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Chapter I 

INTRODUCTION 

Response functions are the target variables which arise in all 

experimental design systems. An industrial researcher will be interested 

in particular responses such as process yield or operation cost, which 

occur as functions of k independent variables subject to the control 

of the experimenter. This relationship can be represented as 

(1. 1. l) 

for some response n. 

In the conduct of an experiment, the natural variables t;1, i;;2, ... , 

sk must be confined to a region of interest R limiting their range. 

As an example in dealing with two factors, if ~l and ~ 2 represent 

reaction temperature and amount of reactant present respectively, R 

might be taken as the region 100°C ::_ t;1 ::_ 200°c, 5 grams .::. t; 2 .::. 15 grams. 

For mathematical convenience it is frequently desirable to dea1 with 

coded or design variab1es x1, x2, ... , xk obtained from the original 

variables by a simple linear transformation. Often this transformed 
k 

region is taken to be the hypersphere defined by .l X; 2 ::. 1, or a 
i=l 

hypercube such that -1 ::_xi ::_ 1, i ::: 1, 2, .•. , k. In the two variable 

example, the transformed variables become 

1 
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The standard representation of the response is then 

(l.1.2) 

The exact form of the relationship in (1.1.2) will be unknown; the 

usual practice is to approximate it by a polynomial of low degree 

within R. A linear or first order approximation might be 

where the s's are unknown parameters and must be estimated. A corre-

sponding possible second order model would be 

n = 81(0) + X1 81(1) + Xz81(2) + X1 282(1} 
2 

+ X2 62(2) + X1X2S2(12) • (1.1.4) 

The extended notation is necessary to avoid confusion with subsequent 

models. 

Although the design variables x1, x2, ... , xk are fixed by the 

experimenter and assumed to be measured with negligible error, the 

response is al so dependent on the constant coefficient parameters, the 

unknown s's. In order to estimate these parameters for a single response 

function, N observations of n are made, resulting in an estimator for 

the response itself. For a response y, a linear estimated response 

function is 

k 
Y = s1(0) + i~l x;s1(il (1. 1.5) 
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" where the s's are estimators of the true e's. Similarly, a full second 

order response is estimated as 

(1.1.6) 

" the B'S denoting estimators of the $ 1 S obtained when using a higher 

order model . 

Now since n as given by (1.1.4) for example, is merely (1.1.3) plus 

the addition of higher order terms which should or should not be included 

in the model, on what basis shou1d an experimenter choose one model 

over the other? Clearly, it is of central interest to accurately 

specify an approximating polynomial for the response function. The 

essential problem is how best to estimate this response so that 

ultimately~ efficient determinations of n can be made using (1.1.2) as 

a prediction equation. An experimenter might employ a low, perhaps 

first order model. Alternatively, he could use a model of greater order 

containing some degree of curvature. He might wish to effect a 

compromise between these two extremes. 

Preliminary test estimation is a widely used tool in statistics. 

It occurs most frequently in analysis of variance pooling procedures 

based on tests of hypotheses that particular variance components are 

negligible. It is quite natural to apply this general technique as an 

aid in developing a pre1iminary test estimator for the response. The 

general procedure will be to select y or g contingent upon the results 

of a test of hypothesis consistent with the objective of estimating n 

with some degree of precision. It should be noted that there is no 
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restriction on the order or form of the polynomial estimators y and j, 
only that approximations of 1ow degree of the type given by (1.1.5) and 

(1.1.6) are common in practice. Past researchers have primarily 

concentrated their investigations on preliminary tests of significance 

of higher order coefficients, either sequentially or as a whole, e.g., 

testing the hypothesis that s2o}, 13 2(2), and e2(l 2) in (1.1.4) are equal 

to zero. Either § or y would be chosen according to whether this 

hypothesis is rejected or not. We propose to construct a preliminary 

test estimator around a more meaningful hypothesis centered on the 

quality·of estimation of the response. This hypothesis and the criterion 

of estimation on which it is founded will be examined in great detail in 

Chapter III. 

Although this estimation criterion is peculiar to the body of 

statistical techniques known as response surface methodology, our models 

are within the framework of regression analysis, with the restriction 

that design level combinations are confined to the factor space R. In 

particular, we have outlined a univariate regression approach since in 

taking the observations on n, a single N x l response vector y_ can be 

formed, all observations considered as being similar polynomial functions 

of the same set of design variables, coefficient parameters, and corre-

sponding experimental error terms. The representations y and§ simply 

designate estimators of a typical individual response in the vector y_. 

Often it is desirable to simultaneously treat not one but several 

N x 1 observation vectors :i, y2, .. ., ~· For a given j, j = 1, 2, 

... , p, each~ is a univariate regression with the additional stipu-

1 at ion that there exists a covari a nee s true tu re among them. For this 
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multivariate regression model, it is frequently of interest to consider 

appropriate linear combinations of estimators of a single response 

function in each of the p models. These estimators may or may not reduce 

to the estimators obtained by treating each :J.. as a separate univariate 

problem, depending upon factors such as covariance structure assumed 

and type of multivariate model involved. As was the case with a single 

univariate regression, we wish to formulate a preliminary test estimator 

constructed around the control of certain properties of a linear 

combination of estimated response functions. 

Although each response vector has a unique set of coefficient 

parameters and error terms associated with it, this need not be the case 

with the design variables corresponding to a particular :J.; however, 

the standard multivariate regression model does in fact postulate the 

same design for all p observation vectors. This design, of course, 

consists not only of the N design level combinations, but also higher 

order terms as functions of the basic design variables. Returning to 

the two factor example, it is now practicable to deal with two separat.e 

responses, quantity of yield of products A and B, say. The experimenter 

may wish to employ the same design for these product yields, both 

being dependent upon ~l' reaction temperature, and ~2 , amount of 

reactant, a situation implying the use of the standard model. 

Alternatively, suppose that a researcher is investigating the 

process yield of a given product from data acquired from experiments 

conducted by two different companies. In all probability, the firms 

will have used different combinations of levels of the design variables. 

In addition. they might have projected dissimilar models, both in 
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degree and number of design variables. This is termed a generalized 
multivariate regression model, the distinguishing feature being a 

different design for each ~' all other conditions being equivalent to 
those of the standard model. 

The two multivariate regression models discussed enable one to 
accot11110date any number of responses of interest. In order to generate 
preliminary test estimators in both of these instances, we will devote 
considerable space to the development of a statistic for testing the 

hypothesis on which the estimators are based. As a consequence of model 

assumptions and covariance structure, several important special cases 
will be dealt with in detail. Graphical comparisons will be presented 
on the performance of our estimators relative to that of the estimators 
obtained under a test of the standard hypothesis. These comparisons 

also enable one to select an operating range of type I error probabi-

lities with which to conduct a preliminary test. 



Chapter II 

REVIEW OF LITERATURE 

Due to the widespread use of preliminary test estimation techniques 

in many areas of statistics as pointed out in Chapter I, we shall 

confine ourselves to a discussion of these procedures as they relate 

to regression functions w1th1n the framework of response surface 

methodology. This leads quite naturally to consideration of appropriate 

criteria by which to compare these estimated response functions. 

One of the first investigators to look at estimators of this sort 

was Bancroft (1944). Basing a preliminary test procedure on the 

hypothesis H: a2 = 0 when n = x1a1 + x2a2, he suggested the estimator 

ii • {. :1 if H is rejected 

l a1 otherwise , 

A A 

where ~l is the unrestricted least squares estimator of s1, and a1 is 

the least squares estimator of a1 under H. Utilizing normality 
" assumptions, he also obtained the bias of a, and tabulated this as a 

function of selected parameter values. 1 The estimation procedure was 

extended to k variables by Bancroft (1950) in the.treatment of subsets 

of the coefficient parameters in the linear nndel. 

An interesting variation of this technique although still applied 

to first order models, was presented by Larson and Bancroft (1963a). 

A sequential procedure was developed whereby variables are consecutively 
deleted from the model if one fails to reject the hypothesis that the 

7 
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corresponding regression coefficient is zero. An inverse approach 

involves the sequential addition of variables to the model, again based 

upon repeated tests of significance. In both instances, the bias and 

mean squared error of the resulting estimators of the response function 

were determined and tabled. 

A second paper by Larson and Bancroft (1963b) dealt with the bias 

and mean squared error of the estimator obtained under the more 

traditiona1 procedure, i.e., testing the joint hypothesis that an 
uncertain coefficients are simultaneously zero. 

An ·;mportant contribution to the somewhat more general problem was 

made by Toro-Vizcarrondo and Wallace {1968). Using the framework of 

the general linear model, they introduced the hypothesis that the mean 

squared error for any non-zero linear combination of the regression 

parameters in § is greater than or equal to the mean squared error of 

the same linear combination subject to linear restrictions on the 

coefficient space. Employing the standard test statistic used in 

testing general linear hypotheses on parameter coefficients, the mean 

squared error hypothesis was shown to be equi va 1 ent to a test on the 

noncentrality parameter of the noncentral F distribution arising from 

the standard statistic under error normality assumptions. It was 

further shown that this method is a uniformly most powerful test for 

their reduced hypothesis. 

Kennedy and Bancroft (1971) conducted extensive numerical i nves-

ti gations into the ratios of mean squared errors of the two sequentia 1 

procedures, concluding that "sequential deletion 11 is to be preferred 



9 

over "forward selection." In relation to an optimum range of test 

parameters1 they also studied the relative efficiencies of the two 

procedures to that of retaining all uncertain variables in the fitted 

equation. 
Still within the context of a single response vector, Ellerton 

{1973) developed a fam11y of test stati sties for the hypothesis that the 

integrated mean squared error of 9 is greater than or equal to the 
" integrated mean squared error of y, the integration being carried out 

over the factor space R. Under the assumption that the true model may 

contain terms in addition to those of j, he determined a general 

expression for the integrated mean squared error of the response 

function esttmator based upon the above hypothesis. 



CHAPTER III 

STANDARD MULTI VARIATE REGRESSION MODEL 

3.1 The Problem in Detail 

We wish to determine the form of p multivariate response functions 

which depend on known design variables restricted to some region of 

interest R. Let yl_, y2, •.. , :£.represent N x 1 vectors of independent 

observations. Using the framework of the general linear model, we 

postulate a model (linear in the parameters~) of the form 

Y. = X1 S l · + t: • , j ·= 1 , 2, ••• , p, 
:J_ - J -..:1. 

Nxq1-
(3.1.l} 

where cov{e:;) :i> = o;j:N' and ~ 1 consists of a column of 1 •s along with 

the N experimental combinations of the design variables with their 

powers and cross-products if applicable. Thus, the p observation 

vectors are correlated, and for a particular j, the model (3.1.1) is a 

univariate regression. In order to deal with the problem in a multi-

variate context, the basic model may be expressed more compactly as 

(3.1.2) 

where 

X = di ag [~p ~l' ... , X1] 
Npxpq1 

a1 = (aii~' efa, ... ' ~J 
: ( I I ~'] 

.:i.~ £: 2, ... ' :£. . 

10 
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The true model, however, insofar as can be determined, may contain 
terms not specified in (3.1.1). We denote this by 

Y · = Xl B1 • + X2a2 · + e. , j = 1 , 2, ••• , p, :.J. .. .:.!J.. .. :£J.. .:J.. . (3.1. 3) 

Nxq2 

where ~2 consists of the q2 contributions to the response over and above 
those of the basic model. Hereafter, we shall refer to this and similar 

models as the true model, although we can rarely ascertain the exact 
form of the true relationship. Equation (3.1. 3) can be further 
consolidated to 

* * y. = x a. + e. :.J. .. o :.J.. _J_ 

* for ~o = [~1 : ~2] 
Nxq0 

* B·' = [B1'., B2' .] • :J. .:...!J.. .:y 

Similar to (3.1.2) we finally write 

* * * * where ~ = diag [~0 , ~o' ••. , ~0 ] 
Npxpq0 

* [ *• *• L = B1 ' B2 , *•] .... ~ . 

(3.1.4) 

(3.1.5) 
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We make the standard assumptions on a multivariate regression model, 

i.e., 

E(~_) = O, var(£.) = f @ !N' f positive definite. 
pxp 

(3.1.6) . 

For f = (cr1j)' the assuroption on the covariance structure is equivalent 
* to cov (_:i, .:1) = crij !N· We further assume that rank (~0 ) = q0 , and 

that there are available sufficient observations to estimate all unknown 
* parameters in !._and l· 

Since the errors may be correlated and heteroscedastic, we apply 

generalized least squares to obtain estimators of the parameter vectors 
as 

Similarly, 

~ -1 
~ = [~'(f ®~Nr1 ~J ~·(f@!Nr1 y_ 

. -1 • n:-1@ x Ix ] [r l @XI] y_ - _,_, - _, 
= q@(~i~,r1J q-,®~iJ l. 
= [!p@(~i~1 r 1 ~iJ y_ 

(~l~l rl ~l Y1 

(~l ~l )•l ~l Y2 
= • -. . 

( I )-1 I 

~l~l ~1 ~ 

(3.1.7) 
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= (3.1.8) 

A ~ A ~* A* A* ~ 

Thus, for 131 = [~l p ah, ... , !:lzl and L 1 = (.'.:J_', s2 1 , ••• , 5_'], the 

multivariate estimators reduce to the standard univariate least squares 

estimators 

D = (X'X }-l X1 y pl . -1 ~ 1 ~ 1 ... i :..J)_ ~ 

making use only of the N observations associated with a particular 

regression. We shall see that this is not the case under the generalized 

multivariate regression model in Chapter IV. 

For a given j, we fit either the response function 

(3.1.9) 

or 

(3.1.10) 
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* where xl' x2, and x0 1 represent typical row vectors in the matrices 
- -- * - * A* ,:; A 

~l > ~2 , and ~o res pee ti ve ly, x0 1 = [xl , x2], and ~· = [Bi j_' s2j]. 
To illustrate, suppose we are dealing with two types of responses, each 

a function of two independent vari ab 1 es. For j = 1, 2, we consider 

A A 

Yj = 81j(O) + xlslj(l} + X281j(2) ; 

however we wish to afford ourselves a measure of protection against a 

situation where we should have fitted 

A* A. A A 2 ~' 
Yj = ~lj(O) + xlilj(l) + x2~1j(2} + xl 82j(l) 

2A A 

+ X2 82j(2) + X1X282j(12) • 

Here, p = 2, q1 = 3, q2 = 3, q0 = 6, Xi = [1 ,x1,x2], x~ = [x12,x22,x1x2J, 
2 2 " ·-;;-- ,- A -

[1,x,,x2,x1 ,x2 ,x1x2J, sh= [s1j{O)'alj(l)'alj(2)L * X I :::: 
0 

A A A A* A A A ~ 

[a2j(l)' 82j(2)' 82j(12}J , ~, = £s1j(O)'elj(l)'s1j(2}' 82j(l)' 
" ~ 

82j{2), 82J(12)J. 

3. 2 A Test Procedure for the Integrat_~d Mean Sguar~d Error Criterion 

As mentioned previously, the standard hypothesis on which to base 

preliminary test estimators for a univariate regression has been 

~2j = Q. given a particular j. Frequently however, an experimenter is 

interested not so much in what values are assumed by this parameter 

vector, as in how best to control certain properties of his estimator 

such as variance and bias. If one is comparing estimators according to 
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some arbitrary criterion, then it seems reasonable to use this criterion 

in the development of the estimator itself. For this reason in the 

multivariate problem, rather than testing the hypothesis e2 = Q. where 

a2 = [e21,e22, ••• ,e2p] and choosing a response_function model as a result 
of whether or not this is rejected, we propose to construct a performance 

oriented preliminary test estimator around a more meaningful hypothesis. 
" Suppose we define vectors of the p estimated responses, y_'= 

A A A A A* A* A* 

[y1, y2, ••• , Yp] and '§' = [y1, y2, ... , Yp]. It is often of interest 

to study appropriate linear combinations of these responses such as their 

sum. The criterion used will be that of mean squared error (MSE), 

averaged or integrated over the region of interest R of the independent 

variables x1, x2, ••. , xk. We shall test the·hypothesis 

where Jl = NK k MSE (,!!.1,i) d]i 

J2 = NK k MSE (d'f} d]i 

d' is a lxp vector chosen by the experimenter to reflect 

weighting of the responses. 

The integrated mean squared error criterion allows us to consider 

the performance of an estimator not just at a single point x1, x2, 

••• , xk' but over the entire region R. It further enables us to 
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examine both variance and bias of the estimators, similarly averaged 

over R. We denote these components as 

V1 = NK f var(~!!XJ d! 
R 

B1 = NK J bias2(Q..'lJ dx 
R 

v2 = NK J var{~1 ,b d! 
R 

where i and f are understood to be functions of x. Since the mean 

squared error of an estimator is the sum of its variance and the square 

of its bias~ it is immediate that J1 = v1 + s1. It is also clear that 
A* there will be no integrated bias contribution to J 2 since 1L is an 

* unbiased estimator of 13 (Press {1972) page 199). We assume that the 

vector of true responses is best represented by 

(3.2. l) 

In testing H0 : J 1 .~ J 2 , we are essentially attempting to determine 

whether the bias component B1 incurred by the addition of the terms in 

~2 to the basic model (3.1.1), increases v1 to the extent that 

J1 = v1 + B1 is larger than J2 = v2, the variance arising from these 

same supplementary terms. The additional terms can only increase the 

variance as shown in the following: 

Lemma 3.2.1: v1 < v2. 
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Proof: var(.Q.'i> = ~r [var(~) ].Q_ 

" = .Q_' [diag (x] ,xi, ... ,xp) var( a1 )[di ag (x1 ,Xp ... ,x1) ]d 
pxpql -- - - pqlxp -· - -

= £'(di ag(xi ,xi, ... ,xl) J[f@ (~l ~l )-1] -- -

(Press (1972) page 214) 

Therefore, v1 = NK f var(fi}d!i 
R 

where 

and 

= (d'Id) NK f tr(X'X )-1x x' dx - __ R ~Ll _1 _l -

= (d'f£) tr(~1i 1 ~11) 

-1 ( I ) M .. = N X;X. 
'" l J ~ _J 

µ.J. = K J x. x~ dx 
_1 R _1 J. -

(3.2.2) 

(3.2.3) 

(3.2.4} 

(3.2.5) 

are referred to as design and region moment matrices respectively. 

Similarly, 

{3.2.6) 

Now 
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* * 1 (X 'X r = .. o .. o . 

-AM 
= (3.2.7) 

-MA' M 

where (3.2.8) 

(3.2.9) 

(Press (1972)(2.6.4) and (2.6.5) and Graybill (1961) Theorem 1.49). 
Thus, 

( '*' (NM11 r 1+AMA' -AM x1 var & .u 1 1 .. .. .... 

d'~ f! = [:J_,X2] -MA' M X2 

-1 I -1 I A A' I MA' = N xl ~11 21_ + 21_ .. ~.. 21_ - x2 .. .. xl 

(3.2.10) 

Therefore, v2 = NK f var(d'l)d.! 
R 

= (f!'~ d)NK f [N- 1 tr(~1 i 1 x1 x1> + (xl~~x2)~(~'x1 -x2 )]d!. 
R -- - - --
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Comparing (3.2.11) and {3.2.3) gives 

(3.2.12) 

Assuming that R is such that (x1~-x2) ~ Q for at least one!_ e R, it 
-- - * * -1 remains to show that~ is positive definite. But since {~0 1 ~0 ) is 

positive definite from Theorem 1.24 of Graybill (1961), it is immediate 

from (3.2.7) that M is also positive definite using Theorem 1.23 of 

Graybi11 (1961). Hence, v2 - v1 > O. 

At this point we note that 

(Press (1972), page 214). This, along with (3.2.7), implies 

var(s2) = ~ @~ (3.2.13) 

for ~1 = [ih ' ~12' ... ' ~1 p] and 82 = [s2,, ~22 ~ .. ., s2f?J. 
For what follows, it will be convenient to rewrite H0 . Using 

(3.2.12), 

where 

v2 - v1 = (Q. 1 ~ st) NK l tr[~(~ 1 x1 -x2 )(x10-xz)] d3_ 

= (.Q.'f Q.) N tr(~ ~212) 

(3.2.14) 
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(3.2.15) 

(3.2.16) 

This enables us to express our hypothesis in the form 

(3.2.17) 

In order to obtain e1 , we first require 

£(~1> = diag [(XiX1)-lx1•, (XiX1)-lx1. 
- pql xNp - - - - - -

. .. ' 
(using (3.1.7) and (3.1.5)) 

* = diag [(Iq: A), (Iq : A), ••• , (Iq : A)]! 
pq1xpq0 - 1 - - 1 - - l -

= s1 + diag [A, A, ••• , ~] s2 • 
- pqlxpq2 - - -

(3.2.18) 

Therefore, 

E(.Q.'xJ = B.' [diag(xi t Xi' •.• t Xi)] E(61) 

= B.' [diag(xi, xi, •.• , xi)][~+ diag(~, ~' ••• , ~)s2 ] . 
(3.2.19) 

From (3.2.1), 

* * * * d 1.n.= !!_'[diag(x0 ',x0 ', ••• ,x0 ')] L 

= !!'[diag(xi ,x,, ... ,x1)s1 + diag(x2,x2, ••• ,x2)s2J . (3.2.20) 
- - -- pxpq2 -- --

As a result of (3.2.19) and (3.2.20), let 
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" b1 = bias (Q.1 ,t) 

~ 

= E(g_•~) ~ Q.'.!l 

= 9_1 (~!~~/xi~-xz, x1~-xz, ... , x1~~xz)]~1_. (3.2.21) 

Then, b12 = B2[£s!_ 1 @(~ 1 .:i_-x2 )(x1~-xz)]~, and since b1 is a function of 

.!~ we can write 

B1 = NK f b/d.! 
R 

= N 82[£ _<!'@~212] 62 ' (3.2.22) 

This suggests as the numerator of a test statistic for (3.2.17), 

the quantity 

(3.2.23) 

We obtain the denominator of our statistic by using the standard 

covariance estimator for a multivariate regression model, i.e., 

(3.2.24) 

where : = [:.r_, y2, ••• , :e_J 

Our test statistic is 
A 

B 
F = 1 

0 fr Q_ • 
(3.2.25) 
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For the univariate case defined by d' = 1,, it is interesting to 

note that if q2 = 1, then (3.2.25) is equivalent (except for a constant 

multiplier) to the usual statistic used in testing the hypothesis 

a2j = O for a given j. This statistic is 

s2j ~-1 s2jlq2 
F =------c " a .. 

JJ 

" ,.. 

(3.2.26) 

In particular if q2 = 1, then s2j = a2j' ~ = m, and ~212 = m212 are 
scalars so that 

Nm e2 
F = 1 ( 2! 2 2j) 
c Nm ~12 . a .. 

JJ 

(3.2.27) 

for d1 = 1. This relationship does not hold in general, however. We. 

shall see in Chapter V that once distributional assumptions are made, 

the two procedures have different critical regions even for q2 = l, 
owing to the different hypotheses on which they are based. 

We now obtain numerator and denominator expected values in F0 • 

Utilizing Press (1961) (3.2. ll), 

E(Bl) = NE[B2 (~~·@~212)B2] 

= N B2 [~ g_• @~212JB2 + N tr[{f@~)(d ~· @~212)] 



23 

(3.2.28) 

Since f is unbiased (Press (1961) page 212), 

E {.Q.' f .Q.) = ft' l £L • (3.2.29) - -

The ratio of expected values in (3.2.25) yields 

(3.2.30) 

(3.2.31) 

The hy~iothes is J1 ~ J 2 can now be written 

(3.2.32) 

If we are unwilling to make distributional assumptions on the errors, 

then a reasonable test procedure (and thus an estimation procedure) 

based on (3.2.30) is 

~ 

accept H0 otherwise and fit y,_. · 

We remark that the standard statistic Fe is unsuitable for testing 

H0 from the standpoint of the ratio of expected values since 

A . 1 ~ I -1 tr(M M-1) E[S2j~- S2jq2J s2 .M s2. ---1- _J = A + 
E(a .. ) 

JJ q2cr jj q2 
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I -1 a2 .M a2 . .:.fJ..- .:.fJ_ 
= + l (3.2.33) 

q2ajj 

The explanation, of course, is that Fe is designed for testing hypotheses 

on the parameter vector, e.g.,a2j = O. In the multivariate problem, 

while it is true that a2 = O implies B1 = O and thus that J1 < J2 by 

virtue of Lemma 3.2.1, the equivalence is only one-way, i.e., it may be 

the case that J1 < J2 although a2 r Q... Thus, we could find ourselves in 

the position of rejecting one of the two hypotheses while failing to 

reject the other. 

By way of illustration, let us return to the example of section 3.1. 

Suppose N = 9, !!.' = [1,1], Yi= (2,l,-l,3,-4,0,-2,4,-1], 

:i_ = (-3,2,3,0,l,-l,4,-2,3], and 

xl X2 22 Xl -Xl 2~ X2 -X2 XlX2 
., 

l -1 -1 "1/3 1/3 1 

1 -1 0 1/3 -2/3 0 

1 -1 l 1/3 1./3 -1 

1 0 -1 -2/3 1/3 0 

* x = _o l 0 0 -2/3 -2/3 0 

1 0 1 -2/3 1/3 0 

1 1 -1 1/3 1/3 -1 

1 1 0 1/3 -2/3 0 

1 l 1 1/3 1/3 1 
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where x12 = 2/3 and x22 = 2/3 represent means of x12 and x22• The matrix 
* ~o corresponds to the slightly rewritten model 

"J = alj(O) + x1 81J(l) + x2alJ(2) + (x1 2-x1 2)62J(1) 2, 
+ (x2 -x2 )a2j(2) + x1x2a2J(l2) 

where slj(O) = alj(O) + ~a2j(l) + x22s2J(2)' j = 1, 2. 

The revised model is used merely for computational ease in obtaining 

estimates of the parameters since (~:·~:)-1 = diag[l/9,l/6,1/6,l/2,1/2,1/4). 
Also, 

1 1 1 1 1 1 1 1 1 

X' = -1 -1 -1 0 0 0 l 1 1 _l 

XI -2 -

-1 0 1 -1 0 1 -1 0 1 

1/3 1/3 1/3 -2/3 -2/3 -2/3 1/3 1/3 1/3 

1/2 -2/3 1/3 1/3 -2/3 1/3 1/3 -2/3 1/3 

1 0 -1 0 0 0 -1 0 l 

so that ~i~2 = ~ implies ~ = ~· If th~ region of interest R is 

-1 ~ x1 ~ l , - l ~ x2 ~ 1 , then 

· ~212 = K f x2 x2 d~ 
R--

.. l l 2 2 I 2 2 = K _{ _{ (xl -2/3,x2 -2/3,x1x2) (xl -2/3,x2 -2/3,x1x2) 
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1/5 1/9 0 

= 1/9 . 1/5 0 

0 0 1/9 

From (3.2.7), M = d1ag[l/2,l/2,l/4] and -
1110 111a o 

~ ~212 = 1/18. 1/10 0 

0 0 1/36 

Therefore, a1 = N tr (~ ~212 ) = 9(41/180) 

= 2.05 • 

* From (3.2.1) and using the fact that ~o = [~1 : ~2 ] with ~i ~2 = ?' we 
obtain 

Employing (3.2.23), we can write 

01 = N<s21 + 622)' ~212 (s21 + 622) (3.2.34) 

for !!_' = [l, 1 J. This yields 
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1/5 1/9 0 2 
,. 
Bl = 9(2,1/2,-3/4] l/9 1/5 0 1/2 

0 0 1/9 -3/4 

= 10.2125 • 

Applying (3.2.24) gives 

r = [13.93 .. 7 .48] 
- -7.48 9.17 

so that!!..'£!!..= 8.14. Therefore, -
,. 

. B 
F0 = ! = 1.25 < 4.10 = 2a1• 

!!..' l !!.. - ' 

We are unable to reject H0 and as a result, we fit i:= [J1,y2] 

A A h A A 

where Yj =xi alj = alj(O) + x1a1j(1) + x2alj(2)' j = 1, 2. 

3.~ 3 An Approximation to the Dis tri but ion of F 0 

Thus far, we have made no distributional assumptions, and 
\ 

consequently, have been unable to determine type I and type II error 

probabilities. In order to investigate the power function for a test 

procedure based on F0 , we now invoke error normality and assume 

(3.3.1,) 
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The distribution of the denominator of F0 can be obtained with 
' little difficulty and is, in fact, a special case of the multivariate 

Wishart distribution. From Press (1961) (8.4.13), 

using Press (1961) Theorem (5.1.6). The density function of 
A 

(N-q0 )!t' l & is -
N-qo -r - 1 -v/2&' r & 

v e - , v > o .. 

If we make the transformation u = v/d'l _g_, then the density function of 
,.. 

(N-q0 )d'~ QI&'~ & is 

f ( u) = __ l__,,,N.---q-
N-q __Q, r<T) 2 2 

N-qo u 
--1 - -

u 2 e 2 , u > 0 (3.3.2) 

or 
d 1 t d 

( ) - L - 2 
N·qo - - X N q • 

&'Z: & - 0 
(3.3.3) 

We now turn our attention 1 to the distribution of a1• From Press 
(1961) page 214, 
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Equation (3.2.21) gives us 

var(b1) = !i' [diag(xi~-x2• x1~-x2, .. ., x1~-x2)][f@~] 

[diag(~'x1 -x2 , ~·x1 -x2 ,.· •• , ~·x1 -x2 )] !i 

Thus, 

and (b1)2/!i1b d - b(,!) x•f,A(,!) 

where A(,!) = b1/[b(x)!i'b .!!)112• 

Since 

where w - N(0,1). 

(3.3.5) 

(3.3.6) 

(3.3.7) 

(3.3.8) 

. (3.3.9) 

(3.3.10) 

Expanding the right-hand side of (3.3.10) and applying (3.2.31) along 

with a1 = NK J b{x)d_!, ultimately yields 
R 

(3.3.11) 
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where a2 = (!!.' /~ 1/2. i [b(~)] 1/2 bid~ • (3.3.12) 
< ~ 

The integration to be conducted in (3.3.12) does not lend itself to 
an explicit expression save for special cases to be discussed in 

section 3.5. The form of a2, however, suggests a means by which we can 

approximate the distribution of e1/d•f !!_. The integral version of the 
cauchy-Schwarz inequality implies 

a2 ~ [(NK f b(.!}dx)(NK f (b12h!'l !!_)dx)]1/ 2 
R R ~ 

~ (ala3) 1/2 • 

a2 a3 1/2 
Therefore, a< (a) . 

l - 1 
(3.3.13) 

Using this bound, 
,.. 
B 

!!.'~ !!. • a1[w2 + 2(a2ta1)w + a3/a1J 

z a1[w2 + 2(a3ta1)112w + a3ta1] 
' 2 

z a,(w + (a3/a1)1/2] (3.3.14) 

(3.3~15) 

Under normality, the numerator and denominator of F0 are independent 
quadratic forms (using Graybill (1961) Theorem 4.21), so that our 

• statistic can be approximated by the ratio of independent chi-square 
variates, i.e., 



6 /d'ld F = 1---. 
0 &'f W£:I .9. - -
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(3.3.16) 

In order to obtain an explicit expression for the power function P 

of a test procedure structured around (3.3.16), we sha11 use (3.3.14). 

If D is a positive constant, 
(l 

1 - P = Pr(F0 ::_ Da) 

2 
= Pr[a1(w+(a3/a1)112} ~ Da U/(N-q0 )] (3.3.17) 

where (3.3.18) 

Equation (3.3.17) can be written 

DU 1/2 a3 1/2 DU 1/2 a3 1/2 
1 M P :!: Pr[- ( ( ~) - (-) w < (-,g-;:--\) - (-) ] a1 N-q01 a1 - a1\N-q01 a1 

1 
N-q 

0 -··-· N-q 
2 2 r<T) 

2 
e-z 12 dz] 

(3.3.19) 
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utilizing (3.3.2) and w - N(O,l). This enables us to determine critical 

points D corresponding to designated a levels or probabilities of 
(); 

type I error by making the substitution a3/a1 = 1 under H0 • If the 

approximation of the distribution of F0 by noncentra1 F with noncentrality 

parameter (a3ta1}112 were exact, the resulting test procedure, 

accept H0 otherwise 

where O is such that P = o:, would constitute a uniformly most powerful a 
test of H0 (Lehmann (1959) page 68). This occurs in a special case to 

be outlined in section 3.6. Excepting this special case, the application 

of (3.3.19} will require numerical integration for determination of 

critical points and type II error probabilities. Alternatively, one may 

employ (3.3.16) in conjunction with existing approximations or tables 

of the noncentral F distribution. 

Under H0 : a3;a 1 ~1, the maximum difference between a2Ja1 and 

(a/a1) 112, incurred using (3.3.13), ensues when a2;a1 = 0, (a/a1) 1.1 2 

= l. This particular situation is, of course, impossible since 

(a3;a1) f 0 implies b1 1' 0 so that a2/a1 'f o. Nevertheless, we will 

use this as an indication of the most pessimistic comparison arising 

from the use of our approximation procedure versus the 11 true 11 distri-

bution, recognizing that the actual disparity may be considerably less. 

The following table represents the differences between the nominal a 

levels obtained using (3.3.15) and the '1true 11 a levels obtained using 

{3.3.11), i.e., nominal a - 11true 11 a. As will be demonstrated in 
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Table 3.3.1 Effect of Bound Substitution (3.3.13) 

Nominal a a Difference 

' ' 
.01 .0086 

.05 .0358 

.10 .0596 

.18 .0790 

.25 .0749 

.30 .0580 

.35 .0278 

.37 .0124 

.38 .0012 

.39 -.0054 

.40 -.0238 

.45 -.1052 

.50 -.2490 
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Chapter V, our pr1ncipal interest is 1n a su1table range of a values, 
not in a precise a per se. Thus, although the magnitudes of the true 
discrepancies w111 be smaller than those of Table 3.3.1, even the 

tabular differences shown are well within our tolerances. 

3.4 Integrated Mean Squared Error of the Preliminarl 
Test .Estimator 

Our preliminary test estimator is 

,.. ~ ~ if H0 is rejected 
y = 
_.Q. i otherwise • 

(3.4~1} 

For subsequent work, it will facilitate matters to be able to represent 
j in terms of i_. Using (3.2.7), consider 

"* * * -1 * 
~ = ( ~o ' ~o) ~o ' :J. ' j = l ' 2 ' ••• ' P 

= 

= 

= 

( N~l 1 )-l ~i :J. + ~~I ~i :J. - ~~~2 2 

"' ,.. 
s1. - A a2 • .:.:1.J.. - .:bl. 

{3.4.2) 
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~ 

Thus, a1 
A A 

= (81 - diag(A,A, •• .,A} a2] and recalling (3.1.lO), 

We write 

fl1y0 = s!' [diag(x1 ,xl, ... tx1) Ja1 + <>s!' (diag(x2-x1~,x2·x1~' ... ,x2-x1~)]s2 
(3.4.3) 

= {l if M0. is rejected 
where 0 O otherwise 

Since the estimation criterion being studied is that of integrated 

mean squared error, it is only natural to investigate 

J 0 = NK i MSE(fl'y0_) dx 

= NK f E(ft'y0 -1'!1) 2 dJ5... 
R -

Comparing (3.4.3) and (3.2.20) gives 

E(£'y0 -!!'n)2 = E{1'[diag(x1,~i, ... ,xi_He1-ECs1)) 

+ 6 di ag (x2-x1 ~,x2-xi~, .. .,x2-x1 ~){~2-!:£) 

+ (o-1) diag(x2~~l~'x2-x1~, ... ,x2-xi~)B2 ]l 2 

from (3.2.18}. Continuing, 

E{g!y0 -.9.'n) 2 = E{1' [diag(x1 ,x1, ... ,xpJ<s1-E(s1) )} 2 
-- -· --

(3.4.4) 

+ E{ o~f [diag(~2-xi ~,xz_-xi ~' ... ,x2-x1 ~) J (a 2-~) }2 

+ E{ ( o- l)Q.' [di ag (x2-xi ~,x2-x; ~' ... ,x2-xi ~)] }2 
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+ 2E{o.Q_1 [diag(xi,x1, ... ,x1)J(s1-E(s1))(s2-$2) 1 

-·- - - -- ---
[diag(x2-A 1 x1,x2-A 1 x1 , ••. ,x2-A•x1)],9_} 

,,,.,. .... ...... - --- -- - -

employing o(o-1) = o. Simplifying gives 

E(sl_'y0 -d'y1) 2 = Q.1 [diag(x1 ,xl , ... ,xpJvar(s1 )[diag(x1_,~, ••• ,x1 )J-9_ 

+ E{oiJ.' [diag(x~(xl~'x2-_xl~' ... ,x2-x1~)]{62-~) }2 

+ (l-E{o)){,9_1 [diag(x2Mxl~'x2-x10, ... ,x2-xi~)J~2 1 2 

,< A 

+ 2E{Q.1 [diag(xi ,~i,···,~j_)J(s 1 -E(a1)) 

where (o-1) 2 = (1-o). Under normality assumptions, the fourth term in 

(3.4.5) will vanish by virtue of the fo11owing: 

Lemma 3.4.1: If§_~ N{Q., f@ ~N), then E[{a1-E(s1 ))(oa2>'J = E· 

Proof! For i, j = 1, 2, •.• , p, --

from the proof of (3.4.2). Thus, 



37 

A 

Since s1 and a2 are distributed normally, the two are independent so 

that 

Utilizing (3.4.4), {3.2.2), (3.2.3), (3.2.21), (3.2.22L and Lemma 3.4.1 

enables us to write {3.4.5) as 

J0 ~ V1 + (1-P)B1 

+ NK f EHf!![diag{x2-x1~,x2-x1~, ... ,x2-x1~)](a2-s2 )} 2 {3.4.6) 
R --- --- -- ---

for E{o) = P. 

The evaluation of the first two terms of (3.4.6) is straightforward 

for specified parameter values. The major problem is in the deter-

mination of 

J03 = NK f E{&.Q.. 1 [diag(x2~x1~,x2-x1~, ... ,x2-xi~)](s 2-a2 )l 2 
R --·-· -- --- ---

= E{c[NK f (b1-b1)2d_il} 
R 

= a1£'f .Q..E(oY) (3.4.7) 

(3.4.8) 

Conditions under which J 0 can be eva 1 uated exactly wi 11 be discussed in 

section 3.5. For the present, we shall confine ourselves to an 

estimation procedure for E(oY). Our preliminary test critical region 
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is equivalent to (using (3.3.9)) 

~ 

or Y > y a. 

where 

Therefore, the random variable oY has a truncated distribution, 

suggesting as an estimator 

" "" 
J 03 = a1g_• f & [ t f(t)dt 

ya, 

(3.4.9) 

(3.4.10) 

where f(t) is the density function of Y. We remark that one could 
" integrate with respect to the random variable U in y and write {3.4.10) 

Cl 

as a double integral; however, since b1 in (3.4.9) must be estimated by 
" b1 using the observation vector x..~ it seems reasonable to use these same 

observations to estimate l· In order to determine f{t), we proceed as 

in section 3.3. From (3.3.8), 

~ 2 . 2 
(bl -bl ) ~ b (~_)£' f g_ X] 

,. 2 2 
NK f (b1-b1) d~ - a1.f f Q. x1 

R 

(3.4.11) 
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ya 
.. _L_ I t l /2e -t12dtJ 

l2if 0 

If;, -t 212 
- _2_ J t 2e .1 dt ] 

l2"1r 0 1 1 

making the transformation t1 = t 112• 

Integrating by parts, i.e., 

f r dt = rt - f t dr (3.4.12) 

-t 212 
where we equate r = t 1 and t = -e 1 , results in 

" " . 1 /2 -y 12 
J03 = alf!.'f d[(2ya/~) e a + 2t(-f.Y;)] (3.4.13) 

and j 0 = V1 7 (1-P)B1 + 303 • (3.4.14) 

Of course the difficulty in this procedure is that in general we are 

unable to evaluate E(oY} exactly, owing to the fact that y is not a a 
true constant but a random variable. We shall now discuss a special 

case for which exact expressions for J0 can be obtained. 

3.5 The Single Independent Variable 

If q2 = 1, much of.the preliminary test estimation problem is 

simplified. Without loss of generality, we shall restrict consideration 

to perhaps the most common example of this, the situation in which each 

of our p estimated responses is a function of a single independent 

variable x. As in the example of section 3.2, let 
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* x = 1 _o 

1 

N 

x x2-x2 
22 

><11 -x 
x 2_~2 

12 

and assume l x1J. = O so that 
j=l 

1 0 0 

* * x2 ~3-X 1 X = N 0 .o _o 
0 x3 x4' 

1 0 

Hence, ( *1 *)-1 = l 0 -~4. /0 :o ~o N 
0 -~3/0 

and M = l!ND 

where D = {l)(x41 ) ~ (x3) 2• 

40 

0 
3 -x /D 

x210 

(3.5.1) 
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1 - -- 2 
~212 = K_{ [x2 + (x3tx2)x - x2] dx 

.....,... 2 -2 -2 = '[(x£·1/3) . + 4/45 + (x3) /3(x2) ] 

for K = 1/2 and R such that -1·<x~1. 

Thus, al = N tr (~ ~212) 
- -:2 2 -2 -2 = x2 [(x -1/3) + 4/45 + (x3) /3(x2) ]/D • (3.5.2) 

Similar to (3.2.34), we can write 

a = N(d's }' M (d 1s )/d'~ d 3 - _£ _212 - _£ - f -
- 2 -2 -2 = N(.Q.1 s2)2[(x2-1/3) + 4/45 + (x3) /3(x2) ]/.Q.'f .Q. 

giving a3/a1 = ND(.Q.'s2)2tx2(d'f d). (3.5.3) 

Critical points D and probability of type II error are then obtained by a 

employing (3.5.2) and (3.5.3) in (3.3.19) with q0 = 3. From (3.3.12), 

-1/2 
( Nx2) (.Q.' s2) 

a = ---...,,....,...,--
2 [D(.Q.' l d)] l /2 

-1/2 
(Nx2) .(.Q.' s2) 

= [D(.Q.' l d)] 1 /2 

-:2 2 -2 -2 
[(x -1/3) + 4/45 + (x3) /3(x2) ] 

~ 

implies a /a = (ND) 112(d's )/(x2 (d'~ d)J112 . 2 1 -.1. -f-

= (a3/a1)1/2 . (3.5.4) 
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Thus, the distributional results obtained in section 3.3 are exact for 
the single independent variable case, and we do not have to make use 

of the bound substitution in (3.3.13). 

To determine the integrated mean squared error of our preliminary 
test estimator for the case of the single independent variable, we shall· 
examine its two components separately, i.e., 

where 

= V + B 0 0 

V0 = NK i var(.Q_'y0 )d.! 

80 = NK f bias2(.Q.'y0 )dx . 
R -

From (3.4.3), (3.2.20), and (3.2.18), 

bias(d'y ) = E(d'y ) - d'!t - ..J!. - ..J!. -

" = s!' [diag(x2-x1~,x2-xi ~· ••. ,x2-xi ~) ][E(o~)-a2J 

= [x2-(x3/x2)x-x2]{E[o(d 1 a2) ]-.Q.1 a2l 

(3.5.5) 

(3.5.6) 

{3.5.7) 

for the single independent va ri able cas\e. Expanding ( 3. 5. 7) yields 

+ E[ 6 (.Q.' a2)] - .Q.1 621 

= [x2-(x3;x2)x-x2J[(var(.Q.1s2))112E(ow)+(P-l)d 1 62l - -
(3.5.8) 
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where w ~ N(0,1), E(o) = P, and 

var(.Q.' a2) = x2 (.Q.' f .Q.)/ND • 

1 . 1/2 2 
Therefore, B0 = N[(x (.Q.1 ~ .Q.)/ND) E(6W)+(P-1)d'a2J 

1 . -:z -2 
K_{ [x2-(x3/x )x-x2J dx 

-.,.. 2 -2 ~2 -= N((xG-1/3) +4/45+(x3) /3(x ) ]((x2(d't .Q.)/ND)112 

2 
E(ow)+(P-l)d 1 a2J • 

(3.5.9) 

(3.5.10) 

In order to evaluate E(ow), we now reformulate our preliminary test 
critical region for the single independent variable case. The 

inequality F0 > Da reduces to 
1 -· - -2 

N(~•a2 ) 2 K_{ (x2-(x3tx2)x-x2] dx > Da.Q.'~ .Q. 

and o = 1 only if 

where 

- . -2 -2 1/2 
d'a2 > {Dad'f dU/N(N-3)[(x2-1/3)2+4/45+(x3) /3(x2) ]l 

or _ 2 _ 2 _ 2 1 /2 
d'a2 < -{Da&'f dU/N(N-3)[(x2-1/3)+4/45+(x3) /3(x2) ]} - . 

. d'f d 2 . 
U = (N-3) - - - - xN_3 • 

g_• ~ .Q. 

" Normalizing .Q.1 a2 gives the equivalent condition 
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(3.5.11) 

w < RLIU 

-· - 2 - 2 -· 2 l/ 2 
for RHju = {000 U/x2(N-3)[(x2-l/3) +4/45+{x3) /3(x2) ]J 

- 1/2 - ~rs2/[x2 <f I £)/NDJ 

= [DaU/al(N-3)]1/2 - (a3/a1)1/2 (3.5.12) 

RLIU = -(DaU/a1(N-3)J1/ 2 - (a/a1)1/2 (3.5.13) 

where we agree to restrict .Q_ 1 e 2/[x2 (d 1 ~ f!)/NDJ 112 to the positive root 

( a3; a1 ) 112 due to the fo 11 owi n;: 

Lemma 3.5.1: If .Q_'a2 'f O, then the multiplication of Q.1 s2 by (-1) 

results in the multiplication of E(ow) by (-1). 

Proof: The random variable ow has a truncated distribution, allowing us 

to write for .Q.1 e2 > 0, 

ro RLjU oo 

E(ow) • f [f zf(z)dz + J zf(z)dz] f(u)du 
0 -oo RHIU 
oo -RL!U 

= J [ f zf(z)dz} f(u)du 
0 -RH I u 

{3.5.14) 

where f(u) is given by (3.3.2), and f(z) being the N(0,1) density 

function implies zf(z) is an odd function. If Q.1 e2 < O, then using 

(3.5.14), 
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oo [Dau/a1(N-3)]1/2_(a3/a1)1/2 
E(ow) = f [ f zf(z)dz] f(u)du 

0 -[Dau/a1(N-3)]1/2_{a3/a1)1/2 

00 -RLIU 
= -f [ J zf(z}dz] f(u)du . 

o -R11 1 u 

Clearly then, the sign of .Q.1 $2 will have no effect on {3.5.10), and wi11 

similarly have no effect on the variance component of J0 as will be seen 

when we turn our attention to V0 . In Appendix I, it is shown that 

(3.5.14) can ultimately be expressed as 

h;.JL 
g+l 

f --
-h/..JL g+1 

[v-2] 
-u 212 -2- . 2¢+1 

uv-1-ee 2 du + 2 l r.>-1 } {hrg),___ 
2 2 <fi=O 2rJ>+ l ( /g+f} v+2<t> 

ro -U 2/2 ] f - ur2-2q>e 3 dU3 . 

hl9~1 
(3.5.15) 

with g and h given by (A.2), v = N - 3, and c>;/J denoting the largest 

integer less than or equal to (v-2)/2. The integrations in (3.5.15) 
-u.2/2 

can be evaluated by successive use of (3.4.12), identifying uie 1 

(i = 2,3) with di. Determination o~ E(ow) is further facilitated by 
-u /2 

utilizing the fact that u2v-l-ee 2 is either an odd or an even 

function being integrated over a finite symmetric range about zero. 

Thus, we obtain B0 from (3.5.10) and {3.5.15). 
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Turning our attention to the variance component of J0 , we recall 

(3.4.3) and write 

var(£1 y0 ) = _q_• [diag(xi ,xl, ... ,xl) ]var( s1) [diag(.J_,j_, ... ,.:i_) ]d 

+ E{o9_1 [d1ag(x2-x1~,x2-xl~' ... ,x2-x{~)] s2}2 

- E2{od'[diag(x2-x1~,x2-x1~, ... ,x2-xi~)] s21 

" 
~here cov{d' [diag(xl .xl , .•. ,xl )]!:l_, o.<!' [diag(x2-xl~'xi~xl~'· .. ,x2-x1~)] 
s2l = O, invoking Lemma 3.4.1. Employing {3.2.2), (3.2.3), (3.3.5), 

and (3.3.9) yields 

Manipulations similar to those leading to (3.5.B) and (3.5.10) result in 

- 2 -2 -2 
V0 = v1 + a 1 .9_ 1 ~ £E{oY0 ) - N[(x2-1/3) +4/45+(x3) /3(x2) ] 

-· 1/2 2 
[(x2 {g_'~ .<!)/NO) E(ow)+P g~'132J (3.5.16) 

where (3.5.17) 

As was the case with (3~5.10), we note that the sign of 1'B2 does not 

affect V0 as a consequence of Lemma 3.5.1. 

To evaluate E(oY ) , we use (3.3.18) and write F0 > D as o a 

where (3.5.18) 
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The random variable oY0 has a truncated distribution for which 

E(oY0 ) = f [j. sf(s}ds] f{u)du 
0 Rju 

(3.5.19) 

where f(u) is given by (3.3.2), and f(s) is the noncentra1 x/ density 

function of Y0 , i.e., using (3.3.15) and Rao (1965) (3b.l.15), 

-a /2a co 
f(s) = e 3 1 l 

i=O 

(a3/a1)i(1/2)(4i+l)/2 
5 (2i•1)/2e-s/2. 

r{i+l )r(i+l/2) 
(3.5.20) 

Making the transformation s1 = s1/ 2 

(3.5.21) 

Save for the special case of the next section, the evaluation of E(oY0 ) 

will require numerical integration simi,lar to (3.3.19), which for the 

case of the single independent variable is 

°" 1 
1-P=f[-.· 

0 12-:rr 
(3.5.22) 

Therefore, V0 is obtained from (3.5.16) and (3.5.21). 
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3.6 A Special Case: £1I .Q. Known 

Knowledge of £1 Z: £ considerably reduces the magnitude of the 

problem. Our test statistic is now simply 

{3.6.l) 

and from (3.2.28) and (3.2.31) with no distributional assumptions, we 

accept 110 otherwise. 

Under normality, we use (3.3.14) for 

1 - P = Pr(C <D ) o- a 

a Pr[a1(w+(a3;a1)1/ 2)2 .::. Da] 

a Pr[-(Da/a1)1/2_(a3/a1)1/2 < w .:'.:. (Da/a1)1/2_{a3/a1)1/2] 

~ t((Da/a1)1/2_(a3/a1)1/23 - 1[-(0a/a1)1/2_{a3/a1)1/2] . 
(3.6.2) 

The critical region 81;g_'f g_ > Da ,is equivalent to 

~ 

y > y 
Ct 

where Y is given by (3.4.8) and analogous to (3.4.9), 

2NK f blbld~ 
R (3.6.3) 
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A ""' A A 

Replacing ya by ya in (3.4.13) determines J03 and thus J0. 

For the single independent variable case, we adjust our critical 

region once more so that o = 1 only if 

and proceeding along lines similar to those resulting in (3.5.11), the 

preliminary test condition becomes 

(3.6.4) 

with RH= (Oa/a1)1/2 - (a3/a1)1/2 (3.6.5) 

RL = -(Da/a1)1/2 - (a3/a1)1/2 . (3.6.6) 

From (A.1) with !!'I .Q. known, 

-R 2/2 -R 212 
E(ow} = (1//21T") [e H -e L ] • (3.6.7) 

Fina11y, we write C0 > Oa as 

where Y0 is given by (3.5.17) so that from (3.5.21), 

,,,, i (4i+l )/2 ~ 2 
-a/2a1 l (a3;a1) (1/2) "' 2(i+l) -s1 /2 

E(oYo) = 2e i=O r(i+l}r(i+l/~ l /a sl e ds1. 
a 1 (3.6.8) 
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Applying (3.4.12) once more, (3.6.8) converges quite rapidly for 

representative values of a3ta1• Again J0 = V0 + B0 is evaluated by 
using (3.6.7) and (3.6.8). 

We present a simple example illustrating the concepts of the last 

four sections. Suppose we are dealing with a single independent 
variable and 

N = 3, !!_1 = [l ,1 ], .Q.'}; .Q. (known) = 1, 
~ 

:i • (2,-2,-1], Y2 = [l,0,2], and 

x x2-7 
1 -1 1/3 

* x = 
~O 

1 0 -2/3 . 
l 1 1/3 

Since x~ = 2/3, ;r = o, and x4• = 2/9, we use the results of section 3.5 

to find 

- - -2 
D = (x2)(x41 ) - (x3) = 4/27 

M = x2/ND = 3/2 

A= 0 

- 2 -2 -2 
~212 = [(x2-l/3) +4/45+{x3) /3(x2) ] = 1/5 

a1 = N tr(~ ~212 ) = 9/10 

a3 = N(.Q.'a2> • ~212(&'a2)/d'~ .Q. = (3/5Hs21+a22>2 

<s2 = [Bzp 622J) 
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If a = .05, then we substitute a3Ja1 = 1 in (3.6.2) and obtain 

for which D = .9(2.65) 2 = 6.320. a. 

Si nee ~l ~2 = .Q_, 

821 = (~~~2)~1~2 Y1 = 5/2 

B22 = (:2~2f 1 ~2 Y2 = 312 

N(8 +s )2M 
C = 21 22 · -212 = 9.600 > 6.320 = D • 
o s!.'I 2. a 

We reject H0 and fit the quadratic model f. To evaluate J0 , we require 

M-l - N{X 1 X )-l -_11 - _Ll -

1 - P = ~[(D /.9)112-lfO] - ~[-(D /.9) 112-/lol a a 
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whence P = 0.695. Also, 

RH= (Oa/.9) 112 - lfO = -0.512 

RL = -( D / • 9 ) 1 I 2 - llO = - 5 • 812 

-R 2;2 -R 212 
E (ow} = {1 / 12;} [ e H - e L J = 0. 350 • 

Applying (3.6.8) results in E(6Y0 ) = 9.691. Substituting in (3.5.10) 

and (3.5.16) yields B0 = 0.340 and V0 = 4.625 so that J0 = 4.965. 

3.7 Qesign Considera~~ 

Before leaving the standard model, we shall briefly touch upon the 

problem of "optimal" design, in particular that of choosing a design to 

maximize power for the case of the single independent variable, i.e., 

for a3Ja1 > 1, we wish to maximize 

P = Pr(F0 > Da!a3/a1 > 1) 

= Pr(F' 112 > Da/a1 la3;a1 > 1) . 
1,N-q0 ,(a/a1) 

(3.7.1) 

It is clear from (3.5.20) that Pis an increasing function of a3ta1; 

hence for the single independent variable case, we seek to maximize 

(3.5.3) for fixed N. 

Examining O/x2 = x4' - (7) 2;7 

gives ~J = O as an initial condition. We also wish to design such that 



-4 N 22 2 
x 1 = l (x1 . -x ) /N j=l J . 

53 

N 4 N 2 2 
= .l xlj /N - <.l x1j /N) 

J=l J=l 
(3.7.2) 

is maximized subject to lx1jl ~ 1. j = 1, 2, ••• , N. Applying the 

inequality 

N 4 N 2 l' x1 . /N ~ l x1J. /N , I x1J· I ~ 1 
j=l J j=l 

to (3.7.2) gives x4• ~ 1/4. If N is a multiple of four, then the design 

which maximizes Pis N/4 points at -1, N/2 points at O, and N/4 points 

at 1 since this configuration achieves x4• = 1/4. Designs with a 

concentration of center points and remaining points split equally at 

+ 1 also seem to be effective if N is not a multiple of four. 

Maximizing a3/a1 in general proves much more difficult than for 

the single independent variable case. Also, in the search for design 

values which minimize B0 or V0 , much less J0 , even for the case of the 

single indepenQent variable, one is led to trial and error with respect 

to different designs or empirical minimization as the only practical 

solution. 



Chapter IV 

GENERALIZED MULTIVARIATE REGRESSION MODEL 

4.1 An Expanded Notation 

In Chapter III, each of the p response vectors was dependent upon 
* the same regression matrix, either ~l or ~o· We now relax this 

requirement and postulate a model of the form 

or 

where now, ~ = diag[~11 ,~12 , ... ,~ 1 P] 
Npxqt 

qr = r q1 · 
j=l J 

The true model becomes 

* * ::: ~j .~ + :j 
for 

q . = ql . + q2 .• OJ . J . J 
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(4.1.1) 

(4.1.2) 

(4.1.3) 

(4.1.4) 



Consolidating gives 

* * * * with ~ ~ diag[~1 ,~2 , .•. i~p] 
Npxq 

p 
q = I qoJ· • 

j=1 
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(4.1.5) 

* . If rank (~j) = qoj' our model assumptions are identical to those of 

section 3.1. 

Unlike the standard model, the multivariate generalized least 

squares estimators of the parameter vectors do not reduce to univariate 

least squares estimators so we write only 

(4.1.6) 

{4.1.7) 

Employing {4.1.6) and (4.1.7), we fit either 

{4. l.8) 

or 
* A A y. = X11 J· e,. + X21 J· e2. 
J -· . - :.:.1..J. -- _.Q_ 

* A* - X I j3 -ii (4.1.9) 

* where xlj' xb, and xj 1 are typical row vectors in the matrices ~1j' 
* ~2j, and ~j. 
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We again wish to estimate our response function based on the 

hypothesis comparing the integrated mean squared errors of linear 

combinations of the estimated responses for the two models, i.e., H0 : 

J1 .::.. J2• If Rj denotes the region of interest associated with ~lj' 
we define 

p 
= n K: l • 

j=1 J 

. A* * There is again no integrated bias contribution to J2 since E(.!_) = .fL.· 

We write our hypothesis as 

(4.1.10) 

To obtain the quantities in H0 , we require 

-1 
E(s,> = [~ 1 <f©!Nf1'~] ~·q©~N)-1 E(~*e*+f.} 

-1 
= [~' q © ~Nr 1 ~l ~·ri~;h~ a1 +N~!gt~21'~22" · · ·~2p>a2J 

p 
(q2 = .l q2J') 

J=l 
(4.1.11) 

where ~o = [~·Cf© !Nf 1 ~rl ~~{~@ !Nf"l [diag(~2P~22' ••• '~2p)]. 
(4.1.12) 
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= 2._'[diag(xu,x1 2, .. .,x;P)~0 - diag(x2l'x22, .•. ,~212 )Js2 
{4.1.13) 

Now v1 = NK k var(Q.' l) d~ 
= NK J d' [var(yJ ]Q_ dx 

R 

= NK i Q.1 [diag(x1 1,x1 2,. .. ,:i£.)]var(e1_Hdiag(x11 ,x12 p •• ,~)J 

d dx 

-1 
= NK ~ _tj_1 [diag{xl1'xl 2, ..• ,xlE_)][~'<f®!N)- 1 ~] 

[di ag {x11,x12 , .. .,~} ]d dx . 

(Press (1972) (8.5.12)) 

Si mil ar1y, 

* * * [di ag(_:i,x2, •.• '2e} )d d!!_ 

(4.1.14) 

(4.1.15) 
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. "* ,.. 
We denote by ~o the submatrix of var(L) associated with a2 so that 

var(B2) = ~o • (4.1.16) 

In order to develop a test statistic, we estimate I by 

(4.1.17) 

"* = v - z a 

"* "* "* "* ~ = diag[~,a2 , ••• ,~) • 

The natural test statistic for (4.1.10) is 

(4.l.18) 

where v2 and v1 are given by (4. l.1s) and (4.1.14) with f vice I, 61 is - -
given by {3.3.9), and b1 is given by {4.l.13) with 62 vice a2• There 

- -
are several difficulties with {4.l.18) in general. If we are to justify 

a test procedure in terms of a ratio of expected values, the 
,.. -1 

expectations of matrices of the form [~'Cf©~Nr1 ~J do not lend 
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A* A 
themselves to explicit determination. Further, ~ , s2 , and ~o involve 

l which is unknown. If our test statistic is altered to reflect 

estimation off:, then we are unable to obtain E(B1), nor E(V2-v1 ). 

We shall see that (4.1.18) becomes more useful in the next section. 

4.2 A Special Case: l Diagonal Unknown 
~ 

If the error covariance matrix is diagonal, then (4.1.6) and (4.1.7) 

reduce to 

"* iL_= 

(~i1~11)-l~il Y1 
(~l2~12)-l~l2 Y2 . . 

. 
* * -1 * ( ~p I ~p) ~p I ~ 

(4.2.1) 

(4.2.2) 

the univariate least squares estimators for (4.1.1) and (4.1.4). If we 

define 

A. == ( X11 • x1 . ) - l X11 • X2 . , j = 1 , 2, ••• , p, _J ~ J- J ~ J_ J (4.2.3) 

then (4.2.4) 
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let ~j denote the submatrix of (~;·~;)- 1 corresponding to Min (3.2.7). 

Then 

~ 

var(B2) = ~o = diag[cr 11 ~1 ,a22~2 , ••. ,app~p] . 

From (4.1.13) and (4.1.14), 

bi = £.' [diag(xh~1-~21,xfa~2-x22, · · · ,xk_~p-x2p)] S2 

Vl = NK f ,g_•[diag(o11xll(~l1~1l)-lx11'022xl2{~i2~12)-lx12' 
R - ---- --

..• tcrPP~(~lp~lpr 1~)] ,g_ d.! 

p 
= j~l NK ~ dj 2 [xlj(~lj~lj)- 1 ~]ojj d!_ 

Similarly, from (4.1.15), 

~ 2 * * * -1 * v2 = l NK f d- (x.'{X.'X.) x.] a .. dx 
j==1 R J i -J ~J i JJ -

(4.2.5) 

(4.2.6) 

p 
= jI1 NK k dj2(xlj{~lj~1j)-1xlj + (xlj~j-xZj)~j(~jxlj-x2j})crjjd!., 

adapting the development of (3.2.10) to each of the p terms 
* * *)-1 * [x. 1 ( X • 'X . x . ] • Thus , 

_J~· ~J -J ....J_ 
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p 
= l NK f d. 2(x1 .A.-x2.)M.(A~x1 .-x2 .} a .. dx 

j=l R J :..:J..J_-J _J -J -J-1.J... ....Q.. JJ -

p 
• l N d.2 tr[M.(K f (A~x 1 .~x2 .)(xl .A.-x2.)dx)) a .. 

j=l J -J . R -J_Ll A __!l_-J £J.. - JJ 

p 
= l a .. d. 2a .. 

j=l JJ J JJ 

Equation (4.1.18) becomes 

A p 2h 
F 1 = B1 I I a .. d . o .. 

j=l JJ J JJ 

(4.2.7) 

(4.2.8) 

(4.2.9) 

(4.2.10} 

In general, we can write (4.1 .17) as 

er •• = 1J 

*~* *~* (y.-X.B.)'(y.-X.8.) 
..J_ - 1_1 :J_ _J_.J_ -----* * * -1 * * * * -1 * [N-q .-q .+tr(X;(X.'X.) x.•x.(x.•x.) x. 1 )] 01 OJ ~ _1 _1 _l _J _J _J _J 

* * * -1 * * * * -1 * y!(IN-X.(X.'X.) x.'XIN-x.(x.•x.) x.')y. 
_1 - - 1 - 1 - 1 - 1 - _J -J _J -J :J_ 

• . * .* * -1 *. ~ * * -1 * [N-q .-q .+tr{x.(x.•x.) x.'x.(x.•x.) x.')] 01 OJ _1 _1 _1 _l _J -J -J _J 

* * * * Using E(y. y!) = cr •• IN+ X.13. 13.'X.' :I. _1 1J_ _J _ _J __ 1 _ 1 

and * * * . * -1 * x.'{IN-X.(X.'X.) x. 1 ):: 0' _, - _1 _, _1 _1 
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p 2A p 2 
He nee , E ( l a .. d . o . • ) = I a • • d . a . . • 

j=l JJ J JJ j=l JJ J JJ 

Now 
A A 2 

E(B1) = NK ~ E{b1} d~ 

= NK f [var(b1)+E2(b1)] dx. 
R 

A 

Comparing (4.2.10) and (4.2.6) gives E{b1) = b1. 

Also from (4.2.10) and (4.2.5), 

A p 2 
var(b1) = .l dJ. (xliAJ·-x2.)M.{A~x 1 .-x2 .) a .. , J=1 -..:.M-- __ 1.. ~J ~J.:.JJ.. _J JJ 

so that applying (4.2.8), we have 

" ~ 2 E{B1) = l a .. d · o. · + B1 j=1 JJ J JJ 

The ratio of expected values in {4.2.9) is 

p 2 
+ s1; l a .. d. cf •• • 

j=l JJ J JJ 

If no distributional assumptions are made, we 

accept H0 otherwise. 

(4.2.11) 

(4.2.12) 

(4.2.13) 

(4.2.14) 

(4.2.15) 
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We now assume norma 1 i ty of the error vector f.. as in ( 3. 3 .1). Si nee 

t * *1 * -1 *1 = y.[IN-x.{x. x.) x. J y./(N-q .) , :J. - ~J ~J -J -J ::.J.: OJ 

(N-q0j)~jj/ajj - x~-q . 
OJ 

(4.2.16) 

(Graybill {1961) Theorem 6.1). 

;,. 

The crjj, j = 1, 2~ •.• , p, are independent, and using an approximation 

due to Satterthwaite (1946), we write 

where 

p 2A 2 .I a .. d. o .. " g xh /h J=l JJ J JJ 0 0 0 

p 
g = I a .. d. 2a .. = v2 - v1 0 j=l JJ J JJ 

In order to use this result, we estimate the latter quantity by 

" h = 0 

p 2A 2 ( l a .. d. o .. ) 
j=l JJ J JJ (4.2.17} 
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so that (4.2.18) 

From Press (1961) page 222, 

{4.2.19) 

" where for~ diagonal, ~o is given by (4.2.5). For b1 given by (4.2.10), 

we have b1 - N(b1,var(b1)) with var(b1) as in (4.2.13). 

Define 

so that ~ p * 2 var{b1) = l b(x.)d. O·· 
j=l i J JJ 

A p * 2 1 /2 p * 2 1 /2 
Then, b1/[,l b(x. 1.)dJ. crJ.J.] ~ N(b1/[} b(x.)d. o .. ] , 1) 

J=l -lL J=1 :..A J JJ 

where 

For w ~ N{0,1), 

Analogous to (3.3.13L we base a bound approximation on 

(4.2.20) 
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p * 2 1 /2 p * 2 2 1 /2 
NK f [I b(x;)dJ. aJ.J.] b1d!2. [(NK J .l b(x;)dJ. crJ·J·dlf.)(NK f b1 d~)] R j=l ---l>!.. R J=1 ---l>!.. R 

.:::_ [(V2-V1)B1]l/2. 

* 2 1/2 
NK f [b(x.)d. a .. ] b1dx B 1/2 

R _J_ J JJ - 1 
Therefore, < ( ) 

V2 • Vl - V2-V1 

~ (V2-v1)[w2 +2(B1/(V2-v1})112w + B1/(V2-v1)J 

1/2 2 
~ (Vz-V1)[w + (B1/(Vz-V1}) ] 

~ (V -V ) x' 2 . 
2 1 l,[B1/(V2-V1)Jl/2 

Using (4.2.23) and (4.2.18), the ratio of independent chi-square 

variates in (4.2.9) becomes 

(4.2.21) 

(4.2.22) 

(4.2.23) 

{4.2.24) 
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The form of (4.2.22) is similar to that of (3.3.14) so that 
proceeding as in section 3.3, we have 

l (h0 /2 )-1 
u e-u/2 du • (4.2.25) 

Under the hypothesis of (4.1.10), the substitution B1/(V2-v1) = 1 enables 

us to determine 00 for specified P = a. Also, for b1 and v2 - v1 as 
given by (4.2.6) and (4.2.7), equation (4.2.25) can be employed to 

determine type II error probabilities for various values of the 

parameter B1/(V2-v1). 
We now investigate the integrated mean squared error of our 

preliminary test estimator for l diagonal unknown. The direct 

extensions of (3.4.2) and (3.4.3) are 

"* a. = i 

A A s1 . - A.132 . :J.J.. ~ J .:,Q_ 

!t1Y0 = .9_1 [diag(xh,xfa, ••• ,xip>Js1 + l').9_'[diag(x~h-xil~l' 

x2z-Xl2~2' 0 • • ,x2p-Xlp~p))Sz • 

(4.2.26) 

(4.2.27) 
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#\ A* 
Also, Lemma (3.4. l} holds for s1 and JL of (4.2.1) and (4.2.2) with 

~ij = 0, i 1 j. Using the development (3.4.4) through (3.4.8), it is 

easy to show that 

where 

Still utilizing section 3.4, if 

" 
A -y /2 

then J03 = {V2-v1 )((2ya/~) 1 / 2 e a + 2~(~~}) 

Oa(Vz-V1) - 2NK f bl~ld~ +Bl 
R y :::: ___ ...........,.,__..........,_, ____ _ 

a v2 - v1 
where 

A A 

Finally, J0 = v1 + (1-P}B1 + J 03 (3.4.14) 

where v2 - v1, P, and b1 are obtained from (4.2.7), (4.2.25)~ and 

{4.2.6). 

When the p response vectors are all functions of a single 

independent variable, we can generalize the results of section 3.5 so 

that 

1 

* x. = 1 
~l 

1 

l> i = 1, 2, .. ., p, 
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-r N 2 3 N 3 T N 2 -r 2 
for x1 = j~l xij/N, x1 = j~l x1j/N, xi 1= j~l (x1j-x1} /N. 

N 
If we assume J xij = 0 for all i, then 

. J=l 

M. = °J!ND. 
~J J J 

Scaling the Rj to the interval [-1,+l] enables us to write 

. 2 2 32 ~2 
K ~ (~jx1 j·x2j)(xlj~j-x2j)dx = [{xj-1/3) +4/45+{xj) /3(xj) ] 

K ( (A!x1.-x2.)(x11 .A.-x21 j)dx = (~-1/3)(x~-l/3) , i ~ j · R ~ 1_1 _1 .:J.J..:..J - 1 J 
- - 2 -2 -2 

ajj = x3 [(x~-1/3) +4/45+(x~) /3(x3) ]/Dj 
p - 2 32 -2 

s1 = N[j~l dj 2((xj-l/3) +4/45+(xj) /3(x~) )B~j 

+ 2 l ~ d;dj(x~-l/3)(x~-l/3)B2 ;B2j] i<J . 

(4.2.28) 

(4.2.29} 

(4.2.30) 
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(4.2.31) 

The noncentrality parameter [B1/(V2-v1)J1' 2 for (4.2.25) is obtained 
using (4.2.28) and (4.2.29). To calculate J03 , we substitute {4.2.31) 

in ya; then J0 is given by {3.4.14) with {4.2.29) and {4.2.30). 
Unlike the standard model, the distributional results obtained for 

... 
B1 are not exact for the single independent variable case since the bound 

in (4.2.21) is not attained. Another dissimilarity from the case of the 

standard model single independent variable is that J0 does not lend 
"' itself to explicit evaluation, and we rely solely on J0 • 

4.3 A Special Case: ~ Known 

Knowledge of l once more alleviates some of the difficulties 

inherent in our procedure. We write H0 as 

where, without assuming~ diagonal, 

(from (4.1.16)). 

(4.3.1) 

(4.3.3) 
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Our test statistic is 

(4.3.4) 

,. 
Since b1 is unbiased, we have from (4.2.12) that 

and our procedure is 

accept H0 otherwise. 

... 
For the error normality assumption, we first recall that var(b1) = 

p * 2 
j~l b(~)dj ojj if~ is diagonal. Thus, we can make use of the 
development leading to (4.2.21) to write 

Generalizing (4.2.22} yields 

81 • (NK J var(b1)dx)[w + (B1/NK J var(b1)d,!}1/ 2]2 
R R 

C - ,2 - x • 1 l,[B1/NK k var(b1)di]1/ 2 
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Therefore, 1 - P = Pr(c1.::.oa) 

~ ~[0112-(B /NK f var(b )dx)112] a 1 R 1 -

~ 11[-0!12-(B1/NK J var(b1}dx) 112] 
R 

(4.3.5) 

where B1 and var(b1) are obtained from (4.1.13) and (4.3.3). Due to the 

complexity of our estimators (4.1.6) and (4.1.7), it is not feasible 

to develop a general expression for J0 when f is not diagonal even if 

it is known and we are dealing with single independent variables. 

We shall briefly consider the simplest of all special cases, that 

of l both diagonal and known. Now> 

where v2 - v1 is given by (4.2.7). Thus, our test statistic is simply 

A c2 = B1/(V2-v1) , (4.3.6) 

for which we 

reject H0 if c2 > 2 

accept H0 otherwise. 

From (4. 3. 5), 

(4.3.7) 

Generalizing (3.6.3) gives 
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A 

with J0 as in (3.4.14). Results for the case of the single independent 

variable are obtained using (4.2.28) through (4.2.31). 

Design considerations are extremely difficult to treat for the 

generalized model even for the most restrictive assumptions on the error 

covariance. Combinations of design variables which increase power or 

decrease B0 , V0 • or J0 , seem best sought by empirical methods. 



Chapter V 

COMPARISON OF INTEGRATED MEAN SQUARED ERROR~ 

A variety of means by which to choose a model are available to 

the researcher. He may arbitrarily select i or f having integrated mean 

squared errors J1 and J 2 respectively. Another possibility is that of 

choosing a model by using a preliminary test estimation procedure 

based upon the usual statistic Fe given in (3.2.26). The resulting 

estimator for a multivariate model has integrated mean squared error 
~. 

J 3, say. We shall compare the performance of y0 and the above 

estimators with respect to J0, J1 ~ J 2, and J 3. We shall also discuss a 

reasonable range of a levels for the estimators structured around a 

pre 1 i mi nary test of hypothesis. 

The subsequent graphs have been prepared utilizing the design in the 

example of section 3.6 for the case of the standard multivariate 

regression model, single independent variable, .9._ 1 ~ g_ {known)= 1. 

Critical points for Fe were obtained using a simi1ar procedure to 

{3.6.2) since 

(3.2.28) 

for q2 = l. Due to the computational effort required, this is not 

intended as an exhaustive comparative study. Rather we are examining 

the special case of the single independent variable with ~·r & known 

as an indication of what is expected in more general cases. The symbol 

Jin Figures 5. l.1 - 5.1.3 denotes integrated mean squared error with 

a values affecting only J0 and J 3• 

73 



74 

I I 

10 

9 

8 

7 

6 
J 

5 

4 

3 

o--~~--~~~---~~~a--~--~ 

0 ·I 3 4 

--
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Figure 5.1.2 J Values (~ ~ .18) 
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In general, it is to be expected that J3 more closely resembles 

J2 than does J0 since the standard procedure is testing the hypothesis 

a3;a1 = 0 whereas J0 is based on H0 : a3;a1 ~1. Since P'is an 

increasing function of the noncentrality parameter (a3;a1)112, the 

classical procedure yields a lower critical value and rejects more 

often. However for q2 > 1, we recall from (3.2.33) that Fe is unsuited 

for testing H0 from the standpoint of a ratio of expected values. 

The reason for the selection of a= .18 as a tabular entry is 

illustrated by Figure S.1.4. The graph of J0 for a= .18 seems to 

provide a reasonable compromise between the two extremes of Figure 5.l.4. 
While we may be unwilling to accept values of J0 as great as those for 

a = .OS and large .Q_1 s2, we may also wish to discriminate more against 

J2 than by the use of a = .50. Of course, the range of a may be 

adjusted against the values of the parameter .Q.1a2 for which one wishes 

to obtain protection. 

For the standard model with q2 = 1, we can plot values of the 

integrated mean squared error for the preliminary test estimators 

exactly. If q2 > 1 or we are deali~g with the generalized model, then 

(3.4.14) can be employed for an estimate of J0• Using Figures S.l.l 

through S.1.4 as an ind.ication, we conc1lude that ranges of a greater 

than the traditional testing values of .01, .OS, and .10 seem best 

suited to preliminary test estimation in general. Although our a values 

for q2 > 1 are not exact as indicated by Table 3.3.1, we are essentially 

interested in establishing a viable range ·of a's on which to base our 

estimators, not on the type I error probabilities themselves. Of 
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further interest would be an extensive numerical investigation into 

the various models and special cases presented in the preceding 

chapters. 



APPENDIX I 

Proof of {3.5JE.l: From (3.5.14), 
ao -RLlu 2 

E(ow) = (lh'Z;) J [ J ze-z fl dz] f(u)du 
o -RH! u 

oo (RLju)2/2 -z 
= (1//2'.;) f [ J e 1 dz1] f(u) du 

o (RHI u) 2/2 

{zl = z2/2) 

00 -(R lu) 2;2 -(R !u)2;2 = (1/;z:;f") J [e H - e L ] f(u)du • (A.1} 
0 

(A.2) 

so that RHlu = /gU - h, RL!u = -IQU - h, 

-(RHlu) 2/2 -(RLlu} 2/ 2 _ -h2;2( -gu/2+h/9U -gu/2-hlgu) e - e - e e - e . 

Using {3.3.2) with v = N - q0 gives 

2 
E(6w) = e-!}_12;11[;_ [j u(v/2)-lew{g+l)u/2+h/9Udu - j u(v/2)-1 

iv/2r(\1/2) 0 0 

e -(g+ 1 )u/2-h/9U du] 

e-h2/2;,/2; oo v-1 -(g+1)ul2/2+h/9 ul ""J v-1 
= ( r----w [f ul e dul - u, 

2 v- 2 12r{v/2) 0 0 

-(g+l)u12;2-h/9. u1 
e , du1] 

(ul = ul/2) 
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2 2 .9fr '=" 2 e·h /2egh /2(g+l)//2if m -1 -(-z-)(u1-hvg/(g+l) 
= 'IT [f u" e du 

z(v-2)/2r(v/2) 0 l 1 

m -U 2/2 
+ f (u2/19+f + h/9/(g+l ))"-1e 2 du2 

hi-g~l 
m . -U 2/2 

- f (u3/IQ+'f - h/9/(g+l))"-1e 3 du3] • (A.3) 

hi-g;l 

Employing the binomial expansion and cancelling tenns in the last two 

integrals of (A.3) yields 
I 
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(A.4) 

where U'~?::-] = [Nt?..] denotes the largest integer less than or equal to 

(N-5)/2. Similar to (3.3.2) for the single independent variable, (A.4) 

holds for N .:.. 4 if we define the summation occurring under the second 

integral to be identically zero for N = 4. Simplifying gives 

(3.5.15) 
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A PRELIMINARY TEST ESTIMATOR 

FOR MULTIVARIATE RESPONSE FUNCTIONS 

by 

Paul West Blackmon, Jr. 

(ABSTRACT) 

If y1 , y 2 , •.. , :e_ represent vectors of independent observations, 

the generalized multivariate regression model is of the form 

y. = X1 .e1 . + x2 .s2 . + £· :.1. - J_J_ - J_J_ _J_ 
j=l,2, ... ,p, 

where ~lj and ~ 2j are general linear model regression matrices, e1t 
and a2j are vectors of unknown coefficients, and the zJ are error 

vectors such that cov(.'.j_,ej) = aij~· If ~lj =~land ~2j = ~2 , j = 1, 2, 

. .. . ' p, the above is a standard multivariate regression model . 

Insofar as can be determined, the true relationship between the 

design variables and a response nj is 

where xlj and x2j are typical row vectors in the matrices ~lj and ~2j. 
* - * For .:J_' = [xLl_,x~b] and~, = [slj,~Zj], the nj are to be estimated 

A A A * A* ft A* 

either by yj = xl. s1 . or ~j ""x.'B; where s1 . and sj are the least 
·~ll. _J_ _)_ -..-.'- -~ -

* squares estimators of Blj and a., obtained from the full multivariate 
~· - .:._J_ 

regression model. 

The estimators for the nj are determined by a test of the 

hypothesis H0 : J1 ..s_ J 2 where J1 and J 2 denote the integrated mean 



squared errors of a linear combination of the Yj and ~j respectively. 

Rejection of H0 results in selection of the ~j; otherwise the yj are 

chosen. 

A test statistic is developed to test H0 with consideration 

extending to several important special cases. Distinctions are drawn 

between the preliminary test estimator constructed around H0 , and that 

based on the usual hypothesis s2j = Q., j = 1, 2, ... , p. 

Under the assumption of error normality, an approximation to the 

distribution of the test statistic is developed in order to determine 

type I and type II error probabilities. 

An explicit expression for J0 , the integrated mean squared error 

of the preliminary test estimator, is obtained, and difficulties in its 

evaluation are discussed. An estimator of J0 is presented along with a 

special case in which J0 .can be evaluated exactly. 

Graphical comparisons are made on the relative performance of the 

estimators based on H0 , and those constructed around the standard 

hypothesis. An operating range of type I error probabilities is also 

discussed. 
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