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Chapter I

INTRODUCTION

Response functions are the target variables which arise in all
experimental design systems. An industrial researcher will be interested
in particular responses such as process yield or operation cost, which
occur as functions of k independent variables subject to the control

of the experimenter. This relationship can be represented as

n = fEsEps000sE)) (1.1.1)

for some response n.

In the conduct of an experiment, the natural variables E1s Eps vees
£ must be confined to a region of interest R Timiting their range.
As an example in dealing with two factors, if £ and £o represent
reaction temperature and amount of reactant present respectively, R
might be taken as the region 100°C <& < 200°C, 5 grams < £, < 15 grams.
For mathematical convenience it is frequently desirable to deal with
coded or design variables Xps Xps wees X obtained from the original
variables by a simple linear transformation. Often this transformed

: K k
region is taken to be the hypersphere defined by .2 xi2 <1, o0ra

i=1
hypercube such that -1 < X; <1l,i=1,2, ..., k. In the two variable

example, the transformed variables become

51 - 150 £y - 10

XN 7B 0 X% T 5



The standard representation of the response is then
n = flxpaxpsenx ) (1.1.2)

The exact form of the relationship in (1.1.2) will be unknown; the
usual practice is to approximate it by a polynomial of low degree

within R. A linear or first order approximation might be

" Bro) T MR T xRz (1:13)

where the g's are unknown parameters and must be estimated. A corre-

sponding possible second order model would be

) 2
=By OB T X2Br(e) T X1 B2
2

X 62(2) + x]x232(12) . (1.1.4)
The extended notation is necessary to avoid confusion with subsequent
models.

Although the design variables Xps Xos «v.s X are fixed by the
experimenter and assumed to be measured with negligible error, the
response is also dependent on the constant coefficient parameters, the
unknown g's. In order to estimate these parameters for a single response
function, N observations of n are made, resulting in an estimator for
the response itself. For a response y, a linear estimated response

function is

A

A k -



where the é's are estimators of the true g's. Similarly, a full second
order response is estimated as

s = k.

y = 51(0) +1Z]xié]( + 121 X 62 + §<§ X 82 (ij) (1.1.6)
the é's denoting estimators of the g's obtained when using a higher
order model.

Now since n as given by (1.1.4) for example, is merely (1.1.3) plus
the addition of higher order terms which should or should not be included
in the model, on what basis should an experimenter choose one model
over the other? Clearly, it is of central interest to accurately
specify an approximating polynomial for the response function. The
essential problem is how best to estimate this response so that
ultimately, efficient determinations of n can be made using (1.1.2) as
a prediction equation. An experimenter might employ a Tow, perhaps
first order model. Alternatively, he could use a model of greater order
containing some degree of curvature. He might wish to effect a
compromise between these two extremes.

Preliminary test estimation is a widely used tool in statistics.

It occurs most frequently in analysis of variance pooling procedures
based on tests of hypotheses that particular variance components are
negligible. It is quite natural to apply this general technique as an
aid in developing a preliminary test estimator for the response. The
general procedure will be to select § or § contingent upon the results
of a test of hypothesis consistent with the objective of estimating n

with some degree of precision. It should be noted that there is no



restriction on the order or form of the polynomial estimators § and §,
only that approximations of low degree of the type given by (1.1.5) and
(1.1.6) are common in practice. Past researchers have primarily
concentrated their investigations on preliminary tests of significance
of higher order coefficients, either sequentially or as a whole, e.g.,
testing the hypothesis that B2(1)> B2(2)> and B2 (12) in (1.1.4) are equal
to zero. Either § or 9 would be chosen according to whether this
hypothesis is rejected or not. We propose to construct a preliminary
test estimator around a more meaningful hypothesis centered on the
quality -of estimation of the response. This hypothesis and the criterion
of estimation on which it is founded will be examined in great detail in
»Chapter ITI.

Although this estimation criterion is peculiar to the body of
statistical techniques known as response surface methodology, our models
are within the framework of regression analysis, with the restriction
that design level combinations are confined to the factor space R. In
particular, we have outlined a univariate regression approach since in
taking the observations on n, a single N x 1 response vector y can be
formed, all observations considered as being similar polynomial functions
of the same set of design variables, coefficient parameters, and corre¥
sponding experimental error terms. The representations } and § simply
designate estimators of a typical individual response in the vector y.

Often it is desirable to simultaneously treat not one but several

N x 1 observation vectors Yis Yo cees ¥ For a given j, j =1, 2,

Yp*
..s P, €ach yj is a univariate regression with the additional stipu-

lation that there exists a covariance structure among them. For this



multivariate regression model, it is frequently of interest to consider
appropriate Tinear combinations of estimators of a single response
function in each of the p models. These estimators may or may not reduce
to the estimators obtained by treating each Y; as a separate univariate
problem, depending upon factors such as cova;};nce structure assumed

and type of multivariate model involved. As was the case with a single
univariate regression, we wish to formulate a preliminary test estimator
constructed around the control of certain properties of a Tinear
combination of estimated response functions.

Although each response vector has a unique set of coefficient
parameters and error terms associated with it, this need not be the case
with the design variables corresponding to a particular yj; however,
the standard multivariate regression model does in fact ;;;tu1ate the
same design for all p observation vectors. This design, of course,
consists not only of the N design level combinations, but also higher
order terms as functions of the basic design variables. Returning to
the two factor example, it is now practicable to deal with two separate
responses, quantity of yield of products A and B, say. The experimenter
may wish to employ the same design for these product yields, both
being dependent upon E1s reaction temperature, and Eos amount of
reactant, a situation implying the use of the standard model.

Alternatively, suppose that a researcher is investigating the
process yield of a given product from data acquired from experiments
conducted by two different companies. In all probability, the firms
will have used different combinations of Tevels of the design variables.

In addition, they might have projected dissimilar models, both in



degree and number of design variables. This is termed a generalized
multivariate regression model, the distinguishing feature being a
different design for each yj, all other conditions being equivalent to
those of the standard mode;j

The two multivariate regression models discussed enable one to
accommodate any number of responses of interest. In order to generate
preliminary test estimators in both of these instances, we will devote
considerable space to the development of a statistic for testing the
hypothesis on which the estimators are based. As a consequence of model
assumptions and covariance structure, several important special cases
will be dealt with in detail. Graphical comparisons will be presented
on the performance of our estimators relative to that of the estimators
obtained under a test of the standard hypothesis. These comparisons

also enable one to select an operating range of type I error probabi-

lities with which to conduct a preliminary test.



Chapter II

REVIEW OF LITERATURE

Due to the widespread use of preliminary test estimation techniques
in many areas of statistics as pointed out in Chapter I, we shall
confine ourselves to a discussion of these procedures as they relate
to regression functions within the framework of response surface
methodology. This Teads quite naturally to consideration of appropriate
criteria by which to compare these estimated response functions.

Oné of the first investigators to Took at estimators of this sort
was Bancroft (1944). Basing a preliminary test procedure on the

hypothesis H: By = 0 when n = X187 + XoBys he suggested the estimator

é] if H is rejected

~

31 otherwise ,

where é] is the unrestricted least squares estimator of Bys and é] is
the least squares estimator of B under H. Utilizing normality
assumptions, he also obtained the bias of é, and tabulated this as a
function of selected parameter values. The estimation procedure was
extended to k variables by Bancroft (1950) in the treatment of subsets
of the coefficient parameters in the linear model.

An interesting variation of this technique although still applied
to first order models, was presented by Larson and Bancroft (1963a).

A sequential procedure was developed whereby variables are consecutively

deleted from the model if one fails to reject the hypothesis that the



corresponding regression coefficient is zero. An inverse approach
involves the sequential addition of variables to the model, again based
upon repeated tests of significance. In both instances, the bias and
mean squared error of the resulting estimators of the response function
were determined and tabled.

A second paper by Larson and Bancroft (1963b) dealt with the bias
and mean squared error of the estimator obtained under the more
traditional procedure, i.e., testing the joint hypothesis that all
uncertain coefficients are simultaneously zero.

An “important contribution to the somewhat more general problem was
made by Toro-Vizcarrondo and Wallace (1968). Using the framework of
the general linear model, they introduced the hypothesis that the mean
squared error for any non-zero linear combination of the regression
parameters in § is greater than or equal to the mean squared error of
the same linear combination subject to Tinear restrictions on the
coefficient space. Employing the standard test statistic used in
testing general linear hypotheses on parameter coefficients, the mean
squared error hypothesis was shown to be equivalent to a test on the
noncentrality parameter of the noncentral F distribution arising from
the standard statistic under error normality assumptions. It was
further shown that this method is a uniformly most powerful test for
their reduced hypothesis.

Kennedy and Bancroft (1971) conducted extensive numerical inves-
tigations into the ratios of mean squared errors of the two sequential

procedures, concluding that "sequential deletion" is to be preferred



over "forward selection." In relation to an optimum range of test
parameters, they also studied the relative efficiencies of the two
procedures to that of retaining all uncertain variables in the fitted
equation. |

Still within the context of a single response vector, Ellerton
(1973) developed a family of test statistics for the hypothesis that the
integrated mean squared error of § is greater than or equal to the
integrated mean squared error of 9, thékintegration being carried out
over the factor space R. Under the assumption that the true model may
contain terms in addition to those of §, he determined a general
expression for fhe integrated mean squared error of the response

function estimator based upon the above hypothesis.



CHAPTER III

'STANDARD MULTIVARIATE REGRESSION MODEL

3.1 The Problem in Detail

We wish to determine the form of p multivariate response functions
whiéh depend on known design variables restricted to some region of

interest R. Let Yis Yoo +ees ¥ represent N x 1 vectors of independent

P
observations. Using the framework of the general linear model, we

postulate a model (linear in the parameters Eli) of the form

zi-= §7§l§.+ fi_ s J =1, 2, ciuy Py (3.1.1)
qu1
where cov( €is €5 ) N’ and X1 consists of a column of 1's along with

the N experimental combinat1ons of the design variables with their
powers and cross-products if applicable. Thus, the p observation
vectors are correlated, and for a particular j, the model (3.1.1) is a
univariate regression. In order to deal with the problem in a multi-

variate context, the basic model may be expressed more compactly as

y = X .l (3.].2)

where y'E Ly Yo e {éJ

X = diag [X], X], cens X]]
NpXpa,

L - ] 1] i

£ = (501> B o ]

_g:__'_=[:e-i, €25 sfé.]

10
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The true model, however, insofar as can be determined, may contain

terms not specified in (3.1.1). We denote this by

¥ = §]Eli.+ 52E21.+ g o i=1,2, ..., p, (3.1.3)
qu2

where 52 consists of the 9, contributions to the response over and above
those of the basic model. Hereafter, we shall refer to this and similar
models as the true model, although we can rarely ascertain the exact
form of the true relationship. Equation (3.1.3) can be further

consolidated to

=X e+ (3.1.4)
*.., .
for %o [51' 52]
qu0
9% = 9 * 9
*
Q= l., I- .
B = [8;» 8y

Similar to (3.1.2) we finally write

*
y=X8 +e (3.1.5)
* 5 3 * * *
where X = diag [X;, X;» -0 X5
Npxpq

* * * *
.._B_..'. = [B'll’ les URRE ] _B.P_‘] .
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We make the standard assumptions on a multivariate regression model,

i.e.,
E(e) =0, var(e) = ] @IN, )} positive definite. (3.1.6)
pxp
For Z = (Gij)’ the assumption on the covariance structure is equivalent

to cov (fif fi} =945 EN‘ We further assume that rank (5;) = g, and
that there are available sufficient observations to estimate all unknown
parameters in ﬁj.and Z.

Since the errors may be correlated and heteroscedastic, we apply
generalized least squares to obtain estimators of the parameter vectors

as

-1
(T K Qe v

w
—
i

n

-1
@K, 7@Ky

@ 01 I @ X Tx

]

[1,® ()™ KTy

§ ] "] ]
(X1%)°7 X7 vy

-1
(XaX7) ' X3 y
N I b : 2172 ‘ (3.1.7)

T
(X1%;)

>

L.

Similarly,
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- 6 e ey

- -

*| * _'I *'

(X' %) Xo" ¥q
* *_“ *

(X 'X )" X'y

- | -0 20" Jo 72 (3.1.8)

* *_" *

(X 'X.) " X'y

.0 .0 0

L —EJ

1 ' i d ~, - ~x, ok A*l
(811> Bige oo Bipl and 877 83T BT oos BTG, e

multivariate estimators reduce to the standard univariate Teast squares

Thus, for 81

estimators

= ax) T Xy =02,

By ~1 _;L

3
~% - *| * _] *'
B = (KK Xty
making use only of the N observations associated with a particular
regression. We shall see that this is not the case under the generalized
multivariate regression model in Chapter IV.

For a given j, we fit either the response function

~

Y5 = f(_lﬁg_ (3.1.9)

or

<*
n
x

5% Byt X By
~%

3.1.10

b (3.1.10)

*
_xo
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*
where xi, xé, and xo' represent typical row vectors in the matrices

A% 2 A
_B_j_ - [11" sz]°

* . * . .
51, 52, and ¥o respectively, fgf = [flf fg?’ and
To illustrate, suppose we are dealing with two types of responses, each

a function of two independent variables. For j =1, 2, we consider

N

Y5 = Bri0) T XiBrin) T XePyqe) ¢

however we wish to afford ourselves a measure of protection against a

situation where we should have fitted

*—
i =

™

A~ ~ 2 2,\
Y5 7 Bri0) T XiBrin) T X2Pii2) T % B2500)

2A ~
T X2 B2502) t X1%2825(12) ¢

Here, p = 2, q; = 3, q, = 3, q5 = 6, xi - [1,x],x2], Xo = [x12,x22,x1x2],

[ 2 2 3! = g 3
Yo' = Lhxpxpxxpoxpxls B = Lyji0)-F1501)P13(2) 1

~

~%

B2 = Ba501)-P25(2)P2502)] > &5 = Trgio) P13 B1(2) P25 1)

B21(2) P23 (12) )

3.2 A Test Procedure for the Integrated Mean Squared Error Criterion

As mentioned previously, the standard hypothesis on which to base
preliminary test estimators for a univariate regression has been
sz = 0 given a particular j. Frequently however, an experimenter is
;;;érested not so much in what values are assumed by this parameter
vector, as in how best to control certain properties of his estimator

such as variance and bias. If one is comparing estimators according to
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some arbitrary criterion, then it seems reasonable to use this criterion
in the development of the estimator itself. For this reason in the

multivariate problem, rather than testing the hypothesis By = 0 where

Eé'= [Eélffégf""fégq and choosing a response function model as a result

of whether or not this is rejected, we propose to construct a performance
oriented preliminary test estimator around a more meaningful hypothesis.
Suppose we define vectors of the p estimated responses, £f=
~ ~ ~ §' _ ~d Ak ~%k . £ P

[y], Yps wnvs yp] and §' = [yj, Yps wues yp]. It is often of interest
to study appropriate linear combinations of these responses such as their
sum. The criterion used will be that of mean squared error (MSE),
averaged or integrated over the region of interest R of the independent

variables X1s Xos eevs Xy We shall test the hypothesis

Hy: J] §_J2 against Hy: J] > Jz >

where Jy = NK [ MSE (gfi) dx
R
J, = NK [ MSE (d'y) dx
R
X' = [XaXoseeisx ]
K1 = [ dx
R

d' is a 1xp vector chosen by the experimenter to reflect

weighting of the responses.

The integrated mean squared error criterion allows us to consider
the performance of an estimator not just at a single point X1s Xps

e X but over the entire region R. It further enables us to
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examine both variance and bias of the estimators, similarly averaged

over R. We denote these components as
/ var(gji) dx
R

B, = NK rfz bias?(d'y) dx
[
R

var(d'y) dx

<<
no
L]
=
=~

where i_and §~are understood to be functions of x. Since the mean
squared error of an estimator is the sum of its variance and the square
of its bias, it is immediate that Jy = V] + B]. It is also clear that
there will be no integrated bias contribution to J, since éf is an
unbiased estimator of gf_(Press (1972) page 199). We assume that the

vector of true responses is best represented by

n' = [”1’“2""’“p]
_ *'* *I* *'*
—Qﬁr&%“qiy. (3.2.1)

In testing HO: J] i.st we are essentially attempting to determine
whether the bias component B] incurred by the addition of the terms in
{2 to the basic model (3.1.1), increases V; to the extent that
J] = V] + B] is Targer than J2 = V2, the variance arising from these
same supplementary terms. The additional terms can only increase the

variance as shown in the following:

Lemma 3.2.1: V] < V2.
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~

Proof: var(d'y) = g}[var(i)]g

d'[diag (x],x], . )] var(g ])[d1ag (x Xq X7 ..,x])]g
pXpg; — —  — — Pqyxp ——  —

¢' [diag(x{ xp -1 @ (%) ']

[diag(x],x],...,x])]g

(Press (1972) page 214)

. fi(’fl"fl)-]ﬁ_ (d'7d) (3.2.2)
Therefore, V, = NK é var(d'y)dx
= (ngg) £ tr(X]X]) Ty X x1 dx
= (d']d) tr(M; ugq) (3.2.3)
where  Mi. = N (Xix,) (3.2.4)
and uij = K é f;_fi_dﬁ_ (3.2.5)

are referred to as design and region moment matrices respectively.
Similarly,

~

_]*

var(d'$) = % (X '%0) Tx) (4] d) (3.2.6)

Now



*
(X5 'X
where A=M
M= N

(Press (1972) (2
Thus ,

—l 1 "]
L% KK
* -1
o) X!X XiX
2 B L,
(NM]])'] + AMA'  -AM x
= - e -~ (3.2.7)
MA M
-1
1M, (3.2.8)
-1 R
(Map = MagMyq M) (3.2.9)

.6.4) and (2.6.5) and Graybill (1961) Theorem 1.49).

~ "] ]
var(d'y) (NMyq )" T+AMAT  -AN al
= [X15XA
a7 d 1’727 | _ya M,
= N M Tk, + xd AMA' xq - xb MA'X
Xy X AIAT X - xp TR
"X M xp i
= N'xg Pfﬁ]ﬁf (x /}-i(_é_)rjl(A'il-iz_) . (3.2.10)
Therefore, V, = NK | var(d'§)dx
R
S @] N[ INTer (X x]) ¢ (X AxIMUAT Xy x,) ik
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1

= (d'] d)ler(My ugy) + NKé (x]A-x5) M(A'x;-x,)dx] . (3.2.11)

Comparing (3.2.11) and (3.2.3) gives

Vy = Vg = (g_'z d) NK{; (ﬁ_@-&) lfl({x'ﬁ—ig)dg_. (3'2'12),

Assuming that R is such that (xie-xé) # 0 for at Teast one x e R, it
remains to show that @ is posigqbeuaéfinite. But since (%;'5:)'1 is
positive definite from Theorem 1.24 of Graybill (1961), it is immediate
from (3.2.7) that @ is also positive definite using Theorem 1.23 of
Graybill (1961). Hence, V, - V; > 0.

At this point we note that
~% * * . -
var(g ) = J(® (X,'X)) !
(Press (1972), page 214). This, along with (3.2.7), implies

var(éz_) = @M (3.2.13)

—<p

For what follows, it will be convenient to rewrite Ho‘ Using

fOY'—Bj-= [ ]l]s é'i s eceey B_.i._P_] andEé—:' [_B_é_-l_’ _8_2.2—9 seey 8‘ ]'

(3.2.12),

where @2]2 = K é (5'f1ffg}(fif'§é)d5" (3.2.14)
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Let ay = N tr(M M212) (3.2.15)

so that  V, - V; = a;(d'] d) . (3.2.16)

HO: mia] . (3.2.17)
In order to obtain B], we first require

~ - - - * %
E(B) = diag [O4X) ™I, (XTI, o, (X)X T E(CE )
pq'[pr ~ b a ~ -~ ~ ~ ~ A ~ ~

(using (3.1.7) and (3.1.5))

*
= diag [(Iq : A), (Iq A, .., (Iq :A)] B
Payxpqy M1 T T T R
=By ¥ diag [A, A, ..., A] By - (3.2.18)
— pgXpa, ~ " - =
Therefore,
E(in) = g}[diag(xi, xi, cees xi)] E(é])

i

>

d'[diag(xys xqs «ons x()108y + diag(A, A, ..., A)gp] -

- (3.2.19)

From (3.2.1),

. kK, * *
d'n = g_[mag(fg.,x0 ,...,59.)].g_

= gf[diag(xi ,xi,...,xi)s] + diag(xé,xé,...,xé)ﬁz] . (3.2.20)
— — —— ppgy — = ==

As a result of (3.2.19) and (3.2.20), let
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o
—t
]
o
P
Qv
w
—
([=5
~——

d'[diag (x1A x2, xlA x2, oo XjA-X5) 18, (3.2.21)
PXpa, — — £k

Then, b = 82[d d' (:) X1+ 2 ) (x i é)]BZ’ and since b, is a function of

X, we can write

2
By = NK J b;“dx

N gé_[gg'@)@m] 8y - (3.2.22)

This suggests as the numerator of a test statistic for (3.2.17),

the quantity

A

B-l =N _B_é_ [g_g_'®[142]2] _B_Z_ . (3.2.23)

We obtain the denominator of our statistic by using the standard

covariance estimator for a multivariate regression model, i.e.,

S _ '| _ *~% . _ * A%

L= g, (Y-X;B")" (Y-XB") (3.2.24)
where Y = . s ey

120 vp e %)

Ak Ak Ak A%

? = [ﬁ’ :5_2—: O } _B_E.] .
Our test statistic is

é]
Fo=— . (3.2.25)



22

For the univariate case defined by d' =1, it is interesting to
note that if qp =‘1, then (3.2.25) is equivalent (except for a constant
multiplier) to the usual statistic used in testing the hypothesis

fgi_= 0 for a given j. This statistic is

i M gl
FC = ~ - (3.2-26)
%33
~ _ " _ * Ak " _ kak
where 94 N?E;'(Xi_509g) ({i-gof;).
In particular if q, = 1, then B2j 7 B2y M=m, and M), = m,y,, are
scalars so that
-2
P (Nm212525)
c Nm My12 o..
JJ
= FO/a] (3.2.27)

for d' = 1. This relationship does not hold in general, however. We
shall see in Chapter V that once distributional assumptions are made,
the two procedures have different criticé] regions even for qp = 1,
owing to the different hypotheses on which they are based.

We now obtain numerator and denom%nator expected values in FO.

Utilizing Press (1961) (3.2.11),

E(By) = NE[g) (d d' @ My,)8,]

i

N8 (38 @Myl + N erl(J@M(E &' @y;p)]
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1]

B] + N[tr(z ng tY‘(l!l [\’42]2)]

1]

By +ay(d'} ) .
Since S is unbiased (Press (1961) page 212),

E(d"

I~

d)=d'fd.

The ratio of expected values in (3.2.25) yields

Tetting ag = B]/d'z d .
The hypothesis J] §_J2 can now be written

Hyt az < a; .

(3.2.28)

(3.2.29).

(3.2.30)

(3.2.31)

(3.2.32)

If we are unwilling to make distributional assumptions on the errors,

then a reasonable test procedure (and thus an estimation procedure)

based on (3.2.30) is
. . L,k
reject H0 if Fo > Za] and fit y

accept Hj otherwise and fit i,

We remark that the standard statistic FC is unsuitable for testing

H0 from the standpoint of the ratio of expected values since

A| ".IA ] ‘-I ‘]
~ = +
E(o5) 9%%3; %
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L
= —t ], (3.2.33)
923

The explanation, of course, is that FC is designed for testing hypotheses
on the parameter vector, e.g.,Egi_= 0. In the multivariate problem,
while it is true that By = 0 implies B] = 0 and thus that J] < Jz by
virtue of Lemma 3.2.1,_;Be equivalence is only one-way, i.e., it may be
the case that J; < J, although By # 0. Thus, we could find ourselves in
the position of rejecting one o;ﬁkhe two hypotheses while failing to
reject the other.

By way of illustration, let us return to the example of section 3.1.

Suppose N = 9, d' = [1,1], yi = [2,1,-1,3,-4,0,-2,4,-1],
yé = ["39233303] =1 94,‘2,3], and

X1 X2 X12'x12 x22"‘22 X1%2

R -1 -1 1/3 1/3 1

1 -1 0 1/3 -2/3 0

1 - 1 1/3 1/3 -1

] 0 -1 -2/3 1/3 0

X = | 0 0 -2/3 -2/3 0
1 0 1 -2/3 1/3 0

1 1 -1 1/3 1/3 -1

1 1 0 1/3 -2/3 0

1 1 1 1/3 1/3 1
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where x]2 = 2/3 and xz2 = 2/3 represent means of x]2 and xzz. The matrix

X; corresponds to the slightly rewritten model

L 27
"7 B0) Pt Xfigie) T 0T e

2 2
+(x"%" )85 (2) + X1%2825(12)

1 - 2 2 .
where 815(0) = B1j(0) * %1 P2j(1) * X2 Boj(z)> I T 1 2

The revised model is used merely for computational ease in obtaining
estimates of the parameters since (X:‘X;)'] = diag[1/9,1/6,1/6,1/2,1/2,1/4].
Also,

[ R D

><
i
1
et
I
—
1
it

1 o 0o o 1 1 1

-1 0 1 -1 0 1 -1 0 1

}/3 1/3 1/3 -2/3 -2/3 -2/3 1/3 1/3 ?/é
1/2 -2/3 1/3 1/3 -2/3 1/3 1/3 -2/3 1/3
1 0 -1 0 0 0 - 0 1

L A

><
N -
it

~

so that Xin =0 implies A = 0. If the region of interest R is

~

-1 <Xy 21, -1 <x, <1, then

Mo12 =

|

~
]
>

N

x
N -
[= R

>

i
~
1
——
1
P, U
i
>
b
~N
1
N
~
w
-
>
N
|l\)
N
~
o
-
>
="
x
nN
| -
~
>
"
(2%
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Ny
~
w
-
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N
i
™
~
w
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—t
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| J—



26

1/5 1/9 0
= 11/9 - 1/5 0
0 0 1/9

4 1
where K'' = [ ( dxydx, = 4.
1 -

From (3.2.7), M = diag[1/2,1/2,1/4] and

~

-

1/10 1/18 0
@ @212 = (1/18 1/10 0
0 0 1/36

Therefore, a; = N tr (M MZ]Z) = 9(41/180)

2.05 .

From (3.2.7)and using the fact that X; = [X1: X2] with X;X, = 0, we

obtain

8317 (X3%p) ™1 t5 v, = [5/6,-1/6,1]

Bh0= (X5%) 'y v, = [7/6,2/3,-7/4] .
Employing (3.2.23), we can write
B] = N(_B_gl"' ?gg‘)' !112]2 (Egl"' E_z—z_) (3.2.34)

for d' = [1,1]. This yields
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175 1/9 0| | 2
B, = 9[2,1/2,-3/41 [1/9 1/5 0 | | 1/2
= 10.2125 .
Applying (3.2.24) gives
. |13.93 -7.48
* |78 917

so that d'} d = 8.14. Therefore,

é]
Fo = ——=1.25 < 4,10 = Za].
d'y d

1

We are unable to reject Ho and as a result, we fit i}= [&1,92]

~

where Y3 T X By T Big) T P T Xfge I T 1 2

3.3 An Approximation to the Distribution of F0

Thus far, we have made no distributional assumptions, and
consequently, have been unable to determine type I and type II error
probabilities. In order to investigate the power function for a test

procedure based on Fo’ we now invoke error normality and assume

e N I®T) - (3.3.1)
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The distribution of the denominator of F0 can be obtained with
Tittle difficulty and is, in fact, a special case of the multivariate

Wishart distribution. From Press (1961) (8.4.13),

~

(N-qo) Z - W(Z’ p! N-qo) .
Therefore, (N-q_)d'} d ~ W(d'] d, 1, N-q )

using Press (1961) Theorem (5.1.6). The density function of
(N-a)d'] d is

0
-2 -1 -v/2d'] d
f(v) = 1 v 2 e ~ 7, v > 0.

If we make the transformation u = v/d'} d, then the density function of

(N-q,)d'J ¢/d'] d is

~

N-a4 u
fu) = L o v 2 e 2, u>0 (3.3.2)
N-a, 2 :
r(—2) 2
d'y d
dd 5
or (N-q.) —— "~ x"y_. - (3.3.3)
“apa %

We now turn our attention to the distribution of éT' From Press

(1961) page 214,

_é_2_~ N(Bps LM - (3.3.4)
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Equation (3.2.21) gives us

1 = d'[diag(x ]A x5 xjA- Xps oo x{A-x3)] éz (3.3.5)

and 51 ~ N(b1, var(ﬁ])) where |

var(by) = d' [diag(x{A-x5, x{A-x3, «..r xA-x3) T @M]

[diag(f'flffgj é‘flfféf"" g'fl;fg)] d

= (xA-x3) M(A'xy-x,) '] d

=b(x) d'] d (3.3.6)
for b(x) = (x{A-xp) M(A'x;x)) (3.3.7)
Thus, by = N(by, b(x)d'] d (3.3.8)
and (by)%/d '} d - b(x) x'f,k(é)
where A(x) = by/[b(x)d'] d1'/2.
Since By = NK é (by)? dx, © (3.3.9)

B/d'] d - NK f b(x) WA (x)1% dx (3.3.10)

where w ~ N(0,1).

Expanding the right-hand side of (3.3.10) and applying (3.2.31) along

with a; = NK [ b(x)dx, ultimately yields

iQ. TIN—

/d') d - a]w2 + 2aW + ag (3.3.11)
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____NE_T7§. é [b(é)]1/2 bydx . (3.3.12)

where a, =
('] @)

The integration to be conducted in (3.3.12) does not lend itself to
an explicit expression save for special cases to be discussed in
section 3.5. The form of Ay, however, suggests a means by which we can
approximate the distribution of éllgfz d. The integral version of the

Cauchy-Schwarz inequality implies

2 < LOK [ bO)BINK [ (b,/a']

< (a]as)]/2 .

a 1/2

2 %3
Therefore, E—-g_(—~% . : (3.3.13)
179

Using this bound,

~

B, 2
Ty -~ aplw® + 2(ay/a))w + ag/ay]
S a][w2 + 2(a3/a1)]/2w + a3/a1]
2
= ay[w + (ag/ay) /%] (3.3.14)
2
*a, y' : (3.3.15)
1 1,(63/61)1/2

Under normality, the numerator and denominator of F0 are independent
quadratic forms (using Graybill (f961) Theorem 4.21), so that our
statistic can be approximated by the ratio of independent chi-square

variates, i.e.,
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X
]s(aB/a])]/z

2
X N_qO/(N'qo)

t14

o

a, F' . (3.3.16)
] 1,N-q0,(a3/a1)]/2

In order to obtain an explicit expression for the power function P
of a test procedure structured around (3.3.16), we shall use (3.3.14).

If Da is a positive constant,

1-P=Pr(F, <D )
2
2 prla; (wr(ag/a;)/%) <D U/(N-q,)] (3.3.17)
where U = (N-q )d'f d/d'] d . (3.3.18)
Equation (3.3.17) can be written
DU 1/2 az1/2 DU 1/2 aj1/2
1-P= PP[-(gqxﬁja;y) - (g;) <W 5'(ETTN:557) - (g;) ]
Du /2 ag1/2
(a_ N_q '(5—0
A A 1 222
= [— ] e dz]
0 VZr : D u )1/2 3.1/2
2, N—q0 ay
1 o 4
N-a, u 'l e U2 g (3.3.19)
N-q
2 2 (=2
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utilizing (3.3.2) and w ~ N(0,1). This enables us to determine critical
points Da corresponding to designated o levels or probabilities of

type I error by making the substitution a3/a1 = 1 under Ho' If the
approximation of the distribution of FO by noncentral F with noncentrality

1/2

parameter (a3/a]) were exact, the resulting test procedure,

reject H0 if FO > Da

accept H0 otherwise

where Da is such that P = o, would constitute a uniformly most powerful
test of Hj (Lehmann (1959) page 68). This occurs in a special case to

be outlined in section 3.6. Excepting this special case, the application
of (3.3.19) will require numerical integration for determination of
critical points and type II error probabilities. Alternatively, one may
employ (3.3.16) in conjunction with existing approximations or tables

of the noncentral F distribution.

Under HO: a3/a] < 1, the maximum difference between a2/a1 and
(a3/a])]/2, incurred using (3.3.13), ensues when az/a] =0, (a3/a])1/2
= 1. This particular situation is, of course, impossible since
(a3/a]) # 0 implies b1 # 0 so that az/a] # 0. Nevertheless, we will
use this as an indication of the most bessimistic comparison arising
from the use of our approximation procedure versus the "true" distri-
bution, recognizing that the actual disparity may be considerably Tless.
The following table represents the differences between the nominal o

levels obtained 'using (3.3.15) and the "true" o levels obtained using

(3.3.11), i.e., nominal a - "true" a. As will be demonstrated in
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Table 3.3.1 Effect of Bound Substitution (3.3.13)

Nominal o o Difference
.01 - .0086
.05 .0358
.10 .0596
.18 .0790
.25 .0749
.30 .0580
.35 .0278
.37 .0124
.38 .0012
.39 -.0054
.40 -.0238
.45 -.1052
.50 -.2490
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Chapter V, our principal interest is in a suitable range of o values,
not in a precise o per se. Thus, although the magnitudes of the true
discrepancies will be smaller than those of Table 3.3.1, even the

tabular differences shown are well within our tolerances.

3.4 Integrated Mean Squared Error of the Preliminary

Test Estimator

Qur preliminary test estimator is

§ if H0 is rejected
= N (3.4.1)
y otherwise .

>

9

For subsequent work, it will facilitate matters to be able to represent

§ in terms of i, Using (3.2.7), consider

8y = (x0T =1, 2

EQ_— (~0 .,0) "0 .Xg_ s J T ) 3 s P
i -] ] i ) ]
(NMy) X3 vy + AMATXG g - AMKG vy

WK 3 Y

b

i '] 1 Pyl i
(W) 71X v - ACHATKIHNK) v

W) 3,

pom
~

By = 1 By

- : (3.4.2)
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Thus, B, = [8, - diag(A,A,...,A) 8,] and recalling (3.1.10),
Bely Aol oB) By

~

y = diag[iiffi""’x]] 81 + d1ag[x2 A Xz 1A e féffif] F2 -
We write

d'y, = Qf[diag(fiffif...,fi)]El_+ Ggf[diag(fé;fif,féjfif,...,fé:fif)lgg

(3.4.3)
1 i4f H0 is rejected
where 6 = .

0 otherwise .

Since the estimation criterion being studied is that of integrated

mean squared error, it is only natural to investigate

dx . (3.4.4)

Comparing (3.4.3) and (3.2.20) gives

E(d'y,-d'n)? = E(d' [diag(x{ X}, ..,x]) (8,-E(f;))

o
+ 6 diag(x'-xiA,xé-xiA,...,xé-xiA)(éz—sz)

+ (5-1) d1ag(x x1A x2 X;As. ..,xé-xie)sz]}z

from (3.2.18). Continuing,

> 2

E(d'y-d'n)® = Ed' [diag(x]x)se - 2x)) I(By-E(3))))°

+ E{¢sd’ [d1ag(x2 A x2 x]A ..,xé—xiA)](éz-Bz)}z

+ E{(s-1)d' [d1ag(x2 A x2 x]A ..,x2 )]62



+ 2E{6d' [diag(x]sx]s--.5%1)1(By-E(By)) (By-8,)"

[diag(fg-f\'ﬁ,ig-{\'ﬁ,..-,Q-f\'i(]_)]g_}

+ 2E((5-1)d" [diag(x],x{ 5.+ +»x])1(8;-E(8))

~

Bé[diag(xz-A'x],xz-A'x],...,xz-A'x])]g}
employing 6(6-1) = 0. Simplifying gives

= g][diag(xi,xi,...,xi)]var(é])[diag(x],x],...,x])]g

xieaxé'xies--~5fé;fif)](fgfﬁg)}

+ E{agf[diag(xé-

+ (1-E(6)){gf[diag(féfxie,xé—xie,...,xé-xie)]ez}

+ 2E(d" [diag(x] ’fi""’ﬁ_)](_él'“_él”

(Gﬁz_)'[diag(ﬁg'ﬁ'fl’g-é'fl’--w_{z_"{"ﬁ”i} (3.4.5)

where (6-1)2 = (1-8). Under normality assumptions, the fourth term in

(3.4.5) will vanish by virtue of the following:

~

Lenma 3.4.1: If ¢ ~ N0, J®1y), then E[(8;-E(8;))(s8,)'] = 0.

Proof: For i, j 1, 25 covs Ps

~

covlingaiag) = )T covlyy vy (Mot

from the proof of (3.4.2). Thus,

Cov(é]iségi) = Gij(-AM+AM) = 0.

~
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Since é] and éz are distributed normally, the two are independent so

that
EL(8y-E(8))) (88,)'] = E(g=E(8y))E(s8,)" = 0.

Utilizing (3.4.4), (3.2.2), (3.2.3), (3.2.21), (3.2.22), and Lemma 3.4.1

enables us to write (3.4.5) as
JO = V1 + (1—P)B-I

+ NK f E{sd’ [d1ag(x2 ] sX5™ iA CaX o= X1 )](B2 82)} (3.4.6)

for E(s) = P
The evaluation of the first two terms of (3.4.6) is straightforward
for specified parameter values. The major problem is in the deter-

mination of

2

Joz = NK é E{Ggf[diag(iéjfif,féffif,...,x2 A)](B2 32)

E{S[NK £ (by-by)2dx]}

= a,d'] d E(eY) (3.4.7)

where Y = NK [ (by-b;)%dx/ad'] d . (3.4.8)
R ~

Conditions under which Jo can be evaluated exactly will be discussed in
section 3.5. For the present, we shall confine ourselves to an

estimation procedure for E(8Y). Our preliminary test critical region

Bl/-d—'z d> Da
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is equivalent to (using (3.3.9))

= o 1
S R
a]g_'z d a]g_'z d
or Y > A
) .U 2NK {{ bibydx o, t.9)
where y = - + =, 3.4.9
o a] (N'qoy a]g—az g a-l

Therefore, the random variable &Y has a truncated distribution,

suggesting as an estimator

J d'pd

03 = 4") t f(t)dt (3.4.10)

<> — 8

o

where f(t) is the density function of Y. We remark that one could
integrate with respect to the random variable U in §a and write (3.4.10)
as a double integral; however, since by in (3.4.9) must be estimated by
6] using the observation vector y, it seems reasonable to use these same
observations to estimate J. In order to determine f(t), we proceed as

~

in section 3.3. From (3.3.8),

Y- (3.4.11)
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y
NPT 1 /2 -t/2
Thus, Jg, = a7d') d[1 - — [ t'/%e dt]
03 TEET v 0
- v2r 0
, . _.1/2
making the transformation t] =t
Integrating by parts, i.e.,
[rde=re - [ gdr (3.4.12)
where we equate r = t] and ¢ = -e , results in
- . ~ 2 -y /2
Jog = 'L dl(2y /m)% e %+ 20(-/5)] (3.4.13)
and JO = V] + (1-P)B] + J03 . (3.4.14)

Of course the difficulty in this procedure is that in general we are
unable to evaluate E(s8Y) exactly, owing to the fact that }a is not a
true constant but a random variable. We shall now discuss a special

case for which exact expressions for J0 can be obtained.

3.5 The Single Independent Variable

If q, = 1, much of the preliminary test estimation problem is
simplified. Without Toss of generality, we shall restrict consideration
to perhaps the most common example of this, the situation in which each
of our p estimated responses is a function of a single independent

variable x. As in the example of section 3.2, let



and assume )

where x

* * . -
Hence, (50‘50) L

2:

N
X
J=1 1

J

and M = x2/ND

where D = (;ij(x4') -

Also,

N
2
Z] X]j /N,

1
N

40

X X2~X2
2 2]
11 X X
X12 %12 X
' 27
I KN TX
. = 0 so that
1 0 0
0 x2 x3
0 x3 x4
L J
— N
3 3
X b X7:7/N, x
=1
1 0 0
0o x*/p -x3/
0 -x3/D  x2/D
b B
(x3) .
o "M o 0
2 Nx3 x3/x2

(3.5.1)



=
i
=
——
I
x
+

~212 ~

— —2 —52
[(x%-1/3) + 4745 + (x°) /3(x%) ]

for K = 1/2 and R such that -1 < x < 1.

Thus, a; = N tr (M M212)

— 2 2 2
2 [(x2-173) + 4745 + (x3) /3(x%) 1/D . (3.5.2)

Similar to (3.2.34), we can write

33 = N(_d_lB )! @2]2(_1'2)/9'2 d

— 2 S22 =2
= N(d'8,)°L(x*-1/3) + 4/45 + (x°) /3(x°) V/d'] d

|
=
o
—~
=8
™

giving as/a; = gfz d). (3.5.3)

Critical points Da and probability of type II error are then obtained by
employing (3.5.2) and (3.5.3) in (3.3.19) with g, = 3. From (3.3.12),

1/2

R )
a, = —— K [ [x2 + (x7/x%)x - x2] dx
S CTCTR IS LA
22
(Nx)  (d'8p) >

- —2 52
[(x%-1/3) + 4785 + (x3) /3(x%) ]

D' 9172

1/2

implies a,/a; = (ND)]/Z(d 82 /[Xz( Z

(a3/a])1/2 : (3.5.4)
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Thus, the distributional results obtained in section 3.3 are exact for
the single independent variable case, and we do not have to make use
of the bound substitution in (3.3.13).

To determine the integrated mean squared error of our preliminary
test estimator for the case of the single independent variable, we shall

examine its two components separately, i.e.,

1
-
+
lee)

(3.5.5)

=
=
[}
-3
¢
-7
i
=
-~
oy
<
3]
1
——
[N
<>
e
[=%
>

=)
1

NK | bias?(d'y,)dx . (3.5.6)
R 0 |

From (3.4.3), (3.2.20), and (3.2.18),

bias(d'y )

E(d'y,) - d'n

L

g,' [diag(f—é—'ﬁf\si"ﬁ_{\s' . si‘ﬁe)}[E(ﬁi)‘ig]

= D ()P L8 (d',) 14, ) (3.5.7)

for the single independent variable case. Expanding (3.5.7) yields

i

bias(d'y,) = [~/ xB)xnxle(var(d'8,)) /2 Els(

+ E[(S(d'ﬁz)] - 9_‘82}

it

D= (3 78) %210 (var (d'5,)) /26 ow)+(P-1)d" 8, ]
(3.5.8)
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where w ~ N(0,1), E(8) = P, and

~

var(d's,) = ;ﬁ-(gfz d)/ND . (3.5.9)

i 1/2 2
NL(x“(d Z Q)/ND) E(SW)+(P-1)Qf82]
1 S —
K { [xz-(x“/xz)x-xzj dx

-

Therefore, B0

5 2 =2 —52 -
NL(xE-1/3) +4/85+(%) /30x%) IL0E(A'] d)/wo) /2

2
E(sw)+(P-1)d'8,] . (3.5.10)

i

In order to evaluate E(&w), we now reformulate our preliminary test
critical region for the single independent variable case. The

inequality FO > Da reduces to

) 1 2
N(Qfﬁz)z K { [x%- (x3/x2)x-x?] dx > D d'

D

d

and § = 1 only if
1/2
- NIRPRY. 3,2,..72.2
d'62 > {Dagfz dU/N(N-3)[(x“-1/3)“+4/45+(x”) /3(x") 1}

o — 2 2 —2 V/?
. 2 3 2
d'g, < -0 d'] dU/N(N-3)[(x“-1/3)+4/45+(x) /3(x") I}

[=5
1
{=N

|

where U= (N-3) XN-3

=5
3
[=%

Normalizing g}éz gives the equivalent condition
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w > RH]U
or (3.5.11)
w<R U
— __, 1/2
"3 PR 3,2 .72,
for RH|U = {DD_U/x"(N-3)[(x"-1/3) +4/45+(x") /3(x") 1}
— 1/2
- d'sy/[x (sz d)/ND]
= [D_U/ay (N-3)1"/% - (a/a))1/? (3.5.12)
RIU = -[D_U/a; (N-3)1/2 - (ag/a;)!/2 (3.5.13)
where we agree to restrict gfsz/[;?kgfz g_)/ND]]/2 to the positive root
(a3/a])1/2 due to the following:

Lemma 3.5.1: If gfsz # 0, then the multiplication of gfsz by (-1)

results in the multiplication of E(sw) by (-1).

Proof: The random variable &w has a truncated distribution, allowing us

to write for d's, > 0,

o R IU o
E(sw) = [ [ zf(z)dz + | zf(z)dz] f(u)du
0 ‘e R, |U

H
-R |U

=[[ [ zf(z)dz] f(u)du (3.5.14)
0 - H|U

where f(u) is given by (3.3.2), and f(z) being the N(0,1) density

function implies zf(z) is an odd function. If g}sz < 0, then using

(3.5.14),
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[0_u/aq (8-3)1"/%-(ag/a)

E(ow) = 7 [ [ zf(z)dz] f(u)du
0 ‘[Dau/a] (N"3)]]/2" (33/31 )]/2
. R U
=-f [ f 2f(z)dz] f(u)du
0 -R |U

Clearly then, the sign of d's, will have no effect on (3.5.10), and will
similarly have no effect on the variance component of Jo as will be seen
when we turn our attention to Vo‘ In Appendix I, it is shown that

(3.5.14) can ultimately be expressed as

2
-h“/2(gt1) , o— v-l (h/g)°
Elow) = e(v-2)/2 Hen ) (ve]) " vHo-1
2 r(v/2)v/g+1 |e=0 (Vg+1)

R < B
i ? ug']'ee 2 duy +2 ) (5, +1) hvg ¢+2
YA R 020 T (/g
g
2
m —uy/2
v-2-2¢ U3/
/ o u3 e du3] . (3.5.15)
hth

with g and h given by (A.2), v = N - 3, and [ ] denoting the largest

integer less than or equal to (v—2)/2. The 1ntegrations in (3.5.1%)

-u;¢/2
can be evaluated by successive use of (3.4.12), identifying u;e !
(i = 2,3) with de. Determination of E(sw) is further facilitated by

. v-1-9 ~Y2 /2 .
utilizing the fact that u, e is either an odd or an even

function being integrated over a finite symmetric range about zero.

Thus, we obtain B, from (3.5.10) and (3.5.15).



46

Turning our attention to the variance component of Jo’ we recall

(3.4.3) and write

var(g}gg} = gf[diag(fiffif""fi?]var(él?[djag(flfflf""fl)]g'

+ E(od' [d1ag(xy-xjA,xy=xjA, . .., xgxiA)] )2

- E%(od’ [diag(x5=x]A,x5-x1A, .. sx5-xIA)] 6,)

X

where cov{d'[diag(x 1’X1’ cesX )]B], 6d' [d1ag(x2 ]A x2 16,... é xiA)]
62} = 0, invoking Lemma 3.4.1. Employing (3.2.2), (3.2.3), (3.3.5),
and (3.3.9) yields

R R 1 -5 52
V0 = V1 + E(SB]) - N{E[s&(d' 2)]}2 K [ [xz-(x3/x2)x-x2] dx.
- -1

Manipulations similar to those leading to (3.5.8) and (3.5.10) result in

2 =2 2
V, = Vy *agd'] dE(sY) - NL(xP-1/3) +4/45+(:3) 730:%) ]
5 1/2 2
[(x“(d'] d)/ND) ~ E(sw)+P d'8,] (3.5.16)
where Y =B/ad'[ d (3.5.17)

)

As was the case with (3.5.10), we note that the sign of g}sz does not
affect Vo as a consequence of Lemma 3.5.7.

To evaluate E(6Y0), we use (3.3.18) and write F, > D, as
Y, > R|U

where RIU = DaU/a](N~3) . (3.5.18)
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The random variable aYO has a truncated distribution for which

(oY) = :f; [Z]u $f(s)ds] F(u)du (3.5.19)

where f(u) is given by (3.3.2), and f(s) is the noncentral x]z density
function of Yo’ i.e., using (3.3.15) and Rao (1965) (3b.1.15),

_ - i (4i+1)/2
ts) = o YP (ag/ay) (1/2) ((2i-1)/2,-s5/2
iZo r(i+1)r(i+1/2) ’
(3.5.20)
Making the transformation $1 = 51/2
"63/23-! L ® (33/a1)1(]/2)(41+] )/2
E(GYO) = 2e / i%0 rT(3+1)T(i+1/2)
2 N-3
°° : -s,7/2 == =1 _
£|u5$(1+1) e | ds]} ~EE§T—1--- u® eV gy .
" 2 N-3
2% (5 (3.5.21)

Save for the special case of the next section, the evaluation of E(SYO)
will require numerical integration simijar to (3.3.19), which for the
case of the single independent variable is

1 Bl 2272 1 wa u/2
["—‘— 'jé e dZ]—-N':'g*‘**‘"—"——‘U e du .

/2?; Lt
LI 2 2 p(N=3 (3.5.22)

T -P=

O 8

Therefore, V, is obtained from (3.5.16) and (3.5.21).
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3.6 A Special Case: d'}] d Known

~

Knowledge ofkng d considerably reduces the magnitude of the

problem. Our test statistic is now simply

C, = By/d'l d, (3.6.1)

and from (3.2.28) and (3.2.31) with no distributional assumptions, we
reject HO: ag < Ay if CO > 2a1
accept H0 otherwise.
Under normality, we use (3.3.14) for

1-P= Pr‘(Co_<_Da)

* Prla, (w+(a3/<':\1)]/2)2 < D]

+ Pr-(0 /a;)-(ag/a) /2 < w < (0_/a))/%-(ag/a) /2]

* o[ (0 /a;)1 /% (ag/2;) /2] - ol- (0 /2)) %= (ag/a)) /21

(3.6.2)
The critical region é]/gfz d > D 'is equivalent to
Yoy
where Y is given by (3.4.8) and analogous to (3.4.9),

. b va, 2N [ bybydx
y = - (3.6.3)

R
a 1
¢ 1 a]Q_Z.Q
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Replacing y_ by ¥ in (3.4.13) determines Jy, and thus Jy.
For the single independent variable case, we adjust our critical
region once more so that ¢ = 1 only if
A 1 - 5y 5 2
N(d'8,)? ‘< [ (/%) x-x%] dx > D_d'] d

and proceeding along Tines similar to those resulting in (3.5.11), the

preliminary test condition becomes

W R,
or (3.6.4)
W < RL

with Ry = (07212 - (ag/ap)!/? (3.6.5)
R, = -(0,/a))V/% - (aga)'/? . (3.6.6)

From (A.1) with d') d known,

2 2
'RH /2— -RL /2

E(sw) = (1/V2n) [e e 1. (3.6.7)

Finally, we write Co > Da as
Y0 > Da/a1
where Yo is given by (3.5.17) so that from (3.5.21),

- i (43+1)/2 ’
e'a3/2a1 y (33/31)_(1/2)’ T 2(i4)) /zds .
=0 r(i+1)r(i+1/2) D /a 1 1

a "l (3.6.8)

E(GYO) = 2
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Applying (3.4.12) once more, (3.6.8) converges quite rapidly for
representative values of a3/a1. Again Jo = Vo + B0 is evaluated by
using (3.6.7) and (3.6.8).

We present a simple examplé illustrating the concepts of the last
four sections. Suppose we are dealing with a single independent
variable and

N=3,d" =1[1,1], g}i d (known) =

y = [2,-2,-1], yz = [1,0,2], and

X xz-x
1 -1 1/3
o 2
o= 10 -
1T 1 1/3
Since x2 =2/3, x* = 0, and x4‘ = 2/9, we use the results of section 3.5
to find
2 0F (3
D= (x")(x"") - (x7) =4/27
- 2N =
M= x"/ND = 3/2
A=0

IR 3.2 772
Mypp = L(x5-1/3) +4/45+(x%) /3(x%) ] = 1/5

=N tr(M M = 9/10

Qs
—
I

212)
)2

i

(85 = [Byq:85,1)
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a,/ay = (2/3)(8,1*8,,)°
37 21 722 :
If o« = .05, then we substitute a3/a] = 1 in (3.6.2) and obtain

.95 = @[(Da/.Q)]/z-l] - ¢[-(Da/.9)]/2-1]

for which D_ = .9(2.65)% = 6.320.
Since §i§2 =0,
c . 1y, _
Boy = (X3X5) X5 yq = 5/2
- * ] "] ] —
Boo = (Xakp) X5 yp = 372
N(éz1+ézz)2M212
C, = =212 _ 9,600 > 6.320 = D
d'} d *

We reject Ho and fit the quadratic model ﬁ, To evaluate Jo, we require

, Lo
Mg = NOGX) T =
- -1 0 3/2
} 10
ppq = K [ xq xq dx =
LR (i R & 0 1/3
| "] -
Vp = (4] d)er(MyyTuyq) = 32

Suppose (82]+622)2 = 15 so that a3/a1 = 10. Equation (3.6.2) gives

1-p-= ¢[(Da/.9)1/2-¢Tﬁj - Q[-(Da/.g)]/z-JTﬁj
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whence P = 0.695. Also,

_ 1/2 =
Ry = (Da/.Q) - /10 = -0.512

R = -(Da/.g)”2 - /10 = -5.812
2 2
R2/2  -R %2
E(ew) = (1/vZr) [e N —e L' 7=0.350 .

Applying (3.6.8) results in E(sYo) = 9.691. Substituting in (3.5.10)
and (3.5.16) yields B, = 0.340 and V_ = 4.625 so that J = 4.965.

3.7 Design Considerations

Before leaving the standard model, we shall briefly touch upon the
problem of "optimal" design, in particular that of choosing a design to
maximize power for the case of the single independent variable, i.e.,

for a3/a] > 1, we wish to maximize

P

Pr(F0 > Data3/a1 > 1)

Pr(F' > D /ay|az/a; > 1) . (3.7.1)
1/2 ol T117307
1 sN'qos (33/31 )
It is clear from (3.5.20) that P is an increasing function of a3/a];
hence for the single independent variable case, we seek to maximize
(3.5.3) for fixed N.

—_— — —D
Examining D/x2 = xt (x3) /x2

gives x3 = (0 as an initial condition. We also wish to design such that
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— N — 2
x4l - X (x] -Z“XZ) /N
=
o - (L 2m (3.7.2)
= X,: /N = Xq.s /N 3.7.2
511 ja1 1

is maximized subject to |x1j[ <1,3=1,2, ..., N. Applying the

inequality

to (3.7.2) gives EZ" < 1/4. If N is a multiple of four, then the design
which maximizes P is N/4 points at -1, N/2 points at O, and N/4 points
at 1 since this configuration achieves §Z‘ = 1/4. Designs with a
concentration of center points and remaining points split equally at
+ 1 also seem to be effective if N is not a multiple of four.

Maximizing a3/a] in general proves much more difficult than for
the single independent variable case. Also, in the search for design
values which minimize B0 or Vo, much Tess JO, even for the case of the
single independent variable, one is led to trial and error with respect
to different designs or empirical minimization as the only practical

solution.



Chapter IV

GENERALIZED MULTIVARIATE REGRESSION MODEL

4.1 An Expanded Notation

In Chapter III, each of the p response vectors was dependent upon
the same regression matrix, either X1 or X;. We now relax this

requirement and postulate a model of the form

Yi=KyBgteg 23T 2 b, | (4.1.1)
qulj
or y=X8gy te (4.1.2)

-

prqf

where now, X = diag[§1],§]2,...,§]p]

af = J.Z] N

The true model becomes

{i.= ¥1j Eli.+ §2j Egi.+ &j J=1,2, ceuyp (4.1.3)

qu2j

* % '
= X, B: + €. 4.1.4
5855 (4.1.4)

*
for X.: = [X]j: ij]
quOj

qu = q]j + q2j .

54
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Consolidating gives

* *

,Y_=X_B_ +_g_ (4']°5)
. * * _* *
with X = d1ag[§1,§2,...,§p]
Npxq
E
q = ns -«
=1 %

If rank (§;) = Qg0 OUr model assumptions are identical to those of
section 3.1.

Unlike the standard model, the multivariate generalized least
squares estimators of the parameter vectors do not reduce to univariate

least squares estimators so we write only

-1
(@ X @)y (4.1.6)

™
—
]

lto

- T @)y - (4.1.7)

Employing (4.1.6) and (4.1.7), we fit either

Yy =X fy (4.1.8)
or
V.= X Bys t Xps B
Yi = X3 Byy + X5 Bpj
* ~%
- X.J _J_ (4-]-9)

*
' are typical row vectors in the matrices X]

1 1
where flif fgif and fi. T

d *
Xp5» and X,.
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We again wish to estimate our response function based on the
hypothesis comparing the integrated mean squared errors of Tinear

combinations of the estimated responses for the two models, i.e., HO:

Jy 2 dy. IF Rj denotes the region of interest associated with X]j,
we define
K= [ doxg.
J é, 3
J
-1 _
K = é dx = é é ...£ d fll.d X2 d X1p
172 p
P
=1 K
j=1 !

A%
There is again no integrated bias contribution to J, since E(B ) =

We write our hypothesis as

Hy: B]/(VZ—V]) <1. (4.1.170)

To obtain the quantities in Ho’ we require

-1 * *
K@) X X (L) EN s +e)

E(B]) =
- (@1, )']x] K(I@LY [X 8y + diaglXyy Kop- - Xp,)85]
) prq2 N
(a3 = jZ] Ap;)
=8, + A By (4.1.11)

where Aj = [X (Z(:)I )-]X]—]X 2(:)1 [d1ag X2]’X22’ . ,§2p)].
(4.1.12)
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Therefore, E(g'i)

i

d' [diag(x]'],X{Z,...,x{p)]E(_éJ_)

Q'[diag(x]‘l,x]'z,.--,Xip)](ﬁ‘ff\o 8_2) .

. * K * *
Also, d'n = g'[dwg(x]‘,x2‘,...,i<£')]_ﬁ__

= £j-'[diag(x]'],x]'z,...,x]'p)ﬁ-+ diag(iél’iél"”’f_éﬂ)iz_] .
Thus, by = E(d'y) - d'n
= Q'[diag(xh,X]'Z,---,Xl'p)ﬂo - diag(il’x_éé""’f?._l?_)]iz_
(4.1.13)
2
Now Vy = NK é var(d'y) dx
= NK [ d'[var(y)1d dx
R
= NK é d'[diag(x]ys%ps- ..,x]‘p)]var(ﬁ)[diag(ﬁrfﬁ,...,x_]p_)]
d dx
] . I 1 ] 1 _] _.l
= NK }R’ d [d1ag(x”,x12,...,x]p)][)~( (Z@EN) )~(]
[diag(x”_,x]z,...,x1p)]g dx . (4.1.14)
(Press (1972) (8.5.12))
Similarly,
e *, % _] * -1
V, = NK é d [d1ag(x] ,x_z_ [X (Z@I X

L *
di WXopseoosx )]d d 4.1.15
[diag(xq,Xps. . sx))]d dx (4.1.15)
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where var(g ) X(:)I )7 1"

We denote by M, the submatrix of var(éj) associated with éz so that

var(fg) = @o . (4.1.76)
In order to develop a test statistic, we estimate ) by
Z = (01\])
__"***.*_]*'A __AIA
(4.1.17)
UqsUpseassl | = U
[ugstigs--oupd = L
~%
=Y-178
Y = [ﬁgﬁ’...’h]
Z = [X]s 2) X ]
Ak . ~dk A%k ~k
B = dwag[flffgf""fgq .
The natural test statistic for (4.1.10) is

where 02 and Ql are given by (4.1.15) and (4.1.14) with i vice }, él is
given by (3.3.9), and by is given by (4.1.13) with 8, vice 8,. There
are several difficulties with (4.1.18) in general. a;% we a;;-to justify
a test procedure in terms of a ratio of expected values, the

o -1
expectations of matrices of the form [X'(Z(:)IN)'1X] do not lend
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/\* ~
themselves to explicit determination. Further, g , Bos and A0 involve
) which is unknown. If our test statistic is altered to reflect
estimation of ), then we are unable to obtain E(é]), nor E(VZ—V]).

We shall see that (4.1.18) becomes more useful in the next section.

4.2 A Special Case: ) Diagonal Unknown

If the error covariance matrix is diagonal, then (4.1.6) and (4.1.7)

reduce to
. T
((Xn 1) X
1y,
1 KXe) K v,
By = : (4.2.1)
_'I .
XipXip) Xip ¥p
L. .
I S IR 3 T
(X IX ) ] [] y]
-1 R
o (X3 %) X' V2
g = : s (4.2.2)
*I _] *I
(Ko Xp) X5 ¥

the univariate Teast squares eStimators for (4.1.1) and (4.1.4). If we

define

X)X X s 5 =10 2 eees Py (4.2.3)

(X 213223

2132 1J

then

:_IT=
I

= diag[A ,Ap] . (4.2.4)

1’ 2’
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Let M. denote the submatrix of (X* XT)"] corresponding to M in (3.2.7).

~J ~J ~d
Then
~% * * - * *, o -
Var(é_) = diag[o]](§]'§])‘1,022(52'52) ]s- pp(xp Xp) ]]
Var(éz) = ’:10 = diag[c]]!‘?" 3022‘?2,- . pp pJ ‘ (4.2.5)

From (4.1.13) and (4.1.14),

o
-—
i

= g}[diag(xi]§1 A,-x2

Xa1-X12R27%g2 X 1phpX2p )] By (4.2.6)

-
—
i

NK f{ d'[diag(ogqxq7(X1X49)" 1"11"’22 2("1'2{‘12)—1"12’

(X4

-1
oppXipKipkip) Xqp)d d dx

]

p
I NK [ d

2r 4 '
' h j [x .(X]j§]J) ]

P AN __J_OJJ

where d' = [d],dz,...,dp] .

Similarly, from (4.1.15),

....]*

L
it

) z K [ 4 [f,f(x ') xj1 o5

~J L

2(x (A!

i
Ho~—71o

NK [ d;

1 \
LML 0 (k) g+ O hg-xp)Y Mo 5%

J ~J__L]_ ZJ

J

adapting the development of (3.2.10) to each of the p terms

' -1 %
Li, (§J XJ) _JJ. Thus ,
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P

(4.2.7)

= 201 _y! 1 -
d 2 . Cp
p

_ 2

"L 2ty

for aj; = N triM(K é (ASxq 5-%p3) (xq jA5-%55)dX)]

Equation (4.1.18) becomes

and 6 ' AA

1 = dLdiag(xgyAyxpysXqpRo X0 s X pAp X 8

In general, we can write (4.1.17) as

iJ

\ * *l*_'l *I —* *l 4
Y (X (X)X N Ty=X5 (X5 X)X )y

*, ok ok 7 % .
[N'qoi'qoj+tr(¥i(§il§i) ]X-FX-(X-'X~) X:")]

(4.2.8)

(4.2.9)

(4.2.10)
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| * *1 - "]
e erlE(y; ¥ (TyXy (4" %3)” x (I ~J(XJ XJ) X5")]
O.s) =
1J _ _ * *' 'I * _'l
[N 9%i qoj+tr(¥i(¥i 5 ) 51 %J(¥J XJ) %J )]
= O'.ij .
p 2n p 2
Hence, E(jZ1 aJJdJ OJJ) = jZ] jjdj i3 (4.2.11)
Now  E(By) = NK [ E(by)? dx
R
= NK [ [var(b;)+E(by)] dx (4.2.12)
R
Comparing (4.2.10) and (4.2.6) gives E(B]) = by.
Also from (4.2.10) and (4.2.5),
var(b]) = Z dJ _.Jl 3 sz)M (AL J__;L 2j) o355 > (4.2.13)
so that applying (4.2.8), we have
~ p 2
The ratio of expected values in (4.2.9) is
1+B/z a2 . (4.2.15)
1 321 Jd J %33

If no distributional assumptions are made, we
reject HO if F] > 2

accept H0 otherwise.
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We now assume normality of the error vector e as in (3.3.1). Since

~ * *
o055 = YiX; J) (y X B )/ (N- “Goj)
= XﬁﬁIN §J(XJ §J) X; Ty /(N “Go3)
. 2
(N-ag3)055/055 - Mg, (4.2.16)

(Graybill (1961) Theorem 6.1).

The ajj’ j=1,2, ..., p, are independent, and using an approximation

due to Satterthwaite (1946), we write

E a..d.% 2 /h
L %53% 933 7 9% Mo

p
where 9, = jZ] ajjdjzojj =V, -V
2
x Z 3339 JJ)
o - .
2 2
L (ay5d,%0,)% (N-qy)

J=1
In order to use this result, we estimate the latter quantity by

Z a. 28..)2
j=1 Jd J JJ

i E (0 d.2 2/ (Neq )
- JJ J JJ 0J

= >

(4.2.17)
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A 2
2a d’os; %
=1 3i% %33 _hy
so that T e (4.2.18)
2 1 h0

From Press (1961) page 222,

By ~ N(ngﬂo) (4.2.19)

where for ) diagonal, M_ is given by (4.2.5). For B] given by (4.2.10),

L0
we have 51 ~ N(b],var(B])) with var(51) as in (4.2.13).

*

Define b(fl) = (x]J 5 EEJ)MJ(éJiAl_JQL) (4.2.20)
P 0.2
so that var(b] Z 3 di%oy5 -
« o 172 1/2
Then, b /[JZ] b(fi. 3 JJ] = N(by /[JZ b(x )d ] , 1)

R4 * 2 12
B L D935 e

where Ax ) = b]/[ )y b(

P *
B, ~ NK [ L) b(x,)d ](w+x(x )) dx

R j=1 __J_JJJ

< (Vo-Vo WP + 2uNK [ [ E b(x’f)d.zc..]wb dx + By .
2 1 R 351 "33 T3 17= 1

Analogous to (3.3.13), we base a bound approximation on
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P, 1/2 p /2

NK é [jz] b(fi)djzojj} bydx < [(NK | JZ b(x;) dJ 5 14) (NK f by dx)]

1/2
< [(v,-v,)8,172 .

1/2 ‘
é [b(_l}dJ aJJ] bydx 5 1/2
Therefore, T < =) (4.2.21)
2 1 2 1
. 1/2
) 2wNK [ ( Z b(fi. JJ) bidx
By = (V) L T
2 1 21

{

(VyVy ) IWe +2(By/ (Vy=Vy ) 2w + B/ (V,=07)]

123

1722
(Vp=¥y ) Iw + (By/ (Vy=v7))1 /2] (4.2.22)

12
1,08,/ (V=) 11/

o

(Vo=Vq) x (4.2.23)

Using (4.2.23) and (4.2.18), the ratio of independent chi-square

variates in (4.2.9) becomes

'§1/(V2‘V1)

Fy

E %3 J 933 /(Vp=¥q)

2
X

1,08,/ (V)12
xg /ﬁo

ho

2

zF‘

N . (4.2.24)
1/2
1,ho 5 [By/(V,=Vy)]



66

The form of (4.2.22) is similar to that of (3.3.14) so that

proceeding as in section 3.3, we have

(0 u/h )-8y (v NVE
1-p= é[—l-; e 2 /2 g
21 (o u/hy) 2 (B, (Vi )1
(h /2)-1
-~ 1 u ° e”W2 4y . (4.2.25)

he/2 .
2 r(hc/z)
Under the hypothesis of (4.1.10), the substitution 81/(V2~V]) = 1 enables
us to determine Da for specified P = o. Also, for b] and V2 - V] as
given by (4.2.6) and (4.2.7), equation (4.2.25) can be employed to
determine type II error probabilities for various values of the
parameter B]/(Vz-v]).
We now investigate the integrated mean squared error of our
preliminary test estimator for ) diagonal unknown. The direct

extensions of (3.4.2) and (3.4.3) are

Brj " AiBoy

gy = (4.2.26)
Rl 2.
b5
d Yo =d' [d1ag(x]],x]2, "’xiP)]El.+ dgf[diag(féljiilfl,
Xpp X ghps+ -+ X357X ) 185 - (4.2.27)
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Also, Lemma (3.4.1) holds for &, and g of (4.2.1) and (4.2.2) with

o5 = 0, i # j. Using the development (3.4.4) through (3.4.8), it is

easy to show that

Jo =Vt (1—P)B] + wz-v])E(aY)

where Y = NK [ (by=b;)%dx/(V,-Vy).
R

Still utilizing section 3.4, if

J03 = (V2~V])E(6Y),

~

o - 172 Y2 =
en Joz = (Vp-V)[(2y /) "% e +20(-vy )]
D (Vy-Vq) - 2NK é bybydx + B,
where Y, = N, -,
Finally, J, = Vy + (1-P)By + Joa (3.4.14)

where V, - V;, P, and b; are obtained from (4.2.7), (4.2.25), and
(4.2.6).

When the p response vectors are all functions of a single
independent variable, we can generalize the results of section 3.5 so
that

1 Xi1 X

i Xi2 X

ST AT



- N 3 N3 g, N o 22
for x& ToOXS/N, x5 o= T x5o/N, xg =) (x5-x5) /N
UK 15 T i s 1
N
If we assume ) x.. =0 for all i, then
=
_ 2
My = x3/ND;
where D; = (D) () - ()
J J i’
0
and A, = |- —
~J 3,.2
xj/xj
Scaling the Rj to the interval [-1,+1] enables us to write
: WK 5,2 2
K é (Al $X157%2 )(x]JAJ xzj)d5_~ [(x§-1/3) +4/45+(xj) /3(xj) ]
K é (A1xh XZi)(X]JAJ sz)d§_= (x f 1/3) (x .—1/3) R N
as = 2 LO2-1/3) 4745+ () 1302) 1D (4.2.28)
Ji J J J J J e
p e 2 - 2 =5 2
) 2,77 3 2.\ 2
B, = N['Z] dj ((xj 1/3) +4/45+(xj) /3(xj) )SZJ
2
+ 2 §<§ d. d (x -1/3)(x Xj ]/3)521323] (4.2.29)
Vv, = Z NK f d; [x] (x]J 1J) x] ] o5

J=

i

2 d (141/3 X ) o (4.2.30)
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" : 2,,.2 2 _—3‘2 "*2-2 .
K é byb,dx = 321 d; ((xj—1/3) +4/45+(x3) /3(x5) )85
2 W .
k %f% djdj(xi-1/3)(x5=1/3)851855 - (4.2.31)

The noncentrality parameter [B]/(VZ-V])]]/2 for (4.2.25) is obtained
using (4.2.28) and (4.2.29). To calculate J_;, we substitute (4.2.31)
in y_; then J, is given by (3.4.14) with (4.2.29) and (4.2.30).

Unlike the standard model, the distributional results obtained for
é1 are not exact for the single independent variable case since the bound
in (4.2.21) is not attained. Another dissimilarity from the case of the
standard model single independent variable is that Jo does not lend

itself to explicit evaluation, and we rely solely on 30.

4.3 A Special Case: ) Known

~

Knowledge of ) once more alleviates some of the difficulties

inherent in our procedure. We write H0 as

B/NK é var(by)dx < (V,-Vy)/NK é var(by )dx (4.3.1)

where, without assuming ) diagonal,

~

by = gj{diag(filfiigf'..’fiﬂ}eondiag(félffégf.'.’iéﬂ)Ji% (4.3.2)
var(by) = d'[diag(xj;»xjps- - »x{, Ag=d1ag (x5 Xy x5, ) g

[Ay(diag(xy, SSPIEE ’x_lg))'diag(f_z_l’f_z_z_" . ,x_Z_E)].d_ (4.3.3)

(from (4.1.16)).
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Our test statistic is

C, = By/NK [ var(b,)dx . (4.3.4)
17 BN 1

Since 6] is unbiased, we have from (4.2.12) that
E(B,) = NK é var (b, )dx + By,

and our procedure is
reject Hy if Cp > 1+ (Vy=Vy)/NK é var (b, )dx
accept H0 otherwise.

For the error normality assumption, we first recall that var(b])
Z b(x; )dJ o35 1f )} is diagonal. Thus, we can make use of the

deve]opment leading to (4.2.21) to write

é1 ~ w2NK é var(B])d5_+ 2wNK é [var(51)]]/2b]d5_+ B,
NK [ [var(B])]1/2b1d§_ B 1 1/2
R 1

- < -
NK [ var(b])dg_ TINK S var(by)dx
R R

Generalizing (4.2.22) yields

B, = (NK f var(by )dx) [w + (B,/NK [ var(b1)dx)]/2

02

Cqy ® x N .
1,[8,/NK [ var(b;)dx]'/
R

1
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Therefore, 1 - P Pr(Clgpa)

1/2

o

* o[D_’“-(B,/NK é var(B])dé)]/ZJ

1/2

-<I>[-DOl

- (By/NK é var(b;)dx) /2] (4.3.5)

where B, and var(51) are obtained from (4.1.13) and (4.3.3). Due to the
complexity of our estimators (4.1.6) and (4.1.7), it is not feasible

to develop a general expression for Jo when ) is not diagonal even if

~

it is known and we are dealing with single independent variables.
We shall briefly consider the simplest of all special cases, that

of ) both diagonal and known. Now,

NK £ var(by)dx = V, - Vq

where V2 - V] is given by (4.2.7). Thus, our test statistic is simply
C, = By/(VpmVq) (4.3.6)
for which we
reject H0 if C2 > 2
accept H0 otherwise.

From (4.3.5),

1/2

o

1/2

a

1-P=o[D —(81/(V2-V1))1/2] .

(4.3.7)

-(By/ (Vp=V) /%] - o[-D

Generalizing (3.6.3) gives
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ya = VZ - V'I ’

~

..S‘l /2 —
)]/28 a

and 303 = (Vz-V])[(2§a/w + 2¢(-f§a)]

with 30 as in (3.4.14). Results for the case of the single independent
variable are obtained using (4.2.28) through (4.2.31).

Design considerations are extremely difficult to treat for the
generalized model even for the most restrictive assumptions on the error
covariance. Combinations of design variables which increase power or

decrease Bo’ V., or JO, seem best sought by empirical methods.

0



Chapter V

COMPARISON OF INTEGRATED MEAN SQUARED ERRORS

A variety of means by which to choose a model are available to
the researcher. He may arbitrarily select i_or §_ having integrated mean
squared errors J1 and J2 respectively. Another possibility is that of
choosing a model by using a preliminary test estimation procedure
based upon the usual statistic FC given in (3.2.26). The resulting
estimator for a multivariate model has integrated mean squared error
J3, say. We shall compare the performance of &0 and the above
estimators with respect to JO’ J], J2, and J3.——ﬁe shall also discuss a
reasonable range of o levels for the estimators structured around a
preliminary test of hypothesis.

The subsequent graphs have been prepared utilizing the design in the
example of section 3.6 for the case of the standard multivariate
regression model, single independent variable, g}Z d (known) = 1.

Critical points for Fc were obtained using a similar procedure to

(3.6.2) since
Fo = F/a (3.2.28)

for q, = 1. Due to the computational effort required, this is not
intended as an exhaustive comparative study. Rather we are examining
the special case of the single independent variable with gfz d known
as an indication of what is expected in more general cases. The symbol
J in Figures 5.1.1 - 5.1.3 denotes integrated mean squared error with

o values affecting only JO and 03.

73
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Figure 5.1.1

|
"
d'pg

J Values (o = .05)
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4B

Figure 5.1.2 J Values (a = .18)
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Figure 5.1.3 J Values (a = .50)
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In general, it is to be expected that J3 more closely resembles
J2 than does JO since the standard procedure is testing the hypothesis
a3/a] = 0 whereas J, is based on H: a3/a] < 1. Since P'is an
increasing function of the noncentrality parameter (a3/a])1/2, the
classical procedure yields a 1ower critical value and rejects more
often. However for 9, > 1, we recall from (3.2.33) that FC is unsuited
for testing H0 from the standpoint of a ratio of expected values.

The reason for the selection of o = .18 as a tabular entry is
illustrated by Figure 5.1.4. The graph of JO for o = .18 seems to
provide a reasonable compromise between the two extremes of Figure 5.1.4.
While we may be unwilling to accept values of JO as great as those for
o = .05 and Targe gfsz, we may also wish to discriminate more against
J2 than by the use o;-a = .50. Of course, the range of o may be
adjusted against the values of the parameter gfsz for which one wishes
to obtain protection. -

For the standard model with 9, = 1, we can plot values of the
integrated mean squared error for the preliminary test estimators
exactly. If 4, > 1 or we are dealing with the generalized model, then
(3.4.74) can be employed for an est{mate of Jg. Using Figures 5.1.1
through 5.1.4 as an indication, we conclude that ranges of o greater
than the traditional testing values of .01, .05, and .10 seem best
suited to preliminary test estimation in general. Although our o values
for 9, > 1 are not exact as indicated by Table 3.3.1, we are essentially
interested in establishing a viable range of o's on which to base our

estimators, not on the type I error probabilities themselves. Of
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I
2
4B

Figure 5.1.4 ‘JO Values
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further interest would be an extensive numerical investigation into
the various models and special cases presented in the preceding

chapters.



APPENDIX I

Proof of (3.5.15): From (3.5.14),
_RLlu

E(sw)

~Ry,lu

2
(R [u)/2

2
(RHIu) /2

(z = 22/2)

(1/V2w) é [e

Let g = Da/a](N‘3), h = (63/31)]/2’

so that RHlu = Jgu - h, RLIu = -/gu - h,

2 2
-(Ru)T72 - (R Iu)%/2

e e

Using (3.3.2) with v = N - q, gives

Ny

E(sw)
2V/2r(02) 0

e_(gﬂ Ju/2-hv/gu du]

2 2
My e uv_1e~(g+1)u1/2+h/§ u
20201200y g ]

-(g+1)u]2/2-h/§ "
e | du]]

(u1 = u]/z)

80

w 2
(\//en) [ [ ] | 2672 /2 dz] f(u)du
0

2 2
= -(Rylw2 e'(RL|“) /2

2
- o~h/2(gmgu/2h/gu _

e T Va (7 (/2)-1g=(g+1)u/24h guy,

(1//2n) ? L[ e | dz,] f(u) du

] f(u)du .

e"gU/Z"h/g—U) .

- ? ,(v/2)-1

0

1 T V-l
duy - [ u
1700

(A.1)

(A.2)
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_ehr2ahr2(en) o |y (S5 (ug-ha (9417

2 (v=2)/21( /2y o 1 ° “
o o =(BD (u g/ ()2
- é u¥ 1e 2 1 du]]
ch/2(e0), b1 U2
T DT oy et L] (up//ghT + h/g/(gh1)” e du,,
i
g
2
e -Uy /2
-] (ug Ve - g (gr)) T e 2 du,)
h/E%T
(u, = Yg+T[us-hvg/(g+1)] and u, = Vg+T[u +h/g/ (g+1)])
2 1 3 1
2 I 2
-h%/2(g+1) g+ 1 w22
i 2(3-2)/2r(v/2;:§§%.ff (/YR + h/g/ (g41)” Te 2" du,
s
g+l
T L
[ (up/YgRT + h/g/ (1)) e T duy
hVE%T
2
o 4 ~uy /2
-/ (ug/Vg+T - hvg/(g+1))” le 3 dus] . (A.3)
hvEgT

Employing the binomial expansion and cancelling terms in the last two

integrals of (A.3) yields



82

2 h-
-h/2(g+1) , o= gtl  v=1 -1-
= I3y Vg
2 r(v/2)vYg+l — 0=0
/3
g+l
“uy /2 . D7 -2-2
(h/g/(g+1))% © du, + 2 | z (3aq) (ug/VGeT) 7272

$=0
_£L_
h'/g+'l

E(sw) =

2641 -uy’/2
(hvg/(g+1))"% e du,] (A.4)
where [“ 2] [N 5] denotes the Targest integer less than or equal to
(N-5)/2. Similar to (3.3.2) for the single independent variable, (A.4)
holds for N > 4 if we define the summation occurring under the second

integral to be identically zero for N = 4. Simplifying gives

2
e h/2(gtl), mr Vil o1y (/)"

E(sw) = z
20722 (y12) /gt Tes0 - O (vgIT) VYO
h,ZEZ: 2 [_:f;
[ ! u"']-ee-uz /zdu % (rsr) (i
VLI 2t 2 Ly G e
g+l
2
® -u, /2
[ u§'2'2¢e 3 du3] . (3.5.15)
hy—9_
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A PRELIMINARY TEST ESTIMATOR
FOR MULTIVARIATE RESPONSE FUNCTIONS
by

Paul West Blackmon, dJr.
(ABSTRACT)

If Yi» Yo s {E-represent vectors of independent observations,

the generalized multivariate regression model is of the form

Y5 = Kyt KosBey t

where X, . and XZj are general Tinear model regression matrices, B]j

13
and sz are vectors of unknown coefficients, and the €; are error

vectors such that Cov(fjffj} = 0135- If ¥1j = X and ¥2j = %2, i=1, 2,

..» P, the above is a standard multivariate regression model.

Insofar as can be determined, the true relationship between the

design variables and a response nj is

= ! 1
nj T X5 Brg toXp5 Boj

where Xij and xé. are typical row vectors in the matrices X,. and X

21J 2]
* *

l= I. I. .|= i
For X5 [x] sXo ] and B (B , ] the n; are to be estimated

~ ~ *A
h . . =
either by y; - X P1g o 9 f;.fi
squares estimators of B 1j

~%k
where Elj_and Ei_are the Teast
and B , obtained from the full multivariate
regression model.

The estimators for the n; are determined by a test of the

hypothesis Ho: J] §_J2 where J] and J2 denote the integrated mean



squared errors of a Tinear combination of the 9J and §j respectively.

Rejection of HO results in selection of the yj; otherwise the §j are
chosen.

A test statistic is developed to test H0 with consideration
extending to several important special cases. Distinctions are drawn
between the preliminary test estimator constructed around Ho’ and that
based on the usual hypothesis sz =0,J=1,2, «ccs P

Under the assumption of e;;;} normality, an approximation to the
distribution of the test statistic is developed in order to determine
type I and type II error probabilities.

An explicit expression for Jo, the integrated mean squared error
of the preliminary test estimator, is obtained, and difficulties in its
evaluation are discussed. An estimator of Jo is presented along with a
special case in which Jo can be evaluated exactly.

Graphical comparisons are made on the relative performance of the
estimators based on HO, and those constructed around the standard
hypéthesis. An operating range of type I error probabilities is also

discussed.
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