Qatar Content Classification

Classifying Arabic texts using machine learning

Abstract
This is a course project for the CS6604 — Digital libraries course (Spring 2014). The
project has been conducted under the supervision of Prof. Ed Fox and Mr. Tarek
Kanan. The goal is to develop an Arabic newspapers classifier. We have built a
collection of 700 Arabic newspaper articles and 1700 Arabic full-newspaper PDF files.
A stemmer, named “P-Stemmer”, is proposed. Evaluation have shown that P-
Stemmer outperform the widely used Larkey’s light stemmer. Several classification
techniques were tested on Arabic data including SVM, Naive Bayes and Random
Forest. We built and tested 21 multiclass classifiers, 15 binary Classifiers, and 5
compound classifiers using the voting technique. Finally, we uploaded the classified
instances to Apache Solr for searching and indexing purposes.
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1 Introduction

The goal of this project is to develop an Arabic newspapers classifier. We have built a collection of 700 Arabic
newspaper articles and 1700 Arabic full-newspaper PDF files. A stemmer, named “P-Stemmer”, is proposed.
Evaluation have shown that P-Stemmer outperform the widely used Larkey’s light stemmer. Several
classification techniques were tested on Arabic data including SVM, Naive Bayes and Random Forest. We built
and tested 21 multiclass classifiers, 15 binary Classifiers, and 5 compound classifiers using the voting
technique. Finally, we uploaded the classified instances to Apache Solr for searching and indexing purposes.

This report is organized in 8 main sections. Section 2 presents the taxonomy used in classification. Section 3
and section 4 illustrates the data sources and developed tools used to collect for the training set and the
testing set, respectively. Section 5 provides a detained description of the preprocessing steps applied to the
datasets. In section 6, we provide the results of applying different classifiers using different machine learning
techniques. Section 7, shows how to classify the testing set using the trained classifiers. Finally, section 8 shows
how to install and use Apache Solr for indexing and searching Arabic collections.

2 Arabic Newspaper Taxonomy
The IPTC Media Topic taxonomy [1], developed by the International Press Telecommunication Council (IPTC),

is a five levels taxonomy of 1100 terms. Table 2.1 shows the first two levels of IPTC’s taxonomy.

Table 2.1: The first and second levels of the IPTC media topic taxonomy.

1%t level 2" |evel

Art, culture and entertainment Arts and entertainment — Culture — Mass media
Crime, law and justice Crime — Judiciary — Justice and rights — Law — Law enforcement

Disaster and accident Accident — Disaster — Emergency incident — Emergency planning —
Emergency response
Economy, business and finance Business information — Economic sector — Economy — Market and

exchange

Education Parent organization — Religious education — School — Social learning —
Teaching and learning

Environment Climate change — Conservation — Environmental politics — Environmental
pollution
Natural resource — Nature

Health Diseases and conditions — Health facility — Health organizations — Health
treatment — Healthcare policy — Medical profession — Non-human diseases

Human interest Accomplishment — Animal — Ceremony — People — Plant

Labor Employment — Employment legislation — Labor market — Labor relations —
Retirement — Unemployment — Unions

Lifestyle and leisure Leisure — Lifestyle

Politics Election — Fundamental rights — Government — Government policy —

International relations — Non-governmental — Political crisis — Political
dissent — Political process

Religion and belief Belief — Interreligious dialog — Religious conflict — Religious event —
Religious facilities — Religious institutions and state relations — Religious
leader — Religious text

Science and technology Biomedical science — Mathematics — Mechanical engineering — Natural
science — Research — Scientific institutions — Social sciences — Standards —
Technology and engineering

. _____________________________________________________________________________________________________|
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1% |evel 2" |evel

Society Communities —Demographics — Discrimination — Family — Mankind — Social
condition — Social problem — Values — Welfare

Sport Competition discipline — Disciplinary action in sport — Drug use in sport —
Sport event — Sport industry — Sport organization — Sport venue — Transfer

Conflicts, war and peace Act of terror — Armed conflict — Civil unrest — Coup — Massacre — Peace
process — Post-war reconstruction — Prisoners and detainees

Weather Weather forecast — Weather phenomena — Weather statistics — Weather
warning

Inspired by the IPTC’s taxonomy, the developed Arabic newspaper taxonomy reflects the categorization
hierarchy, which is common in Arabic newspapers as shown in Figure 2.1.

Arabic
newspaper
taxonomy

Art and culture Economy Politics Society Sport

Figure 2.1: Arabic newspaper taxonomy.

3 Collecting the Training Set

The goal of this project is to build a text classifier that can classify Arabic articles of Qatar newspapers according
to the proposed Arabic taxonomy shown in Figure 2.1. Training the classifier using supervised machine learning
requires a training set of pre-classified articles. We have collected a set of articles from two Qatar newspapers,
Al-Raya' and Qatar News Agency (QNA)?, as shown in Table 2.1.

Table 3.1: Articles collected from newspapers’ categories corresponding to taxonomy subclasses.

Newspaper’s

Subclass Newspaper Retrieved articles
category

Art Al-Raya Gty Gl — e sia 44
LRI Culture Al-Raya Gl 5 AlE — e gia 52
Mass media Al-Raya Osonli g deld) — e gia 54

Local economy QNA L) — dalasa J‘-\A‘ 75
International economy QNA o) — Ao lal 75
m Local politics QNA s — ddae sl 75
International politics QNA A — A g jlal 75
Death notices Al-Raya Ol — aaline 89
Society . i .
Wedding announcements  Al-Raya o)A — adina 61
m Local sports QNA Aal) — das LAl 75
International sports QNA Aaly — 4l sl 75

" The website of Al-Raya newspaper is available at http://www.raya.com/
2 The website of Qatar News Agency newspaper is available at http://www.gna.org.qa/
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3.1 The Al-Raya Crawler

The website for the Al-Raya’s newspaper provides a categorized set of articles. In order to retrieve the articles
from Al-Raya’s website, we developed a Java tool named “Al-Raya Crawler”. The tool takes the URL of an Al-
Raya’s category page and a path to a destination directory on local machine as shown in Figure 2.1.

=4 Al-Raya Crawler - =
Source URL: hitp:/iwww.raya.cominews/ProspectsAndArts
Destination Directory: | D:\Qatar Classification\Training Set\art and Culture\art

Crawl J

Figure 3.1: A screenshot of the Raya Crawler tool.

The tool retrieves the HTML page at the specified URL, extracts the links to all articles listed in that page, and
filters out any links to non-article content (e.g. ads). Afterwards, for each extracted link, the tool retrieves the
corresponding article’s HTML page and extract both the article’s header and the article’s text content. Finally,
for each article, the tool saves the extracted content to a text file at the specified destination directory and
uses the article header as a file name. We used the tool to retrieve instances from five categories of Al-Raya’s
articles corresponding to five subclasses in the taxonomy as shown in Table 2.1.

3.2 The QNA HTML2TXT Tool

To obtain instances for the remaining six subclasses, we have retrieved 75 article in HTML format for each
remaining subclass from the QNA website. In order to extract the header and the content of each article from
the HTML files, we developed a Java tool named “QNA HTML2TXT”. The tool takes the path of the directory
containing the HTML files and a destination directory as input as shown in Figure 3.2Figure 2.1. For each HTML
file, the tool extracts the header and the content of the article and saves the extracted content to a text file at
the specified destination directory using the article header as a file name.

=

2 QNA HTML2TXT - O

Source Directory: iCiatar ClassificatiomCMNA Website Articles\Local Paolitics

Destination Directory:  ¥\Qatar Classification\Training Set\Politics\Local Politics

[ Extract Text J

Figure 3.2: A screenshot of the QNA HTML2TXT tool.

4 Collecting the Testing Set

The Al-Raya’s website has an archive of published newspapers in PDF format. Using the Heritrix crawler', we
have collected 1700 PDF files. Each PDF file has a set of pages and each page contains one article or more.
Some pages may contain no articles (e.g. a full-page image).

" Heritrix is a free license web crawling software written in Java by the Internet Archive.

MOHAMED HANDOSA 6



4.1 The PDF2TXT Tool

Since the preparation of a testing set by manually extracting text articles from 1700 PDF files is not feasible,
we have developed a Java tool named PDF2TXT to extract the text from PDF files automatically. A PDF
document stores its content as a set of objects (root object, page objects, font objects, etc.) Each object stores
a specific type of information. Text is stored in chunks of one or more characters and each chunk is located at
a given X, Y coordinate. The text chunks can be stored in any order in the file, which makes the processing of
text in PDF documents more challenging. Fortunately, there are several of-the-shelf tools and libraries for
handling PDF documents including PDFTextStream”, iTextSharp? and Apache PDFBox®. These tools provides
many capabilities including text extraction.

Although there are several libraries that support text extraction from PDF documents, there is little support
for extracting text written in right-to-left languages like Arabic. The problem with extracting Arabic text is due
to the difference between logical and presentation order [2]. Logical order refers the order in which text
characters are stored (i.e. first character stored is first character read or written) while presentation order is
based on screen layout. Logical and presentation order are the same for left-to-right languages, but opposite
for right-to-left languages.

Recalling that PDF documents stores text as chunks, each with x and y coordinates. The text extraction process
tries to reconstruct the text by concatenating these chunks given there coordinates. That is, a text extraction
algorithm uses presentation order to extract text. This works fine for left-to-right languages since presentation
and logical order are the same. However, for right-to-left languages, where the logical and presentation order
are opposite, the algorithm will concatenate the chunks in presentation order (i.e. left-to-right) which is the
opposite of logical order (i.e. right-to-left). Consequently, the characters of the extracted text are in reverse
order.

Generally, a multilingual text can have both left-to-right and right-to-left characters and each should go in the
correct direction. The Unicode Bi-directional Text (BiDi) algorithm defines how to order characters in a
paragraph (i.e. converts from logical to presentation order). Since the available text extraction tools use
presentation order to extract text, then a reasonable solution is to apply a reverse BiDi algorithm to convert
the extracted text from presentation order to logical order.

The first version of the PDF2TXT tool, developed in C#, used the PDFTextStream library to extract text from
Arabic PDF documents. Since the PDFTextStream library does not support Arabic, it extracts the text in
presentation order. Thus, the tool processes the extracted text line by line and reverses the order of characters
to obtain the logical order. There are two problems with the first version of the PDF2TXT tool. First, the
PDFTextStream library seems to have an encoding problem with processing Arabic text that is for a
considerable subset of the PDF files the extracted text was miscoded and useless. Second, even for Arabic text
extracted with a correct encoding the PDFTextStream library fails sometimes to extract the Arabic characters
in the same order as their order of presentation. Therefore, when the tool reverses the extracted text is to
obtain the logical orders, the letters of some Arabic words are disordered.

The second version of the PDF2TXT tool, developed in Java, uses the PDFBox library to extract text from
multilingual PDF documents. PDFBox uses the ICU4J library from the International Components for Unicode
(ICU) project to support bidirectional text. Since PDFBox provides full support for right-to-left languages like
Arabic, the second PDF2TXT version avoids the problems of the first version. The PDF2TXT tool takes the path
of the directory containing the PDF files and a destination path as shown in Figure 4.1. For each PDF file, the

" The PDFTextStream library is available at http://www.snowtide.com/
2 The iTextSharp library is available at http://sourceforge.net/projects/itextsharp/
3 The PDFBox library is available at http://pdfbox.apache.org/
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tool extracts the text as saves it to a text file at the destination directory. The tool allows a user to optionally
split the pages of each PDF file and extract the text from each PDF page to a distinct text file.

© PDF2TXT - O

Destination Directory:  Do\Qatar ClassificationtTesting SetTAT

Source Directory: DiQatar Classification'Testing SetiPDF

[+] split pages [ Extract Text

Figure 4.1: A screenshot of the PDF2TXT tool.

Given the 1700 newspaper PDF files, we used the PDF2TXT tool to extract the text content from each PDF page
to a distinct text file. From the 1700 PDF files, we obtained 58,938 text files. Each text file represents an
instance of the testing set. Ideally, the testing set instances should be articles rather than pages. However, we
argue that a newspaper page usually contains articles belonging to the same category and hence we assumed
that the text content of a PDF page is typically a concatenation of a set of articles that belongs to the same
class.

5 Preprocessing the Dataset Instances

Most text classifiers use the bag-of-words model to represent documents. The bag-of-words model is a
straightforward representation approach and the produced representation is essentially independent of the
sequence of words in the document [3]. The goal of the preprocessing phase is to extract a set of Arabic words
from each instance in the collected dataset (i.e. training and testing sets) in order to represent that instance
using the bag-of-words model. The preprocessing phase has three steps as shown in Figure 5.1.

™ ™ ™

Extracting Arabic Normalizing Arabic Stemming Arabic
words words (optional) words (optional)
v v v

Figure 5.1: Dataset preprocessing steps.

5.1 Extraction of Arabic Words

The raw text files of the collected dataset might contain non-Arabic words and punctuation marks. In order to
perform text cleaning, we have developed a Java tool named “Arabic Words Extractor”. As shown in Figure 5.2,
the tool takes the path to the directory containing the raw text files and a destination directory as input.

W Arabic Words Extractor - O

Destination Directory: | O\Qatar Classification'Testing SetWords

[+] Normalize words
Extract Arabic Words

Source Directory: Do\Qatar Classification\Testing SetiTAT

[/] Remove stop-words

Figure 5.2: A screenshot of the “Arabic Words Extractor” tool.
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For each raw text file, the tool extracts the Arabic words from the file content, filters out any non-Arabic
letters, and saves the extracted Arabic words as space-delimited list to a text file at the destination directory.

Arabic is a very rich and complex language that has 28 characters and written from right to left. An Arabic
word may contain primarily weak vowels, called “diacritics”, that determines the pronunciation of words. For

wion « n

example, the word “4«_ . with the diacritic “:” on the letter “»” becomes “4x X" (i.e. “a female teacher”). If
the same word “4u X" has the diacritic “Z” on the letter “4”, it becomes “4w 34" (i.e. “a school”). Arabic has
eight different diacritics, which are <: %, and ©x. Although the didactics can significantly change
the meaning of an Arabic word, they are rarely used and the pronunciation of the word, which determines its
meaning, is deduced from the word context. Moreover, for text formatting purposes, it is common to stretch
an Arabic word using the “-” character, which does not change the meaning of the word. For example, it is

possible to write the word “4u ). as “A—w W, “Au )3 OF “A—u 24",

“n

The developed “Arabic Words Extractor” tool removes the “-” character as well as the diacritics from extracted
Arabic words. The tool can remove Arabic stop-words as well by comparing the extracted words against a list
of 1,630 Arabic stop-words developed by Abu El-Khair [4].

5.2 Normalization of Arabic Words

Usually, Arabic information retrieval systems normalize Arabic words to increase retrieval effectiveness.
Normalization of an Arabic word means replacing specific letters within the word with other letters according
to a predefined set of rules as shown in Table 5.1.

Table 5.1: Normalization rules for Arabic words.

\ Rule Example

Letter Replacement Word Normalized word

) | daal daal
| | o L) o L)
i | ] <yl
3 5 3.‘»).\4 A y)da
s < e e

Although these replacements can result in misspelled words, these misspellings are common in Arabic text
and the normalization of Arabic words helps avoiding the side effects of such misspellings on the performance
of information retrieval. For example, the normalization of the word “4« x” and its misspelled version “4x "
results in the same normalized word “4=_x". Hence, the system recognizes the two words as being the same.
It is worth mentioning that such misspellings occur rarely in official documents and newspapers. Consequently,
the normalization of Arabic words might be unnecessary when working with newspapers or official documents
(e.g. thesis and dissertations). The “Arabic Words Extraction” tool allows optional word normalization.
Although we are working with newspapers, we chose to normalize words to capture even rare misspellings.

5.3 Stemming Arabic Words

The main goal of a stemmer is to map different forms of the same word to a common representation called
“stem”. Stemming can significantly improve the performance of text classification systems by reducing the
dimensionality of word vectors. Generally, there are two main categories of Arabic stemmers, root extraction
stemmers and light stemmers [5]. The two most widely used stemmers are the root extraction stemmer
developed by Khoja et al [6] and the light stemmer developed by Larkey et al [7].

In Arabic, each Arabic word has a root, which is its basic form. We can obtain several words including nouns,
verbs and adjectives by adding certain letters at the beginning, end or within the root letters. For example,

from the root “>=%, we can derive the words “»=i”, “yalis” “Aplail” “galaiY)”) etc. The goal of a root-
-
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based stemmer it to extract the basic form for any given word. The problem with extracting the root is that
the root is far more abstract than a stem. Different words with completely different meaning can originate
from the same root. For example, the words “>=\a” (i.e. “purposes”) and the word “L=38¥" (i.e. “The
economic”) both originate from the root “>=%”, Consequently, using root stemmers can result in a very poor
classification effectiveness.

The goal of a light stemmer is to find the representative form of an Arabic word by removing prefixes and
suffixes. Thus, the meaning of the word remains intact, which results in improving the classification
effectiveness. For example, the stem for the words “s2b<=%" (i.e. “economic”) and “3L=3Y) 5" (i.e. “and the
economy”) is “3L=aidl” (j.e. “economy”) rather than the root “x=8" (i.e. “intended”).

We have developed a Java tool, named “Arabic Light Stemmer”, to stem Arabic words. As shown in Figure 5.3,
the tool takes the path to the directory containing the raw text files and a destination directory as input.

¥ Arabic Light Stemmer - =
Source Directory: D:\Qatar Classification'Testing SetWords

() Light1 () Light3 (_J Light10

() Light2 () Light& (®) P-Stemmer

Destination Directory: | D\Qatar Classification'Testing SetiStemsP | I
Stem ‘

Figure 5.3: A screenshot of the “Arabic Light Stemmer” tool.

The “Arabic Light Stemmer” tool implements the five versions of the light stemming algorithm introduced by
Larkey [7]. Each version of the algorithm strips off certain prefixes and suffixes as shown in Table 5.2. Although
the Light10 version is the most widely used version of the light stemmer, we have implemented the other
versions for evaluation and comparison purposes.

Table 5.2: The versions of the Arabic light stemmer [7].

Version Suffixes to remove
Light 1 lld\ﬂ’ ”d\_}”, udL:‘n, ndLSn, udu:n
i None
Light 2
Light 3 u}n’ ud\n’ ud‘}n, ”dlt‘”, udlsnl lld&” Ilbll, g
Light 8

o’ n o . \n o .~ \n o . 4 a . n “" 4 wson R {oen “" 4
[ S T L e W e i A <

Light 10 ”}”, ud\n’ ud‘}n, lldLJIl, udlsnl lld&”, Ildyl

5.4 P-Stemmer — A Proposed Stemmer

Light stemmers define a set of rules to remove word prefixes and suffixes, while preserving the meaning of
the words. For example, the Light10 stemmer stems the word “0s 2" (i.e. “the teachers”) to the stem
“w X" (i.e. “teacher”) by removing the “J" (i.e. “the”) prefix and the “0s” (which indicates a male plural)
suffix. However, we argue that removing word prefixes only can give better results than stemming and hence
improves the effectiveness of text classifiers. For example, the Light10 stemmer stems the word “cGalul)”
(i.e. “the talks”) to the stem “&alw” (i.e. “Investigation”) by removing the “JV” (i.e. “the”) prefix and the “<”
(which indicates a female plural) suffix. It is clear that the two words have completely different meaning and
hence we argue that light stemmers that remove word suffixes can still suffers from the same abstraction
problem found in root stemmers. To prove our argument we have developed P-Stemmer, a customized version
of the Light10 stemmer that removes word prefixes only. The “Arabic Light Stemmer” tool implements the
P-Stemmer as well as the five versions of Larkey’s light stemmer.
]
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6 Text classification

The problem of text-based classification has been widely studied in the data mining, machine learning,
database, and information retrieval communities. The goal of a text classifier is to classify documents into a
fixed number of predefined classes. A text classifier can be either a binary classifier or a multiclass classifier.
In binary classification, a document can be in exactly one of the two classes. In multiclass classification, a
document can be in multiple, exactly one, or no class at all. Using supervised machine learning, classifiers can
learn from examples and perform the class assignments automatically. Several text classification algorithms
have been proposed. We have chosen to use three of the most widely used text classification approaches,
which are Support Vector Machines (SVM), Naive Bayes, and Random Forest.

Cortes et al [8] have proposed Support Vector Machines (SVM) as a learning method for numerical data. The
main principle of SVMs is to determine linear or non-linear separators in the data space, which can best
separate the different classes. Joachims [9] has shown that text classification can benefit from SVM by
transforming each document, which typically is a string of characters, into a quantitative feature vector, where
each distinct word corresponds to a feature whose value is the number of times the word occurs in the
document. In order to avoid unnecessary large feature vectors, word stems are used and stop-words are
removed. This representation scheme can still lead to very high-dimensional feature spaces. However, one
advantage of SVM, which makes it ideal for text classification, is its robustness to high dimensionality.

A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong (naive)
independence assumptions. It assumes that the value of a particular feature is unrelated to the presence or
absence of any other feature, given the class variable. Although this theory violates the fact that features are
dependent on each other, its performance is feasible [3]. The naive Bayes classifier models the distribution of
the documents in each class using a probabilistic model. It requires only a small set of training data to estimate
the model parameters. The Naive Bayes classifiers can handle text classification as well as other classification
problems. In text classification, the model uses the bag-of-words approach to represent a document.

The goal is to develop a text classifier that can classify a given document under one of the five classes at the
first level of the Arabic newspapers taxonomy shown in Figure 2.1. In order to train and text different classifiers
using different machine learning techniques, we used Weka (Waikato Environment for Knowledge Analysis),
which is a popular suite of machine learning software written in Java, developed at the University of Waikato,
New Zealand.

6.1 Creating Feature Vectors

As mentioned previously in section 3, we have prepared a training set of 750 instances in the form of text files,
150 per class. We used the “Arabic Words Extractor” tool to clean the text and remove stop-words.
Afterwards, we used the “Arabic Light Stemmer tool” to produce six different versions of the text files
corresponding to the five versions of the light stemmer and the proposed P-Stemmer. Thus, we obtained seven
versions of the training set as shown in Table 6.1.

Table 6.1: The Seven versions of the training set.

Training set Description \

Words Obtained from the raw text files by cleaning text and removing stop-words.
Stems1 Obtained from the Words set by applying version 1 of the light stemmer.
Stems2 Obtained from the Words set by applying version 2 of the light stemmer.
Stems3 Obtained from the Words set by applying version 3 of the light stemmer.
Stems8 Obtained from the Words set by applying version 8 of the light stemmer.
Stems10 Obtained from the Words set by applying version 10 of the light stemmer.
StemsP Obtained from the Words set by applying the proposed P-Stemmer.

. _______________________________________________________________________________________________________|
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In order to use Weka, the training set must be converted into a single ARFF file. An ARFF' (Attribute-Relation
File Format) file is a text file that describes a list of instances sharing a set of attributes. Weka provides a Java
tool, named TextDirectoryLoader, which can convert a set of text files into an ARFF file. TextDirectoryLoader
takes two parameters, a directory and the output file name. It assumes that there are subdirectories within
the supplied directory, each corresponding to a given class and contains the text files representing the
instances of that class. TextDirectoryLoader produces a single ARFF file that contains all instances with two
attributes per instance, text and class. For a given instance, the value of the text attribute is the contents of
the text file corresponding to that instance and the value of the class attribute is the name of the subdirectory
that contains this instance.

In order to convert the 750 training set instances into an ARFF file, we created five directories corresponding
to the five classes (i.e. Art, economy, politics, society, and sport) with 150 text files per directory corresponding
to the class instances. To create the file, we used the following command

java -cp [weka.jar] weka.core.converters.TextDirectoryLoader -dir [main directory] > output.arff

where [main directory] refers to the directory containing the five directories corresponding to the classes and
[weka.jar] refers to the bath at which the “weka.jar” file exists. We have created seven ARFF files
corresponding to the seven versions of the training set (i.e. Words, Stems1, Stems2, Stems3, Stems8, and
Stems10) using the command above as shown in Figure 6.1.

. Command Prompt - B

D:~Qatar Classzification™Training Set“~Multiclass Training Set>java weka. jar
eka.core.converters . TextDirectoryLoader —dir Words > UWords.arff

D:~Qatar Classzification™Training Set“~Multiclass Training Set>java weka. jar
eka.core.converters.TextDirectoryloader —dir Stemsl > Stemsl.awff

D:~Qatar Classification~Training Set“Multiclass Training Set>java weka. jar
eka.core.converters.TextDirectoryloader —dir Stems2 > Stems2.awvff

D:~Qatar Classzification“Training Set“~Multiclass Training Set>java weka. jar
eka.core.converters . TextDirectoryloader —dir Stems3d > Stems3.awff

D:~Qatar Classzification“Training Set“~Multiclass Training Set>java weka. jar
eka.core.converters . TextDirectoryloader —dir Stems8 > Stems8.awff

D:~Qatar Claszification“Training Set“~Multiclass Training SetX>java —cp weka.jar
eka.core.converters . TextDirectoryLloader —dir Stems18 > StemsiB.avff

D:~Qatar Claszification“Training Set“~Multiclass Training SetX*java —cp weka.jar
eka.core.converters.TextDirectoryloader —dir StemsP > StemsP.awff

D:~Qatar Classification“~Training Set“Multiclass Training Set>

Figure 6.1: Creating ARFF files for the seven versions of the training set.

In order to open an ARFF file in Weka, simply click on the “Open file ...” button and select the ARFF file. Weka
will load the file as shown in Figure 6.2. The ARFF file contains 750 instances, 150 per class, and 2 attributes
per instance, “text” and “@ @class@ @".

T A description of the ARFF format available at http://weka.wikispaces.com/ARFF+%28book+version%29



http://weka.wikispaces.com/ARFF+%28book+version%29

L#] Weka Explorer
Preprocess | Classify | Cluster | Assodate | Select atiributes | Visualize
Open file. .. Cpen URL... Cpen DB... Generate. .. Undo Edit... Save...
Filter
Choose  |None Apply
Current relation Selected attribute
Relation: D__Qatar Classification_Training Set_Stems10 Name: @@dass@@ Type: Nominal
Instances: 750 Attributes: 2 Missing: 0 (0%) Distinct: 5 Unigue: 0 (0%)
Attributes Mo, Label Count
All Mane Invert Pattern 1| Art 150
2| Economy 150
3| Politics 150
AT AR 2| Sodety 150
5|5port 150
2l @@dass@@

Status
Ok

Remawve

Figure 6.2: Opening an ARFF file.

Class: @@dass@@ (Nom)

150

150

v | Visualize Al

150

Log

o

Text classifiers cannot handle the “text” attribute as a single attribute. Therefore, we must first convert the
“text” attribute to a word vector. To perform this, simply click on the “Choose” button under the “Filter” group
box. Weka will display a tree of available filters as shown in Figure 6.3. To convert the “text” attribute into a
word vector, select the “StringToWordVector”, which is found under “filters = unsupervised - attribute”.

Filter

| weka
B | filters
@ AlFilter
- @ MultiFiter
-- | supervised
=S | unsupervised
- || attribute
- || instance

Pattern

Figure 6.3: Weka' filters.

The “StringToWordVector” filter explores the value of the “text” attribute for each instance and creates a
word vector. Afterwards, it uses the word vector to replace the “text” attribute with a set of numerical
attributes, each corresponding to a word from the word vector. By default, the value of a numerical attribute
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is a binary value. If a word appears in the text for a given instance then the value of its corresponding attribute
is 1; otherwise the value is 0.

The “StringToWordVector” provides several options to specify how to compute the values of the numerical
attributes. To display the parameters of the “StringToWordVector” filter click on the text box under the “Filter”
group box as shown in Figure 6.4. This will display the parameters dialog shown in Figure 6.5.

Filter
Choose | StringToWord¥ector -R first-last -\ 1000 -prune-rate -1,0 -N 0 -skemmer weka.core, stemmers, MullStemmer -M 1 -tokenizer "wek | Apply

Figure 6.4: Opening the parameters of the selected filter.

& weka.gui.GenericObjectEditor
weka. filters.unsupervised. attribute. StringToWaordVectar
About
Converts String attributes into a set of altributes representing More
word occurrence (depending on the tokenizer) information from o
the text contained in the strings. Capabilties
IDFTransform | False W
TFTransform |False W
attributelndices | firstdast
attributeMamePrefix
doMotOperateCnPerClassBasis | False v
invertSelection |False W
lowerCaseTokens | False W
minTermFreq |1
normalizeDocLength | Mo normalization v
outputWordCounts | False v

periodicPruning | -1.0
stemmer Choose | MullStemmer
stopwords  'Weka-3-5
tokenizer Choose  |WordTokenizer -delimiters " \rinik,, ;00 O
usestoplist | False v

wordsTokeep | 1000

Cpen... Save... oK Cancel

Figure 6.5: The parameters of the “StringToWordVector” filter.

. _____________________________________________________________________________________________________|
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Rather than using binary values for the attributes that indicates the appearance or absence of a word in a
given instance, we chose to use the Term Frequency-Inverse Documents Frequency (TF-IDF), which is a
numerical statistic often used as a weighting factor to reflect how important a word is to a document in a
collection. The TF-IDF is the product of two statistics, term frequency and inverse document frequency. The
term frequency, in its simplest form, is the number of times the term appears in a document while the inverse
document frequency is a measure of whether the term is common or rare across all documents. To use TF-IDF
in Weka, set the “IDFTransform”, “TFTransform”, and “outputWordCounts” parameters shown in Figure 6.5
to true. If you want to use all words appearing in all documents, you may set the “wordsToKeep” parameters
to some large value.

After applying the “StringToWordVector”, the obtained feature vectors tends to have very large
dimensionality, which can affect the robustness of the text classifier. In order to avoid unnecessary large
feature vectors, feature selection can be used. Weka provide a filter named “AttributeSelection”, which can
select the most relevant attributes based on a given criteria. The “AttributeSelection” filter is available from
the filters tree at the path “filters”>"supervised”>"attribute”. We used the “AttributeSelection” filter with
“InfoGainAttributeEval” as evaluator and a “Ranker” with a threshold of value 0 as shown in Figure 6.6.

L+ weka.gui.GenericObjectEditor
weka. filters. supervised. attribute, AttributeSelection
About
A supervised altribute filter that can be used to select Mare
= Capabilities
evaluator Choose | InfoGainAttributeEval

search Choose  |Ranker -T0.0-M -1

Open... Save. .. OK Cancel

Figure 6.6: The parameters dialog of the “AttributeSelection” filter.

Table 6.2 shows the number of features for each of the seven training set versions. In the table, “Distinct
words” refers to the number of features after applying the “StringToWordVector” filter and “Selected
features” refers to the number of features after applying the “StringToWordVector” filter followed by the
“AttributeSelection” filter.

Table 6.2: Number of features for each training set version.

Words Stemsl Stems2 Stems3 Stems8 Stems10 StemsP

28,704 23,703 21,283 19,282 15899 15,124 20,457
Selected features [RE:EE] 1,755 1,738 1,644 1,465 1,427 1,700

Now, we have the selected the feature vectors and are ready to start the training of the classifiers.

6.2 Multiclass Classifiers

As mentioned previously we chose to train and test three of the most widely used classification approaches,
which are Support Vector Machines (SVM), Naive Bayes, and Random Forest. Weka provides a variety of text
classifiers, available from the classifiers tree. In order to show the classifiers tree, go to the “Classify” tab and
click the “Choose” button under the “Classifier” group box. This shows the classifiers tree as shown in
Figure 6.7.
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& Weka Explorer

Preprocess | Classify | Cluster | Assodate | Select atiributes | Visualize

Classifier

eka;
= |, dassifiers

T & || bayes r output
G- || functions
& | lazy
-- | meta
.. | mi
-- | MisC
& | rules
- || trees

Figure 6.7: Weka'’s classifiers tree.

In order to build a multiclass classifier, choose the “MultiClassClassifier” classifier from the classifiers tree at
“weka—>classifiers>meta”. To determine the classification technique to use, click on the text box under the
“Classifier” group box as shown in Figure 6.8Figure 6.4. This will display the parameters dialog shown in
Figure 6.9Figure 6.5. To select the classification approach click on “Choose” and select the desired classification
technique from the displayed tree.

Classifier
MultiClassClassifier -IM 0 -F. 2,0 -5 1 -W weka.classifiers, functions, Logistic -- -R 1.0E-8 -M -1

Figure 6.8: Opening the parameters of the selected classifier.

L+ weka.gui.GenericObjectEditor

weka, dassifiers.meta. MultiClassClassifier
About

A metaclassifier for handling multi-class datasets with Maore

2-class classifiers. Capabilities

dlassifier SMO -C 1.0-L 0,001 -P 1.0E-12 MO -1 W 1 - "
debug |False v
method | 1-against-all v

random\WidthFactor  |2.0
seed |1

usePairwiseCoupling |False v

Open... Save... Ok Cancel

Figure 6.9: The parameters of the “MultiClassClassifier” classifier.

. _____________________________________________________________________________________________________|
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We have built three text classifiers corresponding to the three classification techniques for each of the seven
training set versions. We used 10-fold cross-validation to evaluate each of the 21 classifiers. The results for
the training sets Words, Stems1, Stems2, Stems3, Stems8, Stems10, and StemsP are shown in Table 6.3,
Table 6.4, Table 6.5, Table 6.6, Table 6.7, Table 6.8, and Table 6.9, respectively.

Table 6.3: The results of a 10-fold cross-validation using the Words version of the training set.

SVM (SMO) Naive Bayes Random Forest
Precision  Recall F Precision  Recall F Precision  Recall F
0.794 1 0.885 0.886 0.987 0.934 0.94 0.947 0.944
Economy Kk} 0.813 0.871 0.83 0.973 0.896 0.862 0.873  0.868
0.896 0.86 0.878 0.93 0.707 0.803 0.833 0.833  0.833
Society 1 0987 0993 1 0.973 0.986 0.98 1 0.99
0.986 0.913 0.948 0.973 0.953 0.963 0.979 0.94 0.959
A\l 0.923 0.915 0.915 0.924 0.919 0.916 0.919 0.919 0.919

Table 6.4: The results of a 10-fold cross-validation using the Stems1 version of the training set.

SVM (SMO) Naive Bayes Random Forest

Precision  Recall F Precision  Recall F Precision  Recall F

0.852 1 0.92 0.893 1 0.943 0.941 0.953  0.947
Economy [ox:Y! 0.887 0.924 0.827 0.953 0.885 0.89 0.867 0.878

0.925 0.907 0.916 0.949 0.74 0.831 0.846 0.84 0.843
Society 1 0987 0993 1 0.98 0.99 0.98 1 0.99
Sport 0.993 0.933 0.962 0.986 0.953 0.969 0.967 0.967 0.967
A\ e 0.947 0.943 0.943 0.931 0.925 0.924 0.925 0.925 0.925

Table 6.5: The results of a 10-fold cross-validation using the Stems?2 version of the training set.

SVM (SMO) Naive Bayes Random Forest
Precision  Recall F Precision  Recall F Precision  Recall F
0.847 1 0.917 0.893 1 0.943 0.959 0.927 0.942
S LTI\l 0.957 0.9 0.928 0.833 0.967 0.895 0.878 0.86 0.869
0.018 0.893 0.908 0.966 0.753 0.846 0.834 0.873  0.853
Society 0.924 0.987 0993 1 0.973 0.986 0.968 1 0.984
1 0.92 0.955 0.986 0.953 0.969 0.979 0.953  0.966
A\ 0.944 0.94 0.94 0.936 0.929 0.928 0.924 0.923  0.923

Table 6.6: The results of a 10-fold cross-validation using the Stems3 version of the training set.

SVM (SMO) Naive Bayes Random Forest

Precision  Recall F Precision  Recall F Precision  Recall F

0.838 1 0.912 0.886 0.98 0.93 0.946 0.94 0.943
Economy [OKE]3 0.873 0.903 0.847 0.96 0.9 0.851 0.8 0.825

0.882 0.847 0.864 0.921 0.773 0.841 0.795 0.853 0.823
Society 1 0987 0993 1 0.973 0.986 0.98 1 0.99
Sport 0.993 0.92 0.955 0.986 0.933 0.959 0.979 0.953 0.966
Average [NOKE] 0.925 0.926 0.928 0.924 0.923 0.91 0.909 0.909
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Table 6.7: The results of a 10-fold cross-validation using the Stems8 version of the training set.

0.856 0.993
Economy [MOBeLE) 0.873
0.898 0.88
Society 1 0.987
Sport 0.986 0.94
A\ e 0.938 0.935

SVM (SMO)
Precision Recall

F
0.92
0.91
0.889
0.993
0.962
0.935

Naive Bayes

Precision  Recall F

0.855 0.987 0.916
0.88 0.973 0.924
0.935 0.767 0.842
1 0.973 0.986
0.979 0.927 0.952
0.93 0.925 0.924

Random Forest

Precision  Recall F
0.935 0.96 0.947
0.842 0.82 0.831
0.814 0.847  0.83
1 1 1
0.979 0.94 0.959
0.914 0.913 0.914

Table 6.8: The results of a 10-fold cross-validation using the Stems10 version of the training set.

0.856 0.993
Economy MOKEL 0.867
0.905 0.887
Society 1 0.987
Sport 0.986 0.933
A\ e 0.936 0.933

SVM (SMO)
Precision Recall

F
0.92
0.9
0.896
0.993
0.959
0.933

Naive Bayes

Precision  Recall F

0.86 0.987 0.919
0.878 0.96 0.917
0.921 0.773 0.841
1 0.973 0.986
0.979 0.927 0.952
0.928 0.924 0.923

Random Forest

Precision  Recall F

0.928 0.947  0.937
0.849 0.86 0.854
0.842 0.82 0.831
0.987 1 0.993
0.973 0.953 0.963
0.916 0.916 0.916

Table 6.9: The results of a 10-fold cross-validation using the StemsP version of the training set.

0.838 1
Selols o]\ 0.965 0.907

0.937 0.893
Society 1 0.987

0.993 0.92
A\ 0.946 0.941

SVM (SMO)
Precision Recall

F
0.912
0.935
0.915
0.993
0.955
0.942

Naive Bayes

Precision  Recall F
0.92 0.993  0.955
0.829 0.967 0.892
0.95 0.767 0.849
1 0.98 0.99
0.979 0.947 0.963
0.936 0.931 0.93

Random Forest

Precision  Recall F
0.973 0.953  0.963
0.891 0.873  0.882
0.855 0.867 0.861
0.987 1 0.993
0.961 0.973  0.967
0.933 0.933 0.933

As shown in Table 6.10 and Figure 6.10, the StemsP training set gives the highest average F-measure across
the three text classifiers. Recalling that StemsP was obtained by the proposed P-Stemmer, this supports our
argument mentioned in section 5.4, which states that the removal of word prefixes only can improve the
effectiveness of text classifiers compared to a light stemmer which removes both word prefixes and suffixes.
In addition, the results shows that SVM outperforms both Naive Bayes and Random Forest. One reason for
that is the robustness of SVM against high-dimensional feature spaces.

Table 6.10: The F-measure values for the three classification techniques.

0.915
0.943

0.94

 Stems3 P

0.935

0.933
0.942

SVM (SMO)

Naive Bayes

0.916
0.924
0.928
0.923
0.924
0.923
0.93

Random Forest

0.919
0.925
0.923
0.909
0.914
0.916
0.933

Average
0.917
0.931
0.93
0.919
0.924
0.924
0.935
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0.95
0.94
0.93
0.92
0.91

0.9

0.89
Words Stemsl Stems2 Stems3 Stems8 Stems10 StemsP

SVM (SMO) Naive Bayes Random Forest Average

Figure 6.10: F-measure values for the three classification techniques.

6.3 Binary Classifiers

Using the instances stemmed by the proposed P-Stemmer, we have created five training sets corresponding
to the five classes (i.e. Art, Economy, Politics, Society, and Sport). Each training set has 150 positive instances
and 600 negative instances (i.e. 150 from every other class). We used the Weka’s “TextDirectoryLoader”
tool to create the ARFF files for the five training sets as shown in Figure 6.11.

BN Command Prompt
D:~Qatar Classification“Training Set“~Binary Training SetX>java —cp weka.jar
ore.converters . TextDirectoryLoader —dir Art > Art.avff

D:~Qatar Classification“Training Set“~Binary Training SetX>java —cp weka.jar
ore.converters . TextDirectoryLoader —dir Economy > Economy.awff

D:~Qatar Classification“Training Set“~Binary Training SetX>java —cp weka.jar
ore.converters . TextDirectoryLoader —dir Politics > Politics.awff

D:~Qatar Classzification™Training Set“~Binary Training SetXjava —cp weka.jar
ore.converters . TextDirectoryLoader —dir Society > Society.awff

D:~Qatar Classification“Training Set“~Binary Training SetX*java —cp weka.jar
ore.converters . TextDirectoryLoader —dir Sport > Sport.awvff

D:~Qatar ClassificationsTraining SetsBinary Training Set>

Figure 6.11: Creating ARFF files for the five training sets.

Again, we used the “StringToWordVector” filter followed by the “AtrributeSelection” filter with
“InfoGainAttributeEval” as evaluator and a “Ranker” with a threshold of value 0. Table 6.11 shows the number
of features for each of the five training sets. In the table, “Distinct words” refers to the number of features
after applying the “StringToWordVector” filter and “Selected features” refers to the number of features after
applying the “StringToWordVector” filter followed by the “AttributeSelection” filter.



Table 6.11: Number of features for each training set version.

Art Econom Politics Societ Sport
2,0457 2,0457 2,0457 2,0457 2,0457

Selected features JPRoLY 1,214 883 1,065 1,529

Afterwards, we used Weka to build three text classifiers using the three classification techniques for each of
the five training sets. The results of a 10-fold cross-validation of the three classifiers for the training sets Art,
Economy, Politics, Society, and Sport are shown in Table 6.12, Table 6.13, Table 6.14, Table 6.15, and
Table 6.16, respectively.

Table 6.12: The results of a 10-fold cross-validation of three the “Art” classifiers.

SVM (SMO) Naive Bayes Random Forest

Precision  Recall F Precision  Recall F Precision  Recall F
| Positive  [JOELP] 0.998 0.99  0.998 0.958 0.978 0.92 0.998  0.958
0.993 0.927 0.959 0.856 0.993 092 099 0.653  0.787
MWEIShEEC Iy 0984 0984 097 0.965 0.966 0.934 0929 0924
Average

Table 6.13: The results of a 10-fold cross-validation of the three “Economy” classifiers.

SVM (SMO) Naive Bayes Random Forest

Precision  Recall F Precision  Recall F Precision  Recall F
| Positive L 0.983 0.969 0.995 0.915 0.953 0.925 0.983  0.953
0.924 0.813 0.865 0.742 0.98  0.845 0.911 0.68  0.779
LERIEE 6 949 0949 0.948 0.944 0928 0.931 0.922 0923 0.918
Average

Table 6.14: The results of a 10-fold cross-validation of the three “Politics” classifiers.

SVM (SMO) Naive Bayes Random Forest

Precision Recall F Precision  Recall F Precision  Recall F
| Positive  [JVEEE! 0.982 0.967 0.982 0.91  0.945 0.899 0.983  0.939
0.917 0.807 0.858 0.722 0.933 0.814 0.894 0.56  0.689
WEIShted Iy 0.947 0.945 0093 0915 0919 0.898 0.899  0.889
Average

Table 6.15: The results of a 10-fold cross-validation of the three “Society” classifiers.

SVM (SMO) Naive Bayes Random Forest
Precision  Recall F Precision  Recall F Precision  Recall F
2N 0.997 1 0.998  0.997 1 0.998 0.998 0.998  0.998
1 0.987 0993 1 0.987 0.993 0.993 0.993  0.993
0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997  0.997
Average
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Table 6.16: The results of a 10-fold cross-validation of the three “Sport” classifiers.

SVM (SMO) Naive Bayes Random Forest
Precision  Recall F Precision  Recall F Precision ~ Recall F

| Positive [ELE 0.998 0.992 0.997 0.995 0.996 0.958 0.998  0.978
0.993 0.94 0966 0.98 0.987 0.983 0.992 0.827  0.902
Weighted

0.987 0.987 0.987 0.993 0.993 0.993 0.965 0.964 0.963
Average

As shown in Table 6.17 and Figure 6.12, the society classifiers have the highest F-measure values. Again, SVM
outperforms both Naive Bayes and Random Forest.

Table 6.17: The F-measure values for the three classification techniques.

SVM (SMO) Naive Bayes Random Forest Average

0.984 0.966 0.924 0.958
Economy 0.948 0.931 0.918 0.932
0.945 0.919 0.889 0.918
Society 0.997 0.997 0.997 0.997

Sport " IGECEY) 0.993 0.963 0.981

Economy Politics Society Sport

1.02

0.9

0.9
0.9
0.9

0.
0.8
0.8
0.8
0.82

Art

Figure 6.12: The F-measure values for the three classification techniques.
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6.4 Compound Binary Classifiers

The results of multiclass classifiers (see section 6.2) and binary classifiers (see section 6.3) shows that the
effectiveness of multiple binary classifiers is far much better that the effectiveness of multiclass classifiers.
Moreover, we have used the binary classifiers to build compound classifiers using the voting approach.

In Weka, to combine multiple classifiers, click on the “Choose” button under the “Classifiers” group box. This
will display a tree of classifiers as shown in Figure 6.13 from which you can select “vote” which is under “meta”
in the classifiers tree.
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& Weka Explorer

Preprucessl Classify | Cluster | Associate I Select attributes | 'u"lsualize|

Classifier
b weka
= |y dassifiers
1 .. | bayes r output
-- | functions
B | lazy
&
-- 1. misc
-- | rules
- | trees

Figure 6.13: Weka'’s classifiers tree.

To display the parameters of “voting”, click on the textbox under the “Classifier” group box as shown in
Figure 6.14. This will display the parameters dialog shown in Figure 6.15.

Classifier
| Choose :|vote-S 1 -B "weka.dassifiers.rules. ZeroR " -R AvG

Figure 6.14: Opening the parameters of Weka’s voting compound classifier.

& weka.gui.GenericObjectEditor
weka.dassifiers.meta. Vote
About

Class for combining classifiers. Mare

Capabilities

dassifiers |1 weka, classifiers, Classifier

combinationFule |A'uerage of Probabilities

£ £ II II

debug | False

seed |1 |

Open... | | Save... | | Ok | | Cancel |

Figure 6.15: Parameters dialog of the “voting” compound classifier.

Within the voting parameters dialog, click of the “classifiers” textbox to display the dialog shown in Figure 6.16,
from which you can choose the classifiers to be combined.

. _____________________________________________________________________________________________________|
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€3 weka.gui.GenericArrayEditor

ElSMD - 1.0-L0.001 -P 1.‘ Add

SMO-C 1.0-L 0,001 -P 1.0E-12 -MO-% -1 -W 1K'
MaiveBayes
RandomForest -1 10-K0-51

Delete || Edit || Up || Down |

Figure 6.16: Voting members

Using the voting approach, we have combined the three binary classifiers (i.e. SVM, Naive Bayes, and Random
Forest) of each of the five classes to form five compound classifiers. The results of a 10-fold cross-validation
of the five compound classifier with the corresponding five training sets (i.e. Art, Economy, Politics,
Society, and Sport) are shown in Table 6.18.

Table 6.18: The results of a 10-fold cross-validation of the five compound classifiers.

Positive Negative Weighted
Average
Precision 0.982 0.993 0.984
Recall 0.998 0.927 0.984
F-Measure 0.99 0.959 0.984
Precision 0.964 0.908 0.953
Economy Recall 0.978 0.853 0.953
F-Measure 0.971 0.88 0.953
Precision 0.965 0.884 0.949
Recall 0.972 0.86 0.949
F-Measure 0.968 0.872 0.949
Precision 0.998 1 0.999
Society Recall 1 0.993 0.999
F-Measure 0.999 0.997 0.999
Precision 0.987 0.993 0.988
Recall 0.998 0.947 0.988
F-Measure 0.993 0.969 0.988

As shown in Table 6.19 and Figure 6.17, the compound classifier have the highest F-measure values compared
to each of the three binary classifiers with minor exceptions.

Table 6.19: The F-measure values for the three classifiers compared to the compound classifier.

SVM (SMO) Naive Bayes Random Forest Voting

P 0984 0.966 0.924 0.984

Economy 0.948 0.931 0.918 0.953
0.945 0.919 0.889 0.949
Society 0.997 0.997 0.997 0.999
0.987 0.993 0.963 0.988
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Figure 6.17: The F-measure values for the three classifiers compared to the compound classifier.

7 Classifying the Testing Set

Given the results of evaluating different classifiers using 10-fold cross-validation over the training set, we
chose to use five compound classifiers as illustrated in section 6.4 to classify the test set. For each compound
classifier, the classifier is trained using one of the five training sets (i.e. Art, Economy, Politics, Society, and
Sport). Afterwards, the trained classifier takes the unlabeled testing set and labels each instance as either
positive or negative. The training and the testing sets must be compatible, that is they must have the same
attributes stored in the same order. Therefore, we started by extracting the list of attributes from the ARFF
files used by each of the compound classifiers in section 6.4. Having a list of attributes (i.e. word vector) for
each of the five classes, we developed a tool, named “TXT2CSV”. The tool takes the path to a directory
containing the text files representing instances, the filename of the file containing the attributes of interest,
and the class label to be assigned to the instances. The tool creates a CSV file as an output file containing the
attributes of interest together with their values for each instance as shown in Figure 7.1.

. TXT2CSV - O -

TXT Files Directaory: almng and Testing Seti{0) DatasetiTraining SemmNegatwe

Altributes File: ifiers - Training and Testing Seti(1) Selected Altributes\Art fxt
Qutput File: 1g and Testing Set\(2) C3V Files\Art - Training - Megative.csy
Class Label: ' Megative

() Word Count
Create

(®) Word Presence

Figure 7.1: The “TXT2CSV” tool.
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Having five classes, we used the “TXT2CSV” tool to produce two CSV files per class, one for positive instances
and the other for negative instances. Afterwards, for each class the two CSV files representing positive and
negative instances were merged into a single CSV file, which represents the training set. For the testing set,
we used the “TXT2CSV” tool to generate a CSV file using the same attributes file and “Negative” as a “Class
Label” (The value “Negative” is just a place holder). Now, for each of the five classes we have two CSV files
representing compatible training and testing sets.

In order to train a classifier using the training set, open the training CSV file in Weka. Then go to the “Classify”
tab and select the “Use training set” radio button under the “Test options” group box as shown in Figure 7.2.

Test options

() Supplied test set Set...
() Cross—validation  Folds |10
(") Percentage split % |&6

Mare options...

Figure 7.2: Classification’s test options.

After training the five compound classifiers, we have saved the models for future use by right clicking on a
model and selecting “Save model” as shown on Figure 7.3.

o Weka Explorer - B
Preprocess | Classify | Cluster | Assodate | Select attributes | Visualize
Classifier
Choose ||Wote -5 1 -B "weka.classifiers.functions. SMO -C 1.0 -L 0.001 -P 1.0E-12 -W 0 -¥ -1 =W 1 K |"weka.classifiers. functions. supportiector Palykernel -C 250007 -E 1
Test options Classifier output

(®) Use training set ~

() Supplied test set Set... ) )

B Time taken to build model: 0.97 seconds
() Cross-validation ~ Folds |10

() Percentage split o |66 === Evaluation on training set =—

=== Jummary ===
Maore options...
Correctly Classified Instances 750 100 3
(Mom) EEdass@E + || Incorrectly Classified Instances 1} 1]
Kappa statistic 1
Start Stop Mean absolute error 0.0206
Root mean squared error 0.06816
Besithst b onios] Relative absoclute error £.4209 %
uared error 15.39% %
View in main window Tnatances 750
View in separate window
Save result buffer uracy By Class ===
PR P Rate FP Rate Precision Recall F-Measure ROC Area Claas
Load model 1 a 1 1 1 1 Negative
T 1 1] 1 1 1 1 Positive
_Save model 1 ) 1 1 1 1
Re-evaluate model on current test set
Lrix ===

Status
OK

Visualize classifier errors
Visualize tree
Visualize margin curve

Visualize thresheld curve

Cost/Benefit analysis 4

Visualize cost curve 4

lassified as
Negative
Positive

Figure 7.3: Saving a model.
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As mentioned in section 4, the testing set in its raw form is a set of 1700 newspaper PDF files. First, we used
the developed PDF2TXT tool to extract the text from the PDF files, such that the text from each page is
extracted to a distinct text file. Thus, we obtained a set 58,938 text files, each file corresponding to a page.
Second, we used the “Arabic Words Extractor” tool for cleaning and normalizing the text as well as removing
stop-words. Third, we used the “Arabic Light Stemmer” tool to stem the words in each of the text files using
the proposed P-Stemmer. Since some of the PDF Pages of the collected newspapers were only full-page
images, some of the text files were empty. Moreover, some pages contained too little text. We have removed
the text files with a size less than 2 kilobytes. Thus, out of the 58,938 text files we still have 38,017 text files.
To reduce computation overhead and memory requirements, we decided to split the testing set into chunks
of 2000 instance each. For each chunk, we have created 5 CSV files, one for each class using the attributes
selected for that class.

In use the testing set, open the training CSV file using Weka, then go to the classify tab, select “Supplied test
set” under the “Test options” group box, and click on the “Set...” button to specify the testing set CSV file as
shown in Figure 7.4. You may click on “More options...” to display the options dialog from which you can select
“Output predictions” to list the testing set instances together with their corresponding assigned class.

Test options

(") Use training set

(® Supplied testset | Set...

() Cross-validation Folds |10

() Percentage split % |66

More options...

Figure 7.4: Specifying a testing set CSV file.

Then, right click on the “Results list” and select “Load model” to load the model you saved before as shown in
Figure 7.5. Finally, right click on the loaded model and select “Re-evaluate model on current test set” as shown
in Figure 7.6.

(Nom) @@class@@ v

Start
Result list (right-click for options)

View in main window
View in separate window

Save result buffer

Delete result buffer
Load model
Save model
Re-evaluate model on current test set
Visualize classifier errors
Status Visualize tree
OK

Visualize margin curve

Figure 7.5: Loading a saved model in Weka.
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Start Stop | Vote combines the probabi

weka.classifiers,
weka,classifiers,
View in main window e
Prd
View in separate window
Save result buffer
Delete result buffer
Load model
Save model

Re-evaluate model on current test set

Visualize classifier errors

Status Visualize tree

Visualize margin curve

Figure 7.6: Re-evaluating a model based on current test set.

For instance, the results of classifying the testing set using the Art compound classifier are shown in Figure 7.7.
for each instance we chose to print its filename as well as the assigned label. All instances, considered to be
positive by the Art classifier will be uploaded to the Art core on Solr. The same applies to the remaining 4
classifiers and their corresponding 4 Solr cores. Creating Solr cores and uploading documents to then is
illustrated in section 8.

L #] Weka Explorer - B

Preprocess | Classify | Cluster | Associate | Select attributes | Visuglize
Classifier
Choose | Wote -5 1 -B "weka.classifiers. functions.SMO -C 1.0 -L 0.001 -P 1.0E-1Z -M 0 -4 -1 - 1 -K "weka. classifiers functions. supportvector . Polykernel -C 250007 -E 1.00"™ -6 "weka‘classwﬁers.hayas.1

Test options Classifier output
() Use training set ~
inst#, actual, predicted, error, probability distribution (filename)
(®) Supplied test set Set... 1 1:Negative 1:Negative *1 1] (" olaglaall ,_,JI satbe olaops Juait ] olawiall za aisls
) Cross—validation  Folds |10 2 l:Negat:?.ve 1:Negat:?.ve *0.994 0.008 ('1.6 2014, J_ﬂ}l [ Epu | _,Ju_q aleliew is,s al_ul wile B
~ 3 l:Negative l:Negatiwve *0.994 0.006 ("19 pazll 3,87 2020|_.Ju\ .,al_i olailes Tdlatney payid 45
[:]Parcemagesplit % BB 4 1:Negative 1:Negatiwve *1 o ("20 Eapeily 20150001 Jlasigs depil \_:.y a0y . EMET
5 l:Negatiwve l:Negatiwe *1 a (1229 20145 J_ﬂ}l 5_.,_1_i a_;._q_g._l_i b3 &\_.‘,I bl B gl .
More options... & l:Negative 1:Negative *1 ] ("266 pladl g o ds90 s Bssn pluyi odle & oealaTH
7 1:Negative 1:Negatiwve *1 o ('38.1 meA_” wale 5 3hE Tlpal gyleill IJ_L._iI aild m
8 1l:Negatiwe 1l:Negatiwe *0.994 0.006 ('360 Js¥1 a_._,_il Jus -\_._._A_._l_i Tuamiadl cl_.‘,l B gsale tHE'
(Nom) dass e 9 1:Negative l:Negatiwve *1 a ("4 .8 ,_ua;_.l “_il I.uL..il alyale dasd prad ._.I)I_._L. LHL
10 1:Negative 1:Negatiwve *0.994 0.008 ('548 PL-_H g J,\}I EPE [ Er P EN & [ W 1) e‘—u‘ iles
Start Stop 11 1:Negative 1:Negative *0.998 0.002 ("6 el T30 JU5 Zogull slhe par yilus gu N TXE')
Result st {right-click for options) 12 1:Negative l:Negatiwve *0.994 0,006 ("704 pouwl A5 ol yliadl Jylad pes u_._uL. LHL')
03:16:37 - meta.vote 13 1:Negat}ve 1:Negat}ve *0.98 0.04 ('Coredoo I_u,\ e apia] aliys l,gJJ,,I_._i aipi| aadyy g
14 l:Negative l:Negatiwve *0.9%& 0.004 ("QNB 2015._)_,_Lz_. PSRN [IPES L R E ] E_.I_._il o ASledly
04:02:37 - meta.Vote ‘ ) 15 1:Negative 1:Negative *0.994 0.006 ("QNB &iall glaghl sl aiel pby A14Li1 g1eal¥l L5 lcgun
04:03:11 - meta.Votefrom file ‘Art Model. modef 16 l:Negative 1:Negative *0.994 0.008 ("ONB Zhwgeially Bpadm il alSua10 Lagise Lags phis CHE"
04:05:11 - meta.Vote 17 1:Negative 1:Negative *0.994  0.006 (';955 asels 550Lg0asi 2uilyly ghasd Lo Jums duaigll .
04:06:43 - meta.Votefrom file ‘Art Model.model 18 1:Negative 1:Negative *0.966 0.034 ("348315 o4 pladl peay shd pl3ill 4Siy dsans J1.TEG')
04:08:35 - meta.Vote 19 1:Negative 1:NWegative *1 i] ("els5800 pelzad solall glasa¥l wisis ssans JT.txt')
04:08:48 - meta.Vote 20 1:Negatiwe l:Negatiwe *0.757  0.243 ("oednlo o pdalld Zogedl EEady Aaiid deglaie Lamlld gelio
04:09:39 - meta.Vote 21 1:Negative l:Negatiwve *0.998 0.004 (" u.nl.m‘!l ._u).._il il pmi adrd Jeolegay Lawidld de 580 o
04:09:59 - meta.Vote 22 1:Negative 1:Negative *0.998 0.004 (' \_.“,I JLIn_n\ $583 iled 8 Lo il §xla 230 }L._._l_.l
04: 10:40 - meta.Vote 23 1:Negatiwve l:Negatiwe *0.99¢ 0.004 (‘.._;\JI ,_._.YI o pl_{_'l LAl Adsgadly ._.I_ul_._. c_—u' LRt
04:12:41 - meta.Vote 24 l:NWegative l:Negative *1 1] ("oladliall I sgma paild Jiala q_(_.)_.\ll Ealaaldl Bgha
25 1:Negative 1:Negatiwve *1 o (Talapd Gaab ge geassss gasluay - 50 pals pals plis.
28 1:Negatiwve l:Negatiwe *0.994 0.008 ("gosull glso ._9_.)19 g elzdl A8 8 gaples plSsdl plas L
27 1:Negative l:Negatiwve *0.994 0.006 (" ,aL3 a7 .. cl)_ql tHL")
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€ >

Status

Interrupted Log ‘ x0

Figure 7.7: Results of classifying the testing set instances using the Art compound classifier.
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8 Indexing and Searching Collections using Apache Solr

Solr is an open source enterprise search platform. Its major features include full-text search, hit highlighting,
faceted search, dynamic clustering, database integration, and rich document (e.g., Word, PDF) handling. Solr
supports the Arabic language and uses the Larkey’s light stemmer to stems the Arabic words before indexing
[10]. Solr is written in Java and runs as a standalone full-text search server within a servlet container such as
Apache Tomcat. Apache Tomcat is an open source web server and servlet container developed by the Apache
Software Foundation (ASF).

8.1 Installation Solr with Tomcat as a Web Container
This section describes briefly how to install Apache Solr on Ubuntu with Apache Tomcat as a web container.

8.1.1 Installing Apache Tomcat
1. Download Apache Tomcat from Apache Software Foundation. You can download it from the location
http://tomcat.apache.org/download-80.cgi. | downloaded Tomcat 8.0.3 tar.gz.

2. Extract the apache-tomcat-8.0.3.tar.gz file to ~/Desktop/Tomcat8/

3. Edit the ~/.bashrc file and add the line export CATALINA_HOME=~/Desktop/Tomcat8 to its end.
4. Open aterminal and execute the command . ~/.bashrc to apply the changes you made to the file.
5. Created a file named setenv.sh in ~/Desktop/Tomcat8/bin/

6. Edit the setenv.sh file and write JAVA_HOME=/usr/lib/jvm/default-java

7. Open aterminal and execute the command SCATALINA_HOME/bin/startup.sh to start Tomcat.

8. Tested the installation by browsing to http://localhost:8080. You should see the Tomcat home page.

8.1.2 Installing Apache Solr
1. Download Apache Solr from Apache Software Foundation. You can download it from the location
https://lucene.apache.org/solr/. | downloaded solr-4.6.1.tgz.

2. Extract the solr-4.6.1.tgz file to ~/Desktop/solr-4.6.1

3. Copy all the contents in ~/Desktop/solr-4.6.1/example/solr/ to ~/Desktop/Solr/

4. Copy all the jar-files in ~/Desktop/solr-4.6.1/example/lib/ext to ~/Desktop/Tomcat8/lib/

5. Copy solr.war from ~/Desktop/solr-4.6.1/example/webapps to ~/Desktop/Tomcat8/webapps/

6. Edited the ~/Desktop/Tomcat8/webapps/solr/WEB-INF/web.xml file, uncommented the env-entry
section and replaced /put/your/solr/home/here with /home/[user-name]/Desktop/Solr

7. Add the line JAVA_OPTS="-Dsolr.solr.home=/home/[user-name]/Desktop/Solr to the setenv.sh file.

8. Tested the installation by browsing to http://localhost:8080/solr/. You should see the Solr home page.

8.2 Starting/Stopping the Apache Tomcat Service
To start the Apache Tomcat service, open a terminal and run the command

$CATALINA_HOME/bin/startup.sh

. _____________________________________________________________________________________________________|
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http://localhost:8080/solr/

You should see something like what is shown in Figure 8.1.

® - o handosa@Handosa-VM-Ubuntu: ~

handosa@Handosa-VM-Ubuntu:~$ SCATALINA_HOME/bin/startup.sh
Using CATALINA_BASE: Jhome /handosa/Desktop/Tomcats
Using CATALINA_HOME: /home/handosa/Desktop/Tomcats
Using CATALINA_TMPDIR: /home/handosa/Desktop/Tomcat8/temp
Using JRE_HOME: Jusr/lib/jvm/default-java

Using CLASSPATH: Jhome/handosa/Desktop/Tomcat8/bin/bootstrap. jar:/home/han|
dosa/Desktop/Tomcat8/bin/tomcat- juli.jar

Tomcat started.

handosa@Handosa-VM-Ubuntu:~$ I

Figure 8.1: Starting the Apache Tomcat service.
To stop the Apache Tomcat service, open a terminal and run the command
$CATALINA HOME/bin/shutdown.sh

You should see something like what is shown in Figure 8.2.

® - o handosa@Handosa-VM-Ubuntu: ~

handosa@Handosa-VM-Ubuntu:~% SCATALINA_HOME/bin/shutdown.sh
Using CATALINA_BASE: /home /handosa/Desktop/Tomcats

Using CATALINA_HOME: /home /handosa/Desktop/Toncats

Using CATALINA_TMPDIR: /home/handosa/Desktop/Tomcats/temp

Using JR OME : fusr/1ib/jvm/default-java

Using CL PATH: /home /handosa/Desktop/Tomcat8/bin/bootstrap.jar:/home/han
dosa/Desktop/Tomcat8/bin/tomcat-juli. jar

handosa@Handosa-VM-Ubuntu:~$

Figure 8.2: Stopping the Apache Tomcat service.

8.3 Creating a Solr Core
Navigate to ~/Desktop/Solr as shown in Figure 8.3 and create a folder named ar-collection.

@ - o Solr
< > M Home Desktop Solr Q = v ol
Places Name ~ | Size Type Modified
© Recent ‘ bin Oitems Folder MNov182013
™ Home ’ .
d collection1 4items Folder 06:31
[ Desktop
D) Documents README.Ext 2.5kB Text Nov 182013
+ Downloads solr.xml 1.7kB Markup Nov 182013
dd Music
. zoo.cfg 501 bytes Text Nov 18 2013
I Pictures

Figure 8.3: Navigating to “~/Desktop/Solr”.

Copy the directory ~/Desktop/Solr/collection1/conf to ~/Desktop/Solr/ar-collection as shown in Figure 8.4.

@ - o ar-collection

< | > ™ Home Desktop Solr ar-collection Q = | = v fed
Places Name v  Size Type Modified
® Recent ‘ conf 19items Folder Nov182013
M Home
[ Desktop

[ Documents
< Downloads
dd Music

A Pictures

Figure 8.4: The “conf” folder copied from “~/Desktop/Solr/collection1/”.
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Start the Apache Tomcat web service then open a browser and navigate to http://localhost:8080/solr/. You
should see the Apache Solr home page as shown in Figure 8.5.

& - o Solr Admin - Mozilla Firefox

| 5% Solr Admin @

'S | @ localhost:8080/s0lr/#/ - @ | | v Google Q| dr Q
Apache f ",’ w Instance | System (7]
sol r .: & Start 36 minutes ago Physical Memory
@ Dashboard | Versions
(i) Logging s solrspec 461
! Core Admin solrimpl  4.6.1 1560866 - mark - 2014-01-23 20:21:50 Swap Space

& lucenespec 4.6.1
lucene-impl  4.6.1 1560866 - mark - 2014-01-23 20:11:13

= Java Properties

= Thread Dump

Sele

ctor - | File Descriptor Count

TJvM W JVM-Memory

.. Runtime Oracle Corporation Open|DK 64-Bit Server VM (1.7.0_51 24.45-b08)

| Processors 1

| Args -Djava.io.tmpdir=/home/handosa/Desktop/TomcatB/temp 58.95 MB
-Dcatalina.home=/home/handosa/Desktop/TomcatB
-Decatalina.b dosa/Desktop/Tomcatd
-Djava.endorsed.dirs=/home/handosa/Desktop/TomcatB/endorsed
-Dsolr.solr.home=/home/handosa/Desktop/Solr
-Djava.util.logging. manager=org.apache.juli.ClassLoaderLogMana.
-Djava.util.logging.config.file=/h fhandosa/Desktop/Tomcat8ico...
| Documentation  ff Issue Tracker g IRC Channel || Community forum i Solr Query Syntax

Figure 8.5: Apache Solr Dashboard.

From the left panel, select Core Admin then click on the Add Core button at the top as shown in Figure 8.6.
Enter ar-collection in both the name and the instanceDir fields and click the Add Core button below.

Apache "',"‘
Solr ~

& Dashboard instanceDir: | new_core

=0 Rename | #& Swap || @ Reload | & Optimize

name: |NEW_core

(2 Logging dataDir: |data

[ core Admin config: | selrconfig.xml

|2/ Java Properties
schema: schema.xml

= Thread Dum -
= p ®

| Core Selector v |

Figure 8.6: Apache Solr, Core Admin screen.
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http://localhost:8080/solr/

8.4 Editing the Schema file

The schema for the ar-collection core is located at ~/Desktop/Solr/ar-collection/conf/ (see Figure 8.7).

@ - o conf

< > 4 Home Desktop Solr ar-collection conf Q = #H v L
Places Name v  Size Type Modified
© Recent schema.xml 59.3kB Markup Nov 182013
A H
ome scripts.conf 921bytes Text Mov 18 2013
[ Desktop
D Documents /| solrconfig.xml 71.7kB Markup Nov 182013
¥ Downloads spellings.txt 13 bytes Text Nov 18 2013
dd Music
5 Shaaieadekik 721 bytes Text Mov 18 2013
I3 Pictures schema.xml” selected (59.3 kB)

Figure 8.7: The location of the schema file for the “ar-collection” core.

The schema.xml file contains all of the details about which fields your documents can contain, and how those
fields should be dealt with when adding documents to the index, or when querying those fields. Edit the
scheme.xml file and replace its contents with the following

<?xml version="1.0" encoding="utf-8" ?>

<schema name="ar-schema" version="1.5">

<fields>
<field name= type="long" indexed="true" stored="true"/> <!--Reserved-->
<field name="_root_" type="string" indexed="true" stored="false"/> <!--Reserved-->
<field name="id" type="string" indexed="true" stored="true" required="true" multiValued="false"/>
<field name="content" type="text_ar" indexed="true" stored="true" multivalued="true"/>

</fields>

<uniqueKey>id</uniqueKey>

_version_

<types>
<fieldType name="string" class="solr.StrField" sortMissinglLast="true" />
<fieldType name="long" class="solr.TrielLongField" precisionStep="0" positionIncrementGap="0"/>

<fieldType name="text_ar" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/> <!-- for any non-arabic -->
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_ar.txt" />
<filter class="solr.ArabicNormalizationFilterFactory"/> <!-- normalizes s to s, etc -->
<filter class="solr.ArabicStemFilterFactory"/>
</analyzer>
</fieldType>
</types>
</schema>

You might need to restart the Tomcat service for changes to take effect and reflect in Solr Ul.

8.5 Working with Documents through the Dashboard

A Solr index can be modified by POSTing commands to Solr to add (or update) documents, delete documents,
and commit pending addition and deletion operations. These commands can be in a variety of formats
including XML, JSON, CSV and JAVABIN as shown in Table 8.1.

Table 8.1: Solr command formats

JSON  {"id":"###","content":"$SS"}
XML <doc><field name="id">###</field><field name="content">555</field></doc>
Csv id, title

Hit#,SSS

. ______________________________________________________________________________________________________
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8.5.1 Adding Documents
From the left panel, click on Core Selector and choose ar-collection then from the bottom panel select
Documents. This will display the screen shown in Figure 8.8.

Apache "" Request-Handler (gt}
ol
Solr - =
Document Type

@ Dashboard LJson M|
(£ Logging Document(s)

_ {"id":"change.me","title":"change.me"}
ZE core Admin

H_ Java Properties

= Thread Dump

\ ar-collection A \

s

it i

T

L) Commit Within

f 1000

[} Documents Overurite
true

=
Boost

L3 10

‘B

- ] Documentation 4 1ssue Tracker & IRC Channel [ Community forum  [s] Solr Query Syntax

]

1=

Figure 8.8: The “ar-collection” Documents screen.

From the Document Type dropdown list, select Document Builder. This will display the document builder
screen as shown in Figure 8.9. From the Field dropdown list select a field and enter the corresponding text in
the Field Data textbox then click on Add Field. After finishing document building, click on Submit Document.

Apache f ',’: Request-Handler (gt}
SOI r — Jupdate
Document Type
\ Document Builder -

@ Dashboard

(3 Logging Field:  id |
&l core Admin Field Data:  Enter your field text here and then click "Add Field" to
¥

2 » - add the field to the document.
\a Java Properties

T
= Thread Dump Badd Feld

Document(s)

\ ar-collection Y|
e
Gl
T
L
Commit Within
jal 1000
(5] Documents Overwrite
true
:
D

|] Documentation  f Issue Tracker g IRC Channel [ Community forum || Solr Query Syntax

Figure 8.9: Document Builder screen.
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8.6 Indexing Classified Collections

It is possible to modify the Solr index by POSTing XML documents containing instructions to add (or update)
documents, delete documents, commit pending additions and deletions, and optimize the index [11]. The
exampledocs directory, within the Solr distribution, contains samples of the types of instructions Solr expects,
as well as a java utility for posting them from the command line as shown in Figure 8.10.

& - 0 exampledocs

< | > « solr-4.6.1 example exampledocs ° Q = v Fe
Places Name * Size Type Modified
© Recent 75 mem.xml 3.1kB Markup Nov182013
A Home money.xml 2.2kB Markup Nov182013
[ Desktop

B B monitor.xml 1.4kB Markup MNov182013
< Downloads /3| monitor2.xml 1.4kB Markup MNov 182013

i

celles mp500.xml 2.0kB Markup Nov182013
[ Pictures

H videos | post.jar 22.0kB Archive Jan24

Figure 8.10: The “exampledocs” directory.

For example, to add the monitor.xml/ file to a Solr core named test, open a terminal window, enter the
exampledocs directory, and run the following command

java -Durl=http://localhost:8080/solr/test/update -jar post.jar monitor.xml

From the Solr web interface, the statistics of the test core shows that the number of indexed documents is 1
as shown in Figure 8.11.

1// ] Statistics

Last Modified: 8 minutes ago
Num Docs: 1

Dashboard Max Doc: 1
& Dashboar Heap Memory 534
£ Logging Usage:

Deleted Docs:

£F Core Admin Version:

7| Java Properties Segment Count:

0

3

1
Optimized: «"

= Thread Dump
Current: «"
test - °2 Replication (Master)
£ Overview
T Master (Searching) 1395323557320 2 4.5 KB

Master (Replicable) 1395323557320 2

Figure 8.11: Statistics of the ‘test’ core.
Similarly, to index all XML documents within the exampledocs directory run the command
java -Durl=http://localhost:8080/solr/test/update -jar post.jar *.xml

The command above can be used to upload the testing set instances, each to its corresponding core, after
transforming each test file into an XML file and add the necessary instructions to add the document to the
index.
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9 Conclusion and Future Work

We have shown that our proposed stemmer, P-Stemmer, outperforms the widely used Larkey’s stemmer. We
have built different classifiers using different machine learning techniques and shown that a compound binary
classifier that uses the voting approach to combine SVM, Naive Bayes and Random Forest outperforms both
multiclass classifiers and binary classifiers based on a single learning technique (i.e. SVM, Naive Bayes, or
Random Forest). We also illustrated how to use Solr for indexing and searching Arabic collections.

Regarding the future work, we are planning to use Solr to assist in the evaluation of text classifiers on larger
datasets, for which it is infeasible to classify manually. There are two proposed strategies. The first strategy is
to use Solr to prepare the testing set by uploading all instances to a core and execute a query related to a
given class. Afterwards, the output results are automatically labeled as belonging to that given class. The
second strategy is to classify the instances using the classifier being evaluated and then upload the labeled
instances to Solr. Afterwards, we execute carefully chosen queries and explore the search results with respect
to their assigned labels. Hence, we can calculate the precision and recall values for the classifier under
evaluation.

. _____________________________________________________________________________________________________|
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