To compound the problem of subjectivity associated with the choice of the method for
determining the bounds, there are severd opportunitiesfor the subjectivity tomakeits
appearance in every step of the existing procedures used for setting the bounds. We
elaborate this statement by using the method proposed by Roll and Golany (1993) as an
illustrative example. The authorsclarify that their procedure isintended only to provide
general guidelines for setting bounds. Obviously, there are severd steps in the procedure
where the decision-makers have to use their own discretion. Examples of such steps are:

* Step 1, in which the decision-maker hasto choose avadue n which is the number of
extreme weight values that he/she wishes to truncate from the top and the bottom of
the unbounded weight matrix before taking the average -- The decison-maker could
choose to eliminate any number of values.

» Step 2, which requires the decision-maker to take an average of the weight values
remaining after truncation -- Some decision-makers might choose to use the median

as ameasure of central tendency.

» Step 3, which requires the decision-maker to choose a ratio (d:1) between the upper
and lower bounds -- Since there are no guidelines for choosing a particular value of d,
different decision-makers could choose different values of d. Infact Roll and Golany
(1993), while demonstrating their proposed method, themselves use two different
values of d (2 and 3) to produce two different setsof bounds and two different sets of

efficiency scores for the same data set.
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Based on the above discuss on, we can conclude that overal | subjectivity is introduced in
the values of absolute weight bounds because of two primary reasons:
» absence of asingle standardized technique for setting the bounds and

* presence of ambiguity in several steps of the existing techniques.

Let usnow turn our atention to the other type of weight restriction model -- the
assurance region (AR) DEA model. The Assurance Region (AR) model involves setting
bounds on the ratios of weights (see Thompson et al. (1990) for the definition of
Assurance Regions.) There are two ways in which the AR bound values are determined.

1. One method is based on expert opinion. It involves setting AR bounds on the basis of
the magnitude of reative importance of the different inputs/outputs as perceived by
the experts. Zhu (1996) used the and ytic hierarchy process (AHP) to gather expert
opinion when setting the AR bounds for the model, which measures the efficiencies
of the different plants of the Nanjing Textile corporation. In Chilingerian and
Sherman (1997), the bounds were determined by first running the unbounded DEA
model and then using the ranges of the multipliers assigned by the efficient DMUs
(primary care physicians) which satisfied certain performance conditions ipul ated
by the HMO (health maintenance organization) director.

2. Another method for setting AR bounds involves utilizing the fact that the
input/output weight (or multiplier) values in the dual of the DEA model are the
prices/costs of the inputs/outputs. Therefore, economic information about the
price/cost ranges of the inputs/outputs can be used to set AR bounds. Setting AR
bounds of this type represents a move from pure technical efficiency measurement to

overall efficiency measurement.

The drawback with the first procedureisthat the bound values are highly subjective
because they are based on human judgment. Moreover, the expert may not have sufficient

2 Subjectivity is the dependence of the bound values on the judgement of a particular decision-maker.
When the decision-maker changes, the bound values a so change.
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information about the underlying process to make precise judgements about the relative

importance of the factors.

The drawback of the second procedure is that the bound values are influenced by factors
such as price volatility and presence of inflation (see Taylor et al. (1997).) Another
drawback isthat the price information is often inaccurate or incomplete. For example,
Thompson et al. (1996b), in the absence of price information for naturd gas, determine
the bounds for natural gas by multiplying the bounds for crude oil by the gasto il price
ratio. In another application, Thompson et al. (1996c) in the absence of price information
for one of the input (total number of branches) weights, use the same bounds as those for
another input (total physical capital) weight. The overall effect of price volatility,
inflation and absence of sufficient information about prices isthat the AR bounds based

on prices are imprecise.

Based on the discussion so far of the different weight restriction DEA modelswe can
draw the following conclusions about the weight bound values used in the models:

1. Thebound valuesareimprecise®.

2. Thebound values are subjective”.

Statements 1 and 2 above are supported by the following quotefrom Schaffnit et al. pp.
281 (1997) "In some cases, the information introduced in the mode's through the
multiplier constraints is highly subjective or contains a cons derable degree of inaccuracy

or uncertainty."

Lewin et al. (1982) point out that since DEA requires only a single observation for each
output and input per DMU to construct the efficiency frontier, itis more sengtive
compared to statistical techniquesto errorsin the data. Also Epstein and Henderson
(1989) point out that since DEA is an estimation technique relying on extremal points, it
could be extremely sendtive to variable selection, modd specification, and data errors.

% The values are not precisely known.
* Values vary from decision-maker to decision-maker
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We would like to extend this discussion further by saying that DEA isalso sensitive to
the weight bound values whose uncertainty (imprecision + subjectivity) gets passed onto
the results. This becomes unacceptable when we consder the fact that DEA is a decision-
making tool whose results are used for making important decisions like allocating funds
or taking stringent action against inefficient DMUSs.

1.3 METHODOLOGY

The objective of thisresearch isto explicitly incorporate the uncertainty in the modeling
process so that the effect of the uncertai nty on the decision-making process is minimized.
Two approaches exist in the literature for modeling uncertainty. The more conventional
approach is the stochastic approach that involves specifying a probability distribution
function (e.g. Normal) for the error process (Sengupta (1992)). However, as pointed out
by Sengupta (1992), the stochastic approach has certain drawbacks associated with
modeling the uncertainty in DEA problems. These drawbacks are:

1. When using the stochastic approach, one has to assume a specific error distribution
e.g. normal or exponential to derive specific results and this assumption may not be
realistic because on a priori basisthere isvery little empirical evidence to choose one
type of distribution over another.

2. Stochastic DEA models always emphasize point solutions whereas from the point of
view of carrying out a sensitivity analysis, one would be more interested in DEA
modelsthat provide interval solutions.

3. Small sample sizesin DEA make it difficult to use stochastic models.

The more recent approach for modeling uncertainty has been fuzzy set theory. Sengupta
(1992) who was the first to incorporate fuzzy set theory in DEA proposed afuzzy
mathematical programming approach for dealing with imprecise datain DEA problems.
According to Sengupta (1992) the advantages of using such an approach are:

1. Fuzzy set theory allows us to apply the "principle of incompatibility,” which has the
ability to arrive at decid ons based on qualitative dataand linguistic information.
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2. Fuzzy set theory lendsitself easily to beincorporated in LP models. Since DEA
involves solving a series of LPmodels, rdatively fewer changes have to be made,
under conditions of uncertainty, to the original DEA formulation to incorporate the
methods of fuzzy mathematical programming.

Due to these advantages, it is proposed to usefuzzy set theory in the current research for
modeling the uncertainty in weight bound values. Fuzzy set theory is introduced in the
analysis by replacing the crisp weight bounds by fuzzy numbers. The justification is that
the imprecise weight bounds need to be represented as approximate numbers (i.e.
"numbers close to the specified values') and fuzzy numbers capture the intuitive concept

of approximate numbers very well (Yuan and Klir (1995)).

A fuzzy number isaset of values (instead of asingle value) closeto the value that is
being approximated. All values encompassed by the fuzzy number do not belong toit to
the same degree. The degree of belongingness of each value is dependent upon the degree
of closeness of that value to the value being approximated. Since a fuzzy number
represents arange of values (instead of a single value), fuzzy numbers representing the
bounds specified by different decison-makers arelikely to be acompromise between the
different bounds. Therefore, it is hypothesized that using fuzzy numbers for bounds will
have an added advantage of minimizing the sensitivity of the results to the subjectivity

in the bound values.

Using fuzzy numbers instead of crisp numbers for the bounds has an added advantage of
increasing theflexibility in the bound setting process becauseit alows the decison-
maker to specify arange of values instead of one value. The lack of flexibility in the crisp
weight restriction models can often put the decision-maker in atight spot especially when

sufficient information does not exist for him/her to make a crigp judgement.

From this point onwards, the models obtained by replacing the crisp weight bounds by
fuzzy numberswill be referred to as fuzzy weight restriction DEA models or simply
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fuzzy models. In this research, we develop fuzzy models to capture the bound uncertainty
in the two most commonly used weight restriction DEA models:

1) The DEA model with absolute weight restrictions (see Dyson and Thanasoulis
(1988), Roll et al. (1991), and Roll and Golany (1993).)

2) The Assurance Region (AR) DEA model (see Thompson et al. (1986), Thompson et
al. (1990).)

We also provide implementation roadmaps for illustrating the development and solution
methodology of the fuzzy models. The roadmaps are developed in response to Almond's
(1995) criticism that a number of fuzzy approaches lack implementation roadmaps.

Finally, we apply thefuzzy weight restriction models to the same data sets as those used
by the corresponding crisp weight restriction modelsin the literature. Thisis sothat we
can compare the results of the two models. We also apply the fuzzy AR model to areal
life manufacturing system because sufficient information is available to set the crisp and
fuzzy bounds. For comparing the results of the fuzzy models with those of the
corresponding crisp models, we use the two-sample paired t-test for means (Bain and
Englehardt (1992)).

1.4 Research Results

In this section, we provide a high-leve overview of the research results. The results of
the two sample paired t tests in each case show that the efficiency scores calculated by
the fuzzy model are significantly different from the efficiency scores calculated by the
corresponding crisp model. Thisimpliesthat the operational decisions based on the
results of the fuzzy models will be different from those taken based on the results of the
crisp models. The fuzzy models ensure that the decisions are taken after the uncertainty
has been accounted for. The efficiency scores caculated by the fuzzy model represent a
compromise between maximization of the efficiency scores and the satisfaction of the
decision-maker with the bounds.
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In some cases, itisfound that DMUs move from the inefficient set to the efficient set
when the bounds are changed from crisp to fuzzy. In some of those cases, even a
relaxation of bounds to a 90% satisfaction level of the original values (i.e. just a 10%
relaxation of the bounds) is enough to move some DMUs (referred to as borderline
DMUs) from the inefficient set to the efficient set. Since the bound values are based on
incomplete information, the decision-maker is not expected to resist changing the existing
valuesto valuesthat are at the 90% satisfaction level. Thus, the fuzzy model givesthe
decision-maker a second chance to revise the bounds and make them favorable to the
borderline DMUs.

1.5 ORGANIZATION OF THE DOCUMENT

This chapter provided an overview of the research undertaken in thisthesis. The
remainder of the document is organized as follows. Chapter 2 entitled "Literature
Review" summarizesresearch in the area of efficiency measurement, data envel opment
analysis, data enve opment analysis with weight restrictions, fuzzy set theory, fuzzy

linear programming and fuzzy data envel opment analysis. Chapter 3 entitled
"Methodology" describes the fuzzy weight restriction DEA modelsthat are developed in
thisresearch. Chapter 3 also describes how those fuzzy models are converted into crisp
equivalent models. Finally, it illustrates the development and solution methodology of the
fuzzy models using implementation roadmaps. Chapter 4, entitled "Application, Results
and Discussion”, presents and analyzes the results obtained from solving the fuzzy weight
restriction models for the data sets used by corresponding crisp weight restriction models
in the literature. Chapter 5 entitled "Conclusion” concludes the discussion by highlighting
the salient contributions of the research and making recommendations for future research.
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Chapter 2

LITERATURE REVIEW

This chapter reviews the literaturein all fieldsthat are germane to thisresearch. It
touches on all topics in the evolution of Data Envelopment Analysis (DEA) right from
the traditional efficiency measurement techniques through the semina work of M.J.
Farrell (1957) to the first DEA model developed by Charnes et al. (1978). It then delves
into the literature on weight restriction DEA models. A part of the section on weight
restriction models is dedicated to describing the applications of those modelsto real-life
examples. The last two sections of the chapter contain a discuss on on fuzzy set theory,
fuzzy numbers, fuzzy linear programming and applications of fuzzy set theory in DEA.

The chapter has been divided into thefollowing sx sections:

2.1  Traditional definitions of efficiency.

2.2  Technical efficiency using the production function - Review of Michael Farrell’s
(1957) seminal work in the field of efficiency measurement.

2.3 Introduction to Data Envelopment analysis (DEA).

2.4  Review of literature on weight restrictions and value judgements in DEA.

2.5  Introduction to concepts of fuzzy set theory, fuzzy numbers and fuzzy linear
programming.

2.6  Review of literature on fuzzy set theory and fuzzy decision-making used in DEA.

2.1 TRADITIONAL DEFINITIONS OF EFFICIENCY

Since DEA isatechnical efficiency measurement technique, we start this chapter with a
review of the traditional techniques used for efficiency measurement. The objective of
this and the subsequent section of this chapter isto trace the evolution of the DEA
approach.
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2.1.1 Average Productivity of Labor

For along time, efficiency was assessed by measuring the average productivity of labor
(Farrell (1957)). Though thiswas avery popular measure, it had a drawback. The
drawback wasthat it ignored all inputs except labor and was found to be unsatisfactory
when the process or organization being evaluated had multiple inputs and outputs.

2.1.2 Indicesof Efficiency

Because of the unsatisfactory nature of the labor productivity measure, attempts were
made to devel op measures of efficiency, which combined al the factors by aggregating a
firm's inputs. One set of measures developed as aresult of those effortsis called indices
of efficiency. Here, the input vectors arefirst stripped of their dimensions. The
dimensionless quantities are weighted and then added up. Thus, indices of efficiency
involve a comparison of weighted-averageof inputswith the output. The weighted-
average is equivalent to avaluation of the inputs at prices proportional to the weightsin
the index. Thus, an attempt to compare efficiency by this measure can be regarded as
making a cost comparison. The choice of aset of pricesintroduces an arbitrary element
into the measure and the difficulty liesin choosing asuitable set of weights. Even if all
the firms use the same set of prices, the measure still boils down to a mere cost
comparison (Farrell (1957)).

2.2 TECHNICAL EFFICIENCY USING THE PRODUCTION

FUNCTION

To eliminate the above mentioned drawbacks associated with traditional efficiency
measures, Farrell (1957) introduced a new measure of (technical) efficiency, which
employs the concept of the efficient production function. This method of measuring
technical efficiency of afirm consists in comparing it with a hypothetical perfectly
efficient firm represented by the production function. The efficient production function is
some postulated standard of perfect efficiency and is defined as the output that a perfectly

efficient firm could obtain from any given combination of inputs.
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The first step in calculating the technical efficiency by this method is determining the
efficient production function. There are two waysin which the production function can
be determined. It could either be a theoretica function or an empirical one. The problem
with using atheoretical function isthat it is very difficult to define a realistic theoretical
function for a complex process. The empirical efficient production function, on the other
hand, is estimated from observations of inputs and outputs of a number of firms.
Therefore, it is far easier to compare performances with the best actually achieved (the
empirical production function) than to compare with some unattainable ideal (the
theoretical function).

To understand the concept of an efficient production function, we take the example of a
set of firms employing two factors of production (inputs) to produce a single product
(output) under conditions of constant returnsto scale. Constant returnsto scale means
that increase in the inputs by a certain proportion results in a proportiond increase in the
output. An isoquant diagram isthe one in which al firms producing the same output lie
in the same plane. Each firm in an isoquant diagram is represented by a point so that a set
of firmsyields a scatter of points. An efficient production function isa curve, whichjoins
al the firmsin an isoquant diagram utilizing the inputs most efficiently.

While drawing the isoquant from the scatter plot, two more assumptions, in addition to

constant returnsto scale are made:

1. Theisoquant isconvex to the origin. This meansthat if two points are atainable in
practice then so istheir convex combination.

2. The slope of the isoquant is nowhere positive which ensures that an increase in both
inputs does not result in a decrease in the outpui.
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Figure 2.1 Representation of the Production Function (Isoquant) SS

In Figure 2.1, isoquant SS' represents a production function. Point P represents an
inefficient firm, which uses the two inputs per unit of output in a certain proportion. Point
Q represents an efficient firm which produces the same output as P, uses the two inputsin
the same proportion as P but uses only a fraction OQ/OP as much of each input. Point Q
could also be thought of as producing OP/OQ times as much output from the same inputs.
Therefore, the ratio OQ/OP is defined as the technical efficiency of firm P. This measure
of efficiency ignores the information about the prices of the factors. To incorporate the
price information, use is made of the other type of efficiency measure called price (or
allocative) efficiency. Price efficiency isa measure of the extent to which afirm uses the

various factors of production in the best proportions, in view of their prices.

InFigure 2.1, if AA’ hasaslope equd to the ratio of the pricesof thetwo input factors,
then Q' and not Q isan optimal method of production. Although both Q and Q' represent
100 percent technical efficiency, the costsof production at Q' will only beafraction
OR/OQ of those a Q. Therefore, the ratio OR/OQ is called the price efficiency of both
firmsP and Q. The product of technical efficiency and price efficiency is called overal
efficiency. In Figure 2.1, the ratio OR/OP represents the overall efficiency of firm P.

We see that an important feature of Farrell's (1957) method outlined above isthe

distinction between price and technical efficiency. While the price efficiency measures a
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firm's success in choosing an optimal set of inputs which minimize the cost of
production, the technical efficiency measures its success in producing maximum output

from a given set of inputs.

2.3 DATA ENVELOPMENT ANALYSIS(DEA)

DEA isan extension of Farrell's (1957) idea of linking the computation of technica
efficiency with production frontiers. The first DEA model was developed by Charnes
Cooper and Rhodes (1978) (CCR). The CCR modd isafractional programming modd,
which measures the relative technical efficiency of afirm by calculating the ratio of
weighted sum of its outputs to the weighted sum of its inputs. The fractional programis
run for each firm to determine the set of input-output weights, which maximizes the
efficiency of that firm subject to the condition that no firm can have a rel ative efficiency
score greater than unity for that set of weights. Thus, the DEA model calculates a unique
set of factor weights for each firm. The set of weights has the following characteristics:
* It maximizesthe efficiency of the firm for which it is calculated and

e |tisfeasible for al firms.

Since DEA does not incorporate price information in the efficiency measure, it is
appropriate for not for profit organizations where price information is not available.
These not for profit organizations are referred to as Decision-Making Units (DMUs) by
Charnes Cooper and Rhodes (1978).

Since the efficiency of each DMU is calculated in relation to all other DMUs and using
actual observed input-output values, the efficiency calculated in DEA iscalled relative
efficiency. Charnes, Cooper and Seiford (pp.6, 1994) define DEA as"DEA produces a
piecewise empirical extremal production surface which in economic terms represents the
revealed best-practice production frontier — the maximum output empirically obtainable
from any DMU in the observed population, given itsleve of inputs.”

In addition to calculating the efficiency scores, DEA also determinesthe level and

amount of inefficiency for each of the inputs and outputs. The amount of inefficiency is

31



determined by comparison with a convex combination of two or more DMUSs, which lie
on the efficient frontier, utilize the same level of inputs, and produce the same or higher

level of outputs.

Several models have been proposed in the DEA field. All DEA models utilize the
concept mentioned above. Differences amongst the various models occur only in the
shape of the frontier and in the method used for projecting the inefficient DMUs onto the
frontier. The very first model proposed in the DEA literature is called the Charnes
Cooper and Rhodes (1978) model also known asthe CCR model. This model is still the
most commonly referenced one in the literature and will be used in the proposed research

for demonstrating the fuzzy weight regtrictions method.

2.3.1 The CCR Model

Model Definition

This model is an extension of the ratio technique used in traditional efficiency
measurement approaches. The measure of efficiency of any DMU is obtained asthe
maximum of aratio of weighted output to weighted input subject to the condition that
similar ratiosfor every DMU beless than or equd tounity.

In a more precise form:

max h, - =2
z ViX|0
1=1
Subject to
Z ur yr]
=<1 j=1,..,n (2.1)
V. X..
4 i)
u,v, 20; r=1....,s 1=1...,.m
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Where n represents the number of DMUS, s, the number or outputs and m, the number of
inputs. v, X;j (all positive) are the known outputs and inputs of the j"DMU and u;, vi
>=0 are the variable weights to be determined by the solution of this problem. The input-
output values are obtained by collecting information on the resourcs used and outputs

produced from past observations.

The efficiency of one of the DMUs fromtheset j =1, .., nisto be evaluated relative to
the others. It istherefore represented in the objective function (for optimization) as well
as in the constraints. In the objective function it is distinguished by assigning the

subscript O to its inputs and outputs,.

Reduction to Linear Programming Forms

Model (2.1) isafractional programming problem. Inits currentform,itis
computationally intractable when the number of DMUs (n) is large and the number of
inputs (m) and outputs (s) issmall. Therefore, Charnes et al. (1978) convert it into a

linear programming form which is as follows:

ming, = Znixio
Subject to:

_iur Yii +§r’ixij 20 (2.2)

lerrO :1

The dual of (2.2) (as obtained by Charnes et al. (1978)) is:
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max z,

subject to:
_ZyrjAj +erZOS0; r=1,..... ,S,
=1
inj | S Xios i=1....m (2.3)
J:
Aj >0 j=1...,n.

The purpose of the dual isto determine the amount of inefficiency of the inefficient
DMUs by projecting them onto the efficient frontier. From this point onwards, to keep
the naming convention in line with that used in the DEA literature, the dual will be
referred to asthe primal and the primal will be referred to as the dual.

The drawback with the CCR model isthat it compares DMU’ s only based on overall
efficiency assuming constant returnsto scale. It ignores the fact that different DMU’s
could be operating at different scales. To overcome this drawback, Banker, Charnes and
Cooper (1984) deve oped the BCC modd, which considers variable returns to scale and
compares DMUs purely on the basis of technical efficiency. The discussion of the BCC
model is beyond the scope of this document. Interested readers are referred to Banker et
al. (1984) for details of the BCC model.

2.3.2 Classification Scheme for the DM Us

At this point, we would like to take aminor digression and discuss a schemefor
classifying DMUs based on where they are projected onto the efficient frontier.
According to Charnes et al. (1986), all DMUSs can be classified into two broad sets—
Efficient (RE) and Inefficient (N). The set RE further partitionsinto stsE, E' and F. Set
E isthe set of extreme efficient DMUSs. These are the DMUSs that form the vertices of the
efficiency frontier. The DMUs belonging to set E' are non-extreme efficient because they
can be represented as a convex combination of extreme-efficient DMUs. The DMUs in

set F have some slack and hence lie on the extended frontier.



Set N partitions into setsNF, NE', and NE. The DMUs in NF are inefficient DMUs that
project onto the extended frontier. The inefficient DMUsin NE' project onto the set E
and the DMUs in NE project onto the vertices of the efficiency frontier i.e. the set E. For
abetter understanding of this classification scheme, we have illustrated it using an
example consisting of eight DMUs. Each of these DMUs consumes two inputs and
produces one output. Both inputs have been divided by the output to obtain inputs per
unit output and have been plotted in Figure 2.2.

X,

Figure 2.2 Scatter Plot Illustrating Efficiency Classification of DMUs

Based on the classification scheme discussed, we make the foll owing observations:

* DMUs2, 4and 8 bdong to set E.

* DMUGisinset F.

* DMUS5isinset E because it can be expressed as a convex combination of DMUs 2
and 4.

e DMU 1liesinset NE, DMU 3in NE' and DMU 7 in the set NF.
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24 WEIGHT RESTRICTIONSAND VALUE JUDGEMENTSIN

DEA
Most of the methodological extensions of DEA have been application driven i.e. they
have been aresult of the application of the method to red life problems (Allenet al.
1997). One such development isthe use of weight restrictions and value judgements. The
intention of incorporating value judgements isto incorporate prior views or information
regarding the assessment of efficiency of DMUSs. In this section we seek to review the
evolution of the methodology of weight restrictions.

2.4.1 Motivation for Incorporating Value Judgementsin DEA

A conventional DEA model involves calculating the relative efficiency of aDMU by
assigning such weights to its inputs and outputs so that the ratio of its weighted output to
weighted input is maximized. Apart from the conditi on that the we ghts should be non-
zero (typel), the only other condition that restricts the weights is that the efficiency of
none of the DMUs should exceed unity (typel). Thus, DEA in its purest formalows
almost total flexibility in the selection of weights, especially if fewer> DMUs are included
in the analysis. This allows each DMU to achieve the maximum feasible efficiency rating
with its existing levels of inputs and outputs. An argument in favor of total weight
flexibility isthat if aDMU isidentified as inefficient in spite of using a favorable set of
weights, it isastrong statement about the inefficiency of that DMU. Another argument in
favor of total flexibility isthat the efficiency of different DMUs is evaluated using
different sets of weights allowing DMUsto express their different circumstances and

different objectives.

Total weight flexibility, however, also has numerous drawbacks. The salient drawbacks

are:

» Theefficiency measure in DEA is derived relative to the performance of other DMUs
and not to someided production frontier. Asaresult,aDMU that is superior to dl
other unitsin only asingle output - input ratio will receive an efficiency score of one

® With fewer DMUs, there are fewer constraints of type |1 and hence more freedom to the weights.
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by placing very high weights on that particular output-input ratio. Thus, factors of
secondary importance may dominate a DMU's efficiency assessment and some
factors may be ignored. This may be unacceptable given the fact all factorsare
meticulously selected. In addition, the relative efficiency of aDMU may not really
reflect its performance with respect to the inputs and outputs taken as awhole. There
might also be an unfounded emphasis on efficient use of rdatively unimportant inputs
or on ahigher production of relatively unimportant outputs, thus concealing
inefficiencies in the most important activities undertaken by the DMU (Pedrgja et al.
(1997)).

Weight flexibility allows different DMUsto assign vastly different weightsto the
same factor. The argument in favor of thisis that different DMUs have different
circumstances and therefore one factor may be more important toone DMU
compared to another DMU. Thus, some degree of weight flexibility may be desirable
to allow DMUstto reflect their particular circumstances. However, complete
flexibility becomes unacceptable as most of the DMUs employ similar technologies,
pay similar prices for inputs, produce the same kind of outputs and have the same
overall objectives (Pedraja et al. (1997)).

Unbounded weight restriction models do not allow usto incorporate into the anaysis
any a priori information that might be available regarding the importance of inputs
and outputs.

The other extreme of unbounded weight restriction models is the complete lack of

flexibility, which converts the problem to that of ratio analysis and obviates the need for

DEA. An in between solution involves setting upper and lower boundswithin which

factor weights are allowed to vary. The imposition of restrictions on the weights implies

the formulation of value judgements about the relative importance of the different outputs

and about the relative opportunity costs of the inputs that produce these outputs. Weight

restrictions reduce the region of search for the weights thus possibly reducing the

efficiency of the DMUs. Asthe restrictions become increasingly severe, the measure of

efficiency derived moves from one of relative technical efficiency to one of relative

overall efficiency. At the extreme, with no flexibility in weights, DEA becomes classica
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ratio analysis, in which aunit's efficiency is measured as the ratio of weighted outputs to
weighted inputs with weights being equal to the prices (Pedrga et al. (1997)).

In addition to eliminating the drawbacks of unbounded DEA models, weight restrictions
also serve some additiond purposes. Listed below are some of the purposesfor which
weight restriction models could be used or have already been used in real-life
applications:

* Toensureincorporation of all inputsand outputsin the assessment of performance
By putting upper and lower bounds on the wei ghts, weight restriction models ensure that
all factors are considered in the analysis.

* Toincorporate prior views on the values of individual inputs and outputs

By assigning specific values to weight bounds, the decision-maker can express his/her
opinion about the relative importance of the factors. In this way weight restriction
models, overcome the drawback of unbounded models of not allowing a priori
information to be incorporated in the analysis. For example, in Chilingerian and Sherman
(1997), weight restrictions were used to enclose the factor weights in a cone, which
represented a particular physician practice pattern. This cone was constructed using
criteria specified by the health maintenance office (HMO) director. This ensured that
only those primary care physicians (DMUs) whose practice styles lay inside the preferred
conei.e. werein line with the preference of the HMO director were identified as efficient.
In another example, Dyson and Thanassoulis (1988) imposed restrictions on the weights
to incorporate the audit commiss on's management's perspectives on the reative
importance of the inputs and outputs used in the assessment.

» Torelate values of certain inputswith values of certain outputs

Thanassoulis et al. (1995) assessing the efficiency of perinatal care unitsinthe U.K.,
required the weight on "babies at risk” (input) to be the same as the weight on "number of
survivals' (output). The unbounded model allowed them to vary the importance of the
ratio of the number of survivalsto number of babies at risk relative to other output-input
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ratios but it did not allow them to vary the relative importance of the individual
components of theratio. To address this problem, Thanassoulis et al. (1995) developed a
weight restriction model in which one of the constraints equated the weight on babies at
risk with the weight on number of survivals.

* Toincorporate prior views on efficient and inefficient DMUs

Often management has prior perceptions asto which DMUs it considersto be "good" and
which ones it considersto be "poor" performers. Weight restriction models allow
management to incorporate these prior perceptions into the analysis. For example, while
assessing the performance of banks, Charnes et al. (1990) found that the original CCR
model (1978) recognized some notorioudly inefficient banks as efficient. Therefore,
Charnes et al. (1990) developed the cone-ratio weight restriction modd, which assessed
the performance of all banks based on input/output values of three preselected banks,
which were recognized by management asvery good performers. In Chilingerian and
Sherman (1997), the weight bounds for the AR/cone-ratio model were determined based
on weight values assigned to the factors by those efficient DMUs (PCPs) whose practice
styles met the criteria specified by the HMO director.

* To move fromtechnical efficiency measurement to overall efficiency measurement
Traditional DEA models measure only technical efficiency i.e. they ignore the
information about input/output prices. Farrell (1957) defined overall efficiency asthe
product of technical efficiency and allocative efficiency. Allocative efficiency attemptsto
measure how well a DMU selects the combination of inputs so that the total cost is
minimized. Obviously for measuring allocative efficiency one requires information about
the prices of inputs and outputs. Since DEA is used for non-profit organizations,
obtaining price information is difficult in most stuations. However in amost al cases, it
is certainly possible to determine ranges of prices if not exact values and this fact is
leveraged by weight restriction models called Assurance Region (AR) models
(Thompson et al. (1990)). The AR model recognizes the fact that the input/output
multipliers in the dual DEA model are the prices of the inputs/outputs. Therefore, the

price ranges obtained from the market can be used to set bounds on the multipliers. Quite
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often, however, market information may not be readily available (Zhu (1996)). In such
circumstances, AR bounds are determined using expert opinion. Zhu (1996) uses the
analytic hierarchy process (AHP) to gather expert opinion for setting AR bounds.

* To switch fromthe points of view of the individual DMUs to that of central
management.
DEA modelswith complete weight flexibility weigh the same factor differently while
evaluating different DMUs (Roll et al. (1991)). Thisdifference in weights may not be
acceptable to central management, as they would be interested in knowing how the
DMUs perform using similar sets of weights. Appropriate weight restrictions ensure that
all the DMUs are evauated with similar (if not common) setsof weights. This represents
aswitch from the points of view of individual DMUsto that of central management and
offers a compromise between complete weight flexibility on one hand and fixed we ghts
on another.

» To enable discrimination among efficient units.

Sometimes DEA may be used to choose one best DMU from amongst the available
alternatives. For example, Thompson et al. (1986) tried to use DEA to determine the best
location for a nuclear physics facility in Texas and discovered that five out of six
aternative facilities were found relatively efficient by the free weights model. To narrow
the choice down to asingle ste, Thompson et al. (1986) determined assurance region
constraints based on expert opinion. The AR model identified only one DMU as efficient.

2.4.2 Approachesfor Imposing Weight Bounds

In this section, we will use the same classification scheme as that used by Allen et al.

(1997) for classifying the different approaches for imposing weights restrictions.

The approaches for imposing restrictions on weights can be classfied into thefollowing

three broad categories:

1. Direct Restrictions on weights (Absolute Weight Restrictions, Assurance Region |,
Assurance Region I1)
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2. Adjusting the observed input-output levels to capture value judgements (Cone-Ratio
and Ordinal Relations).
3. Redtricting weight flexibility by restricting the weighted inputs and outputs.

Let usnow look at each of the approachesin detail. All the approaches use the CCR
(1978) model as the base model.

2.4.2.1 Direct Restrictionson Weights

Direct restrictions on the weights are applied by adding additional constraints involving
the weights to the existing DEA modd. There arethree ways in which direct restrictions
have been applied in the literature.

2.4.2.1.1 AbsoluteLimitson Weights

Thistype of model uses constraints, which impose upper and lower limits on the input-
output weights (see Roll et al. (1991) and Roll and Golany (1993)). These constraints are
primarily employed to prevent the inputs or outputs from being over or under
emphasized. In usual notation, a CCR model with absolute limits on weights can be
represented as:

Z ur er

s
r=1
Max

ZViXiO
1

V<V<V (2.9)
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where v and V, are the user-specified lower and upper bounds respectively on input

weightsand u and T, are the lower and upper bounds respectively on the output

weights. The key difficulty in using this approach is the determination of the values of
the bounds. Roll and Golany (1993) recommend three methodsfor specifying absolute
weight bounds:

1. General restriction of weight variation

This method is used when no information (about the relative importance of weights) is
available. It should be noted that incorporating information about the relative importance
of the different factorsis not the only purpose of using weight bounds. An equally
important purpose of introducing weight bounds could be to limit the span of variation of
the weights and ensure that the weights do not take extreme va ues. The method
recommended below taken from Roll and Golany (1993) servesthis exact purpose.

@) Run an unbounded CCR model, compile a"weight matrix" and find the average

weights u', and V', given to each factor, across all DMUs.

b) Determine the amount of allowable variation in weights for each factor. For example,
let the ratio of the highest value to the lowest oneisd: 1.
c) Extend the basic CCR model by adding a set of bounding constraints of the type®:
2u', 2du’,
<u, <
1+d " 1+d
Apply similar constraints on the input weights.

d) Run the "bounded" model.

Asapossible variation to thistechnique, Roll and Golany (1993), propose cutting off
certain percentage of extreme values from both sides of each vector of weights before
finding the average in step a).

® Theintuition behind us ng these formulas for the upper and lower boundsis that they cause the lower
bound to take avalue smaller than 1 and the upper bound to take avalue greater than 1 with theratio
between the bounds being d:1.
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2. Judgmental Restriction of weight variation

This method is used when some a priori information about the relative importance of the
factor weights exists. Just like the previous method, this method also uses the "weight
matrix" obtained from the unbounded runs as a starting point. The analyst's opinion about
relative importance is brought forward by adopting central valuesthat are different from
the arithmetic average (i.e. areeither above or below the average) and by choosing
different ratios (d, ) between upper and lower bounds for different factors. Graphically
these weight bounds are represented in Figure 2.3. Factors, which, in the analyst's view,

are more important, will have higher weight spans compared to the less important ones.

1U>

4 U,

Factor T

Weight
Values 991 IL,
OouU,
IL,;
OL; OL,

>

Figure 2.3 Judgmental Restrictions on Weights produce Weight Bounds with Different
Spans for Different Factors

3. Advance setting of bounds

Sometimes bounds are determined a priori without running the unbounded model. This
implies astrong initial position on the relative importance of factors and the allowed
spread of weights.

2.4.2.1.1.1 M odification to Absolute weight bound model proposed by Podinovski
and Athanassopoulos (1998)

Podinovski and Athanassopoulos (1998) argue that adding weight restrictions to the CCR

model underestimates the relative efficiency of the DMUs. Before we proceed to explain
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this point let us define the notation that will be used throughout this sub-section. The
efficiency of any DMU j will be defined as:

E(j,uv)=u"Y, /V' X,

where X; and ; are input and output vectors respectively and u' and v are the vectors
representing the output and input weights respectively. Using this notation, the CCR
model can be represented as.

max  E(j,,u,Vv)

wg&t to . (2.5
E(j,u,v) <], j=1...,n

uv=e

Now consider the maximin DEA model

max jrginn(E(jo,u,v)/ E(j,u,v)) (2.6)

vle

Although the objective function of (2.5) maximizes absolute efficiency and the objective
function of (2.6) maximizesthe relative efficiency, both forms are equival ent because
both get converted to the same LP form. Thus, in the absence of weight restrictions, the
CCR model and the maximin model both maximize the relative efficiency of DMUs.
However, when weight restrictions are added to the CCR modd, it maximizes only the
absolute efficiency of the assessed DMU and may not maximize its rel ative efficiency,
which isthe only important measure. This is because in the presence of weight
restrictions, models (2.5) and (2.6) are no longer equivalent and get converted to different
LP forms. Since the objective function of (2.5) maximizes the absolute efficiency, it
continues to do o in the presence of weight regtrictions. This may lead to an
underestimation of the relative efficiency of the DMUs being assessed when weight
restrictions are added to the CCR mode . Therefore, Podinovski and Athanassopoul os
(1998) recommend adding weight restrictions to the maximin model instead of the
fractional CCR model because the objective function of the maximin model is set
explicitly to maximize the relative efficiency of the assessed DMU. To explain the
difference between the two models let usfirst consider the following fractional CCR
model with absolute weight restriction constraints:



max E(],,u,V)
subject to
E(j,u,v) <],

u <u, su, r=1...,s

-r

vV SV,

I
=
=

2.7)

<V, i=1...m

When (2.7) is converted into an LP form, we get the following model:
max Uy,
subject to
n'X,=1
u'yY-nTxX<o; (2.8)
pgr < U, < pU, r=1..,s
p\_/i <n, < pv, i=1..m
p=0,u,n—free
where
H. = pu;
N = pv,
p(mx1) andn (sx1) arethe new output and input weights; X (mxn) and Y (sxn) are input
and output vectors respectively; and Xoand Y are vectors representing input and output
levels for the assessed DM Uj.

If instead of starting with the CCR model, we start with the maximin model and then
place weight restrictions, then the resulting LP will be asfollows:

max u'Y,

subject to

n'X, =1

u'yY-n"X<o; (2.9
pt_Jr < U, < pu, r=1...,s

qvi <n, <qv. i=1..,m

p,q=0,u,n —free
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where

H, = pu,
n =qv

Comparing model (2.8) with model (2.9) we notice that (2.9) has two independent scaling
variables p and g, while (2.8) has one. Model (2.8) may not find the most favorable set of
weights for the assessed DMU within the feasible set and may end up underestimating the
relative efficiency of the named DMUs.

2.4.2.1.2 Assurance Regionsof Typel (AR )

Theserelations are introduced in the analysis to accomplish ether of thefollowing two
purposes:

* Incorporate the relative ordering of inputs/outputs

* Incorporate information on prices or values of inputs/outputs.

In these types of constraints, upper and lower bounds are imposed on the ratios of factor
weights. Bounds are determined using market price information (see Thompson et al.
(1990), Thompson et al. (1996a), Thompson et al. (1996b), Taylor et al. (1997)). Thus,
an AR model represents a move from measurement of technical efficiency to
measurement of overall efficiency. If price information is not available then expert
opinion on the relative importance of the inputs/outputs is used to determine the bounds
(see Zhu (1996)). The AR model can be mathematically represented as follows:
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As<i<B i<k, ik=1..m (2.10)
Vk
u

a <—<bhb r<t, r,t=1...,s
ut

-V, <€ i=1..m

—u, <-¢€ r=1....,s

where A and B; are the lower and upper bounds on the ratios of input weights and a, and

b are the lower and upper bounds on the ratios of output we ghts.

Usually, one of the inputs (say x,) is selected as an input numeraire and one of the outputs
(say y1) isselected as output numeraire. Thenan AR may be specified asaset of (m +s-
2) homogeneous linear inequalities for separable cones (see section 2.4.2.2.1 for a better

understanding of cones):

r=2,..,8 (2.11)

A<Y<B i=2..m
Vl

Rearranging the terms in (2.10) we get the following most commonly used form of AR
congtraints:

u <u <bu r=2..S
au r (e} . (2.12)
Av, <V, <Bv, 1=2..m
2.4.2.1.3 Assurance Regionsof Typell (AR 1)
In thistype of AR model, the input and output weights are linked together i.e. bounds are
set on the ratios of output weightsto input weights. These types of AR constraints are
also called linked AR constraints because the input — output cones are linked as opposed
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to be being separable as in case of AR | constraints. AR |1 models can be used for two
purposes. Either to incorporate information about the relative importance of an output
with respect to an input (see Thanassoulis et al. (1995)) or to determine the profitability
of DMUs (see Thompson et al. (1996b)). When the model measures profitability of the
DMUSs, the bounds are set using market price information.

An ARIl DEA model can be mathematically represented as.

MaX Z ur yrjO

st. ivi Xio=1
1=1

iury’j ) gvixij <0 j=L1..,N (2.13)

Wi Zur
-V, <-¢

1...m
1...,s

i
-u, <-¢€ r

wherey isthe upper bound on the ratio of the output weight u, to the input weight vi.

2.4.2.2 Adjusting the Observed Input-Output Levelsto Capture Value
Judgements— The Artificial Data Sets M ethods

In the previous section, we discussed models in which weight restrictions were imposed
by adding additional constraintsto the original basic DEA model. In this section we will
discuss models in which the weight restriction is imposed by modifying (multiplying by a
vector) the existing input-output data. There are two such approaches where transformed
input-output data are used to simulate weight restrictions.

24.2.2.1 The"ConeRatio" Model

The cone-ratio mode is another method of bringing expert relative va uationa
knowledge into the analysis. It involves generating a cone (smaller than the non-negative
orthants) spanned by the optimal virtual multipliers of efficient DMUs which satisfy
certain conditions specified by the decision-maker. The assurance region constraints
(discussed previously) are special cases of intersections of half-spaces restricting the
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virtual multipliersto closed convex cones. The meaning of half-spaces and closed convex
cones will become clearer from the discussion that follows in this section aswell asin
Section 3.2.1 of Chapter 3.

The cone ratio modd was first introduced by Charnes et al. (1990). We use the following
exampleto illustrate the concept of convex cones graphically. Consider a company
having six (6) factories in six different locations in the country. Let each factory utilize
two primary inputs - machine hours (X1) and labor hours (X5) and produce asingle
product as output. Let the machine hour rate be less than the labor hour rate. Naturally,
the management of the company would prefer factories to use more machine hours and
fewer labor hours. Let usaso assume that it is possible to substitute labor hours by
machine hours. The change in labor hours (AX3) per unit change in machine hours (AX1)
is defined as the marginal rate of technical substitution. Let us assume that each of the six
factories produce the same quantity of output of comparable quality. Figure 2.4 shows the
scatter plot of the data with the production possibility set identifying efficient and

inefficient factories.

Machine Hours (X 1)

A _
. F5 ///
Man
agement y -
Style1
/ Management
/. Style2
F1l
Management
- - F6 Style 3
ST T = — F7
// /” ———————— F4
R Management
ST Style 4
N » Labor Hours

(X2)
Figure 2.4 Geometric Representation of Convex Cones
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Each factory has a"management style" which represents the proportion in which it uses
the two inputs. In figure 2.4, convex cones (represented by dotted lines) are used to
linearly partition the management styles based on a set of linear constraints such as the
ranges of substitution ratios. For example, the ray joining the origin (0) and the point F1
represents all pointsthat use the two inputs in the same ratio as F1. Similarly, the ray
joining the origin and the point F3 represents all points that use the inputs in the same
proportion as F3. Therefore, afactory lying inside the "Management Style 2" cone will
have aratio of machine hours to labor hoursthat lies between the corresponding ratios for
factories F1 and F3. In general, styles 1 and 2 include factories which use more machine
hours compared to labor hours and style 4 contains factories which use relatively more
labor hours compared to machine hours. Obviously, since the machine hour rateis lower
than the labor hour rate, styles 1 and 2 are more desrable to the company management
compared to style 4. Thus, we see that although all factories on the efficiency frontier are
technically efficient, not al of them have management styles that would satisfy the
company management (example, factory F7). This points out the weakness of using
unbounded DEA models when decision-makers have certain preferences or when
information about prices exists. Cone-ratio constraints eliminate this drawback of
standard models by allowing cones of virtual multipliersto be defined so that decision-

makers can incorporate qualitative or price information into the analyss.

Now let'sturn to the mathematicd representation of cone-ratio constraints. Suppose

v,and v, are input multipliers and suppose that market information sets the range of their
ratio as c, < v,/v, < c,, with ¢, =2c¢, > 0. Then we have:

-v,+¢Vv,<0 and v, -c,v, <0 (2.14)

The polyhedral convex cone V for the input multipliers would then be defined as:

vV ={v:Cv=20,v=0}. (2.15)
Where
¢, -10 v,
=0. .padv=p°g
GC 10 [
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Similarly if F isthe matrix equivalent to C for the output weights, then the output closed
convex cone will be defined as:
U={u:Fu=0,u=0} (2.16)

When the input-output weights are enclosed in cones, the resulting cone-ratio DEA
model isas follows:

Max u'y,
T —
st v X, =1 (2.17)
-vIX+u'Y<O0
vV, ullu

where X (mxn) and Y (sxn) are input and output vectors respectivelyu (sx1) and v (mx1)
are output and input weight vectors respectively, Xoand Yy are vectors representing input
and output levels for the assessed DMU jo. The closed convex conesV O E™and U O E®
that have already been defined in (2.15) and (2.16) contain the weight restriction
information. E™ and E® arethe non-negative orthants used in the unbounded DEA model.
Thusif V=E"and U = E®, then the model becomes equivalent to the standard DEA
model (Charnes et al. (1990)). The matrix representation of cones shown in (2.15) and
(2.16) iscalled the intersection form and is used in assurance region models. An
alternative representation defined in Charnes et al. (1990) is called sum form. For small
matrices, the intersection form can be easily converted to the sum form and vice-versa.

For example, if Cand F are 2 x 2 matrices in intersection form, then the equival ent
matrices A and B in sum form can be obtained by carrying out the following
transformations:

A'=(C'C)*CandB" = (F'F)*F.

Charnes et al. (1990) introduced the sum form because by multiplying the input-output
data by the matrices in sum form (A and B), the cone-ratio modd (2.17) is converted into
aform similar to the standard DEA model. The advantage of converting the cone-ratio

model to the standard form isthat it can be solved using standard DEA packages. Such a
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cone-ratio model with modified data setsis referred to as the cone-ratio model with

artificial data sets and will be represented as follows:
Max  g"(BY,)

T —
st. w' (AX,)=1 (2.18)
-w' (AX)+g"(BY)<O0
w=0,g=0

For more details on this discussion, see Charnes et al. (1990)

2.4.2.2.2 TheOrdinal Relations Approach

Golany (1988) proposed imposing ordinal relations of the form v, > v, > v, = & among

the DEA weights. Golany (1988) also proposed equivalent transformations on the data
which would allow usto incorporate ordinal relations without adding additional

congtraints. For example the equivalent of the constraint v, 2 v, = v, = € isreplacing xy;

by Xz + X1; and xaj by Xsj + Xo + Xgj Oj, where x;; isthe level of i™input for thej™ DMU.

2.4.2.3 Restricting Weight Flexibility by Restricting the Weighted | nputs and
Outputs

Two approaches proposed in the literature impose limitations on weights by restricting

the weighted inputs and outputs. One is the "contingent weight restrictions’ approach

proposed by Pedrgacet al. (1997) and the other is the approach proposed by Wong and

Beasley (1990) which imposes limitations on the "relative importance of factorsto a

DMU."

2.4.2.3.1 Contingent Restrictionson Weights

Pedraja et al. (1997) argue that weight restrictions ought to be imposed taking into
account the DMU's level of inputs and outputs to ensure that only those inputs or outputs
which contribute "significantly” to the total costs or benefits of aDMU are included in

the analysis.

For an input space, Pedrgja et al. (1997) propose the following form for the constraints:
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cVi Xy SV X <dV, X,
where ¢; and d; are to be chosen by the analyst. Similar constraints can be applied in the
output space. Constraints of this sort require the proportion of tota benefits ascribed to

one input (output) to not exceed those ascribed to another input (output) by more than a

certain multiple.

Pedreja et al. (1997) term this approach "contingent™ weight restriction approach to
emphasize the fact that the pattern of weights selected depends on the level sof inputsand
outputs chosen by the DMU. Because of the dependence, the DMU puts more weight on
inputs whose levels are low (i.e. oneswhich it consumes efficiently) and less weight on
inputs whose levels are high (i.e. onesthat increase its inefficiency). Thus, the efficiency
calculated by the contingent model tends to be morethan that calculated by models,
which put limits on prices of inputs and outputs.

2.4.2.3.2 Redrictionson Relative Importance of Factors

This method was developed by Wong and Beadey (1990) and involves putting
restrictions on the "importance" attached to a certain output (or input) measure by a
DMU. The importance attached by a DMU to a particular output isthe proportion of the
total output devoted to that output. Thus, the importance attached by DMU j to output

u'y

measure r can be given by s’—” where u; isthe weight onthe r'" (r=1,.., s) output and
Z ur yrj

yijisthe level of output r for DMU j.

Wong and Beasley (1990) assume that the decision-maker can set limits[a,, b;] on the
importance of output measurer in DMU j. Using these values of the bounds, the
following constraint can be added to the origind DEA modd.

u )
a < rer Sb

r = s r
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Specification of [a;, by] isavalue judgement and isarrived at by seeking a consensus
amongst those familiar with the situation being modeled, on the relative importance of

each output measure in the total output.

2.4.3 Applications of Weight Restriction M odels

This section describesin detail the various applications of weight restriction modds that
have been published in the DEA literature. For each application, we have tried to provide
such details as how the bound values were determined, how the weight restrictions
affected the results, etc.

2.4.3.1 A DEA Model for M easuring the Relative Efficiency of Highway

M aintenance Patrols— Cook et al. (1990)
Thisisthe only real-life application of the absolute weight restrictions DEA model. The
rest of the applications that follow in this section are applicationsof the AR-DEA model.
In this application, a pilot DEA study was carried out to measure the efficiency of 14
highway maintenance patrols. Two inputs and two outputs were included in the analysis.
The first output called the ass gnment sze factor was acompos te measure of all factors
that were indicators of the "size of the system™ such as surface, shoulder, right of way and
median, and winter operations. The other output was the Average Traffic Serviced. The
two inputs included in the analysis were Total Expenditure and Average Pavement
condition Rating. In thefirst run of the model, the weights were alowed to vary fredly.
After investigating the weight matrix of the unbounded run, the authorsfound that
different DMUs were assigning vastly different weightsto the same factor. To control
this variation, the authors determined an absolute set of bounds based on the unbounded
weight matrix (see Roll et al. (1993) for different methods for determining absolute
bounds based on the unbounded weight matrix). The model was solved again with the
weight controlled by bounds.

The consequences of imposing weight bounds were:

» All efficiency ratings fell below the previous (unbounded) levels.



+ Two of the DMUs, which were on the frontier in the unbounded model, fell under the
frontier.

* Therewere fewer different peer groups compared to the unbounded model.

2.4.3.2 DEA/AR Efficiency and Profitability of Mexican Banks - A Total
Income Model - Taylor et al. (1997)
DEA and linked-cone assurance region models were used in this paper to investigate the
efficiency and profitability potentia of Mexican banks as they engaged in activities that
incurred interest and non-interest expenses and produced income. The study had only one
output called total income which was the sum of abank's interest income, which included
interest from loans and non-interest income, which in turn included dividends, fees, and
others.

The two inputsin the study were:

» Tota deposits, which included the banks' interest paying depost liabilities.

» Total non-interest expense, which included personnel and administrative costs,
commissions paid, banking support fund contributions and other non-interest

operating costs.

The bounds were set using price/cost data. The price information was obtained from the
range of nominal interest rates for the loan and deposit portfolios of al the banks, so they
were consistent with the market interest ratesfor the datayears. Since the second input
and the single output were expressed as totd nomina pesos, their upper and lower

bounds were both equal to one.

2.4.3.3 Comparative Site Evaluationsfor L ocating a High-Energy Physics
Lab in Texas- Thompson et al. (1986)

In this paper a comparative evaluation of sSx competing Steswas carried out using Data

Envelopment analysis to determine theideal sitefor locating a high energy physics|ab.

The inputs that were incorporated in the study were project cost, user time delay and

environmental impact.
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1. Theproject cost included capital cost of the tunnel, land costs, real estate
improvement costs, operating costs for 20 years, and cost of main ring and injector.

2. Theuser time delay index measured the percentage increase in the time required for
the user to complete a given research plan whenthelab islocated at a Ste other than
the ideal site - where an ided Steis the onewhich is dose to the airport and has a
large center of technica support. Index vaues greater than 1.00 represented a
measure of the site's inefficiency.

3. Theenvironmenta index measured the effect of the facility on theenvironment and
the effect of the environment on theviability of the facility. Factors representing both
the effect of thefacility on the environment and that of the environment on the SSC
were determined and each site was ranked for each factor. The environmentd index
was constructed for each site by computing the weighted average of the assigned
ranks.

The objective of the project wasto select a site, which maximized the net benefit i.e. the
difference between the benefits and costs. For that purpose al costs and benefits had to
be estimated in dollars and this caused problems because user time delay and
environmental impacts are not generally expressed in dollars. Thisiswhere DEA came to
the rescue because the DEA method, while consistent with the criterion of maximizing
the net benefit, did not require that all costs and benefits be denoted in dollars. However,
the drawback with applying the basic DEA model, which measures only the technical
efficiency, to the existing data wasthat it identified more than onesite (in fact 5 out of 6)

as efficient.

To identify the preferred site from amongst the technically efficient sites, Thompson et
al. (1986) resorted to economicsi.e. they modified the DEA modd so that it would
identify the most economically efficient site. To determine the economically efficient
site(s), Thompson et al. (1986) carried out an analysis’ of the space consisting of virtud
weights (or prices) of inputs. Before carrying out the weight space anays's, thevirtual
weights for the user-cost and environmental indices were normalized on facility costs,

’ For more details on weight space analysis refer to section 3.2.1 in Chapter 3
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which was the only input measured in dollars. With the normalization on facility costs,
the weight space became two-dimensional and could be divided into regions of site
preference i.e. each site had its own region of dominance in the weight space. To
determine the best site an assurance region of weights was defined. The Ste whose region
of dominance in the weight space contains the assurance region would be the best site.
The "assurance region” was delineated by determining upper and lower bounds for the
weights (prices). In the model, v, was the price on facility cost; v, was the price on user
costs and vz was the price on environmental costs. Because v, and vs were uncertain,

variations in the values of these prices had to be allowed.

To determine the "assurance interval” for v,, an expected value of 5 was used for v..
Using a confidenceleve of 99 percent and the value of standard error of the mean for the
ideal site plusthe underlying literal loss of efficiency assumption, the assurance interva
for v, was determined as (3.6, 6.5). The "assurance interval” for v was found by using
the upper bound for ameliorating the environmenta impact which was provided by the
Texas A&M environmental study for the project. The Texas A&M environment study
concluded that the negative environmental impacts at each site can be ameliorated at a
cost which will not exceed the costs of tunne construction. The cost for amdiorating the
environmental impact would be given by (xz)* (v3) where x3 isthe environmental index.
The maximum difference between the worst and the best values of the cost of
ameliorating the environmenta impact will be (Axs) (vs) where Axz isthe maximum
difference between the worst and best values of the environmentd index. Using the
conclusion arrived at by Texas A&M environmental study we can say that:

(Ax3) (v3) < maximum difference in tunneling costs between the worst site and the best

site.

The value of Ax; was known to be 1.6 and the value of "maximum difference in tunneling
costs between the worgt site and the best site”" was known to be $5.4 million (say 0.5
billion). Thus, v < .313. Assuming an error of magnitude of 3 in the environmenta
index (xs), the relevant range for vz was found to be 0.104 to 0.939. Thus, the assurance
region constraints for the SSC site location problem were:
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v, =1
36<v,<6.5and
0.104<v, <0.939

When this assurance region was applied to the site location problem, it was found that the
region of dominance of one of the sites, in the weight space, completely enclosed the
assurance region. Therefore, this site was the only one with efficiency score of 1 and was

also the preferred site.

2.4.3.4 DEA/AR Efficiency and Profitability of 14 Major Oil companiesin
U.S. Exploration and Production - Thompson et al. (1996b)

In this paper, the efficiency and profit potential of 14 integrated oil companies were

measured using dataenvel opment analysis. The definitions of the outputs and inputs for

the producers were asfollows:

Outputs

Y1, Y3 - Additions made to crude oil (Mbbls) and natural gas (MMCF) reserves,

respectively by exploration.

Y2, Y4 - Crude oil (Mbbls) and naturd gas (MM CF) production for saefrom its respective

proved reserves.

Inputs

X1 - Total costsincurred (M$); and

X2, X3 - proved crude oil (Mbbls) and natural gas (MMCEF) reserves at previous year-end.

Separable input and output AR bounds were placed on the modeled prices (multipliers) to

proceed from technical toward overall efficiency. The "price/cost” data used for setting

the AR bounds in this paper were organized from several sources. The following points

explain how the price/cost ranges for the inputs and outputs were determined:

1. For y; the lower and upper endpoints of the range values were estimated by use of
Arthur Anderson’'s annual minimum and maximum discounted after-tax future net

cash flows per barrel of crude oil for the majors.
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2. For y,, the lower and upper-endpoints of the range of values were the smallest and
largest respective monthly crude oil prices (1% domestic) reported by the U.S.
Department of Energy (DOE) in its Monthly Energy Review.

3. For y,, thelower and upper-endpoints of the value range were the smallest and largest
respective monthly natural gas prices (wellhead dry) reported by DOE in its Monthly
Energy Review.

4. For ys, theratio of the average annual wellhead natural gas price (dry) to the average
annual first domestic crude oil price was multiplied times thelower and upper-
endpoints of the value range for y; in each year to derive the respective rangefor ys.

5. For X, the lower and upper-endpoints of the value range were equal to one in each
year, presuming that each dollar of costs paid for inputs, e.g. labor, was worth a
dollar;

6. For xp, product of the respective largest values for y; and the monthly Corporate Bond
AAA interest rate, as reported in the Economic Report of the President, was used to
specify the upper-bound for the second input. Similarly, the product of the smallest
respective values was used to specify the lower-bound for x,.

7. For xs, the upper and lower-endpoints of the value range were derived from the upper
and lower-endpoints for x, by the use of gas to oil price ratio asfory, above.

The bounds for x; and xs were specified to reflect the rental cost of carrying a unit of the

respective reserves from year t-1 into year t.

2.4.3.5 DEA/AR Efficiency of U.S. Independent Oil/Gas Producersover Time
- Thompson et al. (1992)
In this study, a DEA/AR efficiency analysis of 7 years (1980 - 1986) was madefor 45 ail
/ gasfirms called independents. The outputs were y; (total crude oil production in barrels
(bbls)) and y» (total natural gas production in thousand cubic feet (MCF)). The inputs
were X, (total production cogtsin dollars), x; (total proven crude oil reserves in bbls), x3
(total proven natural gasreservesin MCF) and x4 (total net wellsdrilled). Total oil/gas
wellsdrilled was the sum of all wellsdrilled (wet and dry), including fractions drilled as

joint venturesi.e. it wasthe total net wellsdrilled.

59



The AR constraints on output multipliers were of the following form:
A <u,/u <B,
where u, /u, was the oil/gas muliplier ratio and the nonnegative numbers A, B, were

based on the historical price/cost data and expert opinion.

The AR constraints on the input multipliers were as follows:
a,<Vv,/v, <3,
0, <V,/v, < B, (2.19)
a,<v,/v, <,

where the nonnegative numbers a,, B;,1 = 2, 3, 4were based on historical price/cost data

and expert opinion.

Determination of the AR bounds for output virtual multipliers:

In estimating Az and By, the monthly minimum and maximum "spot” natural gas prices
were divided by the monthly average wellhead West Texas Intermediate crude oil prices
for all months from Nov. 1983 - Sept. 1988. For each of the years 1984-1986, the annual
minimum and maximum price ratios (A, B) were estimated by averaging the
corresponding monthly ratios.

For the years 1980 - 1983, comparable monthly gas/oil price data were not available,
except for Nov. and Dec. 1983. Hence use was made of regression analysisto estimate
the values of the maximum and minimum gas/oil priceratios. The monthly minimum and
maximum gas/oil pricesratios for the period Nov. 1983 to Sept. 1988 were regressed
against the monthly Index of Industrial Production. ThisIndex of Industrial production
was then used to calculate the monthly minimum and maximum gas/oil price ratios for
the period 1980 - Oct. 1983. For the years 1980 - 1983, A, and B, were estimated by
averaging the respective monthly estimates.

Determination of the AR bounds for input virtual multipliers:

For each year 1980 - 1986, the minimum reserve value and aso the maximum reserve
value was found from the data of Arthur Anderson for all the firms analyzed; and these
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minimum and maximum values were used to estimatea,,, 3, , respectively. Pair wise, the
bounds A, B, were multiplied times a,, 3, , respectively to estimate a,, 3.

Similarly, for each year, the onshore and offshore drilling cost data represented the
lower- and upper bounds for the range of observed costs per well. The range endpoints

were used to estimate/specify a,, B,, respectively, year by year. The variable production

cost x; was measured in dollars and the value of its multiplier vi was specified to be 1
because adollar of labor costisworth adollar.

2.4.3.6 DEA/AR Analysis of the 1988 - 1989 Performance of the Nanjing
Textiles Corporation - Zhu (1996)
This article employed the data enve opment analys s/assurance region (DEA/AR)
methods to evaluate the efficiency of the 35 textile factories of the Nanjing Textiles
Corporation (NTC), Nanjing China. By specifying input and output cones, a cone-ratio
assurance region (CR-AR) was set up. While most existing approaches involving
Assurance Regions use "price/cost” data to determine values of the bounds, that approach
was not used in this paper because the concepts of price and cost could not be used in
Chinese economic planning. The problem being that the prices of many important
industrial raw materials and products, and necessities, etc., were controlled by the
government and were fixed at certain levels for relatively long periods (e.g. five years or
more).

Therefore, inthisarticle, AR's were developed based on expert opinions on the relative
importance between various inputs/outputs. NTC uses the Analytic Hierarchy Process
(AHP) to gather and present expert opinion for systematically evaluating the overall
industrial performance. The results from the AHP were used in this paper to set bounds
on the weights. Two CR-ARs (CR-AR1 and CR-AR2) were developed to reflect two
different economies (central planning and market) as Chinawas transitioning from
central planning economies to a mixture of central planning and market economies. CR-
AR1 reflected the eva uation under the assumption of central planning economies which
laid more emphasis on net industrial output value while CR-AR2 reflected the evaluation
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under the assumption of market economies which lad more emphasis on profit/taxes and

revenue.

Thetwo AR'swere useful in studying the effect of change in the economic conditionson
the performance of the factories and also in identifying the factories, which were more
flexible than othersin adopting the change. Thus, the CR-ARs not only refined the DEA
efficiency results but also could be used to analyze the textiles industrial behavior in the

face of evolving market economies in Chinese economic reforms.

2.4.3.7 Best Practice Analysis of Bank Branches. An Application of DEA in a
L arge Canadian Bank - Schaffnit et al. (1997)
This paper presents abest practice analysis of the Ontario based branches of a large
Canadian bank. The analysis was focused on the performance of branch personnel. To
sharpen the efficiency estimates, constraints were imposed on the output multipliers. To
find cost efficient branches, i.e. to measure allocative efficiency, a model with similar
constraints on the input multipliers was used. The inputs considered in the analysis were
the number of personnel of each type (there were total five types) working in the
branches and the outputs were the number of transactions and number of maintenance
activities of each type. The values of the average standard times for all output activities
were used for setting the AR bounds on the output multipliers. Management estimated
that the large majority of transaction and maintenance activitiesfell within a + 25% range
of the standard times. Using this information, the upper and lower time bounds were

determined as follows: for each output y;. r = 1, ..., swith standard time t_, upper and

lower time boundswere t.* = (1+ p)t, , with p = 25%. From this, the following sets of
s*(s-1) / 2 congtraints in the output multipliers were obtained:
Hi b

t
<

o r=1..s-Lj=r+1..s (2.20)
tr IJr

—t
T o=+

To study the cost-minimizing behavior of the branches, vaues or "prices’ were
introduced for each of the inputs. The salary range for each type of staff was used to set
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the bounds. The range of the salaries was estimated by management to be + 20% of the
average salaries. The input multiplier constraints were similar to the output multiplier
constraints shown in (2.20). When these input multiplier constraints were added to the
model with output multiplier constraints, the resulting model measured the overall
efficiency. Theratio of the score given by this model to that given by the model with only
output weight constraints measured the allocative efficiency.

2.4.3.8 Exploring Output Quality Targetsin the Provision of Perinatal Care
in England using Data Envelopment Analysis- Thanassoulis et al.
(1995)

This paper explores the use of Data Envelopment Analysis to assess units providing

perinatal care (District health Authorities, DHAS) in England. The input set for the DHAs

consisted of five controllable inputs and one uncontrollable input. The controllable inputs

were (for more details see Thanassoulis et al. (1995)):

* Whole Time Equivalent (WTE) obstetricians;

*  WTE pediatricians;

* General Practitioner's (GP) fees,

e  WTE midwives,

e WTE nurses;

The uncontrollable input was Number of babies at risk. This input was included because
it was important for monitoring the survival rate of babies at risk.
The output set incorporated both activity levels and quality measures. The output set was
classified into three categories:
1. Outputsrelated to activity levels (these were exogenoudy fixed):

» Tota number of birth episodes performed in the DHA;

* Number of Deliveriesto mothersresident inthe DHA;

* Number of special care consultant episodes;

* Number of intensive care consultant episodes;

*  Number of abortions.
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2. Outputsrelated to service quality:
*  Number of very satisfied mothers;
*  Number of satisfied mothers.

3. Output related to Quality of medical outcome:
*  Number of babiesat risk surviving.

Conventional DEA model allows complete flexibility to the weights assigned to the
inputs and outputs. However, this freedom of choice of weights was found unacceptable
in this case because of the presence of output quality measures in the model. Thereforeto
incorporate information on relative importance of outputs and inputs, additiona
constraints were added to the origina DEA mode . Four aternative preference structures
over weights on the input-output variables were applied. The structuresin tabular form
have been reproduced here:
Constraint Set Congtraints
I No weight constraints imposed

Ve = Hsuvivas
I Hsuivas 2 M pdiveries to Resident mothers

IJSurvivaﬂs 2 lJAbortions

IJSurvivaﬂs 2 IJDdivery episodes in DHA

Vies = Hsuivas
" Hyey siisied 2 L-OH saiied

IJSatisfied 2 15/'1 Deliveries to Resident mothers

Hsmivas = 125Uy ey saisied

VRisk = IJSurvivaﬂs

Hyey siisied = OH saissied

IJSatisfied 2 5/'1 Deliveries to Resident mothers
Hsivas = 100 Uyqy syigied

Hsaisied 2= O M peivery episodes in DHA

The first set allowed complete freedom to the input-output weights. The first constraint in
the second set required that babies at risk (input) have the same weight as number of



survivals (output). The logic behind equating the two weights was that those two factors
jointly defined the survival rate of babies at risk, which was an important quality measure
of medical outcome. The other constraintsin set |11 were of the ordinal type and simply
ensured that the weight on the number of survivalswas at least equal to that on the other
outputs. In setsl11 and IV, the preference information was further restricted to reflect the
strength of the preferences. In both cases, the measures of quality (of both service and
medical outcomes) were given more importance than the measures of outcome levels and
amongst quality measures, the outcome quality was given a stronger emphasis than
service quality. The difference between sets|l1 and IV was that set IV represented a
situation where strong information on preferences was available. The information on

preferences and their strengths was gathered from expert opinion.

2.4.3.9 DEA and Primary Care Physician Report Cards: Deriving Preferred
Practice Cones from Managed Car e Service Concepts and Oper ating
Strategies— Chilingerian, J.A. and H.D. Sherman (1997)
Chilingerian and Sherman (1997) used the assurance region modd to spot inefficiencies
in the practice patterns of primary care physicians (PCPs). The primary inputs were the
number of primary care visits, number of medical/surgery visits, number of referralsto
sub-specialists and the number of ambulatory surgery visits. Tradeoffs existed amongst
these inputs. For example, for many patients, the office visits and ambulatory surgeries
were substitutes for expensive hospitalizations. The preferred practice pattern for the
physicians according to the director of the health maintenance organization (HMO) had
two dimensons—financial and clinicd. The financid dimens on required the PCPs to
operate within their budgets and the clinical dimension required them to use fewer than
average hospital days and referrals, and provide neither too few, nor too many office
visits. The average vaues of dl the inputs were determined by analyzing one year of
utilization data. The AR bounds (bounds on marginal rates of substitutions of the inputs)
were determined by running the unbounded DEA model for the data. The ratios of input
multipliers for PCPs who were on the efficient frontier in the unbounded run and satisfied
certain conditions specified by the HM O director were used to set the bounds. Satisfying
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the HMO director’s conditions implied operating within the budget, below the mean
medical surgical days and mean referral rates, and at or above mean primary care visits.

Although a standard CCR model produces a proportional reduction of inputs, the purpose
of the cone ratio model was to force more than a proportiond reduction in hospita days
to align the physician practice styles with the preferences of the HMO director. Large
deviations from the unbounded to the bounded models helped the medical director to
identify trouble spotsin the primary care physicians who were practicing outside the
preferred practice cone.

2.4.3.10 Computing DEA/AR Efficiency and Profit Ratio Measureswith an
[llustrative Bank Application — Thompson et al. (1996c¢)

Thompson et al. (1996¢) solved the AR-DEA model for 48 banks for the years 1980 —

1990. The inputs and outputs included in the analysis were are follows:

Outputs

Y1 —Totd loans including commercial/industrid, installment, and real estateloans.

Y, — Totd non-interest income.

Inputs

X1 — Total labor in terms of number of employees

X2 —Total physical capital in terms of book value of bank premises, furniture, and

equipment.

X3 — Total purchased funds including federal funds purchased, large (> $100Kk)

certificates of deposits (CDs), foreign deposits, and other liabilities for borrowed money.

X4 —Total number of branches, including main office.

Xs — Tota deposits including demand deposits, time and savings deposits, and smdl CDs.

The information that was used to determine the AR bounds is summarized in the
following table:
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Factor | Factor Multiplier | Valuesused in CR - AR

Vi Up Interest rate on loans expressed as total interest income
divided by totd loans.

Yo Uy Both upper and lower bound equal 1, because adollar
of non-interest income isworth adollar

X1 Vi Price of labor expressed astotal salary plus employee
benefits divided by totd number of empl oyees

X2 2 Price of capital in user cost terms (cost of office space
replacement).

X3 V3 Interest rate on purchased funds

X4 Vy Same asfor x;

X5 Vs Interest rate paid on deposits

Table2.1 Information used to determine AR bounds in Thompson et al. (1996c¢)

Dueto the application of the ARs, the number of efficient DMUs reduced significantly.
In fact, the AR eliminated 90% of the extreme-efficient DMUs.

25 INTRODUCTION TO CONCEPTSOF FUZZY SET THEORY,
FUZZY NUMBERSAND FUZZY LINEAR PROGRAMMING

This section provides an overview of the fuzzy mathematica programming approach,
which has been used in thisresearch. The following concepts are important for
understanding the fuzzy mathematical programming approach.

2.5.1 Fuzzy Sets

The concept of fuzzy setswas first introduced by Zadeh (1965) to deal with the i ssue of
uncertainty in systems modeling. Zadeh defined fuzzy sets as sets with boundaries that
are not precise. "The membership in a fuzzy set isnot a matter of affirmation or denial,
but rather a matter of degree." The concept of fuzzy set theory challenged conventiona
two-valued logic asfollows:

When A isafuzzy set and x isarelevant object, the proposition "x isa member of A" is
not necessarily either true or false, as required by two-vaued logic, but it may be true

only to some degree - the degree to which x is actually a member of A,
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The degrees of membership in fuzzy sets are most commonly expressed by numbersin
the closed unitinterva [0,1]. Thusfuzzy sets express gradud trangtionsfrom
membership (membership value of 1) to non-membership (membership value of 0) and

vice versa

Suppose X is a space of positive real values associated with avariable and x isageneric
element of X. Mathematically, afuzzy set Ain X isdefined as the set of ordered pairs:
A={(X Ha(X)) | XCIX},

where ta: X M isthe membership function and M isthe membership space. M is

usually assumed to vary in the interval [0,1].

2.5.2 Membership Functions

A membership function is a function which assigns to each element x of X a number,
Ua(X), inthe closed unit interva [0,1] that characterizes the degree of membership of x in
A. The closer the value of ua(X) isto one, the greater the membership of x in A. Thus, a
fuzzy set A can be defined precisely by associating with each elementx, a number
between 0 and 1, which representsits grade of membershipin A. The membership
function of afuzzy set A can aso be represented as A(X).

2.5.3 a-cut and Strong a-cut (Klir and Y uan (1995))
Given afuzzy set A defined on X and any number a [7[0,1], the a -cut of the fuzzy set A
isthe crisp set “A that contains all the elements of the universal set X whose membership

gradesin A are greater than or equal to the specified value of a.
Mathematically: “ A={x| A(X) = a}

On the other hand, the strong a-cut of a fuzzy set A isthe crisp set “*A that contains all
the elements of the universal set X whose membership gradesin A are greater than the

specified value of a.
Mathematically: “*A={x| A(x) > a}
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2.5.3.1 Special Cases of a-cuts:

1-cut: The 1-cut of afuzzy set A isthe crisp set which contains all elements of X whose
membership gradesin A are equal to 1. The 1-cut is often called the core of A.
Mathematically: "A={x|A(X) =1} .

Support: The support of afuzzy set A within auniversal set X isthe crisp set that
contains all the elements of X that have nonzero membership gradesin A. Clearly the

support of A isexactly the same as the strong a-cut of A for a=0.

2.5.4 Intersection of Fuzzy Sets
The intersection of fuzzy set A and fuzzy set B isthe largest fuzzy set contained in both
A and B. Such aset isdenoted A n B. The membership functionof A n B, for al x O X,

can be given by:
An B(x) =min(A(X), B(x)) = A(X); if A(X) < B(X)
= min(A(x), B(x)) = B(x); if A(X) = B(x)

2.5.5 Fuzzy Numbers

Fuzzy setsthat are defined on the set R of real numbers are called fuzzy numbers (Klir
and Y uan (1995)). Membership functions of these sets have a quantitative meaning and
are represented as.

AR -[01]

The membership functions of fuzzy numberstend to capture the intuitive conception of
approximate numbers i.e. "numbers close to agiven real number." Therefore, they are
useful for characterizing states of fuzzy variables.

To qualify asafuzzy number, afuzzy set A on R must possess at least the following
three properties:

1. A must beanormal fuzzy set asdefined in section 2.5.1;

2. °A must beadosed intervd for every a [ (0,1];
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3. Thesupport of A, >*A, must be bounded.

The most commonly used shapes for fuzzy numbers are the triangular and trapezoidal.
The triangular functions express the proposition "close to areal number r." The
trapezoidal membership function represents a fuzzy interval. Graphically the triangular

and trapezoidal membership functions are represented as follows:

14 A

R(X)
; R(X)=a
“R G F
0 /y///////y/////y » X T
r-q r r+p
Figure 2.5 Triangular Fuzzy Number R Figure 2.6 Crisp Number r
"closeto crisp number r"
A A

>
r-q r-s Stp r s
Figure2.7 Fuzzy Interval - r - s Figure2.8 CrispInterval r - s

2.5.5.1 a-Cuts of Fuzzy Numbers

The a-cut of afuzzy number isaclosed interval and is defined completely by specifying
itsends. The ends of an a-cut are points of intersection of the line "membership degree =
a" and the rightmost and leftmost lines in the graphical representation of the membership

function of the fuzzy number. Refer to figure 2.5 where the a-cut of the fuzzy number R
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approximating the real number r isthe crisp set (marked by sloping lines) containing x
values between "R and "*R. ""R is the left end of the a-cut given by the intersection of
theline R(x) = a and theline x =r - g + gR(X), representing the change in the
membership function between r - g and r. Similarly the right-end of the a-cut, R, isthe
intersection of the line R(X) = a and theline x =r + p - pR(X). Therefore:
OIR — [LOIR ’ RO(R]

=[r-q+aqg,r+p-ap]

The 1-cut of Rwill be:
'R=[r,1]

The support Rwill be:
"R=[r-qr+p]

Note that the 1-cut of the fuzzy number contains only its most desirable element (r),
while the support contains all elements belonging to the fuzzy number. Obviously, the
ends of the support are the least desirable elements of the fuzzy number. This concept
will be utilized later in the discussion in Chapter 3.

2.5.5.2 Arithmetic Operations on Fuzzy Numbers
Fuzzy arithmetic is based on two properties of fuzzy numbers (Klir and Y uan (1995)):
Each fuzzy number can fully and uniquely be represented by its a- cuts and;

All a-cuts (a [0 [0,1]) of each fuzzy number are closed intervals of real numbers.

Arithmetic operations on fuzzy numbers are therefore defined in terms of arithmetic
operations on their a-cutsi.e. arithmetic operations on closed intervals.

Let fuzzy numbers A and B be represented in terms of their a-cutsas:

A=[a, b]

“B=[c,d]

In general, if * represents an arithmetic operation between two fuzzy numbers, then we
define a fuzzy set A*B on R by definingits a-cut “(A*B) as
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“(A*B) = “A* B
for any a I (0,1].
Since °(A*B) isaclosed interval for each a 0 (0,1] and A, B are fuzzy numbers, A*B is

also afuzzy number.

In terms of a-cuts, the four arithmetic operations on the fuzzy numbers A & B would
then be defined as follows:
Addition:
A+ B)="A+ B
=[a,b] +[c, d]
=[a+ c b+d]
Subtraction:
“A-B)="A-B
=[a,b] - [c,d]
=[a-c,b-d]
Multiplication:
“A*B) = “A* B
=[a, b]*[c, d]
= [min(ad, ac, bd, bc), max(ad, ac, bd, bc)]
Division:
“(A/B) =°A/°B
=[a, b)/[c, d]
= [min(a/d, a/c, b/d, b/c), max(a/d, a/c, b/d, b/c)]
c, dz0

2.5.5.3 Lattice of Fuzzy Numbers
Klir and Y uan (1995) define the MIN and MAX operations on fuzzy numbersA & B as
follows:

MIN (A, B)(2 = sup min[A(X),B(Y)]
)

z=min(x,y

MAX (A, B)(2 = sup min[A(X),B(Y)]

z=max(X,Yy)
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foralzeR

2.5.5.4 Partial Ordering of Fuzzy Numbers

Klir and Y uan (1995) define the partial ordering between those two numbers as
A < Biff A< °Bfor all a O (0,1].

A = Biff °A= °Bfor al o 0 (0,1],

where the partial ordering of closed intervals is defined in the following way:
[a1, a2] S[by, by] iff & <b anda, <b,,

[a1, &) 2[by, by] iff &, =b, andh, =b,,

2.5.5.5 Fuzzy Relations between Real Numbers and Fuzzy Numbers

While comparing ared number with afuzzy number, we cannot say, likein thecrisp
case, that one isstrictly greater than the other. A red number can be greater (or smaller)
than a fuzzy number to only a certain degree. In this research, we define this degree in the
following way:

The fuzzy relation ax < B (where B isa fuzzy number and ax isareal number) will be

defined in the following way:

axsatisfies ax < Bto adegreeequa to A iff A =sup{a: ax< F°B}.

Similarly, the fuzzy relation ax > C (Cisafuzzy number) will be defined in the
following way:

ax satisfies ax = C to adegree equa to A iff A = sup { a: ax="°C}.

The following statements follow from the above definiti ons:
1. ax< Bissatisfied to adegree greater than or equa to A if ax< ®B.
2. ax= Cissatisfied to adegree greater than or equa to A if ax= “*C.

2.5.6 Fuzzy Decision-making

According to Zimmerman (1996) a decision is characterized by:
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* A set of decision alternatives (the decision space). The decision space can be
described by enumeration or be defined by a number of constraints.

» A set of states of nature (the state space);

» Arrelation assigning to each pair of adecision and state aresullt;

» A utility function or objective function that orders the decision space viathe one-to-

one relationship of results to decision alternatives.

Bellman and Zadeh (1970) suggest a model for decision making in a fuzzy environment.
They consider a situation of decision making in which the objective function aswell as
the constraint(s) arefuzzy. The fuzzy objective function and the fuzzy constraints are
both characterized by their membership functions. Since we want to satisfy the objective
function as well asthe constraints, adecisonin afuzzy environmentis defined as the
selection of activities that smultaneously satisfy the objective function "and" the
congtraints. In other words, decision making in a fuzzy environment seeks a compromise
between satisfying the objective function and satisfying the constraints.

Assuming that the constraints are non-interactive (independent), the logical "and"
corresponds to intersection. Thus afuzzy decision can be viewed asthe intersection of
fuzzy constraints and fuzzy objective function. We see that the relationship between
objective functions and constraints is fully symmetric because both can be represented
using membership functions. The relationship would have been unsymmetrical if one of

them was not expressed as a membership function.

A formal definition of adecision in a fuzzy environment stated by Bellman and Zadeh
(1970) isasfollows:

Assume that we are given afuzzy goal® G and a fuzzy constraint Cin a space of
alternatives X. Then G and C combine to form adecision D , which is a fuzzy set resulting

from intersection of GandC . Insymbols, D = G n C and correspondingly,
D(x) = min{ G(x), C(X)}.

8 A Goal isabroader notion than an Objective Function
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More generally, suppose that we have n goas 61,...,§n and m constraints 51,...5m . Then
the resultant decision is the intersection of the given gods G, ,...,G, and the given

congtraints C,,..C, . That is,

52610620...0(3” nélnézn...nCm
and correspondingly.
D(x) = min(G,(x),G,(x),...,G,(x),C,(x),C,(x),...,C, (X))

=min {G(x), G(x)}
=min {A (X)}
Where A (X) isageneralized representation for the membership functions of goals and

constraints.

According to Zimmerman (1996), the above definition implies essentially three

assumptions:

1. The"and" connecting the goals and the constraintsin the mode corresponds to the
"logical and".

2. Thelogical "and" corresponds to the set-theoretic intersection.

3. Theintersection of fuzzy sets is defined by the "min"-operator.

Bellman and Zadeh (1970) indicated that the min-interpretation of the intersection might
have to be modified depending upon the context. Therefore, they stated the following
broad definition of the concept of decision: "Decision = Confluence of Goalsand
Congtraints.”

2.5.7 Fuzzy Linear Programming

Linear programming models are special kinds of decision models where the decision
space isdefined by linear constraints and the "goal” is defined by a linear objective

function.
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A typical linear programming model (Bazaraa et al. (1990)) is expressed as follows: Find
x which:
maximizes f (x) =c'x
subject to Ax< b
x20
withc, xOR",bOR™, AOR™

(2.21)

where f(x) =c'x defines the objectivefunction, Ax < b the constraints, and x>0, the
decision variables. c= (¢,Cy,. . ..,Cn) IS known as the revenue coefficient vector, x =
(X1,X2,....,Xn) aSthe vector of decision variables, b = (bs,b,,...,bm) asthe right-hand-side
(resource) vector, and A = [a;] asthe n x m constraint matrix. The a;; elements of A are
called technological coefficients.

The above classcd moded makes the foll owing assumptions:
* All thecoefficients A, b, and c are crisp numbers,
e < ismeant inacrisp sense,

* "Maximize" isastrict imperative.

If the classical linear program in (2.21) isused to model decisions in a fuzzy
environment, Zimmerman (1996) suggests quite anumber of possible modificationstoit.
Firstly, the decision-maker might not want to actually maximize or minimize the
objective function. He/she might just be interested in "improving the present cost
situation.” Therefore, he/she might end up specifying some aspiration levelsfor the

objective function that may not be definable crisply.

Secondly, the constraints might be vague in one of the following ways:

* Theconstraintsmay represent aspiration levels or sensory requirements that cannot
adequately be approximated by acrisp constraint. The < sign may not be meant in
the strictly mathematical sense and smaller violations might well be acceptable.

* Thecoefficients of the vectorsb or c or of the matrix A can have fuzzy character

either because they are fuzzy in nature or because the perception of themis fuzzy.
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Finally, the decision-maker might attach different degrees of importance to violations of
different constraints. Asaresult, the role of the constraintsin fuzzy linear programming
can be different from that in classical linear programming, where the violation of any
single constraint by any amount renders the solution infeasible.

2.5.7.1 Types of Fuzzy Linear Programming M odels

In contrast to classical linear programming, "fuzzy linear programming" is not a uniquely

defined type of model and many variations are possible, depending on the assumptions or

features of the real situation being modeled. In thisthesis, we use two types of fuzzy LP

models:

1. Zimmerman’'s (1996) basic fuzzy LP models which can be either symmetric or
unsymmetrical and

2. Fuzzy modelswith fuzzy coefficients of the matrix A.

Depending upon whether the objective function is crisp or fuzzy, Zimmerman (1996)
classifies his basic fuzzy LPs into the following two types:
» Symmetric Fuzzy LP where both the objective function and the constraints are fuzzy.

» Unsymmetrical Fuzzy LP where the constraints are fuzzy but the objective function is

crisp.

25.7.1.1 Symmetric Fuzzy L P (Zimmerman (1996))

In this model, it is assumed that the decision maker can establish an aspiration level, z,
for the value of the objective function and that each of the constraintsismodeled asa
fuzzy set. The fuzzy LP then becomes:

Find x such that

c'X>7z

(2.21)
x=0
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Here the relation < °denotesthe fuzzified version of <and hasthe linguistic

interpretation "the real number on the LHS is essentially smaller than or equal to thereal
number on the RHS." Therelation = *°denotes the fuzzified version of >and hasthe
linguistic interpretation "the real number onthe LHS is essentially greater than or equal

to the real number onthe RHS". Moddl (2.22) is fully symmetric with respect to objective
function and constraints. This can be made more obvious by substituting

%C Ez Band E}Z Ez d . After making these substitutions, model (2.22) becomes:

Find x such that

Bx<d
x=0

(2.23)

Each of the (mr+1) rows of modd (2.23) shall now be represented by the fuzzy set p4(x).
Li(X) can be interpreted as the degree to which x fulfills (satisfies) the fuzzy inequality

B x < d. (where B; denotes thei™ row of B).

Zimmerman assumes (X) to take avaue O if the constraints (or the obj ective function)
are strongly violated and avalue 1 if they are very well satisfied i.e. satisfied in the crisp
sense. The values between 0 and 1 represent the “in between” satisfaction.

a if Bx<d,
1 () =m0 ifd <Bxs<d +p (2.24)
if Bx>d, +p,

where p; are subjectively chosen constants of admissible violations of the constraints and
the objective function. Zimmerman (1996) assumes that the membership function of the
fuzzy set corresponding to constraint (or objective function) i increases linearly over the

"tolerance interval” [di, di + pj] and isgiven by:

%8 These fuzzy relations are different from those defined in Section 2.5.5.5. Therdationsin 2.5.5.5
comparerea numberswith fuzzy numbers whereasthe relationsin (2.21) compare two real numbers. We
use the same notations for both types of relations but their definitions are clearly different.
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n if Bx<d.
[l

Bx-d

b (0 = g- 24
[l

D if Bx>d +p,

if d <Bxs<d +p, (2.25)

The membership function of the fuzzy set "decision” of model (2.23) isequal to the

intersection of the fuzzy sets u; and is given by.

m+1

D (x) = OM = min {(x)} (2.26)

Since the decision-maker is interested not in a fuzzy set but in acrisp "optima" solution,
Zimmerman (1996) suggests finding the "maximizing solution” to equation (2.26). The
maximizing solution to (2.26) would be the solution to the following problem:

Max D(x) = Max min { ti(X)} (2.27)

Replacing D(x) by anew variable A, we arrive at the following aggregate model:

maximize A

suchthat Ap, +Bx<d, +p,
A<l
x=0

(2.28)

The aggregatemodd (2.28) isa problem of finding a point (say xo), which satisfiesall the
constraints and the goal (objective function) with the maximum degree. The point X, is
the maximizing solution of model (2.22).

2.5.7.1.2 Unsymmetrical Fuzzy LP (Fuzzy LP with Crisp Objective Function)

If the objective function HAS to be either maximized or minimized, it is considered crisp.
A model, in which the constraints arefuzzy and the objective function iscrisp, isno
longer symmetric because the constraints and the objective function play different roles
(Zimmerman (1996)). The former define the decision space and the latter induces an
order of decision alternatives just like in classical LP models. Therefore, the approach
used for arriving at the solution in the symmetric case isnot applicable here. To arrive at
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asolution in unsymmetrical models, we need to somehow aggregate the crisp objective
function with fuzzy constraints. For that purpose, Zimmerman (1996) proposes
determining an extremum of the crisp function over afuzzy domain. To determine the
extremum of the objective function, we use the notion of "maximizing set" introduced by
Zadeh (1972). After the maximizing set for the objective function is determined, the
model becomes symmetric and can be solved like the symmetric case by determining a
"maximizing solution.” Let us now digress a little and understand the concepts of

extremum of fuzzy functions and maximizing sets.

Traditionally, the extremum (maximum or minimum) of acrisp function f over adomain
D isattained at the same point X a which the function achieves an optimal value when it
isthe objective function of a decision model. The point Xp in the latter case is called the
"optimal decision.” Thus, in classical theory, thereis an ailmost unique relationship
between the extremum of afunction and the notion of optima decison of the decison
model. However, in case of fuzzy models, this unigue relationship does not exist
(Zimmerman (1996)). According to Bellman and Zadeh (1970, p.150), "In decision
models, the optimal decision is often considered to be the crisp set, D, that contains
those dements of thefuzzy set decis on attaining the maximum degree of membership.”
When considering functions in general (not as part of a decision model), the concept of a
"maximizing set" is equivalent to the notion of an optimal decision defined above.

Zadeh (1972) provides the following definition for the maximizing set:
Let f beared-vaued functionin X. Also, let f be bounded from below by inf (f) and from
above by sup (f). Thefuzzy set M ={(x, M (X)},x O X where

f(x)—inf (f)

M= S (H=irf (1)

(2.29)

iscalled the maximizing set.
where
* sup stands for supremum (upper bound or maximumy;

* inf stands for infrenum (lower bound or minimum)
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Let us now returnto our unsymmetrical fuzzy LP. Using the concept of maximizing set,
Werners (1984) provides the following definition for the membership function of the god
(objective function) given a fuzzy solution space:

Let f: X — R'bethe objective function, R= fuzzy feasible region, S(R) = support of R,
and Ry=1-cut of R. Then the membership function of the goal (objective function) given

solution space Ris defined as

Y if f(x)<supf
O R
Ut (x) —sup f
G(X)=— > — if sup f < f(x)<supf (2.30)
sup f —sup f Ry S(R)
DS(R) R
1 if sup f < f(X)
0 SR®)
where

* sup f represents the supremum of f over Ry (1-cut of the fuzzy region);
R

» sup f represents the supremum of f over §( R) (the support of the fuzzy region).
S(R)

S( ﬁ) includes all possible values in a fuzzy number (or set) while R; includes only those
values which belong to the set to adegree of 1. Therefore, S( ﬁ) encompasses the largest
possible area of thefuzzy constraint space whereas R; encompasses the smallest area
possible. Thisimpliesthat S (R) represents constraints when they are most relaxed and
R represents the constraints when they are most restrictive. Obvioudly, if the objective
function is of the maximization type, then itsvalue over S ( ﬁ) isthe highest value
possible (upper bound) and its value over R; isthe lowest value possible (lower bound).
This explanation makes it clear why Werners (1984) definition of maximizing set in
(2.30) isequivalent to Zadeh's (1972) definition of it in (2.29).

Zimmerman (1996), leverages Werners' (1984) definition of maximizing set for
determining the solution to the unsymmetrical fuzzy LP. To illustrate Zimmerman's
(1996) approach, let us consider an unsymmetrical fuzzy LP model having acrisp
objective function, some crisp constraints and some fuzzy constraints.
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maximize f(x)=c'x
<b0O
Axsbl (2.31)
such that Dx < b'ER
x=0 E

The fuzzy sets corresponding to the fuzzy constraints will be again:

n if Ax<b
- Bx-hb

m()=1-—2"2 ifh <Axsb +p, (2:32)
UJ i
D if Ax>b +p,

Li(X) isthe degree to which x satisfiesthe it (i=1,..., m) constraint. The intersection of

these fuzzy sets ()| 1; , isafuzzy feasible set.

i=1
The membership function of the objective function can be determined by solving the

following two crisp LPs:

maximize f(x)=c'x

such that Ax<b (2.33)
Dx<b'
x=0

yielding sup f =(c"x),, = f,; and
R

maximize f(x)=c'x

such that Ax<b+p (2.34)
Dx<b'
x=0

yielding sup f =(c"X) o, = f,

S(R)

The membership function of the objective function using Werners (1984) definition
(2.30) is:
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1 if f,<c'x

DT

=X i <ox<t, (2.35)
Dfo_ 1
H if ¢'x<f,

Then the maximizing solution to the problem involves finding x such that
(Y NGI(x)
i=1

reaches the maximum value; that is, a problem of finding a point which satisfies the
constraints and god with the maximum degree. Now (2.31) becomes thefollowing

classical optimization problem:

maximize A
such that A(f,—f)-c'x< -1,
Ap + AX<b+p (2.30)
Dx<b
A <1
A,x=20

26 FUZZY DEA

Sengupta (1992) was the first to explore the use of fuzzy set theory in DEA. He used the
concepts of fuzzy linear programming to fuzzify the objective function and the
constraints of a CCR model under conditions of imprecise data. Following Sengupta’ s
(1992) work, there has been considerable research in the fuzzy DEA field. Triantisand
Girod (1998) modified the radial DEA model and the FDH model to incorporate
imprecision in measurement of data (i.e. values of inputs and outputs). Triantis (1999)
fuzzified the non-radial DEA modelsto incorporate imprecise data. Sheth (1999)
developed a fuzzy GoDEA model, which uses goal programming to solve the DEA

problem in a fuzzy environment.

During the review of fuzzy Linear Programming (LP), it was mentioned that L P's can be
fuzzified in two ways. One approach isto represent thefuzzy objective function and each
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of the fuzzy constraints by fuzzy sets. The other approach involves replacing the
coefficients A, b and c of the LP by fuzzy sets. To ded with theissue of imprecise datain
DEA, Sengupta (1992) uses the former approach while Triantis and Girod (1998) use the
latter approach. We will now review the fuzzy DEA model proposed by Sengupta (1992)
and the fuzzy radial model with imprecise production plans proposed by Triantis and
Girod (1998). The review of the fuzzy FDH model (Triantis and Girod (1998)), the fuzzy
non-radial model (Triantis 1999) and the fuzzy GoDEA model (Sheth 1999) is beyond
the scope of this document.

2.6.1 Sengupta’s(1992) Fuzzy DEA model

Sengupta (1992) proposes two approaches for solving DEA models, which have input-
output data subject to inadequate knowledge. One is the stochastic approach i.e. the one
that uses a probabilistic efficiency frontier. The other isthe fuzzy systems approach. If
one assumes that the imprecise datais generated by a stochastic generating mechanism, it
seems logical to use stochastic DEA models with a probabilistic efficiency frontier.
However there are some drawbacks associated with using probabiligtic efficiency
frontier:

1. One hasto assume a specific error distribution e.g. normal, exponential, etc. to
compute specific results and this assumption may not be realistic because on a priori
basisthere is very little empirical evidence to choose one type of distribution. In
addition, the normal distribution cannot be used due to non-negativity restrictions on
the input-output space.

2. Thelack of robustness of the stochastic efficiency frontier and the probabilistic
feasibility of the inequality constraints of the DEA model, cause problems.

3. Stochastic DEA models always emphasize point solutions whereas from the point of
view of carrying out a data sensitivity analysis, one would be more interested in DEA
models, which give interval solutions.

4. Because the sample sizesin DEA are small, it becomes difficult to use the stochastic
models.



Sengupta (1992) proposes using the fuzzy mathematical programming approach in DEA
problems with imprecise data because of the above disadvantages associated with
stochastic methods and the following advantages of the fuzzy systems approach:

1. Fuzzy set theory alows us to apply the "principle of incompatibility,” which has the
ability to arrive at decis ons based on qudlitative data.

2. Fuzzy set theory lendsitself to beincorporated in LP models. Since DEA involves
solving a series of LP models, it is more robust to apply the methods of fuzzy
mathematical programming and determine an optima solution under conditions of
inadequate knowledge.

3. By using suitable membership functions, the stochastic transformations of the DEA
model may be given a fuzzy programming interpretation, which may be more robust

in suitable cases.

Sengupta (1992) proposes two types of membership functions for the fuzzy mathematical
programming model - Linear Membership function and Non-linear Membership function.
In thisreview we will only ook at themodd with linear membership function. For the
model with nonlinear membership functions, the reader isreferred to Sengupta (1992). In
the linear case, the DEA model iswritten as:

min X', B

st. 3 (2.37)

X'\ Bzyj, 01,

B=0

where X' isthe vector of inputsfor DMU | and y; isthe output of DMU j. The notation ~
indicates fuzziness in both the objective function and the n constraints. By making the
congtraints fuzzy, we accept tolerances in ther realization. Sengupta (1992) assumes that
it is possible to specify an aspiration level (go) for the efficiency score. He a so assumes
that it is possible to specify maximal levels of tolerance violations for the constraints (d, |
[ 1,) and the efficiency score (do). Using the information on aspiration level, equation

(2.37) can be rewritten as:
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X' B < g

s.t.

X' Bzy, Ol
B=0

(2.38)

n

Using the information on maximal levels of tolerance violations, the membership
functions of the fuzzy sets corresponding to all the constraints can be written as:

p@=1-2"70F oy,

]

(2.39)

Similarly the membership function for the fuzzy objective function will be given by:

u(p)=1- 2oL (2.40)

The decision problem (2.37) isthen to find a solution vector 3, which maximizesthe

membership function of the decision, which is given by:

A=\ (BN (B =( 1, (B) = minu, (B, BOR™

The solution can be reformulated as an LP model:
max A
st. Ad, + X', B<09,+d,
Ad; <d, + X', B-y,, jal
0< A<, B=0

(2.41)

n?'

Sengupta (1992) proposes to parametrically analyze the sensitivity of the optimal 3* =
B* (do,ds, ..., dy) to tolerance variations. It is clear that there will always exist an optimal

solution 3* (d) for some tolerance vector d.

2.6.2 Triantisand Girod (1998) Radial DEA Models with Fuzzy

Production Plans
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Triantisand Girod (1998) proposed an approach that usestraditional data envel opment
analysis framework and then merges concepts developed in fuzzy parametric
programming by Carlsson and Korhonen (1986). Traditional technical efficiency studies
assume that production plans (input output data) are known precisely. This may not
always be the case. The approach proposed in this paper considers production plansthat
are not crisp but fuzzy. Since the input-output data values appear as coefficientsin the
constraints and the objective function (i.e. matrix A and vector c) of the DEA model, the
fuzzy approach proposed in this paper isthe one of replacing the coefficients by fuzzy
Sets.

The approach presupposes that the decis on-maker can define the risk free and impossible
bounds for each fuzzy input and output. Risk-free bounds are the conservative values that
are most realistically attainable in production, whereas impossible bounds are associated
with those values, which represent production scenarios that are the least realistic. The
risk-free and impossible bounds are used for determining the membership functions for
the input and output data. All membership functions are assumed to vary linearly between
the bounds. In addition, all membership functions have avaue equal to zero at the
impossible bounds and a value equa to one at therisk-free bounds.

If superscripts 0 and 1 represent impossible and risk-free bounds for input data, then the
membership function associated with the i" fuzzy input (X)) for the K" DMU is given by:

Xih =X

Hx (%) = i ={12,.,1} h={12,..,N} (2.42)

1
ih — Xih

Further if superscripts 0 and 1 represent risk-free and impossible bounds for output data,
then the membership function associated with the j"™ output (y;) for the i DMU isgiven

Sy j={12..,3}  h={12,..,N} (2.43)
ih jsh

by: p, (y;,) =
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Hx

0 >
X X1 X

Figure2.9 Input Membership Function used by Triantis and Girod (1998)

Hy A

>

0 y?! y
Figure 2.10 Output Membership Function used by Triantis and Girod (1998)
Both x» and yj» can be expressed in terms of the risk-free and impossible bounds and the
membership functions as follows:
Xin = Xio,h - (Xio,h - Xil,h)/Jx

— (/0 1 1 (244)
Yin = (yj,h - yj,h)/JY + Yin

Using these definitions, the original Charnes, Cooper and Rhodes (1978) model can be
modified as follows. Find u and v such that,
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J
D V(Y7 = Yip)Hy + Y1)

=1

Max =
Z ui (X|0,p - (X|0,p - X|1,p)IJX)
1=1

subject to:

J

Zvj ((y?,h - y},h)IJY + y},h)

i <1 h={1..N} (2.45)
Zui(xio,h _(Xi(?h - Xil,h)ux)

1=1

u =20 i ={1,...,1}

v,20  j={L..3}

The fractional model (2.45) can be easily converted into alinear form (see Charnes and

Cooper (1962)) asfollows: Find vectors n and w such that

J
Max ij ((yjo,p - y:}-,p)IJY + y:}-,p)
J:
subject to:

|
Zlni(xﬁp — (%, =X, Uy ) =1 foreachh ={1,...,N}

J |
ij ((y?,h - y},h)IJY + y},h) - Zr’i (Xio,h - (Xio,h - Xil,h)/Jx) <0 (2-46)
IE =

foreach h ={1,...,N}

U0  i={l..I1}

v,20  j={1..3}

where @, =,(3 (6, (¢, = X)) and, =4, (3 0,0, ~ 06, ¥, ),))

From Carlsson and Korhonen (1986), the decision for the above modd is reached when

Hx = My = 1= min (Ux,MUy). The above equation can therefore be rewritten as:
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J

Max ij ((yjo,p - y:}-,p)lJ + y:}-,p)
=1

subject to:

Zni (Xy = (%), =% ,)u) =1 foreachh ={1,...,N}

ij ((y?,h - Y},h)u + y},h) - Zr’i (Xio,h - (Xio,h - Xil,h)lJ) <0 (2-47)
foreach h ={1,...,N}
W20  i={L..1}

v,20  j={1.,3}

Finally, the membership function p (which isthe parameter here) isvaried at pre-
specified intervals to observe the variations of the efficiency profile. =0 would yield
overly optimistic values of technical efficiency and u = 1 would yield ultra conservative

values.
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Chapter 3

METHODOLOGY

In Chapter 2, we looked at the various weight restriction DEA models. Two of those
models are more commonly used compared to other models. These models are:
1. The DEA model with absolute weight restrictions (see Dyson and Thanasoulis
(1988), Roll et al. (1991), and Roll and Golany (1993).)
2. The Assurance Region (AR) DEA model (see Thompson et al. (1986), Thompson et
al. (1990).)

In this chapter, we develop fuzzy models for modeling the uncertainty in bound values
for these two types of models. It should be noted that the approach is a general one and
with slight modifications can be easily applied to al types of weight restriction DEA
models discussed in Chapter 2.

This chapter isdivided into two sections. In section 3.1, we develop and solve the fuzzy
model for the absolute weight restriction DEA problem and in section 3.2, we devel op
and solve the fuzzy model for the AR-DEA problem.

31 FUzZZY MODEL FOR THE ABSOLUTE WEIGHT
RESTRICTION DEA PROBLEM

The purpose of the absolute weight restriction modd is to put upper and lower boundson
factor weights so that none of the factors areignored or assgned excessively high
weights. In order to determine appropriate values for the bounds, one has tofirst run the
unbounded model, identify the anomalies in the results and then calculate the bounds.
Once determined, the bounds are added as upper and lower boundconstraints to the
original DEA (CCR) model to obtain the absolute weight restriction modd.

This section is divided into three main sub-sections. The first sub-section is dedicated to

developing and solving the fuzzy model for modeling the uncertainty in the absolute
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weight restriction DEA model. The second sub-section contains a discussion on the
geometric representation of the fuzzy absolute weight bounds and their effect on the
efficiency frontier. The third sub-section provides aroadmap for illustrating the
development and implementation methodology of the fuzzy model. The roadmap is
developed in response to Almond's (1995) criticism that a number of fuzzy approaches
lack implementation roadmaps.

3.1.1 Development and Solution M ethodology for the Fuzzy Absolute

Weight Restriction DEA M odel

Mathematically, the absolute weight restriction model as devel oped by Roll, Cook and
Golany (1991) is represented as follows:

<1 (3.1)

LB, v
u,v=0
where

Y =set of output values

X =set of input values

Y, =output valuesfor DMU,, (DMU being eval uated)

X, =input valuesfor DMU,,

u = output weights that maximize the efficiency of DMU,,
v = input weightsthat maximize theefficiency of DMU,,
UB, = upper bound on weight of outputr.

LB, =lower bound on weight of outputr.

UB, = upper bound on weight of input i.

LB, =lower bound on weight of input i

ThereareN DMUsii.e.j =1... N; soutputsi.e. r=1 ... s;and minputsi.e.i=1... m.
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To model the uncertainty of the bound values, we replace the crisp bounds
UB,,LB,,UB,, LB, by thefuzzy numbers UB', ,LB', ,UB' ,LB';respectively. The

superscript f signifies afuzzy number. The resulting fractional fuzzy model is as follows:

u'Yo
max —

v X,
such that
u'y .
X <1 Uj
u, <UB/ Or (3.2)
urzLBrf Or
v. <UB/' Oi
v, 2 LB/ Oi
u,v=0

3.1.1.1 Definitions of the Fuzzy Numbers

The fuzzy numbersin (3.2) express the concept "close to the origina crisp bounds.” To

express such a concept, Yuan and Klir (1995) propose using triangular membership

functions. To completely describe triangular membership functions we need to specify

the following:

* The most desirable value, which gets a membership grade of 1,

* Two least desirable values - one on either side of the most desirable value which are
assigned membership grades of 0; and

» The form of the membership function asiit varies between the most desirable and the

least desirable values.

For our model, the most desirable bound values are those specified by the decison-
maker. The least desirable values are determined by using one of two methods proposed
by us later in this section. The membership function is assumed to be linear because
linear membership functions are sufficient in most practical applications and are easy to
use (Kaufmann and Gupta (1988)). Based on this description, the membership functions
of the fuzzy weight bounds can be graphically depicted as:

93



14 1 a

UB', (X) LB’ (X)
(UB'i () (LB'i (%)
O UB_pI'I UB U3+pr X O LBr_pl'I LBr LBr+er
(UB-p)  (UB) (UB+p) (LB-p’) (LB) (LB+p)
Figure 3.1 Proposed Figure 3.2 Proposed
Membership Function of UB Membership Function of

LB

pr (or pi) and p', (or p';) are the differences between the most desirable and the least
desirable bound va ues.

Referring to equation (3.2), we notethat the fuzzy numbersin Figures 3.1 and 3.2 are
right-hand sides of constraints whose left-hand sides are crisp. Therefore, the bounds
have the effect of relaxing the weight regtriction constraints when they take the values

UB +p and LB - p' and tightening the constraints when they take thevalues UB - p
and LB + p. Thevalue of the objective function of a linear program (or afractional

program) is optimized (maximized in this case) when the constraints are most rel axed.
Therefore, the membership function (which does not exist yet) of the objective function

of (3.2) will favor the bound values which relax the constraints. On the other hand, the
membership functions of the fuzzy constraints will favor the bounds specified by the
decision-maker. Neither of them will favor the tight bounds. The maximizing solution
(solution which maximizes the desirability of both the objective function and the
constraints — see section 2.5.7.1.1) of the fuzzy model will be a compromising solution
between the relaxed bounds and the specified (most desirable) bounds. Thiswill make the

! We have dropped the subscripts r and i which distinguish between the output and input val ues because
the same discussion appliesto both.
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tight bounds redundant. Accordingly, we drop the tight bounds from further analysis by
modifying the membership functions of the fuzzy numbers as follows:

4 A
1 1
UB (x| UB(x)=a | \ LB’ (X)
(UB i (X)) UB - p.a (LB (x)
> >
0 uB UB +p X 0 LB-p' LB, X
(Ug) (UB+p) (LB-p') (LB)
Figure 3.3 Membership Function of UB Figure 3.4 Membership Function

of LB

Thus, the least desirable bounds in our model will always be more relaxed compared to
the specified bounds. We propose two methods for determining least desirable bounds

with such a characteristic.

Method I: Use the same procedure as that used for determining the most desirable bounds
but make a different choice in each step of the procedure. Let us use the procedure
proposed by Roll et al. (1991) (described in section 2.4.2.1.1) to illustrate this point. In
step 2 of the procedure, the authors recommend selecting aratio d: 1 between the upper
and lower bounds and then plugging the value of d in aformulain Step 3 for determining
the bounds. Let’s say that in a particular Stuation, the decis on-makers choosed = 2 to
determine the (most desirable) bounds. We recommend using d =3 to determine the least
desirable bounds. Our justification for labeling the bounds determined using d = 3 asleast
desirable isthat d=3 is not the first choice of the decision-maker.

Method I1: Use the highest and lowest values of optimal multipliers obtained for efficient

DMUs in the unbounded weight matrix as the least desirable upper and lower bounds
respectively. In other words, the least desirable bounds will be bounds, which are just
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permissible enough so as not to affect the efficiency scores of any of the efficient DMUSs.
Our justification for calling these bounds as least desirable isthat they do not affect the

efficiency scores of the pseudo™ efficient DMUs.

The membership functions can be mathematically represented as:

Y if x=UB, +p,;x<UB,

UB'/(X) = Eb% if UB < x<UB, +p, (3.3)
é. | if x=UB,
(D if x=2UB, + p;x<UB,

UB'i(X) = @J@ if UB <x<UB + p (3.4)
é if x=UB;

where x O RI(Figure 3.3) are the values of the bounds

H) ifx < LB, - p,";x>LB

LB (x) = BX_LBQJ’ P if LB — p,'<x<LB, (3.5)
| P,
H if x=LB,
[0 ifx < LB -p';x>LB

LB'i(x) = BX_LB'IJ’ P if LB - p'<x<LB, (3.6)
0 P;
H if x=LB

Where x [ R (Figure 3.4) are the values of the weight bounds.

The a-cut of UB', isgiven by (refer to section 2.5.5.1 for the definition of a-cut of a
fuzzy number)
anBfr = [La'UBfr 1 RaUBfr]

=[UB,,UB, +p, - p,a] (3.7)

Graphically, “UB', isrepresented using hatched linesin Figure (3.3).

12 These are DM Us which appear efficient because of their good performance on a single output-input ratio.
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Similarly, the a-cut representations of the other fuzzy numberswill be:

“LB', =[LB, - p,'+p,'a,LB,] (3.8)
“UB'i =[UB,UB, + p, - pa] (3.9)
“LB'i =[LB - p'+p'a,LB] (3.10)

3.1.1.2 Degrees of Satisfaction of the Constraints

Replacing the RHS of a constraint by afuzzy number is equivalent to replacing the
congtraint by a fuzzy set (Klir and Y uan (1995)). The membership function of this fuzzy
set is called the degree of satisfaction of the fuzzy constraint™®. The degree of satisfaction
of afuzzy constraint can be obtained from the membership function of the fuzzy number
(onitsRHS) by replacing the argument (x) in that membership function by the LHS of
the constraint (Klir and Y uan (1995)). For example, the degree of satisfaction of the

congtraint u, <UB', can be obtained from the membership function of UB', defined in

(3.3) by replacing the x by u;:
Hy if u, 2UB, +p,

Q“@wzgﬁiiﬂii ifUB <u <UB +p, (3.12)
O P,
H if u <UB,

The right-end of the a-cut of this fuzzy set will be:
Rap %8 = UB+ pr - prar

The right-end of the 1-cut of this fuzzy set will be:
R1DrUB - UB,

The right-end of the support will be:
RD," = UB+ pr

Refer to section 2.5.3.1 for definitions of 1-cut and support.

13 A constraint whose RHS is a fuzzy number.
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Note that the above definition of the satisfaction of the constraintu, <UB', is

equivalent to the definition of the fuzzy relation “ <” comparing area number with a

fuzzy number introduced in section 2.5.5.5.

On similar lines, the degree of satisfaction of the constraint u, > LB, will be:

[0 ifu < LB, -p,

D, (u) = b-LB +p, if LB, - p,'<u, <LB, (3.12)
] r
H ifu >LB,

Left-end of the a-cut of the fuzzy set for u_ = LB, will be:
LCYDrl—B = LBr _ prl + prla
Left-end of the 1-cut will be: “*D,"® = LB,

Left-end of the support will be: **D_"® = LB, - p

Note that the definition of the satisfaction of the constraint u, > LB, coincides with the

definition of the fuzzy relation“ =" introduced in section 2.5.5.5.

The degrees of satisfaction of the input weight constraints are defined as:

(0 if v.2UB, + p,

D" (v;) = @w if UB <v <UB +p, (3.13)
é | if v, <UB,
(0 ifv, < LB, -p,'

D, (w) = Q’% if LB, - p,'<v, <LB (3.14)
é | if v, 2 LB,

The definitions of the 1-cuts and the supports for the input weight constraints will be
similar to those for the output weight constraints.
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The membership functions defined in (3.11) to (3.14) are of fuzzy sets corresponding to

2s+2m

fuzzy constraintson 5 ". The intersection of those fuzzy sets given by 0 D, isafuzzy

feasible set (R) (Y uan and Klir (1995)).

The 1-cut of R, denoted as Ry, consists of 1-cuts of the fuzzy sets corresponding to all

the fuzzy constraints contained in R. Based on the discussion in section 2.5.5.1, the 1-
cuts of the fuzzy setswill contain only the most desirable (specified) bounds (UB;).

The support of R, denoted as S(ﬁ) consists of supports of fuzzy sets corresponding to all

the fuzzy constraints contained in R.The supports of the fuzzy setswill contain all

possible bound values enclosed between the least and most desrable bound values ( UB,+

pr)-

3.1.1.3Linear Fuzzy Formulation

Model (3.2) isafractional programming model and is difficult to solve in its current

form. To make it easier to solve, we convert it into alinear programming mode by

» equating the denominator of the objective function to 1 and adding it as aconstraint
(see Charnes et al. (1978)),

* rearranging the constraints with ratio terms to eliminate the fractions and

* multiplying the objective function and all the constraints by the transformation factor

T, = (V' X,) ™ where v' X, isthe denominator of the objective function (see Charnes

et al. (1962)).

The resulting linear fuzzy formulation is as follows:
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f =max u'y,

such that

n'x,=1

u'y -n"xX <0 0j

u, <T,UB ', Or (3.15)
 =2T,LB ', Or

n, <T,UB Oi

n, =2T,LB " Oi

u,n =0 ar,i

where u, =Tyu, andn, =Ty,

Multiplication of both sides of the fuzzy constraints by the positive real number T, does
not affect the definitions of the fuzzy relations.

3.1.1.4 Conversion to Crisp Linear Formulation

Fuzzy models in which a fuzzy aspiration level is specified for the objective function are
called symmetrical models because one can determine afuzzy set for both the objective
function and the constraints (Zimmerman (1996)). Symmetrical models are easy to solve
because the membership function of the fuzzy set "decision” is simply the intersection of
the fuzzy sets of the objective function and the constraints. The "maximizing solution”
(see section 2.5.7.1.1) of the decision equation gives the crisp optima solution to the
model (Zimmerman (1996)).

In model (3.15), there is no basis for determining an aspiration level for the objective
function and therefore it is not possible to represent it as afuzzy set. Such modelsin
which the constraints are represented asfuzzy sets but the objective functions remain
crisp are called unsymmetrica fuzzy models. Unsymmetrical fuzzy models can be solved
using the same technique as the symmetric modelsif the crisp objective function can be
represented as a "maximizing set" (concept proposed by Zadeh (1972)). Themaximizing
set is constructed by determining the extremum (upper and lower bounds) of the crisp
function over the fuzzy domain. The reader isreferred to section 2.5.7.1.2 for more
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details on the concept of extremum of functions. For modd (3.15), we use Werners
(1984) definition to determine the maximizing set of the objective function. Once the
maximizing set is determined, we proceed in the same way as we would for symmetric
models and determine the crisp "maximizing solution” of the decision equation.

Werners (1984) definition of "maximizing set” is:
Let f: X — R'bethe objective function, R= fuzzy feasible region, S(ﬁ) = support of
R, and Ri=1-cut of R. The membership function of the goal (objective function) given

solution space Risthen defined as

Y if f(X)<supf
O R
Sf(x) —sup f
G(\)=p—2> if supf<f(x)<supf (3.16)
[ﬁ{p f —sup f Ry S(R)
DS(R) R
1 if sup f < f(x)
0 SR®)

where sup stands for supremum.

Let f,=supfand f, =sup f
R

S(R)

To determine the maximizing set for any objective function using (3.16), we need to
determine two values of the objective function by solving two LPs. The two LPs have the
same set of fuzzy constraints but satisfied to different degrees.

3.1.1.4.1 Determination of f;

f1 isthe supremum of f (the objective function) over R,. Using the definitions of 1-cuts of

the fuzzy setsderived in section 3.1.1.2, R will be given by:
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n'x,=1
u'yY-n"X <0 0

. <TUB, Or
M, ZTOLBr Cr (317)
n, <TUB, O

n =T,LB O

u,n=0 Or,i

The supremum of f over thisregionis:

%_R_Jp f = (IJTYO)opt = f1

3.1.1.4.2 Determination of fg

fo isthe supremum of f over S( ﬁ) , Which isthe support of the fuzzy region. Using the
definitions of the supports of the fuzzy sets derived in section 3.1.1.2, S(R) will be given
by:

n"X,=1

u'yY-n"X <0 0

M, <T,(UB, +p,) Or

M 2To(LB -p') O (3.18)

r]i STO(UB| + p|) DI

n; 2TO(I—B| - pi') i

u,n=0 Or,i

The supremum of f over thisregionis:

Sl"lp f = (IJTYO)opt = fO
S(R)

3.1.1.4.3 Membership Function of the Objective Function

Using (3.16), the fuzzy set of optimal values or the membership function of the objective
function will be given by:
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1 if f,<u"Yo

e
Ou Yo— 1,
U

Gw)=[ . . if f,< uTYO < f, (3.19)
o~ 1

if 1"Yo< 1,

where w= the set of all factor weights= (4, n)

fo isthe value of the objective function when the weight bound constraints are the most
relaxed i.e. when they have p added to their upper bounds and p' subtracted from their
lower bounds (see (3.18)). f; isthe value of the objective function when the weight
bound constraints are the tightest i.e. they have the specified bounds on their RHS (see
(3.17)). Since the objective function is of the maximization type, fo will be its upper
bound and f; will be its lower bound. In addition, the upper bound (fo) will be most
desirable (G (w) = 1) and the lower bound (f;) will be least desirable (G (w) = 0). When
the bounds are in-between the most relaxed and the tightest values, the objective function

takesavalue ( 41"Yo) in-between fo and f; and the degree of satisfaction with that value is

determined using (3.19). Thefollowing figure graphically depicts the variation of the
membership function G (w) between 0 and 1 as the objective function varies between fo
and f;.

G (W)

(4 >
0 f f,

Figure 3.5 Membership function of the goal

3.1.1.4.4 Equivalent Crisp Formulation
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Now that we have achieved "symmetry" between the constraints and the objective
function, the crisp formulation equivalent to (3.15) is simply a problem of finding the set
of weights, w [0 5 %™ that give the "maximizing solution” i.e. a solution in which the
constraints and the objective are satisfied to the maximum degree. Mathematically itisa
problem of finding a set of weights so that

2s+2m

A=[ n Dy nGl(w) (3.20)

reaches its maximum value. Using the min operator to represent intersection, we can say
that the objective of the crisp equivalent modd isto

Maximize A = min{ Dk(w),G(w)} ;k=1to2s+2m (3.21)
Or
T — - — — 1
MaXimizeA - mln{ IJfYO ffl 1T0(UB-;—+ pr) lJr 1lJr TO-ISLBrI pr )1
0 1 Opr I Opr (322)
TO(UBi + pi)'r’i n; _TO(LBi - P )}
Top Top’
Thus, the crisp modd equivalent of (3.15) isasfollows:
Max A
such that
n'Xo =1
u'Y-n"X<0 0j
A< u'Yo— f,
fo - f1

A S TO(UBr + pr )-lJr DI‘

TO pr
A< TO(UB| + pi)'r’i Oi

TO pi
A < lJr _TO(LBrI - pr ) Dr

TO pr

A Sr’i _To(I—BiI Y ) Oi

TO pi 3 23
A<l (3.23)
H,n,A =0 Or,i
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Rearranging the termsin (3.23), we get:

Max A

such that

A(fo - 1) '/JTY <-f;

n'Xo =1

u'Y-n"xX<0 0j
ATyp, + U, <T,(UB, +p,) Or (3.24)
ATop +17, < To(UB + p)) b
- ATyp, "+, 2T, (LB, - p,") ar
- ATo pil+r’i 2To(l-Bi - pil) i
A<l

u,n,A=0 Or,i

(3.24) isaquadratic programming model since the weight bound constraints are non-
linear. Since A isone of the variables in those constraints and we have informati on about
the bounds on A, we can use the parametric agorithm from Sakawa (1984) to solve the
model. Solving (3.24) using the parametric algorithm simply means checking the
feasibility of the model for different values of A (determined by the dgorithm) and
choosing the solution corresponding to the maximum feasible value of A. The parametric
algorithm provides an efficient method for jumping from one A value to another and
reaching the maximum feasible value in the fastest way. The parametric algorithmis
described below:

Set A=0 and check the feasibility of the problem.

If the problem is feasible, go to 3. Otherwise STOP.

Set A=1. Check the feasibility.

If the problem is feasible, that isthe solution — STOP. Otherwise, go to 5.

Set Amax=1, Amin= 0.

If Amax- Amin< & STOP, otherwisego to 7.

Set A=(Amex + Amin)/2

Check the feasibility for A.

© © N o g &~ w Dd PR

If the problem is infeasible, set Anax=A and go to 6. Otherwise set A=A and go to 6.
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The solution of the parametric algorithm gives the optimal weight values which when
plugged into the expression 'Y, give the efficiency scores of the DMUSs. In the next
section we look at how replacing the crisp bounds by fuzzy bounds affects the efficiency

frontier.

3.1.2 Geometric Representation of Fuzzy Bounds and their Effect on the

Efficiency Frontier
Using an example with two inputs and one output, Roll et al. (1991) geometrically
illustrate how crisp absolute weight bounds affect the efficiency frontier. In this section,
we extend that discusson to illustrate how fuzzy absolute we ght bounds affect the
efficiency frontier.

We start by repesating the discussion from Roll et al. (1991). Roll et al. (1991) modify the
existing DEA problem by dividing both the inputs by the single output. The CCR model
for atwo input-one output problem with the inputs divided by the outputs will be as

follows:

Min Zvixio

ST YvX; 21 0 (3.25)
Ib <v,<ub =12

To see the effect of the lower bound constraints on the efficiency frontier, Roll et al.
(1991) convert them to the form vi(1/1b;) =1 and vo(L/1by) = 1. These are the same as
vi(1/lb;) + Ov2 21 and Ovy + vo(1/lb,) = 1. Now the lower bound constraints have become
exactly like the main set of constraints viXy; + VoXo2 1. There is one main constraint for
each DMU j. Therefore we can say that the two constraints introduced by the lower
bounds are equivalent to adding two more DMUs (j+1 and j+2) to the model where Xyj+1)
= Vlby and Xz+1)=0 and X 1+2) = 0 and X z+2=1/Ib,. Like the other DMUSs, these two
DMUSs can be represented as points on the efficiency frontier.
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Now let usturn to the upper bound constraints. The upper bound constraints can be
converted to the form vi(1/ub;) + Ov, <1 and Ov; + vo(L/uby) < 1. These are not
equivalent to the main set of constraints. Thus, the upper bound constraints are not
equivalent to adding additional DMUs to the analysis and therefore cannot bedirectly
used to modify the frontier. However, Roll et al. (1991) show that using the main set of

constraints ( Zi v, X; 21), for atwo input problem, the upper bound on the weight of

one input can be converted into an equivalent lower bound on the weight of the other
input and vice-versa. Theformulafor converting the upper bound of v; into an equivalent
lower bound on v, isas follows:

Lower bound{v,} = Max {(1-ub,X,;)/ X,,;}

The reason we choose the maximum of the RHS as alower bound is that the maximum

value is always the most binding as a lower bound.

Once the upper bound on a particular input weight is converted to an equivalent lower
bound, the value of the specified lower bound for that input weight is compared with the
value determined using the upper bound on the other input weght. The maximum of the
two values isthen used an effective lower bound on that input weight.

The data set used by Roll et al. (1991) for the single-output two-input example is shown
in Table 3.1.

il1[2[3[4[5]6s

Xyl 2| 3[4 2]1]5

Xl 3]2|1]|2]|4]|1

Table3.1 Dataset’® usedby Roll et al. (1991) for illustrating the Absolute Weight
Restriction DEA Model Geometrically

Roll et al. (1991) use the following absolute weight bound constraints for their example:

4 All the inputs have been divided by the single output to give input val ues per unit of
outpu.
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0.15<v, <03
0.1<v, <0.6

Before proceeding, we need to convert the upper bounds into equivalent lower bounds.
The upper bound of 0.3 on v; isequivalent to alower bound of 0.2 on v,. Since a lower
bound of 0.2 on v, is more binding than the original lower bound of 0.1, we use 0.2 asthe
new lower bound on v,. The upper bound of 0.6 on v, however does not impose a more
binding lower bound than the existing value of 0.15 on v;. Therefore, weretain 0.15 as
the lower bound on v;. The effective weight bound constraints are:

v, 2 0.15, v, 20.2

The above constraints add two points (or DMUS) - (1/0.15,0) and (0,1/0.2) tothe frontier.
In Figure 3.6, wejoin these points to the rest of the frontier using dotted lines. Therefore
the frontier represented by dotted lines isthe frontier for the bounded model.

Lower bound
onv,

2 introduced due

to fuzzification

T — Unbounded Frontier
/ Point Bounded Frontier Or Frontier defining the

introduced by ———————— most desirable end of the fuzzy region
upper bound

onv, Frontier defining the least desirable end
of the fuzzy region

X

Fuzzy Region

4 —4

3 —+
2 =4
Point
1 4 — introduced by
#3 T~_ lower bound
T~ / onv,
0 ] X
0 1 2 3 4 5 6 7

Figure 3.6 Geometric Representation of Crisp and Fuzzy Absolute Weight Bounds
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Since Roll et al. (1991) do not specify how the weight bound vaues were determined, we
assume that they were arbitrarily determined and are therefore imprecise. To modd this
imprecision, we propose to replace the specified bounds by fuzzy numbers. Thefuzzy
numberswill be bounded by the specified va ues (treated asmost desirable) on one end
and least desirable bounds on the other end. Restating the concluson of our discussonin
section 3.1.1.1, the least desirable bounds will be less binding compared to the specified
bounds.

For thisexample, we use Method 11 proposed by usin section 3.1.1.1 to determine the
least desirable bound values. In other words, the least desirable bounds will be bounds,
which are just permissible enough so as not to affect the efficiency scores of any of the
efficient DMUs.

On running the unbounded model, we observe that:

 DMU 3isefficient for al values of v; between 0 and 0.16667,

* DMU 4 isefficient for al values of v; between 0.16667 and 0.5, and

* DMU 5isefficient for al values of v; between 0.333 and 1.

Thus, alower bound of 0.1667 and an upper bound of 0.333 for v; will not alter the
efficiency scores of any of the efficient DMUs.

Similarly,

* DMU 3isefficient for any value of v, between 0.333 and 1.0,

* DMU 4 isefficient for any value of v, between 0 and 0.333, and

* DMU 5isefficient for any value of v, between 0 and 0.1667.

Thus lower and upper bounds of 0.1667 and 0.333 respectively for v, will not alter the

efficiency scores of any efficient DMUs.

The upper bound of 0.333 on v, isequivalent to alower bound of 0.1667 on v,. In
addition, the upper bound of 0.333 on v, is equivalent to alower bound of 0.1667 on v;.
Thus, the effective LEAST desrable bounds on v; and v, will be:

v, 2 0.1667 and v, = 0.1667
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Comparing these with the effective MOST desirable bounds, v, 2 0.15andv, = 0.2, we
note that the least desirable lower bound of 0.1667 on v, istighter than the most desirable
lower bound of 0.15. If we were to choose 0.1667 asthe least desirable bound for v;, we
would be violating the definitions of the fuzzy numbersfrom section 3.1.1.1, which
require that the least desirable bound be more relaxed than the most desirable bound. In
case of v, the least desirable lower bound of 0.1667 is more relaxed than the existing
lower bound of 0.2 and in line with our definitions of the fuzzy numbers. Accordingly,
we choose to keep thelower bound on v, crisp and only replace the lower bound on v, by

afuzzy number.

In Figure 3.6, the least desirable lower bound of 0.1667 on v. introduces an additional
point (0,1/0.1667). We join this point to the rest of the frontier by asolid line thinner than
that used for the unbounded frontier. The (shaded) region enclosed between this lineand
the dotted line representing the frontier corresponding to the specified bounds is called

the fuzzy region. The optimal bound value calculated by the fuzzy model will lie between
these two extreme values and seek a compromise between maximization of the efficiency
score (of DMU 5 in this case) and maximization of proximity to the specified bounds.

The following subsection uses aroadmap to illustrate the implementation methodology of
the fuzzy model.

3.1.3 Roadmap for Developing and Solving the Fuzzy Absolute Weight
Restriction DEA M odel

We demonstrate the roadmap for developing and solving the fuzzy model for the absolute
weight restriction DEA model with the use of an example. This example isthe same as
that used by Roll and Golany (1993) to demonstrate the absoluteweight restriction DEA
model. The implementation of the fuzzy model has the following steps:

Step 1: Collect the raw data
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As mentioned earlier, the raw data consisting of input and output values are taken directly
from Roll and Golany (1993). There are 15 DMUs each using 4 inputs to produce three
outputs. The dataare presented in Table 3.2.

DMU| O, O, | Os lh P I3 | la
1 |[15500| 460 | 0.85| 521 |3130|1859|80
2 |13700| 340 | 0.63| 747 (5075|3491 |44
3 |18000(1080|0.37 | 935 [1483(2984|93
4 18900 [ 490 [ 0.56 | 205 |4583|1736 (65
5 |10800( 960 | 0.14 | 177 {2990|1823|87
6 |17300| 890 | 0.47 | 584 [5467|1775|98
7 121000(2930|0.91| 634 [7734|1700|58
8 | 9500 | 240 | 0.78 | 456 (6552 503 |73
9 | 9100 | 370 | 0.74 | 471 [1855|2528|42
10 [ 6600 | 800 | 0.52 | 325 [4579| 818 |51
11 (11800| 610 | 0.87 | 364 |5713|1178|80
12 [26200|3600| 0.41 | 585 |4217|2012|84
13 [11400| 470 | 0.55| 343 [4061|2957|91
14 | 7200 |1350| 0.39 | 597 |3242| 665 |73
15 [(38000|2470|0.68 |1126 (7658|1541 |57

Table3.2 Input / Output Datafor the Roadmap Example illustrating the Fuzzy
Absolute Weight Restriction DEA Model

Step 2: Run the unbounded model and determine the most and least desirable bounds
The data presented in Table 3.2 are plugged into a CCR model without weight
restrictions. The optimal input/output weights and efficiency scores for all DMUs
calculated by the CCR modd are presented in Table 3.3. Looking at the table we realize
that on numerous occasions, some inputs and/or outputs are ass gned zero weights. By
assigning zero weights to some of the inputs and outputs, the conventional DEA model
completely ignores these factors and in this way disregards (not intentionally) the
decision-maker's opinion that all factors are important for the efficiency evauation of the
given DMUs. Not only that, the model also assigns high values to the weights of some
other inputs and outputs. To eliminate the extreme weight va ues and to minimize the
variation between the weights assigned to different inputs and outputs, the decision-
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maker sets bounds on the weight values. In this example we use the same procedure as

that used by Roll and Golany (1993) to set bounds. Although this procedure was dready

described in section 2.4.2.1.1, we would like to reiterate it here. The steps for setting the

bounds are enumerated below:

» Eliminate the extreme values. As proposed by Roll and Golany (1993), we eliminate
the topmost and bottommost extreme values from all columns. In Table 3.3, the
values marked with a* are the onesthat are eliminated.

» Take the average of the remaining values. The averages u, and V, of the remaining 13

values of all weights are taken. The averages are aso presented in Table 3.3 inthe
row titled "Average after Truncation.”

» Choose the desirable ratio between the largest and the smallest weight values. This
will be the same as the rati o between the upper and lower bounds and will be used to
determine the bound va ues based on the averages. Roll and Golany (1993) usetwo
different ratios, 2:1 and 3:1 to determine two different setsof bounds and produce
two different sets of efficiency scores. For our roadmap, we choose theratio 2:1 to
calculate the most desirable bounds (or the specified bounds) and use the ratio 3:1 to
calculate the least desirable bounds required by the fuzzy model.

* Determine the values of the bounds. Using a value of d=2 and using the formulas

LB, :;_L’d, UB :%, we cdculate the most desrable bounds UB and LB.

For determining the least desirable bounds required by the fuzzy model, we use the
two methods already described in section 3.1.1.1. The methods are restated below:

Method I: Inthis method, we use the same procedure as that used to determine the
most desirable bounds except that we make different choices than those made while
determining the most desirable bounds in every step of the procedure. In this case, the
only change we make iswe choose 3:1 (instead of 2:1) asthe ratio between the least

desirable upper and lower bounds. For example, since U, = 3.38E-05,

UB, = (2* 3.38E-05)/(1+3) = 5.069E-05 and LB, = (2* 3*3.38E-05)/(1+3) = 1.69E-05.
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Method I1: Asexplained in 3.1.1.1, we use the highest and lowest values of optimal

weights assigned to the factors by efficient DMUsin the unbounded runs as the least

desirable upper and lower bounds respectively. Since u; varies between 0 and
.0000926 for efficient DMUs, UB; + p; will be .0000926 and LB; - p;" will be 0.

DMU U U, Uz Vi Vo V3 A Efficiency
1 3.669E-05 |0* 0.50738 [1.522E-03 [6.622E-05 |0* o* 1

2 1.411E-05 [0 1.11636 |0* o* 0 2.273E-02* |0.89667

3 5.556E-05 |0 o* 6.693E-04 [2.523E-04* [0 0 1

4 8.644E-05 |0 0.41195 (3.566E-03 [0 0 4.139E-03 |1

5 9.259E-05* |0 0 5.650E-03* |0 0 0 1

6 3.629E-05 |0 0.2411 |[1.090E-03 |0 2.047E-04 |0 0.74111

7 3.428E-05 |0 0.30787 [1.272E-03 [0 0 3.333E-03 |1

8 o* 0 1.28205 [2.912E-04 (3.061E-05 |[1.658E-04 [7.990E-03 |1

9 1.237E-05 [0 1.19925 [1.740E-03 [9.732E-05 |0 0 1

10 0 2.987E-04 |[1.2458 |[1.673E-03 |0 5.579E-04* |0 0.8868

11 5.586E-05 |0 0.39181 (2.285E-03 [0 1.430E-04 [0 1

12 3.817E-05 |0 0 1.248E-03 [6.397E-05 |0 0 1

13 4,617E-05 |0 0.65064 [1.940E-03 [8.238E-05 |0 0 0.88417

14 0 3.020E-04* |1.51888*(2.064E-04 [1.902E-04 [3.911E-04 [0 1

15 2.341E-05 |0 0.16251 (7.388E-04 [0 0 2.949E-03 |1

Average 3.546E-05 |[4.005E-05 [0.602373(1.593E-03 |5.220E-05 [9.750E-05 |[2.743E-03

Average after [3.380E-05 [2.298E-05 [0.5782 |[1.403E-03 [4.082E-05 [6.959E-05 |1.416E-03

Truncation

UB 4.495E-05 [3.056E-05 [0.769018|1.866E-03 [5.430E-05 |[9.255E-05 [1.884E-03 [=1.33x Avg
LB 2.264E-05 |[1.540E-05 [0.3874 [9.401E-04 [2.735E-05 [4.662E-05 |[9.489E-04 [=0.67 x Avg
UB+ pr 5.069E-05 |(3.447E-05 [0.867314{2.105E-03 [6.124E-05 [1.044E-04 [2.124E-03 [=1.5x Avg.
IB-p 1.690E-05 [1.149E-05 (0.289105(7.016E-04 [2.041E-05 [3.479E-05 |7.081E-04 |[=0.5x Avg.
2UB + pr 9.26E-05 [3.02E-04 [1.51888 |5.65E-03  [2.52E-04 [3.91E-04 |7.99E-03

B-p 0 0 0 2.06E-04 |0 0 0

Table 3.3 Resultsof the Unbounded Runs and Bound Values calculated using those

Note: 'UB + pand LB - p' arethe least desirable bounds determined using Method | and 2UB + p and °LB - p' are the

Results for Roadmap Example illustrating the Fuzzy Absolute Weight
Restriction DEA Model

least desirable bounds determined using Method I1.
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Step 3: Solve the fuzzy model

DEA modelswith weight restrictions of the type (3.17) are solved using values of UB and
LB from Table 3.3 to obtain f; values. Similarly DEA models with weight restrictions of
the type (3.18) are solved (twice) with (two different sets of) valuesof UB + pand LB -
p' from Table 3.3 to obtain (two sets of) fo values. These values are plugged into the
equivalent crisp model (3.24), which is solved using the parametric algorithm with an €
value of 0.1. Model (3.24) is solved twice, once with the set of |east desrable bounds
determined using Method | and once with those determined using Method I1. Table 3.4
compares the results of both models with the results of the crisp weight bound modd.
Alongside the efficiency scores cdculated by the fuzzy models, Table 3.4 aso displays A
values obtained in the final iteration of the algorithm. The A values represent the degree
to which the bounds specified by the decision-maker were satisfied in the final solution.

Efficiency
DMU |Crispbounds| [UB,LB] & A [UB, LB] & A
[*UB+p, LB-p] [2UB+p, 2LB-p]
1 1 1 1 1 1
2 0.60241 0.6181 0.4 0.72273 0.4
3 0.57492 0.6015 0.4 0.86451 0.5
4 1 1 1 1 1
5 0.94847 0.97581 0.6 1 0.9
6 0.70723 0.70952 0.5 0.73066 0.5
7 1 1 1 1 1
8 0.82149 0.84767 0.4 0.98496 0.6
9 0.92411 0.95947 0.4 1 0.8
10 0.75715 0.77026 0.5 0.83474 0.5
11 1 1 1 1 1
12 1 1 1 1 1
13 0.81186 0.82269 0.5 0.85659 0.6
14 0.52383 0.54678 0.4 0.78929 0.5
15 0.96241 0.99039 0.6 1 0.9
Average | 0.842259 0.856146 0.918899

Table3.4 Comparison of Results of Crisp and Fuzzy Absolute Weight Bound Models
applied to the Roadmap Example

114



To show that the difference between the efficiency scores obtained using the crigp model
and the fuzzy models is statistically significant, we use the "paired — samplet test” (Bain
and Engelhardt (1992)) with Hp : E; —E; = 0 versusH, : E; — E;>0, where E; isthe
average efficiency calculated by the fuzzy mode and E; isthe average efficiency
calculated by the crisp model. When we apply the paired-samplet test to thevaluesin
columns 2 and 3 of Table 3.4, we obtain ap-vaue of 0.000487. This means that we can
reject the null hypothesiswith an a (probability of type | error) value aslow as 0.0005.
This allows us to accept the alternative hypothesis that thereis a significant difference in
the efficiency scores obtained using thetwo models. Applying the same test to thevalues
in columns 2 and 5, we get a p-vaue of 0.0033. This means that we can rgect the null
hypothesis with an a value of 0.005 alowing us to accept the alternative hypothesisthat
there isa significant difference between the efficiency scores calculated by the crisp and

fuzzy models.

Visually comparing the results of columns 2 and 5, we see that three of the DMUs (5,9
and 15) which were not part of the efficient set in the original crisp model, entered the
efficient set when the weight bounds were made fuzzy. In fact, two of them (5& 15)
entered the efficient set while satisfying the specified boundsto a degree as high as 90%.
Thus, if the decision-maker were willing to change the original boundsto values
calculated by the 90% satisfaction leve, the state of some of the DMUs would change.
We do not anticipate any resistance from the decision-maker to making these slight
changes to the bounds since the bounds were determined by subjective methods in the
first place. We change the original set of bounds in Table 3.5 to the new set in Table 3.6

using the criterion of 90% satisfaction of the origind bounds.

Factor U U, Us Vi Vo V3 Vs

Upper bound |4.495E-05 |3.056E-05 |0.769018(1.866E-03 |5.430E-05 |9.255E-05 |1.884E-03

Lower bound |2.264E-05 |1.540E-05 |0.3874 |(9.401E-04 |2.735E-05 |4.662E-05 |9.489E-04

Table3.5 Original Set of Bounds for Roadmap Example illustrating the Fuzzy
Absolute Weight Restriction DEA Model
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Factor U U, Uz Vi Vo V3 A
Upper bound | 4.97E-05 | 5.77E-05 [0.8440042| 2.24E-03 | 7.41E-05 | 1.22E-04 | 2.49E-03
Lower bound | 2.21E-05 | 1.50E-05 |0.3775705| 9.16E-04 | 2.67E-05 | 4.54E-05 | 9.25E-04

Table3.6 Maodified Set of Bounds (at the 90% Satisfaction Level of Original Bounds)

Using the new set of bounds (from Table 3.6), we solve the crisp we ght bound DEA
model. Table 3.7 compares the results of this model with the results of the model with the
original bounds from Table 3.5.

DMU Efficiency Scores
With Original | With Modified
set of bounds | set of bounds

1 1 1

2 0.60241 0.6227

3 0.57492 0.61306

4 1 1

5 0.94847 1

6 0.70723 0.71048

7 1 1

8 0.82149 0.8555

9 0.92411 0.97298

10 0.75715 0.78203

11 1 1

12 1 1

13 0.81186 0.82952

14 0.52383 0.57358

15 0.96241 1
Avg. 0.842259 0.86399

Table3.7 Comparison of Efficiency Scores obtained using Original and Modified Sets
of Bounds for Absolute Weight Bound Roadmap Example

DMUs5 & 15 are perfect examples of DMUs that were penalized by the imprecision in
the bounds. 1t took only alittle tweaking of the boundsin order to restore them to the
efficient set.

3.2 FUZZY MODEL FOR THE ASSURANCE REGION (AR) DEA

PROBLEM
The AR weight restrictions are bounds on the ratios of the weights. They may be
introduced in the analyss
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» toadlignthecaculated efficiency scores with the preference of the decis on-maker by
restricting the multipliers into cones (Chilingerian and Sherman (1997)) or

» toincorporate information about the prices and costs of the inputs and outputs
(Thompson et al. (1986), (1990), (1992), (1996a), (1996b), and (1996c)) or

» toincorporate expert opinion about relative importance of the factors (Zhu (1996))

This section is divided into three main sections. In the first section, the concepts of AR
and fuzzy AR are explained geometrically using the concept of weight space analysis
proposed by Seiford and Thrall (1990). In the second section, we distinguish between two
different types of AR | constraints and call them AR | constraintsin Form 1 and AR |
congtraints in Form 2. The second section is accordingly divided into two major
subsections with each sub-section dedicated to deve oping afuzzy modd for each form

of AR I constraint. The third section contains implementation roadmaps for both types of

fuzzy AR models.

3.2.1 Geometric Representation of AR and Fuzzy AR

To geometrically illustrate the concept fuzzy AR, we use the notion of multiplier space
W, first introduced by Seiford and Thrall (1990) and then used by Thompsonet al. (1990)
to demonstrate their crisp AR approach. The data set for our exampleis the same asthat
used by Thompson et al. (1990) in their example.

DMU
1 2 3 4 5 6
Output, y | 1 1 1 1 1 1
Input 1, X, 4 2 1 5 4 3
Input 2, x| 1 2 4 1 4 1.5

Table3.8 Dataset from Thompson et al. (1990) used for the Geometric Illustration of
the AR Approach

Figure 3.7 shows the input-output graph and the efficiency frontier for the data set in
Table 3.8. From the graph we see that DMUs 1,2,3 and 6 are DEA efficient because they
lie on the frontier. DMU 5 is DEA inefficient and DMU 4 is DEA-slack-inefficient.
Amongst the DEA efficient DMUSs, 1, 2 and 3 are extreme efficient while 6 isnon-
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extreme efficient because it can be expressed as alinear combination of DMUs 1 and 2.
For more details on this classification scheme, refer to Seiford and Thrall (1990).

Figure 3.7 Efficiency Frontier for the Example from Thompson et al. (1990) for
illustrating the AR Approach

Seiford and Thrall (1990) define the concept of optima multiplier space W for each
DMU; as.

W, = {(u, v) for which h; (u, v) is maximal}

where h; (u, v) isthe objective function.

The entire space W of multipliersisthe union of multiplier spaces W, of individual
DMUs.

For our example, the multiplier spaces for the various DM Us obtained by solving the
ratio form of DEA model are asfollows:

DMU1: Wi = (1, vy, (1-4vy)), v, <1/6
DMUs3: Ws = (1, vy, 1/2(1 - 2v1)), 1/6<v,<1/3
DMUs: Ws = (1, vi, V4A(1 - vy)), 1/3<v, <1
DMU4: W;=(1,0,1)

DMUe: Ws= (1, 1/6, 1/3)
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In the above definitions of multiplier spaces, we have substituted v; for v, using the
constraints of the DEA model. The ranges for v; are the values of v; between which the

DMU under consideration remains efficient.

From the definitions of the multiplier spaces, we can make the following observations:

» Sincev; and v are not fixed in the definitions of W;, W,, and Ws, we can conclude
that the dimension of Wi, Ws, and Wsis 3. This is the maximal dimension™ possible
(3= 2+1).

» Valuesof v; and v, are fixed in the definitions of W, and Ws. Therefore, dim Ws=dim
W, = 2 < 3, thus proving that DMUs 4 and 6 are not extreme efficient.

* W, =W, nW,. Thisprovesthat we can express the multiplier space of any efficient

DMU asthe intersection of multiplier spaces of DMUs which are extreme efficient

and contain it.

Figure 3.8 illustrates the partition of the multiplier space W into sets Wi, Wa, Ws, and We.
Since dim W, = dimW, = dimWs = 3, they appear as cones in the figure and since dim Ws
=dim W, = 2, they appear as lines.

When the DEA model issolved asan LP (instead of ratio form) by adding the

normalization constraint vX, =1, the multiplier sets obtained previously, reducein

dimension by one and are represented using the same symbols as those from the ratio
form with a superscript m added to the symbols. Thus W4™, Wo™, W5™ appear as lines and
W™ and W,™ appear as points in the multiplier space.

W™ isthe line joining the points (1/3,1/6) and (1,0),
W,™ isthe line joining (1/6,1/3) and (1/3,1/6),

Ws™ isthe line joining the points (0,1) and (1/6,1/3)
W,™ isthe point (0,1) and

> Maximal dimension isthe sum of total number of inputs and total number of outputs

119



Ws" isthe point (1/6,1/3).

The multiplier setsof DMUs 1,2 and 3 arestraight lines instead of points because of the
existence of alternative solutions. Any combination of v; and v, which satisfiesthe
equation of the line joining (0,1) and (1/6,1/3) will be optimal for DMU3. Similar remarks
hold for DMUzand DMU,, Suppose market price information puts the following
restrictions on the weights:

v,/v, <15

v, /v, 20.75

Thisgivesthe AR = {(v1,2): -1.5v1 + v»<0, 0.75v1 - v2<0, vi>0, v»>0}, which may be
adjoined to the LP. In Figure 3.8, the AR is the shaded region enclosed by the dotted
lines. We notice that the AR only partially encloses the region W, and completely
excludes the regions Wy and Ws. Naturally, only DMU, will be AR efficient. The results
obtained by running this AR-DEA model are shown in Table 3.9.

v
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1.0 w,m . .
’ ¢" /'\S%
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W3m L \ P
5 4 \
, \w
‘ W
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Figure 3.8 Geometric Representation of Multiplier Space and AR
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DMU | AR efficiency score
0.90909
1

M
1
2
3 0.875
4
5
6

0.76923
0.5
0.95238

Table3.9 Resultsof thelllustrative AR Model from Thompson et al. (1990)

Asexpected, DMUs 1, 3 and 6 are no longer efficient giventhe AR. Atthispoint itis
appropriate to introduce the definitions of Assurance Regions (AR) and AR efficiency
proposed by Thompson et al. (1990) pp. 100.

" Assurance Region (AR) Definition - For DEA problems with a finite number of DMUs
and a well-defined data domain, an ARis a subset of W such that vectors v excluded from
AR are not reasonable input and output virtual multipliers.”

"AR Efficiency Definition - A DMU; in E (set of extreme efficient DMUS) is said to be AR-
efficient, relativeto an AR, if the intersection of W; (j=1,2,...,n) and AR is not empty; and

it is said to be not AR-efficient otherwise."

Our resultsfor the example AR-DEA model are consistent with the above definition of
AR efficiency. Since the AR does not intersect with Wi, Ws and W5, DMUs 1,6 and 3
become AR-inefficient.

The results provoke us to question the accuracy of the market information which was
used to determine the ARS because if the value of the lower bound of the ratio v»/v; had
been 0.5 instead of 0.75, DMU; would have been AR-efficient. For that matter if the
upper bound of the sameratio had been 2 instead of 1.5, DMUs 3 and 6 would have been
AR-efficient. Thus, given the fact that the efficiency scores of the DMUs are so sengtive
to the values of the bounds, it seems inappropriate to use crisp numbers for those bounds
when the information for determining them is not accurate. In this research, we propose
to replace the bound values by fuzzy numbers so that we can modd the imprecisoninthe
bound values. The fuzzy numbers will allow the modd to explore a broader region for
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locating the bounds while still treating the specified bounds as most desirable. The region
spanned by the fuzzy numbers will have the specified vaues at one end and the least
desirable values at the other end. The least desirable upper and lower bounds on the ratios
will be the highest and lowest values respectively of the ratios of the optimal factor
weights for the efficient DMUs in the unbounded runs. The objective of the fuzzy mode
isto seek a compromise between the solution that maximizes the satisfaction of the
decision-maker with the bounds and the solution that maximizes the efficiency scores of
al the DMUs.

Coming back to our illustrative example, thefuzzy region is the shaded region in Figure
3.9. At one end of thefuzzy region we have the specified bounds determined from market
information and at the other end we have bounds determined from ratios of weights
assigned to the factors by the efficient DM Us in the unbounded runs.

vy

Fuzzy
125 | - region
1.0 |
75 L
5 1
25 L
I I I i I Vi
.25 5 .75 1.0 1.25

Figure 3.9 Geometric Representation of the Fuzzy AR Region

In the next subsection, we develop and solve the fuzzy AR DEA model.

122



3.2.2 Development and Solution M ethodology of the Fuzzy AR Model
The AR constraints impose bounds on the ratios of the weights. While the absolute
weight bounds, discussed in section 3.1, are added to thefractiond DEA modd, the
Assurance Region (AR) congtraints are added to the linear form of the DEA modd.
Therefore, the weights in the AR model are represented using the symbols y and ny instead
of the symbols u and v. The bounds are determined using value data like market price
information or expert opinion. This value data typically exists in the following form:

"Price/cost” data
Factor Multiplier | Lower bound | Upper bound
Vi L1 by uby
yS IJS | bs UbS
X1 N LB, UB;
Xm Nm LBn UBn,

Table 3.10 Price/Cost Information or Expert Opinion used for Setting AR bounds

At this point, we would like to distinguish between two forms of AR constraints that can
be obtained using the information in Table 3.10:

Form 1 isthe onein which the upper and lower bounds on the ratios of weights are not
themselves in ratio form. Expressing the AR in this form becomes inevitable when
information isavailable in the form of relative importance of inputs and outputs. For
example, if the experts specify that input oneis 1.5 times more important than input two,
then the AR constraint expressing this opinion appears as v, = 1.5v,. More generally, AR
of this form is expressed as:

a, sy 'y <b,, r<t, rt=1..s (3.26)
Ajsni/nstij, i <j, ihj=1...m

If using "price/cost” information or expert opinion from Table 3.10 for setting AR bounds

of Form 1, then a, =1Ib, /lb, ,b, =ub, /ub, A, =LB, /LB, and B; =UB, /UB;.

1 rt
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Quite often (see Thompson et al. (1986) and (1990)), one of the inputs, sy x;, may be
selected as an input numeraire and one of the outputs, say y;, may be selected asan
output numeraire. The AR in (3.26) can then be specified asaset of (m+ s- 2)
homogeneous linear inequalities for separable cones:

ap < <bu, r=23...,s (outputcone)
An,<n. <Bn,, i =23,....,m (input cone)

(3.27)

Form 2 isthe one in which the bounds on the ratios of multipliers are al'so expressed as
ratios. It is easy to obtain the constraintsin thisform when information is available in the
form shown in Table 3.10. Constraints of thistype are represented as:

b, s&sﬁ, r<t, r,t=1..s (3.28)
b,y ub

LB Y8 e ij=1.m

LB, 1, UB

Expressing in the form of separable input/output cones we get:
Ib, 1, <lby,, ub u, <ub, y,, r <t, r,t=1...,s. (output cone) (3.29)

LBn, <LB;,n,, UBn, <nUB,, i<]j, i,j =1...,m (input cone)

We make this distinction between the two forms of AR constraints because the fuzzy
approach proposed in this paper differs markedly for solving models with these two types
of constraints. The fuzzy relations in the fuzzy model with AR constraintsin Form 1
compare real numbers on the LHS with fuzzy numbers on the RHS. On the other hand,
the fuzzy relations in the fuzzy model with AR constraints in Form 2 compare two fuzzy
numbers. Since the constraintsin Form 2 can be easily converted to Form1, the decision-
maker has achoice of two methodsfor solving thefuzzy AR modd when the origind
congtraints are in Form 2 and one method when they are in form 1.

Since the two forms of AR constraints are different mathematically, the fuzzy models for
solving them are also markedly different and therefroe dealt with in separate subsections
—section 3.2.2.1 and section 3.2.2.2.
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3.2.2.1 Fuzzy Model for AR Constraintsin Form 1

The constraintsin Form 1, when added to a CCR modd give thefollowing CCR-AR
model:

Max u"Y,
Subject to
n'X,=1
H'Y-n'X <0 (3.30)

a s&sbr r=2,..,s
Hy

i .
A<—<B i=2..m
n

where input 1 (X;) and output 1 (Y1) are input and output numeraire respectively.

As stated earlier, the vaues of the bounds are imprecise. Tomodd the imprecison
associated with the bound va ues, we propose to replace the crisp bound valueswith
fuzzy numbersthat express the concept of approximate numbers close to the specified
bounds.

3.2.2.1.1 Definitions of Fuzzy Numbers
Let a'r,b", A" and B'; be the fuzzy numbers corresponding to the crisp bounds a , b

A and B respectively. Then the fuzzy model corresponding to (3.30) will be:

Max 'Y,
Subject to

n' X, =1
u'Y-n"X<0 (3.31)

a/ sisb,f r=2,..,8
Hy

A' sZ—‘s B i=2..m
1

The fuzzy constraints in the above modd are similar in form to the ones in the absolute
weight restriction model (3.2) i.e. they have fuzzy numbers on their RHS and crisp
numbers on their LHS. Hence, we can use the same argument presented in section 3.1.1.1
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to say that the membership functions of the fuzzy numbersin (3.31) will vary between
the specified (most desirable) bounds and the more relaxed least desirable bounds.

Graphically, the membership functions can be represented as follows:

4 A
1 1
b’ () a/ (x)
(B' () (A" ()
0 » 0
b b +p, X a-p,’ a X
(BI) (Bi+pi) (A1_pil) (A)
Figure 3.10 Membership Functions Figure 3.11 Membership Functions
of Fuzzy Numbers of Fuzzy Numbers
b’ (x), B/ (¥) a (%, A" (%)

p and p' are the differences between the most and the least desirable bound values.

Mathematically, the fuzzy bounds can be represented as:

Hy if x=2b, +p,;x<Db,

f B3 + P, -X :

b'(x) = G———— if b <x<b +p, (3.32
0o P
H if x=b,
Y ifx <a -p,';x>a

f EIX—a '|'pI . ,

a (X)) = o0————— ifa —p,'<x<a (3.33)
o P
H ifx=a,

where x O R (Figure 3.10) are the values of the ratios of the bounds
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if x2B +p;x<B

mm
oo

f *t P-X :
B'() = F- 5 ifB <x<B+p (3.34)
| i
H if x=B
Hy ifx < A-p'ix>A
f — EX_'A\'l'piI ; '
A = B A px<A (3.35)
| i
H ifx=A

Where x[J R (Figure 3.11) are the values of the ratios of the weight bounds.

The a-cut representations of the fuzzy numbers are asfollows:

“b' =[b b, +p, - p,a] (3.36)
“a’ =[a, - p,'+p,'a,a ] (3.37)
“‘B' =[B,,B +p, - p,a] (3.39)
“A"=[A -p'+p'a,Al (3.39)

3.2.2.1.2 Degrees of Satisfaction of the Constraints

Fuzzy constraints that contain fuzzy numbers on their RHS can be represented as fuzzy
sets. The membership functions of these fuzzy sets, called the " degrees of satisfaction of
the constraints’, can be derived from the membership functions of the fuzzy numbers by
replacing the argument (x) by the LHS of the constraint (Klir and Y uan (1995)).

The degree of satisfaction of the fuzzy constraint He o b' obtained by replacing x by He
Hy Hy

in (3.32) isgiven by:

EO if Frzp +p,

B Hy

0 -
Arb: |:{‘llbr +ller H; if br <& < br + pr (340)

|:| IJl pr IJl

O

a it b <p

O My
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The definition of satisfaction of the constraint £ < b" coincides with the definition of
Hy

the fuzzy relation “ < ”from section 2.5.5.5 comparing a real number onthe LHS with a

fuzzy number onthe RHS.

The degree of satisfaction of the fuzzy constraint Hes a' isdefined as:

Ha
o it ' <a -p,
0 Ha
D — 1
Ara — [{Jr lJlar |+ ller if ar - p'r < & < ar (341)
UJ P Ha
U
1 it Ao > a,
U Hy

The definition of satisfaction of the constraint £r > a' coincides with the definition of
Ha

the fuzzy relation“ =" from section 2.5.5.5.

The degrees of satisfaction of the input weight constraints are defined as:

o it l>p +p
0 M
AiB: Eh,B. +n.p.-n; if B <M. B +p, (3.42)
0O mb N
U .
1 it lL<p
M
%) if 4 < A-p;
0 1
AiA: %7i _’71'6\ ,+r’1pi ifA_p'i<&<A (343)
O n.P; n
U .
1 it 1> A
N
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The membership functions defined in (3.40) to (3.43) are of the fuzzy sets representing

2s+2m

the fuzzy constraints. The intersection of these fuzzy sets, 0 A, , givesthe fuzzy

feasible set (R) (Y uan and Klir (1995)).

3.2.2.1.3 Conversion to Crisp Linear Formulation

Model (3.30) isan unsymmetrical fuzzy model. To convert it to an equivalent crisp form
we construct themaximizing set of its objective function usng Werners (1984)
definition. To determine the maximizing set for the objective function we first need to
determine its upper (fo) and lower (f;) bounds.

3.2.2.1.3.1 Determination of f;
f1 isthe supremum of f (the objective function) over R,, the 1-cut of R. Asin the case of
the absolute weight restriction model, R, consists of fuzzy constraints satisfied to a

degree 1 i.e., constraints having the most desirable bound values (e.g., &) ontheir RHS.
Therefore f; is found by solving the following LP:

f,=Max u"Y,,

Subject to

’7Ton =1

p'Y-nTX<0 (3.44)
pa su <ub r=2..s

mA <n <nB i=2..,m
M..n =0 Or,i

3.2.2.1.3.2 Determination of fg
fo is the supremum of the objective function over S(R) ,which isthe support of R. S(R)

consists of constraints that have the least desirable bound vaues (e.g., a — p'r) on their
RHS. Therefore, fo is obtained by solving the following LP:
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fo=Max u'Y,,

Subject to

n' X, =1

uY-n"X<0 (3.45)
y,(a -p.)sy < +p) r=2..,s

mA=-p)sn <n(B +p) i=2,..,m
u.,n =20 Or,i

3.2.2.1.3.3 The Equivalent Crisp Model
Asinthe case of the absolute weight restriction model, the crisp model equivaent to
(3.30) isaproblem of finding the set of weights which give a"maximizing solution" i.e. a
solution which satisfies the constraints and the god with the maximum degree.
The equivalent crisp modd isasfollows:
Maximize A
s.t.
n"Xo =1
u'Y-n"X<0
A< U'Yo- f
fo - f

A< lJlbr +Iler_IJr

lJl pr
A < lJr _lJlar + llelr

lJl plr

A< ’71Bi +1N.Pi-1;

n.P;
A< ni —mA +n,.p}

n.p
0<A<1l (3.46)
lJr 1’7i 2 0
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Max A

such that

A(fo-1) '/JTY <-f;

n'Xo =1

pu'Y-n"X<0 0

AP+ 1 < (b +pp) Cr (3.47)
An.pi+n, <n(B+p) Ci

APtz (3 - P ) Cr

- AP 0 zn(A - py) Ci

0<A<1

M.,n 20 Or,i

(3.47) isaquadratic programming model since the weight bound constraints are non-
linear. Since A is one of the variables in the weight bound constraints and we know that it
is bounded between 0 and 1, we can solve (3.47) using the parametric algorithm
described in section 3.1.1.5.4. The solution of the parametric algorithm gives the optimal

weight values which when plugged into the expresson u'Y, give the efficiency scoresof

the DMUSs.

3.2.2.2 The Fuzzy Model with AR Constraintsin Form 2
Adding the AR-DEA constraintsin (3.28) to the DEA model givesthe following AR-
DEA mode!:

Max 'Y,

Subject to

’7Ton:1

T T

u'Y-n"X<0 (3.48)
b, _ H _ub r<t, rt=1..s

b, p, ub

LBom U8B i ij=1..m

LB, " n, UB,

Rearranging the terms in (3.43) to eliminate the fractions, we get the following model:
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Max 'Y,

Subject to

n' X, =1

H'Y-n'X<0 (3.49)
Ib, u, < lb, 1, r<t, r,t=1..s

ub, p, <ub, u, r<t, r,t=1..s

n,LB, <n,LB; i<j,ij=L..m

UB;n; <UBn, i<j, i,j=L..,.m

The values of the price ranges are determined using economic information, which may be
either inexact or volatile (Taylor et al. (1997)). In fact, the reason we use price “ranges’
instead of “exact values’ isthat enough information is not available to determine exact
price values. In this research, we assume that even the price ranges cannot be accurately
determined using the available information. To represent the imprecision in the values of
the price ranges (referred to as weight bounds from this point onwards), we replace them
with fuzzy numbers, which express the concept of approximate numbers. The fuzzy
numbers are represented by adding a superscript f (signifying fuzziness) to the existing
symbols of the crisp bounds which they replace. The resulting model caled thefuzzy AR
(Form 2) model is as follows:

Max 'Y,

Subject to

n' X, =1

H T:(_”Txf 0 (3.50)
Ib, u, <Ib, r<t,r,t=1..s

ub'u, <ub r<t, rt=1..s

LB/n, <LB/n, i<j,ij=1..,m

UB/n, <UB'n, i<j,ij=1..m
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3.2.2.2.1 Definitions of the Fuzzy Numbersand their a-cuts

The fuzzy weight bound constraints in (3.50) are different from those in the previous two
types of fuzzy weight regtriction models (3.2) and (3.31). The difference isthat in (3.2)
and (3.31), the fuzzy inequalities compare crisp LHSs with fuzzy RHS's whereasin
(3.50), they compare two fuzzy numbers. Therefore, the argument made in section 3.1.1.1
to drop the tighter sde of the triangular membership functions of the fuzzy numbers does
not hold in this case. The membership functions of the fuzzy bounds in (3.50) are defined
by specifying least desirable boundsthat are both tighter and more relaxed than the
specified bounds. In other words, the least desirable values lie on either sideof the most
desirable value in the graphical representations of the membership functions of the fuzzy
bounds.

For example, the fuzzy number corresponding to the bound I, will be: 1b" ={lby, p'r, q' 1}

where p'; and q'; are the differences between Ib; and the least desirable values on either
side of it.

Graphically, the membership function of Ib is depicted as:

; >
b, —p't b, Ib+q, X
|br_ plr + CX plr |br+qlr = CX qlr
(Lal bfr) (Ral bfr)

Figure 3.12 Graphical Representation of Fuzzy Number coresponding to Ib;

The mathematical representation of the membership function 1o (x) is:
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. Ib - p. <x<lb,
p
|:| r
Ib! (x) = (29X Ib <x<lb +q, (351)
o 49
0 x<Ib, = p', ,x>Ib +q,
0

Similarly, we can define the fuzzy numbers corresponding to the other bound values as:

W ub, — p, < x<ub,
|:| r
ub, (x) = R 4 =X ub <x<ub +q, (352)
o O
g) X<Ubr_pr1X>Ubr+qr
0
x~LB *p, LB - p, <x<LB
3 P
LB (x) = g2t X LB <x<LB +q (353)
| a;
Eb X<LB, -p,x>LB +(
0
x-UB +p UB - p, <x<UB
3 P
UB/ (x) = (ot 4 =X UB <x<UB +q, (3.54)
| q;
S) X<UBi_pi1X>UBi+qi
0
Thea-cut of Ib' isgiven by:
“Ib’ =[lb, - P\, +ap', ,Ib, +q', -aq, ] (3.55)

Similarly, the a-cuts of the other fuzzy numbers are:

“ub/ =[ub, - p, +ap,,ub, +q, —aq,] (3.56)
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aUBif =[UB, - p; +ap,,UB, +¢q —aq;] (3.57)

aLBif =[LB; - p’+ap’,LB, +q;-aq’ ] (3.58)

3.2.2.2.2 Crisp Linear Programming M odel

Using the definition of partial ordersin terms of a-cutsfrom section 2.5.5.4 and the
definitions of the a-cutsin (3.55) - (3.58), we get the following equivalent of model
(3.50).

Max u'Y,,

Subject to

’7Ton =1

u'Y-nTX<0

(Ib, = p',+ap', )u, < (Ib, — p',+ap', ), r<t,rt=1..,s
(Ib, +q',—aq', )i, <(Ib, +q',—aq’, )y, r<t, rit=1..s
(ub, = p, +ap,)i, <(ub, — p, +ap,)u, r<t, r,t=1..,s (3.59)
(ub, +q, —aq, )y, < (ub, +q, —aq, )y, r<t, r,t=1..,s
(LB, = p'+ap' )n; < (LB, - p';+ap’; )n, i<j, i,j=1..,m
(LB, +q,—aq’)n, < (LB, +q';,—-aq'; )n, i<j, i,j=1..,m
(UB; - p; +ap;)n, < (UB - p +ap)n, i<j, ij=1..m
(UB; +q; —aq;)n, < (UB +q, —aq)n; i>]j, ij=1..m
Ki.n; 20 Or,i

Since all numbersin (3.59) arereal numbers, thisisacrisp parametric linear
programming model. The a in each case represents the degree of proximity to the
specified bound. According to the principle of confluence of goals and constraints
proposed by Bellman and Zadeh (1972), themaximizing solution of (3.59) will be
attained when all goals and constraints are satisfied to the maximum degree. Therefore,
we solve (3.59) for the same degree of satisfaction (A) of all constraintsand try to

maximize A. The model equivalent to (3.59) isthen given by:
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Max 'Y,

Subject to

n' X, =1

u'Y-n"xX<0

(Ib, = p" +Ap' Y, < (Ib = p' +AP' ),
(b, +q' -Aq' i, < (Ib, + g’ -Aq ),
(Ub = p; + Ap ), < (ub, = p, +Ap, )4,
(Ub + —Aq)H, < (ub, +q, —Aq, )4,
(LBi - P +Apli )’7j < (LBj - plj +Aplj )’7i
(LBi + qli _Aqli )’7j < (LBj + qu _Aqu )’7i
(UBj Y +Apj)r’i < (UBi Y +Api)r’j
(UBj +qJ' _qu)r’i S(UBi +q; _Aqi)r’j
0<A<1

.0, 20

r<t,r,t=1..,s
r<t, r,t=1...,s
r<t, r,t=1...,s
r<t, r,t=1..,s
i<j, i,j=1..,m
i<j, i,j=1...m
i<j, i,j=1..,m
i>j, i,j=1...m

Or,i (3.60)

The model (3.60) will always be feasible for all values of A between 0 and 1. Since 1is
the maximum value possible forA, we can replace A by 1in (3.60). However, werefrain
from doing so because leaving A in the model and varying it between 0 and 1 dlows us to

determine the efficiency scoresfor different degrees of closenessto the specified bounds.

3.2.3 Roadmapsfor Fuzzy AR Models

In this section, we illustrate the implementation methodology of the fuzzy AR models of
both forms using roadmaps. Section 3.2.3.1 contains the roadmap for the fuzzy model
with AR constraintsin Form 1 and section 3.2.3.2 contains the roadmap for the fuzzy
model with AR constraintsin Form 2.

3.23.1 Roadmap for Developing and Solving the Fuzzy M odel with AR
Constraintsin Form 1

The example used in this section from Roll and Golany (1993) isthe same asthat used in
the roadmap for illustrating the fuzzy absolute weight restriction model. The steps
involved in developing and solving the fuzzy AR (Form 1) model are asfollows:
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Stepl: Normalize theraw data

When AR congtraints are used, close attention needs to be paid to the unitsin which the
respective factors are measured (Roll and Golany (1993)). To resolve this difficulty, Roll
and Golany (1993) recommend bringing al factor vauesto the same order of magnitude
through normalization (make the average of al columns 100). The normalized verson of
the datain Table 3.2 isshown in Table 3.11 below:

DMU| v1 | ¥2 | Ya | X2 | X2 | X3 | X4
1 |103| 40 (14497 | 69 |101|112
2 | 91| 30 (107|139 111 (190]| 61
3 |120| 95 | 63 |174| 33 [162|130
4 |59 |43 (95|38(101|94 |91
5 | 72|84 [24|33| 66 |99 |121
6 |115| 78 | 79 [109| 120 | 97 | 137
7 140|258 (154|118|170| 92 | 81
8 | 63 | 21 [132| 85 | 144 | 27 |102
9 | 61| 33 |125|88 | 41 [138] 59
10 | 44 | 70 |88 |60 |101| 45| 71
11 | 79 | 54 |147| 68 | 125 | 64 112
12 (175|317 | 69 |109| 93 |109(117
13 | 76 | 41 | 93| 64 | 89 |161(127
14 | 48 [119| 66 |111| 71 | 36 {102
15 [ 253217 |115|209| 168 | 84 | 79

Avg. | 100 | 100 {100|100( 100 |100( 100

Table 3.11 Normalized Input /Output Data for the Roadmap Example Illustrating the
Fuzzy AR (Form 1) Model

Step 2: Determine the most desirable bounds on the ratios of weights

Roll and Golany (1993) treat input 1 asthe input numeraire and output 1 as the output
numeraire. Although it's not explicitly stated how the bounds on the ratios of weights are
determined, we assume that expert opinion isused. The AR bounds used by Roll and
Golany (1993) are shown in Table 3.12.
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Factor | Upper bound| Lower bound
(b, B) @A)

Lol Ly 1.0 0.2

sl Ly 0.5 0.1

n./ny 4.0 0.25

nalny 4.0 0.25

N4/ N1 0.4 0.1

Table 3.12 AR Bounds Used by Roll and Golany (1993)

Step 3: Determine the fuzzy bounds

Since the bound values are based on human judgement, there is uncertainty associated

with their values. To minimize the effect of uncertainty on the results of the model, we

replace the crisp bounds by fuzzy bounds. The fuzzy bounds use the values specified in
Table 3.12 asthe most desirable. The least desirable bounds are determined from the
results of the unbounded model. Table 3.13 shows the results of the unbounded model

along with the ratio of each input weight to the weight of input 1 (numeraire) and of each

output weight to the weight of output 1. The least desirable upper and lower bounds are
the highest and lowest values of these ratios for efficient DMUSs.

Ha M2 M3 N1 n2 N3 N4 Ho/M1 | Ma/Mi | N2/Na | Na/na | Na/Ns
1 |00025] 0 [0.0052]0.0079]0.0033| © 0 1 0 |20616[04177] © 0
2 |o00021] o [00067] O 0 0 |o0o0164[09077| 0 [32711] - - -
3 |0.0069] 0 [0.0027]0.0037[0.0107] © 0 1 0 |03824[28623] © 0
4 0 0 |0.0105[0.0263] © 0 0 1 - - 0 0 0
5 |0.0049[0.0077] 0 [00303| © 0 0 1 [15885] 0 0 0 0
6 |00054] 0 [00014[00058] 0 [00038] 0 [07349] o0 [02634] 0 |[0648] ©
7 0 [0.0024[0.0025]0.0083] 0 0 [oo0002] 1 - - 0 0 [0.0277
8 0 0 [0.0076[0.0033] 0 [0.0029(0.0063] 1 - - 0 |[0.8741(1.8874
9 0 0 [ 0.008 [0.0073] © 0 [ooo61| 1 - - 0 0 [0.8328
10 0 |0.0034[0.0074]0.0091] 0 [0.0101] 0 | 0.884 - - 0 [11203] O
11 0 0 |0.0068[0.0095[0.0028| 0 0 1 - - 0294 0 0
12 0 [o00032] 0 [00092] o0 0 0 1 - - 0 0 0
13 [0.0069] 0 [0.0039]0.0104[0.0038] 0 0 |o0.8847] 0 [o05561][0.3611| O 0
14 0.0034 | 0.009 | 0.0011]0.0087|0.0071] © 1 - - |75648]6.1741] 0
15 [0.0035| O [0001]0004| O 0 |ooo21| 1 0 |o02775] 0 0 | 0529

Table 3.13 Results of the Unbounded DEA model for the AR (Form 1) Roadmap

Example

Note: The“-* in the table represents a value with a 0 denominator. These values areignored in the analysis.
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Considering only efficient DMUs, the lowest value of the ratio 2/ is 0 and the highest
value is 1.5885. Therefore, the least desirable lower and upper bounds ontheratio /|1
for the purpose of the fuzzy model will be 0 and 1.5885 receptively. Similarly, the least
desirable lower and upper bounds on the ratio pa/p; will be 0 and 2.062 respectively.
Therest of the values calculated similarly are shown in Table 3.14.

Factor |Least Desirable| Least Desirable
Ratio | Upper bound | Lower bound

(b+p,B+p) | (@—p,A-p)

Lol L 1.5885 0
s/ Ly 2.062 0
M2l m 7.56 0
Na/ N1 6.17 0
n4/ny 1.89 0

Table 3.14 Least Desirable Weight Bound Vaues used in the Roadmap Example for
[llustrating the Fuzzy AR (Form 1) Model

Step 4: Solve the crisp equivalent model

f1 isobtained by solving the AR-DEA model with bound values from Table 3.12. fyis
obtained by solving the AR-DEA model with bound values from Table 3.14. Using the f,
and f; values, the crisp modd (3.47) is solved using the parametric al gorithm described
earlier. € ischosen to be 0.1. The results of the fuzzy model are compared with the results
of the crisp mode in Table 3.15.

16 Although the ratio 3.27 is higher than 2.062, it is not considered because it is obtained from the weights
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DMU Efficiency Scores
Crisp Fuzzy Y
bounds bounds
1 0.85155 1 0.8
2 0.47673 | 0.67941 0.6
3 0.90362 1 0.8
4 0.75333 | 0.96234 0.7
5 0.73712 0.9116 0.5
6 0.63773 | 0.69607 0.5
7 0.99046 1 0.9
8 0.93607 1 0.9
9 0.8533 1 0.8
10 0.70533 | 0.81129 0.7
11 0.88081 1 0.8
12 1 1 1
13 0.58903 | 0.77286 0.6
14 0.77929 | 0.87624 0.5
15 1 1 1
Average | 0.806291 | 0.913987

Table 3.15 Comparison of Results of Crisp and Fuzzy AR (Form 1) Weight Bound
Models for the Roadmap Example

Applying a paired two samplet test (Ho: E; — E; = 0 versus Ha: E»-E;1>0) to the two sets
of efficiency scoresin Table 3.15, we get a p-value of 0.00002. Thus, with an a value as
low as 0.00005, we can reject the null hypothesis. Thisimplies that we accept the
alternative hypothesis that there is a significant difference between the efficiency scores
calculated by the two models.

We see that several DMUs move from the inefficient set to the efficient set when the
bounds are made fuzzy. Two of those DMUs (7 & 8) become efficient at a 90% degree of
satisfaction with the specified bounds. Therefore, as in section 3.1.3, we modify the
existing bounds so that they are at the 90% satisfaction level in order to restore DMUs 7
and 8 to the efficient set. The original set of boundsisshown in Table 3.12. The modified
set of bounds is shown in Table 3.16.

assigned to the factors by an inefficient DM U.
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Factor | Upper bound| Lower bound
(b, B) @A)

Lo/ 1.05885 0.18

sl Ly 0.6562 0.09

M2l m 4.356 0.225

Nalm 4.217 0.225

N4 N1 0.549 0.09

Table3.16 Modified Set of Bounds at a 90% Level of Satisfaction of Original Bounds
for the AR (Form 1) Roadmap Example

Note that there is only asmall difference between bound valuesin the two tables. Table
3.17 compares the results of the AR model with specified bounds with those of the AR
model with the modified bounds.

Efficiency Scores
DMU | Original crisp | Modified set of
bounds bounds
1 0.85155 0.94179
2 0.47673 0.54552
3 0.90362 0.96566
4 0.75333 0.85255
5 0.73712 0.76305
6 0.63773 0.66127
7 0.99046 1
8 0.93607 0.963
9 0.8533 0.98115
10 0.70533 0.76341
11 0.88081 0.96944
12 1 1
13 0.58903 0.65236
14 0.77929 0.81145
15 1 1
Avg. 0.842259 0.86051

Table 3.17 Comparison of results of AR (Form 1) Models with Original and Modified
Bounds applied to the Roadmap Example

We see that just adlight modification of the bounds allowed DMU 7 to move from the
inefficient set to the efficient set. DMU 8 however did not move to the efficient set as
expected.
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3.2.3.2 Roadmap for Developing and Solving the Fuzzy M odel with AR
Constraintsin Form 2

For demonstrating this roadmap, we use the AR-DEA model developed by Taylor et al.

(1997) for calculating the efficiencies of 13 Mexican banks.

Step 1: The Bank Model and the Data

The model used in this study had totd income (y;) as the single output. Total deposits (x;)
and total non-interest expense (X;) were the two inputs used to generate the output. The
datafor thirteen Mexican commercial banks are shown in Table 3.18. These data were
obtained from the annua financia reportsfrom these banks. Although Taylor et al.
(1997) solve the AR DEA problem for 3 years of data from 1989 to 1991 we develop and
solve the fuzzy model only for the year 1989 since the roadmap is for illustration

purposes only.

Bank|Bank Deposits Non-int. Int. income

# Name (X1) expense plus non-int.
(X2) income (Y,)

1 Banamex (31451.9 1540.8 9648.5

2 Bancomer|24267.8 1491.1 9396.9

3 Serfin 16609 1072.6 6884.8

4 Internac  [4109.14 561.6 1924

5 Cremi 1657.57 1842.5 2427.9

6 Banceser (2124 85.2 617.3

7 MercNort (1540 198.3 737.7

8 BCH 1750 152.3 907.9

9 Confia 1728.88 151.2 65.5

10 |(Bancern (1313.48 129.7 705.4

11 |Promex |[1410.97 173.5 674.3

12 |Banoro |586.29 127.3 505.1

13 |[Banorie [302.14 45.3 211

Table 3.18 Input / Output Values for 13 Mexican banks in 1989 (Billions of Nominal
Pesos) —from Taylor et al. (1997)

Step 2: Determine” price/cost” rangesor AR bounds

The AR bounds are obtained from the range of nominal interest rates charged on loans
and paid on deposits in the portfolios of the thirteen banks. The nomina interest rate
ranges were determined using the following information:

» Theweighted average cost-of-funds for mortgage finance institutions,
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» Theaverage depost rate on three-month term deposits and

* Thedealer money-market interest rate.

Table 3.19 shows the upper and lower bounds for the input and output multipliers that
were used in the AR analysis by Taylor et al. (1997). Since the second input (non-interest
expense) and the single output (total income) are expressed in price units (tota nominal
pesos), their multipliers (weights) will not be prices. Therefore, we cannot use price
information to put bounds on the multipliers. The bounds are accordingly set to one.

1989 1990 1991
LB (Ib) [UB (ub)| LB (Ib) [UB (ub)| LB (Ib) [UB (ub)
Y1 1 1 1 1 1 1
X1  |0.20874|0.51356] 0.2207 | 0.60871[0.14973|0.42784
X 1 1 1 1 1 1

Table 3.19 Upper and Lower "price/cost” Data Bounds for Multipliers in the Roadmap
Example illustrating the Fuzzy AR (Form 2) Mode

The inflation rate in Mexico was relatively high during the study period. Dueto this, the
interest rates were very volatile. The volatility makes the ranges of prices shown in Table
3.19 uncertain. To mode the uncertainty in the bounds, we replace them by fuzzy

numbers.

Step 3: Determine the fuzzy bounds

In order to define the fuzzy numbers used in the model, we need to define the most
desirable bound va ues and the least desrable values. Since the modd isbeing solved for
the 1989 data, the price/cost ranges prevalent in that year (from Table 3.19) will be used
asthe most desirable values for the fuzzy bounds. For determining the least desirable
bounds, we need price/cost vaues that are different from va ues prevalent in 1989. Since
the price/cost information for the years 1990-91 is readily available, we use it to
determine the least desirable bound values. From Table 3.19, we observe that the 1991
price/cost values are lower than those for 1989 and therefore can be used as the |east
desirable lower ends (Ib — p and ub — p) of the fuzzy numbers. We also observe that the
1990 values are higher than those for 1989 and can be used as the least desirable upper
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ends (Ib + g and ub + q) of the fuzzy numbers. Table 3.20 shows the bound values that

are plugged into model (3.61).

Ib ub Ib+q ub + g Ib-p ub-p
X1 0.20874 | 0.51356 | 0.2207 | 0.60871 | 0.14973 | 0.42784
X, 1 1 1 1 1 1

Table 3.20 Least Desirable Weight Bound Values for the Roadmap Example Illustrating
the Fuzzy AR (Form 2) Model

Model (3.61) issolved for six different vaues of A (0, 0.2, 0.4, 0.6, 0.8, 1) where A
represents the degree of closenessto the specified bound value. Table 3.21 compares the

results of the model using different values of A with the results obtained by Taylor et al.

(1997) for the crisp AR modd (A=1).

Bank| Bank Efficiency Scores

# Name | Unbounded|Crisp AR Fuzzy AR
CCR A = 1A =081]A=06|1=041A=0.2]2 =0
1 |Banamex 0.914 0.588| 0.58625[ 0.58415| 0.58209( 0.58007| 0.57808
2 |Bancomer 0.971 0.708| 0.70617( 0.70394| 0.70174f 0.69959| 0.69747
3 |Serfin 1 0.75] 0.74737{ 0.74508| 0.74283| 0.74062| 0.73844
4 [Internac 0.709 0.67| 0.66921] 0.66835[ 0.66751] 0.66667| 0.66585
5 |Cremi 1 0.764] 0.75446] 0.74426] 0.73385( 0.72321| 0.71233
6 |Banceser 1 0.577] 0.57503| 0.57278| 0.57058[ 0.56843| 0.56631
7 _|MercNort 0.751 0.702] 0.70057| 0.69956 0.69857| 0.69758[ 0.69661
8 |BCH 1 0.867| 0.86495[ 0.86286 0.8608 0.85878| 0.85678
9 |Confia 0.74 0.642| 0.64085 0.6393| 0.63779| 0.63629| 0.63482
10 |Bancern 0.972 0.863| 0.86152| 0.85969 0.8579 0.85613| 0.85439
11 |Promex 0.769 0.712] 0.71106f 0.70995| 0.70885( 0.70777{ 0.70671
12 |Banoro 1 1 1 1 1 1 1
13 |Banorie 1 0.962| 0.96147( 0.96047| 0.95949( 0.95853| 0.95757
Average 0.9021667| 0.736917| 0.734787| 0.732493| 0.730209| 0.727928| 0.725649
Table3.21  Comparison of Efficiency Scores of Unbounded CCR model, Crisp AR

model and the Fuzzy AR (Form 2) model for the Roadmap Example

We use the two sample paired t test to compare the results of the crisp AR modd with
those of the fuzzy AR model. The results of thet tests are shown in Table 3.22.
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A=0.8 A=0.6 A=04 A=0.2 A=0
P—value 0.005014 0.004491 0.004605 0.004852 0.005162
Result of Reject null Reject null Reject null Reject null Reject null
hypothesis at 0=0.01 at 0=0.005 | at0o=0.005 | ato=0.005 at 0=0.01
Conclusion Difference Difference Difference Difference Difference
in efficiency | in efficiency | in efficiency | in efficiency | in efficiency
scores scores scores scores scores
significant significant significant significant significant

Table 3.22 Results of the Two Sample Paired t Test comparing the Efficiency Scores of
the Crisp and Fuzzy AR (Form 2) Models for the Roadmap Example

Although the difference between the efficiency scores using thefuzzy AR and crisp AR
models is statistically significant, the difference isnot very obvious when one eyeballs
the results. The difference is apparent only beyond the second decima place. Because of
the small difference between the efficiency scores, the results do not provide the
decision-maker with as much insight as did the results of the previous two fuzzy models.
Thisisindirect contrast to the assumptions made by us (not stated) that the fuzzy mode
corresponding to AR in Form 2 is more elegant and easier to solve compared to the one
corresponding to Form 1 AR. We call the fuzzy modd with AR constraintsin Form 2 as
more elegant because it uses triangular membership functions, which represent the true
notion of "close to the specified bounds' and allow usto model the imprecision on both
sides of the specified bounds. The reason we think this type of model is easier to solve
compared to the fuzzy model with Form 1 AR constraintsisthat it does not require
solving three LP's before getting to the solution and it does not require using the
parametric algorithm.

The triangular membership function, which was thought to be thismodel’ s greatest
strength, turned out to be it’s greatest weakness. That’s because, while one end of the
triangular membership function which tightens the bounds has the effect of decreasing
the objective function (efficiency scores), the other end which relaxes the bounds has the
effect of increasing the objective function. The overall effect isthat the objective function
changes very little. This explainswhy the efficiency scores calculated by the fuzzy (Form
2) AR model are not very diferent from those cdculated by the corresponding crisp

model.
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Chapter 4

APPLICATION, RESULTS, AND DISCUSSION

In this chapter, we illustrate the three fuzzy models developed in Chapter 3 by applying
them to data setsfrom the DEA literature on crisp weight restriction models. Table 4.1, at
aglance, provides information about the source of the data set used for illustrating each
fuzzy weight restriction model.

Fuzzy Weight Restriction Model Source of Data Set

Absolute Weight Restriction Model (see | A DEA Model for Measuring the Relative

Section 3.1) Efficiency of Highway Maintenance Patrols
— Cook et al. (1990)

AR-DEA model with AR Boundsin Measuring Technical Efficiency in a Fuzzy

Form 1 (usually determined based on Environment *’— Girod (1996)

expert opinion) (see Section 3.2.1)

AR-DEA model with AR Boundsin DEA/Assurance region SBDC Efficiency and

Form 2 obtained Using "price/cost” Data | Unique Projections — Thompson et al.

(see Section 3.2.2) (19964)

Table4.1 Sourcesof Data Setsfor Illustrating the Fuzzy Weight Restriction Models

This chapter isdivided into three sections, with each section dedicated to one type of
fuzzy weight restriction model. At the beginning of each section, some background
information about the data set is provided. This is followed by a discusson on how the
weight bounds for that data set were determined. Then, fuzzy weight bounds are
determined and applied to the same data set. Finally, the section is concluded by
comparing the results of the fuzzy weight restriction model with those of the

corresponding crisp model.

7 In thisreference, no weight restriction model issolved. However, information about the relative
importance of the inputs was available. Thisinformation was used to set crisp and fuzzy bounds.
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41 FUZZY ABSOLUTE WEIGHT RESTRICTION MODEL
APPLIED TO MEASURING RELATIVE EFFICIENCY OF
HIGHWAY MAINTENANCE PATROLS

4.1.1 Background

Cook et al. (1990) used DEA to measure the relative efficiency of 14 highway
maintenance patrols. Two inputs and two outputs were included in the analysis. The first
output called the assignment size factor was a compoasite measure of al factorsthat were
indicators of the "size of the system" such as surface, shoulder, right of way and median,
and winter operations. The other output was the Average Traffic Serviced. The two
inputs included in the analysis were Total Expenditure and Average Pavement condition
Rating. In the first run of the model, the weights were alowed to vary freely. The results
of the unbounded runs are shown in Table 4.2.

DMU | Efficiency | uix10° | upx10° | vy x10° | v, x10°
1 1 1436 10 913 4690
2 0.999 1621 10 1030 5292
3 0.803 1760 10 1688 1312
4 1 1623 10 1557 1210
5 0.86 1535 10 976 5013
6 0.931 2087 10 2246 10
7 0.885 1585 2501 1804 10
8 1 2032 10 2187 10
9 0.913 1635 10 1039 5339
10 0.724 1778 10 1130 5806
11 0.874 708 17883 | 1697 10
12 1 389 9815 930 10
13 1 808 3291 90 12208
14 0.619 742 13041 1114 2805
Table4.2 Unbounded Weight Matrix for Highway Maintenance Patrol Data from Cook
et al. (1990)

After investigating the weight matrix of the unbounded run, the authorsfound that
different DMUswere assigning vastly different weights to the same factor. For example
U, = 0.00001 for DMU#1 but u, = 0.017883 for DMU#11 i.e. patrol #11 was allowed to
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attach much greater importance to the second output compared to patrol #1. Based on this
observation, the authors reached the agreement that athough some degree of flexibility is
desirable to enable the DMUs to express their own circumstances, the flexibility should
fall within some reasonable limits. These limits were imposed in the absolute weight

restrictions model.

4.1.2 Crisp Absolute Weight Restrictions M odel
Using the weight matrix in Table 4.2, Cook et al. (1990) determined the absol ute weight
bounds, which are shown in Table 4.3.

U1 U> V1 V2

Upper Bounds | 2100 | 10000 | 2500 | 6000

Lower Bounds | 800 | 500 900 | 300

Table4.3 Absolute Weight Bounds Used by Cook et al. (1990)

The model was solved again with the weights controlled by bounds. The results of the
bounded model are shown in Table 4.4.

DMU | Efficiency
1 1
2 0.995
3 0.8
4 1
5 0.854
6 0.929
7 0.884
8 1
9 0.91
10 0.722
11 0.803
12 0.913
13 0.876
14 0.614
Table4.4 Resultsof the Crisp Absolute Weight Restrictions Modd from Cook et al.
(1990)

The consequences of imposing weight bounds were:

» All efficiency ratings fell below the previous (unbounded) levels.
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« DMUs 12 and 13, which were on thefrontier in the unbounded modd, fell bd ow the

frontier.

4.1.3 Fuzzy Absolute Weight Restrictions M odel

To model the uncertainty associated with the bound values shown in Table 4.3, we
replace them with fuzzy numbers. Fuzzy numbers are sets in which different members
have different degrees of membership. Asstated in section 3.1.1.1, themost desrable
values (values with highest degree of membership) in the fuzzy numbers will be the user
specified crisp bounds from Table 4.3. As stated in section 3.1.1.1, the least desrable
valueswill be determined from the unbounded weight matrix using Method I1.

The least desirable upper and lower bounds will be the highest and lowest values
respectively assigned to the weights by the efficient DMUSs. In other words, the least
desirable bound vaues are such that they allow all efficient DMUs in the unbounded run
to remain efficient in the bounded run. They are referred to asleast desirable bounds
because by allowing unreasonable multipliers to dominate the analysis, they defeat the
purpose of imposing weight bounds. Looking at the unbounded weight matrix in Table
4.2, we see that u; varies from 389 to 2032 for efficient DMUSs. Therefore, we assign 389
asthe least desirable lower bound and 2032 as the least desirable upper bound for u;. The
least desirable bounds for other factors are calculated on similar lines and displayed in
Table 4.5.

Multiplier Up Uy Vi Vo

Least 2032 | 9815 | 2187 | 12208
Desirable
Upper Bound

Least 389 10 90 10
Desirable
Lower Bound

Table4.5 Least Desirable Upper and Lower Bounds for the Absolute Weight Bound
Model from Cook et al. (1990)

Comparing Table 4.5 with Table 4.3, we see that in some cases (e.g. upper bounds on u;,
Uy, and vy), the most desirable bounds are more permissive than the least desirable
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bounds. In section 3.1.1.1, we showed that for the fuzzy model to seek a compromise
between maximization of the efficiency scores and maximization of the satisfaction of the
decision-maker with the bounds, the least desirable bounds should be more relaxed
compared to the most desirable bounds. Hence, we do not use the valuesin Table 4.5 as
least desirable upper bounds on u;, U, and v;. In fact, since we think that the existing
bounds themselves are so lenient, we alow the upper bounds on u;, u, and v; to remain
crisp. Thus, the only bounds, which we replace by fuzzy numbers, are the lower bounds
of all weights and the upper bound of va.

The lower bound on the objective function, fi, is obtained by using the following weight
bound congtraints:
800<u, <2100
500 < u, <10000
900 < v, < 2500
300 < v, <6000

(4.2

Similarly, the upper bound of the objective function, fo, is obtained when the following
weight bound constraints are used:
389<u, <2100

10 < u, <10000

90<v, <2500

10<v, 12208

(4.2)

Finally, the objective function of the crisp equivaent of the fuzzy model is obtained by
using the following set of constraints:

389+ 411X < u, <2100

10+ 490A < u, <10000

90+810A <v, <2500 (4.3

10+ 290X < v, <12208 - 62084

0<A<1
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The coefficients of A in equation (4.3) are the differences between the bound valuesin
(4.2) and (4.1). Table 4.6 compares the results of the fuzzy model with those of the crisp
model from Table 4.3.

Efficiency
DMU Crisp model | Fuzzy model A
1 1 1 1
2 0.995 0.997 0.5
3 0.8 0.802 0.4
4 1 1 1
5 0.854 0.857 0.5
6 0.929 0.930 0.4
7 0.884 0.884 0.4
8 1 1 1
9 0.91 0.912 0.5
10 0.722 0.723 0.5
11 0.803 0.840 0.4
12 0.913 1.000 0.7
13 0.876 0.952 0.5
14 0.614 0.617 0.6
Avg. 0.879 0.894

Table4.6 Comparison of Efficiency Scores of Crisp and Fuzzy Absolute Weight
Restriction models applied to the Highway Maintenance Patrol Data from
Cook et al. (1990)

Note that for each DMU, the efficiency score obtained using the fuzzy model is greater
than that obtained using the crisp model. Especialy notable is DMU 12, which moved
from the inefficient set to the efficient set when the bounds were changed from crisp to
fuzzy. DMU 12 isthe best example of a borderline DMU that was penalized by the
imprecision in bound va ues and was rescued by the fuzzy model. The average efficiency
using crisp bounds is 0.879 while that using fuzzy bounds is 0.894.

To check if the difference in efficiency scores calculated by the two modesis
significantly greater than 0, we use the paired two Samplet-Test for means (Bain and
Engelhardt (1992)). The details of thetest are Ho: E>-E1=0; Ha: Ex-E;1>0 where E; isthe
average efficiency score generated by the fuzzy model and E; isthe average efficiency
score generated by the crisp bounded model. The result of thetest is a p-valueof 0.037
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allowing usto rgect the null hypothesisusing an a value of 0.05. Consequently, we
accept the alternative hypothesis that the efficiency scores obtained using the fuzzy
model are significantly greater than those obtained using the crigp model. The detailed
results of the test are shown in Table 4.7.

Fuzzy Crisp
Model | Model
Mean 0.894 0.879
Variance 0.014 0.013
Observations 14 14
Pearson Correlation 0.968
Hypothesized Mean Difference 0
Df 13
t Stat 1.938
P(T<=t) one-tail 0.037
t Critical one-tail (assuming a = 0.05) 1.771

Table4.7 Resultsof t-Test: Paired Two Sample for Means comparing the Efficiency
Scores of the Crisp and Fuzzy Absolute Weight Restriction Models applied
to the Highway Maintenance Patrol Datafrom Cook et al. (1990)

Clearly, t gat >t critical allowing usto rgect thenull hypothess.

4.2 FUZZY AR (Form 1) DEA MODEL APPLIED TO
EVALUATING PRODUCTIVE EFFICIENCY OF A
NEWSPAPER PREPRINT INSERTION PROCESS

4.2.1 Background

Girod (1996) uses a fuzzy set-based methodology to accommodate the measurement
inaccuracies associated with production plans generated by a newspaper preprint
insertion manufacturing process. Because the values of the inputs and outputs are
imprecise, he replaces them with fuzzy numbers. The membership functions of these
fuzzy numbers vary between therisk free and impossible bounds. Therisk free bound for
aparticular input or output is the most pessimistic value of that input or output. The
impossible bound isthe most optimistic value. Naturally, the risk free bound corresponds

to amembership grade of 1 and the impossible bound corresponds to amembership grade
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of 0. In addition to the risk-free and impossible values for all inputs and outputs, Girod
(1996) also calculates intermediate values, which he obtains by varying the membership

grade between 0 and 1 in increments of 0.2.

In the current research, we are looking a fuzzy weight bounds and not fuzzy input/output
data. Therefore, we assume that the input/output datais crisp. To be able to use the data
from Girod (1996) for this research, we need to pick one set of values for each factor
from the available range. The naturd choiceis the central value, which happensto be the
value corresponding to amembership grade of 0.6.

The production process analyzed in this paper isthe “Newspaper preprint insertion
process’. Newspaper preprint insertion involves merging incoming newspaper sections
and commercial preprints into bundles ready for delivery to newspaper distributors. All
newspapers are divided into two major sections - the news section and the nonnews
sensitive section. The commercia preprints are inserted in the nonnews seng tive section
referred to as NNSS from this point onwards. The preprint insertion typically occurs only
once aweek. Production data was gathered for 48 weeks. The preprint insertion line
analyzed by Girod (1996) works asfollows.

Two line operators manually position NNSS's on a mechanical loader that conveys them

to afeeding hopper that in turn feeds them into the preprint insertion machine’ s sted

pockets. Once in the steel pocket, the NNSS fold is mechanically opened. In the

meantime, other line-operators position commercia pamphletsinto the preprint insertion
hoppers which drop the inserts in the NNSS fold, producing the intermediate packages.
Girod (1996) considered three inputs and one output for the study. The first input is direct
labor and is defined as the number of hourly workers dedicated to the preprint insertion
production line multiplied by the total production time and the worker hourly rate. This
input is fuzzy because the varying package mix causes the manpower reguirements to
fluctuate from week to week.
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The second input used is rework. Rework represents the number of packagesthat would
have to be reprocessed if the preprint-inserting machine produced only accurate
packages. It isaproxy variable for the amount of labor that would have to be committed
to retrieving nonconforming packages from the production stream and reworking them.
The objective of including this input isto minimize the number of defective packages.
There are two types of preprint defects— "preprint misses' (no preprint inserted) and
"preprint multiples” (more than one preprint inserted). Therefore, rework is defined asthe
number of "preprint misses' plus the number of "preprint multiples’. Both types of
defects are recorded by sensors. Unfortunately, the sensor for only one of the typesis
accurate. The sensor for the other type is inaccurate and therefore thisinput is treated as

fuzzy.

The third input, called raw material, isincluded to ensure that the waste of NNSS's due to
defects is minimized. The NNSS waste, which is the difference between the number of
NNSS's at the start and the number of defect-free packages at the end, is captured by the
raw material variable. There are three types of NNSS defects: miss, multiple; or
unopened. These defects are detected and recorded by a sensor at the end of the line.
Since the sensor is inaccurate, thisinput isalso treated as fuzzy.

The output variable for the line is defined as the quantity of packages produced by the
preprint insertion line per production day minus the amount of incomplete packages.
Incomplete packages are caused by preprint shortages.

4.2.2 Crisp AR (Form 1) DEA M odel

In Girod (1996), no bounds were imposed on the multipliers. For the purpose of this
research, the decision-makers were asked to provide pertinent information for setting the
AR bounds. The decision-makers were of the opinion that conserving the labor input was:
a) 1.5asimportant as conserving the rework input and

b) twice as important as conserving the raw materia input.
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Based on this information, the following crisp AR bounds were applied to the
Washingtonpost production data
15v,-v, <0

4.4
2v,-v, <0 44

The data had to be normalized before applying the above bounds. The pre and post
normalization data can be found in Appendix A. Table 4.8 compares the results of the
bounded model with the results of the unbounded model calculated by Girod (1996).
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DMU Efficiency Scores
Unbounded | Bounded
1 1.000 0.744
2 0.716 0.665
3 0.892 0.871
4 0.605 0.582
5 0.716 0.591
6 0.956 0.836
7 0.815 0.729
8 0.845 0.539
9 0.939 0.809
10 0.642 0.560
11 0.716 0.715
12 0.759 0.540
13 0.673 0.645
14 0.677 0.523
15 0.772 0.522
16 0.705 0.439
17 0.631 0.489
18 0.713 0.537
19 1.000 1.000
20 0.582 0.536
21 0.510 0.508
22 0.438 0.431
23 0.805 0.765
24 0.893 0.693
25 0.928 0.750
26 0.872 0.613
27 1.000 0.879
28 0.620 0.566
29 0.983 0.777
30 0.932 0.825
31 0.955 0.789
32 0.862 0.639
33 0.740 0.623
34 0.908 0.748
35 0.964 0.691
36 0.927 0.776
37 0.936 0.835
38 0.758 0.624
39 0.848 0.746
40 0.807 0.731
41 0.720 0.644
42 0.816 0.782
43 0.726 0.585
44 0.614 0.437
45 0.687 0.537
46 0.690 0.394
47 0.962 0.801
48 1.000 1.000
Average 0.797 0.668

Table4.8 Comparison of Results of Unbounded and AR DEA Models for the
Washingtonpost Data from Girod (1996)
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4.2.3 Fuzzy AR (Form 1) DEA Model

The decision-makers admit that conditions a) and b) are based on subjective opinion as
opposed to precise information. This impliesthat the bound values in (4.4) could be
imprecise. To model the imprecision, we propose to replace the crisp bounds by fuzzy
bounds. According to the decision-makers, condition a) can be violated to the extent of
0.5 and condition b) can be violated to the extent of 1. Based on thisinformation, the
following fuzzy AR constraints are created:

(1+05A)v, -v, <0

@+A);-v, <0 (4.5)
0<A<1

In Table 4.9, the results of the fuzzy AR model, which applies these constraints to the
Washingtonpost data, are compared with the results of the crisp AR modd.
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Efficiency Scores

DMU Crisp AR| Fuzzy AR
1 0.744 0.779
2 0.665 0.676
3 0.871 0.886
4 0.582 0.594
5 0.591 0.612
6 0.836 0.849
7 0.729 0.751
8 0.539 0.570
9 0.809 0.823

10 0.560 0.576

11 0.715 0.716

12 0.540 0.574

13 0.645 0.655

14 0.523 0.556

15 0.522 0.571

16 0.439 0.485

17 0.489 0.520

18 0.537 0.578

19 1.000 1.000

20 0.536 0.558

21 0.508 0.510

22 0.431 0.436

23 0.765 0.771

24 0.693 0.736

25 0.750 0.778

26 0.613 0.643

27 0.879 0.923

28 0.566 0.597

29 0.777 0.809

30 0.825 0.865

31 0.789 0.833

32 0.639 0.682

33 0.623 0.657

34 0.748 0.785

35 0.691 0.739

36 0.776 0.819

37 0.835 0.874

38 0.624 0.659

39 0.746 0.773

40 0.731 0.752

41 0.644 0.674

42 0.782 0.806

43 0.585 0.616

44 0.437 0.463

45 0.537 0.563

46 0.394 0.430

47 0.801 0.845

48 1.000 1.000

Average| 0.668 0.695

Table4.9 Comparison of Efficiency Scores of Crisp and Fuzzy AR Models applied to
the WashingtonPost Data from Girod (1996)
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We observe that for each DMU, the efficiency score increases when we change the
bounds from crisp to fuzzy. To check if the increase in efficiency scores is significant, we
apply the paired two-sample t test for means (Bain and Engelhardt (1992)). The results of
the test are shown in Table 4.10 below.

Fuzzy AR|Crisp AR
Mean 0.695137| 0.667951
Variance 0.020684| 0.021151
Observations 48 48
Pearson Correlation 0.995366
Hypothesized Mean 0
Difference
Df 47
t Stat 13.43801
P(T<=t) one-tall 5.15E-18
t Critical one-tail 1.677927

Table 4.10 Results of Paired Two sample t-test for Means comparing the Efficiency
Scores of the Crisp and Fuzzy AR Models applied to the WashingtonPost
Data

Based on the above table, we can reject the null hypothesis and accept the alternative
hypothesis that the efficiency scores obtained using the fuzzy AR model are significantly
greater than the efficiency scores obtained using the crisp AR model.

4.3 FUZZY AR (Form 2) DEA MODEL APPLIED TO MEASURING
THE EFFICIENCY OF SMALL BUSINESS DEVELOPMENT
CENTERS (SDBCs)

4.3.1 Background

Thompson et al. (1996a) used the DEA and AR methods to measure the relative
efficiency of 13 Small Business Development Centers (SDBCs) of the University of
Houston (UH) for the years 1991 and 1992. An SBDC conducts research; consults with
business owners at no cos; providestraining to business people in management, finance,
and operations of small businesses; and provides comprehensive information services and
access to expertsin numerousfields. It was decided to measure the efficiency of the
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SDBCsto ensure efficient allocation of resources, which had been far exceeded by the
demand for the services of the SDBCs. However, no standardized objective for afair
evaluation of all SBDC programs could be arrived at because SDBCs in different
locations had different objectives and different priorities. Because of thisvariety and
flexibility in the SBDC services, DEA was an ideal tool for evaluating their performance.
The objective of applying the DEA/AR model to the UH SBDC data, according to the
authors, was to evaluate the relationship of an efficient use of distributed resourcesto a
guantifiable result.

The study period was three years (1990-92). Two models were considered in the study --
Model | and Model 11. The difference between these models was that Model 11 had an
additional input for which data was available only for the last year of the study period.
Thus, Model | was applied to all three years of study (1990-92) and Model 11 was applied
to only the third year (1992). In this research, we will focus only on Modd |1, applied to
the datafor 1992 since Model |1 has more number of inputs and the year 1992 has more
number of DMUSs. The outputs and inputs used in Model 11, are asfollows:

Outputs:

* Total number of clients—y;

* Total number of training hours—y;

* Total number of counseling hours—ys
Inputs:

» Tota amount of federal funds allocated — x;
» Population density — X,

The actud datavauesfor the year 1992 can befound in the Appendix A. The results of
the unbounded Model |1 are shownin Table 4.11:
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CCR Efficiency
- 1992

1

0.57

0.69

0.66

1

1

0.76

1

0.54

1

0.68

2R
RIR|B|o|o|~N|o|u|swine

1

13 0.66

Avg. 0.81

Table4.11 Efficiency Scoresfor the Unbounded Model |1 applied to the SBDC Data
from Thompson et al. (1996a)

4.3.2TheCrisp AR (Form 2) M odel
The AR bounds were determined using the price/cost data ranges displayed in Table 4.12.

Factor Multiplier | "Price/Cost" datarange
Y1 U $120 to $8,030

Yo Uz $87 to $4,075

Y3 Us $114 to $750

X1 Vi 7.7%lyr to 15%lyr

X2 Vo 10,000 to 15,300

Table4.12 "Price/Cost” Data Ranges from Thompson et al. (1996a) for the SBDC Data

The AR constraints added to the CCR model based on the price/cost ranges stated in

Table 4.12 are asfollows:
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87u, —120u, =20
8030u, —4075u, 20
114u, -120u, 20
8030u, —750u, =0
114u, -87u, 20
4075u, —750u, =0
10000v, —7.7v, 20
15v, —15300v; =0

(4.6)

In matrix (intersection) form, these constraints are represented as:

087 -120 0[
%4075 8030 O E .
0114 0 -1200(°
U D(gjz
T750 0 80305@
0 o 114 -g7 O3

O O
5 0 -750 4075

O
=0 (4.7)
H

010000 - 770 %, 0_
H1s300 15 B R,

It was found that when the AR model with the above set of constraints was solved, the
efficiency scores were very much different (much smaller) compared to those obtained by
Thompson et al. (1996a). Therefore, it was decided to drop the AR constraints on the
input weights. The results of the AR model with the AR constraints applied to just the
output weights are shown in Table 4.13.
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DMU AR Efficiency

1 1

2 0.383

3 0.367

4 0.263

5 1

6 1

7 0.370

8 0.835

9 0.448

10 0.993

11 0.646

12 0.333

13 0.628
Avq. 0.636
Table 4.13 Results of the AR DEA Model for 1992 SBDC Data from Thompson et al.

(19964a)

4.3.3 TheFuzzy AR (Form 2) Model
In the proposed research, we assume that the price/cost ranges used to set AR bounds are

imprecise and to incorporate the imprecision in the modeling process, we replace the
crisp AR bounds by fuzzy AR bounds. Ideally, additional information about the
price/cost ranges should have been used to determine the fuzzy AR bounds. However,
Thompson et al. (1996a), do not provide any information as to how the price/cost ranges
were determined. Therefore, to determine the fuzzy bounds, we assume the imprecison
amount to be a certain percentage of the specified bound value. The following table gives

the percentage imprecision values assumed®® for each output price and the values of price

variations (p and ) cdculated based on those percentages.

Output | Multiplier | Percentage | Lower bound on p Upper bound on p and
variation on | pricevaries and | pricevaries q
either side | between q between

Y1 Up 5% 114 and 126 6 7628.5 and 8431.5 | 401.5

Yo Uy 10% 78.3and 95.7 8.7 | 3667.5and 4482.5 | 407.5

Y3 Uz 15% 96.9and 131.1 17.1 | 637.5and 862.5 1125

Table4.14 Variation in Price/Cost Ranges assumed for determining Fuzzy Bounds on
the SBDC Data from Thompson et al. (1996a)

18 The percentages are arbitrarily assigned.
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Figure 4.1 graphically depicts the fuzzy number corresponding to u;. Since we assume an
imprecision of 5% on either side of the price/cost range for yi, the lower bound on the
price, instead of being fixed at 120, will vary between 114 and 126 with the desrability
increasing between the values 114 and 120 (most desirable value) and then diminishing
between the values 120 and 126.

A

1

>
0 114 120 126 Fuzzy lower bound on u;

Figure4.1 Fuzzy Lower bound on u; (price of output 1 for the SBDC Datafrom
Thompson et al. (1996a))

The values calculated in Table 4.14 are used asthe |east desirable values in the
definitions of the fuzzy numbers. The most desirable values are the ones specified by the

decision-makersin Table 4.12.

The fuzzy AR constraints added to the CCR model are asfollows:
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(78.3+8.7A)u, — (114+6A)u, =0
(95.7-8.7A)u, — (126 -6A)u, = 0

(76285 + 401.51)u, — (3667.5 + 407.5A)u, = 0
(8431.5- 401.5A)u, — (4482.5- 407.5A)u, = 0
(96.9+17.1A)u, - (114+ 6A)u, = 0
(131.1-17.1A)u, - (126 —6A)u, =0

(7628.5+ 401.51)u, — (637.5+112.51)u, = 0
(8431.5- 401.5A)u, - (862.5-112.51)u, = 0
(96.9+17.1A)u, - (78.3+8.7A)u, = 0
(131.1-17.1)u, - (95.7 -8.7A)u, = 0
(3667.5 + 407.54)u, — (637.5+112.5A)u, = 0
(44825 - 407.5))u, — (862.5-112.51)u, = 0

(4.8)

Table 4.15 compares the results of the fuzzy AR model (for different values of A) with
those of the crisp AR modd from Table 4.13. Since A represents the degree of

satisfaction of the decision-maker with the bounds, the higher the value of A, the higher is
the degree of satisfaction.

Efficiency
DMU Fuzzy AR Crisp AR
A=0.2 A=04 A=0.6 A=0.8

1 1 1 1 1 1
2 0.378 0.379 0.380 0.381 0.383
3 0.364 0.364 0.365 0.366 0.367
4 0.260 0.261 0.261 0.262 0.263
5 1 1 1 1 1
6 1 1 1 1 1
7 0.365 0.366 0.368 0.369 0.370
8 0.820 0.824 0.827 0.831 0.835
9 0.444 0.445 0.446 0.447 0.448
10 0.985 0.987 0.989 0.991 0.993
11 0.646 0.646 0.646 0.646 0.646
12 0.330 0.331 0.332 0.332 0.333
13 0.625 0.625 0.626 0.627 0.628

Average | 0.632 0.633 0.634 0.635 0.636

Table4.15 Comparison of Efficiency Scores of Crisp and Fuzzy bounds applied to the
1992 SBDC Datafrom Thompson et al. (1996a)
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Notice that the efficiency scores obtained using the crisp AR model are higher than those
obtained using thefuzzy AR. Thisis contrary to the results of the previous two fuzzy
models (absolute weight restriction and AR Form 1). The explanation lies in the fact that
the forms of the membership functions of the fuzzy bounds in the previous models are
different from those used in this model. The membership functions of the fuzzy bounds
(see Figure 4.1) in this model allow variation on both sides of the specified bound while
the membership functions in the previous models alow variation in only that direction
which hasthe effect of relaxing the constraints. Therefore, the efficiency scores
calculated by the fuzzy modd considered in this section could be either higher or lower
compared to the corresponding crisp mode while those cal culated by the fuzzy models
discussed earlier will always be higher compared to the corresponding crisp models.

To check if the efficiency scores obtained using the fuzzy models are significantly
different from those obtained using the crisp model, we use the paired two-sampl e t-test
for means. The results of the tests are shown in Tables 4.16 to Table 4.19.

Crisp AR | Fuzzy AR -
Mean 0.6359]  0.632001
Variance 0.08652] 0.086597
Observations 13 13
Pearson Correlation| 0.999906
Hypothesized Mean 0
Df 12
t Stat 3.476479
P(T<=t) one-tail 0.002288
t Critical one-tail 1.782287

Table4.16 Resultsof Paired Two Sample t-Test comparing the Efficiency scores of the
Crisp AR and Fuzzy AR with A=0.2 for the SBDC Data from Thompson et
al. (1996a)
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Crisp AR | Fuzzy AR-
Mean 0.6359| 0.6329285
Variance 0.08652| 0.086576
Observations 13 13
Pearson Correlation | 0.999945
Hypothesized Mean 0
Df 12
t Stat 3.4708382
P(T<=t) one-tail 0.0023119
t Critical one-tail 1.7822867

Table4.17 Results of Paired Two Samplet-Test comparing the Efficiency scores for the
Crisp AR and Fuzzy AR with A=0.4 for the SBDC Data from Thompson et

al. (1996a)

Crisp AR | Fuzzy AR-
Mean 0.6359| 0.6338854
Variance 0.08652| 0.0865568
Observations 13 13
Pearson Correlation | 0.9999747
Hypothesized Mean 0
Df 12
t Stat 3.4688929
P(T<=t) one-tail 0.0023202
t Critical one-tail 1.7822867

Table 4.18 Results of Paired Two Samplet-Test comparing the Efficiency scores of
Crisp AR and Fuzzy AR with A=0.6 for the SBDC Data from Thompson et

al. (1996a)
Crisp AR | Fuzzy AR -
Mean 0.6359]  0.634875
Variance 0.08652]  0.086537
Observations 13 13
Pearson Correlation 0.999993
Hypothesized Mean 0
Df 12
t Stat 3.467247
P(T<=t) one-tail 0.002327
t Critical one-tail 1.782287

Table 4.19 Resultsof Paired Two Sample t-Test comparing the Efficiency scores of the
Crisp AR and Fuzzy AR with A=0.8 for the SBDC Data from Thompson et
al. (19969)

In each of the above tests, we rgect the null hypothes's thus accepting the dternative

hypothesisthat there is a significant difference between the mean efficiency scores of the

crisp and fuzzy models.
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4.4 CONCLUSION

For each type of fuzzy model, it is found that the efficiency scores calculated by the
fuzzy model are significantly different from the efficiency scores calculated by the
corresponding crisp model. This impliesthat the operational decisions based on the
results of the fuzzy models will be different from those taken based on the results of the
crisp models. The fuzzy models ensure that the decisions are taken after the uncertainty
has been accounted for. The efficiency scores caculated by the fuzzy models represent a
compromise between maximization of the efficiency scores and the satisfaction of the
decision-maker with the bounds.
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Chapter 5

CONCLUSION

This chapter concludes the presentation of this research with the following three sections.
The first section summarizes the research effort of this thesis. The second section
describes the major contribution of this research and includes some concluding

comments. The third section outlines some recommendati ons for future research.

51 SUMMARY

Thisresearch has five objectives. The first objective isto minimize the effect of bound
uncertainty on the decision-making in Data Envelopment Analysis (DEA) by explicitly
incorporating the uncertainty in the modeling process through fuzzy weight restriction
DEA models. The second objective isto deve op a solution methodology for thosefuzzy
models. The third objective isto provide implementation roadmaps for illustrating the
proposed fuzzy models. The fourth objective isto apply the proposed models to the same
data sets as those used by corresponding crisp weight restriction modelsfrom the
literature and compare their results. The fifth objective is to use the results of the fuzzy
models to modify the specified bounds in order to move the borderline®® decis on-making
units (DMUs) from the inefficienct set to the efficient set.

Although numerous types of weight restriction models have been developed in the DEA
literature, the following two are more commonly used compared to the rest:

1. The absolute weight restriction DEA model and

2. The Assurance Region DEA model.

Therefore, in this research, we focus our attention on only these two models.

Both these models suffer from the following two shortcomings:

1. Ther weight bound valuesareimprecise and
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2. Their weight bound values ar e subjective.The subjectivity leadsto different
decision-makers specifying different valuesfor the bounds thus producing different

efficiency scores even though the data set is the same.

The results of the model are sensitive to the values of the bounds, and therefore, the
uncertainty (imprecision + subjectivity) in bound values gets passed onto the results of
the model. This becomes unacceptable when we consider the fact that DEA is a decis on-
making tool whose results are used for making important decisions like allocating funds
or taking stringent action against inefficient DMUSs.

The objective of thisresearch isto explicitly incorporate the uncertainty in the modeling
process so that the effect of the uncertai nty on the decision-making process is minimized.
Two approaches have been commonly used in the past to model uncertainty. The more
conventional approach is the stochastic approach that involves specifying a probabil ity
distribution function (e.g. Normal) for the error process (Sengupta 1992). However, when
it comesto using stochastic processes for modeling the uncertainty in DEA problems,
there are certain drawbacks, as pointed out by Sengupta (1992). The more recent
approach for dealing with uncertainty has been the use of fuzzy set theory. Sengupta
(1992) was thefirst to incorporate fuzzy set theory in DEA by proposing afuzzy
mathematical programming approach for dealing with imprecise datain DEA problems.

In the current research aso, we propose to usefuzzy set theory for modeling the
uncertainty in weight bound values. Fuzzy set theory is introduced by replacing the crisp
weight bounds by fuzzy numbers. The justification isthat the imprecise weight bounds
need to be represented as approximate numbers (i.e. "numbers close to the specified
values') and fuzzy numbers capture the intuitive concept of approximate numbers very
well (Yuan and Klir 1995).

1% These are DM Us whaose membership in the efficient set is highly sensitive to slight changesin bound
values.
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A fuzzy number isaset of values (instead of a single value) closeto the value that is
being approximated. Because a fuzzy number represents arange of vaues (instead of a
single value), it is likely to be acompromise between the bounds set by different
decision-makers. It is hypothesized that using fuzzy numbers for bounds will have an
added advantage of minimizing the sensitivity of the resultsto the subjectivity in the
bound values.

Using fuzzy numbers instead of crisp numbers for the bounds has an added advantage of
increasing theflexibility in the bound setting process becauseit alows the decison-
maker to specify arange of values instead of one value. The lack of flexibility in the crisp
weight restriction problems can often put the decision-maker in atight spot especially
when enough information does not exist for him/her to make a crisp judgement.

In this research, we develop fuzzy modelsto model the bound uncertainty in the two most

commonly used weight restriction models, discussed earlier:

1. The DEA model with absolute weight restrictions (See Dyson and Thanasoulis
(1988), Roll et al. (1991), and Roll and Golany (1993)).

2. The Assurance Region (AR) DEA model (see Thompson et al. (1986), Thompson et
al. (1990)).

To illustrate the development and solution methodology of the fuzzy models, we make
use of implementation roadmaps. We further illustrate the fuzzy weight restriction
models by applying them to data sets from the weight restriction DEA literature. The
reason we choose the same data sets as those used by the crisp models in the literature is
to enable usto compare the results of the crisp models with those of our fuzzy model. We
also apply the fuzzy AR model to areal life manufacturing system in which sufficient
information is available to define both crisp and fuzzy bounds.

We compare the results of thefuzzy models with those of the corresponding crisp models

using the two sample paired t test for means (Bain and Engelhardt (1992)). In each case,

it is found that the difference between the efficiency scores generated by the fuzzy model
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are significantly different from the efficiency scores calculated by the corresponding
crisp model. Thisimpliesthat the operational decisions based on the results of the fuzzy
modelswill be different from those taken based on the results of the crisp models. The
fuzzy models ensure that the decisions are taken after the uncertainty has been accounted
for. The efficiency scores caculated by the fuzzy model represent a compromise between
maximization of the satisfaction of the decision-maker with the bounds and maximization

of the efficiency scores.

In some cases, itis aso found that DMUs move from the inefficient set to the efficient set
when the bounds are changed from crisp to fuzzy. In some of those cases, even a
relaxation of bounds to a 90% satisfaction level of the original values (i.e. just a 10%
relaxation of bounds) is enough to move some DMUs (referred to as borderline) from the
inefficient set to the efficient set. It isassumed that since the bound values are based on
incomplete information, the decision-maker would not resist changing them dightly if the
change is going to allow some DMUsto move from the inefficient set to the efficient set.
Thus, the fuzzy model gives the decision-maker a second chance to revise the bounds.

The objective of the proposed fuzzy model of trying to move the borderline DM Us from
the inefficient set to the efficient set is contrary to the objective of the research that has
been carried out so far in the field of weight restriction DEA. The objective of all past
weight restriction models has been to discriminate between the DMUs by reducing the
efficiency scores by making the bounds tighter and tighter. However, we are of the
opinion that since the results of DEA are used for making important decisions like
allocating funds or taking stringent action against inefficient DMUs, the model should be
fair to all DMUs. The conventiona DEA modd, inits purest form, isfar to all DMUs
since it does not impose any synthetic constraints on the weights and alows each DMU
to choose a set of weights which optimizes its performance. |mposing the bounds takes
away the fairness and brings in the bias of the decision-maker. On the other hand, getting
rid of the bounds, takes away the only opportunity the decision-maker hasto express
his’her opinion about the relative importance of the factors. To resolve this dilemma, we

propose the fuzzy weight restriction model, which seeks a compromise between a
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bounded and unbounded DEA modd. The proposed fuzzy mode satisfies the decis on-
maker by treating the bounds specified by him/her asmost desrable and aso allows all
DMUSsto expresstheir different circumstancesto the best extent possible by stretching
the bounds.

5.2 RESEARCH CONTRIBUTION AND CONCLUDING

COMMENTS

Prior to this research, fuzzy set theory in DEA was restricted to modeling either the
imprecision in the realization of constraints and objective function (Sengupta (1992)) or
the imprecision in the input/output data (Triantis and Griod (1998)). This is the first time
fuzzy set theory was used to model the imprecision in the weight (multiplier) bound
values. In fact, this is the first time imprecision in bound values was ever considered or
modeled in DEA. The proposed approach ensures that decisions are taken after the
uncertainty has been accounted for.

As mentioned in the previous section, the fuzzy model helps in identifying borderline
DMUs i.e. DMUs, which could move from the inefficient set to the efficient set if the
bounds were only slightly relaxed. This gives the decision-maker a second chance to
change the bounds and do justice to the borderline DMUs. It should be noted that this
approach is very much different from a sensitivity analysis. In a sensitivity analysis, the
decision-maker studies the effect of moving the bounds on the efficiency scores.
Sensitivity analysis produces a range of efficiency scores for the given range of bound
values. The fuzzy approach produces only one value of efficiency score, which is the
maximum possible efficiency value at which the satisfaction of the decision-maker with

the bounds is maximized.
The research elucidates the fuzzy approach by providing a geometric representation of

the fuzzy bounds. The geometric representation helps bring out the intuition behind the
fuzzy approach.
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53 RECOMMENDATIONSFOR FUTURE RESEARCH

The current research can be extended and further investigated with respect to one or more
of its components, namely, fuzzy set theory, DEA, and weight restriction DEA.

With respect to fuzzy set theory, the suitability of the form of the membership function is
an issue of interest. Moreover, the impact of theform of the membership function on the
efficiency results also warrants attention. The physical interpretation of the membership
functions requires investigation. The linear membership function may not be satisfactory
in all applications. As further research, one could experiment with other forms of
membership functions like hyperbolic, logistic, S-shaped, etc.

In this research, we used the “intersection” or the“min” operator for aggregating the
degrees of satisfaction of the constraints and the membership function of the objective
function and arriving at the membership function of the fuzzy set “decision.” One of the
objections against the min operator (see Zimmermann and Zysno (1980)) isthe fact that
neither the logical "and" nor the min operator is compensatory i.e. increases in the degree
of membership in the "intersected” fuzzy sets do not influence the membership in the
resulting fuzzy set (aggregated fuzzy set or intersection). To cure thisweakness, the
(limitational) min operator as a model for the logical "and" can be combined with the
fully compensatory “max” operator as amodel for the inclusive "or." Developing a model
in which the min and max operators are combined has a potentia for further research.

There isalso potential for combining the proposed approach with other fuzzy DEA
approaches like the one proposed by Sengupta (1992) or the one proposed by Triantisand
Girod (1998). If all congtraints (including weight bound) and the objective function are
capable of being violated, we can combine our approach with Sengupta’s (1992)
approach. On the other hand, if in addition to the weight bound values, even the
input/output data are imprecise; we can combine our approach with the Triantisand

Girod (1998) approach.
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With respect to DEA, the approach could be applied to other DEA models apart from the
CCR model (e.g. BCC, FDH, etc.).

With respect to weight restriction DEA, the approach could be applied to other types of
weight restriction models like the Wong and Beasley (1990) model; the "contingent
weight restrictions’ model proposed by Pedraja et al. (1997); or the "ordinal relations"
model proposed by Golany et al. (1990).
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TableA.1
TableA.2

TableA.3
TableA.4

Appendix A

DATA SETS

Highway Maintenance Patrol Data from Cook et al. (1990)
WashintonPost Preprint Insertion Line Data from Girod
(1996)

WashingtonPost Data Normalized.

Small Business Development Center (SBDC) Data from
Thompson et al. (1996a)

180

181

182
183

184



Patrol | Assignment | Average Total Average
Size Factor | Traffic | Expenditure Pavement
Serviced Condition Rating

1 751 67 696 39
2 611 70 616 26
3 538 70 456 17
4 584 75 616 31
5 665 70 560 16
6 445 75 446 16
7 554 76 517 26
8 457 72 492 18
9 582 74 558 23
10 556 64 407 18
11 590 78 402 33
12 1074 75 350 88
13 1072 74 581 64
14 696 80 413 24

TableA.1 Highway Maintenance Patrol Data from Cook et al. (1990)
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Prod. Labor Rework RM Package

Period
1 81 891 3105 68290
2 137 8245 7535 135912
3 71 11232 5709 112072
4 125 9634 7451 113281
5 121 6889 5548 100288
6 94 2997 5239 109138
7 147 11237 7725 159789
8 115 2837 3324 70314
9 86 2466 4473 93620
10 134 7989 6689 108329
11 104 5517 6458 114816
12 154 9938 5707 110757
13 100 6727 5830 98913
14 184 24813 7821 136878
15 187 25019 6581 131440
16 213 19589 6740 122799
17 170 13224 7197 116327
18 157 13559 6386 117373
19 41 5414 4154 82693
20 180 18193 10214 150834
21 176 15038 13391 153800
22 173 20424 14589 137414
23 113 4991 6302 126152
24 173 22727 7410 171139
25 127 6976 5635 132051
26 124 7515 4506 100233
27 129 14990 6646 171852
28 142 19470 7972 125699
29 147 9944 6375 159379
30 159 20673 8321 200038
31 158 16950 7377 182109
32 125 15161 5005 111538
33 140 14512 6783 129451
34 165 14393 7692 179118
35 187 32664 7132 177811
36 144 22463 6864 164597
37 155 18944 8248 198428
38 179 22150 8342 163419
39 174 14359 8930 192897
40 177 13359 9499 194364
41 200 28483 10694 197582
42 187 21969 12399 243260
43 232 20471 10485 195572
44 292 17521 10794 168828
45 233 17935 9988 175602
46 295 18632 8072 144030
47 87 10502 4145 103106
48 95 4742 5807 145253

Table A.2 WashintonPost Preprint Insertion Line Data from Girod (1996)
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Prod. Labor Rework RM Package

Period
1 53.21 6.34 42.18 48.21
2 90.30 58.69 102.38 95.96
3 46.93 79.95 77.56 79.13
4 82.24 68.58 101.24 79.98
5 79.83 49.04 75.38 70.81
6 61.98 21.33 71.18 77.05
7 96.81 79.98 10495 | 112.82
8 75.52 20.20 45.16 49.64
9 56.87 17.55 60.78 66.10
10 88.35 56.86 90.88 76.48
11 68.33 39.27 87.75 81.06
12 101.65 70.74 77.54 78.20
13 66.11 47.88 79.22 69.84
14 121.01 | 176.62 | 106.26 96.64
15 122,99 | 178.08 89.41 92.80
16 140.32 139.43 91.57 86.70
17 112.16 94.12 97.79 82.13
18 103.02 96.51 86.77 82.87
19 26.85 38.54 56.44 58.38
20 11835 | 12949 [ 138.77 106.49
21 11571 | 107.04 | 18193 | 108.59
22 113.78 | 14537 | 198.22 97.02
23 74.66 35.52 85.62 89.07
24 114.15 | 161.76 | 100.68 | 120.83
25 83.85 49.66 76.57 93.23
26 81.63 53.49 61.22 70.77
27 84.99 106.69 90.30 121.33
28 93.63 13858 | 108.32 88.75
29 97.00 70.78 86.61 112.53
30 104.95 | 147.15 | 113.05 | 141.23
31 103.66 | 120.64 [ 100.22 128.57
32 82.17 107.91 67.99 78.75
33 92.26 103.30 92.16 91.40
34 10851 | 10245 | 10451 | 126.46
35 122,99 | 232.49 96.90 125.54
36 94.58 159.89 93.26 116.21
37 102.30 | 13484 | 112.06 | 140.10
38 11771 | 15766 | 11333 | 115.38
39 11433 | 10220 | 121.33 | 136.19
40 116.73 95.09 129.06 | 137.23
41 13165 | 202.73 | 14529 | 139.50
42 122.99 | 156.37 | 168.46 | 171.75
43 152,79 | 14571 | 14246 | 138.08
44 19233 | 12471 | 146.66 | 119.20
45 15364 | 12765 | 13570 | 123.98
46 19409 | 132.62 [ 109.67 101.69
47 57.59 74.75 56.31 72.80
48 62.31 33.76 78.90 102.55

TableA.3 Washi ngtonPbst Data Normalized
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SBDC | #of Clients | # of Training | # of Counseling | Federal Funds | Population
Hrs. Hrs. Density
1 162970 4872 1454 128 10087
2 95960 3610 421 47 1173
3 115314 2987 434 69 1611
4 115573 1431 288 59 844
5 70450 303 496 43 3582
6 69637 75 159 18 985
7 54275 295 186 26 500
8 108553 1235 960 52 1984
9 93207 273 257 10 1014
10 48800 43 106 17 359
11 39209 112 110 13 886
12 46000 1475 148 54 597
13 36482 52 71 8 334
TableA.4 Small Business Development Center (SBDC) Data from Thompson et al.

(1996a)
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B.1

B.2

B.3

B.4

B.5

B.6

Appendix B

SASCODES

SAS CODE FOR THE ROADMAP EXAMPLE OF SECTION
3.1.3ILLUSTRATING THE FUZZY ABSOLUTE WEIGHT
RESTRICTION DEA MODEL

SAS CODE FOR ROADMAP EXAMPLE OF SECTION
3.2.3.11LLUSTRATING THE FUZZY MODEL WITH AR
CONSTRAINTSIN FORM 1

SAS CODE FOR THE ROADMAP EXAMPLE OF SECTION
3.2.32ILLUSTRATING THE FUZZY MODEL WITH AR
CONSTRAINTSIN FORM 2

SAS CODE FOR SOLVING THE FUZZY ABSOLUTE
WEIGHT RESTRICTION DEA MODEL APPLIED TO THE
HIGHWAY MAINTENANCE PATROL DATA FROM
COOK ET AL. (1990)

SAS CODE FOR THE FUZZY AR (FORM 1) DEA MODEL
APPLIED TO THE WASHINGTONPOST DATA

SAS CODE FOR THE FUZZY AR (FORM 2) DEA MODEL
APPLIED TO THE SDBC DATA FROM THOMPSON ET
AL. (1996a)

185

186

198

211

215

227

238



B.1 SASCODE FOR THE ROADMAP EXAMPLE OF SECTION
3.1.3ILLUSTRATING THE FUZZY ABSOLUTE WEIGHT

RESTRICTION DEA MODEL

The roadmap example in section 3.1.3%° used toiillustrate the fuzzy absolute weight
restriction DEA model, requires solving the following three LPs in the given sequence.

The first LP, which is used to calculate f; values for all DMUS, usesthe most desirable
weight bound values in the weight bound constraints (B):

Max u"Yo = f,

st.

N" Xy =L N
UY-n"X <0 Oevrerereene. M

0.00002264T, < 1, < 0.00004495T,
0.0000154T, < 1, < 0.00003056T,
0.3874T, < |, < 0.769018T,................. B
0.0009401T, < 1, < 0.001866T,
0.00002735T, < 17, < 0.0000543T,
0.00004662T, < 1, < 0.00009255T,
0.0009489T, <1, < 0.001884T,

p,n 20

The following LP, which is used for obtaining fy values, uses the least desirable weight

bound values in the weight bound constraints ( B):

% Although this roadmap exampleis solved with two different setsof |east desirable bounds, here we
describe the SAS code only for the model with least desirable bounds determined using Method 11. The
SAS code for the model with the least desirable bounds determined using Method | isthe samewith the
exception of the values of the bounds.
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0< 1, < 0.0000926T,
0< 1, < 0.000302T,

0< 1, <1.51888T,................ B
0.000206T, <, < 0.00565T,
0<n, <0.000252T,

0<n, <0.000252T,

0<n, <0.00799T,

p,n 20

Finally, the following crisp equivalent of the fuzzy model is solved:

Max A

st.

XG2S F
N Xo T e e s N
U'Y-nTX €0 Ojeoererereee. M

(0.00002264 —0.00002264 A)T, < 11, < (0.00004495 +0.00004765 A)T,
(0.0000154 - 0.0000154 A)T, < p, < (0.00003056 +0.0002714 A)T,
(0.3874 - 0.3874 \)T, < 1, < (0.769018 +0.7499A) Ty ..ooovvr oo e
(0.0009401 - 0.0007341 A)T, <1, < (0.001866 +0.003784 A)T,
(0.00002735 - 0.00002735 A)T, <1, < (0.0000543 +0.0001977 A)T,
(0.00004662 — 0.00004662 A)T, <1, < (0.00009255 + 0.0002985 A)T,
(0.0009489 - 0.0009489 A)T, <1, < (0.001884 +0.006106 A)T,
0<A<1l

p.n =0
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Note that this model isa quadratic-programming model because its weight bound
constraints (B) contain expressions in which two variables are multiplied to each other.
Since one of these variablesis A and we know the range of variation of A, we can use the
parametric algorithm described in section 3.1.1.5.4 to solve it. Steps 1,3 and 8 of the
algorithm require usto solve the model with A fixed at a certain value. This istantamount
to solving an LP with a fixed objective function since A isthe objective function of the
crisp equivalent LP. We cannot solve an LP with afixed objective function. Therefore,
we need to modify the model so that the objective function contains an expression
involving decig on variables as opposed to afixed value. The mog logical choice for the
objective function is the efficiency term. The modified model, which can now be solved

using the parametric algorithm, is as follows:

Max u'Y,

st.

A(fy 1) - LY € = Fpeeers e F
DT Xy = Lo oo oo oo N
Y -n"X <0 Oererern e M

(0.00002264 - 0.00002264 A)T, < p, < (0.00004495 + 0.00004765 A)T,
(0.0000154 —0.0000154 A)T, < u, < (0.00003056 +0.0002714 )T,
(0.3874 — 0.3874A)T, < 1, < (0.769018 +0.7499A) Ty .o vovevveeee cerer B
(0.0009401 - 0.0007341A)T, <1, < (0.001866 + 0.003784 A)T,
(0.00002735 - 0.00002735 A)T, <1, < (0.0000543 + 0.0001977 A)T,
(0.00004662 — 0.00004662 A)T, <1, < (0.00009255 +0.0002985 A)T,
(0.0009489 —0.0009489 A)T, <1, < (0.001884 +0.006106 A)T,

0<A<1

H,nz0

Instead of using the parametric algorithm directly, we solve the model for different values
of A between O and 1 at intervas of 0.1 and choose the solution corresponding to the

maximum feasible value of A. The justification isthat thistechnique iseasier to
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implement using SAS compared to the parametric algorithm and gives the same solution

asthe parametric algorithm using € = 0.1.

The description of the constraint types used in the three LP'sis asfollows:

F — Constraint introduced by the membership function of the objective function
N —Normalization Constraint

M —Main set of Constraints

B —Weight Bound Constraints

All three LPs are solved in the same SAS code. The code with embedded descriptions of
the data setsis as follows:

data boundi;

input UM1UM2 UM3 UN1UN2 UN3UN4LM1LM2LM3LN1LN2LN3LN4pUM1
pUM2 pUM3 pUN1 pUN2 pUN3 pUN4 pLM1 pLM2 pLM3 pLN1 pLN2 pLN3 pLN4;
cards,

0.0000926 0.000302 1.51888 0.00565 0.000252 0.000391 0.00799 0 0 0 0.000206 0 0 0
0.00004765 0.00027144 0.749862 0.003784 0.0001977 0.00029845 0.006106
0.00002264 0.0000154 0.3874 0.0007341 0.00002735 0.00004662 0.0009489

**This data set contains the least desirable weight bounds determined using Method 11 2.
The valueswith prefix 'p' are the differences between the least desirable upper (most
desirable lower) bounds and the most desirable upper (least desirable lower) bounds.
These values will be the coefficients of lambda in the weight bound constraints (B) of the
final LP.

data bound?2;

input UM1 UM2 UM3 UN1 UN2 UN3UN4 LM1LM2 LM3LN1LN2LN3LN4;
cards;

0.00004495 0.00003056 0.769018 0.001866 0.0000543 0.00009255 0.001884
0.00002264 0.0000154 0.3874 0.0009401 0.00002735 0.00004662 0.0009489;

2L The data set corresponding to least desirable bounds determined using Method | is:

data bound1,

input UM1 UM2 UM3 UN1 UN2 UN3 UN4 LM1LM2 LM3 LN1 LN2 LN3 LN4 pUM1pUM2 pUM3
PUN1 pUN2pUN3pUN4 pLM1 pLM2 pLM3 pLN1 pLN2 pLN3 pLN4;

cards,

0.00005069 0.00003447 0.867314 0.002105 0.00006124 0.0001044 0.002124 0.0000169 0.00001149
0.289105 0.0007016 0.00002041 0.00003479 0.0007081 0.00000574 0.00000391 0.098296 0.000239
0.00000694 0.00001185 0.00024 0.00000574 0.00000391 0.098296 0.000239 0.00000694 0.00001185
0.00024

Thisisthe only difference between the SAS codes for solving models with bounds determined using the
two methods.
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**This data set contains the most desirable bounds.

datalambda;

input 111213141516 17;
cards,
0405060708091

;*This data set contains the different lambda values for which the final LP will be solved.

data des;

input y1 y2 y3 x1 x2 x3 x4;

cards,

15500 460 0.85 521 3130 1859 80
13700 340 063 747 5075 3491 44
18000 1080 0.37 935 1483 2984 93
8900 490 056 205 4583 1736 65
10800 960 0.14 177 2990 1823 87
17300 890 047 584 5467 1775 98
21000 2930 091 634 7734 1700 58
9500 240 0.78 456 6552 503 73
9100 370 0.74 471 1855 2528 42
6600 800 052 325 4579 818 51
11800 610 087 364 5713 1178 80
26200 3600 0.41 585 4217 2012 84
11400 470 055 343 4061 2957 91
7200 1350 0.39 597 3242 665 73
38000 2470 0.68 1126 7658 1541 57

**This data set contains the input-output data.

data constr;

set dea;

array x{4} x1-x4;

array {3} y1-y3;

length _type $8 row_ $16 col $8;
keep type row_ _col__coef ;

_type_='LE;
_row_="'DMU’||put(_n_,2.);
_col =" rhs

_coef_=0;

output;

doi=1to 4;
_col_="'V||put(i,1.);
_coef_=-x{i};

output;
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end;

doi=1to3;

_col_="u||put(i,1.);

_coef_=y{i};

output;

end;

run;

**This data set constructs the main set of constraints.

datafinal;

input _value ;

cards;

’run;

**This data set will be eventually used for displaying the results of the model.

%macro runbound,;
%do c=1 %ito 2;
**This macro constructs the weight bound constraints for the first two LPs.

data bounds&c;

set bound&c;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

array UM{ 3} UM1-UM3;

array LM{3} LM1-LM3;

array UN{4} UN1-UN4;

array LN{4} LN1-LN4;

doi=1to3;
_row_="uubound'||put(i,1.);
_type ='LE}
_col =" rhs
_coef_=0;

output;
_col_="u||put(i,1.);
_coef =1,

output;
_col_="TO;

_coef =-UM{i};
output;

end,;

doj=1to4;
_row_="vubound'||put(j,1.);
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_type ='LE]

_col =" rhs
_coef_=0;

output;
_col_="v|put(j,1.);
_coef =1,

output;
_col_="TO;
_coef_=-UN{j};
output;

end,;

doi=1to3;
_row_="ulbound’||put(i,1.);
_type ='GE}
_col =" rhs
_coef_=0;

output;
_col_="u'||put(i,1.);
_coef =1,

output;
_col_="TO;
_coef_=-LM{i};
output;

end,;

doj=1to4;
_row_='vibound'||put(j,1.);
_type ='GE};
_col =" rhs
_coef_=0;

output;
_col_="V|put(j,1.);
_coef =1,

output;
_col_="TO;
_coef_=-LN{j};
output;

end,;

run;

**This data set constructs the input & output weight bound constraints (B) for thefirst
two LPs.

%end:;

% mend runbound:;
%runbound:;
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%macro runlp;
%do a=1 %to 15;
**This macro constructs and runs all three LPs for all 15 DMUSs.

dataobj&a;

Set deg;

array x{4} x1-x4;

array y{3} y1-y3;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

if n =&athendo;

doi=1to3;
_type_='MAX";
_row_="obj"
_col_="u'||put(i,1.);
_coef_=y{i};
output;

end,;
_row_='DMUQO}
_type ='EQ}
_col =" rhs
_coef =1;

output;
doi=1to4;
_col_='V'|[put(i,1.);
_coef_=x{i};
output;

end,;

end,;

run;

**This data set constructs the objective function and the normalization constraint (N) for
thefirst two LPs.

datamain&a.l;

set obj&a constr boundsl;

run;

**This data set aggregates the objective function and the constraints and constructs the
LP with the least desirable bounds.

proc Ip data=main&a.1 printlevel = -2 sparsedata primalout = prim&a.l;

run;
**This statement solves main&a.1 and storesthe resultsin prim&a.l.
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datamain&a.z;

set obj&a constr boundsz;

run;

**This data set constructs the LP with the most desirable bounds.

proc Ip data=main&a.2 printlevel = -2 sparsedata primalout = prim&a.2;
run;
**This statement runs main& a.2 and storesthe results in prim&a.2.

datadifobj& a;
keep fO f1 diff;

set prim&a.l,;
if VAR ='obj'thenf0=_VALUE_;

set prim&a.2;
if VAR ='obj'thenfl=_VALUE_;

diff=f0 - f1;

output;

run;

**This data set extracts the f; and fp values and calculates their difference.

data newobj& a;

keep newfl newdiff;

set difobj& a;

if f1>0 then do;

newfl = f1;

newdiff = diff;

output;

end;

run;

**This data set getsrid of all the null values fromdifobj& a.

data objective& a;

length _type $8 row_$16 col $8;
keep type row_ _col__coef ;

set dea;

array {3} y1-y3;

if n =&athendo;

_type_='MAX";
_row_="'obj;
doi=1to3;
_col_="u||put(i,1.);
_coef_=y{i};
output;
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end;
end;
run;
**This data set constructs the objective function of the third & final LP.

%macro runlam;
%do b=1 %to 7;
**This macro causes the final LP to run for seven different values of A.

datafirstcons&a& b;

length _type $8 row_$16 col $8§;

keep type row_ _col__coef lam f1 diff;
set lambda;

array {7} 11-17;

lam = { &b};

set newobj& a;
f1 = newf1,
diff = newdiff;

_type_='GE’;

_row_ ="'fuzzy"

_col =" rhs

_coef_=f1 + diff*lam;

output;

run;

**This data set constructs part of the constraint F for the final LP.

data secondcons& a& b;

length _type $8 row_$16 col $8;
keep type row_ _col__coef ;

set dea;

array x{4} x1-x4,

array y{3} yl-y3;

if n =&athendo;

_type_='GE’;
_row_ ='fuzzy’
doi=1to3;
_col_="u||put(i,1.);
_coef_=y{i};
output;

end;
_row_='DMUQO}
_type ='EQ";
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_col =" rhs
_coef =1;
output;

doi=1to4;

_col_='V'|[put(i,1.);

_coef_=x{i};

output;

end;

end;

run;

**This data set constructs the remaining part of constraint F and the normalization
constraint for the final LP.

data aggbound& a& b;
length _type $8 row_$16 col $8;
keep type row_ _col__coef lam;

set lambda;
array {7} 11-17;
lam = { &b};

set bound;

array UM{3} UM1-UM3;
array LM{3} LM1-LM3;
array UN{4} UN1-UN4;
array LN{4} LN1-LN4;
array pUM{ 3} pUM1-pUMS3;
array pLM{3} pLM1-pLM3;
array pUN{4} pUN1-pUN4;
array pLN{4} pLN1-pLN4;

doi=1to3;
_row_="uubound'||put(i,1.);
_type ='LE}

_col =" rhs

_coef_=0;

output;

_col_="u||put(i,1.);

_coef =1,

output;

_col_="TO;
_coef_=-UM{i} +pUM{i}*lam,
output;

end,;
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doj=1to4;
_row_="vubound'||put(j,1.);
_type ='LE}

_col =" rhs

_coef_=0;

output;

_col_=vlput(j,1.);

_coef =1,

output;

_col_="TO;
_coef_=-UN{j} +pUN{j} *lam;
output;

end,;

doi=1to3;
_row_="ulbound’||put(i,1.);
_type ='GE}

_col =" rhs

_coef_=0;

output;

_col_="u'||put(i,1.);

_coef =1,

output;

_col_="TO;
_coef_=-LM{i}-pLM{i}*lam;
output;

end,;

doj=1to4;
_row_='vibound'||put(j,1.);
_type ='GE}

_col =" rhs

_coef_=0;

output;

_col_=Vvlput(j,1.);

_coef =1,

output;

_col_="TO;

_coef_=-LN{j}- pLN{j}*lam;
output;

end;

run;

**This data set constructs the weight bound constraints (B) of the final LP.

data aggregate& a& b;
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set objective& a firstcons&a& b (keep = _type row__col__coef lam)

secondcons& a& b constr aggbound& a& b;

**This data set aggregates all constraints and the objective function to construct the final
LP.

proc Ip data = aggregate& a& b printlevel=-2 sparsedata primalout = final&a& b (keep =
_VAR__Vdue);

run;

**This statement runs the final LP and stores theresultsin final& a&b.

datatemp (keep=_VALUE));

st final& a&b;

if VAR _='obj";

run;

**This data set temporarily stores the objective function value of the final LP.

proc append base=final data=temp;

run;

%end;

**This statement appends the objective function values from 'temp’ to 'final’.

%mend runlam;
%runlam;
%end:;

%mend runlp;
%runlp;

proc print data=final;
run;
**This statement prints the results of the model.

B.2 SASCODE FOR ROADMAP EXAMPLE OF SECTION 3.2.3.1
ILLUSTRATING THE FUZZY MODEL WITH AR

CONSTRAINTSIN FORM 1

The roadmap example in section 3.2.2.1 used to illustrate thefuzzy AR (Form 1) DEA
model, requires solving thefollowing three L Psin the given sequence.

Thefirst LP, which isused to calculate f; values, uses the most desirable weight bound

values in the weight bound constraints (B):
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Max u'Yo= f,

LY -N"X €0 Do, M

“H tH, <0
02u, -4, <0
-0.5u, +u, <0
0.1, — ;<0
~40,+n,<0
0.257;, =Ny SO, B
_4’71""73 <0
0.251, -n, <0
-04n,+n,<0
017, -n,<0
p.n 20

The following LP, which calculates f, values, usesthe least desirable weight bound

values in the weight bound constraints (B):

Max u"Yo = f,

st.

N Xo =Leiiiiieieeeeeeesmes N
HY-""X <0  Hveereee. M

-1.5885u, + u, <0

-2.062u, + u, <0

=797, 4N, S0 B
-6.1/n,+n, <0

-1.89n,+n, <0

un=z0
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Finally, the following crisp equivalent of the fuzzy model is solved.

Max A

such that

/\(fo-fl)-uTYOs—fl .................... F
D G T2 P N
Y =NTX S0, M

- (1+0.5885A)u, + u, <0
(0.2-020)u, —u, <0
-(0.5+1.562 ), + 4, <0
01-0N)u, -y, <0
-(4+356A)n,+n, <0
(0.25-0.25A)17;, =Ny S O B
-(4+217A)n,+n, <0
(0.25-0.25A)n, -n, <0
-(0.4+1.490)n, +n, <0
(02-0.M)n,-n, <0
0<A<1

un=0

Note that this model isa quadratic-programming model because its weight bound
constraints (B) contain expressions in which two variables are multiplied to each other.
Since one of these variablesis A and we know the range of variation of A, we can use the
parametric algorithm described in section 3.1.1.5.4 to solve it. Steps 1,3 and 8 of the
algorithm require usto solve the model with A fixed at a certain value This istantamount
to solving an LP with afixed objective function since A isthe objective function of the
crisp equivalent LP. We cannot solve an LP with afixed objective function. Therefore,
we need to modify the model so that the objective function contains an expression
involving decis on variables as opposed to afixed value. The mog logical choice for the
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objective function is the efficiency term. The modified model, which can now be solved
using the parametric algorithm, is as follows:

Max u"Y,

such that

AFo =) - 1Yy € = Frovmerrrrrseen F
N X0 =L N
Y =X S0, M

-(1+0.5885A)u;, + 1, <0
(0.2-02A)u, — 4, <0
-(05+1.562A)u, + u, <0
(0.2-0.M)u, —u; <0
-(4+3.56A)n, +n, <0
(0.25-0.25A)1;, =Ny S O B
-(4+217A)n,+n, <0
(0.25-0.25A)n, -n, <0
-(0.4+1.494)n, +n, <0
(02-0.M)n,-n, <0
0<A<1

un=0

Instead of using the parametric algorithm directly, we solve the model for different values
of A between O and 1 at intervas of 0.1 and choose the solution corresponding to the
maximum feasible value of A. The justification isthat thistechnique is easier to
implement using SAS compared to the parametric algorithm and gives the same solution

asthe parametric algorithm using € = 0.1.
The description of the constraint types used in the three LP'sis asfollows:

F — Constraint introduced by the membership function of the objective function
N —Normalization Constraint
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M —Main set of Constraints
B —Weight Bound Constraints

All three LPs are solved in the same SAS code. The code with embedded descriptions of
the data setsis as follows:

data ubound;

input UM1 UM2 UM3;
cards,

-110

2-10

-501

10-1

**This data set contains the coefficients of the most desirable output weight AR
constraints.

data vbound;

input VM1 VM2 VM3 VM4,
cards,

-4100

25-100

-4010

250-10

-4001

100-1

**This data set contains the coefficients of the most desirable input weight AR
constraints.

data fuzzyubound;

input UM1 UM2 UM3 pl p2 p3;
cards;

-1.588510.588500
0-10.200
-2.062011.56200
00-1.100

**This data set contains the coefficients of the least desirable output weight AR
constraints.

data fuzzyvbound;

input VM1 VM2 VM3 VM4 pl p2 p3 p4;
cards;

-7.56100356000
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0-100.25000
-6.170102.17000
00-10.25000
-1.89001149000
000-1.1000

**This data set contains the coefficients of the least desirable input weight AR
constraints.

data des;

input y1 y2 y3 x1 x2 x3 x4;

cards,

103 40 144 97 69 101 112
99 30 107 139 111 190 61
120 9 63 174 33 162 130
50 43 95 38 101 94 91

72 84 24 33 66 99 121

115 78 79 109 120 97 137
140 258 154 118 170 92 81
63 21 132 85 144 27 102
61 33 125 88 41 138 59
4 70 88 60 101 45 71

79 54 147 68 125 64 112
175 317 69 109 93 109 117
76 41 93 64 89 161 127
48 119 66 111 71 36 102
253 217 115 209 168 84 79

**Thisisthe normalized input-output data set
data lambda;
input 111213141516 17;

cards;
0405060.70.8091

**Thisisthe data set of all A valuesfor which the crisp equivalent model is solved.
datafinal;

input VALUE _;

cards;

**This creates an empty data set which will be used later to display the results.
data constr;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;
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set deg;
array x{4} x1-x4;
array y{ 3} y1-y3;

_type_='LE;
_row_="'DMU’||put(_n_,2.);
_col =" rhs
_coef_=0;

output;

doi=1to 4;
_col_="'V||put(i,1.);
_coef_=-x{i};
output;

end;

doj=1to3;
_col_=ulput(j,1.);
_coef_=y{j};
output;

end;

run;

**This data set constructs the main set of constraints (M)

data ubounds;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set ubound;

array UM{3} UM1-UM3;

_type ='LE}

_row_ ="aru||put(_n_,1.);

_col =" rhs

_coef_=0;

output;

doi=1to3;

_col_="u||put(i,1.);

_coef_=UM({i};

output;

end;

run;

**This data set constructs the most desirable output weight AR constraints (B) using the
coefficients from 'ubound'.

data vbounds;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set vbound;
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array VM{4} VM1-VM4;

_type ='LE}
_row_="arv'||put(_n_,1.);
_col =" rhs
_coef_=0;

output;
doi=1to4;
_col_='V'|[put(i,1.);
_coef_=VM({i};
output;

end;

run;

**This data set constructs the most desirable input weight AR constraints (B) using the
coefficients from 'vbound'.

data fuzzyubounds,

length _type $8 row_$16 col $8;
keep type row_ _col__coef ;

set fuzzyubound,;

array UM{3} UM1-UM3;

_type ='LE}

_row_ ="aru||put(_n_,1.);

_col =" rhs

_coef_=0;

output;

doi=1to3;

_col_="u||put(i,1.);

_coef_=UM({i};

output;

end;

run;

**This data set constructs the least desirable output weight AR constraints (B) using the
coefficients from 'fuzzyubound'.

data fuzzyvbounds,

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;
set fuzzyvbound,;

array VM{4} VM1-VM4;

_type ='LE}
_row_="arv'|jput(_n_,1.);

_col =" rhs

_coef_=0;

output;

doi=1to4;

_col_='V'|[put(i,1.);
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_coef_=VM({i};

output;

end;

run;

**This data set constructs the least desirable input weight AR constraints (B) using the
coefficients from 'fuzzyubound'.

%macro runlp;
%do a=1 %to 15;
**This macro runs the same LPsfor all 15 DMUSs.

dataobj&a;
length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set deg;
array x{4} x1-x4;
array y{ 3} y1-y3;

if n =&athendo;

_type_='MAX";
_row_="obj"
doi=1to3;
_col_="u||put(i,1.);
_coef_=y{i};
output;

end,;
_row_='DMUQO}
_type ='EQ}
_col =" rhs
_coef =1;

output;
doi=1to4;
_col_='V'|[put(i,1.);
_coef_=x{i};
output;

end,;

end,;

run;

**This data set constructs the objective function and the normalization constraint (N) for
the LPs used for obtaining f; and f values.

datamain&a.l;

set obj&a constr fuzzyubounds fuzzyvbounds,
run;
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**This data set aggregates all the constraints and the objective function to construct LPs
that are used for calculating fo values.

proc Ip data=main&a.1 printlevel = -2 sparsedata primalout = prim&a.l;
run;
**This statement solves the LP main&a.1 and saves theresultsin prim&a.l

datamain&a.z;

set obj&a constr ubounds vbounds;

run;

**This data set aggregates all the constraints and the objective function to construct LPs
that are used for calculating f; values.

proc Ip data=main&a.2 printlevel = -2 sparsedata primalout = prim&a.2;
run;
**This statement solves main& a.2 and saves the resultsin prim&a.2

datadifobj& a;
keep fO f1 diff;

set prim&a.l,;
if VAR ='obj'thenf0=_VALUE_;

set prim&a.2;
if VAR ='obj'thenfl=_VALUE_;

diff=f0 - f1;

output;

run;

**This data set extractsthe fo and f; valuesfrom prim&a.1 and prim&a.2 and cal culates
their difference.

data newobj& a;

keep newfl newdiff;

set difobj& a;

if f1>0 then do;

newfl = f1;

newdiff = diff;

output;

end;

run;

**Thisdata set is 'difobj&a’ without the null values.

data objective& a;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;
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set degy;

array {3} y1-y3;
if n =&athendo;

_type_='MAX";
_row_="'obj";
doi=1to3;
_col_="u||put(i,1.);
_coef_=y{i};
output;

end;

end;

run;

**This data set constructs the objective function of the final LP.

%macro runlam;
%do b=1 %to 7;
**Thismacro runs the final LP for seven different values of A.

datafirstcons&a& b;

length _type $8 row_$16 col $8§;

keep type row_ _col__coef lam f1 diff;
set lambda;

array {7} 11-17;

lam = { &b};

set newobj& a;
f1 = newf1;
diff = newdiff;

_type_="GE};

_row_ ='fuzzy’

_col =" rhs

_coef_=f1 + diff*lam;

output;

run;

**This data set constructs part of the constraint (F).

data secondcons& a& b;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set dea;

array x{4} x1-x4;

array y{3} yl-y3;

if n =&athendo;

_type_='GE’;
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_row_ ='fuzzy"

doi=1to3;
_col_="u||put(i,1.);
_coef_=y{i};
output;

end,;
_row_='DMUQO}
_type ='EQ";
_col =" rhs
_coef =1;

output;
doi=1to4;
_col_='V'|[put(i,1.);
_coef_=x{i};
output;

end,;

end,;

run;

**This data set constructs the normalization constraint and the remaining part of the
constraint F.

data aggubound& a& b;
length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set lambda;
array {7} 11-17;
lam=I{ &b} ;

set fuzzyubound,;
array UM{3} UM1-UM3;
array p{3} p1-p3;

_row_='fuzzyaru’||put(_n_,1.);

_type ='LE}

_col =" rhs

_coef_=0;

output;

doi=1to3;
_col_="u||put(i,1.);

_coef_ =UM{i}+p{i}*lam;
output;

end,;

run;
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**This data set constructs the constraints (B) pertaining to the output weights for the
final LP.

data aggvbound& a& b;
length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set lambda;
{7}=I1-17;
lam=I{ &b} ;

set fuzzyvbound,;

array VM{4} VM1-VM4;
array p{4} pl-p4,
_row_='fuzzyarv'||put(_n_,1.);

_type ='LE}

_col =" rhs

_coef_=0;

output;

doi=1to4;
_col_='V'|[put(i,1.);

_coef_ =VM{i}+p{i}*lam;
output;

end;

run;

**This data set constructs the constraints B pertaining to input weights for the final LP.

data aggregate& a& b;

set objective& a firstcons&a& b (keep = _type row__col__coef lam)
secondcons& a& b constr aggubound& a& b aggvbound& a& b;

run;

**This data set aggregates the objective function and the constraints to construct the
final LP.

proc Ip data = aggregate& a& b printlevel=-2 sparsedata primalout = final&a& b (keep =
_VAR__Vdue);

run;

**This statement solves the final LP for different DMUs and different values of lambda
and savestheresultsin the data set 'final&a&b'. 'a’ indicates the DMU and 'b' indicates
the value of lambda.

datatemp (keep=_VALUE));

set final& a& b;

if VAR _='obj";

run;

**This data set temporarily stores the values of the objective function.
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proc append base=final data=temp;

run;

%end;

%mend runlam;

%runlam;

**This statement appends the objective function values to the data set 'final’.

%end;
%mend runlp;
%runlp;

proc print data=final;

run;

**This statement prints the results of the model.

B.3 SASCODE FOR THE ROADMAP EXAMPLE OF SECTION
3.23.21LLUSTRATING THE FUZZY MODEL WITH AR

CONSTRAINTSIN FORM 2

The fuzzy AR (Form 2) model for the roadmap example in section 3.2.3.2 is as follows:

Max 1" Yo

st.

N X =L, N
UY-1"X <0 Derererae. M

—-n, +(0.15+0.059A)n, <0

n, —(0.428-0.086A)n, <0
—nN;+0.2097, <0 B
n,-0.514n, <0

-n, +(0.22-0.011A)n, <0

n, —(0.609+0.095A)n, <0

0<A<1
p,n 20
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The SAS code used for solving this model is as follows:

data bound,;

input VM1VM2plp21112131415 16;
cards;

-1.150.0590.2.4.6.8.9
1-.4280-.0860.2.4.6.8.9

-1.209000.2.4.6.8.9
1-514000.2.4.6.8.9
-1.220-0110.2.4.6.8.9

1-6090.0950.2.4.6.8.9

**This data set represents the coefficients of the variables in the weight bound
constraints (B). The p's which are the differences between the least desirable and most
desirable bounds, are the coefficients of A.

data des;

input X1 x2 y1,

cards,

31451.9 1540.8 9648.5
24267.8 1491.1 9396.9
16609 1072.6 6884.8
4109.14 561.6 1924
1657.57 1842.5 2427.9
2124 85.2 617.3

1540 198.3 737.7
1750 152.3 907.9
1728.88 151.2 665.5
1313.48 129.7 705.4
1410.97 173.5674.3
586.29 127.3505.1
302.14 45.3 211

**Thisisthe input-output data set.

data constr;

set dea;

array x{ 2} x1-x2;

length _type $8 row_$16 col $8;
keep type row_ _col__coef ;

_type_='LEj
_row_="'DMU’||put(_n_,2.);
_col =" rhs

_coef_=0;

output;
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doi=1to 2;
_col_="V||put(i,1.);
_coef_=-x{i};
output;

end;

_col_='ul’

_coef_=y1;

output;

run;

**This data set constructs the main set of constraints (M).

%macro alpha;
%do b=1 %:to 6;

data vbound;

set bound;

array VM{2} VM1-VM2;

array p{ 2} pl-p2;

array { 6} 11-16;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

_type_='LEj
_row_="arv'|[put(_n_,1.);
_col =" rhs
_coef_=0;

output;

doi=1to2;

_col_="V||put(i,1.);

_coef =VM{i}+l{&b}*p{i};

output;

end;

run;

**This data set constructs the weight bound constraints (B).

%macro runlp;
%do a=1 %to 13;
**This macro runs the LP for each of the thirteen DMUSs.

dataobj&a&b;

Set deg;

array x{ 2} x1-x2;

length _type $8 row_$16 col $8;
keep type row_ _col__coef ;
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if n =&athendo;

_type ='MAX";
_row_="obj"
_col_='ul’
_coef_=vyl,;
output;
_row_='DMUQO}
_type ='EQ}
_col =" rhs
_coef =1;
output;
doi=1to 2
_col_='V'|[put(i,1.);
_coef_=x{i};
output;

end,;

end,;

run;

**This data set constructs the objective function and the normalization constraint (N).

data main& a& b;

set obj&a& b constr vbound& b;

run;

**This data set constructsthe LP by aggregating all the constraints and the objective
function.

proc Ip sparsedata data=main&a&b primaout =fina &a&b;
run;
**This statement solves the LP and saves the results in the data set 'final& a& b'.

proc print data=final& a& b;
run;
**This statement prints the results of the model.

%end;
%mend runlp;
%runlp;

%end:;

%mend alpha;
%alpha;
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B.4 SASCODE FOR SOLVING THE FUZZY ABSOLUTE
WEIGHT RESTRICTION DEA MODEL APPLIED TO THE
HIGHWAY MAINTENANCE PATROL DATA FROM COOK
ET AL. (1990)

The fuzzy model corresponding to the absolute weight restriction DEA mode applied to
the highway maintenance patrol datais solved in three steps.

In thefirst step, the following model is solved for each DMU to obtain f; values:

Max u'Yo= f,

st.

D O T N
UY-n"X <0 Dveverrenes M

800T, < i, < 2100T,

500T, < {4, <10000T,................ B
900T, <1, < 2500,

300T, <1, < 6000T,

p,n=0

In the next step, the following model is solved for each DMU to obtain f, values:

Max " Yo = f,

st.

N Xo =L, N
HY-""X <0  Heeereree. M

389T, < p, < 2100T,

10T, < p, <10000T,............... B
90T, <, < 2500T,

10T, <n, <12208T,

H.nz0
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Finally, the following crisp equivalent of the fuzzy model is solved:

Max A

such that

/\(fo-fl)-uTYOs—fl .................... F
D G T2 P N
Y =NTX S0, M

(389 + 411M)T, < p, < 2100T,

(10 + 490A)T, < p, <10000T,......ccomvveceen. B
(90+810A)T, <n, < 2500T,

(10 + 290A)T, <1, < (12208 - 6208)T,

1n=0
0<A<1

Note that this model isa quadratic-programming model because its weight bound
constraints (B) contain expressions in which two variables are multiplied to each other.
Since one of these variablesis A and we know the range of variation of A, we can use the
parametric algorithm described in section 3.1.1.5.4 to solve it. Steps 1,3 and 8 of the
algorithm require usto solve the model with A fixed at a certain value. This istantamount
to solving an LP with afixed objective function since A isthe objective function of the
crisp equivalent LP. We cannot solve an LP with afixed objective function. Therefore,
we need to modify the model so that the objective function contains an expression
involving decis on variables as opposed to afixed value. The mog logical choice for the
objective function is the efficiency term. The modified model, which can now be solved
using the parametric algorithm, is as follows:
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Max u"Y,

such that

Ay~ 1) - 1Ty € = F
T T N
Y =NTX S0, M

(389 + 411M)T, < , < 2100T,

(10 + 490A)T, < 1, <10000T......cvvrvnrnen. B
(90+810A)T, <n, < 2500T,

(10 + 290A)T, <1, < (12208 - 6208)T,

1n=0
0<A<1

Instead of using the parametric algorithm directly, we solve the model for different values
of A between O and 1 at intervas of 0.1 and choose the solution corresponding to the
maximum feasible value of A. The justification isthat thistechnique is easier to
implement using SAS compared to the parametric algorithm and gives the same solution

asthe parametric algorithm using € = 0.1.

The description of the constraints used in the three above models is as follows:
F — Constraint introduced by the membership function of the objective function
N —Normalization Constraint

M —Main set of Constraints

B —Waeight Bound Constraints

The three LPs are solved within the same SAS code. The SAS code is described below.

data boundi;
input UM1UM2 UN1UN2LM1LM2LN1LN2pUM1pUM2 pUN1pUN2 pLM1
pLM2 pLN1 pLNZ2;
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cards;
2100 10000 2500 12208 389 1090 10 00 0 6208 411 490 810 290

**This data set represents the least desirable bound values. 'U' represents upper bound
and 'L’ represents lower bound. Also M represents output weight and N represents input
weight. For example 'UM1' represents upper bound on output weight 1. The values with
the prefix 'p' represent the differences between the least (most) desirable bounds and the
most (least) desirable bounds. For example, 'pUM1' represents the difference between
the least desirable and most desirable values of 'UM1' and '‘pLM1' represents the
difference between the most desirable and least values of 'LM1".

data bound?;

input UM1UM2 UN1 UN2 LM1LM2LN1LNZ2;
cards,

2100 10000 2500 6000 800 500 900 300

**This data set represents the most desirable bound values. 1t uses the same notation as
the data set for least desirable bound values.

datalambda;

input 111213141516 17;
cards,
0405060708091

**This data set represents the different values of A for which the crisp equivalent of the
fuzzy model will be solved.

data des;

input X1 x2 y1 y2;
cards,

751 67 696 39
611 70 616 26
538 70 456 17
584 75 616 31
665 70 560 16
44575 446 16
554 76 517 26
457 72 492 18
582 74 558 23
556 64 407 18
590 78 402 33
1074 75 350 88
1072 74 581 64
696 80 413 24
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**This data set represents the input — output data values.

data constr;

set dea;

array x{ 2} x1-x2;

array {2} y1-y2;

length _type $8 row_$16 col $8;
keep type row_ _col__coef ;

_type_='LEj

_row_ ="'DMU’||put(_n_,2.);
_col =" rhs

_coef_=0;

output;

doi=1to 2
_col_="V||put(i,1.);
_coef_=-x{i};

output;
end;

doi=1to 2

_col_="u'||put(i,1.);

_coef_=y{i};

output;

end;

run;

** Thisdata set is used for constructing the main set of constraints (M). Snce the main
set of constraints are the same for all three LP's, this data set will be used for all three
LP's.

datafinal;

input _value ;

cards;

run;

**This statement is used to initiate a data set called 'final' which will be used later.

%macro runbound;

%do c=1 %to 2,

**Thismacro is used to construct the weight bound constraints (B). The macro runs
twice and creates data sets 'boundsl’ and 'bounds2'. 'boundsl’ constructs the bound
congtraints for calculating f1 values while 'bounds2' constructs the bound constraints for
calculating fo values.

data bounds&c;
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set bound&c;

length _type $8 row_$16 col $8;
keep type row_ _col__coef ;

array UM{2} UM1-UM2;

array LM{2} LM1-LM2;

array UN{ 2} UN1-UN2;

array LN{2} LN1-LN2;

doi=1to2;
_row_="uubound'||put(i,1.);
_type ='LE}
_col =" rhs
_coef_=0;

output;
_col_="u'||put(i,1.);
_coef =1,

output;
_col_="TO;

_coef =-UM{i};
output;

end,;

doj=1to 2
_row_='vubound'||put(j,1.);
_type ='LE}
_col =" rhs
_coef_=0;

output;
_col_=Vvlput(j,1.);
_coef =1,

output;
_col_="TO;
_coef_=-UN{j};
output;

end,;

doi=1to2;
_row_='"ulbound'||put(i,1.);
_type ='GE}

_col =" rhs

_coef_=0;

output;
_col_="u'||put(i,1.);

_coef =1,

output;

_col_="TO;
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_coef =-LM{i};
output;
end;

doj=1to 2
_row_='vibound'||put(j,1.);
_type ='GE}
_col =" rhs
_coef_=0;

output;
_col_=Vvlput(j,1.);
_coef =1,

output;
_col_="TO;
_coef_=-LN{j};
output;

end,;

run;

%end:;
%mend runbound:;
%runbound:;

%macro runlp;
%do a=1 %to 14;
**Thismacro isused for solving the LP's corresponding to f1 and fo for all DMUSs.

dataobj&a;

Set deg;

array x{ 2} x1-x2;

array y{ 2} y1-y2;

length _type $8 row_$16 col $8;
keep type row_ _col__coef ;

if n =&athendo;

doi=1to2;
_type_='MAX";
_row_='obj";
_col_="u||put(i,1.);
_coef_=y{i};
output;

end;
_row_='DMUQO}
_type ='EQ}
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_col =" rhs
_coef =1;
output;

doi=1to 2

_col_='V'|[put(i,1.);

_coef_=x{i};

output;

end;

end;

run;

**This data set is used for constructing the objective function and the normalization
constraint (N) for LP'sused for calculating f; and fo.

datamain&a.l,;

set obj&a constr boundsl;

run;

**This data set combines all the constraints (N, M, and B) and the objective function for
obtaining f; values.

proc Ip data=main&a.1 printlevel = -2 sparsedata primalout = prim&a.l;
run;
**This statement solves the LP 'main&a.1' and saves theresultsin 'prim&a.l".

datamain&a.z;

set obj&a constr boundsz;

run;

**This data set combines all the constraints (N, M, and B) and the objective function for
obtaining fo values.

proc Ip data=main&a.2 printlevel = -2 sparsedata primalout = prim&a.2;
run;
**This statement solves the LP 'main&a.2' and saves theresultsin 'prim&a.2".

datadifobj& a;
keep fO f1 diff;

set prim&a.l,;
if VAR ='obj'thenf0=_VALUE_;

set prim&a.2;
if VAR ='obj'thenfl=_VALUE_;

diff= O - f1,

output;
run;
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**This data set extracts fO and f1 values from prim&a.1 and prim& a.2 respectively. It
also calculates the difference between fo and fi.

data newobj& a;

keep newfl newdiff;

set difobj& &;

if f1>0 then do;

newfl = f1;

newdiff = diff;

output;

end;

run;

**'newobj&a’ isa cleaner version of 'difobj&a’ without the null values.

data objective& a;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set dea;

array {2} yl-y2;

if n =&athendo;

_type_='MAX";
_row_="obj"
doi=1to2;
_col_="u||put(i,1.);
_coef_=y{i};
output;

end,;

end,;

run;

**This data set constructs the objective function of the third LP - the crisp equivalent of
the fuzzy model.

%macro runlam,;

%do b=1 %to 7;

**Thismacro isused for running the crisp equivalent LP 7 times for seven different
values of A.

datafirstcons&a& b;

length _type $8 row_$16 col $8§;

keep type row_ _col__coef lam f1 diff;
set lambda;

array {7} 11-17;

lam = { &b};

set newobj& a;
f1 = newf1;
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diff = newdiff;

_type_='GEj

_row_ ='fuzzy"
_col_="rhs
_coef_=f1+ diff*lam;
output;

run;

**This data set is used for constructing part of the constraint F.

data secondcons& a& b;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set dea;

array x{ 2} x1-x2;

aray {2} y1-y2;

if n =&athendo;

_type_='GE’;
_row_ ='fuzzy"
doi=1to2;
_col_="u||put(i,1.);
_coef_=y{i};
output;

end;
_row_='DMUQO}
_type ='EQ}
_col =" rhs
_coef =1;

output;

doi=1to 2
_col_='V'|[put(i,1.);
_coef_=x{i};
output;

end;

end;

run;

**This data set is used for constructing the normalization constraint (N) and the
remaining part of the constraint F.

data aggbound& a& b;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef lam;
set lambda;

array {7} 11-17;
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lam = { &b};

set boundl;

array UM{2} UM1-UM2;
array LM{2} LM1-LM2;
array UN{2} UN1-UNZ2;
array LN{2} LN1-LN2;
array puM{ 2} pUM1-pUM2;
array pLM{2} pLM1-pLM?2;
array pUN{2} pUN1-pUNZ2;
array pLN{2} pLN1-pLN2;
doi=1to2;
_row_="uubound'||put(i,1.);
_type ='LE}

_col =" rhs

_coef_=0;

output;

_col_="u'||put(i,1.);

_coef =1,

output;

_col_="TO;

_coef_=-UM{i} + puM{i}*lam;

output;
end;

doj=1to 2
_row_="vubound'||put(j,1.);
_type ='LE}

_col =" rhs

_coef_=0;

output;

_col_=Vlput(j,1.);

_coef =1,

output;

_col_="TO;
_coef_=-UN{j} +pUN{j}*lam;
output;

end,;

doi=1to2;
_row_="ulbound’||put(i,1.);
_type ='GE};

_col =" rhs

_coef_=0;

output;
_col_="u||put(i,1.);
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_coef =1,

output;

_col_="TO;
_coef_=-LM{i}-pLM{i}*lam;
output;

end,;

doj=1to 2
_row_='vibound'||put(j,1.);
_type ='GE}

_col =" rhs

_coef_=0;

output;

_col_="V|put(j,1.);

_coef =1,

output;

_col_="TO;
_coef_=-LN{j}-pLN{j}*lam;
output;

end,;

run;

**This data set constructs the weight bound constraints (B) for the crisp equivalent of the
fuzzy LP.

data aggregate& a& b;

set objective& a firstcons&a& b (keep = _type row__col__coef lam)

secondcons& a& b constr aggbound& a& b;

**This data set joins all the constraints and the objective function and creates the crisp
equivalent LP.

proc Ip data = aggregate& a& b printlevel=-2 sparsedata primalout = final&a& b (keep =
_VAR__Vdue);

run;

**This statement runs the crisp equivalent LP and saves the resultsin final &a&b.

datatemp (keep=_VALUE));

st final& a& b

if VAR _='obj";

run;

**This data set temporarily stores the objective function value of final& a& b beforeit is
appended to the data set 'final' which was created earlier.

proc append base=final data=temp;

run;
**This statement appends the objective function value from ‘temp' to 'final'.
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%end:;
%mend runlam;
%runlam;

%end;
%mend runlp;
%runlp;

proc print data=final;
run;
**This statement prints the results of the model.

B.5 SASCODE FOR THE FUZZY AR (FORM 1) DEA MODEL

APPLIED TO THE WASHINGTONPOST DATA

The fuzzy model corresponding to the AR (Form 1) DEA model applied to the
Washingtonpost production data requires solving the following three LP's.

The first LP isused to obtain f; values for all DMUSs:

Max u'Yo= f,
st.

Then the following LP isused to obtain fy values:
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st.

N Xy =L N
HY-n"X <0 Oerereee, M
n,—nN.<0

Ny =N S0, B
1,n=0

Finally, the following crisp equivalent of the fuzzy model is solved using the parametric

algorithm:

Max A

such that

/\(fo-fl)-uTYOs—fl .................... F
T T N
Y =NTX S0, M

(1+0.5A)n,-n, <0
@A+A)N3 =N S0 B

0<A<1

un=0

Note that this model isa quadratic-programming model because its weight bound
constraints (B) contain expressions in which two variables are multiplied to each other.
Since one of these variablesis A and we know the range of variation of A, we can use the
parametric algorithm described in section 3.1.1.5.4 to solve it. Steps 1,3 and 8 of the
algorithm require usto solve the model with A fixed at a certain value. This istantamount
to solving an LP with afixed objective function since A isthe objective function of the

crisp equivalent LP. We cannot solve an LP with afixed objective function. Therefore,
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we need to modify the model so that the objective function contains an expression
involving decis on variables as opposed to afixed value. The mog logical choice for the
objective function is the efficiency term. The modified model, which can now be solved
using the parametric algorithm, is as follows:

Max u"Y,

such that

YCT A R TH 2T F
AR I N
Y =X S0, M

(1+0.5A)n,-n, <0
@A+A)N3 =N S0 B

Instead of using the parametric algorithm directly, we solve the model for different values
of A between 0 and 1 in increments of 0.1 and choose the solution corresponding to the
maximum feasible value of A. The justification isthat thistechnique is easier to
implement using SAS compared to the parametric algorithm and gives the same solution

asthe parametric algorithm at € = 0.1.

The description of the constraint types used in the three above LPsis as follows:
F — Constraint introduced by the membership function of the objective function
N —Normalization Constraint

M —Main set of Constraints

B —Waeight Bound Constraints

All three LPs are solved in the same SAS code. The code with embedded descriptions of
the data setsis as follows:
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data deg;

input x1 x2 x3 y1;

cards,
53.21
90.30
46.93
82.24
79.83
61.98
96.81
75.52
56.87
88.35
68.33
101.65
66.11
121.01
122.99
140.32
112.16
103.02
26.85
118.35
115.71
113.78
74.66
114.15
83.85
81.63
84.99
93.63
97.00
104.95
103.66
82.17
92.26
108.51
122.99
94.58
102.30
117.71
114.33
116.73
131.65
122.99
152.79

6.34
58.69
79.95
68.58
49.04
21.33
79.98
20.20
17.55
56.86
39.27
70.74
47.88
176.62
178.08
139.43
94.12
96.51
38.54
129.49
107.04
145.37
35.52
161.76
49.66
53.49
106.69
138.58
70.78
147.15
120.64
107.91
103.30
102.45
232.49
159.89
134.84
157.66
102.20
95.09
202.73
156.37
145.71

42.18
102.38
77.56
101.24
75.38
71.18
104.95
45.16
60.78
90.88
87.75

77.54
79.22

106.26
89.41
91.57

97.79
86.77
56.44

138.77
181.93
198.22

85.62

100.68

76.57
61.22
90.30

108.32

86.61

113.05
100.22

67.99
92.16

104.51
96.90

93.26

112.06
113.33
121.33
129.06
145.29
168.46
142.46

48.21
95.96
79.13
79.98
70.81
77.05
112.82
49.64
66.10
76.48
81.06
78.20
69.84
96.64
92.80
86.70
82.13
82.87
58.38
106.49
108.59
97.02
89.07
120.83
93.23
70.77
121.33
88.75
112.53
141.23
128.57
78.75
91.40
126.46
125.54
116.21
140.10
115.38
136.19
137.23
139.50
171.75
138.08
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192.33 12471 146.66 119.20
153.64 12765 13570 123.98
194.09 13262 109.67 101.69
5759 7475 5631 72.80
6231 3376 7890 102.55

**Thisisthe input — output data set.

datalambda;

input 111213141516 17;
cards,
0405060708091

**This data set contains the different A values for which the fuzzy model is solved.
datafinal;

input VALUE _;

cards;

**This data set will be used later to append to and display the results of the model.
data congtr;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

Set deg;

array x{ 3} x1-x3;
_type_='LE;
_row_="'DMU’||put(_n_,2.);
_col =" rhs
_coef_=0;

output;

doi=1to 3;
_col_="'V||put(i,1.);
_coef_=-x{i};
output;

end;

_col_='ul’
_coef_=y1;

output;

run;

**This data set constructs the main set of constraints (M).

data boundsl;
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length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

_type ='LE}
_row_="arl’,
_col =" rhs
_coef_=0;
output;
_col_='v1
_coef =-1;
output;
_col_='v2;
_coef =1.5;
output;

_type ='LE}
_row_='ar2,
_col =" rhs
_coef_=0;
output;
_col_='v1
_coef =-1;
output;
_col_='v3;
_coef =2;
output;

run;

**This data set constructs the weight bound constraints (B) for the LP, which isused for
calculating the f; values.

data bounds2;
length _type $8 row_$16 col $8;
keep type row_ _col__coef ;

_type ='LE}
_row_="arl}
_col_='rhs
_coef_=0;
output;
_col_='v1
_coef =-1;
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output;

_col_='v2;
_coef =1,
output;

_type ='LE}
_row_="'ar2,
_col =" rhs
_coef_=0;
output;
_col_='v1
_coef =-1;
output;
_col_='v3;
_coef =1,
output;

run;

**This data set constructs the weight bound constraints (B) for the LP used for
calculating the fo values.

%macro runlp;
%do a=1 %to 48;
**Thismacro isused for running the three LP's for all 48 DMUs.

dataobj&a;
length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

Set deg;
array x{ 3} x1-x3;

if n =&athendo;

_type ='MAX";
_row_="obj"
_col_='ul’;
_coef_=vyl,;
output;
_row_='DMUQO}
_type ='EQ";
_col =" rhs
_coef =1;
output;
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doi=1to3;

_col_='V'|[put(i,1.);

_coef_=x{i};

output;

end;

end;

run;

**This data set constructs the objective function and the normalization constraints (N)
for all threeLP's.

datamain&a.l,;

set obj&a constr boundsl;

run;

**This data set joins the objective function and the constraintsto create the LP for
calculating f; values.

proc Ip data=main&a.1 printlevel = -2 sparsedata primalout = prim&a.l;
run;
**This statement runs the LP and extracts the results into the data set '‘prim&a.1'.

datamain&a.z;

set obj&a constr bounds2;

run;

**This data set joins the objective function and the constraintsto create the LP for
calculating fo values.

proc Ip data=main&a.2 printlevel = -2 sparsedata primalout = prim&a.2;
run;
**This statement runs the LP and storestheresultsin 'prim&a.2'.

datadifobj& a;
keep fO f1 diff;

set prim&a.l,;
if VAR ='obj'thenf0=_VALUE_;

set prim&a.2;
if VAR ='obj'thenfl=_VALUE_;

diff=f0 - f1;

output;

run;

**This data set extracts the f; and fg values and calculates their difference.

data newobj& a;
keep newfl newdiff;
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set difobj& a;

if f1>0 then do;
newfl = f1;
newdiff = diff;
output;

end;

run;

**This data set clears all the null values from the data set 'difobj& a'.

data objective& a;
length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set dea;

if n =&athendo;
_type_='MAX";
_row_="obj"
_col_='ul’
_coef_=vyl,;

output;

end,;

run;

**This data set constructs the objective function of the crisp equivalent of the fuzzy
model.

%macro runlam,;

%do b=1 %to 7;

**Thismacro isused for running the crisp equivalent of the fuzzy model seven times with
seven different values of A.

datafirstcons& a& b;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef lam f1 diff;
set lambda;

array {7} 11-17;

lam = { &b};

set newobj& a;
f1 = newf1,
diff = newdiff;

_type_='GE];

_row_ ='fuzzy"
_col =" rhs
_coef_=f1 + diff*lam;
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output;
run;
**This data set constructs part of the constraint F.

data secondcons& a& b;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set dea;

array x{ 3} x1-x3;

if n =&athendo;

_type_='GE];
_row_ ='fuzzy"
_col_='ul’
_coef_=vyl,;
output;
_row_='DMUQO}
_type ='EQ";
_col =" rhs
_coef =1;
output;
doi=1to 3;
_col_='V'|[put(i,1.);
_coef_=x{i};
output;

end;

end;

run;

**This data set constructs the normalization constraint (N) and the other part of the
constraint F.

data aggbound& a& b;
length _type $8 row_$16 col $8§;
keep type row_ _col__coef lam;

set lambda;
array {7} 11-17;
lam = { &b};

_row_="fuzzyarl’,
_type ='LE}
_col =" rhs
_coef_=0;

output;
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_col_='v1

_coef =-1;

output;

_col_='v2,

_coef =1+0.5*1&b;
output;

_type ='LE}
_row_ ='fuzzyar2’,
_col =" rhs
_coef_=0;

output;

_col_='v1

_coef =-1;

output;

_col_='v3;
_coef =1+1&b;
output;

run;

**This data set constructs the weight bound constraints (B) of the crisp equivalent of the
fuzzy model.

data aggregate& a& b;

set objective& a firstcons&a& b (keep = _type row__col__coef lam)

secondcons& a& b constr aggbound& a& b;

run;

**This data set combines all the constraints and the objective function to create the crisp
equivalent of the fuzzy model.

proc Ip data = aggregate& a& b printlevel=-2 sparsedata primal out = final&a& b (keep =
_VAR__Vdue);

run;

**This statement solves the crisp equivalent of the fuzzy model and saves the resultsin
final &a&b'.

datatemp (keep=_VALUE));

set final& a& b;

if VAR ='obj";

run;

**This data set temporarily stores the objective function value.

proc append base=final data=temp;
run;
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**This statement appends the objective function value stored in ‘temp' into the data set
‘final'.

%end:;
%mend runlam;
%runlam;

%end;
%mend runlp;
%runlp;

proc print data=final;

run;

**This statement displays the efficiency scores calculated by the crisp equivalent of the
fuzzy model.

B.6 SASCODE FOR THE FUZZY AR (FORM 2) DEA MODEL
APPLIED TO THE SDBC DATA FROM THOMPSON ET AL.

(1996a)
The fuzzy AR DEA model applied to the SDBC datais shown below:
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Max u"Y,

such that

NTX0 =L N

Y =0T X S0, M

(78.3+8.7A) 1ty — (114 + BA) Ly = Oucveeeee 01
(95.7=8.7A) iy = (126 = 6A) Ly = O 02

(7628.5+ 401.5)) 1, — (3667.5 + 407.50)t, = O.......03
(8431.5-401.51) i, — (4482.5 - 407.5A) 4, = O.......04
(96.9+17.A) 1, = (114 +6AY 1y = 0o 05
(131.1-17.1A) ity = (126 = 6A) g = 0. 06
(7628.5+ 401.50) u, — (637.5+112.50) 1, = O........... 07.....B
(8431.5-401.5)) i1, — (862.5-112.5A) i, = O.......... 08
(96.9+17.1A) 1, = (78.3+8.7TA) s = Ocvvvvveooen 09
(131.1-17.1A) i1, = (95.7 =8.7A) g 2 O..ooovev. 10
(3667.5+407.5A) 1, — (637.5+112.50) i1, = O.......... 11
(4482.5- 407.5)) U, — (862.5—-112.5A) 4, = O.......... 12

unz0
0<A<1

The SAS code for solving thisLP is as follows:

data boundi;
input U101 U102 U103 U104 U105 U106 U107 U108 U109 U110 U111 U112 pulll
pul02 pul03 pul04 pul05 pul06 pulO7 pul08 pulO9 pulll pulll pull?;

cards;
78.395.7 -3667.5 -4482.5 96.9 131.1 -637.5-86250000 8.7 -8.7 -407.54075 17.1 -

17.1-112511250000

**This data set represents the coefficients of output weight u ; in the weight bound
congtraints (B). The valueswith the prefix 'p' are the coefficients of A while the values
without the 'p' are the values added to the A term. The last two digits of all symbols
represent the number of the constraint. For example, 'U101" isthe first termin the
coefficient of u, in constraint 01 and 'pul01' multiplied by A isthe second term. Thus,

‘U101 + pul01* A" isthe coefficient of u, in constraint O1.
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data bound?2;

input U201 U202 U203 U204 U205 U206 U207 U208 U209 U210 U211 U212 pu201
pu202 pu203 pu204 pu205 pu206 pu207 pu208 pu209 pu210 pu2ll pu2l2;

cards;

-114-126 7628.58431.5000096.9 131.1 -637.5-862.5-6 6 401.5-401.50000 17.1 -
17.1-1125112.5

**This set represents the coefficients of u, in B.

data bound3;

input U301 U302 U303 U304 U305 U306 U307 U308 U309 U310 U311 U312 pu301
pu302 pu303 pu304 pu305 pu306 pu307 pu308 pu309 pu3l0 pu3ll pu3lz;

cards;

0000-114 -126 7628.5 8431.5 -78.3 -95.7 3667.5 448250000 -6 6 401.5 -401.5-8.7
8.7 407.5 -407.5

**This set represents the coefficients of uz in B.

datalambda;

input 1112131415 16;
cards,
0.2040506081

**This data set represents the different values of A for which the model will be solved.

data des;

input X1 x2 y1 y2 y3;
cards,

162970 4872 1454 128 10087
95960 3610 421 47 1173
115314 2987 434 69 1611
115573 1431 288 59 844
70450 303 496 43 3582
69637 75 159 18 985
54275 295 186 26 500
108553 1235 960 52 1984
93207 273 257 10 1014
48800 43 106 17 359
39209 112 110 13 886
46000 1475 148 54 597
3648252 71 8 334

**This data set represents the input — output data values.
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data constr;

Set deg;

array y{3} yl-y3;

array x{ 2} x1-x2;

length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

_type_='LE;
_row_="'DMU’||put(_n_,2.);
_col =" rhs
_coef_=0;

output;

doj=1to 2
_col_="v'|put(j,1.);
_coef_=-x{j};
output;

end;

doi=1to3;
_col_="u'||put(i,1.);
_coef_=y{i};
output;

end;

run;

**This data set constructs the main set of constraints (M).

datafinal;

input VALUE _;

cards;

run;

**Null data set 'final’ is created here so that it can be used to append values.

%macro runbounds;
%odo b=1 %to 6;
**Thismacro isused for creating weight bound constraints (B) with different values of A.

data bounds& b;
length _type $8 row_$16 col $8§;
keep type row_ _col__coef ;

set lambda;
k=1&b;

set boundl;
array U1{12} U101-U112;
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array pul{ 12} pulO1-pullz;

doi=01to 12
_row_='c||put(i,2.);
_type ='GE}

_col =" rhs

_coef_=0;

output;

_col_='ul’

_coef =U1{i}+pul{i}*k;
output;

end,;

set bound2;
array U2{12} U201-U212;
array pu2{ 12} pu201-pu212;

doi=01to 12
_row_='c||put(i,2.);
_type ='GE}

_col_='uz;
_coef_=U2{i}+pu2{i}*k;
output;

end,;

set bound3;
array U3{12} U301-U312;
array pu3{ 12} pu301-pu31z;

doi=01to 12
_row_='c||put(i,2.);
_type ='GE};

_col_='u3;;
_coef_=U3{i}+pu3{i}*k;
output;

end;

run;
**This data set constructs the weight bound constraints B.

%macro runlp;
%do a=1 %to 13,
**Thismacro is used for solving the LP for each of the 13 DMUSs.

dataobj&a;
set deg;
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array y{3} yl-y3;

array x{ 2} x1-x2;

length _type $8 row_$16 col $8;
keep type row_ _col__coef ;

if n =&athendo;

_type_='MAX";
_row_="obj"
doi=1to3;
_col_="u||put(i,1.);
_coef_=y{i};
output;

end,;
_row_='DMUQO}
_type ='EQ";
_col =" rhs
_coef =1;

output;
doi=1to2;
_col_='V'|[put(i,1.);
_coef_=x{i};
output;

end,;

end,;

run;

**This data set constructs the objective function and the normalization constraint (N)

datamain& a;

set obj&a bounds& b constr;

run;

**This data set combines the objective function and the constraints N, B, and M.

proc Ip sparsedata printlevel=-2 data= main&a primalout = final& a;
run;
**This statement solve 'main& a’ and stores the resultsin 'final& a’

datatemp (keep=_VALUE));

st final& a;

if VAR _='obj";

run;

**The data set 'temp' temporarily stores the objective function value of 'final&a'.

proc append base = final data= temp;
run;
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**This statement appends the contents of the data set 'temp'’ to the data set ‘final’ which
was created earlier.

%end;
%mend runlp;
%runlp;

proc print data=final;
run;

%end:;

%mend runbounds;
%runbounds;
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