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(ABSTRACT)

Hamilton’s principle and a third-order shear-deformation theory are used to
derive a set of five coupled partial-differential equations governing the nonlinear
response of composite plates. The reduction of these equations by using classical
plate theory is discussed and the corresponding partial-differential equations
governing both rectangular and circular plates are derived.

Generalized Levy-type solutions are obtained for the problem of linear free
vibrations and linear stability of shear-deformable cross-ply laminated plates. The
governing equations are transformed into a set of first-order linear
ordinary-differential equations with constant coefficients. The general solution of
these equations is obtained by using the state-space concept. Then, the application
of the boundary conditions yields equations for the natural frequencies and critical
loads. However, a straightforward application of the state-space concept yields
numerically ill-conditioned problems as the plate thickness is reduced. Various
methods for overcoming this problem are discussed. An initial-value method with
orthonormalization is selected. It is shown that this method not only yields results
that are in excellent agreement with the results in the literature, but it also converges

fast and gives all the fiequencies and buckling loads regardless of the plate



thickness. Further It is shown that the application of classical plate theory to thick
plates yields inaccurate results.

The influence of modal interactions on the response of harmonically excited
plates is investigated in detail. The case of a two-to-one autoparametric resonance
in shear-deformable composite laminated plates is considered. Four first-order
ordinary-differential equations describing the modulation of the amplitudes and
phases of the internally resonant modes are derived using the averaged Lagrangian
when the higher mode is excited by a primary resonance. The fixed-point solutions
are determined using a homotopy algorithm and their stability is analyzed. It is
shown that besides the single-mode solution, two-mode solutions exist for a certain
range of parameters. It is further shown that in the multi-mode case the lower mode,
which is indirectly excited through the internal resonance may dominate the
response. For a certain range of parameters, the fixed points lose stability via a Hopf
bifurcation, thereby giving rise to limit cycle solutions. It is shown that these
limit-cycles undergo a series of period-doubling bifurcations, culminating in chaos.

Finally, the case of a combination resonance involving the first three modes of
axisymmetric circular plates is studied. The method of multiple scales is used to
determine a set of ordinary-differential equations governing the moduiation of phases
and amplitudes. It is shown that the internal resonance is responsible for coupling
of the modes involved and that the excited mode is not necessarily the dominant one.
Furthermore, it is shown that for a choice of parameters the multi-mode response
loses stability through a Hopf bifurcation, resulting in periodically or chaotically

modulated motions of the plate.
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1. INTRODUCTION

The interaction of modes in plates is of interest in connection with various
structures. Such a phenomenon may occur when the linear natural frequencies of
some modes are commensurate or nearly commensurate. This phenomenon which
is due to internal resonances have led to undesirable and sometimes catastrophic
events in the past because engineers and scientists were not aware of the possibility
of modal interactions. Therefore, it is our interest to study modal interactions in
plates.

Because composite materials are extensively used in airspace, missile,
shipbuilding, and many other industries, we investigate the influence of nonlinearities
on the response of composite plates. In particular, we study two-toc-one modal
interactions in composite plates using the the third-order shear-deformation plate
theory of Reddy. As a numerical example we choose a simply-supported cross-ply
laminated plate. As a first step in the nonlinear analysis, one needs the linear
solution. Thus, we discuss Levy-type solutions.

Moreover, we analyze modal interactions in isotropic circular plates. Because

shear deformations in thin isotropic plates are known to be small and negligible, we
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use the classical plate theory and the method of multiple scales (Nayfeh, 1973, 1981)
to study the response of isotropic circular plates to external excitation in the
presence of a combination internal resonance.

Next, some previous work on plate mechanics and dynamics of relevant

nonlinear systems is presented.

1.1. Isotropic Plates

The fundamental assumptions of the small deflection theory of bending or the
so-called classical theory for thin plates, known as the Kirchhoff hypotheses, can be

stated as follows:

1. The deflection of the midsurface is small compared with the thickness of the

plate.
2. The midplane remains unstrained and neutral during bending.

3. Plane sections initially normal to the midsurface of the plate remain plane and
normal to that surface after bending. This means that the transverse shear strains

are negligible.

4. The normal stresses in the direction transverse to the midsurface of the plate are

small compared with the other stress components and may be neglected.
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These assumptions are extensions of those made in the simple bending theory of
beams.

When the deflections are not small the bending of plates is accompanied by
strains in the midsurface, and the first two assumptions are not applicable any longer.
The governing differential equations for large deflections of thin plates were obtained
and introduced by von Karman (1910). Analytical solutions to these coupled partial
differential equations may be a formidable task. Among the books with approximate
solutions for plates of simple regular shapes, we quote those of Timoshenko and
Woinowsky-Krieger (1959) and Sokolnikoff and Redheffer (1966). Banerjee (1982,
1983) presented approximate solutions for large deflections of isotropic circular
plates of variable thickness using the Galerkin method. He used a one-term
expansion for the deflection. Berger (1955) used a variational principle and ignored
the second invariant in the energy term to obtain simplified governing equations for
plates.

The dynamic problem of large deflections of plates has attracted the attention of
many researchers in recent decades. Wah (1963) extended the approximation
suggested by Berger and reduced the coupled fourth-order partial-differential
equations of von Karman to a single fourth-order partial-differential equation. Nash
and Modeer (1959) followed the Berger approximation and derived the dynamic
analog of Berger’s equations. They showed that the application of these equations
to simply-supported plates leads to results that are in excellent agreement with those
obtained by using the dynamic analogue of von Karman equations. Huang and
Al-Khattat (1977) considered the vibration of a circular plate and showed that
solutions based on the Berger hypothesis are accurate at low amplitudes of vibration
but that the accuracy decreases as the amplitude increases. They also showed that

the Berger hypothesis is entirely unsuitable for plates with movable edges. Nowinski
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and Ohnabe (1972) also pointed out that the Berger hypothesis may lead to inaccurate
and even meaningless results for plates without the inplane restraint.

The dynamic analogue of von Karman equations, which take into account the
stretching of the midsurface, were used by several investigators to study the
response of plates to harmonic excitations. Chia (1980) gave a comprehensive
review of the literature through 1979. Some early experimental results were obtained
by Tobias (1958) for main-resonant vibrations of free circular plates. Yamaki (1967)
obtained approximate solutions for rectangular and circular plates with various
boundary conditions. He used a single-term Galerkin expansion. Kung and Pao
(1972) used a combination of the Galerkin method and the method of harmonic
balance to analyze axisymmetric vibrations of circular plates. Rehfield (1974)
proposed a new method for investigating single-mode main resonances of structures
in which Hamiiton’s principle is combined with a perturbation procedure; he applied
the method to beams and rectangular plates. Eisley (1964) used a combination of the
Galerkin method with the Lindstedt-Poincare technique to investigate the
main-resonant vibration of buckled rectangular plates.

Huang and Sandman (1971) used the Kantorovich method to study axisymmetric
vibrations of circular plates. They used a numerical technique to solve the resulting
two-point boundary-value problems; Huang (1973) used the same approach to study
the main-resonant vibration of an axisymmetric orthotropic circular plate. None of
these studies considered muiti-mode solutions.

Sridhar et al. (1975, 1978) and Lobitz et al. (1977) investigated primary resonant
responses of a circular isotropic plate. They considered the interaction of modes and

the possibility of multi-mode solutions.
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1.2. Composite Plates

The fundamentals of the mechanics of composite materials can be found in the
books by Jones (1975), Christensen (1979), and Tsai and Hahn (1980). Bennett (1971)
considered the response of simply-supported rectangular laminated plates. He used
a four-term Galerkin expansion. Chandra and Raju (1975) and Chandra (1976)
investigated the nonlinear response of cross-ply laminated plates. They employed
the Galerkin method to reduce the governing nonlinear partial-differential equations
to an ordinary-differential equation, which they solved using perturbation techniques
and a RunQe-Kutta numerical scheme. Chia and Prabhakara (1976, 1978) employed
the approach used by Chandra (1976) to study the nonlinear responses of cross-ply
and angle-ply laminated rectangular plates. Eslami and Kandil (1989) used a
combination of the Galerkin method and the method of multiple scales (Nayfeh, 1973,
1981) to analyze the nonlinear forced and damped responses of rectangular
orthotropic plates to uniformly distributed harmonic transverse loads.

A composite plate is weak in shear because its elastic modulus is much larger
than its shear modulus is weak in shear. The classical theory of plates (CPT)
neglects transverse shear strains and hence does not lead to accurate results for
thick laminated plates. Srinivas et al. (1970) showed that the vibration analysis of
homogeneous thick laminated plates carried out without considering transverse
shear deformations is highly inaccurate. Pagano (1969, 1970) demonstrated the
deficiencies of classical plate theory for thick laminated plates by comparing his
exact solutions for cylindrical bending of a simply-supported rectangular plate

subjected to a distributed harmonic transverse load with the results obtained by CPT.
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These works clearly illustrate the need for including the transverse shear effects in
the analysis of thick composite plates.

A number of improved theories have been proposed by various authors.
Reissner (1945) and Mindlin (1951) were the first to provide first-order
shear-deformation theories that account for variations of stresses and displacements
through the thickness of the plate, respectively. These theories when applied to
isotropic plates yield a system of sixth-order partial-differential equations that allow
the specification of three boundary conditions at each edge. Medwadowski {1958)
extended Reissner’s theory to orthotropic plates. He used the von Karman type
nonlinearity for isotropic plates and included the effects of transverse shear and
rotary inertia for orthotropic plates. Stavsky (1965) is the first to apply the first-order
shear-deformation theory to laminated isotropic plates.

Noor and Hartley (1977) included the effect of transverse shear and used a
finite-element method to investigate the nonlinear response of composite plates.
Reddy and Chao (1981a) formulated a quadratic finite element to study large
displacements and large-amplitude free vibrations of laminated composite plates.
Their formulation has been extended for the study of the nonlinear vibration behavior
of sandwich plates by Rajgopal et al. (1986). Among the many other works on the
nonlinear analysis of plates, including the effect of transverse shear, we quote those
of Schmidt (1977), Wu and vinson (1969a,b), Singh, Sundararajan, and Das (1974),
Sathyamoorthy (1978, 1979, 1984a), Sathyamoorthy and Chia (1980), and Prathap and
Pandalai (1979). Wu and Vinson (1971) used the Berger approach and discussed the
effect of transverse shear deformations on the nonlinear response of cross-ply
laminated plates. Sathyamoorthy (1981) suggested an improved version of
Berger-type theory for the dynamic analysis of rectilinearly orthotropic moderately

thick circular plates. Sathyamoorthy (1984b) used the Berger approach to investigate
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the effect of transverse shear deformations, geometrical nonlinearity, and modal
interactions on the dynamic behavior of moderately thick orthotropic circular plates
clamped along the boundary. He compared the results with those he obtained by
using the von Karman-type theory and validated the Berger approximation for
moderately thick plates. Sathyamoorthy and Prasad (1983) conducted a multi-mode
analysis of isotropic circular plates and showed the significance of modal
interactions, especially for moderately thick plates.

Lo, Christensen, and Wu (1977a,b) developed a higher-order plate theory in which
the transverse and inplane displacements were expanded as quadratic and cubic
functions of the transverse coordinate, respectively. Levinson (1980) considered
similar expansions for the inplane displacements. In these higher-order
shear-deformation theories there is no need for a shear-correction factor, which is a
necessity in the first-order refined theories. Reddy (1984a,b) developed a refined
plate theory in which the expanded displacement field is similar to that of Levinson
(1980) and Murthy (1981). He used the method of virtual displacements to derive the
equations of motion. The higher-order shear-deformation theory (HSDT) of Reddy
accounts for quadratic distributions of the transverse shear strains through the
thickness. In addition to being variationally consistent, Reddy’s modification satisfies
the condition of zero transverse shear stresses on the top and bottom surfaces of the
plates. A similar third-order shear-deformation theory was also proposed by
Bhimaraddi and Stevens (1984) in which the generalized variables are slightly
different from those of Reddy. A review and discussion of the relationship of all

third-order shear-deformation theories of plates is presented by Reddy (1990).
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1.3. Nonlinear Systems

Nonlinear systems have taken the attention of many mathematicians and
scientists in the recent decades. In the area of dynamics of plates the prime target
of most authors was the calculation of the nonlinear frequencies. Chia and
Prabhakara (1978), Prabhakara and Chia, (1977), and Sivakumaran and Chia (1985)
investigated the dependence of the nonlinear frequencies of rectangular plates on the
amplitude of vibration. They used Fourier series in space and the method of
harmonic balance in time. Reddy and Chao (1981b) included the effects of shear
deformation and rotary inertia and studied free vibrations of rectangular laminated
plates. They used finite elements in space and numerical integration in time. Chu
and Herman (1956), Yamaki (1967), and Rao et. al (1976) used classical plate theory
while Wah (1963) and Mei (1973) used Berger’s approximation to calculate the
nonlinear frequencies of the same isotropic rectangular plate. These results are
represented and compared with in the work of Reddy and Chao (1981b). However,
none of the above studied the qualitative nonlinear behavior of plates. They did not
consider nonlinear phenomena, such as modal interactions, which are inherent in
physical systems with nonlinear governing differential equations and/or nonlinear
boundary conditions.

The equations governing the nonlinear dynamics of plates and several other
physical systems share many qualitative behaviors. A comprehensive literature
survey and discussion of nonlinear systems can be found in the exceilent book by
Nayfeh and Mook (1979). In addition to a survey of mathematical models exhibiting
chaotic vibrations, a variety of theoretical and experimental tools for characterizing

chaos are given by Moon (1987). Among other books in the field, we quote those of
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Hale (1963), Urabe (1967), Marsden and McCracken (1976), Jordan and Smith (1977),
looss and Joseph (1980), Hassard, Kazarinoff, and Wan (1981), Chow and Hale (1982),
Vanderbauwhede (1982), Guckenheimer and Holmes (1983), Thompson and Stewart
(1986), and Seydel (1988).

Nayfeh (1988) discussed the existence of various nonlinear responses, such as
saturation, jumps, period-doubling bifurcations, and chaos in nonlinear systems.
Evan-lwanowski (1976), l|brahim (1985), and Schmidt and Tondl (1986) gave
comprehensive reviews of parametric excitations. Zavodney and Nayfeh (1988)
studied the response of one-degree-of-freedom systems with quadratic and cubic
nonlinearities to a fundamental harmonic parametric excitation. They used the
method of multiple scales to obtain a second-order solution. They showed that the
system exhibits complicated behavior, including period-multiplying and demultiplying
bifurcations and chaos. Kojima et al. (1985) investigated the nonlinear forced
vibration of a beam with a mass to parametric excitations and found superharmonic
and subharmonic vibrations of order two and one-half, respectively. Gurgoze (1986)
studied parametric vibrations of a restrained beam with mass at one end and a
displacement excitation at the other end. He used a one-mode Galerkin
approximation and reduced the governing partial-differential equation to a Mathieu
equation containing cubic nonlinearities. He obtained an approximate solution for the
case of a principal parametric resonance. HaQuang (1986) studied the nonlinear
response of one- and two-degree-of-freedom systems having quadratic and cubic
nonlinearities to external, parametric, and combined external and parametric
excitations. He found period-multiplying bifurcations and chaotic responses.
Szemplinska-Stupnicka (1978) studied the response of parametrically excited
systems. She used the method of harmonic balance and validated her results by

using an analog computer.
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Awrejcewicz (1989) presented an analysis of the transition from regular to chaotic
motions in a van der Pol-Duffing oscillator with time delay after a Hopf bifurcation.
He determined conditions for the occurrence of the Hopf bifurcation by means of an

approximate method.

1.4. Modal Interactions

The interaction of modes may take place in multi-degree-of-freedom systems.
Nayfeh et al. (1973) and Mook et al. (1974) applied the method of multiple scales to
analyze the response of a system of two coupled oscillators with quadratic
nonlinearities to a harmonic excitation. Their system models the interaction of pitch
and roll modes of a ship. They considered the cases of primary and secondary
resonances when the linear natural frequency of the pitch mode is approximately
twice that of the roll mode. They showed that when the excitation frequency is near
the frequency of the higher mode (pitch mode) the system exhibits a saturation
phenomenon, and when the excitation frequency is near the frequency of the lower
mode (roll mode) an amplitude- and phase-modulated motion becomes possible.
Later Yamamoto and Yasuda (1977) applied the method of harmonic balance to study
the forced response of systems with quadratic and cubic nonlinearities to a harmonic
excitation when one frequency is twice the other. They used analog-computer
simulations and obtained amplitude- and phase-modulated steady-state responses
for the case of primary resonance of either mode. Hatwal, Mallik, and Ghosh (1983a,

1983b) investigated the forced nonlinear oscillation of a two-degree-of-freedom
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system. They showed that the motion of the system may be periodic or chaotic in the
presence of a two-to-one autoparametric resonance.

Haddow, Barr, and Mook (1984) investigated modal interactions in a
two-degree-of-freedom beam structure under a harmonic external excitation. They
conducted an experiment and verified the saturation phenomenon. Balachandran
and Nayfeh (1990) studied the planar dynamic response of a flexible L-shaped
beam-mass structure with a two-to-one internal resonance to a primary resonance.
They obtained the equations governing the modulations of the amplitudes and phases
by averaging the Lagrangian of the system over the period of the primary oscillation.
They experimentally verified the analytical solutions.

Pai and Nayfeh (1991a,b) investigated the response of composite beams having
two-to-one internal resonances to subharmonic and superharmonic excitations. They
considered elastic bending-torsion coupling and identified chaotic motions.

Maganty and Bickford (1988) used the method of multiple scales to study the
nonlinear response of a circular ring. Yasuda and Kushida (1984) studied
axisymmetric responses of shallow spherical shells to primary resonant excitation
of a higher flexural mode. They performed an experiment in the presence of a
two-to-one internal resonance and observed periodic responses of the shell. Raouf
and Nayfeh (1990b) studied the nonlinear axisymmetric response of spherical shells
to radial harmonic excitation. Nayfeh, Raouf, and Nayfeh (1990) studied the response
of cylindrical shells to a subharmonic radial excitation in the presence of two-to-one
internal resonance. Nayfeh and Raouf (1987) studied the nonlinear response of an
infinitely long circular cylindrical shell to primary resonant excitations of the
breathing and flexural modes in the presence of a two-to-one internal resonance.
They used the method of multiple scales and obtained differential equations

governing the amplitudes and phases whose solutions exhibit jumps, the saturation
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phenomenon, and Hopf bifurcations, leading to amplitude- and phase-modulated
motions.

Nayfeh and Zavodney (1986) studied the response of two-degree-of-freedom
systems with quadratic nonlinearities to combination parametric resonances. They
presented steady-state solutions and their stability. They also presented limit-cycle
solutions and period-doubling bifurcations using numerical techniques. Streit, Bajaj,
and Krousgrill (1988) studied a similar system and found Hopf bifurcations and
limit-cycle solutions. They showed that the limit cycles undergo a cascade of
period-doubling bifurcations culminating in chaos.

Miles (1984a) studied the case of perfectly tuned two-to-one internal resonances
in surface waves. He considered the case of principal parametric resonance of the
lower mode and found no Hopf bifurcations. He concluded that there are no
limit-cycle or chaotic solutions of the modulation equations. Nayfeh (1987a,b) used
the method of multiple scales to analyze the problem studied by Miles (1984a, 1985).
He relaxed the assumption of perfectly tuned internal resonance and found Hopf
bifurcations and period-multiplying bifurcations culminating in chaos.

Miles (1984b) used the method of averaging to study the response of two
internally resonant coupled oscillators with quadratic nonlinearities to a harmonic
excitation. He investigated the stability of the analytical solutions and presented
numerical results that demonstrate periodically and chaotically modulated motions
when the excitation frequency is near the lower frequency. Nayfeh (1987a) studied a
parametrically excited double pendulum in the presence of two-to-one internal
resonances. He found that the response exhibits a Hopf bifurcation leading to
amplitude- and phase-modulated motions. Furthermore, he showed that the periodic
motions of the averaged equations may undergo period-doubling bifurcations leading

to chaos.
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Shaw and Shaw (1989) investigated the dynamic response of a
two-degree-of-freedom impacting system consisting of an inverted pendulum with
motion limiting stops. They attached this system to a sinusoidally excited
mass-spring system. They found several types of periodic motions and discussed the
stability of two types of motion. They also found chaotic mations and concluded that
a great care should be taken in the design of an inverted pendulum with an unstable
central position as an absorber.

Nayfeh and Pai (1989) used the method of multiple scales to study the case of
one-to-one internal resonance between the inplane and out-of-plane motions of
beams. They found Hopf bifurcations and periodically and chaotically modulated
motions. Feng and Sethna (1989) studied symmetry-breaking bifurcations of surface
waves in nearly square containers subjected to a vertical excitation. For the case of
one-to-one internal resonance, they showed that the system may exhibit periodic,
quasi-periodic, or chaotically modulated motions. Raouf and Nayfeh (1990a)
investigated the nonlinear response of infinitely long cylindrical shells to a harmonic
excitation. They considered a one-to-one internal resonance and used the method
of multiple scales to derive the modulation equations. They obtained both periodic
a.nd periodically- and chaotically-modulated motions of the shells.

Yasuda and Torri (1986) used the method of muitiple scales to analyze the
nonlinear forced response of a string. They studied the multi-mode responses near
the first, third, and fourth primary resonance points. They performed an experiment

with a thin steel strip to validate their theoretical results.
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1.5. Objectives and Scope of the Dissertation

In this thesis, we analyze modal interactions in isotropic circular and rectangular
composite laminated plates. We use the method of multiple scales to derive
nonlinear equations governing the modulation of the amplitudes and phases of the
interacting modes. These modulation equations are used to investigate and trace
some nonlinear phenomenon. We demonstrate the existence of periodic motions,
jumps, Hopf and period-doubling bifurcations, and chaotically-modulated motions in
the response of rectangular and circular plates to harmonic excitation. These modal
interactions, quasiperiodic motions, period-doubling bifurcations, and chaotic
behaviors of plates have never been studied in depth prior to the present work.

For rectangular cross-ply laminated plates, both Navier- and Levy-type solutions
are investigated. For the Levy-type case, the problem is reduced to the solution of
a set of linear first-order ordinary differential-equations, which can be solved using
the state-space concept. Several methods for obtaining the numerical of this problem
are discussed and an initial value method with orthonormalization is selected. The
latter yields all the natural frequencies regardless of the plate thickness (Chapter 3).

Rectangular composite plates are treated in Chapter 4. The case of two-to-one
internal resonance is considered. The two-to-one internal resonance is due to the
quadratic terms. Modulation equations governing the amplitudes and phases of the
interacting modes are obtained by averaging the Lagrangian of the motion over the
fast time. These modulation equations contain both quadratic and cubic terms. The
cubic terms cause a shift in frequency. It is found that the plates exhibit single-mode
and two-mode periodic motions in addition to periodically and chaotically modulated

motions.
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In the study of the axisymmetric response of circular isotropic plates, the method
of multiple scales is used to derive the modulation equations. The nonlinearities in
the modulation equations are cubic. The internal resonance considered is a
combination resonance involving the lowest three modes. In this case, similar to the
case of shear-deformable composite rectangular plates, single-mode and multi-mode
(three-mode) solutions are possible (Chapter 5). Some of the multi-mode solution

may correspond to periodically- or chaotically-modulated motions.
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2. THE GOVERNING EQUATIONS OF LAMINATED

PLATES

In this chapter we present the nonlinear equations of motion of shear-deformable
composite plates based on a combination of the higher-order shear-deformation
theories of plates given by Reddy (1984a-c) and Bhimaraddi and Stevens (1984). The
strain-displacement relations are assumed to be nonlinear in the von Karman sense.
Hamilton’s principle is used to derive five coupled nonlinear partial-differential
equations governing the displacements of laminated plates constructed from
orthotropic layers of general orientations.

In Section 2.6 the governing equations of isotropic rectangular and circular plates
based on the classical plate theory are presented. A coordinate transformation is
used to transform the governing equations of rectangular plates into those governing
circular plates in a cylindrical coordinate system. A stress function is defined and the
governing equations in the absence of shear deformations and rotary inertias are
combined into two coupled fourth-order nonlinear partial-differential equations in

terms of the transverse deflection and the stress function.
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2.1. The Displacement Field

A rectangular coordinate system xyz is chosen such that the x-y plane coincides
with the midsurface of the plate before deformation. The higher-order
shear-deformation theory (HSDT) of Reddy assumes that the inplane components of
the displacements are cubic functions of the transverse coordinate z. Hence, the
transverse shear distribution is assumed to be a quadratic function of z. Requiring
the stresses to vanish at the top and bottom surfaces, one can express the

displacement field as

2
uy(x,y,2,t) = u(x,y,t) — z ——%:V + 2[1 - % (% ) :I(;s(x,y,t)

2
uy(x.y,2,8) = v(x,y,t) — 2 % + z[ 1-4(£) ]!//(x,y,t) (21

Uus(x,y,2,8) = w(x,y,t)

where uy, u,, and u; denote the components of the displacement in the x,y, and z
directions, respectively. Here, u, v, w, ¢, and ¥ are the generalized coordinates of a
point (x,y) on the midplane at time ¢ (see Figure 2.1). The plate is assumed to have
a total thickness h and the dimensions a and b in the x and y directions, respectively.
Like CPT, it is assumed that the plate thickness remains the same and hence the
transverse component of the displacement is not a function of z. When ¢ and ¥,
which measure the effect of shear deformation, are set equal to zero, the
displacement field reduces to its counterpart in CPT. The coefficients of ¢ and ¥ in
equations (2.1) are the most simple functions of z that identically satisfy the

conditions of zero shear stress at the top and bottom surfaces. These coefficients
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vanish at the midsurface and reach their maxima on the top and bottom surfaces of

the plate.

2.2. Strain-Displacement Relations

The deflections are assumed to be large in comparison with the plate thickness
but are nevertheless small compared with the other dimensions. The von Karman

approximation of the nonlinear Lagrangian strain tensor is used, where squares and

products ofaa—v; and —aa% are the only nonlinear terms retained. These strains are

&3 = 0
C_ow ow 2.2)
47 9z ' oy
Lo du aw
ST 9z 1 ox

According to the displacement field (2.1) these strains can be written as
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3 2
K4

2
2

0 0
£1=81+ZK1+Z

0 6, .3
&)=t +ZKy+Z K

e5=0
i 0, .22 (2.3)
4 =&, T 2Ky
55=ag+22;c§
85=ag+zxg+zsxg
where
£o=6_u+i awzko_%_al"w 2 —4 09
TUax T2\ ax )TV ax 527 Y gp? ox
2
QL v A (owY o O w2 -4
2 ay 2 dy + N2 ay ayQ v 72 3h2 oy
4
G=v K=otz (2.4)
0 2 4 .
$=9.  d=—-%
Q_0u  Ov  Ow ow
87 9y " ax ' ox dy '
L_9 ob 2’w 2o __4 5¢+5l/1
¢ gy ' ox dxdy ' ap? \ dy = Ox

In equations (2.3) the ¢! represent the midsurface

strains, the «y represent the

curvatures, and the % are contributions of the third-order shear-deformation theory

used.
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2.3. Constitutive Relations

The constitutive equations of an orthotropic layer, in material-symmetry axes, are

given by

a4 Qi Qi 0 ||% 3 _ _
_ S — _ 04 Qu O |[[%]
O |=| Q12 Q2 O ||&f, | _ |= _ |l_ (2.5)
—_ |l_ 05 0 Qs
O 0 0 Qe||és
where the Q; are the plane-strain reduced elastic constants
Qi1 = E4/(1 = vigvp), Qug = vaoEaf(1 — Vagveq), Qoo = Epl(1 — v43v29) (2.6)

544 = Gy, 555 = Gy3, 566 =Gy

Here, the E;, G; and v; are the Young’s moduli, shear moduli, and Poisson’s ratios,
respectively. The stress-strain relationships in equation (2.5) can be transformed into

the principal laminate coordinates as follows:
91 Qi Qi Que || &1
04 Qus Qs || €4
gy | =@z Qoo Qus | &2|> = (2.7)
o5 Qus Qss [l s

O Qs Qs Qes || 6

where the Q; are the transformed reduced stiffnesses and are given by
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Qi = Q4 €08*0 + 2(Qy, + 2Qpg) Sin’0 cos?0 + Q,, sin'd

Qup = (@41 + Qpp — 4Qgg) Sin*6 cos?0 + Qo sin*6 + cos*6)

Qpy = Qqq Sin*0 + 2(Qyp + 2Qgg) sin’0 cos’0 + Q,, cos*d

Qi = Q41 — Qpp — 2Qgg) Sin 0 c0s°0 + (Qyy — Qs + 2Qp) sin°6 cos 8

Qos = (Qyq — Qyp — 2Qgg) sin®0 cos 6 + (Qyy — Qpy + 2Qpg) Sin 6 cos0 (2.8)
Qo = (Qyq + Qo — 2Q, — 2Qgg) Sin°0 cos0 + Qug( sin*0 + cos*6)

Qus = Quq cOS°60 + Qg5 5in0

Qus = (Qss — Quq) Sin O cos @

st = 555 00820 + 544 Sin29

Here @ is the rotation angle measured from the laminate coordinates to the lamina

principal material coordinates.

2.4. The Lagrangian

In this section, the Lagrangian for a general laminated rectangular plate is
formulated. Lagrange’s equations of motion are derived using Hamilton’s principle
in the next section. It is necessary at this stage to obtain the Lagrangian which will
be the basis for more general treatments. The Lagrangian approach provides an
elegant and powerful technique for solving a variety of nonlinear physical systems,

as we shall see in the subsequent chapters.
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2.4.1. Kinetic energy

The expression for the plate kinetic energy is

T 1[”’7"[" (3“1 )2+(‘3“2)2+<5”3>2ddd (2.9)
=— el —— —_ - xdydz .
2 —nj290 Jo ot ot ot
where p is the density of the plate. Substituting the expressions for us, U, and u; from

equations {2.1) into equation (2.9) and integrating over the thickness of the plate, we

obtain

2 2
i d¢ ' *w du , o*w dv
o9 AAR I I v 2.10
+I3[( t ) +< t )] 2'2< axat at * ayat at (210

i(0u 09  avov\ (w9 = dw 0¥
+2’2< + ~ 2\ axat ¢ T ayor ot ) (Y

where the /; are generalized inertias and are defined as

h/2
= J pz'~'dz (i=1,2,34,57) (2.11)
—h/2

and

2. THE GOVERNING EQUATIONS OF LAMINATED PLATES 22



lo=13——1
0=l s
- 4
’2=’2"W/4
(2.12)
=l —— 1
3h’

2.4.2. Potential energy

The potential energy consists of the strain energy of the elastic plate and the
conservative work done by the external transverse distributed load, g. The potential

energy is

h|2 b,a baa
V= '1—J J J (0’181 + 058y + O3€3 + 0484 + Osts + UGEG)dXdde —J. j quXdy (2.13)
2 —h/2¥0 ¥0 0vYo

Substituting equations (2.2) and (2.7) into equation (2.13) and integrating over the

thickness of the plate, we obtain the following expression for the potential energy:

baa 2 2
_1 Ou 1 (ow ov 1 ow
V—2IOIO{N1[ 6x+2<6x)]+N2[6y+2<6y):|

au ov . Ow Ow A A
+N6< 3y + o ox 3y )+Q1¢+sz//

AN O0p A Oy A P Y
+M1 Ox +M2 ay +M6< ay + ox —qw

(2.14)

’w w Pw
- M, Py - M, 6y2 — 2Mg axdy dxdy
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where the stress resultants N, M, P, Qi, R, M,, and (:h are defined as

hj2

(N, M, P) =j ai(1,z, za)dz (i=1,2,6)
—hj2

hj2
@R =] o190z

—hj2 7

hi2 ) (2.15)
@.R) =] oglt. 20z

—hJ2

A 4 .
M,——_M,'— 3h2 PI (I=1,2)

6;=O,~—ﬁ—R, (i=12)

These stress resultants are related to the strains and curvatures in equations (2.4)

by the following relations:

A A A By By Big  Ey Eyp Egl €
Ay Age By, B Ex Eps || 2
sym Ags sym Bgg sym Eee sg
D1y Dyp Dig Fyq Fia Fig || %4

Dyy Dag Foo Fos||®2|  (216)
sym Des sym Fes xg
Hu Hip Hig || <4
Hao Hays ’Cg
sym sym Hes Kg
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I T
Q Ais Ais Du Dys r54
Q1 sym A55 sym D55 82
- ) (2.17)
Ry Fa Fas || K4
Ry sym sym Fes || 5
'] L 11"
Here, the Ay, B, Dy, E;;, Fj, and H;; are the plate stiffnesses defined by
hj2
(Alj’ Bij' D,'}-, E,-j, FU-, Hij) = Qij(1!zv 22, 23’ 24, Zs)dZ (IJ _ 1,2,6)
—h/[2
hj2 (2.18)
(Ap Dy Fp=1  Q1,2% 2%dz (ij=4.5)
—h/j2

The Lagrangian L is the difference between the kinetic and potentiai energies given

in equations (2.10) and (2.14), respectively; that is,

L=T-V (2.19)

2.5, Equations of Motion

Hamilton’s principle is used instead of an equilibrium approach to derive the

equations of motion of laminated plate. The principle is stated as

b
s f Ldt=0 (2.20)
4
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where & stands for the first variation. Substituting for L in equations (2.19) and (2.20),

we obtain

s0u L Ov s 0v 0w o 0w
fj.[{'“*( 6t+6‘t66t+atéat>
- 0p  ov Oy 0 _ou  OY
+2’2(6t66t+6t56t a0 a 8t66t>

w . ow . Pw . OPw op 09 Oy _ oY
+’3< axat O axat T ayat O ayer ) T\ a0 e tor O

Pw Oy 5 Pw  Fw 0 PPw 5 5‘/’)

0¢

0 + 0 +

ot~ dxot ot = dyot = oxot = 4ot ayat ot
0

2 2 2
—2/2<6—‘:5——‘3W+ﬂ6 Ow , Ow 5 0u | & 66") (2.21)

oxot = dt ~ dyot = oxdt ~ ot dydot ot

ou | ow  ow Ov |, Ow ¢ dw
—N166+ ) ) (66+6y56y)

N( ou ov ow . ow ow 6w)
— Ng

X ox 0x

5T+5ax+6x 6y+6y66x

A A w w *w_
— Q8¢ — QY + M5 — + M,5 pw: 7+ 2Meb ——= Gy

A B 2 2
— M5 3‘){’—— M9 %‘f/’— - A%(é 9 s _.p_) + qéw]dxdydt

Performing the integration by parts and setting each of the coefficients of
du, ov, dw, 6¢, and Sy independently equal to zero, we obtain the following equations

of motion:

ON, N Py - 8P Pw

+ PRUACNY, (2.22
x T dy Vo T e P oxat )
N,  ONg v - Y 2w

+ / + 2.23
ay ax e T e % ayat (2.23)
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62M1 62M2 62M6 0 ow ow
o T o "oy +a_x<N1W+NGTy‘>
0 ow ow \ _, ow _
+ 3y (N2 dy + Ng X )—11 Yo q
3 u v *w o*w (224)
+ 1 7t 2 — I3 2.0 T 2.2
oxot dyot ox“0ot dy“at
& &
+ Iy ¢2 + 1/12
oxot dyaot
N A
M, Mg A Py - Pw ;0P
+ — Q=1 .y +1 (2.25)
ox oy "% Coxald O af
6/\//\72 a’(’}e APy - Pw - Y
+ —Q,=i —1] (2.26)
oy T ax PP Papa 0 a8

The boundary conditions associated with equations (2.22)-(2.26) are the specification

of one factor from the following groups:

at x=0, a:

A A a
Ny, u; Ng, v My, o; M, v, M1’—6\:<L;
w, (! ou ) ad’_/ w _N 8W_N aw_aM1_25M3 (2.27)
"o %o Coxar ' ox % dy  oOx dy
aty=0, b:
. N A aw .
N2| v, N3, u; M2| w; M3l d’; M2! Fy— s
w, ( 62v+l- 52'.0_, 3w VLAY aw_6M2_26M3) (2-28)
T2 % e Cayar 2oy Cax oy ox
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Many of the inertia terms in equations (2.22)-(2.26) vanish for certain types of
laminates. For example, for symmetric and antisymmetric laminate plates, where the
terms I, and I, are zero, the rotary inertia terms in equations (2.22) and (2.23) and the
inplane inertia terms in equations (2.25) and (2.26) as well as the inplane rotary inertia
terms in equation (2.24) vanish. However, the inplane inertia terms in equations
(2.22) and (2.23) and the transverse inertia term in equation (2.24) are always present.

Substituting for the N;, M, Mi, and (3,- in equations (2.22)-(2.26), we obtain the

governing equations of the plate in terms of the field variables as

Ay Z? + 24 5625 + Agg gyu + Asg Zi‘; + (A, +A66)ai;"7+A26%‘;
+ By Z? 261 aag) + Bes Zy(b + B4 Z?/I + (Biz + Bee) 3 gy +é\26(;iy‘/;'
— By '?;ngl —3Bss %y_ — (B12 + 2Bgg) ‘% - Bze%‘

2.29
+ %‘;’ <A11 ?,: + 2A 6628 + Ass ?;v;/ > e
+ %v; (Aw ?: + (Agz + Agp) a2ay + Ag gi’vzv )
At
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u 8u d%u v v v

u
Atg e — + (At As) 37 xdy +Ax % +Ass T 22 2 T2A% 3 - dy +Ap—5 %

N %0 A A 0% A PP A P A Y A Y
+B166—X2_+(B12+866) 6x6y + By o2 7+ Bes e + 2By 3o xdy +Bpn—7F oy
Dw 8w w
-8B B,, + 2B —3Byg———— By ———
16 6x3 — (B4 66) — 5 o ay 26 ax0y” 22 e
+ 2 (4 o'w -+ (Arp + Age) 2 d'w_ +A 2w (220
P 16 a 12 66 axay 26 ayg
ow o*w *w o*w
+ A + 2A + A
ay ( 66 a 26 dx ay 22 ayg )
Pv - Y P w
=] +1 — 1
Yot T e P ayaf
 u u au S u
Byy—++3Bg—+ (B, + 2B + Bog ——
11 axg 16 axgay ( 12 66) axd 2 26 ayg
v v v v
+Big—5 PN + (B1a + 2Bgg) —5 — ox%0y +3Bp——5 PR + By, 3y°
~ 8¢ P~ o~ P~ P
+ Dyy —= + 3D, —=— + (Dyp + 2Dgg) ——— + Dy —=
AP 16 ax26y (D12 66 ox0y” 26 e
a%p a3w ~ & .// ~ a3¢
0w 7'\ op A~ OY A dv du  dv ]
+ ax2 811_6_)(—+B126—y'+816 +A11 a +A12 a +A16 ay +E
Pw s 90 W . 2 dv ou , ov \]
+ ayz 812 Ox +822 ay +826 ay A12 a +A22 ay +A26 ay -— + 6X |
w | o 0¢ oy A ¢ oy du v du |, v
+2 axay [516 Ox +st a +Bse ay Ox +A16 Ox +A26 ay +A66 ay -+ Ox
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o*w d'w &'w d*w *w
ot 4Dqg sy 2(Dy3 + 2Dgs) S 4Dyg

dy? oxdy> ay*
2
’w 3w *w
+2(BGB—B12)|: ax2 ay2 —( axay ) :l

ow o’ w O’w S w w
+ (811 + 3815 2 + (B12 + 2866) __2 + 826 3

— Dy

ox ox® ox“0dy oxdy dy
ow o w 8w 63w o*w
+ B +{By, +28B + 2Byg——5 + Byy ——
ay ( 16 aX ( 12 66) ax ay 26 axayg 22 ayg )
o*w [ 1 ow 1 ow_ ow_dw_ |
52| 2 A11< X ) +5 A12( ay ) A6 o By J
T \ \ (2.31)
ow 4, (ow) 1, (0w ow_ow_
+ ay? | 2 A”( dx ) +t3 A”( dy ) A2 3y

a2 Ox g Oy o

3 3 3 3
+1, 6u2+ 6v2+6w 6w2+8w 6w2
oxot?  ayot?  Ox gxpt? Oy dyot

2w dw N (P P\ ow P ow O
\ooxPor syt )\ oxol  ayaft ] 2\ 9x a2 Oy o

2 A2 2
=_q+l1(5w_6w o’y ow 6v>
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Ay n Pu p Pu p P A v A B
Byy—5+28B + B +B,LYL + (B, +B )= + Bog—
11 aX 16 a a 66 ay 16 6X ( 12 66 a ay 26 6)/2

A 524) N B9 A o
+ D4y — + 2D ——+ Dgg—— + D
11 6 16 axay 66 ay 55¢

%y oy Ay .
+D1s o +(D12+Dee) axdy +Dzs % + Dysy

~  ow ~ ~ ow ~ 3w
=Dy =5 =34 — — (D1a+ 2Dgg) ——5 — Do =5~

ox® ox*dy dxdy? ay® (2.32)

A oPw A Pw A dPw
811 +2816 a a +BGS ay2

o Pw o a A OPw A Bw
Big o + (B12 + Bgs) a3y + B

s 52¢7 —/— 63W
ot ° axot?

r Pu Pu ,a u, n v v o v
Bis o +(B12+Bes) +526 oy + Bgs— Py +2826 2x3y + By oy

o R a%p N I
+D1s?+(012+D66) axdy + Dys % + Dy

Ao Y Py .
Do — 7+ 2o 55 + Dpp—o oy + Dyg¥y

~ 6 w Fw ~ Py ~ 33y '
-D — (Dyp + 2Dgg) 52— — 8D, 22— D
18732 12 6o) ay 26 2y 22 oy (2.33)

ow [ n o*w A 9w
+ 5 (516 e + Bz + Beg) - a ay +Byx—% oy )

ow [ A 62 A 52 A PPw

oy ay®
- v - 52‘/’ - Pw
/ 2 —lo 2
ot dyot

where
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B,=B,——2F
] ij 3h2 ij
A 8 16
Dy=Dy=— 3 Fy+ =g & Hy
~ 4
U=DU_—3h2 Fy

2.6. Simplifications by Using CPT

The classical plate theory, which does not account for shear deformations, leads
to serious errors in calculating the responses of thick composite plates. Many
investigators use the classical plate theory to treat thin isotropic plates because the
number of equations and labor involved are greatly reduced when CPT is used. As
is shown in Chapter 3, the errors in the results obtained by using CPT are reduced
as the plates become thinner. Further simplifications can be obtained by ignoring the
inplane and rotary inertias. The governing equations of isotropic rectangular and

circular plates are derived in the following sections.
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2.6.1. Rectangular plates

The displacement field used in CPT is

u(xy,z,8) =uxyf)—z %—‘;’
Uy(%,y,2,t) = v(x,y,t) — z %—‘;’ | (2.34)
U3(X,y,Z,t) = W(X’Y!t)

The only difference between equations (2.1) and (2.34) is that the shear-deformation
terms ¢ and Y are dropped in equations (2.34). This simplifies the
strain-displacement relations in equations (2.3) by dropping k! and setting the
transverse shear strains g, and & equal to zero. Therefore, the strain-displacement

relations are

2
81 = 8(1) —Z a_\?ZL
ox
2
gg=ed—z-2 V;’ (2.35)
dy
0 ow Jw
6= %~ ox dy

Differentiating ¢, twice with respect to y, &, twice with respect to x, & with respect to

x and y, and using equations (2.4) and (2.35), we obtain

2
a2451 " 5282 5286 ( ’w > _ Pw Pw (2.36)

ay? Ix2 "~ 9xdy - 0xdy ax?  dy?

which is known as the compatibility equation.

The reduced stiffnesses of isotropic plates are
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E E E
Q11=_2', Q12=V__2; QQQ=—__2- st=G (2~37)

—v 1—v 1—v

while the other reduced stiffnesses Q; are zero. Here, E, G, and v are the Young
modulus, shear modulus, and Poisson’s ratio, respectively.

The nonzero terms in equations (2.18) can be written as

Eh vEh Eh

Ap = 7 A= 7 An=""7, Ax=0h,
1—v 1—v 1—v (2.38)
Dyy=D, Dp=wD, Dp=D, Deg=->>D
where D is the bending rigidity of the plate and is defined by
3
p=—Ltr — (2.39)
12(1 — v%)

The elements of the Piola-Kirchhoff stress tensor can be obtained by substituting
equations (2.35) and (2.37) into equations (2.7). These stress components are

]
__E | ou ., v Pw . Pw N, 1 ow\ v [ ow
1 =2 6x+v6y Z(ax2 +vay2>+2(6x)+2 oy

L .

i 2 2]
__E | v du Pw , Pw N, 1w\ v (ow 2.40
0, = > + —z( +v )+2<6y>+2( ) (2.40)

v
1—v dy ox dy? ox* X
_f Ou  Ov ’w_ | ow ow
%= <ay+6x 2z 6x6y+ dx ay)

The positive sense of the stress resultants are shown in Figure 2.2. The membrane

forces N; and the bending and twisting moments M, can be written as
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(2.41)
2 2
ox dy
2 2
My=—p( LY 4, LW
ay ox
_ o*w
MB = D(1 V) axay
Similarly, the generalized inertias /; are reduced to
3
ph
lh=ph, ly=—7 (2.42)

Hamilton’s principle is used to derive the equations of motion. These equations in

the absence of inplane and rotary inertias can be reduced to

N, N

oy =0 (2.43)

N,  oNs

5t o =0 (2.44)
My | M, O*M¢ N *w N o*w oN o*w _ *w 045
6X2 6y2 dxdy + Ny 6x2 + Ny 6y2 + 2Ng dxdy - N 6t2 —q (2.45)

Introducing the stress function F defined by
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_F _&°F _&F
Ny = r Np= ox? ' Ne = dxdy

(2.46)

and the compatibility equation (2.36) results in the following two coupled
partial-differential equations in terms of w and F:
*w _ 3°F Pw | &*F dPw *F  d*w

DV*w + ph = —
P08 " o7 o | o oy 0xdy 0xdy

+q (2.47)

2
_ 2’w ’w d*w
V“F_Eh[< 57y ) By ] (2.48)

where V* is the two-dimensional biharmonic operator.

2.6.2. Axisymmetric circular plates

In the study of circular plates it is more convenient to use polar rather than
rectangular coordinates. Hence the polar coordinates (r, §) are introduced such that
they span the x-y plane, and u, and u, are used to denote the displacements in the r
and 0 directions, respectively. The relations between the polar coordinate set (r, 8)

and the rectangular set (x, y) are

x=rcosf, y=rsinf

2 y (2.49)

r =x2+y2, 0=tan'17

It follows from equations (2.49) that
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Or _ X _osp 20 __Y __sind

oax r Y e TT 2T T

or ¥y . 0 0 x _cosf (2.50)
oy —r=sind. 5~ ——r2 =—F

Furthermore, the chain rule of differentiation is used and the following relations are

obtained:
;—X=c039—ar——%sin9%
0 _ gt gl
3y =sin or +- cos 30
AN YO LN R YO B U YO
o = cos 0 Y +—+sin 0 ar + 2 sin“@ pye
2 o 2 2
+ 7 sin 6 cos 0 20 "7 sin 0 cos 8 3150
2 2 2 (2.51)
—8—2=sin26—6—2—+%cc>s")ei+—1?cos"’()a—2
ay or o 00
2
—%sin()cos@—(%—+-g—sinecos() afae
r
2 2 2
— o o 1 0 _ 1 I
Axdy =sin 0 cos 0 Py - sin 6 cos 0 or T2 sinf@ cos 8 Py

1 a1 9
— 2 cos 20 30 + cos 20 3130

Here, as in the case of rectangular plates, the stress resultants are defined by

h/2
(Nr: N0’ Nl'o’ Qrv Qg)= (U,-, 001 Urgs aer UGZ)dZ
—h/j2
w2 (2.52)
(MI" Mo, Mre)=f (O'r, Uo, O're)ZdZ
—h/[2
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The positive sense of these stress resultants are shown in Figure 2.3. For
axisymmetric circular plates all partial derivatives with respect to 8 are zero. Then
using equations (2.51) one can transform the bending moments for isotropic plates to

__pf Bw v ow
ool 22 350)

P w 1 ow
Mg——D<V ar2 + r af >

(2.53)

Similarly, it follows from the expressions for N; and N, in equations (2.41) that the

relationships among F, u,, and the deflections are:

du, 1 (ow\ | 1 6F  &F
Eh[ or +2( ar) T or? (2.54)

Eh—L =L _L W (2.55)

Here, the stress function F is defined by

1 OF 9°F
Ne=+>37" No=? (2.56)

Finally the governing equations (2.47) and (2.48) are transformed into

4 w1 9 [ OF aw
DV W+ph?=TF(_a_r_7)+q (2.57)

y En 9 [ ow
VF==%% ( ar ) (2-58)

where
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Figure 2.1. Geometry of deformation: (a) in the x-z plane and (b) in the y-z plane.
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Figure 2.2. Inplane forces and moments acting on a rectangular plate element.
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Figure 2.3. Inplane forces and moments acting on a polar plate element.
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3. LINEAR FREE VIBRATIONS AND BUCKLING OF

CROSS-PLY LAMINATED PLATES

Generalized Levy-type solutions are obtained for the problems of linear vibration
and stability of cross-ply thin, moderately thick, and thick laminated plates. A review
of the buckling of laminated rectangular plate is given by Leissa (1987). Recently,
buckling of symmetrically laminated rectangular plates subject to several types of
loading conditions is studied by Narita and Leissa (1990). They used the Ritz method
and presented numerical results for simply-supported square plates.

Because classical plate theory (CPT) ignores the transverse shear-deformation
effects and results in significant errors in the calculated natural frequencies and
critical loads of thick laminated plates, we use the higher-order shear-deformation
theory (HSDT) of Reddy (1984b), which accounts for quadratic distributions of the
transverse shear strains through the thickness.

Khdeir (1988,1989) and Reddy and Khdeir (1989) used the theories developed by
Reddy and other researchers to determine Levy-type solutions for the problems of

free vibration and buckling of cross-ply laminated plates by using the state-space
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concept. Unfortunately, their method of solution is limited to thick and some
moderately thick plates because it yields numerically ill-conditioned problems for thin
and many moderately thick plates. The loss of accuracy of such an approach was
discussed earlier by Kalnins (1964) in connection with the two-point boundary-value
problem describing the deformation of shells of revolution subject to symmetrical and
nonsymmetrical loads. Kalnins (1964) states that the loss of accuracy does not result
from cumulate errors in the integration, but it results from the subtraction of almost
equal numbers in the process of satisfaction of the boundary conditions.
Consequently, he concluded that for, every set of geometric and material properties
of the shell, there is a critical length beyond which the solution loses all accuracy.
To overcome this problem, Kalnins (1964) developed a multisegment numerical
integration method. The interval of interest is divided into a finite number of
subintervals and the two-point boundary-value problem is transformed into
initial-value problems over the different segments. Then, the equations of the theory
of shells of revolution, characterized in terms of first-order differential equations, are
integrated over each segment. After the initial-value problems are integrated over
all segments, continuity conditions on all variables are written at the endpoints of the
segments, yielding a simultaneous system of linear equations, which is solved by
means of Gaussian elimination.

A general approach for solving two-point boundary-value problem is the
invariant-imbedding method (Scott, 1974). There are several variations of this
method, including the so-called “field method”, which is also known as the method
of sweeps, the method of factorization, or the method of generalized Riccati
transformations. The field method converts the two-point boundary-value problem
into two successive numerically stable initial-value problems, which may be solved

by standard shooting techniques. Because of its stability, there is no need for
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subdividing the interval (Cohen, 1976). Cohen (1982) used the field method to
evaluate the effect of transverse shear deformations on anisotropic plate buckling
using a first-order shear-deformation theory.

A powerful approach for solving two-point boundary-value problems combines
superposition with orthonormalization. Godunov (1961) and Bellman and Kalaba
(1965) were the first to propose the use of orthonormalization in implementing the
method of superposition. Slightly modified and related procedures were discussed
by Conte (1966) and Davey (1973). Gersting and Jankowski (1972) compared Conte’s
version of the method of orthonormalization with several other numerical schemes
for solving the Orr-Sommerfeld problem. Scott and Watts (1977) developed a
powerful computer code called SUPORT based on Godunov’s version of the method
of orthonormalization that uses a variable-step Runge-Kutta-Fehlberg integration
scheme. This code has been extensively used by many researchers in hydrodynamic
stability. It is robust, easy to use, reliable, and efficient.

In this chapter, a combination of the state-space concept (Brogan, 1974) and the
modified method of orthonormalization is used to calculate the natural frequencies
and buckling loads of thick, moderately thick, and even thin plates using the
higher-order shear-deformation theory of Reddy (1984a-c) and Bhimaraddi and
Stevens (1984). Several approaches are discussed and numerical results are

obtained and compared with previous results.
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3.1. Free Vibration

For the case of linear free vibrations of cross-ply laminated plates, equations

(2.29)-(2.33) reduce to

u 0u v n 09 S w
A +A + (Agy + Agg) =——+ Byy—5— B
11 o’ 66 ayg (Aqz 66) 2xdy 1 P P o
_ P O dw
Yot P e P axal
v 9°v Pu a0 S w
Ags 2 + Ay % + (Asp + Agg) 2xdy + By —F — B oy o2
ey 62v+l- 52'1/_, S w
Yo P a2 P ayed
&u Pv ~ 86 ~ Oy o~ P Y
Byy—5 + Bpp—o+D +D +(Dyp + 2D +
1" 6x3 22 6y3 1" axg 22 ayg ( 12 66) axayz axzay
*w *w o'w
-D -D — 2(Dqs + 2Dgg) ———
11 ax4 22 ay4 ( 12 66) axgayg ( )
3.3
w u v
=I1 2 +12 2 + 2
ot oxot dyot
4 4 WA 5°
—h 82w2 + 62w2 +h d)z + wz
ox“ot dy“ot oxot dyat
A azu A 62(]5 A 62¢) A A 621// *
B +D 4+ Dgg—— + (Dyp + Dgg) =——+D
11 8x2 11 axg 66 5]/2 ( 12 66) axay 55¢ (3 4)
~ Pw = ~  Pw - Py - 8P - BPw .
— Dy 2% (D, +2D =] +1 -
1o Pt e =kt T
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NPy n Y 8%y 3°¢

N A N *
822 y2 + D22 ay2 + Dss _aX2 + (D12 + Des) m + D44!p (3 5)
~ Pw o~ ~  Pw - v - Y - BPw .
_D — (D + 2D4gg) Sy A ]
2oayd T T %y e e Cayal

We seek Levy-type solutions in which the edges x =0 and x = a are assumed to
be invariable and simply supported, while the remaining two edges y=0 and y =5
can have any arbitrary conditions. The boundary conditions at y=0 and y=5

considered here are

(/) Clamped:
oy
(if) Simply supported:
u=w=¢=N2=M2=A,/\12=0 (3.7)
(iii) Free:
A A
N2=N6=M2=M2=M6=O
Pv ;O w ow ow oM, Mg
b Yo ge Th oyol Mooy ~Neox ~ 3y 2T 0 B9

Seeking a generalized Levy-type solution, we represent the field variables as
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U(X;Y-t) (f1 m(y) COS apyX
V(X,y.f) f2m(Y) sin O X
wix.y,b) | = | fam(y) sin ax [o™m (3.9)

o(x,y,) fam(y) cos apx |-

Y(x,y.8) fsm(y) sinapmx |

where a, = mn/a and w, denotes the natural frequency of the mth mode. Substituting
equations (3.9) into equations (3.1)-(3.5) and after performing some algebraic

manipulations, we obtain
q'(y) = A(w)a(y) (3.10)

where the prime indicates the derivative with respect to y, A(w) is a 12x12 constant
matrix whose nonzero elements are listed in Appendix A, and q(y) is a vector of

length 12 whose elements are

G =fim G=hm G=lhm Gu=fom Gs=hm Ge=hn

G =fm GB=Fhn 99=0m G910="Tm G11="Tsm Gr2="Isn

Free, clamped, or simply-supported conditions at y =0 and y = b yield two disjoint

sets of boundary conditions that can be expressed as
Riq=0 at y=0 (3.11a)
R,q=0 at y=»> (3.11b)

where Ry and R, are 6x12 matrices, which would be frequency dependent only at a

free edge; they are given in Appendix B.
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3.2. Stability

For cross-ply laminated plates subjected to in-plane biaxial loads T;; and Ty, as
shown in Figure 3.1, equations (3.1)-(3.11) remain the same except for the following:

(i) All the inertia terms, /,, is dropped.

o0'w
ox?

(jii) The last equation in (3.8) is reduced to

2
(i) The quantity (— Ty — TZZ%TVZ) is added to the left-hand side of equation (3.3).

oM, Mg ow
5 t2a ~ T2y, =0

(iv) The coefficient et in equations (3.9) is dropped.
(v) The elements of A become functions of Ty, and T, and are listed in Appendix C,

where the elements of R are listed in Appendix D.

3.3. Method of Solution

The general solution (Brogan, 1974) of equation (3.10) can be expressed in the

form
qly) = ek (3.12)

Here, the column vector k depends on the boundary conditions while e* can be

expressed as
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eV =Me"M ' =m M (3.13)

0 e)‘ﬁy

e ’112)4

where the 4; are the eigenvalues of A, which are assumed to be distinct, and the
columns of M are their corresponding eigenvectors. We note that the proposed
method is not limited to the case of distinct eigenvalues. In the general case, J is a

Jordan form (Franklin, 1968). Substituting equation (3.12) into equations (3.11) yields

Qk =0 (3.14)

where Q is 12x12 matrix, which depends on the axial loads and frequencies as well

as the type of boundary conditions. For nontrivial solutions, one demands that

detQ=0 (3.15)

from which the natural frequencies or buckling loads are obtained by a suitable
search method, such as a Newton-Raphson procedure.

Unfortunately the above application of the state-space concept breaks down
numerically as the ratio b/h (length to thickness of the plate) is increased. In fact for
the majority of structural plates, the length is large enough to cause a numerically
ill-conditioned problem because the matrix A is real and all of its diagonal elements

are zero so that its trace is zero. The complex eigenvalues of A occur in conjugate
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pairs, and for each real eigenvalue there exists another real eigenvalue of the
opposite sign. As b is increased, the growth rates of the elements of e’ that grow
exponentially increase while the decay rates of the elements that decay exponentially
also increase, hence the calculated solutions lose their numerical independence and
the numerical method fails. A shift of the x coordinate axis by b/2 in the positive
y-direction would improve the accuracy but it is not good enough.

Alternatively, instead of using k as the constant vector in equation (3.12), one can
combine it with M- and solve for the complex vector k = M-"k. Thus, one can express

the solution as
aly) = Me"k (3.16)
Substituting equation (3.16) into the boundary conditions yields
AN
Qk=0 (3.17)

where 6 is a complex matrix. One may assume a value for w, evaluate det (6), and
vary w until the absolute value of det (6) becomes smaller than a specified small
tolerance. But this does not guarantee that det (6) would become zero in a small
neighborhood of w. However, if det (6) is transformed into a real function of w, one
could then apply a search method to locate a frequency. One of these
transformations is obtained by separating the real and imaginary parts of both Q and

ﬁ as follows:
A N _/\ A A .l\
Q=Q, +iQ; , k=k,+ ik (3.18)

where the subscripts r and i denote the real and imaginary parts, respectively. Using

equations (3.18), we rewrite equation (3.17) as
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k,
}= 0 (3.19)

For a nontrivial solution

Q, -Qq
det| A~ |=0 (3.20)
Q Q
which can be solved numerically. However, this method is limited, and even
application of the continuity and transfer-matrix method would not improve the
situation at all.

A third alternative is to transform equations (3.10) and (3.11) into a
nonhomogeneous system (Asfar et al. 1990). Here, one of the boundary conditions
is relaxed (which is later used to test the convergence) and is replaced by fixing a
variable, which is nonzero at an edge, to have a fixed value, say unity, at that edge.
A value for w is assumed and the new nonhomogeneous system is solved. The
solution is substituted into the relaxed boundary condition to check whether it is
satisfied. The assumed value of w is varied until the relaxed condition is satisfied.
Continuity may also be applied to improve the limitations on the length of the plate.
However, there is an undesirable feature. The domains of attraction of many
frequencies are too small. One may recover some of these lost frequencies by
relaxing a different boundary condition or by fixing another edge variable. All or the
first few desired frequencies may be obtained by a particular combination of a
relaxed boundary condition and a fixed variable, but as the size of the plate is

changed the same choice may not be good any more.
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Alternatively, one can find six linearly independent vector solutions of equation
(3.11a) and use each of them as an initial condition to determine q. This leads to six
vector solutions of equation (3.10) denoted by 2zi(y), 2«y), ..., 2s(y). Using

superposition, we write the solution of equations (3.10) and (3.11a) as
a(y) = rz4(y) + razo(y) + ... + reze(y) (3.21)
or in matrix form as
aly) = Z(y)r (3.22)
where the r; are constants,
' =[rryraryrsrel (3.23)
and the columns of the matrix Z are the z,; that is,
Z(y) = Lz:i(y) z(y) .- 26(v)] (3.24)
Substituting equation (3.22) into equation (3.11b) yields
R,Z(b) r=0 (3.25)

Equation (3.25) represents a system of six linear homogeneous algebraic equations
for the unknown constants r,. For a nontrivial solution, det [R.Z(b)] must vanish.
Therefore, the natural frequencies or the buckling loads can be obtained by any
search method.

Although this superposition procedure is simple and works in many instances,
application of this method to thin and many moderately thick plates yields

numerically ill-conditioned problems. The problem arises from the presence of
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rapidly growing and rapidly decaying elements of e**. This makes the columns of
Z(y) lose their linear independence due the limited computer word length. The
problem becomes more serious as the plate becomes thinner. One way that helps
to overcome this stiffness problem is to orthonormalize the calculated solution
vectors z(y) whenever an impeding loss of independence is detected.

| Following the initial-value method in conjunction with continuity, we divide the
interval y=[0,b] into n+ 1 nodes at yo, y4, ..., and y,.,, where yo=0 and y,,1=b.
From equation (3.11a), one can find six orthonormal vectors at y = 0 and express the

initial value of q as a linear combination of these vectors:
6
q(0) = ¢,a™(0) + ¢,q?(0) + ... + ceqa®(0) (3.26)

The general solution of equation (3.10) that satisfies equation (3.11a) can be

expressed as
q(y) = c;a () + ¢ q?(y) + ... + cea®(y) (3.27a)
where
q“(y) = Me"M~'q%(0) (3.27b)

These six linearly independent vectors q® are then evaluated at y, and
orthonormalized by the modified Gram-Schmidt procedure (Noble and Daniel, 1977).
These orthonormalized vectors are used as initial conditions for the second interval
[y, y2] and six linearly independent solution vectors are evaluated at y,. The prccess
is then continued until six linearly independent vectors q® at y,., are found. The

solution at y = b is expressed as a linear combination of these vectors in the form
q(b) = &:aM(b) + &,4(b) + ... + &:4°(b) (3.28)
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Substitution of equation (3.28) into equation (3.11b) yields
N A
R,Qc=0 (3.29)

where 6 is a 12x6 real matrix whose columns are the q®(b) and ¢ is a constant

column vector of length six. For a nontrivial solution,
det (R,Q) = 0 (3.30)

from which all the natural frequencies or buckling loads are determined. This method
takes a little more computer time due to the orthonormalization process but it yields
all the desired natural frequencies or buckling loads. The total computation time is
reduced greatly by increasing the number of nodes even though the number of
orthonormalizations is increased, because the absolute value of the exponent Jy in

equation (3.13) is decreased and hence the computer carries smaller numbers.

3.4. Numerical Results

Numerical results are obtained by applying the continuity condition in
conjunction with orthonormalization to the system described by equations (3.10) and
(3.11). Cross-ply laminated plates whose geometrical and material properties are the

same for all layers are considered. These properties are as follows:
G12 = 613 = 0.652, G23 = O.5E2, Vg = 0.25
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The effect of the plate thickness and number of elements on the convergence of the
dimensionless fundamental frequency of symmetric and antisymmetric square plates
for various boundary conditions are investigated. The results are compared with the
Levy-type solutions obtained by Khdeir (1988) and Reddy and Khdeir (1989), which
are available for only thick plates, and are listed in Tables 3.1 and 3.2 along with the
results of the classical plate theory (CPT). The converged results for the uniaxial
buckling load (T4 # 0) of these plates with similar comparisons are listed in Tables
3.3 and 3.4. The procedure described in this paper converges faster than that used
by Khdeir and Reddy and yields results that are in good agreement with their results.
As shown in Tables 3.1-3.4, the present procedure overcomes the difficulties involved
in the numerical calculation of both the natural frequencies and buckling loads of
moderately thick and thin plates. Continuity is not used in CPT because the problem
is not stiff. We note that CPT overestimates the fundamental frequencies in all cases,
especially as the plate thickness increases. For example, in the case of free vibration
of a simply-supported two-layered antisymmetric plate, the error obtained by using
CPT for the case a/h=5 is about 18% whereas for the case a/h = 100 the error
decreases to less than 0.07%. The corresponding error obtained in calculating the
buckling load for the case a/h =5 is more than 45% whereas for the case a/h = 100
the error decreases to 0.12%.

In Table 3.5, we compare the dimensionless critical loads for square cross-ply
laminated plates using the third-order shear-deformation theory with the results
obtained by Cohen (1982) using the first-order shear-deformation theory, the results
obtained using classical plate theory, and the results obtained by Noor (1975) using
the theory of elasticity. The plate properties are E/E, = 30, G,/E; = 0.6, G»/E, = 0.5,
and v;=0.25. Again, the accuracy of the classical plate theory deteriorates as a/h

decreases and as the number of layers increase. The higher-order
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shear-deformation theory produces results that are closer to the three-dimensional
elasticity solutions than the first-order shear-deformation theory when the number of
layers is 9 and 10. When the number of layers is 2 or 3, the results of the first-order
theory are closer to the three-dimensional elasticity solutions than the higher-order
theory.

The effect of the degree of orthotropy on the fundamental frequencies and critical
loads obtained by using the present proéedure for various simply-supported plates
is compared with the three-dimensional elasticity solutions of Noor (1973, 1975} in
Figures 3.2 and 3.3. The results obtained by HSDT are in excellent agreement with
those of Noor. These results are overestimated by CPT. The overestimation error in
CPT increases as the ratio E,/E; increases. However, HSDT yields results that remain
very close to the results obtained by Noor.

In Figures 3.4 and 3.5, we compare variation of the fundamental frequencies and
uniaxial buckling loads of thin and thick clamped plates with E,/E, obtained by using
HSDT with those obtained by using CPT. In Figure 3.5, the critical loads when Ei/E,
is less than 17.3, between 17.3 and 45.3, and more than 45.3 belong to modes 2,3, and
4, respectively. The critical loads of Figures 3.5b-d correspond to the second mode
(m=2). Clearly, the overestimation error in the results obtained by CPT not only
increases as the degree of orthotropy increases, but it is also magnified as the plate
thickness increases.

The effect of the plate thickness on the frequencies and critical loads calculated
by using HSDT and CPT is shown in Figures 3.6 and 3.7. Again the overestimation
errors obtained with CPT increase as either the thickness or the degree of orthotropy
of the plate increases. These results verify that CPT may be used to predict the
fundamental frequencies of thin plates. This prediction becomes more accurate as

the orthotropy ratio is reduced. For example, CPT is expected to lead to very
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accurate results for thin isotropic plates which have an orthotropy ratio of unity. The
fundamental frequencies of even a moderately thick plate with a low orthotropy ratio
may be estimated by using CPT. As discussed above, these estimates are not good
for either thick plates or laminated plates with a high orthotropy ratio. For thick
laminated piates, a HSDT is needed to produce accurate results.

The results of biaxial compressions of symmetric and antisymmetric plates are
shown in Figures 3.8a and 3.8b, respectively. Clearly as one load decreases the
other one increases. The curves corresponding to the HSDT results are broken.
When T,, is small, the plates buckle in the second mode. But when T, is increased
beyond the broken point the plates buckle in the first mode. In either case the
buckling loads are overestimated by using CPT.

We emphasize that with the present procedure one can calculate the natural
frequency of any mode. The first ten dimensionless frequencies of a thin square plate
for various mode numbers m and boundary conditions are listed in Tables 3.6 and 3.7.
For each mode the clamped-clamped plate has the highest frequency whereas the
free-free plate has the lowest frequency. These higher frequencies are very

important in the study of modal interactions.
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Table 3.1. Compari

SS

cc

FFE

sC

CF

SF

Theory

HSDT (&=0.4)
HSDT(&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( K )
CPT

HSDT (&=0. 4)
HSDT(&=0.6)
HSDT(&=1.0)
HSDT (&=2.0)
HSDT( K )
CPT

HSDT (&=0. 4)
HSDT (&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( K )
CPT

HSDT(&=0.4)
HSDT (&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( K )
CPT

HSDT(&=0.4)
HSDT(&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( K )
CPT

HSDT(&=0.4)
HSDT (&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( K )
CPT

of the converged dimensionless fundamental frequency
® = wa’\/p/E, |h with the HSDT results of Khdeir (1988), denoted by (K),
and CPT for thick, moderately thick, and thin symmetric plates (3-layers;
(E+/E, = 40). & is the number of elements per unit of dimensionless length
alh. The boundary conditions at the edges are any combination of
simply-supported (S), clamped (C), and free (F) conditions.

a/h=5
10.264

10.263
10.263
10.263
18.297

12.332
12.333
12.333

39.316

3.987
3.987
3.987
3.987
NA
4.385

11.156
11.156
11.156
11.156

27.537

5.976
5.975
5.975
5.975

8.077
4.482
4.483
4.483
4.483

4.971

a/h=10

14.702
14.702
14.702
14.702
14.702
18.738

20.320
20.315
20.315
20.315
20.315
40.372

4.322
4.322
4.322
4.322
4.322
4.438

17.426
17.427
17.427
17.427
17.427
28.251

7.335
7.335
7.335
7.335
7.334
8.220

4.895
4.895
4.895
4.895
4.892
5.049

a/h=20

17.483
17.483
17.483
17.483
NA
18.853

30.210
30.207
30.208
30.208

40.650

4.422
4.422
4.422
4.422
NA
4.452

23.652
23.652
23.652
23.652

28.438
7.980
7.980
7.980
8.256
5.024
5.024
5.024
5.024

5.069

a/h=50

18.641
18.641
18.641
18.641

18.885

38.228
38.231
38.231
38.231

40.728

4.451
4.451
4.451
4.451

4.456

27.496
27.496
27.496
27.496

28.491

8.216
8.216
8.216
8.216

8.267
5.065
5.065
5.065
5.065

5.075

a/h=100

18.828
18.828
18.828
18.828
NA
18.890

40.065
40.063
40.063
40.063
NA
40.740

.455
.455
.455
.455
NA
4.162

PN

28.237
28.238
28.238
28.238
NA
28.498

8.255
8.254
8.254
8.254
NA
8.268

5.073
5.072
5.072
5.072
NA
5.076
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Table 3.2. Compari

B.

SS

cC

FF

sC

CF

SF
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of the converged dimensionless fundamental frequency

@ = wa*/p[E; [h with the HSDT results of Reddy and Khdeir (1989), denoted
by (R&K), and CPT for thick, moderately thick, and thin antisymmetric
plates (2-layers; (E:/E;=40). & is the number of elements per unit of
dimensionless length a/h.

C.

Theory

HSDT (&=0. 4)
HSDT(&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( R&K )
CPT

HSDT (&=0. &)
HSDT(&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( R&K )
CPT

HSDT (&=0. 4)
HSDT(&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( R&K )
CPT

HSDT(&=0.4)
HSDT(&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( R&K )
CPT

HSDT(&=0. 4)
HSDT(&=0.6)
HSDT (&=1.0)
HSDT(&=2.0)
HSDT( R&K )
CPT

HSDT(&=0.4)
HSDT (&=0.6)
HSDT(&=1.0)
HSDT(&=2.0)
HSDT( R&K )
CPT

a/h=5

.122
.087
.087
.087
.087
.721

.765
.891
.890
.890
.890
.741

.127
.128
.128
.128
.128
.122

.334
.393
.393
.393
.393
.627

.863
.831
.831
.831
.836
.986

.350
.384
.385
.385
.387
.422

a/h=10

10.582
10.568
10.568
10.568
10.568
11.154

15.626
15.712
15.712
15.712
15.709
18.543

6.940
6.944
6.944
6.944
6.943
7.267

12.857
12.871
12.871
12.871
12.870
14.223

7.843
7.810
7.811
7.811
7.810
8.214

7.273
7.277
7.277
7.277
7.277
7.629

a/h=20

11.102
11.105
11.105
11.105
NA
11.269

17.720
17.821
17.821
17.821
NA
18.758

.219
.217
.217
.217
NA

7.305

NN

13.921
13.972
13.973
13.973
NA
14.382

8.146
8.157
8.157
8.157
NA
8.273

7.580
7.582
7.582
7.582
NA
7.680

a/h=50

11.279
11.275
11.275
11.275
NA
11.302

18.584
18.652
18.653
18.653

18.819

.301
.301
.301
.301

NN

7.315

14.309
14.358
14.358
14.358
NA
14.428

8.269
8.268
8.268
8.268

®

.290

.689
.677
.677
.677
NA

7.694

NN

a/h=100

11.293
11.300
11.300
11.300
NA
11.307

18.840
18.786
18.786
18.786
NA
18.828

.321
.313
.313
.313
NA

7.317

NN

14.428
14.417
14.416
14.416
NA
14.434

8.264
8.286
8.286
8.286

8.292
7.689
7.692
7.692
7.692

7.696
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Table 3.3. Comparison of the dimensionless critical load T = Tna?E:h* of 2-layered

antisymmetric square plates with the HSDT results of Reddy and Khdeir
(1989) (denoted by R&K) and CPT (E;/E,=40). The arbitrary boundary
conditions are any combination of simply supported (S), clamped (C), and
free (F) conditions.

B. Theory a/h=5 a/h=10 a/h=25 a/h=100
present 8.769 11.563 12.711 12.942
Ss R&K 8.769 11.562 NA NA
CPT 12.957 12.957 12.957 12.957
present 10.754 17.133 20.327 21.064
sC R&K 10.754 17.133 NA NA
CPT 21.116 21.116 21.116 21.116
present 4.285 5.445 5.902 5.995
SF R&K 4.283 5.442 NA NA
CPT 6.003 6.003 6.003 6.003
present 11.490 21.464 29.079 31.131
cc R&K 11.490 21.464 NA NA
CPT 31.280 31.280 31.280 31.280
present 4.912 6.279 6.839 6.958
CF R&K 4.908 6.274 NA NA
CPT 6.968 6.968 6.968 6.968
present 3.905 4.940 5.341 5.420
FF R&K 3.905 4.940 NA NA
CPT 5.425 5.425 5.425 5.425
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Table 3.4. Comparison of the dimensionless critical load Ty = Tua?/E;h* of 10-layered

antisymmetric square plates with the HSDT results of Reddy and Khdeir
(1989) (denoted by R&K) and CPT subjected to various combinations of
boundary conditions (Ei/E, = 40).

B. Theory a/h=5 a/h=10 a/h=25 a/h=100
present 12.109 25.422 33.176 35.096
SsS R&K 12.109 25.423 NA NA
CPT 35.232 35.232 35.232 35.232
present 12.607 32.885 52.432 58.795
sc R&K 12.607 32.885 NA NA
CPT 59.288 59.288 59.288 59.288
present 7.053 12.509 16.085 16.960
SE R&K 7.050 12.506 NA NA
CPT 17.023 17.023 17.023 17.023
present 13.254 35.376 71.621 88.354
cc R&K 13.254 35.376 NA NA
CPT 89.770 89.770 89.770 89.770
present 8.224 14.356 18.337 19.316
CF R&K 8.221 14.351 NA NA
CPT 19.389 19.389 19.389 19.389
present 6.780 12.077 15.529 16.367
FF R&K 6.780 12.077 NA NA
CPT 16.426 16.426 16.426 16.426
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Table 3.5. Variation of dimensionless critical load Ty = Th1a%/Esh® of square cross-ply
laminated plates with number of layers (NL) and length to thickness ratio
(a/h). Classical stands for results calculated using CPT, Noor stands for the
theory of elasticity solution of Noor (1975), and Cohen stands for the results
obtained by Cohen (1982) using first-order shear deformation theory.

E1/T2 = 30, G12/E2 = 0,6, Gza/Ez = 05, and V= 0.25.

alh NL
2
10
10
2
5
10

Classical Noor

10.891 9.375
27.936 19.304
27.936 20.961
27.254 20.635
10.891 6.664
27.936 10.383
27.936 12.138
27.254 12.070

Cohen

9.754
19.097
21.560
21.254

7.452
10.236
12.953
12.799

Present

9.869
18.878
21.178
20.986

7.721
10.078
12.413
12.488
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Table 3.6. Dimensionless frequencies w = wa/p/E, [h of ten-layered antisymmetric
square plates (a/h = 50) for various modes obtained by using CPT and the
present procedure (E:/E, = 40).

ccC

32.0
81.2
157.0
258.1
=1 384.4
535.4
710.9
717.5
721.9
756.2

59.5

96.6

166.5

265.0

=2 389.7
539.9

714.7

751.5

913.9
1136.9

119.1

142.7

198.3

287.3

m=3 406.4
552.9

725.4

799.3

922.9

1144.6

206.3
221.9
262.7
336.5
m= 443.9
582.3
749.0
861.7
942.4
1161.0
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sc

24.2

66.4
135.7
230.5
350.5
375.8
495.3
664.6
721.9
751.4

55.6
84.5
146.6
238.0
356.3
430.9
500.0
668.6
861.6
1078.5

117.2
134.6
181.7
262.6
374.3
509.6
514.0
680.0
871.2
1086.7

205.2
216.7
250.3
315.5
414.7
545.4
602.7
705.1
891.8
1104.0

SS

18.6
'53.3
116.0
121.7
204.5
318.1
456.6
619.8
707.4
736.5

53.3

74.5
128.4
212.8
243.3
324.4
461.8
624.1
751.4
810.9

116.0
128.4
167.3
239.9
344.1
365.0
476.9
636.3
799.3
821.0

204.5
212.8
239.9
296.8
387.5
486.7
510.4
663.0
842.9
861.7

CF

13.8

32.2

81.5
157.1
258.1
373.3
384.2
534.9
709.9
714.2

51.4

60.6

97.9
167.4
265.5
390.0
426.9
539.7
714.1
912.7

114.8
120.4
144.5
200.1
288.8
407.4
504.6
§53.5
725.4
922.3

203.5
207.6
224.0
265.1
338.8
445.8
583.6
597.3
749.8
942.4

SF

13.0

24.8

66.8
118.3
135.9
230.5
350.3
494.8
663.7
707.4

51.1

56.7

85.7
147.5
238.7
240.0
356.6
500.0
668.1
749.0

114.6
118.3
136.4
183.6
264.1
361.6
375.5
514.7
680.1
796.1

203.4
206.3
218.6
252.6
317.9
416.7
483.3
546.9
706.0
857.8

FF

12.7
13.6
33.1
81.8
114.8
157.3
258.1
383.9
534.3
706.6

50.9
51.8
61.8
99.0
168.3
236.5
266.1
390.2
539.5
713.4

114.4
115.3
121.7
146.3
201.9
290.2
358.2
408.4
554.0
725.3

203.2
204.1
208.9
226.0
267.4
341.0
447.7
479.9
585.0
750.5
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Table 3.7. Dimensionless frequencies @ = wa%/p/E, [h of ten-layered antisymmetric
square plates (a/h = 50) for various modes obtained by using HSDT and the
present procedure (E,/E, = 40).

CcC

31.
75.
139.
218.
m=1 307.

S
(@]
n

UK PAOHROOOMNO

721.

m= 313.

o
N
o
OWWN PUOONOVOHONDWVUN

m= 329.7

m=4 364.0
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sC

23.8

63.3
124.3
201.4
290.7
375.8
388.9
493.5
602.6
714.8

54.1

80.9
135.0
208.9
296.4
393.6
430.9
497.5
606.1
717.9

110.3
126.7
167.7
232.2
314.0
407.5
509.0
509.6
615.9
726.5

185.2
196.2
225.8
278.0
350.0
436.4
532.9
602.7
€36.1
743.9

SS

18.5

51.9
109.2
121.7
184.5
273.4
372.0
477.5
587.7
701.0

51.9

72.3
121.4
192.7
243.3
279.5
377.0
481.7
591.3
704.2

109.2
121.4
156.9
217.9
298.2
365.0
391.6
493.7
601.4
712.9

184.5
182.7
217.9
266.2
336.0
421.7
486.7
518.3
622.2
730.8

CF

13.7

31.5

77.4
143.2
224.4
317.1
373.3
418.2
525.1
636.2

50.0

58.8

93.2
153.3
231.7
322.8
422.8
427.0
529.1
639.7

108.1
113.4
135.8
183.6
253.6
339.6
436.3
504.6
540.3
649.3

183.6
187.5
202.9
238.5
296.8
373.7
463.9
563.2
597.2
668.8

SF

12.9

24.6

64.8
118.3
127.5
207.2
299.7
401.4
509.3
621.4

49.7

55.2

83.0
138.7
215.1
239.9
305.8
406.3
513.5
625.1

107.9
111.4
128.9
171.6
238.7
323.6
361.6
420.4
525.1
635.0

183.5
186.2
198.2
229.4
284.2
359.3
449.0
483.3
548.8
655.0

FF

12.6
13.5
32.8
79.2
114.8
147.1
231.2
327.2
431.7
542.0

49.5
50.4
60.3
95.6
157.7
236.4
238.9
333.2
436.6
546.2

107.7
108.5
114.7
138.3
188.0
260.9
350.1
358.2
450.2
557.5

183.3
184.1
188.7
205.2
242.8
303.8
383.9
477.4
480.1
580.2
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Figure 3.2. Comparison of the dimensionless natural frequency @ = wh./p/E. of
simply-supported square plates (a’/h = 5) obtained by the (__) present
procedure with those obtained using the CPT (— — —) and those obtained
by Noor using the three-dimensional theory of elasticity ((0): (a) 3-layered
symmetric, (b) 9-layered symmetric, (c) 2-layered antisymmetric, and (d)

10-layered antisymmetric plates.
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Figure 3.3. Comparison of the dimensionless critical load Ty = Ta*/E.h* of simply
supported square plates (a/h = 10) obtained by the present procedure (___)
with those obtained using CPT (— — —) and those obtained by Noor (1973)
using the three-dimensional theory of elasticity (0O): (a) 9-layered
symmetric and (b) 10-layered antisymmetric plates.

3. LINEAR FREE VIBRATIONS AND BUCKLING OF CROSS-PLY LAMINATED PLATES 68



36 4

(c)

~
//
30 4 -
7
7
24 e
s
i3 7
18 4 Z
/
J/
124 /
/
64
T Ll L) 1
0 10 20 30 40 50
EqlE;

Figure 3.4, The effect of th
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ree of orthotropy on the dimensionless natural

frequency @ = wa%/p/E; [h for CC square plates obtained by using HSDT

e
(. )CPT (——-
symmetric (a/h

: (a) 9-layered symmetric (a’/h = 5), (b) 9-layered
25), (c) 10-layered antisymmetric (a’/h = 5), and (d)
10-layered antisymmetric (a/h = 25) plates.
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Figure 3.5. The effect of the degree of orthotropy on the dimensionless critical load
Tw = Tua*/E;h® for CC square plates obtained by using HSDT (___) and CPT
(——-—) (a) 9-layered symmetric (a/h=>5), (b) 9-layered symmetric
(a/lh=25), (c) 10-layered antisymmetric (a/h=5), and (d) 10-layered
antisymmetric (a/h = 25) plates.
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Figure 3.6. The effect of the dimensi s plate length (a/h) on the dimensionless
natural frequency @ = wa%/p/E, [|h for CC square plates obtained by using
HSDT (__) and CPT (———): (a) 9-layered symmetric (E,/E.=2), (b)

9-layered symmetric (E,/E.=40), (c) 10-layered antisymmetric (E,/E,=2),
and (d) 10-layered antisymmetric (E,/E, = 40) plates.
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Figure 3.7. The effect of the dimensionless plate length (a/h) on the dimensionless
critical load Ty = Tya?/E,h® for CC square plates obtained by using HSDT
(__) and CPT (— — —): (a) 9-layered symmetric (E:/E.= 2), (b) 9-layered
symmetric (E,/E, = 40), (c) 10-layered antisymmetric (E:/E.=2), and (d)
10-layered antisymmetric (E4/E, = 40) plates.
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Figure 3.8. The relationship between the dimensionless critical loads T.= Tua?/E;h? in
biaxial compressed CC square plates (a/h = 25, E,/E, = 40) obtained by

using HSDT (_ ) and CPT (———): (a) 9-layered symmetric and (b)
10-layered antisymmetric plates.
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4. MODAL INTERACTION IN THE RESPONSE OF

COMPOSITE RECTANGULAR PLATES

A composite plate whose elastic modulus is much larger than its shear modulus
is weak in shear. The plate under transverse periodic loadings may encounter
deflections the order of, or higher than, its thickness. Therefore, the use of linear
classical plate theory to analyze the response of such plates might lead to serious
errors, especially for thick laminated plates.

In this chapter, interaction of modes in composite plates is investigated by using
the higher-order shear-deformation theory of Reddy and Bhimaraddi and Stevens.
Rather than attacking the nonlinear partial-differential equations and nonlinear
boundary conditions, we apply the method of multiple scales directly to the
Lagrangian and derive nonlinear autonomous first-order ordinary-ordinary differential
equations governing the modulation of the amplitudes and phases of the interacting
modes. The fixed points of these equations are calculated and their stability is

determined. Besides the one-mode solution, which is the directly excited mode,
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multi-mode solutions are possible. In the latter case, the indirectly excited modes
may dominate the response. For certain plate and excitation parameter values, Hopf
bifurcations are possible. Near these bifurcations, limit-cycle solutions of the
modulation equations are found. These limit-cycle solutions undergo a sequence of
period-doubling bifurcations, leading to chaos. Consequently, the response of the
composite plate to a harmonic load may be (a) a nonlinear single-mode periodic
motion, (b) a nonlinear two-mode periodic motion (phase locking), (c) an amplitude-
and phase-modulated (two-period quasi-periodic) motion (two torus), or (d) a

chaotically modulated motion.

4.1. Solution Procedure

Using equations (2.29)-(2.34), one can express the linearized equations of motion

in terms of the five original variables u,v,w, ¢, and ¥ as

o°u 3*u o u ov ov A
A11¥+2A16 3x3y + Ags o +Ass o + (A12 + Age) Bx0y +Ag /2
AR O SO W TS O
Mo T2 ooy eyt Bre Tt Bt Be) gyt B @.1)
Pw Pw Pw Fw |
_B, LY _3p — (Byy + 2Bgg) -8B
ax® 10 ax2dy 12 % axdy® 2 ay®
2 . o2 3
=,16421+12 f_,zaw2
ot ot axot
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2
v - O *w
=1, LY .,
a2 % a2 P ayar
3 3 2y 3 3
B a —+ 3816 ou + (812 + 2866) + 826 ou + 816 a + (812 + 2866) a v
x> ox? oy ay 6y x>
3 3 3 3 3 3
v v .~ 0¢ _0¢ ¢ ¢
+38 +B + Dyy—2 4 3Dyg ——o— + (Dy + 2D, )7 —+ Dyp—
2 a? TR s TP 8 oy 12+ 20ee) 2 o
+ Dyg—5 + (D1 + 2Dgs) —5— + 3D +D
1673 12 5) oy 267 02 TP
d*w d*w d*w *w *w
_D _4p — (Dqy + 2Dgg) —2W— _ 4D, —D,,
B ox* 1° ax36y 12 o6 ax25y2 2 6x6y3 6y4
2 3 3 4 4 - > o
cmqr W[ L v ) ow  ow ) g 98, IV
ot oxot dyot ox“ot dy“ot oxot dyat
(4.3)
2 2 2 2
A Pu A Fu A Fu a%v v r 3y
Bay o +2B16 550y + Bes o2 +B16 o’ +(B12+Bss) , + Bas o
2 2 2 2 2
n P n B n P aw Py A Py -
+D +2D +Dgg——+D +D +D +D +D 4+ D
"2 0 3xay T Do 7 2 is¥ + Dig o’ (D1 + Do) axdy TP 2 f:i)
= fw _ .= ~ 5 Pw 5 dPw '
) —3D — (Dyp + 2Dgg) —D
1 3 16 axgay 1 66 6x6y2 26 ays
2
- Pu - 0 - Pw
o  oxat?

4. MODAL INTERACTION IN THE RESPONSE OF COMPOSITE RECTANGULAR PLATES 76



r P Pu A Fu v v A v
B —+ B + B +B +B +2B +B
1672 (812 33) axay + P27 2 TP 2 26 oxay T B2 oy
& aqu n P A Py
+ Dyp—o 5 +(D12+Dss) +Dza p +D45¢+Dss o 2 T 2067 2y + Dy 5+ Dag¥
X
o 4 i a° 49
w ~ w o~ w
~Dig W — (D1 + 2Dgs) ~S 2~ — 3D, — Dy,
ox 6y axay2 6y3
2
=Py 0 - Bw
=i +1 —i
a2 % a2 ° gyt

The general solution of equations (4.1)-(4.5) can be expressed in the form

i
m=1

18

V=m=1

3
i
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A | Wy T,
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where T, and T, are fast and slow time scales, respectively, the wm, are the natural
frequencies, the émn(T1) are complex functions of T;, and cc stands for the complex
conjugate of the preceding terms.

Using equations (2.1), (2.4), (2.11), (2.12), and (2.15), we can rewrite the

Lagrangian (2.19) as

cHIPE )]
ol () () | o{ () +(3%)
[

[ &w @ 2w 0y ]
4o 2 9 . ov 6¢]_2,0[aw ¢  Pw Y

+

at ot T at ot oxot ot dyat ot |
4.7)
’w du | &w ov. (
-2, [ axot ot * ayot ot ]}dXdy

bea
- L L [Nl + Nyeg + Nogg + Myrct + Mok + Meicg

+ P1K$ + szg + Psxg + Q1sg + 0282 + R, x§ + Rzrci}dxdy

bpsa
+J J‘ gwdxdy
0vo

The Lagrangian can be further expressed in terms of the five original variables
u,v,w, ¢, and ¢y by using equations (2.4), (2.16), and (2.17). We substitute equations
(4.6) into the Lagrangian (4.7), integrate over the domain, average the result over the
fast time scale, and obtain the averaged Lagrangian (Nayfeh, 1973). Writing down the
Euler-Lagrange equations yields the desired modulation equations. Miles (1984a) and
Balachandran and Nayfeh (1990) have also used this procedure to obtain a first-order

approximation.
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4.2. Autoparametric Resonance

A two-to-one autoparametric resonance may occur when one linear natural

frequency of the plate is approximately twice another. As an example, we consider

a simply-supported 9.45" x 15.75” antisymmetric cross-ply plate made of eight

identical orthotropic layers with a total thickness of one inch. The properties of each

layer are

E,=19.2x10%psi,  E,=1.56x10%psi, G;, = Gy5 = 0.82x10%psi,

Gps = 0.523x10°psi, vy =v43=0.24, p=1.2x10"*Ib—s?/in*

The stacking sequence is [90°/0/90°/0/90°/0/90°/0]. Because of this special stacking

sequence, some of plate inertias and stiffness coefficients vanish, namely,

I2=I4=I_2=0

A=Ay = A5 =By =By =Byg = Bgg = D15 =Dy =Dys
=Ey=Eig=Eyg=Egg=F1g=Frg=Fss=Hig=Hys =0

In this case, the gum(X,y) in equations (4.6) become

mnx . Nny

A}
1mn(%,y) =4 pn cOS Z  sin 5

mnx nry

62mn(XvY) =I'ypmp sin 3 COS 5

mnx . nny

Gamn(*:y) = Tamp sin @ Sin—
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mnx . nny
§4mn(x,Y)=r4mnC°S 3 Sin 5

. max nny
Fsmn(*,¥) = Tspmp sin g cos —

(4.8d)

(4.8e)

where the Iy, are real constants. Equations (4.6) and (4.8) satisfy all the boundary

conditions. Substituting equations (4.6) and (4.8) into the linearized equations of

motion yields

2 22 f, 3 2 A
(&mAH + »Bn"\ss)r 1mn + GmBr(Arz + Age) 2mn = &mB11 amn + &mB14Tamn

—2
= WmnplT1mn

A 2 /\2 A /\2 A
%l Atz + Age)1mn + (amAss + ﬁnAzz) Tamn — BaB22T 3mn + BBzl smn

—2
= Ompllomn

3 n3 4 A 252
0mB11T1mn + BnBaol 2mn — [&mDH + BuDys + 205, B7(Dsy + ZDSS)JF 3mn
3 20N A ey 2% (R o
+ [&mDH + 8mfin(D12 + 2D66)]r4mn + [ﬂnDzz + 8mBn(D12 + 2D66)]r5mn
—2 2 |, e
= wmn{ - [,1 + (&m + ﬂn)ls]rsmn

A - A -
+ am’0r4mn + ﬁnIOFSmn}

82,814 4 — [&%511 + &mﬁi(ﬁm + 2566)]r3mn

+ (agnb\ﬁ + %?1666 - D;s)r amnt &mﬁn(ﬁm + 666)F5mn
= Do = &mloTamn + 13 amn)

%é\zzr 2mn — [igiazz + &fnﬁn(ﬁw + 2566)]r3mn

+ &mﬁ’n(ﬁm + DASG)F amn + (aanASG + BBy — D;A) Fsmn

2 A - -
= wmn( — BaloUamn + 13r5mn)
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where

A mn y
0m=—5— and f,=

m a

nn

b

Requiring the I'v»» to be nontrivial yields the frequencies w.,. They are listed in Table

4.1.

For the plate under investigation, we note that wix2w;.

In this study, we

consider a uniform periodic external transverse load g = F cos(Qf) with constant

amplitude F when the excitation frequency Q is near ws.

Because all of the modes which are not directly excited by the load or indirectly

excited by the internal resonance decay with time owing to the presence of damping,

the plate response consists of only the two modes that are involved in the internal

resonance. To simplify the notation, we denote the modes 31 and 13 by modes 1 and

2, respectively. Hence, we express the displacement field as

[y |

where

-

911
921
a1 [Cy(Tp)e™ o +
()]

51

912
922
g3

942

952 i

Cy(T1)e"?™ + cc

A A A JA) — —
1=ty =93 Ci=Cs, C=Ci 01 =0y, w;=wy

Next, we introduce the detuning parameters ¢, and o, defined according to

0'1=(U2—2(U1 and 02=Q—w2
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Plugging equations (4.14) into the Lagrangian and averaging the result yields

<L>=— 2i0(3E1C1' - 2ia4C—:2C2' + a1C161 -+ 0t2C262 - a6C12512

e S o (4.16)
- a7C22622 - a3C1C1 C2C2 — O(5C12C26—M1T1 + Fa0C29l02T1 + cc

where the expressions for the «, are greatly reduced for antisymmetric cross-ply
laminated plates and are given in Appendix E. Next, we express the C; in polar and

cartesian forms and derive the fnodulation equations in both forms.

4.2.1. Polar form

The expression for the C, in polar form is

C= % ae® (k=1,2) (4.17)

where the a, and i are real function of 7,. Substituting equation (4.17) into equation

(4.16), one obtains

24 . 25, A1 4 4 2.2
<L> =agai By’ + a3y’ — 5 (w621 + aza; + 05213))
(4.18)

1
vy asasa, cos(o4Ty + B — 2B4) + agFay cos(a,Ty — By)

Writing the Euler-Lagrange equations corresponding to the averaged Lagrangian

(4.18) and adding linear viscous damping terms, we obtain
a:, = — pqaq — Aqyaqa, sin y, (4.19a)
a;= —ﬂ232+A2812 sin y, + FAgsiny, (4.19b)
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a8y = Aqa; + Asasas + Agasa, cos v (4.19¢)
aaﬂ'z = A4a§ + As"fh2 a + Azaf cos yq — FAq cos y, (4.19d)

where u, and u, are the damping coefficients of the first and second modes,

respectively, the A, are real constants defined by

_ % =% I s
T 2a, As 4oy’ A= 8y Ag= 4a,
(4.20)
%7 g g
As= 4oy’ As = 8ag As = 8o,
and
v1=04T1+ By — 2By and y, = 0,7y — B (4.21)

It is convenient to rewrite equations (4.19) in terms of scaled variables. The

scaled variables, denoted by overhats, are defined as follows:

C/l\)j=CO]T, a'j=0j‘t, ﬁ]=l"’]r’ é\j=aj/{, ([=1,2)
T,=T.jr, F=FAgl¢

A _ (4.22)
Al = AIT{, ([ = 1,2)

A=A, (j=3,4,56)

where 7 =a(b/h)./p/E. and ¢ = h3/ab. Substituting these definitions into equations

(4.19) and dropping the overhats in the final result, we obtain
a1' = - /1.131 — A1a182 Sin Y1 (4.238)
ay = — pya, + Azaf siny; + F siny, (4.23b)
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3 2
a1ﬁ1' = A1a132 COS ')’1 + A3a1 + A531az
"= Ayal Aas 2a,— F

a,f,’ = Ayay cos yy + Asa; + Agaja, — Fcos y,

where the prime denotes the derivative with respect to the scaled T,.

4.2.2. Cartesian form

The expression for the C, in cartesian form is
Cu=g (oy+ia)e™ (k=12)
where the p, and g, are real function of T, and
61 =% (o1 + )T,
0, = 0,7,
Substituting equations (4.24) and (4.25) into equation (4.16), one obtains
<L> =g psgy — p1gs + (pF + 65)01 | + s PoGy — P22 + (05 + 03)65 |

- % [Pz(P12 - ‘712) + 2P1‘-71‘72] - %6— (Pf + q12)2 - % (p22 + q§)2

— =2 (o3 + 07)(p2 + 0f) + aoFp,

(4.23¢)

(4.23d)

(4.24)

(4.25a)

(4.25b)

(4.26)

Writing the Euler-Lagrange equations corresponding to the averaged Lagrangian

(4.26), and adding linear viscous damping terms, we obtain
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’ 1
P1=— Py + 7 (04 + 02)G1 — Ay(p19; — PoG1)

2@ i (4.27a)
- A3Q1(P1 + q1) - A5q1(p2 + qz)
’ 1
g1= — Wqqq — 2? (012 + )Py + 12\1(P1:’2 +9:9) (4.27b)
+ Agpy(pF + 0F) + Aspy (05 + 03)
’ 2 2
P2 = — poPa + 025G, — 2A,p1qy — A4q2(p2 + qz) (4.27¢)
27¢
- A6q2(p12 + "712 )
, 2_ 2 2442

+ Aepa(pf + G7) — AoF

These autonomous equations could have been also obtained from equations (4.19)

by the following transformation
py=a,cos(f,—0,) (k=1,2) (4.28a)
g =a,sin(B,—6,) (k=12 (4.28b)
The new scaled variables p, and g, defined by
Pk=Pdlt, Gu=qul¢ (k=12 (4.29)

and equations (4.22) are used to scale equations (4.27). Dropping the overhats in the

scaled equations, we obtain

’ 1
pr=—mp1+3 (01 + 02)q1 — Aq(p1G2 — P2G1)

2 L (4.30a)
— Asqi(ps + 1) — Asay(p; + a3)
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1
q1 == #1q1 - ? (01 + 02)p1 + A1(P1P2 + q1q2)

2 e (4.30b)

+ Agpy(pr + 1) + Aspy(p + G2)

] 2 2
P2 = = taPy + 050, — 2AoP191 — Ao(p; + a3) (4.30c)
.JUcC
2 2
— Agaa(py + 1)

Gy = — oG — 0aP2 + Ag(pr — G5) + Aupa(pz + 03) (4.300)

+ Agpy(pi + 7)) — F

4.3. Numerical Results

Here, we consider the simply-supported antisymmetric cross-ply laminated plate
whose material properties and geometric configurations are given in Section 4.2. The

corresponding scaled values of Ay, w;, and o4 are calculated and the results are

Aq=2.876192x107%, A, =7.219099x10™°, A, = 2.843552x107°,
Ay =9.96887x107°, As=2.621421x10"2, Ag=1.315927x107>,
w4 = 34.585, w, = 69.001, oy =—0.169

The value of 0.969x10-* is used for the scaled values of both u, and u.. The fixed-points
of equations (4.30) represent periodic solutions of equations (2.22)-(2.26). The
nonlinear algebraic equations governing the fixed-points can be obtained from
equations (4.30) by setting their right-hand sideé equal to zero. Setting the p" and
g<' equal to zero we obtain the following set of four algebraic equations governing the

fixed-points
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1
Pt (04 + 02)q1 — Aq(P192 — P2G4) — Agqy (P12 + Q;z)

. (4.31a)
— Asqy(p2 + 92) =0

1 2, 2
— Gy — 5 (04 + a9)py + Ag(p1py + G1G2) + Agps(pr +G7) (4.31b)
+ Aspy(p; +95) =0
— HaPp + 063G, — 2911 — AyGa(p; + G3) — Asda(p} +G5) =0 (4.31¢)
— My — 03Py + Ag(Pf — G5) + Aupa(ps + 63) + Aepy(pf + G5) — F =0 (4.31d)

The stability of a fixed-point of equations (4.30) is determined by investigating the
behavior of small perturbation to it. Expanding equations (4.30) in Taylor series about
the fixed-point solution and linearizing the results yields the associated Jacobian
matrix Ji. The elements of J, are listed in Appendix F. The fixed-point is
asymptotically stable if the real part of every eigenvalue of the Jacobian matrix is
negative and it is unstable if the real part of at least one eigenvalue is positive. All
the other cases are degenerate and the Jacobian matrix alone is inconclusive in the
stability analysis. In a degenerate case more terms in the Taylor series expansions
of equations (4.30) should be retained.

By inspection we note that py = g, =0 is a solution of equations (4.31). Therefore,

a single-mode solution is possible and is treated separately.
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4.3.1. Single-mode solutions

In a single-mode solution (p; = g, = 0), equations (4.31) can be reduced to
— (P2 + a3) — Fg, =0 (4.32a)
o2(ps + 93) — Ag(ps +G3)° + Fpy =0 (4.32b)
Using equations (4.21), (4.25), and (4.28), one can transform equations (4.32) into
— P8y + Fsiny,=0 (4.33a)
8,0, — A4a§ + Fcosy,=0 (4.33b)

Eliminating y. from equations (4.33), we obtain the force- and frequency-response

equations
F? = (ayuy)’ + a0 — Agas)’ (4.34a)
0y = Agal + [(Fla,)® — u21'? (4.34b)

The eigenvalues 4 of the Jacobian matrix J, in the single-mode case py=g,=0 are

the roots of the following algebraic equation

2
{(#1 27 = NP3+ 02) + | & (04 + o) — As(p + )| }[(#2 + 4

+ 05 — 40,A4(p; + q3) + 3A4(p: + 03)° ] =0

(4.35)

The necessary and sufficient conditions for the real parts of all four eigenvalues to

be negative are
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2
1
ud — A3(p? + ¢f) + [ - (01 + 02) = As(p; + qﬁ)] >0 (4.36a)
va+ 03+ 3A5(p3 + G3)% — 40,A4(p: +q3)> 0 (4.36b)

Inequalities {4.36) can be transformed into polar form as
2 2.2 1 2 2

15+ (0, — Agaz)(op — 3A4a2) >0 (4.37b)

Therefore a fixed-point solution is stable if and only if inequalities (4.37) are satisfied.

A typical frequency-response curve is shown in Figure 4.1a. This curve
resembles the frequency-response curve of a hardening spring. The solid lines
represent stable solutions and the broken lines represent unstable solutions. A
typical force-response curve is shown in Figure 4.1b. Here only the upper and lower
branches are stable and there are two turning points: one at F = 0.0096 and the other
at F=3.6771. There is only one unstable solution branch. In both Figures 4.1a and
4.1b the stable branches lose stability at turning points. At each turning point one of
the real eigenvalues of the Jacobian matrix J; crosses the imaginary axis to the right
half of the complex plane. These turning points are clearly saddle-node bifurcation
points. Here, the only way that the one-mode response can go from one stable

branch to the other stable branch is through a jump (Nayfeh and Mook, 1979).
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4.3.2. Two-modes solutions

4.3.2.1. Fixed point solutions of the averaged equations and their stability

When a, # 0 we solve equations (4.21) in scaled form for the ', substitute them

into equations (4.23), and rewrite the results in the following autonomous form:

31' =— aq — A1a132 sin Y4 (4.383)
ay = — ppa, + Apa’ siny, + F sin y, (4.38b)
, COS Yy
v =01—F a,

(4.38¢)

COS vy

+ A2a12 721" _— 2/\132 COS '}’1 + (As - 2A3)a12 + (A4 - 2A5)322
, COS y, 9 COS Yy 2 2

Yo = 0y + F 32 - A2a1 a_2 - A432 —_ Aea1 (4.38d)

Setting the right hand side of equations (4.38) equal to zero, we obtain a set of four

nonlinear algebraic equations governing the fixed-points as follows
- [J,1a1 - A1a132 Sin y‘l = 0 (4.393)

— M8y + Ayal siny, + Fsiny, =0 (4.39b)

COS Y, 2 2. COS Y4 ) )

or—F a (Azar — 2A4a3) a; T (Ag — 2Ag)ay + (A4 — 2Ag)a; = 0(4.39%¢)
COSs coS

o2+ F 32)’2 — A2 _Tw — Aya; — Aga; =0 (4.39d)
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Unfortunately, unlike equations (4.33), equations (4.39) can not be solved in
closed form and we resort to numerical techniques. A Newton-Raphson method is
used but the method is found to be extremely sensitive to the initial guesses. As an
alternative, a homotopy based routine in Hompack (Watson et al., 1987) is used. For
several pairs of values of o, and F the homotopy technique is applied until a set of
zeros of equations (4.39) is obtained. Since homotopy alone is expensive, once the
roots of equations (4.39) for a particular pair of 6, and F are found, the roots for other
values of ¢, and F can be obtained by integrating equations (4.39) along either o, or
F or both.

The frequency-response curves are shown in Figures 4.2 and 4.3. First a set of
real solutions (with a; > 0 and a, > 0) of equations (4.39) are obtained by using
homotopy. Then these solutions are used as initial conditions for the integration of
equations (4.39) along g,. The homotopy is applied periodically to check the accuracy
of integration and the possibility of evolution of new branches. This check is done
repeatedly near a turning point. However, the homotopy based routine is expected
to fail at a turning point. Therefore, continuation techniques are used to avoid failure
at turning points.

Expanding equations (4.38) in Taylor series about the fixed-point solution and
linearizing the results yields the associated Jacobian matrix J,. The elements of J,
are listed in Appendix F.

The stability of each branch is determined from the eigenvalues of the Jacobian
matrix J.. A fixed-point is asymmptotically stable if the corresponding real parts of
all eigenvalues of the Jacobian matrix J, are negative. In the frequency-response
curves of Figures 4.2 and 4.3, besides the stable branch which begins at ¢, = 0.67,
there is another stable branch between the two turning points at ¢, =0.97 and

o, = 1.15, connecting two unstable branches. As o, is increased, there remain only
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one stable and three unstable branches, which are shown for only ¢,<5 due to the
fact that when the detuning parameter becomes large the perturbation solution
looses its accuracy.

The amplitudes a, and a, of the steady-state response for the two-mode solution
as functions of F are shown in Figures 4.4 and 4.5, respectively. Two-mode solutions
exist only when 0.01 < F<7.01. There are exactly two stable branches. One of them
starts from a turning point at F = 0.01 and continues‘ to the point F =7.01 at which a,
decays to zero while a, increases to its corresponding one-mode solution. The other
stable branch starts from a turning point at F =2.307 and continues until F exceeds
the critical value F = 2.8424. Beyond this value, a pair of complex eigenvalues of the
Jacobian of equations (4.38) transversely crosses the imaginary axis to the right-hand
side of the complex plane. Thus, the solutions undergoe a Hopf bifurcation (Seydel,
1988) at F=2.8424. Near this Hopf bifurcation point, limit-cycle solutions of the

modulation equations are expected.

4.3.2.2. Periodic solutions of the averaged equations and their stability

The stability of the periodic solutions of equations (4.38) is determined by using
Floquet theory (Nayfeh and Mook, 1979). If we define ¥ = {ai, a, 1, ¥2}", then we can

write equations (4.38) as
X =6[x(T); F] (4.40)

In the above representation, the amplitude of the external excitation F is the only

control parameter that can be varied in studying the periodic solutions. To determine
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the stability of a T-periodic limit cycle x*(T1) = x*(T: + T), we superimpose on it a small

disturbance 5(T1) and obtain the perturbed equation
X" 40" =G[x"(T) + 6(Ty)] (4.41)

Expanding equation (4.41) in a Taylor series for small 5(T1) and linearizing the flow
of the vector field in (4.40) about the periodic orbit, we obtain the linear variational

equation
6" = A(T))8 (4.42)

where

—_

Mm=%gﬁwm (4.43)
X

is a square 4x4 variational matrix with T-periodic elements. We let ®(T;) be the

fundamental-matrix solution satisfying
© =A(T)®, ©()=/ (4.44)

Then, the Floquet multipliers are the eigenvalues of the monodromy matrix @(7). As
the control parameter F is varied, the positions of the multipliers relative to the unit
circle in the complex plane determine the stabllity of the orbit. Because equations
(4.38) are autonomous, one of the multipliers is always + 1, corresponding to 5(T1)
along the trajectory x*(7:), while the others describe what happens perpendicular to
it. If all the other multipliers lie inside the unit circle, then the orbit is asymptotically
stable. If one of the multipliers leaves the unit circle, then the orbit is unstable. The

type of the resulting bifurcation depends on the way a multiplier leaves the unit circle.
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There are three generic ways in which this happens. First, a multiplier leaves the unit
circle through +1, resulting in either a cyclic-fold (tangent) or pitchfork
(symmetry-breaking) bifurcation. Second, a multiplier leaves the unit circle through
-1, resulting in a flip or period-doubling bifurcation. Third, two complex conjugate
multipliers leave the unit circle, resulting in a Hopf bifurcation. In our computer
simulations, we observe period-doubling bifurcations associated with one of the three
multipliers crossing the unit circle at -1 on the real axis while the other two remain
inside the unit circle.

To describe the dynamics of the system (4.38), we need to determine the
steady-state periodic waveforms (attractors). It is computationally inefficient to
determine these solutions by conventional numerical-integration methods.
Therefore, we use an algorithm originally proposed by Aprille and Trick (1972) to
eliminate transient responses, thereby latching onto a limit cycle and calculating its
period. The algorithm uses a combination of a numerical integration scheme and a
Newton-Raphson interation procedure. This algorithm proved to be efficient in
reducing the computation time but it is sensitive to the initial guesses and the step
size of the integration.

Spectral analysis techniques are used to look for cyclical patterns or periodicities
in signals. The algorithm developed by Cooley and Tukey (1965) and implemenfed
by Singleton (1969) is used to compute the fast Fourier transform (FFT).

Next, we investigate local bifurcations of the periodic solutions of the modulation
equations and the existence of chaotic attractors using the amplitude of the external
excitation F as a control parameter. Below the Hopf bifurcation value F = 2.8424, the
modulation equations possess only fixed-point solutions. As F is increased beyond
F = 2.8424, the modulation equations possess a sequence of period-doubling

solutions. In Figure 4.6a, we show a two-dimensional projection onto the a, — a, plane
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of a typical period-1 attractor at F = 2.84286. The time evolution of the amplitude a,
is shown in Figure 4.6b. The power spectrum of this attractor shown in Figure 4.6¢
is made up of a major peak at the fundamental frequency 1/T and smaller peaks at its
harmonics. As F is increased further, the period one attractor evolves smoothly. At
F = 2.84296, the period one attractor loses its stability and undergoes a
period-doubling bifurcation with one of its Floquet multipliers leaving the unit circle
through -1. As a result, a period-2 attractor is born. Figures 4.7a-c depict this
attractor. As F is increased further, a cascade of period-doubling bifurcations take
place culminating into chaos at F = 2.843006.

The projections of period-2, 4,8, and 16 attractors onto the a; — a, plane along with
their corresponding time evolutions and power spectra are shown in Figures 4.7, 4.8,
4.9, and 4.10, respectively.

The phase portrait displayed in Figure 4.11a demonstrates two important
characteristics of the chaotic attractor: its irregular nature and the sensitive
dependence on the initial conditions. The trajectories, therefore, converge toward
some well-defined geometrical structure in the state space. The waveform in Figure
11b shows that the attractor is never periodic, nor almost periodic. In terms of the
frequency content, the Fourier transform of the a; signal in Figure 4.11c has a
broadband component. The values of the F, corresponding to the kth period-doubling

Fiio1— Fi

bifurcation and the ratio of their successive differences, A =———— are
Fk+2_Fk+1

calculated as follows:

F, = 2.842959564 F,=2.843000385 F,=2.843005118 F, = 2.843005696
Fs=2.843005779 Fs=2.843005794 F, = 2.843005747

A, =8.63 A, =818 Ay =7.01

A, =5.46 As=4.73
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It is obvious that A, is approaching the Feigenbaum number 4.66920 as it is expected
to be for any road to chaos through period-doubling bifurcations.

The algorithm for the determination of the limit cycle solutions and their stability
shows that each new limit cycle stays stable over a range of the amplitude of external
excitation F smaller than the range of stability of the preceding limit cycle.
Consequently, there is a limit to the sequence of period-doubling bifurcations after
which the system becomes chaotic (irregular). This leads us to check the
compatibility of our results with the Feigenbaum number (1979).

The Lyapunov exponents are computed and used to quantify the expansion and
contraction occurring in the chaotic attractor. The algorithm proposed by Wolf et al.
(1985) is used to calculate the Lyapunov exponents. They are found to be 0.0018,
0.0000, -0.0032, and -0.0044. The positive exponent indicates an exponential
divergence of neighboring trajectories and thus confirms the chaotic nature of the
attractor. The Lyapunov dimension d, of the attractor is also calculated using the
relation proposed by Frederickson et al. (1983). Accordingly the Lyapunov

dimension is d, = 2.5572.
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Table 4.1. The nondimensional frequencies Wm =6,,,,,—‘?-'hL plE, .

n=1 n=2 n=3 n=4 n=>5 n=6 n=7
=1 12.553 37.945 69.001 101.512 134.486 167.852 201.761
=2 20.439 41.962 71.619 103.479 136.084 169.213 202.956
m=3 34.585 51.036 77.608 107.882 139.571 172.111 205.445
=4 51.824 64.425 87.239 115.136 145.339 176.890 209.523
=5 70.424 80.437 99.817 125.032 153.366 183.600 215.271
=6 89.624 97.882 114.461 137.082 163.397 192.111 222.626
=7 109.114 116.134 130.505 150.799 175.118 202.228 231.466
=8 128.783 134.894 147.523 165.804 188.247 213.752 241.657
m=9 148.610 154.028 165.268 181.827 202.557 226.514 253.077
m=10 168.614 173.487 183.600 198.690 217.876 240.372 265.618
m=11 188.826 193.260 202.444 216.275 234.082 255.217 279.193
m=12 209.283 213.355 221.762 234.509 251.084 270.963 293.729
m=13 230.023 233.790 241.539 253.345 268.821 287.543 309.166
m=14 251.082 254.589 261.771 272.756 287.248 304.911 325.458
m=15 272.493 275.774 282.466 292.727 306.337 323.027 342.568
m=16 294.288 297.370 303.631 313.252 326.067 341.867 360.467
m=17 316.495 319.399 325.281 334.330 346.428 361.410 379.133
m=18 339.140 341.885 347.427 355.964 367.412 381.643 398.547
m=19 362.247 364.847 370.085 378.161 389.017 402.556 418.697
m=20 385.838 388.304 393.267 400.925 411.242 424.142 439.571
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Figure 4.1. Variation of the steady-state amplitude for the case of one-mode solution
when Qxw, and u = 0.969 x 10-* with (a) the detuning of the excitation for

F=2.843 and (b) the amplitude of the excitation for o, = 0.969: __, stable;
- - -, unstable.
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Figure 4.2. (a) The amplitude a; of the steady-state response for the two-mode

- solution as a function of the detuning of the excitation for F = 2.843; (b) an

enlargement of the upper branches in (a) __, stable; - - -, unstable:
u=0.969 x 10-3,
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Figure 4.3. (a) The amplitude a, of the steady-state response for the two-mode
solution as a function of the detuning of the excitation for £ = 2.843; (b) an
enlargement of the lower branches in (a) __, stable; - - -, unstable:
u=0.969 x 10-%,
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Figure 4.4. (a) The amplitude a; of the steady-state response for the two-mode
solution as a function of the amplitude of the excitation for g, = 0.969; (b)
an enlargement of the upper branches in (a) __, stable; - - -, unstable with
real eigenvalues; ..... , unstable with the reai part of a complex conjugate
pair of eigenvalues being positive: u = 0.969 x 103,
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Figure 4.5. (a) The amplitude a, of the steady-state response for the two-mode
solution as a function of the amplitude of excitation for o, =0.969; (b) an
enlargement of the lower branches in (a) ___, stable; - - -, unstable with real

eigenvalues; .....,, unstable with the real part of a complex conjugate pair
of eigenvalues being positive: u = 0.969 x 10-°,
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Figure 4.6. (a) Projection of the period-one limit-cycle on the a, — a, plane; (b) the time
evolution of ay; (c) FFT of the response:
u=0.969 x 10-%; g, = 0.969; F = 2.84286.
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Figure 4.7. (a) Projection of the period-two limit-cycle on the a, — a, plane; (b) the time
evolution of asy; (c) FFT of the response:
u=0.969 x 10-%; 6, = 0.969; F = 2.842989.
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Figure 4.8. (a) Projection of the period-four limit cycle on the a, — a; plane; (b) the time
evolution of as; (c) FFT of the response:
p = 0.969 x 10-%; o, = 0.969; F = 2.84300244.
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Figure 4.9. (a) Projection of the period-eight limit-cycle on the a, — a, plane; (b) the
time evolution of as; (c) FFT of the response:
u=0.969 x 10-3%; g, = 0.969; F = 2.84300554.
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Figure 4.10. (a) Projection of the period-sixteen limit-cycle on the a, — a; plane; (b) the
time evolution of a, (c) FFT of the response:

u = 0.969 x 10-%; ¢, = 0.969; F = 2.84300574.
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Figure 4.11. (a) Projection of the chaotic attractor on the a, — a, plane; (b) the time
evolution of ay; {(c) FFT of the response:

pu =0.969 x 10-%; g, = 0.969; F = 2.84300582.
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5. MODAL INTERACTION IN CIRCULAR PLATES

In this chapter, the dynamic analogue of the von Karman equations in polar form
are used to study the axisymmetric response of a circular plate to a harmonic
external excitation. The method of multiple scales is used to determine a set of
first-order ordinary-differential equations governing the modulation of the phases and
amplitudes of response in the presence of an internal or autoparametric resonance.
A discussion of the stability of the steady-state solutions is given through a numerical
example and a series of graphs. The results show the existence of period-doubling

bifurcations leading to chaos in the solutions of the modulation equations.

5.1. Nondimensionalization

The equations governing the axisymmetric response of uniform circular plates in

the absence of in-plane loads can be obtained from the dynamic analogue of von
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Karman equations. When the damping term is included, the governing equations

(2.57) and (2.58) can be written as follows:

’w 4 1.3 (OF ow_, ow
ph o +DV'w=-= o ( ar or ) 2u ot + q(r,0) (6.1
En 3 [ ow \ |
V4F=‘"27‘W(T) 62

where u is the damping coefficient and V* is the axisymmetric biharmanic operator
defined by equation (2.59). The relations among F, w, and the radial displacement u,

are

d 2 2
Eh[ ur+%<_@_)]=+a_f-‘_vaF (5.3)

Eh—F=2F 2 (5.4)

For convenience the following nondimensional variables denoted by an asterisk

are introduced:

r=Rr, t=R%/ph/D ¥,
24(1 — v?
u=(h* R, u= (Tv)_ ph°D p*,  w=(h*|R)w",
g=(DM*R%)q", F = (En°IR?)F*

where R is the radius of the plate. In terms of these nondimensional variables,

equations (5.1)-(5.4) can be rewritten as
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2
ZWWAW:E[%i(a_wa_F)_ZHa_w]Hq (5.5)

{2 ar \ or or ot
19 (ow\

ve-- 2o (4) (58)
u 1 (ow\ _10F | OF 57)

or 2\ or r or or? )

u _0°F v oF
r— g2 I oor (5.8)
12(1 — vi)h? . , .

where E=—p - 9=¢9, and the asterisk was dropped for convenience of

notation. A first integral of equation (5.6) is obtained by eliminating u from equations

{5.7) and (5.8). The result is

2 2 3
1 6w)=i6F_6F_r6F (5.9)
2\ or ror g2 ord

Because we are considering the case of primary resonance, we put g = £q" so that the
effect of the excitation is balanced by the effects of damping and nonlinearity.

The boundary conditions for a clamped circular plate are
ow =u=0 atr= (5.10)

Putting u = 0 in equation (5.8) yields

2
OF _yOF o atr=1 (5.11)

or? or
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In addition to the above boundary conditions, w and F are required to be finite at r
= 0,

5.2. Method of Solution

The method of multiple scales (Nayfeh, 1973, 1981) is used to determine a

uniformly valid first-order expansion of w.

To this end, new time scales are
introduced as follows:

T, =&t for k=0,1,2, ...

(5.12)
In terms of these scales, the time derivatives become
2 Dy+eDy+ . iz-=D§ + &(2DoD;) + ... (5.13)
ot at®
where
Dk=i- fork=0,1,2,..
T,
Uniform expansions of w and F are sought in the form
w(r, t, &) = wq(r, To, Tq) + ewy(r, To, Ty) + ... (5.14)
F(r,t €)= Fo(r, To, Ty) + eFy(r, To, T4) + ... (5.15)

Substituting equations (5.13)-(5.15) into equations (56.5) and (5.9) and equating like
powers of ¢, one obtains
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Diwy + Viwy=0 (5.16)

PF, PF, 1 OFy 1 [ 0w\
"5 + a2 T or =?( or ) (317)
1.8 ( 9F ow,
Dgw1+V4w1——2D0D1w0—2uDOWO+ o (7 — | +4q (5.18)

Substituting equations (5.14) and (5.15) into equations (5.10) and (5.11) and equating

coefficients of like powers of ¢ yields

ow,
w0=—(#=0 at r= (5.19)
Gl %o 0 at r= 5.20)
arg—var— at r= (5.
ow,
wy; =0 and ?=0atr=1 (5.21)

The bounded solution at r = 0 of equation (5.16) that satisfies equation (5.19) is

Wo= ) bl An(Te" ™ + cc] (5.22)
m=1

where cc stands for the complex conjugate of the preceding terms,

Slr) = lo(J0m Wo(N@m 1) = lo(Jom r)o(Jom ) (5.23)
b’ (1) = lo(Jon Wo' (Vom ) = lo'(Vom )o(veom ) =0 (5.24)
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and J, and /, are the Bessel and modified Bessel functions of order zero.

Substituting equations (5.22) and (5.23) into equation (5.17) yields

O°F, 0 O°F, 0 1 0Fp 1 S , '
e T % AN A 600 (5.25)
5!‘ 5/’ m=1n= -T
where
App = ApAe @nt@ndlo p A o"@m=@nlo 4 oo (5.26)

and the primes represent differentiation with respect to the argument. Because

2_d_ d 2 2
( 47 —atrgr 1)J1(rcmr) = — Kyl “Jy(Kmh) (6.27)

o . dF,
it is convenient to express o as

aF ‘
=2 Z AT Tka(Em) (5.28)

Using equation (5.20), we find that the &, are given by

Emdo(Em) — (1 + v)ds (&) = 0 (5.29)

Substitution of equation (5.28) into equation (5.25) yields

inm[rd1"(cmr)+d1'(:mr) T | = A3 S Abyty (530

p=1g=1
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Multiplying both sides of equation (5.30) by Ji(£.r) and integrating the result with

respect to r from zero to one, one obtains

o= i is,,pq/\pq (5.31)

g=1p=1

where

1 1
| ¢ 0nenar | ai0n,0nmar

Shpqg = 1 = 2 2 2 (5.32)
En—1+v)J(¢
o[ g o TEVACD
0
Then it follows that
aF (o ) o0 o0
aro = Z Z ZsmnpAan1(€mr) (5.33)
m=1ip=1in=1

To proceed further, we need to specify the modes that are excited because all
modes that are not excited directly by the load or indirectly excited through an
internal or autoparametric resonance decay with time (Nayfeh and Mook, 1979). The
first three natural frequencies (Leissa, 1969) are w,= 10.2158, w,=39.7711, and
w; = 89.1041. Because i+ 2w,=89.758~w,, an internal or autoparametric
resonance involving the first three modes exists. To express quantitatively the
nearness of this resonance, we introduce the detuning parameter o, defined

according to

W4 + 2w, — w3 = .6538 = ey (5.34)
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We consider the case in which one of these three modes is excited by a primary
resonant excitation. Hence, all modes except these three decay with time due to

damping. Hence, we set A, =0 for all m > 4 in equation (5.33) and obtain

oF oo 338 3 3

0
or = Z J1(€mr)<21 ZsmnpAnp> = Z Zan(r)Anp (5.35)
m n=1p=1
where
an = an(r) = Z J1(émr)smnp = Gpn(r) (5.36)
m=1

Substitution of equations (5.22) and (5.35) into equation (5.18) yields

3

Diw, + Viw, = Z [ — 2iwne™ (A + 1Ap) ]6m(r)

m=1

za: 23: Z amnp[AmAnApei(w’" + 0y + wp)Ty
A0

m= = (5.37)
+ A A l(w,,, + Wp — p)TU
+ A Z A o — w,,+wp)T°
1 (X4 ? !’
Bmnp = 7 LCnp()m'" () + Gnp' (N ' (r) ] (5.38)

The solution of w; can be separated into two parts. The first part is a linear
combination of the exp(iw,Ts), which are assumed to be in the form of > ®,(r, T,)es",
and the second one denoted by w; has no terms with any frequency w. (Nayfeh and

Asfar, 1986). Therefore
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w, = Z@S(r, Ty)e' ™ + W, + cc (5.39)

s=1
We assume that the driving frequency Q is near the jth natural frequency w,, To
express quantitatively the nearness of this resonance, we introduce the detuning

parameter ¢ defined by

Q= CO] + eo (5.40)

Substituting equation (5.39) into equation (5.37) and equating the coefficients of

exp(io.To) on both sides, one obtains

V4(1)5 - wg(Ds = —2iw(As + nAgds + hiye Ty 36\‘sssAsz A

3
ryl A
+2 Z AGAAsqq + 8gsq + Ogqs)
g=149+#s

+ (Bigpr + Bip1p + B1z5)00A1 A€M (5.41)
—2_—ioyT.

+ (Bapg + Opgp + pp3)dsyAzAse” 1

+ (Qygs + Bozq + Oggp + Aapg + Ayap

+ Op19)0 5o A1 AgAge ™ 1T

where §;, is the Kronecker delta. To apply the solvability condition (Nayfeh, 1981) to
equation (5.41), one multiplies the right-hand side of equation (5.41) by r¢,, integrates

from zero to one with respect to r, and obtains

3
— 2i0(AS’ + pA) + he' 6, + BAAT i +2 ) AR Tsqqs + 2gqso)

I=1q+s (5.42)
r T 1 )6 A AZ0 " T 4 (T 2T 103 )8 1 Ay Al ~'oTH '
+ (Tyg2s + 2l 2p15)953A1Az€ + (Fa0s + 2L p35)051A3A5€

+ (2T 230 + 2T pq3p + 2T 3125)052A1 AgAze ™ 711 =0
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where

1 1 1
hg = J rhosdr, Tompps= j Pmnp®sdr . s = J rud3dr (5.43)
0 0 0

and

Qi =T + 200931 =8Q, Q=20 193y + 2 p43p + 207500 = 16Q,

5.44
Q3 = Iq1223 + 2r2213 = BQ ’ (XU = (4 - 35,1)1_‘]]” + 2Fl]jl ( )

Introducing the polar form A, =—;-a,, exp(if,), where the a,(T;) and B.(T;) are the

amplitudes and phases, into equation (5.42) and separating real and imaginary parts,

we obtain

(l)1(a1' + [1131) + Qa3322 Sin ))1 - h16j1 Sin 621 = 0 (5.45)

1 2 2 2 2
@1afy’ + 5 (21137 + 24933 + 24333)ay + Qa33; COS ¥,

(5.46)
+ h15j1 COS 521 = 0
wo(@y' + py8;) + 2Qayaya3 Sin vy — hydp sin € =0 (5.47)
w2ﬂ2'a2 + —;_ (0(21812 + a22322 + a2sa§)az + 2Qa1aza3 Ccos Y4 (5 48)
+ h26j2 COS 622 =
wg(asl + [—1333) - Qa1322 sin Y — h36j3 sin c23 =0 (5.49)
C()sﬂa'as + i ((X31a12 + a32322 + a333§a3) + Qa1a§ COS y4
8 (5.50)

+ h36]3 COSs 523 = 0
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where
V1 =04T1+ 2B, + B4 — B3 and &y = aTy — By (6.51)

Next, we discuss the steady-state solutions for the three cases: Qxw,, Qxw,, and
szs.
Casel: Q=wi+¢es (j=1)

It follows from equations (5.47) and (5.49) that the steady-state amplitudes satisfy

WoHa8y 2ay
W3ht3a3 ap

(5.52)

which implies a, = a; = 0. Moreover, a linear stability analysis of this solution shows
that it is stable. Therefore, only the first mode is excited and to the first

approximation,
w(r,t) = a,4(r) cos(Qt — &5q) + ... (56.53)

Casell: Q=w,+¢0 (j=2)
Similar to Case | one finds that in the steady state all modes except the second

mode decay to zero and to the first approximation,
w(r,b) = ayd,(r) cos(Qt — &,,) + ... (5.54)

Case lll: Q=wy+¢e0 (j=3)

In this case, equations (5.45)-(5.50) become
wq(ay + maq) + (.?aaarz2 siny; =0 (5.55)
C()2(82‘ + ﬂzaQ) + 20313283 sin V1= 0 (5.56)
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ws(ay’ + pas) — Qasaz sin yy — by siny, =0 (5.57)

w,fq'ay + % (04187 + a4982 + 0t4332)a, + Qazas cOS y, =0 (5.58)
w2ﬂ2’62 + _;_ (a21a12 + a22322 + 0(23323)32 + 20813233 cos yq = 0 (5.59)

wafs'az + % (cc31312 + a32a§ + a33a§a3) + Qa1a;2 cosy,+ hycosy,=0  (5.60)

where y, = £5;. In this case, there are two possibilities. First, a;=a, =0 and to the
first approximation, the response consists of a one-mode solution in which a; # 0.
Second, all three modes can participate in the response and to the first

approximation,

w = @,(r)a, cos(w,t + B4) + P,(r)a, cos(wyt + B,)

+ ¢3(r)as cos(wgt + B3) + ... (5.61)

Nonperiodic steady-state solutions and the stability of the steady-state periodic
solutions can be studied by transforming equations (5.55)-(5.60) into the autonomous

form X' = F(X) as follows:

' Q 2 .
a1’ = — 43y — 5~ 3,33 Sin y4 (5.62)
/ 2Q ,
dyg = — U8y — w_2 Q48,83 SN Y4 (5.63)
. +Q o 2ging. g 5.64
8y’ = — MaB3 + 5~ 8433 SN yg + G- sin v, (5.64)
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v, = o, + a2 O31 %11 %21 + a2 U320 %12 O
! VU Bw, 8wy dw, 2\ Bwz; 8wy 4w,

2 2
o o o a.a a,a 4a.a
+a§< 33 %3 %23 >+( 192 G3d);  A84a3 )Qcosy1 (5.65)

8w; 8wy 4w, W38z W48y Wy
hy
+ m COS Yy,
2 2 2 2.
03181 + Uzp8) + K333 Q a4a 3
[
=a COS y4 +—=—5—CO0S 5.66a
V2 8w, w3 a3 1T w3, o ( )

where y, is defined in equation (5.51). The fixed points of equations (5.62)-(5.66) are
the solutions to the system F(X) = 0. Because the solution a;=a,=0 and a,# 0
identically satisfies F(X) = 0, one-mode solution is possible. The stability of these

steady-state solutions depends on the eigenvalues of the Jacobian of F(X).

5.3. Numerical Results

. . , 1 . .
Because Poisson’s ratio for most metals is close to —, in the example given here
3

the value v = % is used. The first eighteen values of &, the roots of equation (5.29),

for v =i are
3
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£,=1545 ~ £,=5266, &,=8.497, &,=11.677,

Es=14.841, Eg=17.997, &, =21.149, &, =24.298,

£g=27.445, ¢&,,=30.591, &, =33.736, ¢&,,= 36.881,

£43=40.025, &,,=43.169, &,5=46.312, &,5=49.456

17 =52.599, ¢&,5=155.742,

In calculating the I" ‘s only the first eighteen ¢’s are used. The results are accurate

up to six significant figures. The corresponding values of the a; and Q; are

(X11 = — 162.22202, 0112 = Ot21 = - 883.816, OL31 = 0(13 = — 1644-77,

Ogy = Olpy = — 14220.42, 0y = — 5552.16, 053 = — 34401.62,

Q,=Q,=—556.779, Q,=2Q,=— 1113.558

The amplitudes of the steady-state response are plotted as a function of the
detuning g0 of the excitation in Figures 5.1a and 5.2a and as a function of the
amplitude 2eh of the excitation in Figures 5.1b and 5.2b. For one-mode solutions,
a,=a, =0, an algebraic expression for a; is found, then inverted, and finally plotted
in Figure 5.1, which shows the jump phenomenon. For three-mode solutions the task
of finding closed-form algebraic expressions for the a, is difficult and hence a
numerical algorithm is used. Because the Newton-Raphson iteration process is

extremely sensitive to initial conditions for the problem on hand, an algorithm based
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on homotopy (Watson et al., 1987) is used to find the values of the a, for a fixed
abscissa in Figure 5.2. Once the ordinate of a point is found, the system X' = F(X) is
integrated along the curve to obtain other points for various values of the abscissa.
This saves a lot of computer time because homotopy alone is very expensive.

It follows from Figure 5.2 that three-mode solutions are possible only for a certain
range of parameters. Moreover, for small values of h the amplitude of the first two
modes are much larger than that of the third mode. Because the stable and unstable
branches in Figure 2a are very close to each other the detail for a; is plotted in Figure
5.3. Similarly y, and y, are plotted in detail in Figures 5.4 and 5.5, respectively. As
eo is decreased to 4.91, the stable branches lose their stability with a pair of complex
conjugate eigenvalues crossing the imaginary axis into the right-half of the complex
plane. In Figure 5.2b the solutions lose their stability as eh is increased to
Y1 =1022. At this value the fixed points lose their stability with a pair of complex
conjugate eigenvalues crossing the imaginary axis into the right-half of the complex
plane. Therefore y, is a Hopf bifurcation point (Seydel, 1988).

For values of ¢h greater than but close to Y, limit-cycle solutions are found. A
typical projection of the trajectory of these limit-cycle solutions on the y, — a; plane
along with corresponding time evolution and FFT are shown in Figure 5.6. Once the
limit cycle and its period for a particular value of ¢h is found the limit cycle and its
period for another value of eh is predicted by the computer algorithm of Apprile and
Trick (1972). The algorithm is based on a Newton-Raphson iteration procedure and
a numerical integration scheme. The stability of limit cycles is determined by
applying Floquet theory (Nayfeh and Mook, 1979). Because the system is
autonomous and periodic one of the Floquet multipliers is always + 1. If the modulus
of any other multiplier is greater than one then the orbit is unstable; otherwise it is

stable (Seydel, 1988). The limit cycle is gradually deformed and its period is slowly

5. MODAL INTERACTION IN CIRCULAR PLATES 123



varied as eh is increased until ¢h approaches the value ¥, = 1073.37 where the
modulus of one of the Floquet multipliers becomes greater than unity. At this point
the limit cycle is no longer stable. It is found that the period is abruptly doubled and
the period two orbit is stable for a certain range of eh. The process of period-doubling
bifurcations is continued as eh is increased, leading to a chaotic solution for the

modulation equations, as shown in Figures 5.7-5.11.
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Figure 5.1. The amplitude of steady-state response for one-mode solution when
Q~w,, (a) as a function of the detuning of excitation for ¢h = 1000, and (b)
as a function of the amplitude of excitation for ec =5. __ stable; —

unstable; ¢ = 1.067x10°% eu = .01.
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Figure 5.2. The amplitudes of steady-state response for three-mode solution when
Q=zw;, (a) as a function of the detuning of excitation for ¢h = 1000, and (b)
as a function of the amplitude of excitation for e =5. _
unstable with real eigenvalues; - - -, unstable with complex conjugate pair

of eigenvalues. & =1.067x10"% eu = .01.
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Figure 5.3. (a) The amplitude a; of steady-state response for three-mode solution as
a function of the detuning of excitation for ¢h = 1000. (b) The detail of the left
corner in (a). ___ stable; — — — unstable with real eigenvalues; - - -,

unstable with complex conjugate pair of eigenvalues.
&£ =1.067x107% eu = .01.
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Figure 5.4. (a) The phase y, of steady-state response for three-mode solution as a

function of the detuning of excitation for ¢h = 1000. (b) The detail of the left
corner in (a). ___ stable; — — — unstable with real eigenvalues; - - -,
unstable with complex conjugate pair of eigenvalues.
e =1.067x107% e = .01.
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Figure 5.5. (a) The phase y, of steady-state response for three-mode solution as a
function of the detuning of excitation for ¢h = 1000. (b) The detail of the left
corner in (a). ___ stable; — — — unstable with real eigenvalues; - - -,
unstable with complex conjugate pair of eigenvalues.
£ =1.067x10"%; eu = .01.
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Figure 5.6. (a) Projection of the limit cycle solution trajectory on y, — a, plane, (b) the
time evolution of y, and as, (c) FFT of the response, (d) the detail of FFT in

(c). ep=.01;e0 =5.0; eh = 1056.70, ¢ = 1.067x10-2,
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Figure 5.7. (a) Projection of the limit cycle solution trajectory on y, — a, plane, (b) the
time evolution of y, and as, (c) FFT of the response, (d) the detail of FFT in
(c). eu=.01;e0 =5.0; ¢h =1075.00, ¢ = 1.067x10~%.
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Figure 5.8. (a) Projection of the limit cycle solution trajectory on y, — a; plane, (b) the
time evolution of y, and a,, (c) FFT of the response, (d) the detail of FFT in
(c). eu=.01;e0 =5.0; eh = 1078.74, ¢ = 1.067x10-3.
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Figure 5.9. (a) Projection of the limit cycle solution trajectory on y, — a, plane, (b) the
time evolution of y, and a,, (c) FFT of the response, (d) the detail of FFT in
(c). eu=.01;e0 =5.0; eh =1079.270, ¢ = 1.067x10-%,
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Figure 5.10. (a) Projection of the limit cycle solution trajectory on y, — a, plane, (b) the
time evolution of y, and a,, (c) FFT of the response, (d) the detail of FFT in
(c). eu=.01;e0 =5.0; eh=1079.297, ¢ = 1.067x10-3.
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Figure 5.11. (a) Projection of the transient chaos trajectory on y, — a, plane, (b) the
time evolution of y, and as, (c) FFT of the response, (d) the detail of FFT in
(c). en=.01;e0 = 5.0; eh = 1079.301, ¢ = 1.067x10-2.
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6. SUMMARY AND RECOMMENDATIONS FOR

FUTURE WORK

6.1. Present Study

The method of virtual displacements is used to derive a set of five coupled
nonlinear partial-differential equations governing the response of composite plates.
The third-order shear-deformation theory of Reddy (1984a,b) and Bhimaraddi and
Stevens (1984) is used to account for shear deformations. In this theory it is assumed
that the transverse shear stresses are piecewise parabolic across the plate thickness
and that the shear strains vanish at the top and bottom surfaces of the plate. The
geometric nonlinearity of the von Karman type is considered and the effects of
inplane and rotary inertias are also accounted for.

The governing partial-differential equations for the cases of free vibrations and
linear stability are transformed into a set of five first-order ordinary-differential

equations for the case of Levy-type solutions. The state-space concept is used and
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the boundary conditions are applied to obtain equations for the natural frequencies
and critical loads of the problem of free vibrations and linear stability, respectively.
However, the straightforward application of the state-space concept is found to yield
numerically ill-conditioned problems as the plate thickness is reduced. Various
methods along with their advantages and disadvantages to overcome this problem
are discussed. An initial value method with orthonormalization is selected. Through
numerical examples it is shown that this method yields results that are in excellent
agreement with previous results in the literature. It is shown that the method
converges fast and yields all the frequencies and loads regardless of the plate
thickness. The results are compared with the results obtained by using classical
plate theory and it is shown that the application of CPT yields inaccurate results for
thick plates.

The interaction of modes in shear-deformable rectangular composite plates
subject to a harmonic external excitation is studied. A simply-supported plate is
considered and a Navier-type solution is obtained for the linear problem. One of the
natural frequencies is found to be near twice another one. Therefore, the case of
two-to-one autoparametric resonance is investigated. The method of multiple scales
is applied directly to the Lagrangian and four first-order ordinary-differential
equations governing the modulation of the amplitudes and phases of the interacting
modes are derived. The fixed points of these equations are determined. It is shown
that in addition to a one-mode solution, two-mode solutions are possible. In the latter
case, the mode which is indirectly excited through the internal resonance may
dominate the response. The stability of the fixed points are determined and for
certain plate and excitation parameter values, a Hopf bifurcation that gives birth to

limit cycle solutions is found. The stability of these limit cycles is determined by
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investigating the corresponding Floquet multipliers. It is shown that these limit
cycles undergo a sequence of period-doubling bifurcations, leading to chaos.

The nonlinear response of axisymmetric circular plates in the presence of a
combination resonance involving the first three modes is also investigated. The
method of multiple scales is used to derive a set of ordinary-differential equations
governing the modulation of amplitudes and phases. The fixed-point solutions and
their stabilities are determined. It is shown that the excited mode is not necessarily
the dominant one. As in the case of rectangular composite plates, a Hopf bifurcation
is found. It is shown that the response may be (a) a nonlinear single- or three-mode
periodic motion, (b) a nonlinear amplitude- and phase-modulated motion, or (c) a

chaotically modulated motion.

6.2. Recommendations for Future Work

The nonlinear dynamic characteristics of plates are very rich subject and need
extensive investigations. The study presented in this dissertation is just an
infinitesimal piece of the research that the subject deserves. The following related

topics are recommended for future study:

1. The use of Navier- and Levy-type solutions for composite plates is limited to
certain stacking sequences, boundary conditions, etc.. In the case of generally
laminated plates of arbitrary boundary conditions, another method such as
finite-element method needs to be applied to solve the linear problem, which is

the first approximation in a nonlinear analysis of the response of plates.
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2. Composite plates used in many space vehicles and structures are sometimes
designed to carry loads well beyond their buckling strength. Therefore, the

postbuckling dynamics of composite plates needs to be investigated in detail.

3. The method of multiple scales is used in the nonlinear analysis of circular plates.

These plates could also be analyzed by averaging the Lagrangian.

4. Modal interactions in plates needs to be investigated experimentally.

Comparison of the theoretical and experimental results is a necessity.

We also recommend that the classical plate theory should be avoided in the analysis

of thick and moderately thick composite plates.
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Appendix A. The elements of the coefficient matrix

in equation (3.10): free vibrations

The nonzero elements of the matrix A(w) in equation (3.10) with the subscript m

dropped are:

ayp=a34=asg=43agy =a7g =3ag 10 = 11,12 =1
A 2 2
ayq = Dgg( — 110" + " Aqq)/dy
A
8y 4 = — 0Dgg(Ay + Ags)/dy
A 2
ay5 = aDgg(lw” — °‘2511)/d1
N - 2 2 N
839 = Dgg( — hhw" + a"By4)/d,
49 = 0Dyo(Agp + Ags)/d
A 2 2 5 7 2
a3 = [Dzz( — ho" + 0" Agg) + Byolpw ]/dz
A 2 A - 2 2, ~ ~
46 = {Dzzlzw - Bzz[low — o (Dqyp + 2066)]}/0'2
Ay A ~
ss = (D23Bgy — ByyDsyy)ldy
A N A
8410 = — 0Bgy(D1 + Dgg)/dy
A - 2 N - 2 2 A +
a1 = [ — Dyoly0” — Byp( — l3w”™ + " Deg — D44)]/d2
- 2 2 N
8101 = Ags( — lhw" + o Byy)/d,
= 92 o~
8105 = 0Agg(low” — a"Dy4)/d,

a407 = aAge(Dyy + 2Dgg)/d4

Appendix A. The elements of the coefficient matrix in equation (3.10): free vibrations
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- 2 2 A *

a0,6 = Ags( — l3w” + a"Dyy — Dss)/dy
A A
40,12 = — 0Agg(D1 + Degg)/dy
8190 = — 0B,y(Agp + Agg)/ds
7 o2, A 2 2

a123 =~ [A22/2w + Bpo( — 0" +« Ase)]/dz

T2 2, ~ A 2
895 = {A22[/ow — o (Dyp + 2D66)] — Byhw }/dz

~ A )

19,8 = (ApoDpy — BB,/

A N
819,10 = ®Ap(D1y + Deg)/d,

- 2 2 A + A - 2
ap11 = [Azz( — l30° + o"Dgg — Dy4) + Byolpyw ]/dz
3 2
ag 1 = (8,104 + @10,4d5 + o Byy — ayw®)/dy
~ 2
g4 = [32,4d4 + 840,405 + 84382y + 812305 + lhw ]/ds
g5 = | 2504 + @10505 — @' Dyy + (Iy + &’ l)w” ] d
~ 2 2
ag7 = [32,7d4 + @40,705 + 84,6822 + a126D25 + 07 (2D, + 4Dgg) — Iy ]/ds
3 = 2
ag g = (@90 + 810005 + o' Dyq — ahgw”)/ds
~ 2, ~ ;2
ag 12 = [32,12d4 + @10,1005 + 4,11Bos + dy2,11Dp0 — a"(Dya + 2Dgg) + low ]/da
where
dy = AgsDes
A N 2

dy = AyDop — (B2a)
dy = Dyp — @48B2p — @128D52
dy = a4,B5, + 842,057

ds = 84,10Bag + 81210090 — (D15 + 2D4)
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Appendix B. The elements of boundary coeficient
matrices in equation (3.11): free vibrations

The nonzero elements of Ry and R; in equation (3.11) are:
i) Clamped edge

Ma=1rla3="a5="l4="r50= 511 =1

i) Simply supported edge

ra=rs=rzg="1

N
raa=Agp, r47=—Byp, r41=25y
N
fsa =By, r57=—Dp, rs10=Dp
3,22
rea =Ex, reg7=—"Fo, f6,12=7h 22
iii) Free edge
Ay
Ma=—0aAyp, ra=A~Ap, N;=—Byp, nip=B8By
2 A ~
roa=By, rs=aDy, r7;=—Dyn, rng=—aDyp, ryp=Dy
A 2~ ~ A N
r3a=By, r3s=oDyy, r37=—Dy, rg=—oaDy, r3=>D0y

Fao="~Aes, Tl43=tAgg

~ N A
rsg=—20Dgg, r540=Dgs, 511 = 0Dgg
rep = — Dyodyp 9 — Bopay o
fon=— 5 a — Booaya— lyw?
63— 228123 22843 — W
reg=—D. — Byyay g — 0%(Dyy + 4Dgg) + I3
66 — 228126 22846 — & (Uq2 66 3w

Appendix B. The elements of boundary coeficient matrices in equation (3.11): free vibrations
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reg = — Dyo84p5 — Bpoayg + Dy
re,10 = — Dpd4p 10 — Bgoy 10 + 0(Dq5 + 2Dgg)

- . _
Fea1 = — Dppdyp11 — Bppay 11 + 20" Dgg — lpw

where a;; are given in Appendix A and for convenience the subscript m of w and « is
dropped here.
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Appendix C. The elements of the coefficient matrix
in equation (3.10): stability

The nonzero elements of the matrix A(Ty, Tz) in equation (3.10) with the subscript
m dropped are:

a1p=a34=ase=3ag7 =ar8=43ag10=a11,12= 1
2 A N
@y = & DegArq/dy, @54 = — aDgg(Ay + Age)/ds
3 A) 2 A N
@5 = — o DegB14/dy, @59 =0"DgsBy4/d,
A 2 A
849 = 0Dy(A1g + Age)[dy, 843 = DyyAge/d;
2 A ~ ~ A A ~
846 = 0 Byy(D1y + 2Dgg)[dy . 845 = (DyBsy — ByoDyy)/d,
A N A N 2 A +
@410 = — Dyp(Dyy + Dgg)/dy, 84141 = By — «"Dgg + Dy4)/d,
2 A 3 ~ ~ ~
a1 = & AgeBr1/dy,  ay05 = — 0 AgeDy1/dy, @407 = aAge(D1z + 2Dge)/ 0
2 A * A A
A109 = Agg(0"Dqq — Dss)/dy di012 = — aAgg(D1g + Deg)/dy
A 2 A
@199 = — 0Byy(Arp + Agg)[dy, @193 = — 0 ByrAgs/dy
2 ~ ~ ~ A
Appe=—« A22(D12 + 2Dse)/°’2 s 818~ (A22022 - 322522)/d2
N A 2 N +
a2,10 = “A22(D12 + Dss)/dz y G111 = Azz(‘x Dgs — D44)/d2
3
8g 1 = (8y10y + 840405 + 0" Byy)/d3
g4 = (89,404 + 810,405 + 84 3825 + @12,30,,)/d5
4 2
ags = [32,5d4 + 19505 — o0 Dyqg + o 7'11]/d:-;

~ 2
ag7 = [32,7d4 + 810,705 + 84689 + @12,6020 + 0 (2D4; + 4Dgg) — Tzz]/da

Appendix C. The elements of the coefficient matrix in equation (3.10): stability 159



-
ag 9= (8904 + 819905 + 0"Dy4)[d,
~ )~ ~

ag 1y = [32,12d4 + @40,1905 + @4 1485y + dyp 14Dgp — & (Dyp + 2Dss)]/d3
where

A
dy = AssDsgs

A A 2
dy = ApDyy — (Byy)
dy =D,y — a4 5Byy — @15 6D97
dy = a,45Byp + @49 20y

ds = a410B2g + @19,10D22 — (D45 + 2Dgg)
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Appendix D. The elements of boundary coeficient
matrices in equation (3.11): stability

The nonzero elements of Ry and R; in equation (3.11) are:

i) Clamped edge
Ma=rya=r3s="rl46=I59="/g11 =1
i) Simply supported edge

Ma=ns=ryg="1

A
Faa=A0, I47==—Byn, r41="50p
A
rsqa =By, r57=—Dy, r51p=>Dp
res=E =—F —Fpy——2H
64 —L22s l67= 225 Tg12 =122 > M2
3h
ili) Free edge
N
Fa=—0Ay, ra=A~Ay, r;=—Byn, r1=~8y
) ~ ~
roa=By, Ns=0aDiy, r;=—Dy, reg=—aDy, =Dy
A o~ ~ N A
r34=By, rs=0Dy, r;=—Dy, rhg=—0aDy, r3p=>Dy
Fap="~es, Il43=0Agg
~ A A
rsg=—20Dgg, r510=Dgg, r511=0Dgg
Feo = — Dppdin9 — Bpod4o, re3=—Doayps— Byass
~ 2
e = — Dyod@lp 6 — Bopasg — o (D1 + 4Dgg) + Tpo

reg = — Dgp@4p8 — Booags + Dy
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re.10 = — Dax@3 10 — Baoas 10 + a(Dyp + 2Dge)

~ )
ro 1=~ Dyo@4g19 — Bopdy 14 + 20" Dgg

where a;; are given in Appendix C and for convenience the subscript m of «a is
dropped here.
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Appendix E. The constant coefficients in equation

(4.16)
Ay = 23_2 y oy =0y = 0
3r
g =% _[ J ’1 Q11+921+ga1 + 3(91 +g41)
2
_( dg 6g o9 39
- 2’o< 6_)2:1 a1 +— - 951 ’3|:< - 6;1 dxdy

b,a
oy = %L -L {is (932 +92+ 9322) + 1_3(g422 + g§2)

2
-{ 0gsy 0937 093, 2 0937
- 2’o< ox Ga2 + By s2 |+ I3 < x ) + By dxdy

Appendix E. The constant coefficients in equation (4.16)
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baa
_1 0941 9931 093, 0912
%= J; ,[) {A”[Q ax ox ox T ox

oy

2
0 0 0 0 0
+A22[2 924 0931 043 " 92 < 934 ) :|

dy 9y Oy dy
0911 0931 0gsp 0911 093y 0ga4

(

+2A66< dy 0x Oy + dy 0Ox 0Oy
09y1 093y 093 0931 093y 0gs
0x 0x Oy ddx 0x Oy
0912 0931 09a 090 0931 093
dy 0x oy dx 0x 0Oy

0911 0931 0gsp 0931 0931 093y

+A12[2 ox dy 0y dy ox  ox

2
" 0929 { 093 2+ 9915 [ 99s
oy ox ox dy

A | 094 [ 0934 2 0931 0dap 094
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Appendix F. The elements of the Jacobian matrices

The elements of the Jacobian matrix J, associated with equations (4.30) are:
Jir=— 1 — MGy — 2A3p4q,

1 2 2 2 2
Jig= (o4 + a,) + Apy — As(pr +345) — As(pz + 92)

Jyz = Ay — 2A5p,q,

Jig=— Apy — 2A5919;

Jpyy=— % (04 + a9) + Aypy + A3(3P12 + Q12) + As(P22 + C722)
Joo = — 4 + A4qy + 2A4049,

Jpza = A4py + 2A5p4p;

Jos = MGy + 2A5p49,

Ja1 = — 2A,q, — 2Agp49,

Jag = — 2Aop1 — 2A4G49;

Jaz = — py — 2A4P»G,

Jas = 05 — Ay(p3 + 363) — Ag(p + qf)

Ja1 = 2A9p1 + 2AeP1py

Jag = — 2A9q; + 2Agpy9,

Jia=— 0y + Ay(3p; + 63) + Ag(pF +a7)

Jag = — 1y + 2A4P29;

The elements of the Jacobian matrix J, associated with equations (5.38) are:
Jig == pg — Aqay siny,

J21 = 2A231 Sin ))1
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Jay = 2A,a, cOs y4/a, + 2(Ag — 2A3)ay

Jy1 = — 2A,a, cos y4/a, — 2Agay
Jip=—Mqa, siny,

Jag=—1p

Jag = (F cOS y, — Agal cos yy)fas + 2(Ay — 2As)a, — 2A4 COS 4
Jop=(— F cos v, + Aya; cos y,)a; — 2Aa,
Jia = — A4a4a, cOS y4

Joz = A2312 COS ¥4

Jas = (2A435 — Ayal) sin yy/a,

Jyz3 = A2a12 sin y4/a,

Jig=0

Joy = Fcos y,

Jas = F sin y,/a,

J44 = — F Sin 'Y2/32
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