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Front Propagation and Feedback in Convective Flow Fields

Saikat Mukherjee

(ABSTRACT)

This dissertation aims to use theory and numerical simulations to quantify the propagation of
fronts, which consist of autocatalytic reaction fronts, fronts with feedback and pattern form-
ing fronts in Rayleigh-Bénard convection. The velocity and geometry of fronts are quantified
for fronts traveling through straight parallel convection rolls, spatiotemporally chaotic rolls,
and weakly turbulent rolls. The front velocity is found to be dependent on the competing
influence of the orientation of the convection rolls and the geometry of the wrinkled front
interface which is quantified as a fractal having a non-integer box-counting dimension. Front
induced solutal and thermal feedback to the convective flow field is then studied by solving
an exothermic autocatalytic reaction where the products and the reactants can vary in den-
sity. A single self-organized fluid roll propagating with the front is created by the solutal
feedback while a pair of propagating counterrotating convection rolls are formed due to heat
release from the reaction. Depending on the relative change in density induced by the solutal
and thermal feedback, cooperative and antagonistic feedback scenarios are quantified. It is
found that front induced feedback enhances the front velocity and reactive mixing length
and induces spatiotemporal oscillations in the front and fluid dynamics. Using perturbation
expansions, a transition in symmetry and scaling behavior of the front and fluid dynamics
for larger values of feedback is studied. The front velocity, flow structure, front geometry
and reactive mixing length scales for a range of solutal and thermal feedback are quantified.
Lastly, pattern forming fronts of convection rolls are studied and the wavelength and velocity
selected by the front near the onset of convective instability are investigated.

This research was partially supported by DARPA Grant No. HR0011-16-2-0033. The nu-
merical computations were done using the resources of the Advanced Research Computing
center at Virginia Tech.



Front Propagation and Feedback in Convective Flow Fields

Saikat Mukherjee

(GENERAL AUDIENCE ABSTRACT)

Quantification of transport of reacting species in the presence of a flow field is important
in many problems of engineering and science. A front is described as a moving interface
between two different states of a system such as between the products and reactants in a
chemical reaction. An example is a line of wildfire which separates burnt and fresh vege-
tation and propagates until all the fresh vegetation is consumed. In this dissertation the
propagation of reacting fronts in the presence of convective flow fields of varying complexity
is studied. It is found that the spatial variations in a convective flow field affects the burning
and propagation of fronts by reorienting the geometry of the front interface. The velocity of
the propagating fronts and its dependence on the spatial variation of the flow field is quan-
tified. In certain scenarios the propagating front feeds back to the flow by inducing a local
flow that interacts with the background convection. The rich and emergent dynamics re-
sulting from this front induced feedback is quantified and it is found that feedback enhances
the burning and propagation of fronts. Finally, the properties of pattern forming fronts
are studied for fronts which leave a trail of spatial structures behind as they propagate for
example in dendritic solidification and crystal growth. Pattern forming fronts of convection
rolls are studied and the velocity of the front and spatial distribution of the patterns left
behind by the front is quantified.

This research was partially supported by DARPA Grant No. HR0011-16-2-0033. The nu-
merical computations were done using the resources of the Advanced Research Computing
center at Virginia Tech.
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Chapter 1

Introduction

Fronts are defined as moving interfaces between two distinct states in a system, such as

products and reactants in a chemical reaction [1, 2]. Fronts separate regions in space which

are of unequal amplitude and stability. Fronts are not only limited to chemical reactions

but are ubiquitous, ranging from fronts in oceanic and atmospheric flows [3, 4], solidification

fronts, biological invasion fronts [1, 2], spreading fronts of forest fires [5], polymerization

fronts [6], combustion fronts of premixed gases in internal combustion engines [7] and the

front of transition between laminar and turbulent flows [8] to name but a few. In these

situations, the propagating front can be modeled as a reaction that consumes unreacted

species (the unstable phase) in its path while leaving behind only products (the stable

phase). Mathematically, a front is defined as a spatially localized solution which connects

two solutions that represent states far away from the front. Fronts determine the long time

evolution and dynamics of the system.

Front propagation is modelled using a class of equations known as ‘reaction-diffusion’ equa-

tions [1, 2]. The study of reaction-diffusion equations has a rich history. Reaction-diffusion

equations were initially used to model the propagation of advantageous genes in a pop-

ulation [9, 10]. Reaction-diffusion equations have also been used to model the spread of

epidemics, chemotaxis, population dynamics, wound healing, predator-prey systems and bi-

ological pattern formation, such as coat markings in many mammalian species and Turing

patterns [1, 11, 12]. In many situations, the front is subjected to spatial variations during

1
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its propagation, such as a front propagating through an underlying flow field, which adds

more complications. These situations are modelled using a class of equations known as

‘reaction-advection-diffusion’ (RAD) equations. The spatial coupling between the front and

the underlying flow field can modify the geometry and dynamics of the propagating fronts

in a complicated way. The front interface is directly affected by the spatial gradients of

the flow field. Front propagation through a background flow field has received significant

attention to understand the process of mixing and entrainment in turbulent fluid flow [13],

outbreak of an epidemic such as the flu in a moving population [14], plankton blooms in

the oceans [4], humidity fronts in the atmosphere [3], reactive mixing in microfluidics [15],

cellular transport [16] and autocatalytic chemical reactions [17–19]. Additionally, in many

situations, the front feeds back to the flow field to alter the spatial variation which can

further alter the front dynamics. The feedback can be generated from the heat release from

the reaction and from the differential densities between the products and the reactants after

the reaction. The front in these scenarios creates its own flow field which interacts with the

background flow in a complicated way. Front induced feedback has received significant at-

tention to understand lock-exchange gravity waves in geophysics [20–22], reactive transport

in the surface of stars [23] as well as engineering applications such as design of flow reactors,

hydrocarbon oxidation and polymerization [6, 18].

In this dissertation, we will study front propagation through convective flow fields of varying

spatial complexity. We will study front propagation through straight and parallel time-

independent convection rolls, convection rolls undergoing defects, instabilities, spatiotem-

poral chaos and convection rolls undergoing weak turbulence. We will explore how these

complicated convective flow fields alter the geometry and dynamics of propagating fronts.

We will then explore how a propagating front feeds back to the underlying convective flow

field resulting in rich and emergent dynamics such as spatiotemporal oscillations and pattern
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formation.

In many scenarios, fronts leave a trail of spatial structures behind as they propagate. This

class of fronts are known as pattern forming fronts [1, 2]. Examples of such fronts are

dendritic growth fronts, crystal growth fronts, dissolution fronts in rocks and flame fronts

which leave cellular patterns on their wake [24, 25]. In this dissertation, we will study

pattern forming fronts of convection which leave a trail of convection rolls behind as they

propagate. We will encounter pattern forming fronts of convection rolls in the wake of a

front propagating with thermal and solutal feedback. Overall, we will probe the following

questions,

1. How do nonlinear reaction-advection-diffusion fronts propagate in Boussinesq convec-

tion?

2. How does spatio-temporally chaotic convection affect the front propagation?

3. What happens when the fronts feed back to the Boussinesq flow field?

4. What are the velocity and wavelength selected by a pattern-forming front?

1.1 Front propagation in convective flow fields

There has been intense interest in the study of front propagation coupled with the underlying

fluid motion because of its relevance to a myriad of physical, chemical, engineering and

biological problems. There has been a range of studies on fronts that are propagating

through simplified flow fields such as an idealized chain of vortices [26–30], a shaken layer of

liquid exhibiting Faraday waves [31], Marangoni flows [32, 33] and Hele-Shaw flows [34, 35]

to obtain a fundamental understanding of RAD fronts. An overall aim of studying front

propagation through simplified flow fields is to understand fundamentally how the spatial
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variations of a flow field affect the front dynamics. A simplified two dimensional model of

fluid flow helps in the quantification of the front dynamics using fewer system variables such

as the details of the stream function and the details of the nonlinear reaction. In many

such cases, the front velocity of propagation has been shown to vary as a power law of

the fluid velocity [26, 27]. The power law behavior has been established using theoretical

predictions for some limiting scenarios where the reaction is weak compared to the flow field

strength or where the front interface is sharp due to strong reaction and advection. Many

important theories on front velocity, geometry and orientation in simplified flow fields have

been developed. For sharp front interfaces, it has been shown that there are dynamically

defined barriers in the system space which guide the front evolution in flow fields. These

barriers, named ‘burning-invariant-manifolds’ [28, 29, 36] are one-way and invariant in nature

such that the front cannot propagate in the opposite direction into the manifold.

An important property for quantifying the relation between the front and fluid dynamics is

the front velocity. The front velocity is often difficult to quantify because of disintegrated

front interfaces in disordered flows which make tracking of the front unfeasible. In these sce-

narios, rigorous mathematical definitions of front velocity such as the ‘bulk burning-rate’ [37]

have been found to be quite useful. We will find this approach particularly convenient to

quantify the velocity of fronts and fronts with feedback in convective flows which make the

front interface disordered and complicated [38, 39].

The majority of work on front propagation coupled with fluid flow, however has been in

idealized and two-dimensional fluid flows such as cellular flows, vortex chains and vortex

arrays, which can be represented with stream-functions. In the present dissertation, we

explore a more difficult problem of front propagation in spatially nonuniform and time-

dependent flow fields along with time-independent cellular flow fields and quiescent flow

fields. We use the canonical pattern-forming system known as Rayleigh-Bénard convection
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as our flow field [2]. We use experimentally realizable domains and boundary conditions

for simulating the front and fluid dynamics. We use a highly efficient and scalable spectral

element fluid solver called NEK5000 [40] to solve the resulting front and fluid dynamics.

Rayleigh-Bénard convection is the buoyancy-driven fluid motion that occurs when a shallow

layer of fluid is heated uniformly from below against the gravitational field. When an initially

quiescent layer of fluid is heated from below, after crossing a certain critical temperature

difference between the bottom and the top wall, the fluid becomes unstable and gives rise to

convection rolls. The linear conduction profile of the fluid in this case becomes convectively

unstable through a pitchfork bifurcation [2, 41]. A further increase in temperature difference

gives rise to complicated spirals and defects in the convection rolls inducing a state called

spiral defect chaos [42]. A further increase in temperature difference induces oscillatory

instabilities in the convection rolls. The convection rolls then give rise to plumes and undergo

a route to turbulence.

Rayleigh-Bénard convection is an experimentally accessible system, which makes it extremely

attractive for studying chaos and nonlinear dynamics. Moreover, the system can be de-

scribed using a modified form of the incompressible Navier-Stokes equations, which makes

it extremely accessible for theoretical and numerical studies. Rayleigh-Bénard convection is

a canonical example of pattern formation in a dissipative nonequilibrium system. The emer-

gence of spatial structures such as convection rolls when a system is driven far from thermo-

dynamic equilibrium falls under the umbrella of nonequilibrium pattern formation theory,

which describes the mechanisms behind morphogenesis, cell-division, self-organization of

chemical compounds to form life to other physical phenomena such as the coat-markings

of zebra, the structure of sand dunes in deserts, the aggregation of slime-mold colonies and

even the formation of spirals in galaxies [2].

Because of its inherent accessibility, there have been extensive theoretical, numerical and
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experimental investigations on Rayleigh-Bénard convection, aimed at understanding open

questions on chaos and turbulence [43–45]. Recent focus has been on the quantification of

spatiotemporal chaos in Rayleigh-Bénard convection using nonlinear dynamical tools such as

the covariant Lyapunov vectors [46] and Kaplan-Yorke dimension [47, 48]. The overall aim of

these studies is to quantify invariant manifolds in the state-space of the system and identify

regions in the state-space that have high magnitude of growth when subjected to small per-

turbations. Mathematical pattern-diagnostic tools such as persistent homology [49] have also

been used in this regard to establish the relation between observed patterns such as spirals,

plumes and defects, with regions of large Lyapunov growth [50]. Rayleigh-Bénard convec-

tion is also directly related to natural convective processes such as atmospheric convection,

mantle convection and stellar convection [51–53]. An understanding of front propagation in

complex convective flow fields is thus important to understand material transport in such

systems.

Figure 1.1 shows schematics of domains which contain fluid that is undergoing Rayleigh-

Bénard convection. The red regions indicate locations where an autocatalytic reaction has

been initiated. A shallow layer of fluid is confined inside a cylinder shown in Fig. 1.1 (a) and a

rectangular domain shown in Fig. 1.1 (b). The fluid is subjected to a temperature difference,

∆T = Th − Tc against the gravity, with the bottom plate at temperature Th and the top

plate at temperature Tc. The depth of the fluid layer, d, is sufficiently small compared to the

spatial extent of the layer, which is an important feature of pattern formation in dissipative

and nonequilibrium systems [2, 41]. The aspect ratio, Γ, of the domain is defined as the

ratio of the radius to depth for the cylindrical domain, that is Γ = r0/d, where r0 is the

radius of the cylinder. For the rectangular domain, the aspect ratio is defined as the ratio

of the length of sides to the depth, Γx = Lx/d and Γy = Ly/d, where Lx and Ly are lengths

of the sides aligned with the x and y axes, respectively. After a certain critical temperature
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difference, we get convection rolls in the domain. The convection rolls observed are in the

form of straight-parallel rolls, spirals and other complicated patterns for a range of values of

∆T .

As we will observe from the governing equations in Ch. 2, when nondimensionalized with the

depth of the fluid layer as the length scale and the vertical diffusion time as the time scale,

the governing equations provide us with two important control parameters, the thermal

Rayleigh number, Ra, and the Prandtl number, σ. The thermal Rayleigh number, from

herein referred to as simply the Rayleigh number, is the ratio of buoyancy to dissipation and

is defined as,

Ra =
βg∆Td3

αν
. (1.1)

Here, β is the thermal expansion coefficient, α is the thermal diffusivity and ν is the kinematic

viscosity. For an infinite layer of fluid, the critical Rayleigh number at the onset of convection

is Rac = 1707.76 [2, 41]. As the Rayleigh number is increased, an initially quiescent layer

of fluid gives rise to time-independent convection rolls at Ra = Rac. Further increase in

the Rayleigh number results in time-dependent dynamics, period doubling, chaos and finally

turbulence. We will find it useful to represent the dynamics using the reduced Rayleigh

number, which is defined as ϵ = (Ra−Rac)/Rac. The Prandtl number is defined as the ratio

of momentum and thermal diffusivity,

σ =
ν

α
. (1.2)

For all our simulations, we fix the Prandtl number at σ = 1, which is typically found in

compressed gas Rayleigh-Bénard convection experiments [43]. A higher value of Prandtl

number (σ ≈ 7) is required to simulate front propagation in an aqueous medium. However a

higher value of Prandtl number weakens the spiral defect chaos state of the convection rolls
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by damping the mean flow in the domain [2]. In this text, we have kept σ = 1 to quantify

front propagation through spatially disordered and chaotic convective flow fields.

g

Figure 1.1: Schematics of the computational domains used to study front propagation in
Rayleigh-Bénard convection. (a) A cylindrical domain of radius r0 and depth d. The hot
bottom and the cold top wall are maintained at temperature Th and Tc. The schematic
shows a spiral that has been formed by the convection rolls. The red region is a blob where
a reaction has been initiated. This reaction will result in a front that will propagate radially
towards the boundaries of the domain, until all the reactants in the domain are consumed.
(b) A schematic of a rectangular domain with straight parallel, counterrotating convection
rolls. The arrows indicate the direction of fluid flow. A reaction has been initiated at the
left wall of the domain. This reaction will generate a front that will travel towards the right
wall indicated by a arrow.

Previous works on material transport in Rayleigh-Bénard convection and other spatiotem-

porally disordered flow fields have focused mainly on passive scalars or tracers in the flow.

An enhancement in the effective diffusion coefficient of passive tracers in convective flow

fields was found [54, 55]. The diffusion coefficient was found to be enhanced by a factor of

Pe1/2 in two-dimensional convective flow fields, where Pe denotes the Péclet number, which

is the ratio between convection and mass diffusion. The study was extended further by a

direct numerical simulation of an advection-diffusion equation in three-dimensional, time-

dependent Rayleigh-Bénard convection [56]. It was found that the diffusion enhancement

was linear with the Péclet number for larger values of Pe and behaved as the square root of

the Péclet number for smaller values of Pe. The complex dependence of the tracer transport



1.1. Front propagation in convective flow fields 9

with the defects and orientation of the flow field was also investigated. Active transport

in Rayleigh-Bénard convection was then studied by solving a reaction-advection-diffusion

equation coupled with three-dimensional Rayleigh-Bénard convection in the presence of spa-

tiotemporal chaos [57]. The enhancement of the spreading rate of the front in spatiotem-

porally chaotic flow fields was quantified as a function of the flow field disorder [57, 58].

The study of propagating reacting fronts in a two-dimensional turbulent flow field was done

by Ref. [59], where it was found that the multiscale character of a turbulent flow field en-

hanced the bulk burning rate and the complexity of the reaction front interface. A reacting

Belousov-Zhabotinsky front in an array of fluid rolls was studied in Ref. [60] where it was

found that reacting fronts travelled towards the core of the vortex rolls in the presence of a

flow field unlike a nonreactive scalar. The blow-out of a reaction due to a strong flow field

was also quantified using an optimal stretching tensor.

A thorough investigation of front propagation in a range of convective flow fields from time-

independent straight parallel rolls to time-dependent chaotic rolls and weakly turbulent

rolls was done by Ref. [38]. It was found that chaos and instabilities in convective flow

fields can impart rich spatiotemporal dynamics and fractal geometry to the front interface.

It was shown that front propagation is highly affected by the spirals and defects in the

Boussinesq flow field. It was found that convection rolls which are undergoing spiral defect

chaos can impede front propagation and make fronts slower than time-independent cellular

convection rolls. When the Rayleigh number was increased, eventually the front velocity in

chaotic convection was found to be faster than time-independent cellular convection rolls. It

was reported that this transition occurred when the convection rolls undergo an oscillatory

instability, which imparts a fractal geometry to the front interface. Different mathematical

and computational tools were used to quantify front velocity, fractal dimension and front

angles. The details of this work can be found in Ch. 5 of the present dissertation.
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1.2 Front induced feedback to convection

In many scenarios, the propagating front can affect the flow field, generating a feedback

mechanism. Reactions which are exothermic and where the products and reactants are of

different densities can feedback to the underlying flow field [18, 61]. Under such scenarios,

the reaction-advection-diffusion equation creates a local flow field traveling with the front

that can interact with the underlying convective flow field. Reactions that are exothermic

cause a local increase of the temperature at the reaction zone which creates fluid rolls that

travel with the front. This feedback is called a thermal feedback from the reaction. On

the other hand, a change in chemical composition after the reaction can induce fluid flow

driven by the density difference between products and reactants, a situation known as solutal

feedback.

Solutal and thermal feedback are important aspects in many aqueous chemical reactions such

as the iodate-arsenous acid (IAA) reaction and Belousov-Zhabotinsky reaction [17, 32, 61–

65]. Front induced feedback to the flow field is important to understand the lock-exchange

instability of geophysical and industrial applications [20], propagation of polymerization

fronts [6] and propagating forest fire fronts [5]. Front induced feedback has received signifi-

cant attention in autocatalytic chemical reactions, where chemical fronts traveling through

capillary tubes have been found to induce convection [17, 19, 62, 63]. In autocatalytic

chemical reactions, one of the reactants acts as a catalyst for itself and the reactants are

completely converted to products. Autocatalytic chemical reactions can be second order or

third order of type (A+B → 2B) or (A+ 2B → 3B) respectively, where A and B are the

two species of the reaction. A second order autocatalytic chemical reaction in an aqueous

media can be modeled as a reaction-advection-diffusion equation with a quadratic nonlin-

earity. The class of reaction-diffusion equations with quadratic nonlinearities are named
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Fisher-Kolmogorov-Petrovskii-Pishkunov equation after Fisher who studied this equation to

model the propagation of advantageous genes in a population [9] and Kolmogorov, Petrovskii

and Pishkunov who studied the equation simultaneously in Russia [10].

There have been a range of experimental investigations in channels, Petri dishes and Hele-

Shaw cells that have shown front speed enhancement due to the feedback induced flow

field [17, 19, 21, 66]. Autocatalytic front induced feedback has been suggested as a mech-

anism of plume formation and pinch-off events in geophysics and astrophysics [23, 66, 67].

Autocatalytic plume propagation and pinch-off in a vertical geometry, against gravity, for

an IAA reaction was studied in Refs. [66, 67] where the different spatial structures such

as heads and tails of autocatalytic plumes were quantified using viscous and reactive time

scales. There have been many numerical investigations of front propagation with feedback

in an initially quiescent fluid. The front speed enhancement due to convective motion in

capillary tubes was quantified by Ref. [68] using a two-dimensional truncated Galerkin ap-

proach. Horizontally traveling fronts with solutal feedback coupled with a Stokes flow were

numerically explored by Ref. [64]. It was found that the reactive mixing length and velocities

scaled with the square root of the solutal Rayleigh number. It was also reported that the

fluid velocity profiles exhibited self-similar behavior.

Horizontally traveling fronts with both solutal and thermal feedback were explored in Refs. [61,

69]. There are two separate scenarios that are possible when both solutal and thermal feed-

back are present in combination. The contribution to the density jump across the front

interface due to the solutal and thermal feedback can either be positive, a scenario known

as cooperative feedback, or the contributions can be of opposite signs, a scenario known as

antagonistic feedback. The reactive mixing length and velocities for cooperative and antag-

onistic feedback were quantified by Ref. [61] using a Stokes flow. It was observed that the

antagonistic scenario exhibited chemical oscillations with time. A detailed quantification of
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the effect of the solution layer to the system dynamics of fronts with feedback was done by

Ref. [69] using a combined experimental and computational approach. Autocatalytic fronts

have been shown to affect the surface tension gradients of flows in uncovered horizontal

layers of fluid inducing Marangoni driven flows [17, 32]. A detailed review of chemical re-

action triggered flows can be found in the PhD dissertation of Rongy [19]. An important

objective of studying front induced feedback is to design conditions of chemically induced

convection where the control of nonlinear dynamics, oscillations and complex behaviors can

be achieved. A recent study has shown that chemical oscillations can be induced and con-

trolled in a second order chemical reaction by simple hydrodynamic coupling [70]. A detailed

review of chemo-hydrodynamic coupling induced patterns and instabilities can be found in

Ref. [71] where chemical reaction induced flows due to viscosity and density gradients have

been reviewed.

Although there has been a significant amount of literature in front induced feedback to the

flow, most of these works have been in two dimensions and are limited to using a Stokes

flow to model the induced flow field. The majority of studies on front induced feedback have

not quantified the effect of front induced feedback flow in the presence of background fluid

motion. Moreover, most of these works have also used third order autocatalytic chemical

reactions which is a model for the IAA reaction. The interaction of front induced flow with

an array of convective rolls generated by Rayleigh-Bénard convection using a second order

autocatalytic reaction was studied by Ref. [39]. In the absence of convection rolls, for small

values of solutal Rayleigh numbers, a perturbation expansion was used which revealed that

the fluid velocity scaled linearly while the front velocity and the reactive mixing length

scaled quadratically, with the increasing solutal Rayleigh number. At larger values of solutal

Rayleigh number, the square root dependence of the velocities and the reactive mixing length

with the solutal Rayleigh number was established which was consistent with previous studies
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of front induced feedback from a third order autocatalytic reaction in a Stokes flow [64]. A

direct implication of front induced feedback is the temporal oscillations of the reacting species

due to the nonlinear interactions of the reacting species and the flow [19, 70]. Recently, it

was reported that the solutal feedback in underlying Rayleigh-Bénard convective flow can

also induce chemical oscillations in the reacting species [39]. It was also found that the

presence of background convection decreased the reactive mixing length but increased the

front velocity. The results from this paper can be found in Ch. 6 of the present dissertation.

The complex interaction of a front propagating with the combined effects of solutal and

thermal feedback with background convection has been reported in Ch. 7 of the dissertation.

We first study fronts with only thermal feedback where we make scaling arguments for the

front and fluid velocity. Next, we study fronts with cooperative and antagonistic feedback

in a two-dimensional horizontal layer of fluid undergoing Rayleigh-Bénard convection. We

then study fronts with feedback in three-dimensional Rayleigh-Bénard convection, where the

underlying fluid is undergoing spatiotemporal chaos. We discuss the spatiotemporal features

of the complex fronts in Rayleigh-Bénard convection that form over a range of solutal and

thermal driving.

1.3 Thesis layout

We briefly describe the overall layout of the present dissertation. We first state our over-

all approach and methodology for computing reaction-advection-diffusion fronts and fronts

with feedback in convective flow fields. This includes a discussion of our computational

methodology, governing equations and the diagnostic tools to quantify front propagation.

We then study fronts and front induced feedback in convective flow fields over a range of

parameters and spatial disorder of the flow field. We start by stating our governing equa-

tions, nondimensionalization scheme and boundary conditions in Ch. 2. We introduce the
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relevant parameters of feedback and discuss the modifications in the governing equations to

realize front induced feedback. Next, we develop the diagnostic tools that we use to quantify

front propagation and to probe the nonlinear dynamics in Ch. 3. We discuss our numerical

approach including temporal and spatial resolutions of the code in Ch. 4. We next describe

our results. We study propagating fronts in a range of spatially varying convective flow fields

in Ch. 5. We compare fronts propagating through straight parallel rolls, chaotic convection

rolls and weakly turbulent rolls. We next study the effect of feedback from the front on

the flow field by solving an exothermic reaction where the products and reactants vary in

density. We study fronts propagating through flow fields with only solutal feedback in Ch. 7.

For this case we solve a reaction which is isothermic and the only feedback from the reaction

is due to the products and reactants being at different densities. We then study fronts prop-

agating through flow fields with combined thermal and solutal feedback from the reaction

in Ch. 7, where the combined feedback can act cooperatively or antagonistically in reducing

the density of the fluid. In the presence of convection rolls, fronts with feedback annihilate

the convection rolls ahead of it which results in convection rolls reemerging behind the front.

This is an example of a pattern forming front where the reemerged convection rolls form

more rolls to fill the void left behind by the front. We will study convective pattern forming

fronts in Ch. 8, where we study how a chain of fluid convection rolls propagate at different

thermal driving near the convective instability and quantify the front velocity as well as the

wavelength of the pattern left behind. Lastly, we present our concluding remarks in Ch. 9.



Chapter 2

Governing equations

In this chapter we discuss the governing equations, our nondimensionalization scheme and

the boundary conditions. We consider an incompressible shallow horizontal layer of fluid

undergoing buoyancy driven convection. We then initiate an autocatalytic reaction in the

fluid which results in a propagating reaction front. We solve the associated nondimensional

incompressible Navier-Stokes equations and the coupled reaction-advection-diffusion equa-

tion.

When an incompressible layer of fluid is heated from below, the convective instability of the

fluid layer can be modelled using the Boussinesq approximation. The Boussinesq approx-

imation assumes the density to be constant everywhere except for the forcing term in the

momentum equation. The density is expanded as a Taylor series in the temperature differ-

ence and only the terms up to the first order are retained. The Boussinesq approximation

states,
ρ∗

ρ0
= 1− β (T ∗ − T0) , (2.1)

where ρ∗ is the dimensional density and T ∗ is the dimensional temperature of the fluid. ρ0

and T0 are the density and temperature of a reference state and β = − 1
ρ0

∂ρ∗

∂T ∗ is the coefficient

of thermal expansion.

15
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2.1 Incompressible Navier-Stokes equation

The conservation equations of mass, momentum and temperature are,

∂u⃗∗

∂t∗
+ u⃗∗ · ∇⃗∗u⃗∗ = − 1

ρ0
∇⃗∗p∗ + ν∇∗2 u⃗∗ − ρ∗

ρ0
gẑ, (2.2)

∂T ∗

∂t∗
+ u⃗∗ · ∇⃗∗T ∗ = α∇∗2T ∗, (2.3)

∇⃗∗ · u⃗∗ = 0. (2.4)

Here u⃗∗ is the dimensional fluid velocity, p is the pressure, α is the thermal diffusivity, ν

is the kinematic viscosity and g is the acceleration due to gravity. Using the Boussinesq

approximation in Eq. 2.1, the momentum Eq. 2.2 can be rewritten as,

∂u⃗∗

∂t∗
+ u⃗∗ · ∇⃗∗u⃗∗ = − 1

ρ0
∇⃗∗p̃+ ν∇∗2 u⃗∗ + βgT ∗ẑ, (2.5)

where, p̃ = p∗ + ρ0gz
∗ + ρ0βgT0z

∗, is obtained by including all the constant terms inside the

gradient operator of the pressure field.

We nondimensionalize the incompressible Navier-Stokes equations given by Eqs. 2.2-2.5 and

apply the Boussinesq approximation shown in Eq. 2.1 to obtain our final equations. We use

the depth d of the convection layer as length scale and vertical diffusion time τα = d2/α as

the time scale. ∆T = Th − Tc, which is the temperature difference between the top (at Tc)

and bottom plate (at Th) is used as the temperature scale. We specifically use the following

operations to go from dimensional to nondimensional formulation, t∗ = tτα, d∇∗() = ∇(),

u⃗∗ = u⃗α/d and T ∗ = T∆T and write our nondimensional equations as,

σ−1

(
∂u⃗

∂t
+ u⃗ · ∇⃗u⃗

)
= −∇⃗p+∇2u⃗+ RaT ẑ, (2.6)
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∂T

∂t
+ u⃗ · ∇⃗T = ∇2T, (2.7)

∇⃗ · u⃗ = 0. (2.8)

The nondimensional set of fluid equations given by Eqs. 2.6-2.8 are governed by the Rayleigh

number Ra and Prandtl number σ which are defined in Eqs. 1.1 and 1.2 respectively. We

explore a range of Rayleigh numbers 0 ≤ Ra ≤ 25000 which generates a range of differ-

ent convective flow fields from straight parallel convection rolls to spatiotemporally chaotic

and weakly turbulent rolls. We use a Prandtl number of σ = 1 which is typically used in

Rayleigh-Bénard convection experiments with compressed gases. However, our computa-

tional approach is flexible and it would be straightforward to explore other parameter values

such as a larger Prandtl number of σ ≈ 7 to align with aqueous experiments, if desired

[18, 63].

2.2 Reaction-Advection-Diffusion equation

We initiate a second order autocatalytic reaction with a reaction rate of kr, which is coupled

with the flow field. We initiate a second order reaction in our domain which contains an

initial concentration of reactants a0. The dimensional reaction-advection-diffusion (RAD)

equation coupled with the flow field is,

∂c∗

∂t∗
+ u⃗∗ · ∇⃗∗c = D∇∗2c+ krc

∗(a0 − c∗). (2.9)

Here, c∗ is the concentration of the products in a second order autocatalytic reaction. D is

the coefficient of molecular diffusion of the species, and kr is the reaction rate. To obtain the

nondimensional reaction-advection-diffusion equation, we use the same length and time scales

used to nondimensionalize the Navier-Stokes equations. We then use the initial concentration
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of the reactants a0 to nondimensionalize the concentration of the products. We write the

nondimensional RAD equation as,

∂c

∂t
+ u⃗ · ∇⃗c = Le∇2c+ ξc(1− c). (2.10)

The nondimensional RAD equation is coupled with the nondimensional flow field equation

given in Eq. 2.6. c is the normalized concentration of products such that the state c = 1 is the

state of pure products and the state c = 0 is the state of pure reactants. The intermediate

state of 0 < c < 1 is a mixture products and reactants. The front is mathematically defined

as the level set of c = 1/2. The reaction-advection-diffusion equation given in Eq. 2.10

governs the propagation of a front that propagates until all the reactants given by c = 0

are converted to the products given by c = 1. The reaction-advection-diffusion equation

represents the time evolution of the concentration of the species which is reacting and is

advected by a flow field u⃗.

The two important nondimensional parameters in Eq. 2.10 are the Lewis number Le, and

the nondimensional reaction rate ξ. The Lewis number is the ratio of mass diffusion to

heat diffusion Le = D/α. Here, D is the coefficient of molecular diffusion of the species.

Decreasing the Lewis number results in stronger effect of the fluid flow on the front dynamics.

The nondimensional timescale of mass diffusion is expressed as τD = Le−1. We will use Lewis

number values of Le = 1, Le = 0.1 and Le = 0.01 in this dissertation.

The nondimensional reaction rate is defined as the ratio of the flow and the reaction time

scales. ξ = τα/τr, where τα is the vertical diffusion time scale used to nondimensionalize the

flow field equations Eqs. 2.6-2.8. τr = (kra0)
−1 is the reaction time scale. Unless otherwise

stated, we will fix our nondimensional reaction rate to a value of ξ = 9 which means that

the time scale of vertical diffusion of heat is nine times slower than the reaction time scale.
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This particular value for the reaction rate is chosen such that the reaction and flow field

have comparable strength. The ratio of the reaction rate to the characteristic fluid velocity

is known as the Damköhler number Da = ξ/U which we will study in greater detail in Ch. 3.

A reaction rate of ξ = 9 ensures that Da ∼ O(1) and the fronts propagate with a finite

velocity. Our computational approach is quite general and we can easily change our reaction

rate. We show this by a comparison of front velocity with increasing reaction rates in Ch. 5.

2.3 Governing equations with front induced feedback

To realize front induced feedback, we recall that fronts can feedback to the the flow field in

two key ways. The feedback can be solutal - a scenario when the products and the reactants

of the autocatalytic reaction are of different densities and thermal - where the autocatalytic

reaction is exothermic and releases heat. To realize the effect of a change in composition

of the reacting species to a change in density, we use a generalized Boussinesq equation

which takes into account the linear variation of density with changes in temperature and

in concentration. A Taylor expansion of density in terms of the concentration field and

temperature around a reference state yields,

ρ∗ (c∗, T ∗) = ρ0 (a0, T0) +
∂ρ∗

∂c∗
(c∗ − a0) +

∂ρ∗

∂T ∗ (T
∗ − T0) . (2.11)

Here, ρ∗, c∗ and T ∗ are the dimensional density, the dimensional concentration of products of

the reaction, and the dimensional temperature, respectively. ρ0 is the density of a reference

state, a0 is the initial concentration of reactants in the domain, and T0 is the temperature

of a reference state. We use the Boussinesq equation given by Eq. 2.11 to simplify the
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dimensional momentum equation Eq. 2.2 as,

∂u⃗∗

∂t∗
+ u⃗∗ · ∇⃗∗u⃗∗ = − 1

ρ0
∇⃗∗p̃+ ν∇∗2 u⃗∗ + βgT ∗ẑ + βsgc

∗, (2.12)

where, p̃s = p∗+ ρ0gz
∗+ ρ0βgT0z

∗+βsga0z
∗, is obtained by including all the constant terms

inside the gradient operator of the pressure field and βs = − 1
ρ0

∂ρ∗

∂c∗
is the solutal expansion

coefficient.

To realize the effect of exothermic heat release from the autocatalytic chemical reaction, we

use the chemical production term f(c∗) = c∗ (a0 − c∗) in the dimensional energy equation

such that,
∂T ∗

∂t∗
+ u⃗∗ · ∇⃗∗T ∗ = α∇∗2T ∗ − ∆H

ρ0cp
krc

∗(a0 − c∗). (2.13)

Where, ∆H is the change in enthalpy from the reaction, which is negative for an exother-

mic reaction [18]. No autocatalytic endothermic reactions have been discovered as of now,

however, our numerical procedure is quite general and we can investigate endothermic front

propagation through a flow field in the future by simply changing the sign of the heat release

term in Eq. 2.13.

The nondimensional governing equations of the flow field with front induced thermal and

solutal feedback from the reaction-advection-diffusion equation given by Eq. 2.10 are,

σ−1

(
∂u⃗

∂t
+ u⃗ · ∇⃗u⃗

)
= −∇⃗p+∇2u⃗+ RaT ẑ + Rascẑ, (2.14)

∂T

∂t
+ u⃗ · ∇⃗T = ∇2T + ηc(1− c), (2.15)

∇⃗ · u⃗ = 0. (2.16)

The two important nondimensional parameters that describe fronts with feedback to the
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underlying flow field are then,

1. The solutal Rayleigh number Ras which describes the change in density due to the

change in chemical composition. The solutal Rayleigh number is given by the ratio

between the buoyancy force generated due to compositional change to the dissipative

force and is written as,

Ras =
βsga0d

3

αν
. (2.17)

A positive value of Ras implies that the products are lighter than the reactants whereas

Ras < 0 implies heavier products after the reaction. We will explore a range of solutal

Rayleigh numbers between 0 ≤ Ras ≤ 8000. Often in the physical chemistry literature,

Ras is described using the chemical length scale Lc =
√
Dτr instead of the depth of

the fluid layer [19, 64]. For our parameters, the ratio of the depth of the fluid layer to

the chemical length scale yields d/Lc =
√
ξ/Le which can be used to navigate between

the two scaling and definitions.

2. The heat release parameter η which is given by,

η = −ξ ∆H

ρ0cp∆T
. (2.18)

Larger positive values of η implies larger heat release from the reaction which feeds

back to the fluid flow. We explore a range of heat release between 0 ≤ η ≤ 100. The

heat release parameter is directly proportional to the reaction rate and the enthalpy

change due to the reaction.

Different scenarios of front induced feedback are realized by different values of the thermal

and solutal Rayleigh numbers, Ra and Ras, and the heat release parameter η.

Finally, using a characteristic density scale ρc = µα/(d3g), and converting the dimensional
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quantities to nondimensional quantities using the temperature and concentration scale, we

get a nodimensional density given by,

ρ(c, T ) = −Rasc− RaT, (2.19)

where ρ, c and T are nondimensional. Here, ρ = (ρr−ρ0)/ρc, and ρr = ρ∗−a0βsρ0−T0βρ0. We

tabulate the different scales used to arrive at the nondimensional set of equations Eqs. 2.14-

2.16 in Table 2.1.

Quantity Scale
Length d
Time τα = d2/α
Velocity α/d
Temperature ∆T
Concentration a0
Density ρc = µα/(gd3)
Pressure ρcgd

Table 2.1: List of scales used for nondimensionalization of different quantities in the govern-
ing equations given by Eqs. 2.14-2.16.

2.4 Boundary conditions

In general, we use no-slip boundary conditions u⃗ = 0 for the fluid velocity at all material

surfaces. The boundary condition for temperature is perfectly conducting on the sidewalls

and is set to the conduction profile of T (z) = 1− z. The bottom and top walls are held at

T (z = 0) = 1 and T (z = 1) = 0. The boundary condition for the concentration is no-flux

for all material surfaces, that is ∇⃗c · n⃗ = 0, where n⃗ is the outward going normal from the

material surface. In certain cases, we remove the walls and use periodic boundary conditions

for all field variables.
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Front diagnostics

In this chapter we focus on tools and methodology by which we quantify front propagation.

We start by studying the reaction-diffusion equation and quantifying front propagation in the

absence of a flow field. We will explore the exact solutions and initial conditions of propagat-

ing fronts. We will then develop tools to quantify the different length scales and velocities

associated with front propagation. The ideas we develop will be useful when quantifying

fronts in the presence of convective disordered flow fields and fronts with feedback.

3.1 Front propagation in a quiescent flow field

We first study the propagation of reacting fronts in a quiescent flow field. In this scenario,

the RAD equation given by Eq. 2.10 simplifies to a reaction diffusion equation given by

Eq. 3.1 below with u⃗ = 0.

∂c

∂t
= Le∇2c+ ξc (1− c) . (3.1)

Reaction-diffusion equations such as Eq. 3.1 are used frequently in biological and ecological

invasion models and bi-molecular chemical reactions [1, 18]. We will find this equation

helpful to develop several mathematical and computational tools to quantify the complex

front geometry and dynamics that we will encounter when fronts are subjected to flow fields

and two-way feedback. Le is the nondimensional diffusion coefficient known as the Lewis

23
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number and ξ is the nondimensional reaction rate.

The concentration c(x, y, z, t) is a single scalar quantity that represents the ratio of products

to reactants where c = 1 is pure products (no reactants), c = 0 is pure reactants (no

products), and intervening values 0 < c < 1 represent a mixture of products and reactants.

The front is mathematically defined as the c = 1/2 level set.

3.1.1 Initial conditions, pulled versus pushed fronts

Front propagation has a significant dependence on the initial conditions. Fronts can be

classified as either pulled or pushed depending on the spreading speed that the propagating

front selects [1]. Pulled fronts are fronts which propagate with a speed that is dictated by

the linearized dynamics at the leading edge of the front around c = 0. In this case, equation

Eq. 3.1 can be cast in a traveling wave formulation in one dimension and then linearized

about the leading edge to obtain a linear spreading speed. The linear spreading speed is

the asymptotic velocity attained by the fronts at large times. This approach is discussed in

detail in Refs. [1, 72, 73]. For the FKPP type nonlinearity used in Eq. 3.1, we define the

linear spreading speed as the no-flow front velocity, v0 which is given by,

v0 = 2f ′(0)1/2
√

Leξ, (3.2)

where f is the reaction nonlinearity in Eq. 2.10 [1, 10]. For f(c) = c(1 − c), Eq. 3.2 yields

v0 = 2
√

Leξ.

On the other hand, pushed fronts are fronts where the nonlinearity is important. The front is

pushed by the spatial region behind the leading edge where 0 < c < 1 and the nonlinearity is

significant. The spreading speed for pushed fronts is more than pulled fronts. A front can be
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categorized as either pulled or pushed depending on the steepness of the initial condition. A

pulled front which develops from a sufficiently steep initial condition will select a spreading

speed given by Eq. 3.2. The optimal steepness of the initial condition can be retrieved from

casting the reaction-diffusion equation in a traveling wave formulation and then linearizing

around the leading edge of the front. The fronts are initiated with an initial condition

c(x, y, z, t = 0) = e−λsx. The steepness of the initial condition is determined by λs. Any

initial condition which is steeper than λs =
√
ξ/Le, will generate a pulled front. Therefore,

the minimum steepness of the initial condition for generating pulled fronts is given by,

c(x, y, z, t = 0) = e−
√

ξ
Lex. (3.3)

Whereas, initial conditions flatter than Eq. 3.3 will generate a pushed front which will

propagate with a larger velocity than Eq. 3.2. In this dissertation, for all the cases we

consider, our initial conditions will be steeper than Eq. 3.3 and will generate pulled fronts that

propagate towards the right in the rectangular domain or radially outward in the cylindrical

domain, as shown in Fig. 3.1 (a),(b) and (d). Shown are the color contours of the normalized

concentration of products c, with the color blue representing reactants at c = 0 and the color

red representing products at c = 1. The intermediate green and yellow region represents the

reaction zone containing the front. We will use this color scheme throughout the dissertation.

For the cylindrical geometry, we will initiate a reaction at the center of the cylindrical domain

with an initial condition of the form,

c(r, θ, z, t = 0) = e−r2 , (3.4)

where r, θ and z are cylindrical coordinates. This results in a front moving radially outward

as shown in Fig. 3.1 (d). The Gaussian initial condition given by Eq. 3.4 is always steeper
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than exponential initial conditions given by Eq. 3.3 and will always generate a pulled front.

3.1.2 Exact solutions

The FKPP nonlinearity used in Eq. 3.1 is given by f(c) = c(1− c). Because of its quadratic

nature, the FKPP nonlinearity has been used to model radial chain branching and bi-

molecular oxidation reactions. The FKPP nonlinearity also arises in models of Belousov-

Zhabotinsky reaction [18, 65]. For this nonlinearity, the system has two states of equilibrium

at c = 0 and c = 1. It can also be seen that f ′(0) = 1 > 0 while f ′(1) = −1 < 0. A Taylor

expansion near c = 0 suggests that this state is unstable. Thus, a pulled front propagating

from c = 1 to c = 0 is always generated, with the aim of devouring the entire state into the

stability of c = 1 [1]. The front will propagate until the entire state is at c = 1. For the

quadratic FKPP nonlinearity, there is no general explicit solution for c(x, y, z, t) and instead

the exact solution is given by a family of solutions [72, 73]. For initial conditions which

depend on one spatial dimension such as given by Eq. 3.3, we get a one parameter family of

solutions given by,

c(x, y, z, t) =
1

[1 + rpe(xt/
√
6)]2

(3.5)

where xt is the traveling coordinate given by xt =
√
ξ/Lex−2ξt [72] and r > 0. Figure 3.1 (c)

shows the excellent agreement between the front profile at the midplane in the rectangular

domain cm(x) = c(x, y = Γy/2, z = 1/2) and the solution given by Eq. 3.5 at a time t = 4

from the start of the reaction. The parameter rp for this particular case was found to be

rp = 6.74.
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Figure 3.1: Front propagation in the absence of a background flow. The color contours are
of the concentration where red is pure products (c = 1) and blue is pure reactants (c = 0).
The intermediate green and yellow region indicates the reaction zone or loosely the front.
(a) and (b) show a propagating front at Le = 1 and ξ = 9 in a rectangular domain as shown
in Fig. 1.1 (b) with Γx = 30 and Γy = 5. The front is initiated at the left wall at x = 0
with the initial condition given by Eq. 3.3. (a) Propagating front in the x-z plane at a slice
y = Γy/2. (b) Propagating front in the x-y plane at a slice z = 1/2. (c) Shape of the
propagating front at a time t = 4 from the onset of the reaction as a function of spatial
extent x taking the midplane slice of (a). Here the front profile in the midplane is written as
cm(x) = c(x, y = Γy/2, z = 1/2). The red squares are the profile points and the solid black
line is from the solution given in Eq. 3.5 with parameter rp = 6.74. The curve-fit shows
excellent agreement with the data. (d) Front propagating in a cylindrical domain shown in
Fig. 1.1 (a) with initial condition given by Eq. 3.4. Shown is the horizontal midplane of a
cylinder having an aspect ratio of Γ = 40.

3.2 Diagnostic tools

We quantify the front velocity using an integral known as the bulk burning rate [37, 74].

The front velocity using this approach can be quantified as,

vf (t) =

∫ 1

0

dz

∫ Γx

0

dx
∂c

∂t
. (3.6)
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For fronts propagating through cylindrical domains with initial condition given by Eq. 3.4,

the bulk burning rate equation gets modified as,

vf (t) =

∫ 1

0

dz

∫ 2π

0

dθ

∫ Γ

0

dr
∂c

∂t
, (3.7)

where θ is the azimuthal angle.

One of the properties of a pulled front is the slow asymptotic convergence of the front velocity

with time. The front velocity scales algebraically as O(t−1) [1, 75]. We will call this long-

time asymptotic velocity as v̄f . We will use an algebraic relation to fit our finite time data

in order to quantify this slow convergence. This relation is given by,

v̄f = vf (t)− b/t. (3.8)

Because of the slow convergence of fronts, we are required to use large domains to quantify

the front velocity properly. The fastest no-flow fronts with Le = 1 and ξ = 9 had a no-flow

front velocity of v0 = 6 from Eq. 3.2. We found that a minimum spatial extent of Γx = 30

for this case yielded a limiting velocity of vf = 5.87 which is in error of 2.17%. We then use

the relation Eq. 3.8 to find the asymptotic front velocity v̄f = 6.03. Figure 3.2 shows the use

of this method to determine the asymptotic front velocity. The blue circles in Fig. 3.2 are

obtained from using the bulk-burning rate equation on a front propagating with the absence

of flow in the rectangular domain and the black line through the data points is a curve-fit

of the form Eq. 3.8.

An important property of the propagating front is the thickness of the reaction zone, loosely

referred to as the front thickness. The front thickness is the thickness of the intermediate

zone which consists of a mixture of products and reactants. The front thickness for pulled

fronts in no-flow scales as δ0 ∼
√
Le/ξ [10]. The front thickness for pulled fronts with the
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Figure 3.2: The time variation of front velocity vf (t) for Le = 1 and ξ = 9 for the fronts
shown in Fig. 3.1 (a)-(c). The data is shown by the filled blue circles. The solid line is a
curve fit Eq. 3.8. The curvefit yields v̄f = 6.03 and b = 0.59.

FKPP nonlinearity under no-flow conditions can be written as [30],

δ0 = 2
f ′(0)1/2

f(1/2)

√
Le/ξ. (3.9)

For f(c) = c(1 − c), the front thickness becomes δ0 = 8
√

Le/ξ [27]. The front thickness

represented by this equation represents a length scale where 0.1 ≲ c ≲ 0.9 [38]. The reaction

zone is the spatial region where 0.1 ≤ c ≤ 0.9 which consists of a mixture of reactants and

products.

A similar length scale, known as the ‘mixing length’ will be useful to quantify fronts with

feedback in Ch. 6 and Ch. 7. In two-dimensional domains, the mixing length is defined using
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the vertical average of the concentration field

⟨c(x, t)⟩ =
∫ 1

0

c(x, z, t)dz. (3.10)

The mixing length is defined as the distance between the x-location where ⟨c(x, t)⟩ = 0.01

and ⟨c(x, t)⟩ = 0.99 [64]. As we will find out in Ch. 6 and Ch. 7, this length scale correctly

represents the length scale associated with stretched front interfaces that result from solutal

and thermal feedback.

Lastly, to quantify the fluid velocity, we will use the characteristic velocity, U , defined as

the time-average of the maximum velocity of the flow field. For fronts in three-dimensional

domains, we use the midplane slice z = 1/2 to define U while for two dimensional domains, U

equals the maximum fluid velocity magnitude in the two dimensional domain. In the presence

of front induced feedback, we will find that it is insightful to represent the maximum fluid

velocity using the spatial region equal to the mixing length around the front.

It is insightful to define the Reynolds number Re for the flow fields. Using the characteristic

velocity U and our nondimensionalization yields the relationship Re = U/σ. Since for us

σ = 1, this yields Re = U .

In addition to the Lewis number Le, and the nondimensional reaction rate ξ in Eq. 2.10,

there are two more nondimensional numbers which will be useful to quantify the front and

fluid dynamics. The Damköhler number is the ratio of the nondimensional flow time scale

and the nondimensional reaction time scale and is given as Da = ξ/U . Increasing the

Damköhler number results in the increased reaction strength and the faster fronts which are

not affected by the slower flow time scale. Throughout this text we use Da = O(1), which

ensures that the flow and the reaction time scales are comparable. The Péclet number is

defined as the ratio of the nondimensional timescale of molecular diffusion of the species,
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Le−1, to the nondimensional flow time-scale, U−1, and it is written as Pe = U/Le. Larger

Péclet numbers imply a larger effect of the fluid flow on the front dynamics while smaller

Péclet numbers imply smaller diffusion time scales and faster fronts which are less affected

by the underlying fluid motion.

There have been significant theoretical insights into the two limiting regimes of fast reaction

and fast advection (Da≫1,Pe≫1) and slow reaction and fast advection (Da≪1,Pe≫1).

For Da ≪ 1,Pe ≫ 1, since the diffusion timescale is faster than the reaction timescale, the

RAD equation can be replaced by an effective reaction-diffusion equation with enhanced

diffusion coefficient. On the other hand, for Da≫1,Pe≫1, the reaction time scale is faster

which leads to a renormalization of the time scales [26, 27]. The front thickness δ0 is smaller

compared to the length scale of the flow in the fast reaction limit. The fast reaction limit

is thus conducive for theoretical analysis such as an eikonal approximation [76] or burning-

invariant-manifold theory [28, 36]. Specifically in this limit the ratio of the fluid length scale

to the front thickness Γr is large. Γr ≳ 1000 is considered to be the eikonal regime where the

front is thin and sharp, where as Γr → 0 is the mixing regime [35]. The fronts that we study

do not lie in these extremities and are situated in the middle of the two bounds. Our reaction

rate is always fixed at ξ = 9 which makes our Damköhler number Da∼O(1). We use a Lewis

number of Le = 1, 0.1, 0.01 and study a range of Péclet numbers of 0 ≤ Pe ≲ 1100. Our

thickness ratio of the flow length scale and front thickness is Γr = 1/δ0. The font thickness

is a function of the Lewis number as evident from Eq. 3.9. For the Lewis numbers we study

the thickness ratio is in the range 0.375 ≤ Γr ≤ 3.75, which is away from the two bounds

that describe mixing regime and eikonal regime [35].



Chapter 4

Computation of fluid dynamics and

propagating fronts

In this chapter we describe our computational approach for computing the fluid and front

dynamics. Our overall approach consists of creating a spectral element mesh, determining

the polynomial order of interpolation and time step for computation, solving the governing

equations which govern the fluid dynamics and front propagation given by Eq. 2.10 and

Eq. 2.14-2.16, and post processing of the results.

For our computations we use a highly parallelized and high-order spectral element method

(SEM) to solve the governing equations of the front and fluid dynamics described in Ch. 2.

SEMs use high-order orthogonal polynomials as basis functions for discretization of nonlinear

partial differential equations. Because of this, they can achieve ten digits of accuracy com-

pared to two or three digits of accuracy with traditional finite-difference and finite-element

approaches [77]. This high-order accuracy of SEM is referred to as ‘spectral accuracy’. SEMs

provide exponential convergence of errors with spatial resolution [77–79]. This makes SEMs

very useful in solving highly nonlinear and pattern-forming systems. We use the open source

SEM solver known as NEK5000 [40]. NEK5000 have been extensively used to study canoni-

cal pattern-forming systems such as Rayleigh-Bénard convection in high aspect ratio experi-

mentally realistic domains [44, 80] . Additionally, NEK5000 has also been used to study the

problem of front propagation and passive transport in three-dimensional Rayleigh-Bénard

32
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convection flow fields [38, 39, 56, 57].

Our computational domain is divided into a number of spectral elements. The solution is

then represented in each element as a high order Langrangian interpolant polynomial based

on a Gauss-Lobatto-Legendre (GLL) quadrature [79]. For the cylindrical domain of aspect

ratio Γ = 40, which is shown in Fig. 1.1 (a), we use 3072 hexahedral spectral elements.

For the rectangular mesh of aspect ratio Γx = 30 and Γy = 5, shown in Fig. 1.1 (b), we

use 150 equally spaced square spectral elements. The choice for the number of elements is

such that each element has a side length of unity. A length of one is equal to the depth

of the convection layer and is also approximately equal to the width of a single convection

roll. The number of elements are chosen such that each element approximately resolves

about one convection roll. We first solve the flow field equations (Eqs. 2.6-2.8) using a 10th

order polynomial for discretization. We then restart the flow field with the coupled RAD

equation (Eq. 2.10) with 16th order polynomials. The increased spatial resolution is needed

to quantify the intricacies of the complex and sharp front interface.

Figure 4.1 shows the x-y projection of the three-dimensional cylindrical mesh for better visu-

alization. Figure 4.2 shows the three-dimensional rectangular mesh using an x-y projection.

Each element in both Figs. 4.1-4.2 is discretized with 10th order polynomials. For under-

standing front induced feedback to the flow with smaller values of Lewis number (Le = 0.01)

we use a two-dimensional rectangular convection domain shown in Fig. 4.3. We have used

20th order polynomials to discretize the elements in Fig. 4.3. We use 480 equally spaced

square elements in this domain, such that each element is 0.4 × 0.4 in dimension. We then

solve the fluid flow with 16th order and the front with 20th order Lagrangian interpolant

polynomials. The increased spatial resolution is needed to resolve fronts with Le = 0.01

where the fluid flow has a large effect on the front dynamics and the front interface is

sharper. This is discussed in Ch. 6 and Ch. 7. The increase in the number of elements is
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Figure 4.1: The x-y projection of the three-dimensional cylindrical mesh used for compu-
tations in the cylindrical domain of aspect ratio Γ = 40. The top view of the domain is
shown. The mesh consists of 3072 hexahedral spectral elements. We have used 10th order
polynomials to discretize the elements in the mesh for the figure shown here.

Figure 4.2: The x-y projection of the three-dimensional rectangular mesh used for compu-
tations in the rectangular domain of aspect ratio Γx = 30 and Γy = 5. The top view of the
domain is shown. The mesh consists of 150 equally spaced square spectral elements. We
have used 10th order polynomials to discretize the elements in the mesh for the figure shown
here.

motivated from the fact that for computing fronts with smaller Lewis number Le, we need

our smallest spatial resolution to be ∆x ∼ Pe−1/2 [56] where Pe = U/Le is the Péclet number



35

defined in Sec. 1.2.

Figure 4.3: The two-dimensional rectangular mesh used for computations of fronts with
Le = 0.1 in a two-dimensional rectangular domain of aspect ratio Γx = 30. The mesh
consists of 480 equally spaced square spectral elements. We have used 20th order polynomials
to discretize the elements in the mesh for the figure shown here.

For the temporal discretization, NEK5000 employs an operator splitting approach where the

nonlinear and forcing terms are treated explicitly and the linear terms are treated implicitly.

A second or third order Adams-Bashforth method is used for the explicit time-stepping while

a second or third order accurate backward difference scheme is used to treat the linear terms

implicitly. We have employed third order temporal schemes for all our calculations which

makes our solutions third order accurate in time. The temporal and spatial convergence

of Rayleigh-Bénard convection using NEK5000 has been discussed in detail by Scheel [80].

Here we focus on the temporal convergence of the front solution. We use the asymptotic

front velocity v̄f for this analysis. For a front propagating in the absence of a flow field,

the no-flow front velocity is given by an exact solution given by Eq. 3.2. We have verified

the no-flow velocity of the fronts we explore converge to this solution. Figure 3.2 shows the

excellent agreement between the result obtained and the no-flow solution using ∆t = 10−4

and 16th order polynomials for spatial interpolation in a rectangular domain.

Here we use the asymptotic front velocity v̄f for a front propagating through a chain of

straight parallel rolls at Ra = 3000 and Le = 0.1 in the absence of front induced feedback,

that is Ras = 0 and η = 0. Figure 4.4 shows the spatial and temporal resolution of the

asymptotic front velocity v̄f . Since we do not have an exact solution, we use the results

obtained for the highest resolutions as a reference to quantify the solution convergence.
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Figure 4.4 (a) shows the variation of the reduced asymptotic front velocity with the time-

step ∆t. The smallest time-step used was ∆tmin = 2× 10−5. The reduced asymptotic front

velocity is defined as ∆v̄f = | (v̄f − v̄f,min) /v̄f,min|, where v̄f,min has been computed with

the smallest time-step ∆tmin. Shown is the logarithmic variation of ∆v̄f as a function of

∆t. The solid line through the plot has a slope of 1.1. For a third order explicit time-

stepping scheme we expect a slope of 3. There can be several contributions to this observed

discrepancy. The solution used for the temporal convergence analysis is obtained from the

coupled reaction-advection-diffusion equation to the flow. Moreover, the solution is obtained

from the bulk burning rate integral given by Eq. 3.6 and the associated curve fitting of the

front velocity given by Eq. 3.8 as discussed in Ch. 3 which may lead to some deviation from

the expected slope of 3. However, overall this result points out the code’s ability to quantify

a complex quantity like the racting-advecting-diffusing front velocity, which is relevant to

our calculation. Overall our result suggests ∆v̄f ∝ ∆t1.1.

Figure 4.4: The temporal and spatial resolution of the reduced asymptotic front velocity with
time-step size ∆t and number of GLL polynomial points Ng. This is for front propagation
in a field of straight parallel rolls in a rectangular domain at Ra = 3000 and Le = 0.1.
The corresponding figure of the front is shown in Fig. 5.9. (a) The variation of the reduced
asymptotic front velocity with the time-step size ∆t using a log-log scale. The solid line
has a slope of 1.1 which suggests ∆vf ∝ ∆t1.1. (b) The variation of the reduced asymptotic
front velocity with the number of GLL polynomial points Ng. The variation is shown using
a log-linear plot. The solid line has a slope of −0.22 which suggests ∆v̄f ∝ e−0.22Ng .
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Figure 4.4 (b) shows the variation of the reduced asymptotic front velocity ∆v̄f as a function

of the number of GLL interpolation points Ng. For a particular value of Ng, the order of

the polynomial used for interpolation is Ng − 1. The highest spatial resolution used was

Ng,max = 21. The reduced asymptotic front velocity is defined for this case as ∆v̄f =

| (v̄f − v̄f,max) /v̄f,max|, where v̄f,max has been computed with the highest spatial resolution

of Ng,max. A semi-logarithmic plot is shown where the ∆v̄f is plotted in log scale. The

linear trend in the data shows exponential convergence of errors with spatial resolution

which is expected for the spectral element approach. The black solid line has a slope of

−0.22. Overall, our result suggests ∆v̄f ∝ e−0.22Ng . Exponential convergence of solutions

with the spatial resolution is a key property of spectral element methods. Our results show

that the asymptotic front velocity is exponentially convergent with the polynomial order of

interpolation.



Chapter 5

Front propagation without front

induced feedback

We are interested in studying front propagation with one-way coupling between the fluid flow

and the front and no front induced feedback to the flow. That is, the spatial variations in

the flow field affect the front but the front does not affect the flow field. In this scenario we

will have Ra ≥ 0, Ras = 0 and η = 0 in Eqs. 2.14-2.16. Although the front will not have any

feedback to the fluid flow, the underlying fluid motion will modify the velocity and geometry

of the propagating fronts in a complicated way. The results discussed in this chapter have

been published in Ref. [38]. We will study fronts in: (i) quiescent flow fields with Ra = 0,

(ii) a flow field consisting of time-independent cellular straight parallel convection rolls and,

(iii) a flow field consisting of spatiotemporally chaotic convection rolls and weakly turbulent

convection rolls. We explore a range of Rayleigh numbers from 0≤ Ra ≤ 25000 which will

consist of different types of convection rolls such as straight parallel rolls, convection rolls

undergoing spiral defect chaos and convection rolls undergoing an oscillatory instability. We

will fix our nondimensional reaction rate at ξ = 9 and we will study Lewis numbers of

Le = 1 and Le = 0.1. We will explore the Péclet number and Damköhler number ranges of

0≤ Pe ≲1000 and 0.1 ≲ Da ≲30.

38
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5.1 Convective flow field

An integral component of our study is to quantify front propagation in a range of compli-

cated flow fields such as straight parallel convection rolls, rolls exhibiting spiral defect chaos

and oscillatory and weakly turbulent convection rolls. The rolls are obtained by varying the

Rayleigh number from 0≤Ra≤ 25000 and using a Prandtl number, σ = 1. The governing

equations Eqs. 2.6-2.8 are then solved. The temperature field acts as a passive scalar in the

governing equations of Rayleigh-Bénard convection as shown in Eqs. 2.6-2.8. The tempera-

ture field is thus a direct indicator of the underlying flow structures and we will find it useful

to visualize the underlying flow structure using the temperature field.

5.1.1 Straight parallel convection rolls

We use a rectangular domain shown in Fig. 1.1 (b) with aspect ratio Γx = 30 and Γy = 5. In

order to achieve straight parallel rolls, we used a hot sidewall condition for the walls aligned

with the x-direction such that T (x = 0, y, z, t) = T (x = Γx, y, z, t) = 1. The sidewalls force

the fluid at the sidewall to rise and form rolls which propagates inward to fill the entire

domain. We run the simulation until all the initial transients have decayed as indicated by

the time variation of Nusselt number in Fig. 5.3. In general, it is considered that a time on

the order of one horizontal diffusion time τh ∼ Γ2τα is sufficient for all the initial transients

to decay [2]. The time variation of Nusselt number is shown in a small window of time for

t = 3 where the time has been adjusted such that t = 0 corresponds to t = τh. Nusselt

number is defined as the ratio of the total heat transfer to the conductive heat transfer. A

value of Nu > 1 indicates the presence of convective heat transfer [2].

We start with initial conditions which are random perturbations to the temperature field
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such that we get 15 pairs of counter rotating convection rolls (30 convection rolls) which are

lined up in the x-direction. The wavelength of this pattern is thus approximately λ ≈ 2

and the wavenumber of the pattern is k ≈ π. We explore a range of 0 ≤ Ra ≤ 6900. For

Ra ≥ 6900, the straight parallel rolls become unstable when simulated long enough due to

a skew-varicose instability [2]. However, for the purpose of studying front propagation in

a field of straight parallel rolls, we need the straight parallel rolls to persist at the same

wavenumber for t ≲ 10. This condition holds true for all our simulations in the rectangular

domain to obtain straight parallel rolls. The boundary conditions for the fluid is no-slip in

the x and z walls and periodic in the y direction. Figure 5.1 shows a field of straight parallel

convection rolls at Ra = 3000 in a rectangular domain of aspect ratio Γx = 30 and Γy = 5.

Figure 5.1 (a) shows the view in the x-z plane at the slice of y = Γy/2. Figure 5.1 (b) shows

the view in the x-y plane at the slice of z = 1/2. Overall it is clear from the figure that

the straight parallel convection rolls have lined up in the x direction with a wavenumber of

k ≈ π.

The red solid line in the Fig. 5.3 indicates the time variation of Nusselt number for straight

parallel rolls at Ra = 6000. The line is flat which indicates that the convection rolls are

steady. The hot sidewalls stabilize the straight parallel rolls to line up in the x-direction.

Figure 5.2 shows the fluid flow velocity magnitude along with the direction of fluid velocity

shown by the fluid velocity vectors. The spatial variation of the fluid velocity indicates

maximum fluid flow at the boundaries of convection rolls and zero fluid motion near the

core of the convection rolls as expected. We use the characteristic fluid velocity U which is

defined as the time average of the maximum fluid velocity in the domain, at the horizontal

midplane, to quantify the fluid. To avoid the influence of the hot sidewalls, we measure U

in a spatial region which is 4 convection rolls away from the sidewalls. For Figs. 5.1-5.2 this

yields a value of U = 10.81.
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Figure 5.1: A field of straight parallel convection rolls in a rectangular domain shown in
Fig. 1.1 (b) with Γx = 30 and Γy = 5. The Rayleigh number is Ra = 3000. Shown are the
color contours of temperature field. The left and right walls aligned with the x-direction are
hot such that T (x = 0, y, z, t) = T (x = Γx, y, z, t) = 1. The sidewalls help the formation of
straight parallel convection rolls by forcing the fluid at the sidewall to rise and form a roll.
The color contours are of temperature field where red is hot rising fluid and blue is cold
descending fluid. (a) Color contours of the temperature field in the x-z plane shown at the
y-midplane of y = Γy/2. (b) Color contours of the temperature in the x-y plane at z = 1/2.

Figure 5.2: A zoomed-in view of the fluid velocity of the counterrotating convection rolls in
Fig. 5.1. The arrows represent the fluid velocity vector. Shown is the color contour of fluid
velocity magnitude |u⃗| =

√
u2 + v2 + w2 where the maximum velocity is 10.81 for Ra = 3000.

An x-z projection is shown at a slice y = Γy/2 similar to Fig. 5.1 (a).

Figure 5.4 shows the variation of U as a function of Ra. The data symbols shown as blue

squares denote the characteristic fluid velocity for straight parallel rolls for a range of 0 ≤

ϵ ≲ 3.04, where ϵ = (Ra − Rac) /Rac. The solid line is a curve fit through the data where

U = 12.54ϵ0.54. It is interesting to note that the dependence U ∝
√
ϵ near the onset of

convection is expected [2]. However, it is interesting that for our results, this dependence

persists away from the convective threshold. The red circles represent the data for chaotic
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Figure 5.3: The variation of Nusselt number with time. The blue line is the variation of
Nusselt number with time for convection rolls exhibiting spatiotemporal chaos at Ra = 6000
in the cylindrical domain shown in Fig. 1.1 (a). The red line represents the variation of
the Nusselt number with time for straight parallel rolls in a rectangular domain shown
in Fig. 1.1 (b). The green line represents the variation of Nusselt number with time for
convection rolls exhibiting chaos and weak turbulence at Ra = 20000. The time is adjusted
such that t = 0 is one horizontal diffusion time or t0 = τh after the numerical simulation was
started. The variation is shown for three vertical diffusion times (t = 3).

flow fields which will be explained in section Sec. 5.1.2.

5.1.2 Spatiotemporally chaotic convection rolls

We use a cylindrical domain as shown in Fig. 1.1 (a) to study fronts in spatiotemporally

chaotic flow fields. The aspect ratio of the cylindrical domain is Γ=r0/d=40. Large aspect

ratio cylindrical domains are widely used in experiments to study spatiotemporal chaos in

Rayleigh-Bénard convection [2, 43]. Figure 5.5 shows several visualizations of a typical
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Figure 5.4: The variation of the characteristic velocity U with the reduced Rayleigh number
ϵ. The circles (red) points are data points for chaotic and weakly turbulent flow fields in the
cylindrical domain shown in Fig. 1.1 (a). The dashed line is a power law fit through the data
points where U = 16.61ϵ0.59. The squares (blue) are data points for the straight-parallel rolls
in a rectangular domain shown in Fig. 1.1 (b) and in Fig. 5.1. The solid line is a power law
fit through the data where U = 12.54ϵ0.54.

chaotic flow field at Ra = 9000 in the horizontal midplane of z = 1/2. Figure 5.5 (a) shows

the color contours of temperature field for the flow field where red is the hot rising fluid

and blue is the cold descending fluid. Figure 5.5 (b) shows the color contours of the vertical

component of the fluid velocity w where the red and blue represent rising and falling fluid.

At the horizontal midplane slice, w is the largest component of fluid velocity. It is clear from

Fig. 5.5 (a) and Fig. 5.5 (b) that the temperature field closely follows the vertical component

of the fluid velocity. Figure 5.5 (c) shows the color contour of the magnitude of fluid velocity

in the x-y plane |u⊥| where u⃗⊥ = (u, v). We use the convention u⃗⊥ to represent the fluid

velocity components which are perpendicular to the temperature gradient in the z direction

following [2]. Figure 5.5 (c) shows that the color contours of |u⊥| is not representative of

the flow field pattern. Red and blue denote large and small velocity magnitude respectively.
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Overall, the magnitude of u⃗⊥ is small as expected, however there are spatial regions where we

find u⃗⊥ is of large magnitude. These spatial regions correspond to local defects and disorder

in the flow field which affects the front velocity. |u⃗⊥| is nearly zero in the spatial regions

consisting of straight parallel convection rolls. The vertical average of u⃗⊥ equals the mean

flow which has been shown to be intricately linked with spiral defect chaos [81]. Figure 5.5

(d) shows the color contours of total fluid velocity magnitude |u⃗|, at the horizontal midplane

slice. Figure 5.5 (d) shows the large velocity magnitudes occur in spatially disordered regions

as well as regions consisting of regular straight parallel rolls. We define the maximum value

of velocity magnitude in Fig. 5.5 (d) as the characteristic fluid velocity U . The variation

of U with Ra for Rayleigh-Bénard convection in the cylindrical domain is shown by the red

circles in Fig. 5.4. The solid line through the data shows a power law fit of U = 16.61ϵ0.59.

Overall, it is clear that the temperature field is a good representation of the flow field.

We plot spatiotemporally chaotic convective flow fields for different Rayleigh numbers in

Fig. 5.6. The color contours of the temperature field is shown in the horizontal midplane.

As the Rayleigh number increases, the flow field becomes increasingly complex with defects

and small scale complex features as can be seen in Fig. 5.6 (a), (b) and (c) which are at

Ra = 3000, 6000, 9000 respectively. Each flow field has been simulated for a time of t ∼ τh.

Figure 5.3 shows the time variation of Nusselt number for a chaotic flow field at Ra = 6000

shown in Fig. 5.6 (b). The heat transfer due to convection is less efficient than for the

case of straight parallel convection rolls shown by the red line. The convection rolls are

now time-dependent and spatially irregular. The complex spatiotemporal dynamics involves

the nucleation and annihilation of defect structures. For this condition, it has been shown

that the flow fields exhibit extensive chaos [45, 82] and yields a spectrum positive Lyapunov

exponents which is an important signature of high-dimensional chaos. For Ra ≤ 104, this

state also corresponds to the spiral defect chaos state as seen in the experiments. Under this
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Figure 5.5: Different representations of flow fields of spatiotemporally chaotic convection
at Ra = 9000 and σ = 1 in a cylinder of aspect ratio Γ = 40 shown in Fig. 1.1 (a) at
the midplane z = 1/2. The flow field is shown at a specific time t. (a) Contours of the
temperature field T (x, y, z, t) where red is hot rising fluid and blue is cold descending fluid.
(b) Contours of the vertical component of the fluid velocity w(x, y, z, t) where red represents
rising fluid and blue represents descending fluid. (c) The contours of the fluid velocity in
the x-y plane u⊥ where red represents large magnitude and blue represents small magnitude.
(d) The magnitude of fluid velocity |u⃗| where red represents large fluid velocity magnitude
and blue represents small fluid velocity magnitude.

state, convection rolls exhibit a chaotic pattern consisting of spirals and defects [42].
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Figure 5.6: Spatiotemporally chaotic convection flow fields in a cylindrical domain of aspect
ratio Γ = 40 shown in Fig. 1.1 (a). Prandtl number of the fluid is σ = 1. For these parame-
ters, the flow fields undergo spiral defect chaos [42]. The color contours are of temperature
T (x, y, z = 1/2, t) at a specific time t where red represents hot rising fluids and blue repre-
sents cold descending fluid. Shown are flow fields for (a) Ra = 3000, (b) Ra = 6000 and (c)
Ra = 9000.

5.1.3 Weakly turbulent convection rolls

For Ra ≥ 104 the flow field undergoes an oscillatory instability which consists of small

scale features traveling axially along the convection rolls [43]. We call flow fields exhibiting

oscillatory instability as weakly turbulent because the small scale oscillatory features give rise
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to plume structures and turbulence. We signify this initial deterioration of the convection

rolls as weak turbulence. Figure 5.7 shows several flow fields at Ra = 13000, 20000, 25000.

The axially traveling small scale features along the convection rolls are clear when compared

to Fig. 5.6. For the highest Rayleigh number that we studied Ra = 25000 shown in Fig. 5.7

(c), the flow field is highly disordered and complicated. The small scale features in the axial

direction of the convection rolls are significant and there are localized regions where the

convection rolls give rise to plumes. Figure 5.3 shows the time variation of Nusselt number

for a weakly turbulent flow field at Ra = 20000 as shown in Fig. 5.7 (b) by the solid green

line. The convective heat transfer is now much larger because of the larger Rayleigh number.

Moreover, the increased time dependence and oscillations of the flow field is visible by the

small fluctuations about the mean value in the Nusselt number.

5.2 Front propagation in convective flow fields

In this section we will study front propagation through the flow fields discussed in Sec. 5.1.

Figure 5.8-5.9 shows a front propagating through the flow field consisting of straight parallel

convection rolls as shown in Fig. 5.1. The fronts are pulled and are initiated in the left

wall with an initial condition given by Eq. 3.3. Figure 5.8 shows a front with Lewis number

Le = 1, which means that the the thermal and the molecular diffusivity are equal and the

flow field does not have a significant effect on the front. This is apparent from the smooth

transition from the products (red) to reactants (blue) in Fig. 5.8.

Figure 5.9 shows a propagating front through straight parallel rolls at Le = 0.1. In this

case, the flow field has a larger effect on the front dynamics which is apparent from the

discontinuous transition from products to reactants. Because of the lowered diffusion, the

front gets whirled around by a convection roll before moving on to the next convection roll

by diffusion and reactive instability. The reaction zone thickness is smaller than the case of
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Figure 5.7: Oscillatory and weakly turbulent convection flow fields in a cylindrical domain
of aspect ratio Γ = 40 shown in Fig. 1.1 (a). Prandtl number of the fluid is σ = 1. For
these parameters, the convection rolls undergo an oscillatory instability for Ra > 10000
and transition to a weakly turbulent flow field which consists of time independent irregular
convection rolls and plumes. The color contours are of temperature T (x, y, z = 1/2, t) at
a specific time t where red represents hot rising fluids and blue represents cold descending
fluid. Shown are flow fields for (a) Ra = 13000, (b) Ra = 20000 and (c) Ra = 25000.

Le = 1 as predicted.

The effect of the flow field on the front is apparent in Fig. 5.10, where a zoomed-in view

of the front is shown in the vertical x-z plane. The smooth transition from products to

reactants for Le = 1 is clear in Fig. 5.10 (a). Figure 5.10 (b) shows that for Le = 0.1 the

reaction spirals into the core of a convection roll. The front gets whirled around to the center
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Figure 5.8: A front propagating in a field of straight parallel rolls shown in Fig. 5.1 (b) at
Ra = 3000 and Le = 1. The color contours are of concentration at the horizontal midplane
c(x, y, z = 1/2, t) where red is pure products (c = 1), blue is pure reactants (c = 0) and the
intermediate green and yellow spatial region is the reaction zone or front. The black lines
are contours of T = 1/2 which indicates the center-line of the convection rolls. The front
is shown in different times at (a) t = 1 (b) t = 2 and (c) t = 3 where t is measured from
the initiation of the reaction at the left wall. (Additional parameters : U = Pe = 10.81 and
Da = 0.83.)

of the convection rolls to complete a reaction before moving on to the next roll.

Figure 5.11 shows the closeup view of the geometry of c = 1/2 level-set or the front at

the x-z plane. The front geometry is morphed by the convection rolls. Figure 5.11 (a)-(d)

shows the propagating front at Le = 1. The convection rolls bend the initially straight front

to an S-shaped structure. Figure 5.11 (e)-(h) shows the propagating front at Le = 0.1.

The increased distortion of the front for this case is apparent. The convection rolls induce

the reaction to spiral inside its core, which results in the cusp-like structures of the front

geometry as evident in Fig. 5.11 (e)-(h).

Snapshots of propagating fronts in chaotic flow fields are shown in Fig. 5.12-5.13. The fronts

are initiated by a reaction in the center of the domain with a pulled front initial condition

given Eq. 3.4. The fronts are propagating radially outwards with the color red representing
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Figure 5.9: A front propagating in a field of straight parallel rolls shown in Fig. 5.1 (b)
at Ra = 3000 and Le = 0.1. The color contours are of concentration at the horizontal
midplane c(x, y, z = 1/2, t) where red is products (c = 1), blue is reactants (c = 0) and the
intermediate green and yellow spatial region is the reaction zone or front. The black lines
are contours of T = 1/2 which indicates the center-line of the convection rolls. The front is
shown in different times at (a) t = 1 (b) t = 2 and (c) t = 3 where t is measured from the
initiation of the reaction at the left wall. (Additional parameters: U = 10.81, Pe = 100.81,
Da = 0.83.)

Figure 5.10: A zoomed-in view of the x-z projection of the propagating fronts in Figs. 5.8
and 5.9. Color contours of c(x, y=Γy/2, z, t). The black arrows are the fluid velocity vectors
which indicate the counterrotating convection rolls. (a) Le=1, (b) Le=0.1.

products and blue representing the reactants of the reaction-advection-diffusion equation

given by Eq. 2.10. The snapshots are shown in the horizontal midplane z = 1/2 with
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Figure 5.11: A zoomed-in view of the spatial structure of the propagating fronts traveling
from left to right in a field of cellular convection rolls at Ra = 3000. The horizontal extent
of each panel includes a pair of counterrotating convection rolls. The propagating front is
described as the solid black line which represents c = 1/2 level-set. The flow field vectors are
visualized by arrows. (a)-(d) Le=1 and (e)-(h) Le=0.1. The time between successive panels
is 0.1 time units.

Ra = 9000, 13000, 25000 in Fig. 5.12 (a), (b) and (c) respectively. The distortion of the front

is apparent by the small scale spatial features in the reaction zone due to the chaotic flow.

The distortion increases with the complexity of the flow given by the Rayleigh number. For

flow fields which have undergone oscillatory instability as shown in Fig. 5.12 (a) and (b),

the complexity in the front geometry increases.

Figure 5.13 shows fronts propagating in chaotic flow fields at Le = 0.1. For this case, there

is an increased dependence of the front on the underlying fluid dynamics, which is evident

from the complex exaggerated small scale features of the reaction zone. Figure 5.13 (a)
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Figure 5.12: Fronts propagating in spatiotemporally chaotic and weakly turbulent flow fields
for Le = 1 where (a) Ra = 9000, (b) Ra = 13000, and (c) Ra = 25000. The color contours
are of concentration at the horizontal midplane c(x, y, z = 1/2, t) where red is pure products
and blue is pure reactants. The snapshots of fronts are shown at different times from the
initiation of the reaction at the center of the domain where (a) t = 3, (b) t = 3, and (c)
t = 2.5.

and (b) show the snapshots in time of fronts propagating through chaotic flow fields at

Ra = 9000 and Ra = 13000. The front geometry becomes come complex for Fig. 5.13 (b)

where the flow field has undergone an oscillatory instability. For Le = 0.1, Ra = 13000 was

the maximum value of Rayleigh number we could explore. For larger values of Ra, more
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number of spectral elements or a sophisticated numerical approach using specialized filters

will have to be used [56]. We have not explored these numerical ideas further however, this

is an interesting direction for future exploration.
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Figure 5.13: Fronts propagating in spatiotemporally chaotic and weakly turbulent flow fields
for Le = 0.1 where (a) Ra = 9000 and (b) Ra = 13000. The color contours are of concen-
tration at the horizontal midplane c(x, y, z = 1/2, t) where red is pure products and blue is
pure reactants. The snapshots of fronts are shown at different times from the initiation of
the reaction at the center of the domain where (a) t = 4 and (b) t = 3.

5.2.1 Velocity of fronts

In this section we study and quantify the front velocity of propagating fronts shown through

straight parallel rolls and chaotic flow fields as shown in Fig. 5.8-5.13. Quantifying the front

velocity through disordered flow fields is challenging. We use an integral approach known

as bulk burning rate defined in the Sec. 3.2 to quantify the front velocity.

Figure 5.14 shows a comparison between the front velocity obtained from bulk burning rate

and simply tracking the c = 1/2 level-set as shown in Fig. 5.11. Figure 5.14 shows the time
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variation of the bulk burning rate velocity, shown in the color red, and the velocity obtained

by tracking the front shown with blue color for a front propagating through straight parallel

rolls at Ra = 3000. The dashed and dashed-dotted lines indicate the no-flow front velocity

v0 for Le = 1 and Le = 0.1 respectively. In practice, for computational ease, we do not

use the full bulk burning rate integral as in Eq. 3.6, but rather compute the velocity in the

midplane at z = 1/2. The modified bulk burning rate equation that we use is,

vf (t) =

∫ Γx

0

∂c

∂t

∣∣∣
z=1/2

dx. (5.1)

The use of the modified bulk burning rate equation results in an error that is less than 0.2%

when compared to the full integral. As can be seen from Fig. 5.14 the tracked front velocity

and the front velocity obtained from using bulk burning rate are in excellent agreement.

Figure 5.14 also shows the enhancement of the front velocity due to the underlying flow

velocity. The enhancement of front velocity from the no-flow velocity due to the convection

rolls is v̄f/v0 = 1.26 for Le = 1. The enhancement is more prominent for Le = 0.1, where

v̄f/v0 = 2.61 because of the increased effect of the fluid velocity on the front.

Figure 5.15 shows the time variation of bulk burning rate velocity for three different Rayleigh

numbers at Le = 0.1. The asymptotic front velocity v̄f is obtained by curve-fitting the data

with an algebraic fit which follows Eq. 3.8. The algebraic fit is shown by the solid lines

through the data points in Fig. 5.15.

We calculate the asymptotic front velocity v̄f and the characteristic fluid velocity U for the

convective flow fields at different Rayleigh number. Figure 5.16 shows the variation of v̄f

with U for fronts propagating in the straight parallel rolls. The data is categorized into two

groups based on the Damköhler number, Da = ξ/U . The blue circles are results for fast

reaction and slow advection regime where Da > 1 and the red squares are results for slow
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Figure 5.14: The time variation of front velocity vf (t) for fronts propagating in straight
parallel convection rolls shown in Fig. 5.8 and Fig. 5.9. The straight parallel convection rolls
are at Ra = 3000 as shown in Fig. 5.1 (b). The blue symbols are front velocities computed
by tracking the level-set contour for c = 1/2 as shown in Fig. 5.10 with squares denoting
front with Le = 0.1 and diamonds denoting front with Le = 1. The red symbols and solid
lines are front velocity computed using bulk burning rate approach as defined in Eq. 3.6.
The circles denote front at Le = 1 and triangles denote front at Le = 0.1. The dashed and
dash-dotted lines indicate no-flow front velocity where v0 = 6 for Le = 1 and v0 = 1.9 for
Le = 0.1 respectively. For these results we have v̄f = 7.57 for Le = 1 and v̄f = 4.96 for
Le = 0.1.

reaction and fast advection regime where Da < 1.

Figure 5.16 (a) shows the data for Le = 1. The solid line through the blue circles in

Fig. 5.16 (a) is a quadratic curve fit of the form v̄f/v0 = 1 + 0.09(U/v0)
2. This relation

is in agreement with the Clavin-Williams relation of premixed flame propagation [83]. The

quadratic variation of v̄f with U can be recovered by expanding the concentration c with a

small parameter U and solving Eq. 2.10 with a coupled cellular flow and freeslip boundary

conditions. The solid line through the red data points in the fast advection regime in

Fig. 5.16 (a) is a curve-fit of the form v̄f/v0 = 1.06(U/v0)
0.31. For these results the Péclet
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Figure 5.15: Variation of front velocity vf with time and the determination of asymptotic
front velocity v̄f for propagating fronts in a field of straight parallel convection rolls where
Le = 0.1. The blue squares, green circles and red triangles are for Ra = 3000, 3600, 4200
respectively. The solid lines are curve fits through the data using the algebraic relation given
by Eq. 3.8. For these results the asymptotic front velocity yields v̄f = 4.98, 5.44 and 5.79
respectively.

number is Pe = U .

Figure 5.16 (b) shows the variation of v̄f with U for fronts propagating in straight parallel rolls

with Le = 0.1. The flow field has a larger effect on the dynamics of the propagating fronts

for this case. This is evident from the Péclet number which is now an order higher Pe = 10U .

The solid line is a curve fit through the red square symbols of the form v̄f/v0 = 1.30(U/v0)
0.4.

The increased value of the scaling exponent is an indicator of the larger effect of fluid flow

on the front.

For fronts traveling through idealized cellular flow fields with freeslip boundary conditions,

theoretical scaling parameters were found at the two limits of fast reaction and fast advection

(Da ≫ 1,Pe ≫ 1) and slow reaction and fast advection (Da ≪ 1,Pe ≫ 1). It was found
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Figure 5.16: The variation of front velocity with the underlying fluid velocity through straight
parallel convection rolls. The blue circles indicate Da > 1 and the red squares indicate
Da < 1. (a) Shows the data for Le = 1 where v̄f/v0 = 1 + 0.09(U/v0)

2 for Da > 1 and
v̄f/v0 = 1.06(U/v0)

0.31 for Da < 1. For these results 0.375 ≤ Da ≤ 4.9, 0 < Pe ≤ 25,
DaPe = 9, v0 = 6. (b) Shows the data for Le = 0.1. The solid line is a curve fit through the
squares using v̄f/v0 = 1.30(U/v0)

0.4. For these results 0.375 ≤ Da ≤ 4.9, 0 < Pe ≤ 250, and
v0 = 6.

that v̄f scaled with the flow intensity or the characteristic fluid velocity as v̄f ∝ Uαf , where

αf is the scaling exponent.

For slow reaction and fast advection limit (Da ≪ 1,Pe ≫ 1), the reaction time scale is the

slowest and the advection and diffusion time scales are important. In this scenario, the RAD

equation can be replaced with an effective reaction-diffusion equation with an enhanced

diffusion coefficient, Leeff =
√

LeU [84]. Since, the front velocity scales as square root of the

effective diffusion coefficient, for this limit we have v̄f ∝ U1/4 or αf = 1/4.

For fast reaction and fast advection (Da ≫ 1,Pe ≫ 1), the diffusion time scale is the largest

and the two most important time scales that dictate the dynamics of front propagation are

the advection and reaction time scales. The effective reaction rate for this case becomes

ξeff = Da−1/2ξ. The front velocity now scales as v̄f ∝ U3/4 or αf = 3/4.
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The exponents that we have found are slightly larger than the exponent reported in the

slow reaction limits. As discussed before in Sec. 3.2, we are away from these two limits

since our Da ∼ O(1) and we explore a range of Pe. Moreover, our flow fields are generated

by Boussinseq convection and our material boundaries are rigid or no-slip. It was recently

reported that fronts propagating through cellular rolls under free boundaries were faster than

fronts propagating in rigid boundaries [85]. Since our Da ∼ O(1), we get exponents which

are near the theoretically predicted exponent of αf = 1/4. However, we have tried to reach

the slow reaction limits of Da ≪ 1, Pe ≫ 1 by varying our reaction rate ξ.

Figure 5.17 plots the variation of the scaling exponent αf with the reaction rate ξ for fronts

propagating through fluids with Le = 0.1. We explored a range of 1 ≤ ξ ≤ 22, which resulted

in a range of Damköhler numbers 0.05 ≤ Da ≲ 1. For each value of ξ we performed numerical

simulations to quantify the front velocity as a function of the fluid velocity in the range

3900 ≤ Ra ≤ 5700. The range of Péclet numbers explored in the series is 145 ≤ Pe ≤ 205.

It is interesting that for ξ = 1 or Da = 0.05, we get a value of αf = 0.3 which is similar to

the value of αf = 1/4 reported for Da ≪ 0.05 and Pe ≫ 1. As we increase the reaction rate

ξ, we expect to reach the limit of Da ≫ 1 and Pe ≫ 1 where αf = 3/4. However increasing

ξ is computationally challenging because increase in ξ makes the front thickness small and

the front velocity large. We have not explored this computational bottleneck further and

the highest ξ we could compute was ξ = 22.

Next we study the velocity of fronts propagating through chaotic flow fields as shown in

Fig. 5.12-5.13. Figure 5.18 (b) shows the time variation of the front velocity for the chaotic

flow field at Ra = 7000 and Le = 0.1. The front velocity for these radially propagating fronts

is obtained by first obtaining the radial velocity at a direction vr and then by calculating

an azimuthal average of vr. Again, we take the advantage of the fact that the integral at

z = 1/2 is enough to quantify the front velocity without doing the full depth average. For
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Figure 5.17: The scaling exponent αf of the front velocity as a function of the reaction rate
ξ for fronts traveling though straight-parallel convection rolls at Le=0.1. αf at a particular
value of ξ was determined by conducting seven numerical simulations for different values of
U and then fitting the results with v̄f ∝Uαf as in Fig. 5.16.

the chaotic flow fields we study this results in an error of less than 1%. Specifically we use

a modified version of the bulk burning rate Eq. 3.7

vr(θ, t) =

∫ Γ

0

∂

∂t
c(r, θ, z=1/2, t)dr (5.2)

to obtain vr. The front velocity at an instant in time vf (t) is obtained by performing an

azimuthal average on vr. The effectiveness of using this approach is shown in Fig. 5.18 (a)

where the black solid line is obtained from using this approach and the red solid line is ob-

tained by using the full depth-averaged bulk burning rate equation in Eq. 3.7. The particular

case investigated in Fig. 5.18 (a) is Ra = 10000 and Le = 0.1 which produces an asymptotic

velocity of v̄f = 7.86. The irregularities and local dynamics of the chaotic flow field affects

the front velocity and gives rise to oscillations in the time variation of the front velocity.

To sample out the time variations we did three simulations of front propagation which were

t = 60 times apart. The time variation of the three simulations is shown by the red, green



60 Chapter 5. Front propagation without front induced feedback

and blue lines in Fig. 5.18 (b). The particular case investigated in Fig. 5.18 (b) is Ra = 7000

and Le = 0.1 which produces an asymptotic velocity of v̄f = 6.41. We then used the average

of the three simulations to find the asymptotic front velocity. The black solid line is the

average of the three numerical runs and the black dash-dotted line is the curve-fit of the

form given by Eq. 3.8. We followed this procedure for all of our chaotic data.

Figure 5.18: Temporal variation of the bulk burning rate front velocity vf , comparing vf
obtained at the midplane with the depth averaged vf and the determination of asymptotic
front velocity v̄f for a front propagating in a chaotic flow field. (a) Time variation of the
front velocity for a front propagating in a chaotic flow field at Ra = 10000 and Le = 0.1.
Comparing the front velocity obtained from the reduced definition of the bulk burning rate
obtained from the azimuthal average of Eq. 5.2 at the horizontal midplane z = 1/2 with
the full depth averaged definition in Eq. 3.7. The red solid line is the depth averaged front
velocity while the black solid line is the front velocity obtained at the horizontal midplane.
(b) Determination of asymptotic front velocity v̄f for a front propagating in a chaotic flow
field at Ra = 7000 and Le = 0.1. The front velocity is obtained by using a curve fit to
Eq. 3.8, on the average data of three independent numerical runs. The three numerical runs
are 60 vertical time units apart and are shown as red, green and blue lines. The average data
is shown by the black solid line. The curve-fit through the data is shown by the dashed line.
For these results, the asymptotic front velocity for (a) is v̄f = 7.86 and for (b) is v̄f = 6.41.

The variation of asymptotic front velocity v̄f with the characteristic fluid velocity U for

the chaotic flow fields is shown in Fig. 5.19. The open symbols are data for simulations in

straight parallel rolls (previously shown in Fig. 5.16) for reference. All the filled symbols are
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for fronts propagating in chaotic flow fields. The square symbols are simulations at Le = 0.1

and the circular symbols are for Le = 1. The green data symbols are for Ra ≥ 104, where

the flow field has undergone an oscillatory instability. The inverted triangles are for Le = 0.1

and the diamond symbols are for Le = 1. The dashed line through the the open squares and

the dash-dotted line through the open circles are curve-fits for fronts propagating through

straight parallel rolls discussed in Fig. 5.16. The solid lines are curve-fit through the data

in the chaotic flow field. The solid line through the blue squares for Le = 0.1 is of the form

v̄f = 1.29U0.48. The solid line through the red circles for Le = 1 is of the form v̄f = 3.77U0.27.

Figure 5.19 (b) shows the same data plotted as a variation of Pe in a log-log plot. The power

Figure 5.19: The asymptotic front velocity as a function of the characteristic fluid velocity U
of the underlying flow field for fronts propagating through chaotic flow fields. Open symbols
are for fronts traveling through a field of straight parallel rolls as shown in Fig. 5.16. The
filled symbols are for fronts in chaotic flow fields in a cylindrical domain as shown in Fig. 5.12-
5.13 where each data symbol is an average of 3 numerical simulations where the standard
deviation is captured by the error bars. Circles and diamonds are for fronts propagating in
flow fields with Le = 1 and squares and triangles are for fronts propagating with in flow
fields with Le = 0.1. The green diamonds and triangles indicate flow fields that exhibiting
oscillatory instability. The solid lines are curve fits through the data for fronts in chaotic
flow field where v̄f = 3.77U0.27 (Le = 1) and v̄f = 1.29U0.48 (Le = 0.1). The dashed lines
are curve fits through the data for fronts propagating in straight parallel rolls described in
Fig. 5.16. (a) The front velocity as a function of the characteristic fluid velocity U . (b) The
same data plotted as the normalized front velocity versus the Péclet number Pe in a log-log
plot.
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law scaling exponents for the different data are clearly shown by the straight lines in the

plot. The different scaling exponents for fronts in straight parallel rolls and chaotic flow

fields is tabulated in Table 5.1.

Cellular flow Chaotic flow
Le αf αf

1 0.31 0.27
0.1 0.40 0.48

Table 5.1: The scaling exponents αf for several cases where v̄f ∝ Uαf . These four cases are
shown as the power-law curve fits in Fig. 5.19.

It is interesting to note that the fronts propagating through chaotic flow fields (filled symbols)

are for the most part slower than fronts propagating through straight parallel rolls (open

symbols) at the same value of U . The state of spiral defect chaos produces convection rolls of

different orientation which slows down the front when compared with straight-parallel rolls.

Front propagation is highly dependent on the orientation of the convection rolls as we will

observe in the Sec. 5.2.2.

However, there is a significant increase in the front velocity when the flow field undergoes an

oscillatory instability at Ra ≥ 104 as shown by the green symbols. The fronts propagating

through chaotic flow fields at Ra ≥ 104 get a significant jump in the front velocity and get

faster than fronts propagating in equivalent straight parallel cellular flow fields, at larger Ra.

We could not maintain time independent cellular convection rolls in the rectangular domain

with hot sidewalls for Ra > 6900. However, we have extended the curve-fits through the

data to represent the equivalent scenario of straight parallel rolls at Ra > 6900 as shown by

the dashed and dash-dotted line. This increment in front velocity for flow fields undergoing

an oscillatory instability is related to the change in geometry of the front interface. The

axially traveling oscillations along the convection rolls morphs the reaction interface and
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effectively increases the reaction area between products and reactants by imparting small

scale features to the front interface. The geometry of the propagating fronts are further

discussed in Sec. 5.2.3.

5.2.2 Orientation of convection rolls

The orientation of the convection rolls have a significant impact on the front propagation.

For convective flow fields we use the local wave vector q⃗(x, y, t) = (qx, qy) to determine

the roll orientation. q⃗ is computed at the horizontal midplane z = 1/2 where qx and qy

are the x and y components of the wave vector of the convection pattern. qx and qy are

determined by taking spatial derivatives of the temperature field T (x, y, z = 1/2, t) using

an approach described in Ref. [86]. The local orientation of the convection rolls is defined

as θl = arctan(qy/qx) such that 0 ≤ θl ≤ π. At any time t we identify the reaction zone in

the range of 0.1 ≤ c ≤ 0.9. We then define the reaction zone angle ϕ in the spatial region

consisting of the reaction zone to be

ϕ =


min

(
θ̃,
∣∣∣π − θ̃

∣∣∣) , for 0 ≤ θ ≤ π

min
(∣∣∣π − θ̃

∣∣∣ , ∣∣∣2π − θ̃
∣∣∣) , for π < θ ≤ 2π

(5.3)

where θ̃ = |θ − θl|. Using Eq. 5.3 the reaction zone angle is over the range 0 ≤ ϕ ≤ π/2.

The reaction zone angle is defined as the angle between the local wave vector q⃗ of the

convection rolls and the radial direction in the region of the reaction zone in which the front

is propagating with a velocity vr.

To motivate the use of ϕ we first use an example of a front propagating radially in an

extended field of straight parallel rolls as shown in Fig. 5.20. We will find the insights from

this simplified problem to be very useful when discussing the orientation of chaotic convection
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rolls. Figure 5.20 shows fronts propagating in a field of straight parallel rolls in a rectangular

domain which is extended in the y direction. The boundary conditions is the same as before,

that is, all the quantities are periodic in the y-direction. The centers of the convection rolls

are indicated by the solid lines. Figure 5.20 shows a front propagating radially outward at

Le = 1 and Fig. 5.20 (b) shows a front at Le = 0.1. The fronts are initiated with the initial

condition given by Eq. 3.4. The snapshots are taken at a time t when the front has reached

its asymptotic velocity. The increased dependence of the flow field when Le = 0.1 is evident

by the complex geometry and elliptic structure of the front in Fig. 5.20 (b). The front shown

in Fig. 5.20 (a) is less affected by the flow field which is apparent from the nearly circular

geometry. Figure 5.21 shows the three dimensional visualization of the c = 1/2 level set at
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Figure 5.20: Snapshots in time of fronts propagating in a field of straight and parallel
convection rolls at Ra = 2400 in a box of aspect ratio Γ= 30, with (a) Le = 1, t= 1.5 and
(b) Le=0.1, t=2.0 where t is measured from the initiation of the reaction at the center of
the domain. The color contours are of the concentration field c(x, y, z = 1/2, t) where red
is pure products and blue is pure reactants. The solid black lines indicate the center line of
the convection rolls.

three times from the initiation. Again, the increased dependence of the front on the flow
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field at smaller Lewis number is apparent in Fig. 5.21 (b) when compared with Fig. 5.21 (a).

Figure 5.21: The three-dimensional spatial structure of the fronts shown in Fig. 5.20, where
(a) Le = 1 and (b) Le = 0.1. The front is shown as the level-set surface where c = 1/2.
The image is tilted at a small angle in order to improve visualization of the front. (a) t=
1.0, 1.5, 2.0, (b) t=1.0, 2.0, 3.0.

The convection rolls in Fig. 5.20 are oriented in the x-direction and thus q⃗ = q⃗x and θl = 0.

The reaction zone angle is easily calculated using Eq. 5.3 and varies from 0 ≤ ϕ ≤ π/2.

The spatial variation of the reaction zone angle is shown in Fig. 5.22. The spatial average

of the ϕ over the reaction zone is defined as ⟨ϕ⟩. As expected the regions where the front

is propagating in a direction perpendicular to the axis of the convection rolls yield ⟨ϕ⟩ = 0

(blue) while the regions where the front is parallel to the axis of the convection rolls yield

⟨ϕ⟩ = π/2. When ⟨ϕ⟩ = π/2, all the fluid velocity is acting in a direction perpendicular to

the front propagation and as a result effectively the front propagates with the no-flow front

velocity, v̄f (⟨ϕ⟩ = π/2) = v0. However, when ⟨ϕ⟩ = 0, the front velocity is enhanced.

The dependence of the front velocity on the reaction zone angle ϕ for fronts propagating

in straight parallel rolls is shown in Fig. 5.23. Figure 5.23 (a) and (b) shows the variation

of vr as a function of ⟨ϕ⟩ for fronts propagating with Le = 1 and Le = 0.1 respectively.

As expected v̄f (⟨ϕ⟩ = π/2) = v0. The front velocity increases from ⟨ϕ⟩ = π/2 to ⟨ϕ⟩ = 0

with the maximum front velocity occurring at ⟨ϕ⟩ = 0. The increment is less for Le = 1 as

expected since the front velocity is less affected by the fluid velocity as shown in Fig. 5.23 (a).

The increment for Le = 0.1 is more and about twice the no flow front velocity as shown in
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Figure 5.22: The spatial variation of the reaction zone angle ϕ for the fronts traveling
through the straight parallel convection rolls shown in Fig. 5.20. ϕ is computed where the
concentration is in the range 0.1 ≤ c ≤ 0.9. The black lines indicate the location of the
convection rolls. (a) Le=1 and (b) Le=0.1.

Fig. 5.23 (b). The oscillations in the data are related to the wavelength of the underlying

convection rolls. The oscillations are exaggerated for Le = 0.1 where the effect of advection

is significant. The solid lines through the data are Gaussian curve-fits of the form vr =

5.54 + 0.93e−⟨ϕ⟩2 for Le = 1 and vr = 2.03(1 + e−2⟨ϕ⟩2) for Le = 0.1. Currently, we do

not have a theoretical explanation for these Gaussian trends and we leave this interesting

problem for future research.

We next study the dependence of front velocity on convection roll orientation for the chaotic

flow fields. Figure 5.24 shows the spatial variation of ϕ for chaotic flow fields at the horizontal

midplane. The color contours are of ϕ and the black lines represent the line contour of

T = 1/2 or the center of the convection rolls. The top panel shows the variation for Ra = 3000

where Fig. 5.24 (a) is for Le = 1 and Fig. 5.24 (b) is for Le = 0.1. The flow field pattern

consists of patches of straight and curved parallel convection rolls. There are spatial regions

where the flow field is disordered and contains defect structures such as dislocations, spirals,
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Figure 5.23: The instantaneous radial front velocity vr as a function of the radially aver-
aged reaction zone angle ⟨ϕ⟩ for the fronts traveling through straight parallel rolls shown in
Fig. 5.20, where (a) Le=1 and (b) Le=0.1. The dashed lines are Gaussian curve fits of the
form (a) vr = 5.54 + 0.93e−⟨ϕ⟩2 and (b) vr = 2.03(1 + e−2⟨ϕ⟩2).

wall foci and grain boundaries. When Le = 1, the reaction zone is thicker and spatial

variation of the reaction zone angle is smoother as shown in Fig. 5.24 (a). When Le = 0.1,

the reaction zone is thinner and the spatial variation of the reaction zone angle is complicated

due to the increased effect of advection.

The bottom panel is for Ra = 9000 where Fig. 5.24 (c) is for Le = 1 and Fig. 5.24 (d) is for

Le = 0.1 respectively. The flow field is now more disordered with fewer regions of parallel

roll patches and many more defect structures. The spatial variation of the reaction zone

angle is now much more complicated both in the radial and azimuthal directions.

Figure 5.25 shows the variation of the normalized radial velocity vr/v0 as a function of

reaction zone angle ϕ for the flow fields in Fig. 5.24. The red circles are data for Le = 1 and

the blue squares are data for Le = 0.1. The data shows a significant amount of scatter with

the variation enhanced for Le = 0.1 as expected.

Figure 5.25 (a) shows the variation of vr against ϕ for the flow field at Ra = 3000 as shown in

the top panel of Fig. 5.24. The dislocation and defects in the chaotic rolls has morphed the
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Figure 5.24: The spatial variation of the reaction zone angle ϕ for fronts propagating through
chaotic convection rolls as shown in Figure 5.12-5.13. Color contours are of ϕ and the black
lines are contours of T (x, y, z = 1/2, t) = 1/2 which indicates the location of convection rolls.
The reaction zone angle is computed over the region where the concentration is within the
range 0.1≤ c≤ 0.9. The top row is for Ra = 3000 where (a) Le = 1 and (b) Le = 0.1. The
bottom row is for Ra=9000 where (c) Le=1 and (d) Le=0.1.

smooth trend seen in Fig. 5.23. However a weak trend is still visible where vr increases when

ϕ decreases as expected. This suggests a weak trend of the front velocity on the reaction

zone angle.

Figure 5.25 (b) shows the variation of vr against ϕ for the flow field at Ra = 9000 as shown
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in the top panel of Fig. 5.24. The data is now significantly scattered and there is no visible

trend. There are no data points at ⟨ϕ⟩ = π/2 or ⟨ϕ⟩ = 0 which shows the absence of patches

of straight parallel rolls. Moreover, we have a few instances where vr < 0 indicating that

the local fluctuations are pushing the front towards the center of the domain. These results

suggest that the front velocity is not significantly dependent on the reaction zone angle. The

flow field at Ra = 9000 consists of multiple defects and patches of straight parallel rolls are

very few. The few instances of large magnitudes in vr in Fig. 5.25 (b) coincide with locations

where the local fluid velocity is large as shown in Fig. 5.5 (c) and (d). It is difficult to predict

the location of large fluid velocity magnitudes as it is related to the topology of the flow

pattern in a complicated way.

It is interesting to highlight that in Fig. 5.19 we found that the fronts propagating through

straight parallel rolls were for the most part faster than their counterparts propagating

in chaotic flow fields. The reason is as follows. For spatiotemporally chaotic rolls, the

fronts encounter convection rolls at different orientations which effectively on an average

reduce the front velocity, however for fronts propagating through straight parallel rolls, the

convection rolls are always oriented in the direction of the front propagation. For example

for Fig. 5.25 (b) the asymptotic front velocity v̄f/v0 = 1.68 for Le = 1. This is obtained by

the average velocity of all the red circles in Fig. 5.19 (b). The equivalent asymptotic front

velocity for fronts propagating through straight parallel rolls is v̄f/v0 = 1.89. The trend

is similar for Le = 0.1 where v̄f/v0 = 3.7 which is obtained by the average of all the blue

squares in Fig. 5.19 (b). The equivalent asymptotic front velocity for fronts propagating

through straight parallel rolls is v̄f/v0 = 4.32. However, it is also interesting to note that

there are regions where the fronts through the chaotic flow fields are locally faster than their

counterparts in straight parallel rolls.

Overall, there are two competing mechanisms that affect the front propagation in disordered
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flows. These are the reaction zone angle and the geometry of the propagating fronts. A

reaction zone angle away from zero slows down the front, while the increased complexity

of the front interface increases the effective surface area of reaction and the front becomes

faster. The geometry of the front interface is discussed in the next section.

Figure 5.25: The instantaneous scaled radial front velocity vr(t)/v0 as a function of the
radially averaged reaction zone angle ⟨ϕ⟩ for a chaotic flow field, where the circles (red) are
for Le=1 and the squares (blue) are for Le=0.1. (a) Ra=3000, (b) Ra=9000.

5.2.3 Geometry of fronts

In this section we quantify the geometry of the front interface. We use the level set of c = 1/2

at the horizontal midplane to locate the front. Figure 5.26 shows the fronts found in this

manner at three instances of time starting from the initiation at the center. The top panel of

Fig. 5.26 shows the front for Le = 1 where Fig. 5.26 (a) is at Ra = 9000 and Fig. 5.26 (b) is

at Ra = 25000. The bottom panel of Fig. 5.26 are results for Le = 0.1 where Fig. 5.26 (c) is

at Ra = 9000 and Fig. 5.26 (d) is at Ra = 13000. It is clear that the spatial structure of the

front is extremely complex. The wrinkled front contains structures that are noncontagious

and discontinuous. There are also spatially isolated patches of the c = 0.5 level set that
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are present. The wrinkling and spatial complexity increases for Le = 0.1 where the flow

field has a significant impact on the front dynamics. These increased complexity is evident

by comparing Fig. 5.26 (a) and (c), which are at the same Rayleigh number and the only

difference being in the Lewis number.

Figure 5.26: The geometry of fronts in chaotic flow fields shown in Fig. 5.13. The top row
is for Le=1 where (a) Ra=9000 and (b) Ra=25000. The bottom row is for Le=0.1 where
(c) Ra = 9000 and (d) Ra = 13000. The front is shown at the horizontal midplane using a
black contour of the level-set c(x, y, z = 1/2) = 1/2. For each panel the front is shown for
three different instances of time which appear as the three separate concentric objects. The
front is shown at the following times: (a) t = 2, t = 3, t = 3.7; (b) t = 1.5, t = 2, t = 2.4;
(c) t=3, t=4, t=4.7; (d) t=2, t=3, t=4.
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In order to quantify the front geometry we use box counting dimension Db [87]. The box

counting dimension can be applied to complex, and not necessarily self-similar, geometries in

two and three dimensions and thus is advantageous for our purposes. Many natural examples

exist of objects that yield fractional values of the box counting dimension including fluid

turbulence, cracking structures in a solid and the shapes of clouds, complex networks of

blood vessels in the human body, coastlines and mountains to name a few [88, 89]. The idea

behind box counting dimension is to compute the minimum number of boxes N(ϵb) of size ϵb

to cover a geometrical object where features smaller than ϵb are ignored. For different values

of ϵb one can then determines how N(ϵb) scales with ϵb as ϵb → 0. If this limit exists, the

box counting dimension is given by

Db = lim
ϵb→0

lnN(ϵb)

ln(1/ϵb)
. (5.4)

We compute N(ϵb) over the range of numerically accessible values of ϵb and use lnN(ϵb)∝

ln(1/ϵb) to determine if Db has converged to a value for our smallest values of ϵb. We have

conducted numerical tests to ensure that our computations yield the expected result for well

known examples such as Euclidean areas, volumes, and various fractals such as the von Koch

curve.

In all of our spectral element numerical simulations of propagating fronts in chaotic flow fields

we have used 3072 hexahedral spectral elements with 16th order Gauss-Lobatto-Legendre

polynomials. This makes the smallest spatial feature that can be resolved in our computa-

tions have a length scale of approximately 0.08. Therefore, the smallest box size we use is

ϵb≈0.08.

Figure 5.27 is one of the results generated using this approach for a front propagating in a

chaotic flow field where R=13000 and Le=0.1 (Fig. 5.26(c)). In this figure we have plotted
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the variation of N(ϵb) as a function of ϵ−1
b on a log scale. As the value of ϵb decreases the

results approach the straight dashed line, the slope of which provides the value of Db(t). For

these results, we have Db(t)=1.15. We then compute the time variation of the box counting

dimension of the front as it propagates radially outwards.

Figure 5.27: N(ϵb) as a function of ϵb for a front propagating in a chaotic flow field with
Ra= 13000 and Le = 0.1 at a time t= 3.6 since the initiation of the reaction. The dashed
line is a curve fit through the points which yields a box counting dimension of Db(t)=1.15
using Eq. 5.4

Figure 5.28 demonstrates the time variation of the box counting dimension and its depen-

dence on the depth of the layer for the case of R=13000 and Le=0.1 which represents the

most complex front we have explored here. Figure 5.28(a) shows the time-variation of the

box counting dimension using the front that has been identified at the horizontal midplane

z = 1/2. The front is located as the c = 1/2 level-set as shown in Fig. 5.26(d). The box

counting dimension Db(t) fluctuates about its mean value of ⟨Db⟩=1.15 which is represented

as the dashed line. The fluctuations about the mean have root-mean-squared value of 0.02.
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Db(t) quickly approaches a steady value, on average, with small fluctuations about this mean

value. This holds true for all of our calculations of Db(t).

In Fig. 5.28(b) the variation of the box counting dimension with the depth z. Results are

presented for three different times during the front propagation where the front velocity has

reached a steady value where circles (blue) are for t=2, triangles (green) are for t=2.5, and

squares (red) are for t=3.0. We have computed the box counting dimension at 11 equally

spaced values of z over the range of 0≤z≤1. The results indicate only a weak dependence

on the value of Db with the value of z used to determine location of the front. The front

is actually the two dimensional ribbon structure shown in Fig. 5.29, however these results

indicate that it is possible to estimate the box counting dimension of the front using only the

slice of the front located at the midplane. This greatly reduces the amount of computations

required to compute the box counting dimension of the fronts and we will use this approach

in our analysis that follows.

Nevertheless, the true structure of the front is quite complex as shown in Fig. 5.29. The

three green ribbon-like structures in Fig. 5.29 show the propagating front at three different

times as it radially travels from the center of the domain outward. The entire image has

been rotated to make it possible to visualize the intricate nature of the propagating front

surface.

We have computed the box counting dimension of all of the fronts in the chaotic and weakly

turbulent fluid flows that we have discussed. Figure 5.30 shows the variation of D̄b with the

reduced Rayleigh number ϵ. We define D̄b using

D̄b = ⟨Db⟩t − 1. (5.5)

The term ⟨Db⟩t is the long-time average value of Db(t). The circles (red) and the diamonds



5.2. Front propagation in convective flow fields 75

Figure 5.28: The temporal and depth variation of the box-counting dimension Db. (a) The
box counting dimension Db as a function of time t using the front located at the horizontal
midplane (z = 1/2) as shown in Fig. 5.26. The dashed line is the time averaged value of
⟨Db⟩t=1.15. The root-mean-squared value of the fluctuations about the mean value is 0.02.
(b) Db as a function of the vertical coordinate z. Results are shown for three different
times after the front has reached a steady front velocity where circles (blue) t=2.0, triangles
(green) t=2.5, and squares (red) t=3.0. For the results Ra=13000, Le=0.1, and images of
the front are shown in Fig. 5.26(d).

Figure 5.29: The three-dimensional spatial structure of the front in a chaotic flow for Le=0.1
and Ra=13000. The level-set of the concentration field at c(x, y, z, t)=1/2 is shown in green
at three different instances of time t where t=1, 2, 3. The front is propagating from the center
outwards and the domain is shown at an angle to show the spatial features of the front. This
particular front is also represented in Fig. 5.13(b).



76 Chapter 5. Front propagation without front induced feedback

(green) are the results for Le=1 and the squares (blue) and triangles (green) are for Le=0.1.

The diamonds and triangles (green) are for the weakly turbulent flows where the value of ϵ is

above the threshold for the oscillatory instability. The error bars are the standard deviation

of the dimension about its mean value. The variation of the dimension with the reduced

Rayleigh number is described by the power-law scaling D̄b∝ϵαb where the scaling exponent

is αb ≈ 0.7 for Le = 1 and αb ≈ 0.2 for Le = 0.1. The curve fits are shown as the solid and

dashed lines.

Figure 5.30: The variation of the reduced box counting dimension D̄b with the reduced
Rayleigh number ϵ. The squares (blue) and triangles (green) are for Le=0.1 and the circles
(red) and diamonds (green) are for Le = 1. Errors bars are included which represent the
standard deviation about the mean value. The solid and dashed lines are power-law curve-
fits through the data where D̄b = 0.02ϵ0.7 and D̄b = 0.08ϵ0.23, respectively. An oscillatory
instability is present for ϵ≳4.85 which are indicated as the triangles and diamonds (green).

The box counting dimension exhibits an increasing trend with increasing ϵ, since the flow

field becomes more complex with ϵ. Also, D̄b for Le = 0.1 is always larger than D̄b for

Le = 1. This indicates that the stronger effect of advection of the flow field for a smaller
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Lewis number increases the complexity of the front geometry.

For both the Le = 1 and Le = 0.1 results, the asymptotic front velocities v̄f for the three

largest values of ϵ shown in Fig. 5.30 exceed the front velocity through straight and parallel

convection rolls with a reaction zone angle of zero. Figure 5.30 suggests that this front veloc-

ity enhancement is due, at least in part, to the increased complexity of the front geometry.

This enhancement to the front velocity is expected to increase as ϵ is increased further.

However, using our results it is unclear if the power-law curve fits continue to be useful for

much larger values of ϵ since the flow field characteristics are expected to change significantly

as turbulence is approached.

It is interesting to compare our results with the results in the literature that find fractal

dimensions of Df =7/3 for a wide range of conditions and flow fields [13, 31, 90, 91]. A value

of Df =7/3 would be equivalent to D̄b = 1/3 using our notation. There is an increasing trend

in our results that does not appear to be approaching a steady value for large ϵ. Although

it is possible that our results may also approach a value of 1/3 at larger ϵ, we are not able

to make any quantitative predictions using our present results and this interesting question

remains open.



Chapter 6

Front propagation with solutal

feedback

In this chapter, we focus on reacting fronts whose products are less dense than the reactants

and where the front travels horizontally with respect to gravity through a shallow layer of

fluid. The results discussed in this chapter have been published in Ref. [39]. We assume

that the reaction is isothermal such that the reaction does not remove or generate heat.

Specifically, this makes the following changes in the governing equations with feedback shown

by Eq. 2.14-2.16. We have η = 0, Ra ≥ 0 and Ras ≥ 0. The products, being less dense than

the reactants, generate fluid motion due to buoyancy. We will refer to this two-way coupling

between the concentration and the fluid flow as solutal coupling or feedback. The solutal

coupling is two-way because the concentration changes affect the flow field which can then

affect the concentration field and so on.

The chapter is organized as follows. We first explore propagating fronts with solutal feedback

only, that is, in the absence of thermal convection Ra = 0, in Sec. 6.1. All of the fluid

motion in this case is a result of the solutal feedback caused by the density changes due

to the chemical reaction. We are also interested in the front and fluid dynamics for small

solutal driving where we use a perturbation approach, and for large solutal driving where

we examine the presence of scaling ideas. This provides insights which we use to study

fronts with solutal feedback that propagate through a field of convection rolls generated by

78
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Rayleigh-Bénard convection in Sec. 6.3.

We use a two dimensional domain as shown in Fig. 6.1 to study solutal feedback in initially

quiescent fluids and fluids undergoing Rayleigh-Bénard convection. The advantages of using

a two dimensional domain is the ease of theoretical understanding of the feedback mechanism

using stream-function and vorticity formulation as done in Sec. 6.2. The other advantage is

that we can now increase the number of hexahedral spectral elements in the mesh as well

as the spatial resolution within the limits of our computations. For this study we have used

a Lewis number of Le = 0.01 which we could not study for the three-dimensional domains

in Ch. 5 due to computational constraints which are discussed in Ch. 4. When Le = 0.01

the fluid advection is significantly more important than diffusion and the front is more

dependent on the flow field. The front as usual is initiated in the left wall with pulled front

initial conditions given in Eq. 3.3. The front then propagates towards the right as shown by

the arrow in Fig. 6.1. For our results we use Γx = 30. For a few scenarios where Ras ≫ 1,

we have extended the domain to Γx = 60 to quantify the front in its asymptotic state.

Figure 6.1: Schematic of the two-dimensional domain used to study propagating fronts with
feedback. The fluid layer has a depth d and length Lx where the bottom wall is hot (red) at
temperature Th and the top wall is cold (blue) at temperature Tc. The coordinate directions
(x, z) are shown where z opposes gravity g. The aspect ratio is Γx=Lx/d and the reaction
is initiated at the left wall and propagates to the right in the x direction.
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6.1 Fronts with solutal feedback only

We first explore propagating fronts with solutal feedback through an initially quiescent fluid

layer. Figure 6.2 illustrates several fronts over the range of solutal Rayleigh numbers 0≤

Ras≤3000 where the thermal Rayleigh number Ra=0. The snapshots are taken at a time

where the front has asymptotically reached a fixed shape and propagates toward the right

at a constant velocity. Each panel shows a zoomed spatial view of the region 4≤ x≤ 21.5.

The arrows are vectors of the fluid velocity that is generated by the solutal feedback.

Figure 6.2(a) shows a front without solutal feedback Ras=0. In this case, the front interface

remains vertical, there is no generation of fluid motion, and the front velocity is given by

Eq. 3.2 as v0 = 0.6 for Le = 0.01. Panels (b)-(h) are for increasing values of Ras. For

Ras>0, a self-organized solutally induced convection roll is formed with a clockwise rotation

that propagates with the front. All images are at time t= 5 where the front was initiated

at t=0, therefore the relative location of the fronts indicate that the front velocity increases

with increasing Ras. As Ras increases, the front tilts to the right, is stretched over a larger

distance, and develops positive and negative curvature. We will find the mixing-length Ls

to be an useful quantity to quantify the stretching of the fronts. The mixing length is a

measure of the axial distance over which the reaction occurs and is defined in terms of the

vertical average of the concentration field as shown in Eq. 3.10 and Sec. 3.2.

The variation of Ls(t) is shown in Fig. 6.3. Each curve illustrates the mixing length as a

function of time for different values of Ras. In general, L̄s increases monotonically with

increasing Ras. Throughout this chapter we will find it useful to separate our results into

the three ranges of low, intermediate, and large Ras where: 0≤ Ras ≤ 1 is low, blue, and

uses circles; 1<Ras≤1000 is intermediate, green, and uses diamonds; and 1000<Ras≤8000

is large, red, and uses squares. Figure 6.3 (a) shows the mixing length Ls as a function of
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Figure 6.2: Fronts with solutal feedback propagating through an initially quiescent fluid,
(a) without solutal feedback Ras = 0 and (b)-(h) with solutal feedback Ras > 0. Color
contours are of the concentration c with the usual color convention where red is pure products
and blue is pure reactants. The front is traveling from left to right. The arrows are the fluid
velocity vectors generated by the front through solutal feedback. Only a portion of the layer
is shown where the left boundary is at x=4 and the right boundary is at x=21.5. For all
panels t=5 and Ra=0. (a)-(h): Ras={0, 0.1, 10, 100, 500, 1000, 2000, 3000}.

time. As seen in the figure, Ls reaches its asymptotic value quite quickly in time. We call

this asymptotic value as L̄s. Figure 6.3(b)-(c) illustrates the variation of L̄s as a function

of Ras. For positive values of Ras, the front tilts to the right and stretches which results in

the increase in L̄s as shown in Fig. 6.2(b)-(h). In Fig. 6.3(c) we show the same results on a

log-log plot where the mixing length has been normalized using L0. For small values of Ras,

the normalized mixing length scales quadratically as (L̄s−L0)/L0=8.55× 10−3Ra2
s which is

indicated by the solid line. For large values of Ras, the results follow a square root scaling

given by (L̄s−L0)/L0 = 0.316Ra1/2
s . The square root scaling for large Ras (red points) is

in agreement with previous studies of solutal feedback [64]. In addition, we have found a
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transition from the quadratic to square-root scaling for our results.

Figure 6.3: The variation of the mixing length Ls described using Eq. 3.10 in Sec. 3.2 for
for fronts with solutal feedback propagating through an initially quiescent fluid (Ras > 0
and Ra = 0). Examples of front images are shown in Fig. 6.2. (a) Ls as a function of
time t for Ras = {1, 10, 100, 500, 1000, 3000, 6000}. (b) L̄s as a function of Ras. (c) The
scaled mixing length as a function of Ras where L0 = L̄s(Ras = 0) = 0.598. The solid
line indicates (L̄s−L0)/L0 = 8.55 × 10−3Ra2

s for Ras ≤ 1 and the dashed lines indicate
(L̄s−L0)/L0 = 0.316Ra1/2

s for Ras > 1000. The black triangles are results using a cubic
autocatalytic reaction.

The variation of the horizontal fluid velocity u with z is shown in Fig. 6.4(a)-(b). Each curve

is u(x, z, t) where the location x is chosen at a point where the horizontal fluid velocity is
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maximum at that time t. The position x coincides with a region near the leading edge of

the front where the fluid velocity of the solutally induced convection roll is largest.

Figure 6.4(a) shows profiles of u for 0≤Ras ≤ 8000. As described in Ref. [64] these curves

yield a self-similar description at large Ras when the fluid velocity is scaled by its maximum

value umax. Our results also indicate this scaling as shown by the red curves in Fig. 6.4(b).

We also find a self-similar structure to the flow field at small Ras which is shown by the

blue curves. The fluid velocity contours for the intermediate values of Ras do not collapse

onto a single curve and represent the transition between the low and high Ras results. The

horizontal and vertical dashed lines are included to illustrate the nearly antisymmetric shape

of the low Ras results about the midplane where z = 1/2. The asymmetry of the curves

increase as Ras is increased.

Figure 6.4(c)-(d) illustrate the shape of the front where the front has been identified as usual

as the isocontour of the concentration field where c = 1/2. In this case, the fronts have been

centered using the coordinate xc where xc=x−(xmax+xmin)/2. (xmin, xmax) are the minimum

and maximum values of x for the isocontour describing the front and, as a result, the center

of each front is located at xc=0. Figure 6.4(d) shows the same results where we have scaled

the front position such that the front location at the far right side is unity using x̄c=xc/xc,max

where xc,max is the largest value of xc for each curve in Fig. 6.4(c). When plotted this way

the fronts show a self-similar front shape for small (blue) and large (red) solutal Rayleigh

numbers. The maximum horizontal velocity of the fluid increases with increasing values of

Ras as shown in Fig. 6.4(a). It can also be seen that the location of this maximum occurs

near the upper boundary.

In Fig. 6.5(a)-(b) we show how the fluid velocity scales with Ras where Ras varies over five

orders of magnitude. The characteristic fluid velocity U is defined as usual and for this two
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Figure 6.4: Self-similar features of the flow field and front in the presence of solutal feedback.
All fronts have reached their asymptotic velocity and shape. The blue, green, and red curves
are for small, intermediate, and large values of Ras where 0≤Ras≤1 (blue), 1<Ras≤1000
(green), 1000<Ras≤ 8000 (red). Images of the fronts are in Fig. 6.2. (a) The variation of
the axial fluid velocity u with the vertical coordinate z. The slice in the z direction is taken
at the x location where u is at its maximum value umax. (b) The same data plotted as a
function of the normalized axial velocity ū = u/umax. (c) The variation of the front shape
where the front is plotted as the isocontour where c= 1/2. The fronts are centered using
xc where xc = 0 is the center location of the front. (d) The normalized front shapes using
the scaled coordinate x̃c. The black curves in (b)-(d) are for Ras = 10−3 which have been
computed using a perturbation approach.

dimensional domain it is maximum value of the fluid velocity |u⃗| over the entire domain

when the front has reached its asymptotic propagating state. For fronts with Ra=0 we have

U≈umax where umax can be determined from Fig. 6.4(a).

Figure 6.5(a)-(b) indicates that for Ras ≲ 1 the flow field is in the Stokes flow regime where
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Re ≪ 1 while for the larger values of Ras that we explore we have Re ≲ 10. There are

Figure 6.5: The variation of the characteristic fluid velocity U and the asymptotic front
velocity v̄f with the solutal Rayleigh number Ras for fronts propagating in the absence of
thermal convection (Ra=0) as shown in Fig. 6.2. (a) U as a function of Ras. (b) U/v0 as
a function of Ras where v0 is the bare front velocity that is found when Ras=Ra=0. The
solid line indicates U/v0∝Ras for small Ras and the dashed line indicates U/v0∝Ra1/2

s for
large Ras. (c) v̄f as a function of Ras. (d) The scaled front velocity as a function of Ras.
The solid line indicates a Ra2

s scaling and the dashed line indicates a Ra1/2
s scaling. The

circles (blue), diamonds (green), and squares (red) are results for small, intermediate, and
large values of Ras, respectively.

several trends which can be seen in Fig. 6.5(a)-(b). For small values of the solutal Rayleigh

number Ras≤1, shown as the blue circles, the characteristic velocity U scales linearly with
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Ras. The linear scaling U =9.6× 10−3Ras is indicated by the solid line in Fig. 6.5(b). The

scaling then transitions to U/v0 ∝ Ra1/2
s for larger values where Ras > 1000 as shown by

the red squares and the dashed line. Figure 6.5(c)-(d) illustrates how the asymptotic front

velocity v̄f varies with Ras. Figure 6.5(d) indicates that the scaled front velocity scales as

(v̄f − v0)/v0 = 1.635 × 10−4Ra2
s for Ras ≤ 1 as shown by the solid line through the circles

(blue). The front velocity then transitions to a Ra1/2
s scaling which is shown by the dashed

line through the squares (red). Again the square root scaling of the velocities are in agreement

with previous studies of solutal feedback in Stokes flow [64]. However, we found that for

small solutal Rayleigh numbers, the fluid velocity scales linearly and the front velocity scales

quadratically. As Ras increases, there is a transition to the square-root scaling.

6.2 Perturbation analysis for Ras < 1

We explore the problem perturbatively for Ras≪1 in order to gain insight into the scalings

U ∝ Ras, L̄s ∝ Ra2
s, and v̄f ∝ Ra2

s at small solutal Rayleigh number. In this section we

describe the mathematical approach and the physical insights we can draw from using the

perturbation approach.

We will first recast Eqs. 2.14-2.16 using a two-dimensional stream-function vorticity formula-

tion to remove the pressure variable. The stream-function vorticity formulation also ensures

that mass is conserved without the need of an extra equation. We note that Ra = 0 and

η = 0. This yields

σ−1

(
∂ω

∂t
− ∂ψ

∂z

∂ω

∂x
+
∂ψ

∂x

∂ω

∂z

)
=
∂2ω

∂x2
+
∂2ω

∂z2
− Ras

∂c

∂x
, (6.1)

and
∂c

∂t
− ∂ψ

∂z

∂c

∂x
+
∂ψ

∂x

∂c

∂z
= Le

(
∂2c

∂x2
+
∂2c

∂z2

)
+ ξc(1− c) (6.2)
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where ω(x, z, t) = (∇⃗ × u⃗) · ŷ = ∂u/∂z − ∂w/∂x is the y-component of the fluid vorticity

vector and ŷ is a unit vector in the y-direction. The stream function ψ(x, z, t) is defined by

u=−∂ψ/∂z and w=∂ψ/∂x.

The vorticity and the stream function are related by the Poisson equation

ω = −
(
∂2ψ

∂x2
+
∂2ψ

∂z2

)
. (6.3)

The boundary conditions for ω are computed using ψ and Eq. 6.3 evaluated at the boundaries.

The initial conditions are no fluid motion such that ψ=ω=0 everywhere with a concentration

profile given by c(x, z, t=0)=e−(ξ/Le)1/2x.

We expand ψ, ω and c as a power series using Ras as the small parameter

ψ(x, z, t) = ψ0(x, z, t) + Rasψ1(x, z, t) + . . . (6.4)

c(x, z, t) = c0(x, z, t) + Rasc1(x, z, t) + . . . (6.5)

ω(x, z, t) = ω0(x, z, t) + Rasω1(x, z, t) + . . . (6.6)

These expansions are inserted into Eqs. 6.1-6.3 and the equations are solved numerically for

ψi, ci, and ωi at each order i of Rai
s using the appropriate boundary and initial conditions.

At O(0), Eq. 6.1 yields the trivial solution ω0=ψ0=0 indicating no fluid motion u=w=0

as expected in the absence of solutal feedback. In this case, Eq. 6.2 becomes the reaction-

diffusion equation for c0,

∂c0
∂t

= Le
(
∂2c0
∂x2

+
∂2c0
∂z2

)
+ ξc0(1− c0). (6.7)

The boundary conditions are ∂c0/∂x=0 at x=0,Γ and ∂c0/∂z = 0 at z = 0, 1. The initial
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condition is c0(x, z, t= 0) = e−(ξ/Le)1/2x. For our boundary conditions and initial condition,

c0 is independent of z such that c0(x, t) and, as a result, Eq. 6.7 reduces further to the one

dimensional reaction diffusion equation

∂c0
∂t

= Le∂
2c0
∂x2

+ ξc0(1− c0). (6.8)

This yields a vertically oriented front traveling with a front velocity of v0 = 2
√

Leξ. For the

FKPP nonlinearity there is not a general explicit analytical solution for c0(x, z, t) (c.f. [72,

73]) and Eq. 6.8 must be solved numerically.

The spatial variation of c0 for a front at its asymptotic long-time state is shown in Fig. 6.6(a).

The solid lines are equally spaced isocontours of c0 with a spacing of ∆c0 = 0.1 where the

contour to the furthest left is c0=0.9 and the contour to the furthest right is c0=0.1. The

axial position of the front is plotted using the coordinate xc where xc is the position relative

to the location of the isocontour of c0 = 1/2. Therefore, using this convention, xc = 0 is

the location of the c0 = 1/2 isocontour. We highlight that c0(x) is asymmetric about xc = 0

which is evident by the variation of the spacing between the contour lines in Fig. 6.6(a). The

mixing length L̄s at O(0) is the axial distance between the 0.01 and 0.99 contours which

yields a value of L0 = 0.608.

The equations at O(1) are,

σ−1∂ω1

∂t
=
∂2ω1

∂x2
+
∂2ω1

∂z2
− ∂c0
∂x

(6.9)

and
∂c1
∂t

− ∂ψ1

∂z

∂c0
∂x

= Le
(
∂2c1
∂x2

+
∂2c1
∂z2

)
+ ξc1(1− 2c0) (6.10)
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Figure 6.6: The spatial variation of concentration field at different orders of perturbation.
The spatial variation of (a) c0, (b) c1, (c) ∂c1

∂t
, and (d) c2 for a front at its asymptotic state

for Ras≪1. Isocontours of the concentration are shown as solid (dashed) lines for positive
(negative) values. The x axis is scaled such that the isocontour c0(x, t) = 1/2 is located at
xc=0. (a) The isocontours of c0 are shown between 0.9 (left) and 0.1 (right) with a contour
spacing of 0.1. c0 is asymmetric about xc. (b) The isocontours of c1 are antisymmetric
about z=1/2. Solid and dashed lines are equally spaced contours in 0.014≤ c1 ≤ 0.07 and
−0.07≤ c1 ≤−0.014, respectively. The closed contour near the top (bottom) is the largest
(smallest) value and the magnitude decreases (increases) monotonically moving outward.
(c) Isocontours of ∂c1

∂t
are antisymmetric about z=1/2. Solid lines are equally spaced contours

in 0.05 ≤ ∂c1
∂t

≤ 0.25. Dashed lines are equally spaced contours in −0.05 ≤ ∂c1
∂t

≤ −0.25.
(d) Equally spaced isocontours of c2 between 0.001 ≤ c1 ≤ 0.0145. The largest value is
located at the closed contour in the center and the magnitude decreases going outward. The
curved front shape c(x, z) that these variations in c0, c1 and c2 yield for Ras=10−3 is shown
by the blue curve in Fig. 6.4.

where the vorticity and stream function are related by

ω1 = −
(
∂2ψ1

∂x2
+
∂2ψ1

∂z2

)
. (6.11)
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The vorticity ω1(x, z, t) is nonzero and is driven by the spatial variation of c0(x, t) in the x-

direction as indicated by Eq. 6.9. This results in a clockwise vortex of fluid motion as shown

by the streamlines in Fig. 6.7(a). The center of this vortex occurs at xc < 0 indicating that

it is slightly to the left of the axial location of the c0 = 1/2 isocontour line.

Therefore, the leading order contribution to the fluid motion is at O(1). The magnitude of

the maximum contribution to the fluid velocity at O(1), which we will refer to as u1,max, is

the axial velocity that occurs near the top and bottom of the domain. The location of u1,max

is shown by the two circles (red) in Fig. 6.7(a) and has a value of u1,max = 9.6× 10−3.

Using our definition of the characteristic velocity U as the maximum fluid velocity, we can

represent U to O(1) as U = u1,maxRas. This yields U = 9.6 × 10−3Ras which is indicated

by the solid line in Fig. 6.5(b). The agreement is excellent with the results from the full

numerical simulations shown as the circles (blue). Therefore, the linear scaling of the fluid

velocity is due to the axial variation of the concentration of the bare front which drives the

vorticity field.

Equation 6.10 indicates that the concentration c, through the variations of c1, will now be

altered from the vertical stripe structure of c0 by the vortical flow field generated by ψ1. The

spatial variation of c1(x, z) is shown in Fig. 6.6(b). c1 is asymmetric in the x-direction about

xc = 0 and is antisymmetric about the horizontal midplane z = 1/2. The antisymmetry

about the midplane has several important implications.

The variations of c1(x, z, t) cause the front to tilt toward the right and to develop some

curvature at O(1). However, the mixing length is computed using the vertical average of

the concentration field given by Eq. 3.10. Since c1(x, z) is antisymmetric about z = 1/2,

the z-average of c1 will vanish and, as a result, the spatial variation of c1 will not affect the

value of the mixing length L̄s.
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Similarly the variation of the front velocity v̄f is also unaffected by the variations of c1 because

of symmetry. The O(1) contributions to the front velocity depend upon the z-average of ∂c1
∂t

as indicated by Eq. 3.6. The spatial variation of ∂c1
∂t

is shown in Fig. 6.6(c) illustrating that it

is antisymmetric about the horizontal midplane. As a result, the z-average of ∂c1
∂t

will vanish

and there will not be an O(1) contribution to the front velocity. At O(2) the equations are

Figure 6.7: The spatial variation of the stream function at different orders of perturbation.
The spatial variation of (a) ψ1(x, z) and (b) ψ2(x, z) for a front at its asymptotic state
for Ras ≪ 1. Isocontours of the stream function are shown as solid (positive) and dashed
(negative) lines and the arrows indicate the direction of fluid motion. The x axis is scaled
as in Fig. 6.6. (a) ψ1 is a vortical flow rotating clockwise. The circles (red) indicate the
location of the maximum fluid velocity. Equally spaced isocontours are shown for 3×10−3≤
ψ1 ≤ 6 × 10−4. ψ1 is largest at the center of the vortex and decreases with distance from
the center. (b) ψ2 is a quadrupole of fluid flow. Equally spaced isocontours are shown for
−2× 10−5≤ψ2≤2× 10−5 where the largest positive and negative values are located at the
centers of the vortex structures.
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σ−1

(
∂ω2

∂t
− ∂ψ1

∂z

∂ω1

∂x
+
∂ψ1

∂x

∂ω1

∂z

)
=
∂2ω2

∂x2
+
∂2ω2

∂z2
− ∂c1
∂x

, (6.12)

and

∂c2
∂t

− ∂ψ2

∂z

∂c0
∂x

− ∂ψ1

∂z

∂c1
∂x

+
∂ψ1

∂x

∂c1
∂z

= Le
(
∂2c2
∂x2

+
∂2c2
∂z2

)
+ ξ(c2(1− 2c0)− c1

2) (6.13)

with the relevant Poisson equation that is similar to Eq. 6.11 but is now in terms of ω2 and

ψ2. In Eqs. 6.10 and 6.13 we have used the fact that c0 is not a function of z to simplify

the expressions. The spatial variation of c2(x, z) and ψ2(x, z) are shown in Figs. 6.6(d)

and 6.7(b), respectively.

The stream function ψ2 is a quadrupole of fluid motion as indicated by the streamlines in

Fig. 6.7(b). From the streamlines it is evident that ψ2 is asymmetric about its center in

the x-direction and it is antisymmetric about the midplane z =1/2. The center of ψ2 aligns

with the center of ψ1 which is slightly to the left of c0=1/2 contour. The largest magnitude

of the fluid velocity at O(2) occurs in the lobes of the closed contours located at xc > 0

and are indicated by the red circles. A plot of the total streamfunction ψ at O(2), where

ψ = ψ0 +Rasψ1 +Ra2
sψ2, would yield an image similar to what is shown in Fig. 6.7(a) since

ψ0 = 0 and |ψ2| ≪ |ψ1|.

The concentration field c2 is asymmetric in both the x and z directions. In particular, z

averages of c2 and ∂c2
∂t

are nonzero and lead to contributions to L̄s and v̄f . To O(2) this

yields the following expression for the mixing length (L̄s−L0)/L0 = 8.55 × 10−3Ra2
s which

is indicated by the solid line in Fig. 6.3(c). Similarly, the front velocity to O(2) is given

by (v̄f − v0)/v0 = 1.635 × 10−4Ra2
s which is indicated by the solid line in Fig. 6.5(d). The

agreement between the perturbation analysis and the full numerical simulations is excellent.

Overall, these results indicate that the absence of O(1) contributions to L̄s and v̄f is due
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to the antisymmetry of c1(t) and ∂c1/∂t about the horizontal midplane which leads to the

quadratic scaling where this symmetry is broken.

Using the perturbation solution to O(2) we can also represent the axial fluid velocity and the

front shape for Ras≪ 1. These are shown in Fig. 6.4(b) and (d) for the case of Ras=10−3

by the solid black lines. The perturbation results are in excellent agreement with the results

from the full numerical simulations.

6.2.1 Numerical approach used for perturbation analysis

In this section we describe our numerical approach used to simulate the equations discussed

in the perturbation analysis for Ras≪1. The equations for ψ, c, and ω are numerically solved

to O(2). We utilize a fully-explicit finite-difference approach that is first order accurate in

time and second order accurate in space. We numerically solve Eqs. 6.7, 6.9-6.13 with the

appropriate boundary and initial conditions described in Sec. 6.2. We use an equally spaced

grid where ∆x=∆z=0.02 on a domain with an aspect ratio of Γx=12. For time derivatives

we use a first-order forward Euler time difference with a time step of ∆t= 1 × 10−4. For

spatial derivatives we used second order central time differencing.

We use the following procedure to evolve forward the variables for the concentration, stream

function, and vorticity from time step n to n + 1 at each order of Ras. We evolve the

equations in the sequence O(0), O(1), and then O(2).

We first evolve forward Eq. 6.7 for the concentration to yield its value at the next time

step c
(n+1)
0 . We next solve Eq. 6.9 for the vorticity ω

(n+1)
1 at all interior grid points. The

stream function ψ(n+1)
1 is then evaluated over the entire domain using Eq. 6.11 and a Gauss-

Seidel iterative solver. With ψ
(n+1)
1 computed, we then evaluate the vorticity ω

(n+1)
1 at the

boundaries using Thom’s formula [92, 93]. The concentration c
(n+1)
1 is then evaluated using
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Eq. 6.10.

A similar procedure is followed at O(2). The vorticity ω(n+1)
2 at all interior points is computed

using Eq. 6.12 and ψ
(n+1)
2 is computed over the entire domain using the Poisson equation

relating the stream function and vorticity at O(2). Finally, ω(n+1)
2 is computed at the bound-

aries using Thom’s formula and c(n+1)
2 is evaluated over the entire domain using Eq. 6.13. We

repeat the procedure to integrate the concentration, stream function, and vorticity variables

forward in time.

6.3 Fronts with solutal feedback in convective flow fields

In this section we discuss how solutal feedback affects a front that propagates through a

cellular convective flow field. In order to establish a convective flow field we used a thermal

Rayleigh number of Ra = 3000. We first ran a long-time simulation of the flow field at

this value of Ra to establish a steady field of counterrotating convection rolls over the entire

domain. We accomplished this by using a hot-wall boundary condition at the sidewalls of the

domain as usual. We start with initial conditions such that we get 30 pairs of counterrotating

convection rolls as before. For Rayleigh number Ra = 3000 we get Uc =10.81 as shown in

Fig. 5.2 and Fig. 5.4. We write Uc to denote the characteristic fluid velocity caused by

Rayleigh-Bénard convection in the absence of solutal feedback. Like before in Ch. 5, our

Damköhler number of Da= ξ/Uc≈ 1 which indicates that the convection and reaction time

scales are comparable. Unlike before, here we take the advantage of high spatial resolution

to run simulations at Le = 0.01. This yields a Péclet number of Pe=Uc/Le≈1000 indicating

that the thermal convection driven fluid velocity is significant. Snapshots of the flow fields

and propagating fronts are shown in Fig. 6.8.

Figure 6.8(a) shows a front for Ras = 0 where there is no solutal feedback which results
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Figure 6.8: Fronts traveling through a convective flow field with solutal feedback. The
Rayleigh number is fixed at the value of Ra=3000 for all the panels and each panel is for
a different value of Ras at time t=3. Color shows concentration (c) where red is products
(c = 1) and blue is reactants (c = 0). The black arrows are of the fluid velocity u⃗. (a)-
(g): Ras={0, 100, 500, 700, 1000, 2000, 3000}, respectively. A zoomed-in view is shown where
3≤x ≤17.

in an unchanging flow field as shown. In addition, it is clear that the front dynamics are

affected by the flow field which causes it to spiral toward the cores of the convection rolls

while propagating toward the right.

Figure 6.8(b)-(g) shows results for Ras > 0 where there is a complex interplay between the

thermal convection and the solutal feedback caused by the reacting front. For small values

of Ras, the solutally induced convection roll is weak compared to the convective rolls. As

a result, panels (a) and (b) of Fig. 6.8 are quite similar. However, as Ras increases the

strength of the solutal convection roll increases and its interactions with the convection rolls

causes distortions in the flow field near the front as shown in Fig. 6.8(c)-(d). For further

increases in Ras, the solutal convection roll dominates the thermal convection rolls as shown

in Fig. 6.8(e)-(g). For large values of Ras, the solutal convection roll extends for many
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convection roll widths and annihilates the convective motion over the region spanned by the

front. After the front passes through a location, the convection rolls reemerge due to the

convective instability. This is illustrated by the convection rolls to the left of the front in the

region occupied by pure products. The convection rolls formed propagate inside the spatial

void which has been left by the solutally driven fluid roll and which now consists of pure

products. This front of convection rolls is an example of a pattern forming front which we

will study in greater detail in Ch. 8.

Figure 6.9 shows the mixing length as a function of Ras for fronts propagating through

convection rolls. The mixing length varies in time due to the interactions with the convection

rolls. In Fig. 6.9 we show the time average value L̄s using the filled symbols where the error

bars indicate the standard deviation of the oscillations about the mean value.

Figure 6.9: The mixing length L̄s for a front propagating through a convective flow field
(Ra = 3000), with solutal feedback, as a function of Ras using our convention of circles
(blue), diamonds (green), and squares (red) for low, intermediate, and large value of Ras,
respectively. The mixing length for Ra=0 are included as the triangles for reference. The
dashed lines indicate a scaling of L̄s ∝ Ra1/2

s .
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For Ras = 0 the value of the mixing length is L̄s = 4.0 > L0 which represents the mixing

length enhancement due to the convective flow field alone. A mixing length of 4 corresponds

to two pairs of convection rolls since the width of a convection roll is approximately unity.

From Fig. 6.8(a) it is clear that the reaction zone spans approximately 4 convection rolls.

The mixing length remains approximately at this value for all results where Ras≲700 which

includes the circles (blue) and some of the diamonds (green) in Fig. 6.9. As the solutal

Rayleigh number increases Ras ≳ 700 the mixing length begins to grow as shown by the

remaining diamonds (green) and the squares (red). For large values of Ras the data scales

as L̄s∝Ra1/2
s as indicated by the dashed line. The mixing length results, in the absence of

thermal convection (Ra=0), are included as the triangles for comparison. The presence of

the thermal convection causes L̄s to be larger for very small Ras and then smaller for larger

values of Ras.

The variation of the characteristic fluid velocity U(t) is shown in Fig. 6.10. As defined before

in Sec. 3.2 we define the characteristic fluid velocity U(t) as the maximum fluid velocity that

occurs in the spatial region around the front that we have previously identified as the mixing

length Ls. In Fig. 6.10(a)-(b) we present the results using the normalized characteristic

fluid velocity Un(t) where Un(t) = (U(t)−Uc)/Uc where Uc is the characteristic fluid velocity

of the convective flow field in the absence of solutal feedback. In Fig. 6.10(c) we plot the

variation of the time average Ūn where Ūn = (Ū −Uc)/Uc. When presented this way, a

positive (negative) velocity of Un(t) or Ūn indicates a characteristic velocity that is larger

(smaller) than the background convective flow field.

In Fig. 6.10(a)-(b) we show Un(t) for several representative examples which demonstrate the

oscillatory fluid dynamics that occur due to the solutal feedback of the propagating front.

Figure 6.10(c) shows the time average of the characteristic fluid velocity Ūn over a large

range of Ras where the error bars are the standard deviations about the mean value of the
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oscillations.

Figure 6.10: The variation of the scaled characteristic fluid velocity for a front propagating
through a convective flow field with Ra=3000. The characteristic velocity of the background
convective flow field in the absence of a front is Uc=10.81. (a) The normalized fluid velocity
Un(t) = (U(t)−Uc)/Uc as a function of time for Ras = 500 (upper, green) and Ras = 2000
(lower, red) and in (b) for Ras = 8000. In these plots time has been adjusted such that
t=0 at the beginning of a period of the oscillatory dynamics for easier comparison. (c) The
characteristic fluid velocity Ūn = (Ū −Uc)/Uc as a function of Ras where the error bars
represent the standard deviation of U(t) about the mean value. Flow field images for these
fronts are shown in Fig. 6.8.

The upper curve (green) of Fig. 6.10(a) illustrates the periodic dynamics of Un(t) for Ras=
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500 which corresponds to the case where the peak occurs in Fig. 6.10(c). For this case, U(t)

is greater than the characteristic velocity of the background convective flow for all time.

This indicates that the solutal feedback is increasing the fluid velocity. The characteristic

fluid velocity rises and then falls periodically. The periodic oscillation is due to the coun-

terrotating convection rolls. The leading edge of the propagating front is near the upper

wall for Ras>0 as shown in Fig. 6.8. When the leading tip of the front approaches the left

side of a counterclockwise convection roll, the directions of the front and the fluid velocity

are opposing. This interaction results in a reduction in Un(t) and the troughs of the green

curve occur at these times. When the leading tip of the front approaches the left side of

clockwise convection roll, the front and convective velocity are cooperative and this results

in an increase in Un(t) and the peak values of the green curve in Fig. 6.10(a).

The convection rolls have a spatial wavelength of λ≈ 2 since two rolls of unity width are

required for the convective flow field to repeat. Therefore, we can use Un(t) to provide an

estimate of the front velocity as v̄f ≈λ/tp where tp is the period of time for Un(t) to repeat in

Fig. 6.10(a). For the upper curve (green) this yields v̄f ≈ 2/0.56=3.57. This is approximate

since the solutal feedback will distort the convection rolls that interact with the leading tip

of the front such that λ may change significantly for large values of Ras. For comparison,

the actual front velocity is shown quantitatively in Fig. 6.11, where v̄f = 3.62 for Ras=500,

indicating that the approximate value is very accurate in this regime.

The lower curve (red) of Fig. 6.10(a) shows Un(t) for Ras =2000 which corresponds to the

case where Ūn is near its most negative value in Fig. 6.10(c). For this case, U(t) is less

than the convective fluid velocity except for a brief time near its peak. In this case, the

interaction of the solutal feedback with the convection rolls results in a decrease in the fluid

velocity on average. The overall periodic rise and fall of Un(t) is again due to the interaction

of the leading tip of the front with the convection rolls. However, in this case there are now
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two peaks in Un(t) within each cycle of the periodic dynamics. The first peak and its small

neighboring trough, for example near t ≈ 2 in Fig. 6.10(a), is due to the distortion of the

convection rolls by the leading tip of the front through solutal feedback at the location where

Un(t) occurs. It is clear that the lower curve (red) repeats over a shorter duration than the

upper curve (green) which suggests that the front velocity is larger for this case. For this

case we find v̄f ≈2/0.47=4.26 which is larger as expected and also in very good agreement

with the actual value of the front speed v̄f = 4.29.

Figure 6.10(b) illustrates Un(t) for the large value of Ras=8000. In this case, the periodic

dynamics again contain two peaks due to the interaction of the leading tip of the front with

the counterrotating convection rolls. The maximum value is positive and the minimum value

is negative and the front is clearly now much faster. An estimate of the front velocity gives

v̄f ≈ 2/0.25=8.0. It is interesting to point out that this approximate value of v̄f has an error

of less than 1% when compared with the correct value given in Fig. 6.11(b) of v̄f = 7.93.

The solutally driven flow for Ras=8000 is quite strong, for example a flow field for Ras=3000

is shown in Fig. 6.8(g) which exhibits the same general features. There is a large spatial

region where the solutal convection roll has destroyed the underlying convection rolls which

includes most of the spatial region occupied by the front yet the leading tip of the front

interacts with distorted convection rolls. The velocity U(t) occurs in the region occupied

by the leading tip of the front. Since the leading tip of the front interacts with distorted

convection rolls this approximation remains quite accurate.

Figure 6.10(c) illustrates the trend that Ūn initially increases and reaches a peak value near

Ras ≈ 500. For larger values of the solutal Rayleigh number, Ūn decreases and reaches a

minimum near Ras ≈ 3000. Further increases of Ras yields increasing values of Ūn for the

range of our calculations.
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The variation of the front velocity is shown in Fig. 6.11. Figure 6.11(a) shows vf (t) for

several illustrative examples. The black curve is the front velocity for Ras = 0 and is the

front velocity in the absence of solutal feedback. Small oscillations are evident due to the

front getting convected by the fluid motion. The green curve shows vf (t) for Ras = 500

which is very similar to vf (t) in the absence of solutal feedback. It is interesting to point

out that the characteristic fluid velocity has a peak value at this value of Ras as shown in

Fig. 6.10(c). The lower red curve shows vf (t) for Ras = 2000 which yields clear temporal

oscillations. Lastly, the upper red curve shows results for Ras=8000.

Figure 6.11: The variation of the front velocity for fronts propagating with solutal feedback
through convection rolls with Ra=3000. (a) The front velocity vf (t) as a function of time t
for different values of Ras where Ras=0 (black), Ras=500 (green), Ras=2000 (lower red)
and Ras=8000 (upper red). (b) The variation of asymptotic front velocity v̄f with Ras. The
front velocity when Ras=0 is v̄f =3.59. The dashed line represents a scaling of Ra1/2

s . Flow
field images corresponding to these results are shown in Fig. 6.8. The open triangles are the
results for the front velocity in absence of convection from Fig. 6.5(c) and are included here
for comparison.

Figure 6.11(b) shows the asymptotic front velocity over a large range of Ras. The filled

symbols are results for fronts traveling through convection rolls. We do not include error
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bars here since the magnitude of the oscillations of vf (t) are on the order of the symbol size

used in the figure. The open triangles are the results in the absence of thermal convection

(Ra= 0) and are included here for comparison. It is clear that for small and intermediate

values of Ras, shown by the green diamonds and the one blue circle at Ras = 0, that the

front velocity remains constant in this regime.

However, for larger values of Ras, Fig. 6.11(b) shows that the front velocity increases and

eventually is described by the Ra1/2
s scaling indicated by the dashed line. It is clear that in

comparison with the front velocities in the absence of thermal convection (the open symbols

in Fig. 6.11 (b)) that the fronts with thermal convection have an increased velocity for all

values of Ras. The increase in velocity is approximately constant where ∆v̄f = v̄f−v̄f (Ra=

0)≈0.5 for Ras ≳ 2000.

Overall, we find that propagating fronts with solutal feedback in the presence of counterro-

tating thermal convection rolls have a decreased mixing length, an increased front velocity,

an oscillating characteristic fluid velocity, and increased oscillations in the front velocity.

These results are due to the complex interactions between the solutal feedback and the fluid

dynamics.

The interactions between the front and the fluid dynamics can be further visualized using

space-time plots of the concentration field. In Fig. 6.12 we show space-time plots of the

concentration field at the horizontal midplane c(x, z=1/2, t) where x is the horizontal axis

and t is the vertical axis with positive time in the downward direction. Red is products,

blue is reactants, and the reaction zone is the green/yellow region. The vertical lines in

Fig. 6.12(b)-(d) indicate the locations of the centers of the convection rolls in the fluid

before the front passes through where solid (dashed) indicates a clockwise (counterclockwise)

rotating convection roll. A space-time plot for the case of Ras=Ra=0 would simply yield

a green/yellow region that is a line from the upper left to the lower right where the inverse
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Figure 6.12: The spatiotemporal features of propagating fronts with solutal feedback in the
presence of convection. Space-time plots are shown of the concentration at the horizontal
midplane c(x, z=1/2, t) where x is the horizontal axis and t is the vertical axis. The spatial
location of the thermal convection rolls are indicated by the vertical lines with the centers of
convection rolls with a clockwise (counterclockwise) rotation are shown with solid (dashed)
lines. Only a small portion of space and time are shown in order to visualize the complex
features. Color shows concentration (c) where red is products (c=1) and blue is reactants
(c=0). (a) Solutal feedback without thermal convection (Ras=1000, Ra=0). (b) No solutal
feedback with thermal convection (Ras = 0, Ra = 3000). Solutal feedback and thermal
convection (c) Ras=1000, Ra=3000; and (d) Ras=6000, Ra=3000.

slope of the line is the asymptotic front velocity v̄f . A similar result is obtained for Ras>0

with Ra=0 as shown in Fig. 6.12(a) for the specific case of Ras=1000 and Ra=0.

The case with thermal convection, but without solutal feedback, is shown in Fig. 6.12(b).

The space-time plot yields a periodic structure with triangular features. The troughs are

located at the center of the convection rolls because the front spirals inward toward the roll

centers which requires extra time. The peaks of the triangular structures occur at locations
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between convection rolls where the fluid velocity is either a maximum in the upward or

downward directions. For example, in Fig. 6.12(b) a maximum downflow occurs at x= 11

and a maximum upflow occurs at x=12. In the absence of solutal feedback, the upflow and

downflow regions yield symmetric triangular features in the space-time plot.

A horizontal slice through Fig. 6.12(b) at any time t would yield the spatial variation of

the midplane concentration at that time. For example, one horizontal slice of Fig. 6.12(b)

corresponds to a midplane slice through the image shown in Fig. 6.8(a) where it is clear that

the convection roll edges are the first to complete the reaction whereas the centers of the

convection rolls are the last. A vertical slice through Fig. 6.12(b) at any position x would

yield c(t) at that location. It is clear that any vertical slice of Fig. 6.12(b) would yield a

monotonically increasing dependence for c(t) with increasing time as the reaction goes from

reactants to products at any particular location x.

This picture changes significantly in the presence of solutal feedback. Figure 6.12(c) shows

the space-time plot for a front with both solutal feedback (Ras=1000) and thermal convec-

tion (Ra=3000). There are now significant changes to the spatial and temporal variations of

the concentration field. This front is also shown in Fig. 6.8(e). An interesting feature is the

emergence of temporal oscillations in the concentration field at particular x locations. For

example, a vertical slice at x=11.5 which corresponds with the vertical dashed line would

yield a concentration that oscillates in time as it goes from reactants to products. There are

also spatially complicated regions in the product region where the reaction is slow to reach

completion, for example near x≈12 at time t≈5.5.

Figure 6.12(d) shows the space-time plot for a case where Ras is large and the convective

flow is dominated by the solutally driven flow. In this case, the space and time features

are much smoother. However, small temporal oscillations of c(t) are still present for some

choices of x such as x≈13. Although the front annihilates the convection rolls as it passes
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through, the leading edge of the front does interact directly with the convection rolls which

leads to the wisp-like structures in light blue that indicate the locations where the reaction

first takes place. For example, a wisp is located near x≈11 and t≈2.

Figure 6.13: Zoomed-in view of space-time plots at different z-slices for a front propagating
with Ra = 3000 and Ras = 1000. Color shows concentration (c) where red is products (c=1)
and blue is reactants (c= 0). (a) Zoomed-in view of the space-time plot at z = 0.3 (b) at
z = 0.7 (c) at z = 1/2 which is same as Fig. 6.12(c)

Figure 6.13 shows the space-time plot for Ra = 3000 and Ras = 1000 at different z slices.

Figure 6.13 (a) shows the space-time plot at z = 0.3, where the dynamics is extremely rich.

At this slice, the heavier reactants invade into the products to create isolated patches of

reactants. Figure 6.13 (b) shows the space-time plot at z = 0.7, where the dynamics is
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comparatively smoother. This slice goes through the leading edge seen in Fig. 6.8 (e) It is

clear that the slice at z=1/2 is insightful representations of the bulk as well as the front-tip

dynamics.

Figure 6.14: Temporal oscillations of the concentration of products, ct(t) = c(x = xs, z =
1/2, t), for fronts propagating with solutal feedback in convective flow fields. xs is the slice
through the x-locations in Fig. 6.12. The red solid line is for Ras = 6000 where the slice is
taken at xs = 13. The green solid line is for Ras = 1000 where the slice is taken at xs = 11.5.
The blue solid line is for Ras = 0 where the slice is taken at xs = 11.5.

Figure 6.14 shows the temporal oscillations in the concentration. Here concentration is

plotted as ct(t) = c(x = xs, z = 1/2, t) where xs is the slice through the x-locations in

Fig. 6.12. As discussed in Fig. 6.12, a slice through xs = 11.5 through Fig. 6.12 (c), where

Ras = 1000, shows strong oscillations as seen by the green solid lines with diamond symbols.

Similarly, a slice through xs = 13 through Fig. 6.12 (d), where Ras = 6000, shows weak

oscillations. Any slice through Fig. 6.12 (b) will produce a monotonic increase of ct as evident

from the blue solid lines with circular symbols. For reference we show a slice of xs = 11.5.

Figure 6.14 also shows that increasing solutal Rayleigh number helps to complete the reaction
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Figure 6.15: Symmetry of propagating fronts for Ras = 2000 and Ras = −2000 in initially
quiescent flow fields and flow fields undergoing convection. A zoomed-in spatial view is
shown for better visualization. (a) Propagating fronts for Ras = 2000 and Ra = 0. (b)
Propagating fronts for Ras = −2000 and Ra = 0. (c) Propagating fronts for Ras = 2000 and
Ra = 3000. (d) Propagating fronts for Ras = −2000 and Ra = 3000. The time has been
adjusted such that the fronts are aligned horizontally in (c) and (d) as explained in the text.
Color shows concentration (c) where red is products (c= 1) and blue is reactants (c= 0).
The flow field vectors are visualized by arrows.

faster. Overall, our results indicate that fronts with solutal feedback in convective flow fields

induce chemical oscillations.

Figure 6.15 shows the symmetry of propagating fronts for Ras > 0 and Ras < 0. Figure 6.15

(a) and (b) shows the symmetry for propagating fronts with solutal feedback in an initially

quiescent fluid. The case for Ras < 0 forms an anticlockwise roll that propagates with

the front. Figure 6.15 shows the symmetry for propagating fronts with solutal feedback in

convective flow fields for Ras > 0 and Ras < 0. Here we have to adjust the time for Ras < 0

to align the propagating fronts. The adjustment is required because the first convection

roll that the fronts encounter is a clockwise convection roll at the hot left sidewall. Fronts

for Ras > 0 form a clockwise roll and thus get a boost at the initiation. The scenario is

opposite for fronts propagating with Ras < 0 and an anticlockwise propagating roll because
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Figure 6.16: Color contour of the nondimensional density ρ (c, T ) for a front propagating
with solutal feedback at Ra = 3000 and Ras = 2000. The nondimensional density is given
by Eq. 2.19 and is negative. The level set of c = 1/2 is shown by the black solid line indicating
the location of the front.

they encounter a roll moving in the opposite direction and the fronts are inhibited at the

beginning. The front and fluid velocity magnitudes do not change if the sign of Ras is

reversed.

Figure 6.16 shows the nondimensional density ρ (c, T ) given by Eq. 2.19. The level set of

c = 1/2 is shown by the black solid line. The nondimensional density is negative. Ahead of

the front, the fluid consists of heavier reactants. The fluid is convectively unstable and the

density is ρ (c, T ) = −RaT . The hot and lighter fluid goes up and is shown in red color. The

heavier fluid goes down and is shown by green color. The region behind the front or to the

left side of the figure consists of lighter products after the reaction. The lighter products are

still convectively unstable as shown by the lighter fluid in green and yellow going up and the

heavier descending fluid in blue. The propagating front invades the spatial region consisting

of heavier reactants and leaves a trail of lighter products behind which then form rolls again

because of the convective instability.



Chapter 7

Front propagation with thermal

feedback from the reaction

In this chapter we explore reacting fronts where the products and reactants are of different

density and the reaction is exothermic. To analyze this scenario, we make the following

changes to the governing equation given by Eqs. 2.14-2.16. We use η > 0, Ra > 0 and

Ras ≥ 0 or Ras ≤ 0. There are two possible scenarios that can be realized for η ≥ 0 [61].

1. We can have a reaction where the products are lighter than the reactants and the

reaction releases heat or is exothermic. In this case, both heat release η and solutal

coupling Ras are positive and reduce the net density of the fluid as given by Eq. 2.19.

This case is referred to as cooperative because both the solutal and thermal coupling

have a positive contribution towards decreasing the density of the fluid.

2. We may have a scenario where products are heavier than the reactants in an exothermic

reaction. In this case the solutal feedback increases the density of the fluid and the

thermal feedback decreases it. Here we have Ras < 0 and η > 0. This case is referred

to as antagonistic.

Endothermic autocatalytic reactions are not known to exist which is why we consider η ≥ 0

only for this study. However our numerical approach is quite flexible and we can study the

scenario of η ≤ 0 by simply changing the sign of η in Eq. 2.14.

109
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7.1 Fronts with thermal feedback from the reaction

We first study fronts with thermal feedback when Ras = 0, that is when reactants and

products are of the same density but the reaction is exothermic. We study these fronts

with thermal feedback propagating through an initially quiescent flow field with Ra = 1000,

which is below the thermal Rayleigh number for convective instability, Rac = 1708. Thermal

feedback from the reaction causes a local hotspot at the front. This hotspot causes the fluid

to locally rise and then descend forming a pair of counterrotating convection rolls, which

propagate with the front.

Figure 7.1 shows the color contours of the concentration field for η ≥ 0 and Ras = 0 at

Ra = 1000. The Lewis number is Le = 0.01. All of the snapshots are at t = 6 in a zoomed-in

spatial region. This shows that larger values of η increases the front velocity. The aspect

ratio for the full domain is Γ = 30 which is shown in Fig. 6.1. At small values of η, the

double roll is almost symmetric, in the sense that the two rolls are nearly of the same size

as seen in Fig. 7.1 (a) and (b) which are at η = 1 and η = 5 respectively. At larger values of

η, this symmetry is broken. The front in this scenario gets tilted and stretched to the right

hand side. The fluid roll on the right hand side associated with the front gets stretched in

this scenario as can be seen in Fig. 7.1 (c)-(e) which are at η = 7, 10 and 20 respectively.

At even larger values of η, the flow field gets further distorted and we have increased spa-

tiotemporal distortion of the concentration field as shown in Fig. 7.2. The front is now

extended in both the directions and there exists secondary stretched fluid rolls along with

the primary couplet of rolls in both the directions. Figure 7.2 shows this scenario for η = 50

and η = 100 in Fig. 7.2 (a) and (b) respectively. For large values of η, the temperature of

the local hotspot is slightly larger than the bottom wall at T = 1. For η = 50 the maxi-

mum temperature generated is Tmax = 1.26 and for η = 100 the maximum temperature is
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Figure 7.1: Color contours of concentration with background fluid velocity field shown by
arrows for fronts with thermal feedback from the reaction. Color contours of concentration
with background fluid velocity field shown by arrows for different values of η when Ras = 0,
Ra = 1000. (a) η = 1 (b) η = 5 (c) η = 7 (d) η = 10 (e) η = 20. All the contours are at
time, t = 6. Color shows concentration (c) where red is products (c=1) and blue is reactants
(c=0). The flow field vectors are visualized by arrows. Shown is a zoomed-in view covering
the spatial extent 2.5 ≤ x ≤ 10. The maximum temperature for each case is T = 1.

Figure 7.2: Snapshots of concentration fields for larger magnitudes of thermal feedback from
the reaction. Color contours of concentration with background fluid velocity field shown by
arrows for different values of η when Ras = 0, Ra = 1000. (a) η = 50 (b) η = 100. All the
contours are at time, t = 6. Color shows concentration (c) where red is products (c = 1)
and blue is reactants (c= 0). The flow field vectors are visualized by arrows. Shown is a
zoomed-in view for 9 ≤ x ≤ 22. The maximum temperature for (a) is Tmax = 1.26 and for
(b) is Tmax = 1.67, which are hotter than the temperature of the bottom wall.

Tmax = 1.67.

We plot the variation of the characteristic fluid velocity U and the asymptotic front velocity
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Figure 7.3: The variation of the fluid and the front velocity as a function of the heat release
parameter. (a) Variation of characteristic fluid velocity Ū with η for Ras = 0, Ra = 1000.
The blue circular symbols represent 0 ≤ η ≤ 1 and the red square symbols represent η > 20.
The intermediate regime is shown by greed diamond symbols. The solid line is a curve-fit
through the blue symbols of the form Ū = 0.127η. The dashed line is a curve-fit through
the red squares of the form Ū = 0.465η1/2. (b) The variation of the normalized asymptotic
front velocity as a function of η. The data is grouped similarly as Fig. (a). The solid line is
a curve-fit through the blue circles of the form (v̄f − v0) /v0 = 0.151η3/2. The dashed line is
a curve fit through the red square symbols of the form (v̄f − v0) /v0 = 0.503η1/2.

v̄f with the heat release parameter η in Fig. 7.3. The characteristic fluid velocity is oscillatory

in time for η ≥ 0.5. The oscillations are of the order O(10−1) and increase with larger values

of η. We use the mean of the characteristic fluid velocity Ū to quantify the flow. We then

plot the variation of Ū with η in Fig. 7.3 (a). We again see a transition in scaling where Ū

scales as Ū = 0.127η for 0 ≤ η ≤ 1 and as Ū = 0.465η1/2 for η > 20. The linear regime is

shown by blue circles and the square-root regime is shown by red squares. The intermediate

transitional regime is shown by green diamonds.

Figure 7.3 (b) shows the variation of the asymptotic front velocity v̄f with η. The asymptotic

front velocity in this case is normalized with the no-flow front velocity v0. We observe a

transition in the scaling of v̄f as a function of η for increasing values of η. The black solid

line through the blue circles is a curve-fit of the form (v̄f − v0) /v0 = 0.151η3/2. The dashed
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line is a curve fit of the form (v̄f − v0) /v0 = 0.503η1/2 through larger values of η.

We presently do not have a theoretical explanation for these scaling behaviors. However, a

natural direction forward would be to use the perturbation expansion for small values of η

and solve the subsequent orders of perturbation to understand the scaling behaviors.

7.2 Fronts with cooperative and antagonistic feedback

in an initially quiescent flow field

In this section we explore cooperative and antagonistic feedback through an intially quiescent

fluid. We use η = 10 and Ras = ±60. Figure 7.4 shows the representative color contours

of the concentration field at a time t = 7.98. Figure 7.4 (a) shows a front with cooperative

feedback where η = 10 and Ras = +60. The combined effect of solutal and thermal feedback

has made the products lighter than the reactants and the front gets elongated and tilted

as a result. The double roll is still visible with one roll coinciding with the leading edge

of the front. The front in this case maintains a steady profile as it propagates. The front

propagating with antagonistic feedback at η = 10 and Ras = −60 has an oscillatory nature

because of the dynamics of the snout like leading edge of the front in Fig. 7.4 (b).

The oscillatory behavior of the front is further illustrated in the space-time plots shown in

Fig. 7.5. The horizontal black dotted lines through the space-time plots are at time t = 7.98

for which is used in Fig. 7.4. Overall, we do not find oscillations for the cooperative case as

shown by the smooth transition from products to reactants in Fig. 7.5 (a). The case of only

η = 10 and Ras = 0 is shown in Fig. 7.1 (d).

Figure 7.5 (b) shows a non-smooth transition from products to reactants where we find

repeating rounded features. The emergence of spatiotemporal oscillations in the antagonistic

case is due to the competition between the solutal and thermal feedback of the reaction.
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Figure 7.4: Snapshots in time for the cooperative and antagonistic concentration field at
Ra = 1000, Ras = ±60 and η = 10. Color contours of cooperative and antagonistic concen-
tration field with background fluid velocity field shown by arrows. Color shows concentration
(c) where red is products (c = 1) and blue is reactants (c = 0). The flow field vectors are
visualized by arrows. (a) Cooperative feedback, Ra = 1000, Ras = 60, η = 10. (b) Antago-
nistic feedback, Ra = 1000, Ras = −60, η = 10. The images are at time t = 7.98. Shown is
a zoomed-in spatial view where 6 ≤ x ≤ 13.

Figure 7.5: Space-time plots for the midplane slice of the concentration field shown in Fig. 7.4
for the cooperative and antagonistic cases at η = 10 and Ras = ±60. Color shows concen-
tration (c) where red is products (c=1) and blue is reactants (c=0). The horizontal dashed
lines are at time t = 7.98 which is used in Fig. 7.4. (a) Cooperative feedback, Ra = 1000,
Ras = 60 and η = 10. (b) Antagonistic feedback, Ra = 1000, Ras = −60 and η = 10.

The solutal feedback for this case converts the reactants into heavy products. The thermal

feedback from the reaction tries to convect the products and the reactants to the top wall.

The heavier products form a leading edge, however since the products are heavy the leading

edge is unstable and falls down. This mechanism of turning over of the heavier leading edge
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repeats and yields the oscillatory space-time plot shown in Fig. 7.5 (b).

Figure 7.6: The time variation of the fluid and the front velocity for cooperative and antag-
onistic feedback at Ra = 1000. We examine cooperative feedback at Ras = +60, η = 10 and
antagonistic feedback at Ras = −60, η = 10. The black solid lines are labelled for coopera-
tive and antagonistic feedback. The lower green solid lines are for results with only solutal
feedback (Ras = 60 and η = 0). The upper green lines are for results with only thermal
feedback from the reaction (Ras = 0 and η = 10). The black dotted lines are obtained by
adding the cases of only solutal feedback and only thermal feedback (the summation of the
two green lines). (a) The time variation of the characteristic fluid velocity. (b) The time
variation of the front velocity.

Figure 7.6 (a) and (b) show the time variation of the characteristic fluid velocity and the

front velocity for fronts with cooperative and antagonistic feedback as shown in Fig. 7.4.

The results from the cooperative and antagonistic cases are shown by the black solid lines,

where the oscillating lines denotes results from the antagonistic case. The relatively straight

black lines (at larger times) represent results for the cooperative case where we do not find

any oscillations for parameters Ras = 60 and η = 10. The case of only thermal feedback

from the reaction (η = 10 and Ras = 0) is shown by the upper green oscillating line in both

plots. The green color is chosen because η = 10 lies in the intermediate regime in Fig. 7.3.

The case of only solutal feedback (Ras = 60 and η = 0) is shown by the lower green lines.

Here again, the green line is chosen because Ras = 60 lies in the intermediate regime shown
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in Fig. 6.5. Lastly, the black dotted lines are results from simply adding the cases of only

solutal feedback and only thermal feedback and is plotted as a reference.

Figure 7.6 (a) plots the variation of the characteristic fluid velocity with time for fronts

cooperative and antagonistic feedback at Ras = ±60 and η = 10. Fronts with antagonistic

feedback create the largest magnitude of fluid flow on average for these parameters. The

characteristic fluid velocity is oscillatory with a period that is related to the turning over

of the leading edge of the heavier products as described above. The relatively steady solid

black line represents the characteristic fluid velocity for fronts with cooperative feedback.

The front shape for the cooperative feedback is steady and there are no oscillations present.

The oscillating green line represents U(t) for the case of only thermal feedback at η = 10

which is shown in Fig. 7.1 (d). The relatively steady solid green line is the case for Ras = 60

or only solutal feedback. As explained before in Ch. 6, the scenario where Ras = −60 yields

the same value of the front velocity in the absence of thermal feedback. The characteristic

fluid velocity for both the cases of only solutal or only thermal feedback are less than the

cooperative and antagonistic scenarios. This suggests that any change in the density between

the products and the reactants combined with the exothermic heat release increases the fluid

velocity. Lastly, for reference, the black dotted line is obtained by adding the data from the

individual thermal and solutal feedback. The black dotted line has an average magnitude of

U which is larger than all the cases. It is interesting to note that the velocities for combined

thermal and solutal feedback (shown by black solid lines) are less than the linear sum of the

individual feedback mechanisms. This is expected, since the problem is nonlinear and the

complicated interactions of thermal and solutal feedback cannot be represented by a linear

sum.

Figure 7.6 (b) shows the variation of the front velocity with time for fronts with cooperative

and antagonistic feedback at Ras = ±60 and η = 10. The color convention used is the same
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as in Fig. 7.6 (a). For this case the front velocity in the scenario of cooperative feedback

is the largest for these parameters. Fronts with antagonistic feedback are slower than the

cooperative feedback as well as the case of only thermal feedback from the reaction. This

suggests that adding a negative contribution to the density jump across the front interface

reduces the front velocity. The additive scenario of the individual feedback mechanisms is

also shown by the black dotted line. Since the problem is nonlinear, the front velocities

obtained for the combined thermal and solutal feedback is less than the linear sum of the

two individual effects.

The parameter space for studying feedback is vast as we can vary three parameters η, Ra

and Ras independently. For example, increasing the values of Ras and η can result in more

complicated and oscillatory dynamics. One such scenario is shown in Fig. 7.7 where η = 50

and Ras = ±300. The dynamics are now more complicated as seen by the elongated fluid

rolls, double convection rolls and isolated spatial regions between products which consist

of reactants. The snapshots are taken at the same time t = 5.97 which shows that the

mixing length and the front velocity for the cooperative case exceeds the antagonistic case

as expected. Figure 7.7 (a) shows a scenario similar to the case where we have high η shown

in Fig. 7.2. In this case, there is a counterrotating pair of convection rolls along with two

more stretched rolls located ahead and behind the front. The fluid roll ahead of the double

roll is stretched to a large extent with the front to form a snout like feature. The shape of

the leading edge is steady with time as the front propagates but complicated dynamics is

present at the tail of the leading edge where there are in total three convection rolls.

Figure 7.7 (b) shows the scenario for antagonistic feedback. Here we see three convection

rolls, a stretched leading edge consisting of heavier products and isolated patches of reactants

inside the products. The leading edge that forms for this case consists of heavier products

which then descend down and yield complicated oscillatory dynamics. The heavier leading
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edge traps reactants inside it as it descends down and we get isolated regions of reactants

inside the products.

Figure 7.7: Color contours of the concentration field for fronts with cooperative and antag-
onistic feedback in the absence of background convection. The background fluid velocity
field shown by arrows. Parameters are Ra = 1000, Ras = ±300 and η = 50. Color shows
concentration (c) where red is products (c=1) and blue is reactants (c=0). The flow field
vectors are visualized by arrows. (a) Cooperative feedback, Ra = 1000, Ras = 300, η = 50.
(b) Antagonistic feedback, Ra = 1000, Ras = −300, η = 50. Red is pure products and blue
is pure reactants. The images are at time t = 5.97. Shown is a zoomed-in spatial view for
8 ≤ x ≤ 17.

In Fig. 7.8 we further probe the complicated dynamics using space-time plots at the midplane

for the concentration fields shown in Fig. 7.7. Figure 7.8 (a) shows the space-time plot for the

cooperative case. For this scenario we observe spatiotemporal oscillations for the cooperative

case as well. Figure 7.8 (b) shows the space-time plot for the antagonistic case and it consists

of jagged and sharp features.

Figure 7.9 shows the temporal variation of U and vf for this case. The black lines are the cases

of cooperative and antagonistic feedback as labelled in the figure. It is interesting to note that

the cooperative case also shows oscillations for these parameters. The temporal variation of

U is plotted in Fig. 7.9(a) and the temporal variation of vf is plotted in Fig. 7.9(b). For

cooperative feedback, the temporal variation of the fluid and front velocities show a single

repeating pattern. The antagonistic case, on the other hand, shows two modes of oscillations.

This two modal oscillation is related to the competing thermal and solutal feedback. The

leading edge for the antagonistic feedback consists of heavier products which tumbles down
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Figure 7.8: Space-time plots for the midplane slice of the concentration field shown in Fig. 7.7
for the cooperative and antagonistic case at η = 50 and Ras = ±300. The horizontal dashed
lines are at time t = 7.98 which is same as Fig. 7.7. Color shows concentration (c) where
red is products (c=1) and blue is reactants (c=0). (a) Cooperative feedback, Ra = 1000,
Ras = 300 and η = 50. (b) Antagonistic feedback, Ra = 1000, Ras = −300 and η = 50.

Figure 7.9: The time variation of the fluid and the front velocity for cooperative and an-
tagonistic feedback at Ra = 1000, Ras = ±300 and η = 50. The thermal Rayleigh num-
ber is fixed at Ra = 1000. We examine a case where we expect cooperative feedback at
Ras = +300, η = 50 and antagonistic feedback at Ras = −300, η = 50. The black oscillating
lines are for cooperative feedback and antagonistic feedback with arrows pointing to the
respective cases. The lower green lines are for results from only solutal feedback (Ras = 300
and η = 0). The red oscillating lines are for results from only thermal feedback from the re-
action (Ras = 0 and η = 50). The upper black dotted lines are for results which are obtained
by adding the cases of only solutal feedback and only thermal feedback or the green and red
lines. (a) The time variation of the characteristic fluid velocity. (b) The time variation of
the front velocity.
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and results in complicated dynamics shown in Fig. 7.7(b). The scenario with only thermal

feedback at η = 50 is shown by the red oscillating line. The color red is chosen because η = 50

lies in the regime of by large η in Fig. 7.3. Similarly, the case with only solutal feedback

at Ras = 300 is shown by the green line because this value of Ras lies in the transitional

regime shown in Fig. 6.5. Lastly, the dotted line represents the scenario where we have added

the cases of only thermal feedback (red line) and only solutal feedback (green line). The

sum of the two individual effects again does not represent the actual combined scenario and

overestimates the value. This is expected because of the nonlinearities in the system. For

these parameters, the antagonistic feedback yields a slower front and fluid velocity than the

scenario for only thermal feedback.

Figure 7.10: Phase portrait of the front velocity for fronts with cooperative and antagonistic
feedback at η = 50 in the absence of background convection at Ra = 1000. The time
variation of the front velocities for this case are shown in Fig. 7.9 (b). Three repetitions are
shown by red, green and blue lines. (a) Cooperative feedback, Ras = 300. (b) Antagonistic
feedback, Ras = −300.

Figure 7.10 shows the phase portraits for fronts with cooperative and antagonistic feedback

at Ras = ±300 and η = 50 in the absence of background convection. Phase portraits help in

the quantification of periodic dynamics in phase space. The quantity that is used to draw

the phase portrait is the front velocity obtained using the bulk burning rate. The temporal
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variation of front velocity is shown in Fig. 7.9 (b). We plot the time derivative of the front

velocity dvf/dt as a function of the front velocity to obtain the phase portrait.

Figure 7.10 (a) shows the phase portrait for fronts with cooperative feedback at Ras = 300

and η = 50 in the absence of background convection. The single repeating pattern is rep-

resented by the oval trajectories on the phase portrait. We have plotted three repeating

trajectories by red, blue and green lines. The overlap of the trajectories suggest the pres-

ence of periodic dynamics. The time period of oscillation for cooperative feedback at these

parameters is approximately t ≈ 0.81. The periodic dynamics is associated with the coun-

terrotating convection roll.

Figure 7.10 (b) shows the phase portrait for fronts with antagonistic feedback at Ras = −300

and η = 50 in the absence of background convection. The two modal oscillation observed

in Fig. 7.9 results in the double lobed oval shape of the trajectories in the phase portrait.

The left lobe results from the fast turn-over dynamics of the extended leading edge which

consists of heavy products shown in Fig. 7.7. The right lobe results from the slower dynamics

due to the counterrotating convection roll. The time period for one entire repetition is

approximately t ≈ 1.23.

7.3 Fronts with cooperative and antagonistic feedback

in a convective flow field

We now study cooperative and antagonistic feedback in the presence of background convec-

tion. We first study the scenario in the usual two dimensional convection domain having 15

pairs of counterrotating convection rolls at Ra = 3000. We use a Lewis number of Le = 0.01

where the flow field has a large effect on the front. We study cooperative and antagonistic

feedback at Ras = ±300 and η = 50.
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Figure 7.11 shows snapshots in time of a front propagating with cooperative feedback in the

presence of background convection. The snapshots are t ≈ 0.5 apart from each other. A

zoomed-in spatial region is shown for better visualization. The lighter products in this case

stretch over a large spatial distance. The cooperative feedback annihilates the background

convection in the spatial extent covered by the front. The leading edge of the front inter-

acts with the convection roll ahead of it as it propagates. There are secondary plume-like

structures behind the leading edge which are formed due to the exothermic reaction.

Figure 7.11: Snapshots in time of a front propagating with cooperative feedback in a con-
vective flow field. The relevant parameters are Ra = 3000, Ras = +300 and η = 50. The
background flow field is shown by arrows. The snapshots (a), (b) and (c) are approximately
t ≈ 0.5 apart. Color shows concentration (c) where red is products (c = 1) and blue is
reactants (c=0). The flow field vectors are visualized by arrows. A zoomed-in spatial region
(10 ≤ x ≤ 20) is shown for better visualization.

Figure 7.12 shows the space-time plot through the midplane slice of Fig. 7.11. The centers of

the background convection rolls are shown by the lines in the plot with solid lines representing

clockwise convection rolls and dotted lines representing anticlockwise convection rolls. The

interaction of the leading edge of the front with the convection rolls is shown by the isolated

patch of products in the space-time plot, where the reaction is completed first. The finger-

like structures in the space-time plot are descriptive of the complicated features behind the
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leading edge in Fig. 7.11. An important aspect of cooperative feedback is that the dynamics

does not settle to a periodic nature in long time. This aspect can be seen from the isolated

patch of products along the diagonal of the space-time plot that is not setting down to a

periodic nature. This isolated patch is representative of the leading edge of the front. It is

also clear that the finger like disorders in the space-time plot are not periodic.

Figure 7.12: Space-time plot for a front with cooperative feedback where Ras = 300 and
η = 50 in the presence of convection at Ra = 3000. The concentration field is shown in
Fig. 7.11. The spatial location of the thermal convection rolls are indicated by the vertical
lines with the centers of convection rolls with a clockwise (counterclockwise) rotation are
shown with solid (dashed) lines. Color shows concentration (c) where red is products (c=1)
and blue is reactants (c=0).

Figure 7.13 shows the scenario of a front propagating with antagonistic feedback propagating

through a chain of convection rolls. The snapshots are again t ≈ 0.5 apart from each other.

In this scenario, the spatial extent covered by the front is smaller. The leading edge or the

snout which consists of heavier products extends through a small spatial distance before

falling down. The leading edge by this process scoops out isolated patches of reactants



124 Chapter 7. Front propagation with thermal feedback from the reaction

inside. The leading edge also interacts with the convection roll ahead of it. The isolated

patch of reactants is carried well inside the reaction zone and almost near the end where

new convection rolls are forming.

Figure 7.13: Snapshots in time of a front propagating with antagonistic feedback in a con-
vective flow field. The relevant parameters are Ra = 3000, Ras = −300 and η = 50. The
background flow field is shown by arrows. The snapshots (a), (b) and (c) are approximately
t ≈ 0.5 apart. Color shows concentration (c) where red is products (c = 1) and blue is
reactants (c=0). The flow field vectors are visualized by arrows. A zoomed-in spatial region
(10 ≤ x ≤ 20) is shown for better visualization.

The space-time plot for this complicated scenario is shown in Fig. 7.14. The isolated patch

of product in the leading edge is still present but is not as frequent as the cooperative case.

This is because the leading edge consists of heavier products and is unable to sustain itself

for long times and falls down. Here as well, the dynamics does not settle down to a periodic

nature for the domains that we have tested. However, the dynamics are more regular than

for the cooperative scenario.

We plot the temporal variation of the front velocity for fronts propagating with cooperative

and antagonistic feedback in the presence of background convection. Figure 7.15 shows

this variation. The antagonistic scenario is shown by the brown curve. It is clear that the

front velocity for the antagonistic feedback is regular although not quite periodic. The front
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Figure 7.14: Space-time plot for a front with antagonistic feedback where Ras = −300 and
η = 50 in the presence of convection at Ra = 3000. The concentration field is shown in
Fig. 7.13. The spatial location of the thermal convection rolls are indicated by the vertical
lines with the centers of convection rolls with a clockwise (counterclockwise) rotation are
shown with solid (dashed) lines. Color shows concentration (c) where red is products (c=1)
and blue is reactants (c=0).

velocity for the cooperative feedback has no apparent regular features. The expected trend

of the cooperative feedback fronts being faster than the antagonistic feedback fronts is also

present when there is background convection.

We next plot the phase portraits for fronts propagating with cooperative and antagonistic

feedback in the presence of background convection. Figure 7.16 shows the phase portraits.

The phase portraits are plotted in the same window of time as in Fig. 7.15 and the start and

the end points of the trajectories are shown by arrows. The phase portrait for cooperative

feedback in the presence of background convection is shown in Fig. 7.16(a). No clear signature

of repetition of the trajectories is present in the phase portrait. This is suggestive of the

aperiodic nature of the dynamics as observed from the space-time plot for this case in
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Figure 7.15: The temporal variation of front velocity for fronts propagating with cooperative
and antagonistic feedback in the presence of background convection. Relevant parameters
are Ras = ±300, η = 50 and Ra = 3000.

Fig. 7.12. Figure 7.16 (b) shows the phase portrait for antagonistic feedback in the presence

of convection. Although the trajectories in the phase space are not repeating, there is a

presence of a somewhat regular structure. This structure is similar to the two lobed oval

shape in the phase portrait of this scenario in the absence of convection shown in Fig. 7.10 (b).

We have also explored the presence of periodic dynamics for fronts with cooperative feedback

in convection by doubling the size of our domain. We have used a two dimensional domain

of aspect ratio Γx = 60 to study the fronts with feedback traveling through a chain of

convection rolls at Ra = 3000. The case we examined is identical to the scenario shown in

Fig. 7.11 (Ras = 300 and η = 50). Figure 7.17 shows this scenario. The dynamics are clearly

not settling to a periodic nature even in this longer domain, however the dynamics show an

almost repeating nature near the end. It may be useful in future to explore a larger domain

to explore the possibilities of periodic dynamics.
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Figure 7.16: Phase portrait of the front velocity for fronts with cooperative and antagonistic
feedback η = 50 in the presence of background convection at Ra = 3000. The time variation
of the front velocities for this case are shown in Fig. 7.15. The phase portraits are plotted
in the same window of time as in Fig. 7.15. The start and the end points of the trajectories
are shown by arrows. (a) Cooperative feedback, Ras = 300. (b) Antagonistic feedback,
Ras = −300.

We next investigate the scenario where we have propagating fronts with feedback in chaotic

flow fields. Figure 7.18 shows the scenario of front induced feedback in a chaotic flow field

in the cylindrical domain at Ra = 6000. Shown are snapshots of the concentration field

with the centers of the underlying convection rolls shown by the black lines. We have used

a Lewis number of Le = 0.1 for this study. All the snapshots are at a time t = 3.4.

Figure 7.18 (a) shows the scenario without front induced feedback (Ras = 0 and η = 0).

We have studied this scenario closely in Ch. 5. The front interface is heavily affected by the

underlying defects, spirals and other spatial disorders of the flow field.

Figure 7.18 (b) shows the scenario where we have solutal feedback at Ras = 6000. In this

case, the reaction zone is much wider as shown by the green region. The reaction zone

is not affected by the chaotic flow field except for the leading edge which interacts with

the chaotic convection rolls. The front is faster here which is clear from the larger radial

extent that has been covered by the front. The solutal convection roll traveling with the
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Figure 7.17: Space-time plot for a front with cooperative feedback in the presence of con-
vection in a two dimensional domain of aspect ratio Γx = 60. The relevant parameters are
Ras = 300, η = 50 and Ra = 3000. The spatial location of the thermal convection rolls are
indicated by the vertical lines with the centers of convection rolls with a clockwise (coun-
terclockwise) rotation are shown with solid (dashed) lines. Color shows concentration (c)
where red is products (c=1) and blue is reactants (c=0).

front has annihilated a number of convection rolls which then reemerge due to the convective

instability. Interestingly, these reemerged convection rolls line up to form a target pattern

behind the front in a spatial extent spanning 6 convection rolls. The target pattern is unstable

because its wavenumber is outside the range of stable wavenumbers at this Rayleigh number

described by the Busse balloon [2, 43]. This leads to the reemergence of chaotic rolls behind

the target pattern, which starts from the center of the domain. These are examples of pattern

forming fronts which we will explore in greater detail in Ch. 8. In this scenario there are two

pattern forming fronts where one of them form target patterns in its wake while the other

one starting from the center forms chaotic patterns in its wake. If we take a horizontal slice

through the middle of the domain in Fig. 7.18 (b), the wavenumber of the target patterns

can be found out to be kt ≈ 3.8, which is more than the wavenumber of the chaotic rolls in

the horizontal slice through the middle of Fig. 7.18 (a) where it is equal to kc ≈ 2.3. It is
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interesting to note that a steady pattern of straight parallel rolls shown in Fig. 5.1 generates

a pattern wavenumber of k ≈ π. The wavenumber of kt ≈ 3.8 lies outside the Busse balloon

for this Rayleigh number and reverts back to the chaotic pattern starting from the center

[43]. This suggests that the wavenumber selected by the pattern in the wake of a front with

solutal feedback depends on the complex feedback dynamics. In future, it will be interesting

to explore the wavenumber selected by the pattern behind the feedback front for a range

of solutal and thermal feedback. Pattern forming fronts with a steady state wavenumber of

k ≈ π will be investigated in Ch. 8.

Figure 7.18 (c) shows the scenario of antagonistic feedback at Ras = −6000 and η = 18. In

this case, the front is slower than the case of only solutal feedback but it is still faster than

the scenario without any feedback in Fig. 7.18 (a). The reaction zone is extended as shown

by the green and yellow region. At the instant shown in the snapshot the wake of the front

is forming a weak target pattern. The reaction generates a hotspot where T = 1.1 which is

slightly larger than the temperature of the bottom wall of the domain at T = 1.

Figure 7.18 (d) shows the scenario of cooperative feedback in a chaotic flow field at Ras =

6000 and η = 18. This scenario produces a front which is faster than the other cases as

shown by the large radial extent that has been covered by the front. This is expected since

the cooperative feedback produces faster fronts as explored before. The reaction zone shown

by green is widest for this case. Again we see a target pattern that emerges in the wake of

the front. The target pattern shows disorder in its center which is expected since the system

is chaotic.
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Figure 7.18: Snapshots of the concentration field for cooperative and antagonistic feedback
in a spatiotemporally chaotic flow field in a cylindrical domain at Ra = 6000 and Le = 0.1.
Snapshots of the scenarios where there is no feedback and where only solutal feedback is
present is also shown for reference. Red is pure products and blue is pure reactants. The
black lines represent the line contour of T = 1/2 which locate the center of the convection
rolls. All the snapshots are taken at a time t = 3.4 from the initiation of the front in the
center of the domain. (a) The scenario without feedback which has been studied in depth
in Ch. 5. (b) The scenario with only solutal feedback at Ras = 6000. (c) A front with
antagonistic feedback for η = 18 and Ras = −6000. The maximum temperature for this
case is slightly more than the bottom wall of the domain at T = 1.11. (d) A front with
cooperative feedback η = 18 and Ras = 6000. The maximum temperature for this case is
T = 1.16.
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Pattern forming fronts

In this section we will briefly explore pattern forming fronts. In many situations of interest,

a front propagates while leaving a trail of spatial structures behind. Examples of pattern

forming fronts include dendritic growth fronts, crystal growth fronts and dissolution fronts

in rocks and flame fronts which form cellular patterns in their wake [24, 25]. We have also

encountered this phenomenon for fronts propagating with solutal and thermal feedback in

convective flow fields in Ch. 6 and Ch. 7. As can be seen from Fig. 6.8 (e)-(g), the solutally

induced stretched front annihilates the convection rolls locally as it propagates. However, as

the front passes through a location the convection rolls reemerge in its wake because of the

convective instability. The reemerged convection rolls form a pattern forming front which

fills the spatial region without convection rolls to the left of the front which now consists

of products. A similar scenario is observed for fronts with cooperative and antagonistic

feedback propagating through a convective flow as shown in Fig. 7.11 and Fig. 7.13. We

have also encountered pattern forming fronts in the scenario of front induced feedback in a

chaotic flow field as shown in Fig. 7.18. For example in Fig. 7.18 (b), the pattern forming

convection roll front behind the reaction zone (shown in green) forms a target pattern of

wavenumber kt ≈ 3.8. There is also the presence of a propagating chaotic instability that

develops from the center of the domain which travels outward radially while reorienting the

target roll patterns into spatiotemporally chaotic rolls. This is an example of a chaotic

pattern forming front and has not been explored further in this dissertation.
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An important aspect of a pattern forming front is that the velocity and wavenumber of the

patterns selected are not arbitrary and are closely linked to the nature of the instability [2].

Here, we study the pattern forming fronts of convection rolls in a two-dimensional domain of

aspect ratio Γx = 30 near the onset of convective instability. We use 30 equally spaced square

spectral elements in the domain and a 16th order Lagrangian interpolation polynomial to

discretize each element. We use a hot sidewall boundary condition T = 1 at the left wall at

x = 0. This leads to the formation of a convection roll which then propagates in the positive

x-direction. We use a range of Rayleigh numbers between 1750 ≤ Ra ≤ 4800 to study the

propagation of the convection rolls. A larger Rayleigh number Ra > 4800 causes the entire

fluid layer to simultaneously erupt due to the convective instability prior to the front traveling

across the domain. We cover a range of reduced Rayleigh numbers 0.025 ≤ ϵ ≤ 1.81, which

covers a large range of thermal driving above the onset of thermal convection.

Figure 8.1 shows the snapshots of a pattern forming front at Ra = 2100 at different times.

Red represents hot rising fluid and blue represents cold descending fluid as usual. Fig-

ure 8.1 (a) shows a time of t = 0.1 from the start of the simulation. Figure 8.1 (b)-(g) shows

the pattern forming front for 1 ≤ t ≤ 6 with each snapshot at ∆t = 1 apart.

Figure 8.1: Snapshots of a propagating pattern forming front. Shown is the color contour
of temperature between 0.4 ≤ T ≤ 0.6. Red is hot rising fluid and blue is cold descending
fluid. The Rayleigh number is R = 2100. The snapshots from (b)-(g) are 1 vertical diffusion
time unit apart. (a) t = 0.1 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4 (f) t = 5 (g) t = 6.
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Figure 8.2 shows the space-time plot of the pattern forming front shown in Fig. 8.1 by taking

a slice at the midplane z = 1/2 of the flow field. It is clear that around t ≈ 6.5, the front has

reached the right wall of the domain. The inverse slope of the line through the boundary of

the pattern forming front in Fig. 8.2 is equal to the front velocity.

Figure 8.2: Space-time plot of a propagating pattern forming front obtained by taking a
horizontal slice at the vertical midplane of the temperature fields shown in Fig. 8.1. Color
shows temperature where red is hot rising fluid and blue is cold descending fluid.

The dynamics near the onset of convective instability can be described using the amplitude

equation [1, 2]. The linear selection criterion suggests that the front velocity of the pattern

forming front is given by

vfp = 2ξ0τ
−1
0

√
ϵ, (8.1)

where ξ0 and τ0 are the parameters of the amplitude equation [10, 94–97]. For Prandtl

number σ = 1 and no-slip top and bottom walls, the values of these parameters are ξ0 = 0.38

and τ−1
0 = 13 which can be obtained using Table II in Ref. [97].

Figure 8.3 shows excellent agreement between theory and our numerical results, where the
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black solid line is the theoretical prediction given by Eq. 8.1 and the blue circles are the

data points from numerical simulation. In practice, we track the x-coordinate of the tip of

the propagating front to obtain the front velocity. This agreement with theory for the front

velocity has also been reported in a numerical study of the Swift-Hohenberg equation [94]

and the two-dimensional Boussinesq equations [98]. Agreement with theory was also shown

in an experiment on propagating pattern forming fronts in Rayleigh-Bénard convection by

Ref. [96] where a range of 4×10−4 ≤ ϵ ≤ 2.5×10−1 was used. The experiment was conducted

using water with Prandtl number σ = 5.373. Our results show that the theoretical prediction

for the front velocity is quite accurate for 0.025 ≲ ϵ ≲ 1.81 which extends beyond the onset

of convective instability.

Figure 8.3: The front velocity as a function of ϵ for the pattern forming front. The blue
circles represent the data points from numerical simulations and the black solid line is the
theoretical prediction given by Eq. 8.1.

Figure 8.4 shows the variation of the wavelength λ of the patterns behind the front with ϵ.

The black solid line in Fig. 8.4 is a curvefit of the form λ/λ0 = 1−0.1233
√
ϵ, where λ0 = 2.049

which is similar to the wavelength found in steady state where λeq ≈ 2. The steady state

wavelength is found from the fact that we get 15 pairs of counterrotating convection rolls
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in a domain of aspect ratio Γx = 30 after the front has propagated through the entire

domain length and the pattern has fully developed. This yields λeq = 30/15 = 2. This

relation is similar to the one obtained in the experiment by Ref. [96] where it was found that

λ/λ0 = 1− 0.18
√
ϵ, where λ0 = 2.29. The experiment used a domain of aspect ratio Γx ≈ 27

which yielded 12 pairs of counterrotating convection rolls. Thus λeq = 2.27 which was found

to be close to λ0. Overall, our results can be described by the form of the curvefit used by

Ref. [96]. However, our numerical results are for much larger values of ϵ than what was used

in the experiment.

Figure 8.4: The wavelength as a function of ϵ for the pattern forming front. The blue circles
represent the numerical points and the black solid line through the data is a curve fit of the
form λ = 2.049(1− 0.1233ϵ1/2).

The wavenumber of the pattern selected is given by k = 2π/λ. It is interesting to note that

a linear dependence of the wavenumber with ϵ near the onset of convective instability has

been predicted theoretically [2, 94, 98]. The linear dependence of the wavenumber with ϵ

near the onset has also been verified in a numerical study of pattern forming convection

rolls by Ref. [98]. This result is however in contrast with the experimental study done by

Ref. [96] which showed that the wavenumber was inversely related to ϵ1/2. This discrepancy
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was possibly attributed to the sidewall boundary condition used in the experiment [98]. Our

simulations are for ϵ values which are larger than previous simulations and experiments, and

therefore, we cannot directly compare our results with previous results. It is interesting to

note that our results for the wavelength follow a relation similar to the one obtained in the

experiment on pattern forming convection roll front near the onset of convective instability

by Ref. [96]. However, our results are for relatively large values of ϵ above the onset of

convective instability and we have not conducted a targeted investigation very close to the

onset (ϵ≪ 1), which would be required to explore this observed discrepancy.
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Conclusions

We have used high-order numerical simulations to study autocatalytic front propagation and

feedback in convective flow fields. We have solved the Boussinesq equations along with a

reaction-advection-diffusion equation using an FKPP nonlinearity. Overall, front propaga-

tion with feedback in convective flow fields is an immensely broad problem characterized by

a vast parameter space which includes two different Rayleigh numbers Ra, Ras, heat release

parameter η, Lewis number Le, reaction rate ξ, Prandtl number σ and aspect ratio Γ. What

makes the problem complicated is that these parameters can be varied independently. Here,

we have conducted a targeted investigation by fixing our Prandtl number to σ = 1, which is

consistent with Rayleigh-Bénard convection experiments with compressed gases and where

the flow field undergoes the state of spiral defect chaos. We also fixed our reaction rate

to a value of ξ = 9 such that our reaction and flow time scales are comparable. We have

focused our investigation in the regime where the flow field has a significant effect on the

front propagation. Our investigation cover a range of Péclet numbers 0 ≤ Pe ≲ 1100 and

intermediate Damköhler number Da ∼ O(1) which yield fronts with finite width and is away

from the well understood theoretical insights which use thin front approximations at large

Péclet and Damköhler numbers (Da ≫ 1,Pe ≫ 1).

We have quantified the power law scaling of the front velocity with the underlying fluid

velocity for a range of flow fields. We have found that weakly chaotic flow fields slow down

the front when compared to straight parallel rolls because of convection rolls which orient
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themselves perpendicularly to the direction of front propagation. However with the onset of

an oscillatory instability in the flow field, the front velocity increases in a weakly turbulent

fluid flow. This increment is partly due to the wrinkled front interface which increases the

effective area in which the reaction takes place. The wrinkled front interface is a fractal with

a box counting dimension that increases with the flow complexity.

We have studied front propagation with feedback where an autocatalytic reaction is exother-

mic and the reactants and products can vary in density. Solutal feedback creates a single

self-organized convection roll which travels with the front while thermal feedback creates a

pair of counter rotating convection rolls because of a local hotspot at the front.

For small values of the solutal Rayleigh number the characteristic fluid velocity scales linearly,

and the front velocity and mixing length scale quadratically, with increasing solutal Rayleigh

number. For small solutal Rayleigh numbers the front geometry is described by a curve

that is nearly antisymmetric about the horizontal midplane. For large values of the solutal

Rayleigh number the characteristic fluid velocity, the front velocity, and the mixing length

exhibit square-root scaling and the front shape collapses onto an asymmetric self-similar

curve. In the presence of counterrotating convection rolls, the mixing length decreases while

the front velocity increases and the concentration field exhibits chemical oscillations with

time.

For small values of heat release by the reaction the fluid velocity scales linearly while the front

velocity scales as three-halves with the heat release parameter and the two counterrotating

convection rolls are nearly symmetric. For large values of heat release, the symmetry gets

broken and the front and fluid velocities scale as the square root of the heat release parameter.

The concentration field gets stretched and disordered for large values of heat release and

secondary fluid rolls develop.
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In the presence of both thermal and solutal feedback the dynamics can be cooperative or

antagonistic depending on the relative sign of Ras and η. Fronts with cooperative feed-

back are always found to be faster than fronts with antagonistic feedback and fronts with

only solutal or thermal feedback. Cooperative and antagonistic feedback induce temporal

oscillations in the concentration field for certain parameters. The situation becomes more

complicated in the presence of background convection where the system does not settle to

periodic dynamics for the range of parameters and domain lengths we have studied. In three

dimensional chaotic flow fields, front induced feedback morphs the chaotic convection rolls

to form a target pattern in its wake. After the front has passed, the target pattern revert

back to a chaotic pattern because of the convective instability.

Lastly, we have quantified pattern forming fronts of convection rolls over a large range of

thermal driving above the onset of convection. We have found that the velocity of the

front agrees with theoretical predictions using the amplitude equation. The variation of the

wavelength selected by the pattern with the reduced Rayleigh number (ϵ) is found to follow

a similar trend that was obtained in an earlier experiment conducted on pattern forming

fronts near the onset of convection [96], although our results are for larger values of ϵ than

what was used in the experiment.

There are several implications from the present study that would benefit from further investi-

gation. An experimental realization of the present project would be a study of a bi-molecular

reaction fronts in the presence of Rayleigh-Bénard convection. Our computational approach

is quite flexible and it is straightforward to change the different parameters quantifying front

propagation studies in the future. For instance, it will be particularly interesting to explore

front propagation in a convective fluid with σ = 7 which aligns with an aqueous chemical

reaction. It will also be of interest to change the reaction nonlinearity to Arrhenius type

reactions which can model combustion [99]. A particularly interesting direction would be
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the study of fronts for even higher Rayleigh numbers (Ra > 25000) which will lead to turbu-

lence [100]. Recently, it has been found that turbulent Rayleigh-Bénard convection displays a

range of length scales from extremely small scale features to superstructures which are greater

than the depth of the convection layer [101]. It would be interesting to study propagating

fronts in these flow fields which will possibly help in understanding the reactive transport in

the surface of a star [23]. There are several nonlinear dynamical tools such as exact coherent

structures (ECS) [102] which identify unstable solutions and Lagrangian coherent structures

(LCS) [103] which identify transport barriers in the flow. These tools have been used in

spatiotemporally disordered flows such as Rayleigh-Bénard convection and Kolmogorov flow

to identify important regions in state space where trajectories often visit or where there are

transport barriers [104, 105]. Front diagnostic tools that locally quantify front propagation

such as the reaction zone angle ϕ and front velocity vf which have been developed in this

work can then be used to study the dependence of front propagation on these important

geometric regions of the fluid dynamics. The dependence of front propagation and feedback

on the range of spatially disordered flow fields quantified in this dissertation will be helpful

in the study of reactive transport processes in industries such as mixing of chemicals and

dyes, geophysical transport such as the spread of blooming plankton in open oceans, spread

of reactive pollutants in the atmosphere and the propagation of wild fire fronts.
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