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I. INTRODUCTION 

While the subject of boundary layer heat transfer has been 

thoroughly exploited in the past two decades, recent developments 

in this field have prompted a critical review of the approximate 

methods now available for the study of this phenomenon. The develop-

ments referred to are the presentations of "exact" ·solutions to the 

boundary layer equations currently appearing in technical literature 

(for examples, see Refs. (1) and (2)). 

One of the more thorough of these investigations is that developed 

by Davis and Flugge-Lotz (Ref. 2) at Stanford University. While said 

study is presently limited to the flow of a perfect gas about an 

axisynnnetric body, these limitations are not at all essential, and 

the method is quite easily extended t~ the real gas regime. Since 

this method considers all second order boundary layer effects, it is, 

for all practical purposes, exact. The full Navier-Stokes equations 

are re-examined through an order-of-magnitude analysis, and an implicit 

finite difference scheme written for numerically integrating the 

resulting equations of motion. The method of computations is quite 

rapid and seems to enjoy a very wide range of application. 

The point of interest here is that the prime difficulties 

surrounding this problem have been successfully overcome by Davis 

and Flugge-Lotz - resulting in a numerical scheme for the prediction of 

heating rates (among other quantities) for bodies of general interest. 
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If one now considers the more tried approximate schemes which are 

available for predicting laminar heating rates (Refs. (3), (4), and 

(5)), it is noted that, in general, these also require numerical 

analysis. Such a requirement stems from a somewhat universal approach 

to the approximate solution of Prandtl's boundary layer equations. 

Usually, one of the initial steps in any such analysis is to seek a 

transformation of the independent variables which will reduce the 

compressible equations of motion to the form of their incompressible 

counterparts. In general, this transformation is not of a one-to-one 

nature but requires differential relations between the two coordinate 

systems. Therefore, to return to the physical plane requires a 

reverse transformation which produces an integral relation for the 

heat transfer rate. In general, these integral relations cannot be 

expressed in terms of universal functions and thus the use of some 

numerical integration technique is required. It is seen, then, that 

while approximate schemes do provide explicit analytical expressions 

for the heating rate, they none the less imply the use of rather 

involved computational methods, 

Comparing the "exact" and approximate solutions discussed above, 

one is tempted to conclude that for most applications little is to be 

gained in the use of any approximation when "exact" solutions are 

available. Such reasoning does of course subdue the difficulties 

normally associated with the numerical evaluation of nonlinear partial 
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differential equations, but does serve to point up a very interesting 

fact. Namely, the engineer interested only in first estimates (or 

experimental data checks) logically must either relieve the approximate 

schemes of their integral relations or submit to an exact analysis of 

the problem at hand. The first alternative usually forces one to 

accept added approximations to the flow processes involved - which is 

somewhat analogous to the act of 11 patching a patch .11 The second 

alternative, although following logically, is much more involved than 

would be necessary for the purposes considered here. 

In an effort to resolve this apparent dilemma then, the following 

study has been undertaken. The goal of this investigation has been to 

devise a simplified scheme for the evaluation of laminar boundary-

layer heating rates. By use of the term "simplified" it is implied 

that the method devised should be ·free of any integral relations 

which would normally require the use of numerical integration techniques. 
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II. FORMULATION OF THE HEAT TRANSFER PARAMETER 

(a) Theoretical Considerations: 

As discussed in Section I, the basic goal of this investigation 

is to produce a heat transfer prediction scheme devoid of any integral 

relations. Obviously, a series expansion of the heating rate would 

serve this purpose and has, in fact, been considered by Lees (Ref. 4) 

* for the case of a hemisphere cylinder. In his analysis, Lees showed 

that through the use of isentropic gas relations and the modified 

Newtonian pressure coefficient, the basic heat transfer relation (see 

Figure l(a) for clarification of nomenclature) 

1---2 p u r 
q = ~~----------------------------

s J - --2 p u r 
0 

may be written as 

11/2 
d'S -

[ 0. 667 J ....2 q = 1 - 0.722 - 2 s + ... 
Yro Mee 

(1) 

(2) 

Since q usually experiences a very large variation in the nose 

region of a blunt body, one would expect that an excessive ntnnber of 

* Another series representation - a Blasius type series expansion -
shall be considered in detail in Section III (d) . 

• 
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terms of Eq. (2) would be required to yield consistently accurate 

estimates to q for other than small values of s. 
Thus while the use of a series expansion would, in principle, 

resolve the issue, its application would still be somewhat limited. 

Obviously a series representation would be of considerable value for 

a heat transfer parameter which did not experience the extreme 

variation of q, A hint to the existence of such a parameter may be 
- --2 extracted from Eq. (1) by first noting that p and r are even in s 

while u may be considered as an odd function of s. Thus one may 

write that --2 
1 + p II 

s p = 2T + 0 

-3 - I - I I I s 
u = u s + u 3! + 0 0 

and :__4 
-2 -2 - I I I s 
r = s + ro -+ 4! 

so that to the first approximation 

Js ___ 2d- _,-:/+ 
p u r s = u0 4 

0 

Thus Eq. (1) becomes 

) (3) 

(4) 

(5) 

(6) 

q=~ 
-- i 

(7) 
r u 

0 

This result may be generalized to some extent by first defining 
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- I u 
0 

and then noting that according to Eq. (1) 

s = 

_4 
r 
4 
- - -2 p u r 

- i u 
0 

ds 

(8) 

1/2 

(9) 

Again employing the concept of even and odd functions in s, one may 

write that 
~ ~ -6 r s s 
4= Al 4! + A2 6! + , (10) 

- - .....2 -3 --5 E u r s s 
I =Bl J! + B2 5! + 

and 
' (11) 

Uo 

then 
..../+ -6 

1/2 

Al 
s s 
4~ + A2. 6! + . . . . 

s = (12) 
..../+ -6 

Bl 
s s 
4! + B2 6T + . . . . 

Now, Eq. (12) is "exact" in the sense that no new approximations 

have been incorporated into Eq. (1). Thus, the similarity of the 

numerator and denominator of Eq. (12) would seem to imply the possi-

bility that s, as determined from Lees' analysis, is only a weak 
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function of s for the region of convergence of the series represen-

tation. The fact that the right-hand side of Eq. (12) is a radical 

* would obviously strengthen this conclusion. 

Since the limited variation of s has, in truth, only been 

assumed - and that assumption based on a study of an approximate 

analysis - it is apparent that little more has been done thus far 

then to trace the evolution of a working hypothesis. An attempt to 

substantiate this hypothesis would next be in order. 

{b) A Quantitative Study of the Heat Transfer Parameter. 

Following naturally from the rather qualitative analysis of the 

preceding section, an effort is made here to give quantitative meaning 

to the fundamental hypothesis that s is only a weak function of s. 

*Note that for a two-dimensional blunt body, the factor r would not 
appear in Eq. (1), and subsequently not in s. This would, of course, 
force s-oo as 5-o. This problem may be resolved by introducing 
the two-dimensional counterpart of r into s to yield; 

S2 = b. quo I = 
p u 

_J. 
)t. 
4 

JS E....!!. ds 
0 - I 

Uo 

1/2 

which should provide the same weak dependence on s as noted for.s. 
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After various attempts to accomplish this goal through an analytical 

approach proved futile, it became apparent that an empirical study 

would have to suffice. 

Being aware that conclusions based on empirical results are only 

as general as the scope of the study conducted, an earnest effort has 

been made to cover a wide range of possible blunt, axisymmetric body 

configurations. For the sake of consistency, this study has been 

restricted to the case of isothermal surface temperatures. 

Figure 2 presents the local variation of the parameter s 
for six shapes of general ·interest. When available (in the cited 

references of this figure) Lees' prediction of q has also been used 

to compute an s. distribution. Quite obviously, from Figure 2, the 

presumed weak dependence of s on s seems well in line with the 

results obtained from Lees' method. 

The experimental variation of s, while tending to be somewhat 

erratic, does generally display a relatively mild variation over the 

range of s values considered. It should be noted that for s < 1.5, 

for all shapes considered, s does not vary appreciably from its first 

approximation; that is from s = 1. In view of this fact, then, a 

series expansion about the stagnation point for s should converge 

quite rapidly~ Subsequently, only a minimum of terms of such a series 

would be required to yield good estimates to the true variation of s. 
Such a series representation is next considered in detail. 
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III. A SERIES EXPANSION OF THE HEAT TRANSFER PARAMETER 

(a) General Discussion. 

Here consideration is given to a Taylor series expansion of the 

form n = ,_, t< 
s L K! s(K) (O) + R 

n ' (13) 

K=O 

where S(K) is the Kth_ordered derivative of S 
and Rn is the remainder after n terms of the series. 

It should be evident that since Eq. (13) requires continuity 

of$ through its first n + 1 derivatives its use shall be considerably 

more restrictive than the simple requirement of axial synunetry and 

isothermal body surfaces. The fact that the continuity of s is quite 

easily violated may be shown through ~ts relation to r. Since the 

higher ordered derivatives of r are frequently discontinuous, it 

should be expected that the proposed series will have its radius of 

convergence reduced as more terms are added to Eq. (13). In turn, it 

is noted that aside from possible truncation errors, a single term 

expansion (S = 1) should be quite general and apply to a large number 

of shapes of practical interest. This statement seems well justified 

by the results of Figure 2 as discussed above. 

(b) Higher Ordered Derivatives of s. 
Again employing the concept of even and odd functions, as applied 

to the flow about blunt axisynunetric bodies, it is noted that r and u 
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are in general odd functions of s. Conversely, p and q may be con-

sidered as even in s, It follows then that s is an even function of s 
so that Eq. (13) must be of the form 

-2 s = 1 + ~ 2 

Now rewriting Eq. (8) as 

p u s 
and considering 

- - "' <P u s> 0 

it follows that 

- I = u 
0 

- I = u 
0 

r q 

II er- Ci> 0 

11 I 

+R n 

' 

II 1 - ill u ii 1 0 = q + - r -0 3 0 3 ::--;- - po 
u 

0 

In a similar manner one may compute 

<'P ti s> v = u ' er- Cf> v 
0 0 0 

to yield 
-V 

iv "' - " + 1 -v 1 u 
so - iv+ 2 0 2 -= q r qo -r -5~- Po 0 0 5 0 Uo 

Ill 

iV - 2 s II - Po o 

" 
11 I 

u 
0 

- I u 
0 

Convenient relations for the higher ordered derivatives of 

q and u are now considered. 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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(c) Higher Ordered Derivatives of u. 

Euler's equation for a steady inviscid flow field may be written 

as 
du ~ 

pu dS = - ds 

and subsequently normalized to 

where 

---1 I 
p u u = - k p 

Ps 2 
K = -u p co s 

(20) 

(21) 

(22) 

Since the isentropic forms of the gas relations are both familiar 

and convenient, they have been employed here. If need be, real gas 

effects may be accounted for through use of some effective specific 

heat ratio, y. 

Thus Eq. (21) may be written as 

where 

By considering 
lim 

s-o 
it may be shown that 

p11 p' · = - K u u' 

1 
Tl = y 

E1 
_, 
p = lim __ , 

s-o u u 

- II 
Po 

K = - - r2 
u 

0 

-

, (23) 

(24) 

K , (25) 

(26) 
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Equation (23) now can be rewritten in a more convenient form 

as 
::11 _, 
p p 

- II 

Po· - _, 
= - •2 u u 

u 
0 

(27) 

Considering the higher ordered derivatives of Eq. (27) allows one 

to write 

and 
-v 

- "' u 
0 -= 

- I u 
0 

uo = .!. [ 
- I 6 u 

0 

iv 
Po --+ - " 

- II J 3 'Tl Po . 
Po 

- iv 2 
5 Po J 
8 ( - II ) 

Po 

(d) Higher Ordered Derivatives of q .. 

For the computation of higher ordered derivatives of q two 

methods have been considered. The first method (designated as 

(28) 

(29) 

Method 1) is based on an accepted approximate solution, while the 

second method (Method 2) will be taken from an "exact" but restricted 

analysis. Method 2 only allows for the computation of second order 

derivative of s whereas Method 1 shares no such restriction. 

Method 1; 

To determine convenient relations for the higher order derivatives 

of q (in the stagnation region), it should be noted first that the 
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stagnation point is a position at which true boundary layer similarity 

exists. Thus one might conclude that in a small region about s = O, 

local similarity resuits should very closely approximate the local 

variation of q. This approximation is now assumed to be sufficiently 

accurate to provide good estimates of the derivatives of q at s = O. 

One of the more thorough methods presently available in the 

literature, for computing q from local similarity concepts, is that 

* presented by Beckwith and Cohen in Ref. 5. This method combines 

local similarity results with the energy integral equation to approxi-

mate the dependence of the boundary layer parameters on the external 

flow field and the wall conditions. 

From Beckwith's analysis one can write that 
I 

2 

q = 

1 + F w 

Pr w t aw t w e w 

l + Fw (t - t ) e 1 

( Pr ) 0 aw w o w0 
w 

(30) 

where 
e I w 

e I 
is a function of ~ and tw' as given by the results of the 

WO 

similar solution analysis for Pr = 1 and = 1 ... 

*Lees' solution is a special case of the method discussed in Ref. $ . 

• 
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The term ~ is determined by Beckwith and Cohen from an analysis 

combining local similarity with the energy integral equation to yield; 

where 

2 1 du ---2 t ds u e ~ = .....;;.;.. ___ _ 

1 + F w 
Pr f' = ___ w __ _ 

1 + F ( ___ w )o 

Pr w 

Rewriting Eq. (31) as 

l - t w 

(1 - t ) w 0 

€) I 

w 

' 

1/2 
du ) = ------------------------------,..-

] 1/2 ds 
ds 

and noting that since 
h 

t =(~) =l 
awo He o 

then 1 + F w 
Pr t - t e t - t w aw w w r ·aw w ---- = , 

I 1 + F (t - t ) e 1 - t 
( w 

)o 
aw w o w w 

Pr 
0 

w 

so that Eq. (30) becomes 

(31) 

(32) 

' (33) 

(34) 

(35) 
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where t - t R __ aw ___ w_ 

Normalizing Eq. (36), then 

1 1 
q = - 1/2 2 

- I 
(u ) 

0 

1 - t w 

- - - - 2 p µ u r f R w w 

las [ - -2 -
PW µw u r 

(36) 

(37) 

]1/2 r2 ds 
(38) 

As was pointed out in Ref. S, by considering wall temperatures 

less than 4400 °R, one is justified in the use of the thermally 

perfect gas relations in the vicinity' of the wall. Accepting such a 

premise then; 

or 
Pw µw = 

where T w 
0 w - T w w 

p 

µw 
µw 

0 

T w 
0 

T w 

w w 

For the case of an isothermal cold wall, Eq. (38) reduces 

to 

(39) 

(40) 

(41) 
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1 P' ii' r r 2 R 
q = -----1/2 

2 (;:; I) 
0 

(42) 

[ 
Computing q', and ridding the system of the integral by reintro-

ducing Eq. (42), results in 

- - - 2 2 I - c- -- 2 l' up r f R q = R q up r f RJ - 2 - I u 
0 

-3 -q r (43) 

Now taking the third derivative of Eq. (43), it may be shown that 

-~r" +R." +1P'" - 3 0 0 3 0 

- Iii u 
+ ~ _o_ + 1:. -; 111 

9 - I 9 0 
Uo 

(44) 

In a similar manner, the fifth derivative of Eq. (43) may be 

computed to yield 

• 3 II = R l.V + -- R 
0 2 0 

II II 

+ 15 R r 
0 0 

- " + 3 q 
0 

r " 3 - "- " + 2. a " o + 2 qo Po 2 o 

II 2 15 11 
+3R +-2R 

0 0 

Ill 
.- Ill 5 UO II 
r +--R 

0 2 - I 0 u 
0 

111 

1 UO - II +--q 2 - I 0 
uo 

+ l r iv + 2. r rr2 + 9 r " - " 
2 o 2 o o Po 

+ l - iV + - HI r II 3 - Ill - II 

4 Po 3 ro o + 2 ro Po 

+ 3 

- Ill 
u 
-2-- r 
- I 0 u 

0 

-v 

II I 

" 3 uo - Ii +--p 2 - I 0 u 
0 

"'"_l . 20 
uo 9 - 112 - "' 

- - q - r 
- I 2 0 0 
u 

0 

- "' 
1 uo - Ill +--r 2 - I 0 u 

0 

(45) 
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In order to complete the analysis the higher ordered derivatives 

of r and R must be evaluated. 

For an isothermal wall, r simply becomes (see Eq. (32)) 
e I 

f=~ e I 

w 
0 

In Ref. 5, Beckwith and Cohen present a correlation for Eq. (46) 

which is valid over the entire range of ~ considered (O to 00) 

according to the relation 

(e I ) 

w~=l o 

(47) 

where P, Q, R and N are determined (by Beckwith and Cohen) as functions 

of~· 

While Eq. (47) allows one to generate expressions for the higher 

ordered derivatives of r, the work involved may be greatly reduced by 

considering the case of r = l." This essentially reduces Beckwith 

and Cohen's analysis to that of Lees' (Ref. 4); this is felt to be 

satisfactory for the exploratory study proposed here. 

Accepting the implied restrictions, then 

II • r = r iv = o 
0 0 

(48) 

Next considering the derivatives of R, it is noted (from Eq. (37)) 

that for an isothermal wall 
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t 
11 aw 

r.. 0 = 0 1 - t ' (49) 
w 

0 

and t iv 
Riv 

aw 
0 = 1 0 - t (SO) 

w 
0 

t = t + Ct (1 - t ) aw e e ' 
Since (51) 

and et is commonly considered a constant having a numerical value 0.85, 

Eqs. (49) and {50) become 

and 

R 
0 

R 
0 

respectively. 

II 

iv 

1 - Q" 11 

= 1 - t te w 0 
0 

1 - Ct t = 1 - t e w 0 
0 

' 

iv 

As in Section III(c), using the assumption of 

specific heat ratio, one can write that 

and iv 
t = e 

0 

thus 

t 

y -
y 

R 

11 

e 
0 

1 

II 

0 

y-l-11 = y po 

iv l ( y -po y y 

- II = Kl Po ; 

1 ) - 112 
Po 

(52) 

(53) 

an effective 

(54) 

' (55) 

(56) 
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and R. iv Kl [-iv 3 - 112 J (57) = p - y Po 0 0 
, 

where 

Kl 
y - 1 1 - ct (58) = 1 -y t w 

0 

which completes the analysis for Method 1. 

Method 2: 

The second means of computing the higher ordered derivatives 

of q has been taken directly from the work of Davis and Flugge-Lotz 

(Ref. 8). In that paper, the authors develop an "exact" solution to 

the laminar boundary layer equations which includes second-order 

vorticity effects for blunt axisynnnetric bodies. In so doing, a 

Blasius series representation of the flow paramete+s about s = 0 is 

employed to obtain an 11 exact11 solution to the equations of motion in 

the stagnation region. 

Considering a perfect gas (y = 1.4), a constant Prandtl number 

of O. 7, and a 1/2-power viscosity law, Davis and Flugge-Lotz are able 

to generalize the coefficients of the series representations so that 

they become only functions of the wall to stagnation temperature 

ratio at s = 0. This dependence is not explicit and requires computer 

techniques to obtain the functional relationship·. Values of these co-

efficients are presented in Ref. 8 for a range of tw0 of 0.2 to 2.0. 

Considering only first order effects, then, Ref. 8 allows one 

to write (for isothermal walls) 
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- Ill 
r 

0 ' 

where K2, K3 , and K4 are functions of tw
0 

only. 

(59) 

Figure 3 presents these coefficients (K2, K3 , and K4) as determined 
.. 

from an interpolation of the data of Davis and Flugge-Lotz (Ref. 8). 

Also shown are values of the same coefficients as determined by 

Method l; these were obtained by combining Eqs. (28), (44), (48), 

and (56), whereby 
iv 

1 = 18 
Po 1 - "' --+-r 

II 9 0 
(60) 

Po 

It would seem that the second order terms of Method 1 provide 

for a fair degree of accuracy for very cold walls but lose accuracy 

as t increase. This is to be expected since the restrictions w 
employed in the derivation of Method 1 are essentially for the cold 

wall case. 

(e) Equation Sunmiary. 

Thus far it has been shown that 

i;: II - - II 1 - 111 

'='o - qo + 3 ro 

i:- iv - iv 2 - '" - " 1 - v '=' =q + r q +-r 0 0 0 0 5 0 

- "' 
- iV • 2 S II 

- Po o [ uo - "] =-r-+3p ' 
UO 0 

' 
- 111 
u 

- " 0 
2 Po - ' 

Uo 

(61) 

(62) 
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Also, 

iv 
qo 

and 
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iv 

-= 
1 [ Po · _ 11] 
4 =-;.--- + 3 Tl Po ' - I 

Uo Po 

iv 15 - 112 
Po + 8 ri(Sri-8) Po 

according to Method 1: 

iv = R 
0 

- iv 
- II 1 Po 1 - 111 

[Kl +1 1 J - II qo = --+-r + po 18 - n 9 O 3 6y 
Po 

+1R " - II 112 + 11. R " - II 

qo + 3 R po 2 0 0 2 0 

_ Ill 

3 - " - II + .?_ R " - Ill u 
+-q Po r + .?_ _o_ R 11 

2 0 2 0 0 2 - I 0 
Uo 

'" - Ill 
TI' 

+ -1 _o 11 3 - iv 3 - "' - " q +-p +-r p 2 - ! 0 4 0 .2 0 0 u 

3 UO - II 
+---p 2-• 0 u 

0 

- 111 

1 u - "' + - _o_ r 
2 - i 0 u 

0 

- ill 
r 

0 ' 

R iv 
0 

[ - iv 3 - 11 2 J 
= Kl po - y po 

0 

9 - 112 
- - q 2 (). 

(63) 

(64) 

(65). 

(66) 

(67) 

(68) 
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Now, for Method 2; 

- 111 - II 
r + K4 p 

0 0 
(69) 

Combining Eqs. (61)-(68) it may be shown that for Method 1; 

and 

iv 
[ 1 1 J 4 - 111 1 Po K --+-- +-r ----1 3 12y 9 0 36 - II 

po 
(70) 

5 -J· + - 11 2 [l 2 K 0.25+2. 5 K1 - 24 ·. Po - 1 - y 

1 J _ ... c- .. 8 1 - -- + r p ( - K + - - 1) -64y2 0 0 3 l 4y 

- iv 
1 Po J 

12 - 11 

Po 

1 - 111 2 3 - II I 7 
+ 18 ro + 10 ro + 576 

p iv 2 
' 0 
(~) 

p iv 
0 (71) 

Po 

Similarly, using Eq. (69} it may be shown that for Method 2; 

II r 1 J - 11 r 1 ·] - 111 = L K4 + 4y - 1 po .+ L 3 + K3 ro 

- iv 
[ 1 J po +K----2 12 - 11 

po 
(72) 



-30-

IV. COMPUTATIONAL METHOD AND NUMERICAL EXAMPLES 

(a) General Computing Method. 

To maintain the generality of the computational scheme, expressions 

for the higher ordered derivatives of p and r have not been considered. 

Evaluation of these terms is quite easily effected and shall be left 

to the specific examples considered. 

Assuming that values of s have been obtained, it remains to 

present general relations for the heating rate, q, One of the basic 

assumptions for the present method is that the pressure distribution 

over the body of interest is known. Thus, the final relations for q 

will be set down in 'terms of p and appropriate constants. 

Making use of the definition of $ (Eq. (8)) then 

- 'Pus q==-
r'U I 

0 

(73) 

Now, employing the perfect gas relations, the energy equation 

may be written as 
tl 

u ~ =~ [1 - p y 
00 0 

1/2 

J 
so that Eq. (73) becomes 

q = ~ (1 
tl 1/2~ - Y ) __ o_ 

- p - I 
r UO UCO 

(74) 

(75) 
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Approximating the term.J2"'iC' according to 
0 

..b_ Ps 
y-1 p s ' 

and noting that on combining Eqs. (22) and (26) 

- I 

~ = u 00 u 0 

P8 j. - 11 
.. Po 

then 
- i u u 

.J2"'iC' = Q:) 0 

0 J-" -po 
~ y-1 

thus Eq. (75) becomes 

q = s ~ 
r 

tl 1/2 ------
[ l - - ; J j -2y 

p - II 
(y-1) Po 

- II 

(76) 

(77) 

(78) 

(79) 

It is seen that once p has been determined, the heat transfer 
0 

ratio can be readily evaluated from Eq. (79). 

(b) Heat Transfer on a Sphere • 
.. 

In Ref. 2, Davis and Flugge-Lotz apply their first and second-

order analysis of the boundary layer equations to a sphere at a Mach 

number of 10 in a perfect gas. These results are shown in Figures 

4(a) and 4(b) along with the results obtained from the present methods. 

It should be noted that the data employed in the present computations 

were the exact computer outputs obtained in Ref. 2; these have been 
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graciously supplied by Dr. Davis .. These results not only eliminate 

the uncertainties of experimental data, but their use also reduces the 

errors incurred when one extracts data from the usual graphical 

presentations of published works. 

Also made available by Dr. Davis were highly accurate values of 

the higher ordered pressure derivatives at the stagnation point. As 

discussed in Sec. III(d), Davis and Flugge-Lotz (Ref. 2) employed a 

series representation to determine the flow parameters from their 

Blasius type series solution in the vicinity of the stagnation point, 

These results provide the following: 

and 

-p II 

0 = 

- iv 
Po -=-

- 2.406 

6.344~ 

- vi 
po ---..- = 61. 6500 
Po 

so that according to Method l; 

' 

' 

-2 4 s = 1 + 0.06639 s - 0.015629 s 
and from Method 2; 

s = 1 + 0.1138 s2-

(80) 

{81) 

(82) 

, {83) 

(84) 
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As would be expected from a comparison of the coefficients of 

Eqs. (83) and (84), Figures 4(a) and 4(b) show very little difference 

in the results obtained from Methods 1 and 2. It is apparent that, 

for the case at hand, use of the simpler method - the first approxi-

mation - seems well justified for the entire range of s. Reviewing 

the higher ordered approximations, the results of Method 2 seem to 

produce nearly exact correlation with the exact results of Ref. (2). 

for s < 1. Note that a series expansion of q would yield 

- -2 q = 1 - 0.972 s (85) 

which loses accuracy quite rapidly for s > 0.5. 

(c) Heat Transfer Distribution on a Paraboloid of Revolution. 

Davis and Flugge-Lotz (Ref. 2) also presented data for a 

paraboloid of revolution at a Mach number of infinity in a perfect 

gas. Arbitrarily choosing the case of t = 0.2, the heat transfer w 
distribution has again been obtained using the exact computer output 

of Ref. 2 as input to the present methods, 

Figure 4(c) presents the variation of q as given by Method 1. 

It is noted that although the second and third approximations do 

correct for the failure of the first approximation to yield valid 

-< results, they seemingly do so only for s _ 1.2. Above s = 1.2 

the third approximation is seen to experience a divergent characteristic 

which is felt to be due to truncation errors. That is, the correction 
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to the first approximation for s small becomes predominant as s 

takes on large values. 

Comparing the higher approximations of Methods 1 and 2, 

Figure 4(d) shows the same results as noted above. That is, even 

though the second approximation of Method 2 does produce accurate 

estimates of q for s ~ 1, it none the less shows a divergent 

characteristic for large s. 

(d) Heat Transfer Distribution on a HemisEhere Cylinder. 

In Ref. 3, Kemp, Rose, and Detra present experimental data for 

a hemisphere cylinder obtained from a shock tube study. The test 

conditions corresponded to an equivalent flight velocity of 18,000 

ft/sec at 70,000 feet of altitude. The wall to stagnation temperature 

ratio is stated as approximately 0.05. Since the pressure distri-

bution taken in that study did not extend into the stagnation region, 

the authors imply the use of a modified Newtonian distribution of 

the form 
p = 1 - 0.8913 

for use in the stagnation region, 

Thus from Eq. (86) one obtains 

- II 
P = - 1.7826 

0 

iv p 
0 
~ = - 4 
- II 

Po 

. 2 sin s (86) 

' (87) 

(88) 
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- vi 
po 
-= 16 
- II 

Po 
(89) 

Figure 4(e) presents the experimental results obtained in Ref. 3 

along with the approximations of the present Method 1 when using the 

above data. As a comparison, Lees' method, as presented in Ref. 3 

for this body, is also shown in the figure. Note that while any of 

the results of Method l would be satisfactory for first estimates, 

the higher ordered approximations are consistently in error over the 

entire range of s. This same behaviour was noted for the higher 

ordered approximation of Method 2 (Method 2 is not shown since it 

produced results within 1 to 2 percent of the results of Method 1). 

This result seems due to the inability to extract accurate data from 

the figures of Ref. 3. 

While Lees' method does definitely yield better results than 

the present method, it is also obvious that for this shape, little 

is lost by use of the first approximation instead. 

(e) Heat Transfer Distribution on the Flat Nosed Cylinder of Reference 3. 

Figure 4(f) presents the experimental data of Ref. 3 for a flat 

nosed cylinder with stagnation point conditions corresponding to a 

speed of 14,000 fps at 80,000 feet of altitude. The specific heat 

ratio has been taken as y = 1.195 and tw ~ O. 

As suggested by Solomon (Ref. 7), the pressure distribution on the 

forward portion of this body is approximated by 
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p = 1 - 0.1849 . 2 sin s (90) 

Following the same procedure as in the previous sections, the 

heat transfer distribution, corresponding to the present Methods 1 

* and 2, have been computed and are also shown in the figure. It is 

noted that the experimental heat transfer is 20 to 30 percent higher 

than that predicted {here) in the corner region. Thissame type of 

deficiency was pointed out in Ref. 3 for the local similarity results. 

However, there the discrepancy was more adverse than in the. present 

case. In fact, in the corner region the present first approximation 

is almost equivalent to the local similarity heating rates. 

It should be noted that the higher ordered approximations of the 

present methods are not valid for s > 0.75, even though they appear 

to attain a peak value at about s = 0.83. This limitation is due to 

the discontinuous nature of the higher order derivatives of r at the 

corner junction. Regardless of this fact, it is seen that the higher 

ordered approximations do continu~ to produce better results than the 

previously discussed approximate scheme, right up to the peak value. 

Thus, whiles= 0.75 is surely the rigorous limit of the present method, 

a practical limit for a shape of this type might be taken as the 

* Again, since the results of Method 2 were essentially the same as 
those of Method 1 for the higher ordered approximation, a direct 
comparison is not shown, 
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position of the peak heating rate. Thereafter one would resort to 

the first approximation, which continues to be valid over the entire 

body. 

(f) Heat Transfer Distribution on the Flat-Nosed Cylinder of 
Reference 5. 

Here consideration is given to the flat-nosed cylinder depicted 

in Figure 4(g). Note the very small radius of curvature at the corner 

as compared to the case discussed in Section IV(d), 

Once again only the results for Method l are shown since the 

higher ordered approximations of the two present methods were 

essentially the same. 

In reviewing the results of the present method, as presented in 

Figure 4(g), one should note that the suggested velocity gradient of 

Ref. 5 has not been employed here. In Ref. 5, Beckwith and Cohen 

encountered difficulty in determining the stagnation point velocity 

gradient due to the erratic behaviour of the velocity dis.tribution 

in the vicinity of ; = 0 (the velocity distribution having been 

* determined from an experimental pressure distribution). 

* This difficulty is quite reasonable since, for y = 1.4, 

- ,- -0.29 ]1/2 u ~ 1 - p 

and hence for p ~ 1, ~is quite sensitive to error. 
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The authors (Ref. 5) therefore made use of a velocity gradient 

determined experimentally for a similar body but at a different Mach 

number. However, it was found here that by plotting the pressure 

distribution, as given by Beckwith and Cohen, in the form - p versus 

sin2 s - a linear relationship was apparent for a reasonable region 

about s = O. From such a plot the slope has been determined, so that 

to a reasonable degree of accuracy 

p = l - Ool02 sin2 s (90) 

and hence 
- II p0 = - 0.204 (91) 

The results obtained by using the derivative of Eq. (91) in 

* the present Method 1 are also shown in Figure 4(g). Note that while 

the second and third approximations are not valid for s > 0.91, they 

do seem to predict the position and, very nearly, the value of the 

peak heating rate, This, of course, is a definite advantage over 

Lees' method and is surpassed only slightly by the results of Ref. 5. 

(g) Heat Transfer Distribution on a Blunted-Cone-Cylinder. 

A consideration of the heat transfer distribution over a blunted-

cone-cylinder configuration provides a critical test of the present 

*Figure 4(g) presents Lees method in lieu of Beckwith and Cohen's only 
for the sake of consistency. While the method of Ref. 5 is more 
accurate in the corner region, it is considerably more difficult to 
apply. 
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method. In the previous cases s has not attained values larger 

than 2, here values of s up to 15 must be considered. 

Figure 4(h) presents a faired curve for the experimental heat 

transfer distribution, as obtained from Ref. 6, Also shown are the 

results of the present Method 1 (again Method 2 has not been shown 

so as to avoid redundancy). Note that the first approximation, valid 

over the entire body, does seem to adequately predict the experimental 

heat transfer except in the cone and corner region. At present there 

does not seem to be any way to correct for this deficiency; it is 

simply accepted as a limitation of the present methods. For "better 

than order-of-magnitude" results though, the first approximation 

would appear to be quite sufficient. 

(h) A Study of the Sensitivity of the Present Methods to Errors in 
the Input Constants. 

Quite obviously, from a study of Eqs. (70)-(72) and Eq. (79), 

the input parameters which may·introduce errors are ihe pressure 

derivatives and the effective specific heat ratio, y. Since close 

practical limits exist on the available values of y, the investigation 

here will be directed toward the effect of variations in the stag-

nation point pressure derivatives. 

A generally accepted means of expressing the pressure distribution 

in the forward region of blunt bodies is in the form of a modified 

Newtonian pressure coefficient, This method was employed in the 
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previous examples when more accurate means were not available. It 

should be noted that use of the Newtonian approximation is usually 

- iv -only required to obtain estimates of the ratios, p /p " and 9 0 
- fl The value of p may often be obtained by simply plotting 

0 

the pressure distribution in an appropriate manner (say p versus 

sin2 s) so as to obtain a linear variation of p(s). 
Since very accurate values of the pressure derivative ratios 

were available in the data of Ref. 2, an examination of the use of 

the Newtonian approximation has been made for the cases of a sphere 

* and a paraboloid. 

For the case of the sphere previously considered, Davis and 

Flugge-Lotz (Ref. 2) had available the ratios 

- iv 
Po 

6.3~41 --= - , 
- II 

(92) 
Po 

and 
- vi 
Po 

61. 6500 --= 
- II 

(93) 
po 

Equations (92) and (93) should be compared with the values 

obtained by the Newtonian approximations; 

* The theoretical pressure distributions employed in Ref. 2 were made 
available to Davis and Flugge-Lotz by H. Lomax of the Ames Research 
Center of NASA. 
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iv 
po 

4 -= - , - " (94) 
Po 

and - vi 
Po 

16 -= 
- II 

(95) 
Po 

Even though there is a large difference in these two results, 

the heat transfer distributions, generated from the respective 

ratios, differed so little that there was no significant change in 

the results of Figures 4(a) and 4(b). 

While these results would seem to imply that the present methods 

are insensitive to errors in the stagnation point pressure derivatives, 

the following results obtained for the case of a paraboloid of 

revolution do not support this as a general conclusion. 

From the data of Davis and Flugge-Lotz (Ref. 2), -it was found 

that for the paraboloid previously considered, 

p iv· 
0 11.5075 {96) -= - ' - II 

Po 

and - vi 
Po 

259.4 (97) -= ' - " 
Po 

while from the Newtonian approximation 

- iv 
Po 

16 (98) -=- ' - II 
Po 
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- vi 
po 
-- = 688 
- II 

Po 

(99) 

Based on a percentage error these results are about as inaccurate 

as those presented for the sphere. Thus one would expect that this 

difference would have as little effect here as it did for the heat 

transfer distribution over a sphere. While for the second approxi-

mation this does prove to be generally true, Figure S shows that the 

third approximation (of Method 1) experiences a gross divergence from 

the true variation of q when employing the results given in Eqs. (98) 

and (99). 

Since there seems to be no definite cause for this behaviour of 

the present method's third approximation, and since the second approxi-

mation (as seen in Figure 5) is as accurate as the third, it would 

appear that a restriction on the present method is required. Thus 

it is suggested that the third approximation be dropped completely 

unless accurate values of the pressure derivative ratios are available. 
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V. CONCLUSIONS 

In view of the results obtained in articles IV (b) - (h)_, the 

following general conclusions have been formulated: 

(1) The present scheme developed for predicting first estimates 

of the heat transfer distribution, on isothermal axisymmetric 

blunt bodies, yields satisfactory results so long as the series 

representation of s is not violated. Such a violation would be 

the extension of the method into regions not within the radius 

of convergenc~ of the series employed to represents s. 
(2) For order-of-magnitude purposes, the present first approxi-

mation yields excellent results for all cases considered. Since 

this approximation may be applied to a large number of shapes 

of general interest and is extremely simple to apply, it is felt 

to be of interest for future studies in this area. 

(3) The sensitivity of the higher ordered approximations to the 

choice of input data has been demonstrated in article IV (h). 

These results indicate that the input accuracy becomes progressively 

more critical as the order of approximation is increased. To 

avoid this difficulty, it is suggested that one consider only 

approximations through the second order term unless very accurate 

values of the input constants are available. This rule of thumb 
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represents a compromise situation, but is one which is definitely 

applicable to the cases considered here. 

(4) The choice of either Method 1 or 2 would seem to be 

irrelevant as indicated by the results obtained in Section IV. 

Since Method 2 is based on a more exacting study than that of 

Method 1, it is suggested that Method 2 be taken as generally 

more valid. 
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(a) THREE DIMENSIONAL BODY 

(b) TWO DIMENSIONAL BODY 

FIG URE I. COORDINATE SYSTEMS 
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A SIMPLIFIED MEANS OF PROVIDING FIRST ESTIMATES TO 

LAMINAR HEATING RATES ON ISOTHERMAL 

AXISYMMETRIC BLUNT BODIES 

Abstract 

An approximate scheme for the rapid calculation of first 

estimates to the laminar heat transfer distribution over isothermal 

axisymmetric blunt bodies is developed. The method devised is free 

of any integral relations and reduces the required computing effort 

to a simple slide ru~e task. The simplicity of the method is due to 

the introduction of a new heat transfer parameter which is shown, from 

a semiempirical study, to undergo only moderate variation in regions 

where the heat transfer experiences order of magnitude changes. Based 

on these results, a series expansion for the parameter of interest is 

obtained through the fourth order term. Even though the perfect gas 

laws are employed in the series expansion, the resulting effect on the 

heat transfer ratio is felt to·be small. 

To substantiate the method, the heat transfer computed by the 

present scheme was compared with experimental, first-order exact, and 

Lees' approximate scheme for six body shapes of general interest. In 

all cases, fair to moderately good results were obtained. It is felt 

that any loss in accuracy is readily compensated for by the fact that 

the present method requires no numerical integration and therefore is 

extremely easy to apply. 
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