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Theoretical and Experimental Study of Low-Finesse Extrinsic Fabry-Perot

Interferometric Fiber Optic Sensors

Ming Han

(ABSTRACT)

In this dissertation, detailed and systematic theoretical and experimental study of low-

finesse extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors together with their

signal processing methods for white-light systems are presented. The work aims to provide

a better understanding of the operational principle of EFPI fiber optic sensors, and is use-

ful and important in the design, optimization, fabrication and application of single mode

fiber(SMF) EFPI (SMF-EFPI) and multimode fiber (MMF) EFPI (MMF-EFPI) sensor sys-

tems. The cases for SMF-EFPI and MMF-EFPI sensors are separately considered.

In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated

by a Gaussian beam and the obtained spectral transfer function of the sensors includes an

extra phase shift due to the light coupling in the fiber end-face. This extra phase shift has not

been addressed by previous researchers and is of great importance for high accuracy and high

resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation

due to gap-length increase and sensor imperfections is studied. The results indicate that the

fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and

sensor imperfections.

Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors,

a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented

for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods

including the wavelength-tracking, the Type 2-3 curve fitting, Fourier transform, and two-

point interrogation methods are reviewed and systematically analyzed. Experiments were

carried out to compare the performances of these signal processing methods. The results

have shown that the Type 1 curve fitting method achieves high accuracy, high resolution,



large dynamic range, and the capability of absolute measurement at the same time, while

others either have less resolution, or are not capable of absolute measurement.

Previous mathematical models for MMF-EFPI sensors are all based on geometric optics;

therefore their applications have many limitations. In this dissertation, a modal theory is

developed that can be used in any situations and is more accurate. The mathematical

description of the spectral fringes of MMF-EFPI sensors is obtained by the modal theory.

Effect on the fringe visibility of system parameters, including the sensor head structure, the

fiber parameters, and the mode power distribution in the MMF of the MMF-EFPI sensors,

is analyzed. Experiments were carried out to validate the theory. Fundamental mechanism

that causes the degradation of the fringe visibility in MMF-EFPI sensors are revealed. It

is shown that, in some situations at which the fringe visibility is important and difficult to

achieve, a simple method of launching the light into the MMF-EFPI sensor system from the

output of a SMF could be used to improve the fringe visibility and to ease the fabrication

difficulties of MMF-EFPI sensors.

Signal processing methods that are well-understood in white-light SMF-EFPI sensor

systems may exhibit new aspects when they are applied to white-light MMF-EFPI sensor

systems. This dissertation reveals that the variations of mode power distribution (MPD) in

the MMF could cause phase variations of the spectral fringes from a MMF-EFPI sensor and

introduce measurement errors for a signal processing method in which the phase information

is used. This MPD effect on the wavelength-tracking method in white-light MMF-EFPI

sensors is theoretically analyzed. The fringe phases changes caused by MPD variations were

experimentally observed and thus the MFD effect is validated.
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Chapter 1

Introduction

1.1 Research background

The past three decades have seen a great deal of progress in the fiber optic sensor technol-

ogy. A fiber optic sensor may be defined as a means through which the physical, chemical

or biological parameters being measured interact with light in or guided by a fiber to pro-

duce signals that are related to the parameters [1]. The optical fiber could be the sensing

element through which the interaction happens. In this case, the sensors are referred to

“intrinsic” fiber optic sensors. On the other hand, the optical fiber could simply function

only as a transmission medium that guides the light to (and/or back from) the interaction

region which is outside the fiber. The sensors of this kind are referred to “extrinsic” fiber

optic sensors. Through the 1980s to present time, numerous fiber optic sensors that are

capable of measuring a wide variety of measurands have emerged from laboratories world-

wide. Many of them have been successfully transformed to commercial devices during the

past 10 years. The driving force behind this work is the many advantages of fiber optic

sensors over their electronic counterpart, such as the immunity to electromagnetic interfer-

ence (EMI), small size, light weight, high measurement accuracy and resolution, resistance

to harsh environments, and capability of high capacity multiplexing.

1
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Michelson Sagnac

Fabry-PerotMach-Zehnder

DC DC
Source

Source

Source

Source
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DC DC DC
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PD PD

Reference fiber 

Sensing fiber 

Non-reflective 
end
Sensing FP 

cavity

Figure 1.1: Several configurations of Fiber optic interferometers. DC, directional

coupler; PD, photodetector.

Among the fiber optic sensors, interferometer has become widely accepted as the config-

uration which can provide the ultimate sensitivity to a range of weak physical fields. These

sensors usually employ an interferometer as the sensing element through which two beams

or multi-beams of light interfere with each other to form spectral or intensity fringe patterns.

The phase of the fringe patterns is directly related to the parameters being measured. Al-

most all configurations of the conventional interferometers, such as Mach-Zehnder, Sagnac,

Michelson and Fabry-Perot (FP) interferometers, shown in Figure 1.1, have found their ap-

plications in fiber optic sensors [2] [3]. Among them, FP interferometer (FPI) has drawn

a great deal of research interest because the FPI-based fiber optic sensors provide many

operational benefits compared to other configurations. For example, a serious issue in the

implementation of Mach-Zehnder and Michelson interferometers is the polarization-induced

fading (PIF) in low-birefringence fiber interferometers which was first identified as early as

1980 by Stowe et al. [4]. This problem is rooted in the fact that as the light is split into

two separate paths in Michelson and Mach-Zehnder configurations, the evolution of the state

of polarization (SOP) of light guided in these fibers varies independently in a random and

unpredictable manner. Consequently, the SOPs of the recombined optical components from

the two interferometer arms vary independently, and this leads to a reduction of the interfer-
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ometric optical mixing efficiency and a loss (“fading”) of the interference signal [5]. Sagnac

interferometer is not immune to this problem either because SOP of light evolves differently

as the light propagating in different directions in a Sagnac interferometer, although along the

same fiber. However, this problem usually is not present in FPI-based fiber optic sensors in

which the FP cavities where the light interference occurs consist either of optical components

with very short length in which the SOP variations are negligible, or simply of air (vacuum)

in which there is no polarization effect. Another advantage of the FPI-based fiber optic sen-

sors is their small size. Different from the other three sensor interferometric configurations

in which one of the whole arms functions as the sensing element, a FPI-based fiber optic

sensor uses the FP cavity as the sensing element which could be made very small, so it can

provide a much better spatial measurement resolution and is capable of point measurement.

Moreover, multimode fibers (MMFs) could be implemented in an extrinsic-FPI (EFPI) fiber

optic sensors in which the light is guided to and back from the FP cavity through a MMF,

A MMF-based fiber sensor system could be much less costly than a SMF-based system be-

cause MMF imposes less stringent constraints to the light source and optical components

that are compatible to MMFs (such as MMF connectors and MMF couplers) usually re-

quires less fabrication accuracy and control and consequently are potentially cheaper. This

cost-efficiency is very important for the commercialization and wide spread use of fiber optic

sensors considering that they have to compete with many other well-established and less-

costly measurement approaches in the market. However, the implementation of MMF in

other three interferometric configurations is difficult because the optical-path-length (OPL)

experienced by different modes in the MMF is different and is difficult to predict. There-

fore depending on their OPL difference, lights belonging to the same mode group but from

two different paths interfere either constructively or destructively when they combine, which

causes a significant reduction of the interference signal.

The early work on the FPI-based fiber optic sensors includes introducing “internal”

mirrors in a SMF to form intrinsic FPI (IFPI) sensors by splicing two SMFs with one metal-

coated at the fiber end [6]. However, one of the most widely reported FPI-based sensors
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has been the EFPI fiber optic sensors developed at Virginia Polytechnic Institute and State

University [7]. In one of their most popular forms, the sensors are simply fabricated by

inserting two fibers into an alignment tube to form a FP cavity, with one as the lead-

in/out fiber to carry the light and the other as the sensing fiber. The fiber ends are cleaved

to function as the reflectors of the FP cavity. Various types of EFPI fiber optic sensors

have been designed and implemented in the measurement of a variety of measurands, such

as temperature [8], pressure [9] [10], strain [11][12], magnetic field [13], flow [14], acoustic

waves [15], and chemical and biological parameters [16][17].

In spite of the recent significant progress in EFPI fiber sensors, this technology is far

from being mature and in many cases, our understanding of sensor operational mechanisms

is still not adequate. This is true especially for MMF-EFPI sensors which have received

only few research efforts. Even for SMF-EFPI sensors, some issues in the signal processing

remain to be resolved. Theoretical analysis is always important in the development of an

EFPI fiber optic sensor system, because it not only is a powerful tool in the design and

optimization of the system, but also provides a solid base for the development of signal

processing methods. Most of the EFPI sensors either under research at laboratories or

commercialized in industry are SMF-based. Consequently, theoretical works on EFPI sensors

focus most on these sensors, or more specifically, on the fringe visibility of these sensors.

Fringe visibility is one of the most important parameters that characterize the performance

of an EFPI sensor, because it largely determines the ultimate signal-to-noise ration(SNR)

of the system. The light transmitted in the SMF is often modeled as a point source [18], or

more accurately, as a Gaussian beam [19]. However, in these models, the predicated spectral

pattern is not accurate.

As mentioned above, most EFPI fiber optic sensors that are currently commercially

available or under research are SMF-based in spite of the great potential cost efficiency of

the MMF-EFPI sensor systems. The fabrication difficulty might be partially responsible

for the unpopularity of MMF-EFPI sensors. Generally speaking, it is much more difficult

to fabricate a MMF-EFPI sensor with decent fringe visibility than a SMF-EFPI sensor.
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Previously available analysis is based on geometric optics and has revealed that the stringent

requirement on the gap-length and FP cavity thickness variations may be responsible for

the fabrication difficulty of a MMF-EFPI sensor [20]. In this analysis, the output of the

propagation modes in a multimode fiber is modeled as incoherent rays outputting the fiber

end-face with different angles. The geometric-optics is an approximate method to describe

the light propagation and interference and is adequate only when the fiber characteristic

dimension is much larger than the optical wavelength. This condition may not be satisfied

for strongly guiding fibers, in which the refractive index difference between the core and

cladding is large, such as a sapphire fiber, or for MMFs with only a few modes; Moreover

geometric-optics theory is not capable of predicting the exact fringe pattern of a MMF-

EFPI sensor system from the fiber specifications, sensor structures, and system operation

conditions, therefore signal processing with both high-accuracy and absolute measurement

is difficult for a white-light MMF-EFPI sensor system.

EFPI fiber optic sensor systems can also be classified as intensity-based in which a laser

is used as the light source [21], and white-light based in which, as its name suggests, a white-

light (low-coherence) source is used. White-light EFPI sensors have many advantages over

their intensity-based counterpart, such as the possibility of absolute measurements, a signifi-

cant reduction in the noise level, an insensitivity to optical power fluctuations, the possibility

of multiplexing a large number of sensors in a measuring system, and ultra-high measure-

ment resolution. However, it is a challenging task to simultaneously achieve the absolute

measurement and ultra-high resolution in the same system. Absolute measurement is easily

achieved by calculating the spectral fringe period, either directly [24] from the spectrum,

or at the domain of its Fourier Transform [35], because the gap-length is unambiguously

determined by the spectral fringe period, and vice versa, from the simple relationship

d = λ1λ2/2(λ1 − λ2), (1.1)

where d is the gap-length, and λ1 and λ2 are the wavelengths of two neighboring fringe

peaks or valleys. Ultra-high resolution measurement could be achieved by methods such as
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wavelength-tracking [36], however these methods are usually not capable of absolute mea-

surement and the operation range is limited to ±λ/2 because of the ambiguity of the output

from the sensor system. Qi [37] et al. proposed a method that was intended to combine

these two methods together and achieve both absolute measurement and high measurement

resolution in a same system. In this method, the gap-length of the sensor was determined

by finding the exact fringe peak integer number K of a particular spectral fringe peak. How-

ever, we have found that K obtained by the reported algorithm is not necessarily an integer

in practice; and the rounding process could induce a measurement error of half the optical

wavelength. For example, a half-wavelength “jump” of the gap-length measurement could

occur during the measurement of an essentially unchanged gap-length cavity.

Nearly all the work on signal processing of white-light EFPI fiber optic sensor systems

are demonstrated on SMF-EFPI sensor systems. Although a few signal processing methods

have been directly carried over to white-light MMF-EFPI sensor systems [22] [23], their

performance might be significantly different from the one in SMF-EFPI sensor systems.

Moreover, many are not valid any more for MMF-EFPI sensor systems owing to some new

aspects of the spectral pattern that are unique to MMF-EFPI sensors. The signal processing

of white-light MMF-EFPI sensor systems is basically an untouched research area.

1.2 Scope of the dissertation

From the discussion in Section 1.1, it is clear that, in spite of the great progress recently

made in EFPI sensor technology, many problems still remain unresolved. Therefore, it is the

goal of this dissertation to present a detailed and systematic analysis on EFPI fiber optic

sensors that could provide a better understanding of the fundamental principles of the sensor

operation and lead to solutions to many problems we have been facing.

The rest of the dissertation is constructed as follows: In Chapter 2, a more accurate

theoretical analysis of SMF-EFPI sensor is presented. The coupling-induced phase shift of
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the output spectral fringes is predicted. Chapter 3 deals with the spectral domain signal

processing of white-light SMF-EFPI sensors. In this chapter, currently available spectral

signal processing methods are reviewed and analyzed. A new signal processing method

is developed and its performance is experimentally compared with other signal processing

methods. Chapter 4 deals with the theoretical analysis of MMF-EFPI sensors. A modal

theory based on Maxwell’s equations is presented. The fringe visibility of MMF-EFPI sensors

is analyzed and the fundamental mechanisms that determine the sensor’s fringe visibility are

revealed. In Chapter 5, it is shown that the mode power distribution (MPD) variations in

the MMF could cause phase changes of the spectral fringes from a MMF-EFPI sensor. This

MPD effect is theoretically analyzed and experimentally verified. Finally a summary of the

dissertation and recommendations of future works are given in Chapter 6.



Chapter 2

Low-finesse SMF-EFPI sensors

As discussed in Chapter 1, most EFPI fiber optic sensors under research or available in in-

dustry are SMF-based. Besides all the advantages of fiber optic sensors, SMF-EFPI sensors

also possess other advantages such as ease of fabrication, high resolution and compatibil-

ity with many components used in the well-established optical fiber communications. The

analysis on the fringe visibility of a SMF-EFPI sensor is important because it is helpful in the

design, optimization and fabrication of such a sensor. Moreover, the analysis on the fringe

pattern output from a SMF-EFPI sensor system in the frequency domain is essential for

signal processing of a white-light SMF-EFPI sensor system which can achieve high-accuracy,

high resolution, and absolute measurement at the same time. Previous theoretical work is

still not adequate to accurately predict the fringe pattern. In this chapter, first the analysis

of SMF-EFPI sensors is reviewed in Section 2.1. Then a more accurate analysis is presented

in Section 2.2. The obtained fringe pattern includes the coupling-induced phase-shift which

has not been previously addressed and is of great importance in the signal processing of a

white-light SMF-EFPI sensor system. In Section 2.3, the fringe visibility of a SMF-EFPI

sensor is analyzed with the consideration of an imperfect sensor head. Finally, conclusions

are given in Section 2.4.

8
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Figure 2.1: Schematic of a SMF-EFPI sensor system. Inset, schematic of a SMF-

EFPI sensor head.

2.1 Review of low-finesse SMF-EFPI theory

A typical SMF-EFPI sensor configuration is shown in Figure 2.1. Light from a light source

propagates along a lead-in/out SMF to the sensor head which is a FP cavity formed by the

end-faces of the lead-in/out and the target fibers. A fraction of this incident light is reflected

at the output end-face of the lead-in/out fiber and returns directly back to the fiber. The

light transmitted out of the lead-in/out fiber projects onto the fiber end-face of the target

fiber. This reflected light from the target fiber is partially recoupled into the lead-in/out

fiber. Interference between the two reflections then gives rise to the interferometric output

of the sensor. Although the reflection from the air-glass interface of the lead-in/out fiber

is independent of the gap length between the two fibers, the intensity contributed by the

reflection from the target fiber is strongly dependent on the gap-length, which causes the

fringe contrast (fringe visibility) of the sensor output to decrease with an increase in the gap

length.

A simple analysis was presented by Murphy et al [18]. In his analysis, the two beams

received by the lead-in/out fiber from the reflection of the air-glass interfaces of lead-in/out
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and target fibers were approximated by two plane waves E1 and E2 respectively, and their

electrical fields are given by

Ei = Ai exp(jφi), (i = 1, 2). (2.1)

Assuming the amplitude of the light field E1 reflected from the lead-in/out fiber end-face

is A1 = A, then the amplitude of the light field E2 which is reflected by the target fiber

end-face can be simplified to

A2 = A

{
ta

a2d tan[sin−1(NA)]

}
, (2.2)

where a is the fiber core radius, t is the transmission coefficient of the air-glass interface

(≈ 0.98), d is the end separation, and NA is the numerical aperture of the SMF fiber, given

by NA = (n2
1 −n2

2)
1/2. n1 and n2 are the refractive indices of the core and the cladding of the

lead-in/out fiber, respectively. The intensity of the interferometric light in the input/output

fiber is given by

I = |E1 + E2|2

= A2
1 + A2

2 + 2A1A2 cos(φ1 − φ2), (2.3)

which can be rewritten as

I = A2

(
1 +

2ta

a + 2d tan[sin−1(NA)]
cos

(
4πd

λ

)
+

{
ta

2d tan[sin−1(NA)]

}2
)

, (2.4)

where φ1 = 0 and φ2 = 2d(2π/λ) have been assumed and λ is the wavelength of operation

in free space.

Arya, et al, performed a more accurate analysis in which the light propagating in the

SMF was approximated as a Gaussian beam [19],

E1 = A exp(−r2/ω2
0) exp(−jβz), (2.5)

where ω0 is the mode field diameter and r and z are cylindrical coordinates. The electrical

field at any point P outside the lead-in/out fiber end-face and reflected from the target fiber
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Figure 2.2: Coordinate system for the analysis. L: gap length.

is given by the Kirchhoff diffraction formalism [25],

E(P ) =
1

4π

∫ ∫ [
E1

∂

∂z

(
exp(jkS)

S

)
− exp(jkS)

S

∂E1

∂z

]
ds. (2.6)

In the above equation, k = 2π/λ is the free-space propagation constant, and the integral

is evaluated over the lead-in/out fiber end-face region. The factor S is the vector distance

between a point Q at the lead-in/out fiber end-face and the point P , as shown in Fig. 2.2.

Using Eq. (2.5), Eq. (2.6) can be simplified to

E(P ) =
1

4π

∫ ∫
E1

(
exp(jkS)

S

)[
2L

S

(
jk − 1

S

)
+ jk

]
ds. (2.7)

where L is the gap-length of FP cavity. The electrical field contributed by the reflection

from the target fiber is then given by

E2 = E1

∫ ∫
E(P )E1ds[∫ ∫

E(P )E∗(P )ds
]1/2 [∫ ∫

E1E∗
1ds
]1/2

(2.8)

Once E1 and E2 are obtained, Arya used Eq. (2.3) to model the spectral fringes output from

the SMF-EFPI sensor.

Compared to the analysis by Murphy, the calculation of the electrical field contributed

by the reflection of the target fiber is more accurate in the analysis by Arya. However, in both

analysis, the phase shift between E1 and E2 has been assumed to be φ2−φ2 = 4πd/λ, which

was assumed to be only dependent on the gap-length of the FP cavity and the wavelength of
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the light source. However, from Eq. (2.8), a phase-shift could occur when the electrical field

reflected from the target fiber is coupled back to the lead-in/out fiber because the integral in

Eq. (2.8) is not necessarily a real number. Moreover, both analysis have assumed a perfect

fiber sensor head, with the all fiber end faces parallel to each other and perpendicular to the

fiber axis. In practice, this is not the case owing to the limited fabrication accuracy. And

fringe visibility degradation caused by the sensor imperfections has not been analyzed.

2.2 Modal analysis of SMF-EFPI sensors

The schematic of the SMF-EFPI sensor used in our analysis is the same as shown in Fig-

ure (2.1). Our analysis starts from the Gaussian beam approximation of light propagating in

a SMF. It is well known that for a weakly guiding, step-index, circular-core optical SMF, the

scalar field of the fundamental LP01 mode may be assumed to be approximately Gaussian

in shape given in Eq. (2.5) with an error of only a few percent. With this assumption, the

complex envelope of the field that emanates from the lead-in/out fiber and is reflected back

to the lead-in/out fiber end-face R1 after propagating a length of 2d in the free space inside

the FP cavity may be expressed as [26]

E2
′ = A(jkω2

0/2q) exp(−jkr2/2q), (2.9)

where q = 2d+jkω2
0/2 is the q parameter of the Gaussian beam. In Eq. (2.9), the phase shift

of exp(−jk2d) = exp(−j4πd/λ) which is simply related to the distance of 2d the light beam

has traveled is omitted. Note that we have assumed that the zero point of the z axis is on

the fiber endface (z = 0 in Eq. 2.5 when the light is emitted from the fiber endface). Strictly,

Eq. (2.9) is only valid for 2d >> λ, which is satisfied by most practical SMF-EFPI sensors

in which the gap-length d is at least tens of micrometers. Eq. (2.9) indicates that beam

maintains its Gaussian shape and the diameter of the mode field spreads as it propagates

in the free-space, as show in Figure 2.3, in which the mode profile of a standard SMF and

after it propagates a distance of 2d in free space are plotted. Eq. (2.9) also shows that
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Figure 2.3: The mode intensity distribution, E1, of a standard SMF, (a); and E2
′

for gap-length d, (b).

free-space propagation also causes an extra phase shift to the field in addition to the omitted

phase-shift of −4πd/λ. Furthermore, the phase plane is deformed by free-space propagation

as the phase shift is also a function of the radius r. Field E2
′ is then coupled to E2, which

may be expressed as

E2 = ηE2
′ exp(−jk2d − jπ)

= |η|E2
′ exp(−j4πd/λ − jπ + jθ), (2.10)

where η is the mode-coupling coefficient from E2
′ to E2, which one may obtain by performing

the overlap integral of E2 and E2
′ over surface R1 (Ref. [30]):

η = |η| exp(jθ) =

∫ ∫
E∗

1E2
′ds(∫ ∫

E∗
1E1ds

∫ ∫
E2

′∗E2
′ds
)1/2

. (2.11)

Substituting Eqs. (2.5) and (2.9) into Eq. (2.11) gives the analytical result

η =
kω4

0(kω2
0 + j4d)

8d2 + k2ω4
0

. (2.12)

Therefore the amplitude and the phase of the mode-coupling coefficient are given by

|η| = kω4
0(k

2ω4
0 + 16d2)1/2/(8d2 + k2ω4

0) (2.13)
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and

θ = arctan(4d/kω2
0), (2.14)

respectively. In Eq. (2.10), the phase-shift π arises from the reflection at R2 of light incident

from a medium that is optically less dense to a medium that is optically denser and phase

shift θ arises from the light coupling from E2
′ to E2 at surface R1 as E2

′ has extra phase-shift

and phase-plane deformations from the free space propagation. Note that θ is dependent

on the wavelength, mode field radius, and gap-length of the FP cavity. For a fixed fiber,

mode field radius can be determined by wavelength of operation, and θ is only dependent

on the wavelength and the gap-length of FP cavity. Therefore the interference signal can be

expressed as

I ′(λ, d) = (E1 + E2)(E1 + E2)
∗

= |A2| [1 + |η| exp(−j4πd/λ − jπ + jθ)]

× [1 + |η| exp(j4πd/λ + jπ − jθ)]

= I0(λ)R{1 + |η| cos[4πd/λ + π − θ(λ, d)]}, (2.15)

where I0(λ) is the light source’s power spectrum, which is assumed to be known, and R is

a constant associated with the transmission loss of the fiber and reflection loss at the two

fiber ends. The spectrum is then normalized by I0(λ) and the result is (the constant R is

dropped)

I(λ, d) = 1 + |η| cos[4πd/λ + π − θ(λ, d)]. (2.16)

Eq. (2.16) reveals that the phasor of the interferometric signal could be influenced not only

by the light propagation length in free space, but also by the light coupling from free space

back to lead-in/out fiber. Figure 2.4 shows the calculated coupling-induced phase shift θ

as a function of gap-length d for a standard SMF (Corning SMF-28) with a = 4.5 μm,

n1 = 1.448, and n2 = 1.444 at wavelength λ = 1550 nm. The phase shift θ increases from 0

to 0.358π when the gap-length is changed from 0 to 100 μm. For comparison, the free-space

transmission induced phase-shift (4πd/λ) is also included in Figure 2.4. Although the phase

shift owing to light coupling (θ(λ, d)) is usually much smaller than the phase shift owing to
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4πd/λ as a function of gap-length d.

free space transmission (4πd/λ) for a sensor with gap-lengths of tens of micrometers, phase

shift θ(λ, d) is of great importance in the high accuracy and high resolution signal processing

of a white-light low-finesse SMF-EFPI sensor system and can not be simply ignored. The

applicaton of this coupling-induced phase shift in the signal processing of white-light SMF-

EFPI sensor systems will be investigated in Chapter 3.

So far, all the analysis has assumed a perfect fiber sensor head. As discussed in Sec-

tion 2.1, this is not the case in practice. Imperfections such as uneven fiber end-faces,

unparallelism between two reflection surfaces of the FP cavity and tilt angles between the

fiber end-faces and fiber axis could always happen during the fiber cleaving and other fabri-

cation processes of SMF-EFPI sensors. Especially when a fabrication process includes laser

fusion [22] in which good controls of the outcome from laser heating are difficult. Fibers

inside the sensor head could be significantly deformed owing to the extremely high temper-

ature, which could introduce most of the imperfections of the fabricated sensor. Among

all these imperfections, the unparallelism between two fiber end-faces perhaps has the most

significant influence on the fringe visibility of the sensor. In this case, the cavity geometry

therefore becomes that of a wedge, introducing variations in the cavity thickness of the inter-
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Figure 2.5: Illustration of a SMF-EFPI with a wedge between the two reflection

surfaces R1 and R2. Fiber F is the mirror image of fiber F ′ with respect to surface

plane R2.

ferometer. In the analysis, it is assumed that the reflection surface plane R1 is perpendicular

to the fiber axis z, while reflection surface R2 is tilted from its original position, forming a

wedge angle of δθ with respect to R1, as shown in Fig. 2.5. The effect of the angular and

lateral misalignment between the lead-in/out fiber F and its mirror image fiber F ′ caused

by the wedge must be considered when Eq. (2.11) is used to calculate the mode coupling

coefficient η. The effect of the wedge is to produce a linear phase change across the beam

[27] and a spatial displacement between fields E1 and E2
′ at the coupling plane R1

′. For two

fibers that are misaligned by a wedge angle of δθ, the field E2
′ becomes

E2,Δα
′ = E2

′ (x − 2d tan(θ)) exp[jkx tan(2δθ)] (2.17)

at the coupling surface R1
′. Therefore mode coupling coefficient η is obtained by substituting

Eq. (2.17) into Eq. (2.11) and the interferometric signal can be obtained with the help of

Eq. (2.16).
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2.3 Fringe visibility of a SMF-EFPI sensor

In this section, Eq. (2.16) is used to analyze the fringe visibility of a SMF-EFPI sensor. In the

analysis, the standard Corning SMF-28 is chosen as the lead-in/out fiber. The parameters

of such a fiber are as following: a = 4.5 μm, n1 = 1.448, and n2 = 1.444 at wavelength

λ = 1550 nm. The effects of FP cavity gap-lengths and the wedge angles between the two

fiber end-faces on the fringe visibility are considered separately in the following subsections.

2.3.1 Definition of fringe visibility

Fringe visibility (also called fringe contrast) of an EFPI sensor is defined by

Vb = (Imax − Imin)/(Imax + Imin), (2.18)

where Imax and Imin are the maximum and minimum spectral intensities in the spectral

fringes from the EFPI sensor. In practice, the visibility can be measured by two distinc-

tive ways depending on the light source used. In a white-light EFPI sensor system, the

spectral fringes can be directly measured in the wavelength domain by a spectrometer and

the maximum and minimum spectral intensity are readily found. In the laser-based EFPI

sensor systems, the light wavelength is fixed and the fringes are a function of the gap-length.

The visibility has to be measured by slightly tuning the gap-length of the FP cavity and

observing the maximum and minimum output. From Eq. (2.16), both measurements give

the same fringe visibility of

Vb = |η| (2.19)

provided that the slight dependence of |η| on wavelength |λ| is negligible.

2.3.2 Fringe visibility vs. gap-length

Figure 2.6 shows the fringe visibility as a function of gap-length of the above SMF-EFPI

sensor at different wedge angles. For all the wedge angles, the fringe visibility decreases as
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Figure 2.6: Visibility as a function of gap-length for a SMF-EFPI sensor.

the gap-length increases. When the gap-length increases from 0 to 100 μm, the visibility

drops by 20% (from 100% to around 80%) for a perfect sensor (wedge angle = 0), 32.3%(from

96.3% to 64.0%) for a sensor with wedge angle = 2�, and 33.1% (from 61.7% to 28.6%) for

sensor with wedge angle = 4�. Moreover, the fringe visibility decrease more quickly as the

gap-length increases for a specific sensor. The fringe visilbity of a perfect sensor decreases

from 100% to around 80% when the gap-length increases from 0 to 100 μm. However, its

fringe visibility only drops by 2.8% (from 100% to 97.2%) when the gap-length increases from

0 to 40 μm. In practice, a SMF-EFPI sensor usually has a gap-length less than 100 μm. The

visibility degradation owing to the gap-length is acceptable in most practical applications.

2.3.3 Fringe visibility vs. wedge angle

Figure 2.7 shows the fringe visibility as a function of the wedge angle for a SMF-EFPI sensor

with different gap-lengths. The wedge angle is changed from 0 up to 5�. As expected, the

fringe visibility decreases as the wedge angle increases. It is also seen that the fringe visibility

decreases more quickly as the wedge angle becomes larger. For a sensor with a gap-length
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Figure 2.7: Visibility as a function of gap-length for a SMF-EFPI sensor.

of 20 μm, the fringe visibility still maintains better than 90% for wedge angles as large as

2�. The fringe visibility variation as a function of the wedge angle shows similar trend for

all gap-lengths used in the analysis, which indicates that effect of the wedge angle is of little

dependence on the gap-length of the sensor. In practice, the fiber end-faces functioning as

the reflectors of a SMF-EFPI sensor are usually obained by cleaving the fiber using a fiber

cleaver. A comercially available high-precision fiber cleaver is usually capable of achiving

an average end angle better than 1�. Therefor the fringe visibility degradation owing to

this small wedge angle is of no concern in most of the pratical applications. However, when

laser-fusion is involved in the fabrication of the SMF-EFPI sensor, in many cases the high

power laser light is applied only to a small area of the sensor head, which could introduce

large temperature gradient on the fiber. Significant random deformations to the fiber could

occur and large wedge angles that could significantly decrease the fringe visibility might be

formed. In this case, special care must to taken during the application of the laser light in

order to obtain a sensor with an acceptable fringe visibility.
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2.4 Conclusions

A modal theory is presented for SMF-EFPI sensors, in which the mode supported by the

fiber is assumed to have a Gaussian profile. Our analysis shows that the spectral fringe from

a SMF-EFPI sensor contains an extral phase shift introduced as the light reflected from the

second surface of the FP cavity is coupled into the lead-in/out fiber. This extra-phase shift

has not been addressed by previous research.

Based on the modal theory, the fringe visibility variations as a function of the gap-length

of the FP cavity are analyzed. The sensitivity of fringe visibility to the wedge angles between

the two reflection surfaces of the FP cavity, which is one of the most common imperfections

of a FP sensor, is also analyzed. The results show that, in general, the fringe visibility of a

SMF-EFPI sensor is not sensitive to the gap-lengths and the wedge angles of the sensor.



Chapter 3

Signal processing for white-light

SMF-EFPI sensor systems

3.1 Motivation

As described in Chapter 1, the possibility of absolute measurement and high measurement

resolution are two main advantages of white-light EFPI sensor systems. It is also known that

many efforts have been made trying to achieve these two advantages in the same system,

however, with few success. The challenge actually lies in the limited number of spectral

fringes available in the obtained fringes, which is limited by the bandwidth of the white-light

source. A low-finesse white-light SMF-EFPI sensor system is shown in Figure 3.1 (The inset

shows the enlarged view of the sensor head). The system configuration is similar to that

shown in Figure 2.1 except that a white light source and a spectrometer are specified as

the light source and the detector. The spectral fringes as a function of wave number (1/λ)

for a SMF-EFPI sensor with gap-length d = 30 μm is shown in Figure 3.2. Assuming the

bandwidth of the light source is 60 nm (1520−1580nm), the corresponding wave number

range (gray area) only covers a small portion of its absolute wave number value. In order

to achieve high resolution, high accuracy, absolute measurement, and large linear range at

21
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Figure 3.1: Schematic of a white-light SMF-EFPI sensor system. Inset, schematic

of a SMF-EFPI sensor head.

the same time, the system must have a very good signal-to-noise ratio (SNR). Most of the

spectrometers used in white-light sensor systems are charge-coupled device (CCD)-based, be-

cause they are usually compact and low-cost, and thus can provide convenient measurement

of the spectrum from a white-light sensor system. However, the resolution (on the order of 1

nm) and accuracy of these CCD-based spectrometers are still too low to generate the desired

SNR of the fringes. Fortunately, with the technology advances in narrow-linewidth scanning

lasers and absolute wavelength calibration, spectrometers with extremely high resolution

and accuracy are becoming available in today’s market, which makes the goal of achieving

high resolution, high accuracy, absolute measurement, and large linear range measurement

at the same time possible. Curve fitting method has been shown to be successful in unam-

biguously determining the gap-length without sacrificing the high measurement resolution in

an interferometric profilometer [38], in which available wave number was also limited. The

light in the profilometer propagates through bulk materials as plane waves; Therefore the

spectral fringe pattern is well-defined by the cosine function of cos(4π/λ + π). However,

this method can not be directly transferred to a white-light SMF-EFPI sensor system owing

to the extra coupling-induced phase-shift which is a function of gap-length. Without the
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Figure 3.2: Fringe pattern from a white-light SMF-EFPI sensor system.

knowledge of the phasor of the spectral fringe pattern, the simultaneous high resolution and

absolute measurement is difficult.

In this chapter,the currently available spectral domain signal processing methods for

white-light SMF-EFPI sensor systems are analyzed. Based on the modal theory presented

in Section 2.2 which is able to accurately predict the spectral fringe pattern of SMF-EFPI

sensor systems, a signal processing method characterized by improved accuracy, ultra-high

measurement resolution, and absolute measurement is reported. The performance of this

novel signal processing method is compared with all other methods through experimental

results. The rest of the chapter is constructed as follows: In Section 3.2, Some spectral

domain signal processing methods are introduced and analyzed; The detail of the novel

algorithm is presented in Section 3.3 together with the other two similar methods. Section 3.4

present the experimental verification of the proposed algorithm and comparisons of different

methods. Finally some comments and conclusions are given in Section 3.5.
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3.2 Signal processing in spectral domain

In this section, the signal processing methods of two-point interrogation, peak wavelength-

tracking, and Fourier transform are reviewed and analyzed. As discussed in Section 2.2, the

spectral fringes after normalization by the spectrum of light source is given by Eq. (2.16),

which is rewritten here:

I(λ, d) = 1 + |η| cos[4πd/λ + π − θ(d)]. (3.1)

All the spectral-domain signal processing methods are based on Eq. (3.1), which relates the

spectral fringes from a spectrometer to the gap-length of the SMF-EFPI sensor.

3.2.1 Wavelength-tracking method

In this method, the wavelength shift of one fringe peak (or valley) caused by the gap-length

variations is employed to detect the small gap-length perturbation induced by the measured

parameters [36]. For example, assuming the wavelength λm is a peak point in the interference

spectrum that satisfies

4πd/λm + π − θ(d) = 2mπ, (3.2)

where m is a nonnegative integer denoting the order number of the chosen fringe peak, the

gap-length is then readily obtained by

d = [m/2 − 1/4 + θ(d)/4π]λm. (3.3)

The relative error of the gap-length determined by Eq. (3.3) is

|Δd/d| = |Δλm/λm|, (3.4)

where Δλm is the error of the peak position. The resolution of this demodulation is high.

However it is not capable of absolute measurement. Note that the absolute value of d can not

be determined by this method because the order number m is unknown. Thus calibration is
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required every time a sensor system is switched on. Furthermore, the measurement range is

also limited as the gap-length variations must be small enough so that the tracked peak is lo-

cated inside the wavelength window throughout the measurement. These two disadvantages

have greatly limited the usefulness of this method.

3.2.2 Two-point interrogation

Another straightforward way to extract the gap-length from fringes described by Eq. (3.1) is

to use two special points in the fringes. Suppose λ1 and λ2 (λ1 > λ2) are the wavelengths of

two adjacent peak points in the interferometric spectrum, and their interference orders are

m and m + 1. From Eq. (3.1), λ1 and λ2 satisfies

4πd/λ1 + π − θ(d) = 2mπ (3.5)

and

4πd/λ2 + π − θ(d) = 2(m + 1)π, (3.6)

respectively. The unknown integer of m can be canceled out by subtracting Eq. (3.5) from

Eq. (3.6), and the gap-length d is then given by

d = λ1λ2/2(λ1 − λ2). (3.7)

Obviously, this method is simple, is capable of absolute measurement, and has a large linear

range. However, the resolution and accuracy are rather limited owing to the fact that the

difference between the two wavelengths in the denominator of Eq. (3.7) is much smaller than

the the wavelengths in the numerator. Thus a small error in the determination of λ1 and

λ2 causes a large error of gap-length d. For example, Eq. (3.7) gives the relative error of

gap-length d caused by the error in determining wavelength λ1 as

|Δd/d| =
√

2|λ2/(λ1 − λ2)||Δλ1/λ1|. (3.8)

Comparing Eq. (3.4), the relative error is enlarged by a factor of
√

2|λ2/(λ1 − λ2)|. Using

illustrative, yet typical numbers of λ1 = 1520 and λ1 = 1580, the factor is 36.
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3.2.3 Fourier tranform method

Replacing wavelength λ in Eq. (3.1) with wave number k which is defined by k = 1/λ and

using a rectangular function to model the limited measurement range of the spectrometer,

Eq. (3.1) can be written as a more general form of

I(k, d) = {a + cos [4πkd + π − θ(d)]}Π
(

k − k0

kb

)
. (3.9)

where a represents the direct current (DC) component of the signal, k0 and kb are the central

wave number and the available wave number range, respectively, and Π((k − k0)/kb) is the

rectangle function defined as

Π

(
k − k0

kb

)
=

⎧⎪⎨
⎪⎩

1, |k − k0| ≤ kb/2

0, |k − k0| > kb/2

(3.10)

Eq. (3.9) shows that the spectral fringe from a SMF-EFPI sensor is a truncated cosine

function of wave number k. The period of the cosine function is determined by gap-length

d, which can be obtained by finding the peak position at its Fourier transform domain [35].

Obviously, the measurement of this so-called “Fourier transform method” is absolute and has

a large linear range. In addition, one might expect that high measurement resolution and

accuracy can be obtained considering that this method makes use of all data points obtained

by the spectrometer. However, it is found that the measurement accuracy is significantly

reduced by the rectangle function, especially in the cases that the gap-lengths of the FP

cavity are small. Define the Fourier transform of Eq. (3.10) as

ΠFFT (q) =
1

2π

∫
Π

(
k − k0

kb

)
exp(−j2πqk)dk (3.11)

Then the Fourier transform of Eq. (3.9) is given by

IFFT (q) =
1

2π

∫
I(k, d) exp(−j2πqk)dk

= aΠFFT (q) − 1

2
ΠFFT (q − 2d) exp[−jθ(d)]

−1

2
ΠFFT (q + 2d) exp[jθ(d)]. (3.12)
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The right side of Eq. (3.12) comprises of three terms. The first term is related to the DC

component of the fringe signal; The second and third terms are related to the cosine function

in Eq. (3.9) and have their peaks at q = 2d and q = −2d, respectively. However, the peak

positions of the total Fourier spectrum described by Eq. (3.12) might deviate from q = 2d

and q = −2d owing to the interactions among the sidelobes of these three components.

This deviation may in turn cause the measurement error of gap-lengths obtained by the

peak position of the Fourier spectrum. In practice, the DC component can be removed

before doing the Fourier transform, so that a = 0 and the sidelobe effect could be reduced.

Furthermore, by increasing the “frequency” of the fringe in the measurement range, the

sidelobe effect could also be reduced as the three components move away from each other

in the Fourier transform domain. However the measurement accuracy is still rather limited

because gap-lengths of practical SMF-EFPI sensors are at most several hundred micrometers

to retain a useful fringe visibility which are still too small to sufficiently suppress the sidelobe

effect.

The accuracy limitations owing to the sidelobe effect are studied through computer

simulations. In the simulations, the fringes are noise-free cosine waves and the wavelength

range is from 1520 to 1570 nm, which is the typical measurement range of currently available

scanning-laser-based spectrometers. The measurement error, dFT − d, where dFT and d are

the measured and true values of the gap-lengths, respectively, as a function of d is shown

in Figure 3.3(a). The gap-lengths vary from 50 to 180 μm, which covers the gap-lengths

of most practical SMF-EFPI sensors. The simulation results show that the measured gap-

length oscillate rapidly around the true value. Since the cosine wave used here is noise-free,

the errors are solely caused by the sidelobes of the Fourier spectrum of the rectangle function.

Figure 3.3(b) shows the detail of the oscillation structure at the gap-length range between

60 and 64 μm in Figure 3.3(b). As expected, the envelop of the oscillations decreases as the

gap-length increases. However the measurement error is not tolerable in most applications

even at large gap-lengths. For example, the peak-to-peak variation of the measurement error

at d = 180 μm can be as large as 1 μm. By using other window functions which have larger
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Figure 3.3: (a): The gap-length measurement error using Fourier transform method,

and (b), an enlarged view of (a) in the gap-length span of 60 − 64 μm.

sidelobe extinction ratios in the signal processing, for example, the Hanning window, the

measurement error might be reduced, however it is expected that the reduction is only to a

limited degree.

3.3 Curve fitting method

As the output of the white-light SMF-EFPI sensor system is a cosine function of wave

number, the period of the cosine wave which is determined by the gap-length, can be obtained

by finding the period of a cosine wave that best fits the measured fringes. Actually this

method has been studied in interferometric profilometers and other interferometric sensors
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to achieve absolute distance measurement. However, the difficulty of this method arises from

the fact that the cosine wave fitting process is sensitive to the SNR of the target fringes.

Also, the envelop of the cosine wave is required to be highly uniform as the fringes cover

only a few cycles. Otherwise, the cosine wave fitting process could converge to a wrong value

of the period. In a white-light SMF-EFPI sensor system in which an LED and CCD-based

spectrometer are used, owing to the limited measurement accuracy of the spectrometer, the

SNR of the normalized fringes is usually not adequate for the curve-fitting method to be

effective. As mentioned in Section 3.1, the scanning-laser based sensor interrogation system

together with the absolute wavelength calibration capability has significantly improved the

SNR of the sensor output signal and thus make the curve-fitting method more useful. In

this section various fitting functions and a curve-fitting algorithm that can be used in the

curve-fitting method are introduced.

3.3.1 Fitting functions

For convenience, Eq. (3.1) is modified to

I(λ, d) = c + h cos[4πd/λ + π − θ(d)]. (3.13)

where c and h are two constants. From Eq. (3.13), the phasor of the fringe comprises

three terms: the first term, 4πd/λ, is the gap-length related phase shift; the second is the

π phase-shift arising from the reflection at R2; and the third term, θ(d) is the coupling-

induced phase-shift. Figure 3.4 shows the calculated coupling-induced phase-shift θ(d) as a

function of the gap-length d for a SMF with a = 4.5 μm, n1 = 1.448, and n2 = 1.444 at

operation wavelength λ = 1550 nm. Sensor head imperfection of wedge angles between the

two reflectors of the sensor is also considered. The phase shift increases from 0 to 0.358π

when the gap-length is changed from 0 to 100 μm for a perfect sensor head (wedge angle = 0).

As shown in Figure 3.4, wedge angles could, but only slightly, decrease the coupling-induced

phase-shift. Provided that the spectrometer is calibrated, the obtained normalized fringe

spectrum I ′(λ, d) as a function of wavelength λ is known. The gap-length d can be obtained
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Figure 3.4: Coupling-induced phase-shift as a function of gap-length of the SMF-

EFPI sensor.

by fitting Eq. (3.13) to the obtained I ′(λ, d) using fitting parameters c, h and d. However,

in practice, the perturbations of environment and the fabrication process of a SMF-EFPI

sensor could introduce bendings to the fiber, i.e., when the lead-in fiber is welded to the

glass tube by thermal fusion [22]; and it is well known that the bending loss of a single mode

fiber is a function of optical wavelength [39] [40]. Furthermore, the predicted coupling phase

shift θ may slightly depart from its true value due to the imperfections of the sensor head

(as shown in Figure 3.4) and the calculation errors. Instead of Eq. (3.13),

I = c + h cos[4πd/λ + π − θ(d)](b/λ + g). (3.14)

is used as the fitting function, in which constants c, h, b, and g, and gap-length d are

the fitting parameters. The linear function of wave number 1/λ, b/λ + g, is used to model

the bending losses of the fiber as a function of wave number. Furthermore, by adding the

linear function in Eq. (3.15), the phase of the fitted curve can be adjusted to its theoretical

result in the fitting process when the theoretical phase-shift is close to its true value. After

straightforward algebra, Eq. (3.14) leads to

I = A cos[4πd/λ + π − θ(d)]/λ + B cos[4πd/λ + π + θ(d)] + C/λ + D, (3.15)
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Table 3.1: Tree types of curving-fitting methods

Type Fitting Function Fitting Parameters

1 A cos[4πd/λ + π − θ(d)]/λ + D+ A, B, C, D, d

B cos[4πd/λ + π − θ(d)] + C/λ

2 A + B cos(4πd/λ) + C sin(4πd/λ) A, B, C, d

3 A + B cos(4πd/λ) + C sin(4πd/λ) A, B, C, D, E, d

+D cos(8πd/λ) + E sin(8πd/λ)

where A = bh, B = gh, C = cb, and D = cg. In practice, Eq. (3.15) is used to fit the

obtained Inorm(λ, d). The curve-fitting method using fitting function of Eq. (3.15) is called

the “ Type 1” fitting method. For comparison, two other different fitting functions that do

not take the knowledge of the coupling-induced phase-shift and do not include the linear

modification to the fringe envelop are also used. The first is

I = A + B cos(4πd/λ) + C sin(4πd/λ), (3.16)

in which A, B, C, and gap-length d are the fitting parameters. The second fitting function

takes into account of the multi-reflections inside the FP cavity of the sensor by including the

sine and cosine terms that are related to optical path length difference of 4d, as shown in

I = A + B cos(4πd/λ) + C sin(4πd/λ) + D cos(8πd/λ) + E sin(8πd/λ), (3.17)

in which A, B, C, D, E and air gap d are the fitting parameters. The curve-fitting methods

using fitting functions of Eqs. (3.16) and (3.17) are referred to the “Type2” and “Type 3”

curve-fitting methods, respectively. A summary of these three types of curve fitting methods

is shown in Table (3.1).
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3.3.2 Cosine wave fitting algorithm

Many algorithms are available and well investigated for least-square-error (LSE) fitting of

cosine waves [41] [42] and algorithms have been standardized in IEEE Standard 1057 [43].

The fitting function used in these algorithms is Eq. (3.16), therefore they can be directly used

for the “ Type 2” curve-fitting method . However, these algorithms require modifications

when applied to the “ Type 1” and “Type 3” curve-fitting methods which use different fitting

functions. In this subsection, the algorithm used here is illustrated by taking the “ Type 3”

curve-fitting method as an example.

Assume that the data recorded by a spectrometer from a white-light SMF-EFPI sensor

system are normalized and contain the sequence of samples

I1, · · · , IN (3.18)

taken at wavelengths λ1, · · · , λN , respectively. It is further assumed that the data can be

modeled by Eq. (3.17), so that

Im = A cos[4πd/λm + π − θ(d)]/λm + B cos[4πd/λm + π − θ(d)]

+C/λm + D, m = 1, · · · , N. (3.19)

Before getting any further, the fitting process when d is known is first considered. Define

the following vectors

x = (A, B, C, D)T

I = (I1, · · · , IN)T , (3.20)

where T denotes the transpose. Then I obeys the linear set of equations

I = Dx (3.21)
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where D is a N × 4 matrix expressed as

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos[4πd/λ1 + π − θ(d)]/λ1 cos[4πd/λ1 + π − θ(d)] 1/λ1 1

cos[4πd/λ2 + π − θ(d)]/λ2 cos[4πd/λ2 + π − θ(d)] 1/λ2 1
...

...
...

...

cos[4πd/λN + π − θ(d)]/λN cos[4πd/λN + π − θ(d)] 1/λN 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.22)

Eq. (3.21) is an overdetermined set of linear equations when N > 4, with the LSE solution

x̂ (in general,ˆdenotes an estimate) given by

x̂ = (DTD)−1DTI. (3.23)

In reverse, the estimated fringes intensity, Î, can be obtained by replacing x in Eq. (3.21)

into x̂, so that

Î = Dx̂ (3.24)

The final goal of the algorithm is to find the gap-length d that minimizes the sum

squared estimated error S, which is defined by

S =
N∑

m=1

(Im − Îm)2 = (I −Dx̂)T(I− Dx̂). (3.25)

where Îm is the mth element of vector Î. The criterion of minimizing Eq. (3.25) is equivalent

to finding the d that maximizes s(d), which is defined as

s(d) = ITD(DTD)−1DTI. (3.26)

A simple method to find gap-length d is through one-dimensional (1-D) grid search, in which

s(d) is calculated for a series of gap-lengths and the gap-length that gives the maximum value

of s(d) is picked as the fitting result. The process of this 1-D grid search method is presented

in Table 3.2
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Table 3.2: Least square fit by grid search

a) gap-length grid di, i = 1, · · · , M

b) for i = 1 to M

c) create D from di using Eq. (3.22)

d) si = ITD(DTD)−1DTI

e) end

f) d = dk, where sk = max(si|i = 1, · · · , M)

3.4 Experimental Results

Experiments were carried out to test and compare the performance of the signal processing

methods abovementioned. The spectral fringes were recorded by a high-accuracy and high

resolution spectrometer for a range of gap-lengths. The signal processing methods of Type

1-3 curve-fitting, Fourier transform, two-point interrogation, and wavelength-tracking were

implemented to derive the gap-lengths from the obtained spectral fringes. In this section,

the experimental setup is first described. The measurement results obtained by Type 1

curve fitting method are then presented and are used to compare the results from other

signal processing methods. The analysis of the signal processing methods focuses on their

performances of measurement resolution and accuracy.

3.4.1 Experimental setup

The experimental setup to record the spectral fringes for a range of gap-lengths is the same

as that shown in Figure 3.1 and the configuration of the optical sensor used in the setup is

shown in Figure 3.5. The sensor was fabricated by inserting two 125 μm diameter Corning

SMF-28 SMFs (the lead-in/out fiber and the target fiber) with cleaved ends into a hollow

glass tube to which the target fiber was bonded with epoxy. The lead-in fiber was bonded
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Figure 3.5: Construction of SMF-EFPI sensor used in the test.

to a 1-D translation stage by which the gap-length of the F-P cavity could be adjusted over

a large spatial range. The hollow tube with inner diameter of 132 μm facilitated alignment

of the two fiber tips and protected the FP cavity from environmental perturbations. A

High Resolution Swept Laser Interrogator (HR-SLI) (V5.1, MicroOptics, Inc.) was used to

function both as a white light source and as a spectrometer. HR-SLI is characterized by

an ultra-high wavelength repeatability of 0.05 pm and an ultra-high wavelength accuracy of

1 pm. The spectral intensity was sampled from 1520 to 1570 nm with a total number of

samples N = 2000 at an equal wavelength interval of 0.025 nm. During the measurement,

the gap-length was increased approximately from 55.0 to 62.3 μm for 10 steps by manually

adjusting the translation stage, and at each step the spectrum was sampled for roughly 2

minutes at a sample rate of 0.5 Hz and recorded by a computer for further processing.

The spectral fringes obtained from the HR-SLI are in logarithmic scale. They are first

transformed into a linear scale and then normalized by the maximum intensity of each of

the spectral fringes. A typical spectral fringe after normalization is shown in Figure 3.6(a),

in which no visible noises and distortions from pure cosine waves were observed. In order to

estimate the SNR of the obtained signal, an enlarged view of the spectral fringe from 1539

to 1540 nm is shown in Figure 3.6(b). This corresponds to the second peak of the spectral

fringe in Figure 3.6(a). The small intensity fluctuations, that are caused by the light source

power variations and detector noise of the HR-SLI, and the ambient perturbations to fiber

operation conditions, are evident. The standard deviation of the fluctuations is estimated



36

1.52 1.53 1.54 1.55 1.56 1.57
0

0.2

0.4

0.6

0.8

1

Wavelength ( m)
N

or
m

al
iz

ed
 In

te
ns

ity

(a)

1.539 1.54 1.541 1.542 1.543

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Wavelength ( m)

N
or

m
al

iz
ed

 In
te

ns
ity

1.529 1.53 1.531 1.532
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Wavelength ( m)

N
or

m
al

iz
ed

 In
te

ns
ity(b) (c)

Figure 3.6: A typical fringe obtained by the HR-SLI (after normalization), (a); and

enlarged view of a fringe peak, (b); and a fringe valley, (c).

to be 0.003, which is obtained by finding the standard deviation of the fitting errors when a

small range of the fringes centering at the peak position is LSE fitted by a parabolic function.

Considering the unit peak-to-peak value of the fringes, this leads to a SNR of 25 dB of the

spectral fringe signal at fringe peaks. Note that the fluctuations of the fringe intensity is

much smaller at fringe valleys, as shown in Figure 3.6(c), which is the enlarged view of the

first fringe valley in Figure 3.6(a) and shows no evident fluctuation. The larger SNR at fringe

valleys implies that the valley wavelength positions might be determined more accurately

than the fringe peak positions. And fringe valleys instead of peaks should be used in those

signal processing methods that only use part of the fringes, such as the wavelength-tracking

method and the two-point interrogation method.
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3.4.2 Type 1-3 curve-fitting methods

Type 1-3 curve fitting methods use Eqs. (3.15), (3.16) and (3.17), respectively, to fit the

measured spectrum in order to obtain the gap-length d. The 1-D grid search processing

shown in Table 3.2 was used in the fitting process. The gap-length grid interval (di − di−1),

which set the upper limit of the measurement resolution, should be small enough to achieve

the best measurement resolution. In this case it was set to 0.1 nm, which is adequate because

gap-length grid interval of 0.1 nm is smaller than the measurement resolution limited by the

signal noise itself, which will be shown later in this subsection.

The major differences between Type 1-3 curve fitting methods are that (1) the coupling-

induced phase shift is unknown in mathematic models used by Type 2 and Type 3 curve

fitting methods; (2) the linear modification of the fringe envelop is partially compensated in

Type 1 curve fitting method, while it is not considered in the other two methods; (3) Type

3 curve-fitting method takes into account the multi-reflections inside the FP cavity. The

influences of these differences can be shown by comparing the fitting errors of these three

methods, as shown in Figure 3.7(b), which plots the fitting errors of these three methods

when they are used to fit the spectral fringes shown in Figure 3.7(a). It is evident that the

fitting errors for Type 1 and Type 2 curve fitting methods are largely caused by ignoring

multi-reflections between the two reflectors in Eqs. (3.15) and (3.16) as the fitting errors

show apparent cosine wave patterns that are related to the optical-path-difference (OPD)

of 4d caused by the multi-reflections. The cosine wave pattern of fitting errors is literally

eliminated in Type 3 curve fitting method. It is further noticed that the envelops of the

fitting errors or the long-term fluctuations of the fitting errors with wavelength from both

Type 2 and Type 3 curve-fitting methods are less uniform than that from Type 1 curve-

fitting method (Figure 3.7(b)). This is so because Type 1 curve-fitting method is able to

partially compensate the linear change of the cosine wave envelop with wavelength by adding

the term of b/λ + g in Eq. (3.14).

The systematic fitting error caused by ignoring multi-reflections in the FP cavity did
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Figure 3.7: The normalized spectral fringes of measurement number 103, (a); and

the fitting errors of Type 1, Type 2 and Type 3 curve-fitting methods when they

are applied to fit the fringes in (a), (b).

not affect the measurement accuracy because the fitting parameter d is determined only

by the fringe period and wavelength positions of the fringe valleys and peaks, which are

not affected by ignoring the multi-reflections in Eqs. (3.15) and (3.16). The measured gap-

lengths using Type 1-3 curve-fitting methods are shown in Figure 3.8(a). As indicated by

the results from Type 1 curve-fitting method, the gap-length is increased from 55.0 to 62.4

nm through ten steps and the measured total gap-length change is approximately 7.4 μm.

Virtually the three sets of results are almost overlapped with each other in Figure 3.8(a).

However, the difference is clearly evident in Figure 3.8(b) which shows the enlarged view of

the results from measurement number 103 to 156 that correspond to the third step level in

Figure 3.8(a). Figure 3.8(b) also shows the three lines that represent the LSE linear fit of the

measured gap-length as functions of the measurement number for the three methods. It is

clear that the gap-length was slightly increased at this step of measurement. This is caused

by the mechanical drift of the translation stage itself after the gap-length is adjusted. The
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Figure 3.8: Comparison of results obtained by Type 1, Type 2 and Type 3 curve-

fitting methods, (a); and the least-square linear fit of the gap-length as a function

of measurement number, (b).

fluctuation of the measured points around the best-fit line through the data can be taken

as a measure of the standard deviation of the algorithm. It is possible that some of the

variation around the line is due to the mechanical translation stage as well. The standard

deviation of the fitting error represents the variation due to all sources of error including

the algorithm. Clearly, measurement results from Type 1 curve-fitting method have the

least random fluctuations around their linear fit, which indicates that Type 1 method has

the best performance in terms of measurement resolution among these three methods. The

calculated standard deviations of the linear fitting errors are 0.22, 1.90 and 1.89 nm for

Type 1, Type 2 and Type 3 curve-fitting methods, respectively. Therefore it is concluded

that the measurement resolution of Type 1 curving-fitting method is approximately one

order of magnitude better than Type 2 and Type 3 curving-fitting methods. Note that the

measurement resolution values of all the three methods are larger than the gap-length grid

interval (0.1 nm) used in the fitting process, which in turn verifies that the chosen grid

interval is sufficiently small.

It is also worth noting that, in addition to the differences of the measurement resolution,

there are systematic differences between the absolute gap-lengths measured by these three
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methods. For example, approximately the measured gap-lengths by Type 1 curve-fitting

method are always 30-40 nm larger than the results from Type 2 curve-fitting method;

while Type 2 curve-fitting method also gives the gap-lengths that are 6-8 nm larger than

those given by Type 3 curve-fitting method. As shown in Figure 3.8(b), the measured gap-

lengths from Type 2 and Type 3 curve-fitting methods are close, which indicates that the

measurement accuracy is not significantly reduced by ignoring the multi-reflections in the

FP cavity. In addition, it is found that the cosine wave fitting algorithm is sensitive to

the long-term (on the order of fringe period) fluctuations of the spectral fringe envelop as a

slight tilt of the measured spectral fringes (the linear modification of the fringe envelop as a

function of wavelength) could cause relatively large changes in the fitting result. Therefore, it

is anticipated that the Type 1 curve-fitting method gives best measurement accuracy among

these three methods because the tilt of the measured spectrum is partially compensated.

However it is difficult to experimentally verify.

3.4.3 Fourier transform method

As discussed in Section 3.2.3, in the Fourier transform method, the gap-length is obtained

by finding the peak position in the Fourier transform domain of the spectral fringes. Before

doing the Fourier transform, the DC component of the spectral fringes could be eliminated

to reduce the sidelobe effect. Note that most spectrometers sample the spectrum being

measured at discrete wavelengths with equal wavelength intervals. The sample intervals in

wave number domain are not equal when the wavelengths are directly transformed to wave

numbers as the wavelength and wave number relation is not linear. A set of data points

with equal wave number intervals are required by the principle of the Fourier transform and

can be achieved by data interpolation. Figure 3.9 shows the results from Fourier transform

methods for two cases where the spectral fringes have DC (FT w/ DC) and have no DC

components (FT w/o DC). The results from Type 1 curve-fitting method are also plotted

for comparison.
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The deviations of the Fourier transform results to the Type 1 curve-fitting results caused

by the sidelobe effect are evident, random, and sometimes extreme. For example, “(FT w/

DC)” measures the gap-lengths of the first step to be around 48 μm, which is approximately

6 μm smaller than the results from Type 1 curve-fitting method. In addition, the Fourier

transform results show that the measured gap-lengths slightly decreases in some step levels

instead of the consistent slight increase from the results of the Type 1 curve-fitting method.

Furthermore, the results from “FT w/o DC” indicate that the gap-lengths were reduced

from step level 3 to step level 4, which is contrary to the experimental process where the

1-D translation stage was adjusted to consistently increase the gap-length for each step.

Even the results from “FT w/ DC” and “FT w/o DC” are not consistent with each other,

with one giving larger values of gap-lengths than the other in some levels and smaller values

in other levels. In general, the ‘FT w/o DC” results are closer to the Type 1 curve-fitting

results as the sidelobe effect is smaller when the DC component is removed before the Fourier

transform.

The results for step level 3 (Measurement number 103-156) together with the LSE linear

fit as functions of the measurement number is plotted in Figure 3.10(a) for the methods
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Figure 3.10: Least-square linear fit of the gap-length as a function of measurement

number for Type 1 curve fitting and Fourier transform method, (a); and the linear

fitting error, (b). FT, Fourier transform.

of Type 1 curve-fitting, “FT w/ DC”, and “FT w/o DC”. Similar to the discussion in

Section 3.4.2, the measurement resolution of the Fourier transform method is also studied

by calculating the standard deviation of the linear fitting errors as shown in Figure 3.10(b).

Obviously, the fitting errors are much larger for Fourier transform method than for Type 1

curve-fitting method. The calculated standard deviations of the fitting errors are 2.83 and

6.89 nm for “FT w/ DC” and “FT w/o DC”, respectively. Comparing the results from

Section 3.4.2, the measurement resolution of Fourier transform method is on the same order

of Type 2 and Type 3 curve-fitting methods and one order of magnitude worse than Type 1

curve-fitting method.

3.4.4 Two-point interrogation

The two-point interrogation is one of the most simple signal processing methods for white-

light SMF-EFPI sensors. In this method, by finding the wavelength positions of two fringe

peaks or valleys, the gap-length d can be calculated from Eq. (3.7). In order to achieve high

accuracy and resolution, the determination of the peak and valley positions must be accurate
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Figure 3.11: Comparison of results obtained by Type 1 curve-fitting method and

two-point interrogation, (a); and the least-square linear fit of the gap-length as a

function of measurement number, (b).

and have high resolution. As shown in Section 3.4.1, the spectral fringes obtained by the

HR-SLI have better SNR at valleys than at peaks, therefore, it is expected the measurement

results from two fringe valleys have better resolution performance. To find the wavelength

position, first a rough wavelength position of a valley or peak, λ′
i is found. The accurate

valley or peak position, λi, is then obtained by fitting a small range of the fringes centering

at λ′
i using a parabolic function and finding the wavelength at which the maximum of the

function occurs.

The measurement results using two-point interrogation are shown in Figure 3.11(a).

Note that for each step, a set of two neighboring peaks or valleys with fixed order numbers

is used. The results from Type 1 curve-fitting method are also plotted for comparison. Fig-

ure 3.11(b) is the enlarged view of the third step in Figure 3.11(a), together with their LSE

linear fit function as the measurement number. The measurement resolutions, as approxi-

mated by the standard deviations of the fitting errors, are 3.12 and 9.25 nm for the two-point

interrogation method using two neighboring valleys and peaks, respectively. As expected,

the measurement resolution in case of Two-valley interrogation is three times better than

the case of two-peak interrogation due to the smaller fluctuations in fringes valleys of the
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measured spectral fringes; however, it is still 20 times larger than the Type 1 curve-fitting

method.

It is worth noting that there are systematic errors as well between results obtained from

the two-peak and two-valley interrogations. The latter one gives a closer result to the Type

1 curve-fitting method. Even within the two-peak interrogation, the results obtained using

one set of two neighboring peaks systematically deviated from the results obtained from

another set of neighboring peaks with different order numbers. This is also true for the two-

valley interrogation. Therefore, for the two-point interrogation, the measurement resolution

could be significantly deteriorated if the order numbers of the two neighboring peaks or

valleys are randomly picked. In our experiment, there are three valleys (V1, V2, V3) for

each spectral fringe. This gives two choices of two neighboring-peaks in the calculation

of gap-lengths, namely, (V1, V2) and (V2, V3). Figure 3.12 shows the measured gap-

length results from the two-valley interrogation which randomly choses one of the above

two sets. Obviously, the measurement resolution is significantly deteriorated. For each gap-

length step, the standard deviation of the errors between the measured gap-length values

and their LSE linear fit is on the order of several hundred nanometers, which is two orders of

magnitude worse than the case where the order numbers of neighboring peaks are fixed, and

three orders of magnitude worse than the Type 1 curve-fitting method. Therefore, the two-

point interrogation has limited absolute measurement accuracy which in turn significantly

deteriorates the performance of the measurement resolution of this method in cases where

the gap-length changes are large and different sets of two peaks or valleys have to be used.

3.4.5 Wavelength-tracking method

Wavelength-tracking method uses the wavelength position of a particular fringe peak (or

valley) to map the parameters being measured and is shown to have an ultra-high measure-

ment resolution in a high-finesse white-light SMF-EFPI sensor system [36]. Even though

this method has limited dynamic range and is not capable of absolute measurement, it
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is still widely used in SMF-EFPI sensors especially in laboratories due to its advantages

of signal processing simplicity and ultra-high measurement resolution. In this subsection,

the gap-length results of the third-step (measurement number 103-156) obtained by the

wavelength-tracking method is presented. The first peak and valley of each spectral fringe

are used. The results from the peak-tracking and valley-tracking are compared. The wave-

length positions of the peaks or valleys are obtained using the polynomial fitting method

as shown in Section 3.4.4. Since absolute gap-length measurement is not possible for this

method, it is assumed that the gap-length of the first measurement is d0 = 50 μm. Suppose

λi is the wavelength of the first peak or valley of the ith measured fringe, then the gap-length

di is estimated by

di = d0[1 + (λi − λ103)/λ0], i = 103, · · · , 156 (3.27)

where λ0 = 1550 nm is the central wavelength of the fringe.

The gap-lengths obtained through Eq. (3.27) is shown in Figure 3.13(a). Results from

both the peak-tracking and the valley-tracking are plotted together with their 10 order

polynomial fit. The higher order fit is used so that the difference of the standard deviations

between these two is more evident. The fitting errors are shown in Figure 3.13(b). The
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Figure 3.13: Estimated gap-lengths for step 3 from the wave-length record together

with its 10 order polynomial fit, (a); and the fitting errors,(b).

standard deviations are 0.05 and 0.09 nm for the valley-tracking and the peak-tracking,

respectively. The smaller standard deviation of the valley-tracking is expected as the fringes

are less noisy in valleys. Note that the standard deviations of the fitting error are considerably

smaller than the case of the Type 1 curve-fitting method. This is so only because a higher

order polynomial fit is used here. For example, the standard deviations of the second order

polynomial (parabolic) fitting are 0.2 nm for both the valley-tracking and the peak-tracking,

which is the same as that of the Type 1 curve-fitting method.

3.5 Conclusions

This chapter studies the principle and performance of various spectral domain signal process-

ing methods for white-light SMF-EFPI sensors, including the methods of two-point inter-

rogation, Fourier transform, Type 1 - 3 curve-fitting, and wavelength-tracking. Except for

the wavelength-tracking method, the other methods are featured by the the capabilities of

absolute measurement of the air-gap and large dynamic measurement range.
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The first is the Type 1 curve-fitting method. By obtaining the exact expressions of the

fringe phase as a function of the gap-length from the model of the SMF-EFPI sensors, this

method achieves the best measurement resolution (0.2 nm) among all the methods that are

capable of absolute measurement. In addition to the SNR of the spectral fringes, the mea-

surement accuracy of this method is also dependent on the accuracy of predicted coupling-

induced phase-shift, which is obtained by the model of a perfect sensor head. Therefore, the

errors might be introduced by various imperfections of the sensor such as the non-parallelism

of the two fiber ends. The model assumes the spectral fringe is a cosine function with a linear

amplitude modulation as a function of the wave number; however, more complex modula-

tions of the fringe envelope due to bending losses of the single mode fiber may cause the

fitting process to converge to an erroneous gap-length value. This could be compensated

for by using a higher order polynomial to fit the envelope modulations. The accurate and

absolute measurement of wavelength is important in the successful application of the pro-

posed algorithm. Moreover, it is necessary for the source spectrum to be stable during the

measurement process. Small errors in wavelength measurement, and/or small fluctuations

in light source spectrum could also cause the fitting process to converge to an erroneous

gap-length value. The stringent requirement on sensor systems is a price we have to pay to

achieve high-resolution, high accuracy, and absolute measurement at the same time.

The Type 2 and Type 3 curve-fitting methods have the second best measurement reso-

lution performance (approximately 2 nm for both of them). Different from the Type 1 curve-

fitting method, the models used in these two methods assume an unknown coupling-induced

phase-shift. Actually the phase-shift can be alternatively considered as a fitting parameter

in the fitting models of Type 2 and Type 3 curve-fitting methods. It is the absence of this

phase-shift information that causes the reduction of the measurement resolution compared

to their Type 1 counterpart. Type 3 curve-fitting methods takes into account the multi-

reflections in the FP cavity, therefore the model is more accurate in describing the spectral

fringes, which is verified by the much smaller fitting errors. However no improvement in the

measurement resolution was found. On the other hand, the consideration of multi-reflections
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Table 3.3: Performances of signal processing methods for SMF-EFPI sensors

T1 T2 T3 FT TPI WT

Resolution 0.22 nm 1.90 nm 1.89 nm 2.83 nm 4.5 nm <0.2 nm

Accuracy High High High Low High NA

Speed Low Low Low High High High

Absolute? Yes Yes Yes Yes Yes No

Note: T1-T3, Type 1 -3; FT, Fourier transform; TPI, Tow-point interrogation; WT,

wavelength-tracking. The FT method uses DC-removed fringes; and TPI used two

neighboring fringe valleys.

dramatically increases the complexity of the models and the fitting algorithm, and conse-

quently slows the signal processing speed. Therefore the Type 3 curve-fitting method is less

desirable than the Type 2 method.

The Fourier transform method gives the poorest measurement accuracy performance

because of the sidelobe effect. The computer simulations show that gap-length measured by

the Fourier transform method oscillates around its true value as the gap-length increases.

In addition to the accuracy, this oscillation could cause measurement ambiguities of the

gap-lengths because the fringes of sensors with different gap-lengths could yield the same

measured value. Thus this method is not suitable for measurement of large dynamic changes.

The sidelobe effect can be reduced by increasing the gap-lengths. However, this is not an

effective method for SMF-EFPI sensors in which the gap-lengths are at most several hundred

micrometers to maintain a useful fringe visibility. The Fourier transform method might be

effective for SMF intrinsic FP interferometric sensors in which the gap-length can be as long

as centimeters without sacrificing the fringe visibility.

The next processing method is called the two-point interrogation. As its name suggests,

the gap-length is obtained by the wavelength of two special points (fringe valleys or peaks)
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in the fringes. The accuracy of this method is directly related to the accuracy in determining

the wavelengths of the fringe peaks or valleys. Different from all the other methods which

use the whole fringes to find the gap-length, this method only uses two small portions of

the fringes. Thus only the SNR of two local fringe portions being used matters for the

measurement resolution. The measurement resolution of this method is less than 10 nm

if the same orders of the set of two neighboring peaks or valleys are used through out the

measurement. However, the results obtained from different sets of fringes or peaks are not

consistent and this leads to a significantly reduced measurement resolution when changes of

the gap-lengths are large.

The last signal processing method is the wavelength-tracking method. Different from

the others, this method is not capable of absolute measurement. However, the big advantages

of this method are its simplicity and high resolution. Our experimental results have shown

that the measurement resolution is at least comparable with, if not better than, the Type 1

curve-fitting method.

Another important aspect in evaluating a signal processing method is the processing

speed. The curve-fitting methods take longest time to obtain the gap-length from a fringe

as the grid-search method used in the cosine wave fitting process requires a large number of

iterations. The two-point interrogation and Fourier transform method are much faster due

to their simplicity.

The test results of performances of these methods are summarized and compared in

Table 3.3.



Chapter 4

Low-finesse MMF-EFPI sensors

As discussed in Chapter 1, previously available analysis on MMF-EFPI sensors is based on

geometric-optics and is only valid in limited situations as geometric-optics is an approximate

theory. In this chapter a modal theory that can, in principle, be used in any situation is

presented. The modal theory is capable of accurately predicting the spectral fringes by a

complete treatment on mode mixing and interference in the MMF-EFPI sensors and is used

to analyze the fringe visibility of MMF-EFPI sensors with various fiber types and sensor

configurations. To the best of our knowledge, this is the first time that a modal theory is

developed to model the MMF-EFPI sensors.

This chapter is constructed as follows. In Section 4.1, the theory based on geometric-

optics is reviewed. In Section 4.2 an exact analysis on the fringe visibility and fringe pattern of

MMF-EFPI sensors based on the electromagnetic theory is presented. Even though a weakly

guiding fiber is used in our analysis, the method is applicable for fibers of any kind. Then

the numerical results of visibility analysis based on the theory are discussed in Section 4.3.

First, the effect on fringe visibility of the sensor parameters including the fiber core size,

NA of the fiber, the modal power distribution in the lead-in fiber, and the gap length of the

F-P cavity, is studied. Next, the effect of one of the typical interferometer imperfections, in

which the two reflection surfaces of the FP cavity are not perfectly parallel to each other and

50
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forms a wedge angle, is studied. The comparison between MMF-EFPI sensors and SMF-

EFPI sensors is performed in Section 4.5 and the fundamental mechanisms responsible for

the reduction of visibility of a MMF-EFPI sensor is reported in Section 4.6. The mode-lobe

position effect in MMF-EFPI sensors is revealed and analyzed in Section 4.7. Section 4.8

analyzes the visibility variations caused by the mode-mixing that occurs in the sensor head.

In Section 4.9, the modal theory for a more general MMF-EFPI sensor configuration is

developed and used for visibility analysis. In Section 4.10, an experiment is carried out

to study the visibility variations owing to wedge angle and the results are compared to

theoretical results to validate the theory. Finally, some conclusions are given in Section 4.11.

4.1 Review of low-finesse MMF-EFPI theory

In this Section we follow the methodology reported by Pérennès [20], who used the geometric-

optics to analyze the fringe visibility performance of a MMF low-finesse FP interferometer

(FPI). A schematic of a FPI, illuminated by the output of a multimode optical fiber, is shown

in Figure (4.1). The FPI is located at a distance z0 from the fiber end face. The medium

between the fiber and the FPI has a refractive index n1, and the medium on the external

side of the FPI has a refractive index n2. The refractive index inside the FPI is n, and

nf is the refractive index of the fiber core. The reflection coefficients of the mirrors of the

interferometer are defined by the weak Fresnel reflections arising from the refractive-index

mismatches at the two surfaces of the interferometer and are therefore small. It is assumed

that all the propagation modes in the optical fiber are equally excited. Thus the output light

distribution at the distal end of the fiber is of uniform intensity and conforms to that of a

top-hat profile. Under these conditions, the maximum angle of divergence θm depends on the

NA of the fiber and, in air, is given by θm = sin−1(NA). The light emerging from the fiber can

be represented by the sum of wave fronts of equal amplitude, leaving the fiber at different

angles distributed between 0 and θd1. Angles θd1 and θd are the angles of the most diverging

wave fronts in the medium between the fiber and the FPI and inside the FPI, respectively.
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Figure 4.1: Schematic of a FPI illuminated by a MMF. θd1 and θd are the angles of

the most diverging rays in the media between the fiber and the FPI and in the FP

cavity, respectively. θ1 and θ are the angles of a particular ray in the media between

the fiber and the FPI and in the FP cavity, respectively. Reprint from Ref. [20]

They obey Snell’s law:

sin θd1 = sin(θd)n/n1. (4.1)

Two parallel incident rays, corresponding to an internal angle θ within the FPI, are reflected

on both sides of the cavity and interfere, as shown in Figure 4.1. Because of the low spatial

coherence of the output of a multimode fiber (which is due to the different phases of individual

modes), it is necessary that both the FPI thickness and the maximum angle of divergence

are small. This ensures that the two interfering rays originate from nearly the same point

on the optical fiber end-face and are therefore located within a region of spatial coherence

and are correlated in phase. Under these conditions, uncorrelated random variations in the

absolute phase across the fiber output that are due to external perturbations of the fiber do

not affect the interference process. The net phase difference between the two reflections is

given by [28]

φ(θ) = cos(θ)4πnl/λ, (4.2)
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where n is the refractive index in the FP cavity, l is the cavity thickness, and λ is the

light-source wavelength. The weak Fresnel reflections at the interferometer surfaces allow to

neglect the effect of multiple reflections inside the cavity [29]. Thus the cavity acts as a low-

finesse FPI, and the intensity of the reflected light is simply due to the coherent superposition

of the two Fresnel reflections. The reflected intensity resulting from the interference of two

parallel rays for an internal angle θ is given by

IRi
(θ) =

I0

Δφ
[R1 + (1 − R1)

2R2 + 2(R1R2)
1/2(1 − R1) cos φ(θ)], (4.3)

where I0 is the total intensity of the light incident upon the FPI. R1 and R2 are the Fresnel

reflection coefficients on each side of the interferometer. Δφ is the total phase dispersion and

is a measure of the range of optical path lengths taken by interfering rays at different angles

θ within the interferometer, as discussed below. When observed in a plane perpendicular

to the fiber axis, the reflected light forms a pattern of concentric circular fringes of equal

inclination. Dark fringes correspond to the interference of rays propagating at an angle of

θ = cos−1{[(2m + 1)λ]/4nl} inside the FP cavity and bright fringes to rays propagating at

an angle θ = cos−1(2mλ/4nl), where m is an integer. The maximum phase difference occurs

for a ray propagating along the fiber axis with θ = 0, and the minimum phase difference

occurs for the most divergent ray θ = θd in the cavity. Thus the effect of divergence is to

introduce dispersion into the phase difference. This phase dispersion can be expressed as

Δφ = φmax − φmin = (1 − cos θd)4πnl/λ = φ0(1 − cos θd), (4.4)

where φ0 is the phase difference for a normally incident beam. The top-hat incident intensity

profile yields a uniform distribution of phase difference in the interval defined by⎧⎪⎨
⎪⎩

D(φ) = 1, for φ0 − Δφ < φ < φ0

D(φ) = 0, elsewhere

(4.5)



54

To calculate the total reflected light IR it is necessary to integrate the expression in Eq. (4.3)

over the range of phase dispersion introduced by the divergence of light at the fiber output:

IR =

∫
Δφ

D(φ)IRi
(φ)dφ

=

[
R1 + (1 − R1)

2R2 +
2(R1R2)

1/2(1 − R1)

Δφ

∫ φ0

φ0−Δφ

cos φdφ

]
I0. (4.6)

This expression can be evaluated analytically and gives

IR =

[
R1 + (1 − R1)

2R2 + 2(R1R2)
1/2(1 − R1)

sin(Δφ/2)

Δφ/2
cos

(
φ0 − Δφ

2

)]
, (4.7)

where I0 is the total incident light intensity in the FP plane. From Eq. (4.7) the maximum

and the minimum values of the reflected intensity, Imax and Imin, occur when φ0 − Δφ/2 =

2kπ and φ0 −Δφ/2 = (2k + 1)π, respectively, where k is an integer. The analytical solution

for the fringe visibility (Imax − Imin)/(Imax + Imin) is simply expressed as

γ =
2(R1R2)

1/2(1 − R1)

R1 + (1 − R1)2R2

| sin(Δφ/2)|
Δφ/2

= γ0
| sin(Δφ/2)|

Δφ/2
, (4.8)

where γ0 is the visibility for a collimated incident beam. γ is zero for Δφ = 2kπ (k is an

integer).

Equation (4.7) predicts that the fringe pattern output from such a FP interferometer

and Equation (4.8) describes the visibility of the fringes reflected from the interferometer

before they enter the optical fiber. These two equations are the major results obtained by

the theory.

The major advantage of the geometric-optics-based theory is that the analytical results

are possible so that it is convenient to conceptually analyze the effect of different sensor

parameters on the spectral fringes from a MMF-EFPI sensor. However, this theory also has

many limitations. First, the analysis has assumed a “top-hat” light intensity profile of the

MMF output. However, the intensity profile from a MMF could be much more complicated

in practice and can only be accurately described by optical modes in the MMF. Secondly,

the geometric-optics which it bases on is only valid for weakly-guiding MMFs. Moreover, the
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MMFs must have sufficient number of modes propagating inside the fibers and the fiber core

sizes much larger than the light wavelength. For example it can not be applied to MMFs

with only a few modes, MMFs with small core sizes, and strongly-guiding MMFs, which are

common in MMF-EFPI sensors. In the analysis it has been assumed that the cavity thickness

and the internal divergence are sufficiently small that near-complete overlap occurs between

the reflections on the two sides of the cavity, which could introduce significant errors to

the results as this assumption is not always fulfilled. Most importantly, the theory is not

capable of accurately predicting the spectral fringes which is important in the analysis and

development of signal processing methods of MMF-EFPI sensors. All these limitations of the

geometric-optics-based theory suggest that a more universal and accurate theory of MMF-

EFPI sensors is necessary to provide a more powerful tool in the design and optimization of

sensors.

4.2 Modal analysis of MMF-EFPI sensors

In this section, a model theory that accurately describes the spectral fringes output from a

MMF-EDFA is presented. First the relationship between the spectral fringes and the modes

in the MMF is developed in Section 4.2.1; Then the calculation of mode profiles of both step-

index and graded-index MMFs is reviewed in Section 4.2.2. Finally, the calculation of the

mode coupling coefficient, which is of great importance in understanding the performance of

a MMF-EFPI sensor, is presented in Section 4.2.3.

4.2.1 Spectral fringes representation

A schematic of a low-finesse MMF-EFPI used in the modal theory is shown in Figure 4.2.

The F-P cavity is formed by the end face R1 of the lead-in multimode fiber and another

reflection surface R2. For an ideal EFPI, R1 and R2 are perfectly parallel to each other and

are perpendicular to the fiber axis z. n3 is the refractive index inside the F-P cavity. For
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Figure 4.2: Schematic of a low finesse MMF-EFPI.

simplicity, it is assumed that the cavity is filled with air and thus, n3 = 1. The gap length

d is defined as the distance between R1 and R2. The reflection coefficient r1 of surface R1

and reflection coefficient r2 of surface R2 are defined by the weak Fresnel reflection arising

from the refractive index mismatches at the two surfaces. In practice, the reflections at the

interfaces are usually small. The light propagating along the lead-in/out MMF is partially

reflected by R1 and R2, and the two reflections are coupled back into the lead-in MMF and

interfere with each other to form interferometric fringes.

Assume the multimode fiber supports N orthogonal guided eigenmodes with the normal-

ized field profile of the kth mode φk (k = 1, 2, ..., N). The total field of the light propagating

along the +z direction may be expressed as a superposition of all the guided modes, which

can be written as [30]

Etotal =

N∑
k=1

pkφk exp(−jβkz)êk, (4.9)

where êk is a unit vector representing the polarization of the mode, so that

êk · ê∗k = 1, (4.10)

and coefficient pk is the complex magnitude of the kth mode. The amplitude of |pk| is related

to the mode power distribution (MPD) in the fiber. For example, if all the modes in the multi-

mode fiber are equally excited, they all have the same intensity, so |pk| = p for k = 1, 2, ..., N ,
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where p is a constant. The intensity of the reflected light can be expressed as the superpo-

sition of the intensities of all the modes since they are orthogonal:

Itot = 〈Etotal · E∗total〉 =

N∑
k=1

(pkφk)(pkφk)
∗(êk · ê∗k)

=
N∑

k=1

(pkp
∗
k) (4.11)

where the angle brackets, 〈 〉, denotes the integral over the cross-section plane of the fiber.

In deriving Eq. (4.11), I have used Eq. (4.10) and the orthogonality of the mode profiles

described by

〈φlφ
∗
k〉 =

⎧⎪⎨
⎪⎩

1, l = k

0, l �= k

(4.12)

Similarly, for the reflected light propagating along the −z direction, the field can also be

decomposed into a set of guided modes:

E =

N∑
k=1

qkφk exp(−jβkz)êk, (4.13)

and the intensity of the reflected light is expressed as

I = 〈E · E∗〉 =
N∑

k=1

〈qkq
∗
k〉 =

N∑
k=1

Ik. (4.14)

Now consider the field of a particular mode qkφk of the reflected light. Since the Fresnel

reflections at the reflection surfaces are low, the effect of the multiple reflections in the cavity

is neglected. Thus, the reflected light comes from the two reflections at surface R1 and surface

R2. Since surface R1 is perpendicular to the fiber axis, the kth mode propagating along +z

direction reflected by surface R1 will be coupled back to the same kth mode propagating

along −z direction. However, due to the lateral displacement d (gap-length) of surface R2

to the fiber end face R1, only part of the mode k propagating along +z direction that is

reflected by surface R2 can be coupled back to mode k. Furthermore, modes with mode

numbers different from k that are reflected by surface R2 can also be coupled into mode k.
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Thus, the reflected field profile of mode k can be expressed as the summation of two terms:

qkφk = rpkφk + r

N∑
l=1

ηlkplφk exp[−j(4πd/λ + π)]. (4.15)

Note that it has been already assumed that r1 = r2 = r and the light power loss due to the

Fresnel reflection of surface R1 when the reflected light from surface R2 is coupled to the

MMF is neglected. In Eq. (4.15), the first term rpkφk is the reflection at surface R1; the

second term as a whole is the contribution from the reflections of the surface R2, in which ηlk

is defined as the coupling coefficient of the lth mode that propagates along +z direction and

is reflected back by the surface R2 to the kth mode that propagates along −z direction in the

MMF. The light coupling occurs at surface plane R1. In Eq. (4.15), phase shift 4πd/λ arises

from the free-space transmission of a distance of 2d, and the extra phase-shift of π arises

from the light reflection from an optically less dense medium to an optically denser medium.

For convenience, the reflection coefficient r which is common for all modes is ignored in the

following analysis. Defining the following parameters

ηk = ηkk = |ηk| exp(jθk), (4.16)

pl = |pl| exp(jϕl), (4.17)

ϕ0 = 4π/λ + π, (4.18)

ck = |ck| exp(jθk
′) =

N∑
l=1,l �=k

ηlkpl, (4.19)

the complex amplitude of mode φk can be expressed as

qk = |pk| exp(jϕk) + |ηk||pk| exp[−j(ϕ0 − θk − ϕk)] + |ck| exp[−j(ϕ0 − θk
′)]. (4.20)

It is clear that the contributions to mode φk from the the reflections of the surface R2 are

divided into two terms in Eq.(4.20), namely the contributions from the same mode reflected

by the surface R2 and the contributions from all the other modes reflected by the surface
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R2. The reflected light intensity of mode k is then expressed as

Ik = < qkq
∗
k >

= < |pk| exp(jϕk) + |ηk||pk| exp[−j(ϕ0 − θk − ϕk)] + |ck| exp[−j(ϕ0 − θk
′)]

×|pk| exp(−jϕk) + |ηk||pk| exp[j(ϕ0 − θk − ϕk)] + |ck| exp[j(ϕ0 − θk
′)] >

= |pk|2 + |ηk|2|pk|2 + |ck|2

+|pk||ck| cos(φ0 − θk
′ + ϕk)

+|ηk||pk||ck| cos(θk
′ − θk − ϕk)

+|ηk||pk|2 cos(φ0 − θk) (4.21)

Substituting Eq. (4.21) into Eq. (4.14) yields the total reflected light intensity I:

I =
N∑

k=1

Ik

=

N∑
k=1

|pk|2 + |ηk|2|pk|2 + |ck|2

+2

N∑
k=1

|pk||ck| cos(φ0 − θk
′ + ϕk)

+2
N∑

k=1

|ηk||pk||ck| cos(θk
′ − θk − ϕk)

+2

N∑
k=1

|ηk||pk|2 cos(φ0 − θk). (4.22)

Noting that all modes propagating along the MMF have random initial phase relationship

when they are excited by the light source and individual modes with different propagation

constants experience different phase-shift during propagation along the fiber, it is reasonable

to assume that the phase of the coefficients pl, ϕl, is a random variable uniformly distributed

in the phase range [−π, +π]. Consequently, the phase of coefficients ck, θk
′, which is related

to coefficients pl through Eq. 4.19, is also a random variable. Furthermore, it is assumed

that the number of the modes excited in the fiber is sufficiently large so that the summation

of the terms related to ϕl and θk
′ is averaged to zero in Eq. (4.22). This assumption is
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reasonable for a typical MMF which usually supports several hundred modes at wavelengths

around 1550 nm. Thus, Eq. (4.22) is simplified to be of the form:

I =
N∑

k=1

(|pk|2 + |ηk|2|pk|2 + |ck|2)

+

N∑
k=1

|ηk||pk|2 cos(φ0 − θk) (4.23)

For simplicity, the input power of the lead in fiber is normalized to be unity, namely

Itot =
N∑

k=1

|pk|2 = 1. (4.24)

and further define

ηR2 =

N∑
k=1

(|ηk|2|pk|2 + |ck|2), (4.25)

Eq. (4.23) is then simplified to

I = 1 + ηR2 +
N∑

k=1

|pk|2|ηk| cos(4πd/λ + π − θk). (4.26)

ηR2 is actually the light power coupling coefficient between the fiber F and its mirror image

F ′ with respect to surface plane R2, as shown in Figure 4.3. When the gap-length is small, for

convenience, the power coupling coefficient can be obtained from geometric optics without

sacrifice of accuracy. For two step-index MMFs that have a longitudinal offset 2d, the light

power coupling coefficient has been shown to be [31]

ηR2 = a2/(a + 2d tan θc)
2, (4.27)

where θc = sin−1[(n2
1 − n2

2)
1/2/n1] is the critical acceptance angle of the fiber. Eq. (4.26)

describes the spectral fringes output from a MMF-EFPI sensor. It is clear that the spectral

fringes are a superposition of N sinusoidal functions each of which corresponds to a mode

that propagates along the +z direction in the MMF.

Define the effective coupling coefficient, ηeff , as

ηeff = |ηeff | exp(jϕeff) =

N∑
k=1

|pk|2ηk, (4.28)
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Figure 4.3: Schematic of calculating ηR2 and ηk. Fiber F ′ is the mirror image of

the lead-in fiber F with respect to the reflection surface plane R2.

where |ηeff | and ϕeff are the amplitude and the phasor of the effective coupling coefficient,

respectively. With the help of Eq. (4.28), the spectral fringe described by Eq. (4.26) can be

further reduced to a single cosine function of

I(d, λ) = 1 +
2

1 + ηR2

|ηeff | cos(4πd/λ + π − ϕeff). (4.29)

Eq. (4.29) is the major result of this chapter, which accurately describes the fringes output

from a MMF-EFPI sensor system. Theoretically Eq. (4.29) which has overcome all the

limitations imposed by geometric-optics is general. However, it is assumed in Eq. (4.29) that

the mode number excited in the MMF must be large enough, so that the mode mixing effect

can be ignored. For MMFs with arbitrary number of modes excited in the fiber, Eq. (4.22)

must be used in the description of the spectral fringes.

4.2.2 Mode field profiles of MMFs

The knowledge of the mode field distribution of each mode present in the MMF is essential

in the calculation of the spectral fringes from a MMF-EFPI sensor system by Eq. (4.29).

Though the modal theory can be applied to any MMF, to keep the analysis as clear as possible

and focused on the mode interactions rather than calculations of the modes themselves,

this subsection only considers two types of weakly-guided MMFs, namely, the step-index

MMF (SI-MMF) and the graded-index MMF (GI-MMF). The mathematical derivation of
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Figure 4.4: Diagram of a cross section of the fiber geometry considered here.

the mode field profiles from the fiber parameters for these two types of MMFs have been

well-established and can be found in many textbooks. This subsection lists the results of

mode field profiles of these fiber as they will be used in the simulation to analyze the fringe

visibility of MMF-EFPI sensors.

SI-MMF

The structure of the SI-MMF is shown in Figure. 4.4. Since Δ is small, where Δ = (n1 −
n2)/n1 is the normalized core-cladding index difference of the fiber, the linearly polarized

(LP) mode approximation should be sufficient to describe the modes guided by the fiber [33].

With these assumptions, the characteristic equation in the fiber that can be solved to obtain

the effective index, neff , of all possible modes with azimuthal number α is given by [33]

Jα(u)/[uJα−1(u)] + Kα(w)/[wKα−1(w)] = 0, (4.30)

where J is a Bessel function of the first kind, K is a modified Bessel function of the second

kind, u and w are defined by u = (2πa/λ)(n2
1 − n2

eff )1/2 and w = (2πa/λ)(n2
eff − n2

2)
1/2 at

wavelength λ, and the rest of the parameters are defined in Figure 4.4. Once Eq. (4.30) is

solved, the field profile of an eigenmode in the fiber is readily obtained in terms of radial
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and azimuthal components as [33]:

φk = A

⎧⎪⎨
⎪⎩

[Jα(ur/a)/Jα(u)] sin(αϕ + ϕ0), r ≤ a

[Kα(ur/a)/Kα(u)] sin(αϕ + ϕ0), r > a

(4.31)

The number of guided modes that a fiber can support is determined by the normalized

frequency V of the fiber, which is defined by V = (2πa/λ)(n2
1 − n2

2)
1/2. Provided α > 0, the

maximum value of α can be found by solving the inequalities:⎧⎪⎨
⎪⎩

Jα−1(V ) < 0

Jα(V ) ≥ 0

(4.32)

GI-MMF

The derivation of the mode profiles in a GI-MMF is much more complicated comparing to

SI-MMF. Examples of approaches that have been investigated include the WKB approxima-

tion [44], the variational method [45][46][47], the finite element method [48], and the vector

wave analysis [49]. Analytical solutions of the Maxwell Equations in GI-MMFs are only

possible for a few special refractive profiles. Here without going into any detail, the result

of the mode field profile for a parabolic-index MMF with infinite and homogeneous cladding

is borrowed from a paper published by Garside [50] for later use in the analysis of fringe

visibility of GI-MMF-EFPI sensors.

The refractive index profile of the GI-MMF considered here is given by

n(r) =

⎧⎪⎨
⎪⎩

n1 [1 − δ(r/a)2]
1/2

0 ≤ r ≤ a

n2 r > a,

(4.33)

where δ << 1 is a constant and n2 = n1(1− δ)1/2. With the weakly-guiding assumption, the

LP approximation is applicable and the mode profile of an eigenmode in the fiber is given

by

φk = A

⎧⎪⎨
⎪⎩

Φα(ξ)/Φα(σ) sin(αϕ + ϕ0), r ≤ a

Kα(ωr/a)Kl(ω) sin(αϕ + ϕ0), r > a.

(4.34)
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In Eq. (4.34), function Φα(ξ) is defined by

Φα(ξ) = ξα/2 exp(−Φ/2)M(A, B, ξ), (4.35)

where

ξ = (r/ω0)
2, ω2

0 = a/n1k0δ
1/2, (4.36)

and M(A, B, ξ) is the Kummer’s function (also called Hypergeometric function) defined as

M(A, B, ξ) =
∞∑
l=0

(A)lξ
l

(B)ll!
, |ξ| < ∞, B �= 0,−1,−2, · · · , (4.37)

with

A = (1 + α)/2 − b/4,

B = 1 + α,

b = k0rtn1χ
1/2,

χ = δ(rt/a)2 = 1 − β2/n1k
2
0. (4.38)

Here β is the longitudinal propagation constant and k0 = 2π/λ0 is the magnitude of the

wave vector in free space. In Eq. (4.34), A is the field amplitude at r = a, Kα is the modified

Hankel’s function, and σ and ω are given by

σ = ξ|r=a = k0an1δ
1/2

ω = a(β2 − n2
2k

2
0)

1/2. (4.39)

The characteristic equation used for solving the propagaton constant β is given by

(u2/b)Nα(u) + 2α = −(n1/n2)ωKα−1(ω)/Kα(ω), (4.40)

where

u = (bσ)1/2 = a(n2
1j

2
0 − β2)1/2 (4.41)

and

Nα(u) =
2A

B

M(A + 1, B + 1, u2/b)

M(A, B, u2/b)
. (4.42)

Note that Eq. (4.40) is the characteristic equation in the original paper(Ref. [50]) with the

assumption that n1 ≈ n2.
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4.2.3 Mode coupling coefficient

Now consider the calculation of the mode coupling coefficient ηk. Assuming φk
′ is the eigen-

mode φk of fiber F , transmitted a distance of 2d to plane R1
′ , the coupling coefficient is

obtained by performing the overlap integral of φk
′ and φk over the surface R1, which leads

to [30]

ηk =

∫ ∫
R1

′
φk

′φk
∗dxdy. (4.43)

The field profile of φk
′ is given by [32]:

φk
′ (x, y) = Fxy

−1 {Fxy [φk(x, y)]H(kx, ky; z)|z=2d} (4.44)

where Fxy and Fxy
−1 denote the two-dimensional spatial Fourier transform and its inverse

Fourier transform, respectively, with transform variables, kx and ky, known as spatial fre-

quencies. H(kx, ky; z) is called the spatial transfer function of propagation of light through

a distance z in free space and is defined by [32]

H(kx, ky; z) = exp{−jkz[1 − (k2
x + k2

y)/k
2]1/2} exp(jkz) (4.45)

An extra term of exp(jkz) is included in Eq. (4.45) to cancel the phase shift exp(jkz) which

is induced solely by the free-space transmission of distance z. This phase shift has been

considered separately and is not included in the calculation of mode φk
′ (x, y) in Eq. (4.44).

If it is further assumed that

k2
x + k2

y << k2, (4.46)

which means that the x and y components o fthe propagation vector of a wave are relatively

small, Eq. (4.45) is simplified to

H(kx, ky; z) = exp[j(k2
x + k2

y)z/2k]. (4.47)

Assumption of Eq. (4.46) is satisfied by most weakly-guiding MMFs. Therefore, Eq. (4.47)

is used throughout the dissertation in the calculation of mode profiles with Eq. (4.43).

Note that the mode profile of each mode is broadened by the free-space propagation.

In addition, the phase of the mode profile is also changed and the change is dependent on
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Figure 4.5: Illustration of a MMF-EFPI sensor with a wedge between the two re-

flection surfaces R1 and R2. Fiber F is the mirror image of fiber F ′ with respect to

surface plane R2.

the spacial parameters x and y, so that the phase-plane of φk
′ is deformed from φk by the

free-space propagation. This free-space propagation-induced phase shift and phase plane

deformation will introduce a non-zero phase in each of the mode coupling coefficients. As

shown later, both the amplitude and phase of the mode coupling coefficients are of great

importance in the performance of a MMF-EFPI sensor.

Here I have considered the calculation of mode coupling coefficients for a sensor head in

which the two reflection surfaces are perfectly parallel with each other. Same as SMF-EFPI

sensors, in practice the two reflection surfaces always show some degree of unparallelism

due to the limited fabrication accuracy. The wedge angles between the two reflectors can

significantly influence the mode coupling coefficient. Similar to the analysis in Section 2.3.3,

it is assumed that reflection surface plane R1 is perpendicular to the fiber axis z, while

reflection surface R2 is tilted from its original position, forming a wedge angle of δθ with

respect to R1, as shown in Figure 4.2.3. The effect of the angular and lateral misalignment

between the lead-in/out fiber F and its mirror image fiber F ′ caused by the wedge must be

considered when we use Eq. (4.43) to calculate the mode coupling coefficient ηk. The effect

of the wedge is to produce a linear phase change across the beam and a spatial displacement
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Figure 4.6: Mode field profile of LP1,1 mode of a SI-MMF. ϕ0 = π/2, (a); ϕ0 = π/4,

(b).

between mode φk
′ and φk at the coupling plane R1 . For mode φk

′ that is misaligned by a

wedge angle δθ, the field can be described by

φk
′
,δθ(x, y) = φk

′(x − 2d tan θ, y) exp[jk0x tan(2δθ)]. (4.48)

Thus mode coupling coefficient ηk is obtained by substituting Eq. (4.48) into Eq. (4.43).

Note that from Eqs. (4.31) and (4.34), the field profiles of the LP modes supported by a

weakly-guiding MMF fiber with α �= 0 are not circularly symmetric as the mode field profiles

are dependent of the initial azimuthal angle ϕ0. This is illustrated in Figure 4.2.3(a) and

(b) which show the LP1,1 mode of a SI-MMF calculated by Eq. (4.31) for different initial

azimuthal angles of ϕ0 = π/2 and ϕ0 = π/4, respectively. The two lobes are in different

positions at the same x-y reference frame for the two cases. As a result, the mode field

has different distributions along a specific direction. Eq. (4.48) indicates that, for a given

wedge, for example, the one shown in Figure 4.2.3, its effect is to introduce a phase shift

and displacement only along x-direction. Therefore, the effect of the wedge angle is different

between the mode fields shown in Figure 4.2.3(a) and (b), even though they represent the

same mode. The mode-lobe position effect is further investigated in Section 4.7.
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4.2.4 Mode power distribution

So far, we have elaborated on the calculations of the mode profiles φk, thus the mode coupling

coefficient ηk can be obtained by combining Eq.(4.44) and Eq. (4.43). From Eq. (4.29), the

mode power distribution (MPD) parameters, |pk|2, are required before the spectral fringes

can be calculated. A uniform MPD is assumed in many reports [20][30]. However, if it

is assumed that the mode coupling through the propagation along the MMF is negligible,

which may be a reasonable assumption for a fiber length no longer than several hundred

meters [34], |pk|2 may be calculated by the initial conditions and is given by

|pk|2 = B

∣∣∣∣∣
∫ ∫

R′
i

φsφk
∗dxdy

∣∣∣∣∣
2

, (4.49)

where φs is the field profile transmitted to the MMF input plane Ri from the light source that

excites the multimode fiber, and B is a normalization coefficient determined by Eq. (4.24).

In our simulation, besides the assumption of the uniform MPD, we also study the case in

which the MMF is illuminated by a SMF output, as shown in Figure 4.7. In our simulation,

the SMF has a core refractive index of 1.445, a cladding refractive index of 1.440 and a core

diameter of 9 μm. There is only one mode, LP1,1 mode (φ0), propagating along the SMF and

the calculated mode field diameter, defined by the diameter of the mode profile at which the

light intensity drops to 1/e of its maximum value, is 10.04 μm. From Eq. (4.49), only those

modes with the same azimuthal number as φ0 (α = 0 in Eqs. (4.31) or (4.34)) can be excited

in the MMF. Thus, only a portion of guided modes are excited. It is worth noting that

the modes excited by a SMF output are all circularly symmetric. Therefore, the mode-lobe

position effect is not present in this case. The MPD coefficient of each mode, |pk|2, is given

by Eq. (4.49).
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Figure 4.7: Schematic of a multimode fiber illuminated by a single mode fiber

output.

4.3 Fringe visibility of SI-MMF-EFPI sensors

Due to its simplicity in the calculation of the mode field profiles, in this section, we take

the weakly-guided SI-MMF as an example to analyze the fringe visibility of MMF-EFPI

sensors. The effect on the visibility of MMF-EFPI sensors of key parameters including

fiber parameters, sensor head structures and imperfections, and MPD of the lead-in/out

MMFs, are studied. From Eq. (4.29), the fringe visibility of the sensor, which is defined by

Eq. (2.3.1), can be expressed as

Vb =
2

1 + ηR2

|ηeff |, (4.50)

In this section, first the effect on the fringe visibility of the gap length of a sensor is studied in

Subsection 4.3.1. Then the effect of a typical imperfection in a MMF-EFPI sensor, namely,

the wedge of the sensor head, is studied theoretically in Subsection 4.3.2. In the analysis,

the light wavelength is set to λ = 1.55 μm. Three different types of weakly-guided SI-MMFs

are chosen as the lead-in/out fiber in the MMF-EFPI, the parameters of which are shown in

Table 4.1. The fiber parameters of numerical aperture (NA) and V number are defined by

NA = (n2
1 − n2

2)
1/2, (4.51)

and

V = 2πa(n2
1 − n2

2)
1/2/λ, (4.52)

respectively. Fiber 1 has a much larger core diameter (2a) than Fiber 2. However their core

and cladding refractive indices, n1 and n2, are chosen to support the same total LP mode
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Table 4.1: Fiber Parameters Used in the Simulation

Fiber

Parameters 1 2 3

2a(μm) 100 50 50

n1 1.448 1.448 1.448

n2 1.440 1.416 1.440

NA 0.15 0.30 0.15

V number 30.80 30.68 15.40

N 127 127 33

number N in both fibers. Fiber 3 is chosen to have the same core diameter as Fiber 2 and

the same n1 and n2 as Fiber 1. Thus Fiber 3 has the same NA as Fiber 1, but a smaller V

number and supports much less modes than Fiber 1 and Fiber 2. In the calculation of mode

field profiles of these MMFs using Eq (4.31), different selections of ϕ0 only lead to a slightly

different result of visibility for the above three MMFs (this will be shown in Section 4.7).

Therefore, for simplicity, it is assumed ϕ0 = π/2 throughout the simulation.

4.3.1 Fringe visibility vs. gap-length

Here an ideal MMF-EFPI sensor, with reflection surfaces R1 and R2 perfectly parallel to

each other and both perpendicular to the fiber axis z, is assumed. First, we consider the

case in which all the propagation modes in the MMFs are equally excited, which leads to

|pk|2 = 1/N according to Eq. (4.24). The fringe visibility as a function of the gap length for

Fibers 1, 2 and 3 is shown in Figure 4.8(a). The fringe visibility for all the three fibers starts

from the same maximum (100%) at d = 0, and decreases as the gap length increases, with

sidelobes appearing at the tail of the curves. However, the visibility of Fiber 2, which has
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Figure 4.8: Fringe visibility versus gap length for fibers 1, 2 and 3. All modes in the

multimode fibers are equally excited, (a); The multimode fibers are illuminated by

a single mode fiber output, (b).

a larger NA than fiber 1 and Fiber 3, drops much more quickly down to the first minimum

as the gap-length increases to 16 μm. The visibility of Fiber 1 and Fiber 3, which have the

same NA, drops to its first minimum almost at the same gap length in spite of their difference

in core diameter and the mode numbers. This is in agreement with the conclusion obtained

by the geometric-optics theory that the gap length dmin, where minimum fringe visibility

occurs, is determined by the NA of the fiber; and a smaller NA leads to a larger dmin [20].

Next the effect on the fringe visibility of the MPD of the Lead-in/out MMF is considered.

Instead of a uniform MPD, we consider the case in which the MMF is illuminated by a SMF

output, as illustrated in Section 4.2.4. The light power of the MMF has a heavier distribution

on the lower order modes as only LP0,m modes in the MMF can be excited and the calculated

fringe visibility as a function of gap-length is shown in Figure 4.8(b). A comparison of

Figure 4.8(b) and (a) shows that, for a given gap length, the MMF-EFPI excited by a SMF

has a larger fringe visibility compared to a uniform mode excitation. For example, Fiber 2

illuminated by a SMF output still has a fringe visibility of 71.8% at the gap-length of 16 μm,

where it would drop to only 6.0% if all the modes were uniformly excited. Also note that the
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Figure 4.9: Fringe visibility versus wedge angle for fiber 1 at gap length d = 20, 30

and 40 μm. All modes in the multimode fibers are equally excited.

fringe visibility of Fiber 1 drops slower than that Fiber 3 in Figure 4.8(b), while they have

almost the same response to the gap-length when all the modes are uniformly excited. This

indicates that reducing the number of modes propagating along the fiber is more efficient for

larger core fibers to increase the fringe visibility.

4.3.2 Fringe visibility vs. wedge angle

Again it is assumed that all modes supported by the MMF are equally excited in the fiber.

The fringe visibility of Fiber 1 as a function of the wedge angle is plotted in Figure 4.9

for different gap-lengths of d = 20, 30 and 40 μm. Fringe visibility curve decreases as the

wedge angle is increased and it also exhibits sidelobe structures at the tail of the curve. It

is also shown that, even with different starting visibilities, the three curves corresponding

to various gap-lengths drop to the first minimum, which is around 4%, at the same wedge

angle of 0.54�. Thus the effect on the fringe visibility of the wedge angle does not depend on

the gap-length. The fringe visibility for the three fibers at selected gap-lengths is plotted in

Figure 4.10(a). The gap-lengths used for Fibers 1 and 3 are 30 μm, while 10 μm gap-length
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Figure 4.10: Fringe visibility versus wedge angle for fibers 1, 2 and 3. All modes in

the multimode fibers are equally excited, (a); The multimode fibers are illuminated

by a single mode fiber output, (b).

is used for Fiber 2 in order to clearly show the trend of fringe visibility changes. Apparently,

the fringe visibility curve of Fiber 1 drops more quickly than Fibers 2 and 3; while the fringe

visibility of Fiber 2 and Fiber 3 shows a similar response to the wedge angles. Thus it is

concluded that the sensitivity of fringe visibility to the wedge angle depends on the fiber core

diameter. A MMF-EFPI with bigger core diameter fibers is more vulnerable to imperfections

on the parallelism of the two cavity reflection surfaces.

Now we consider the case in which the MMF is illuminated by a SMF output. The

parameters of the SMF are all the same as those in subsection 4.3.1. The results for Fibers

1, 2 and 3 are shown in Figure 4.10(b) and compared to the result shown in Figure 4.10(a).

The comparison shows that even though the fringe visibility is significantly increased at each

wedge angle in the case of SMF output excitation, the sensitivity of the fringe visibility to

the wedge angle is not significantly effected by the reduction of the modal volume in the

sense that the drop rate of the percentage visibility with the increasing wedge angle is almost

the same for the two mode power distribution conditions. This is so because the sensitivity

is mainly dependent on the spacial spread of the light field. For SI-MMFs, the light field for
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all the modes spreads all over the fiber core regardless of their mode numbers. Therefore,

the fringe visibility sensitivity to the wedge angle is mainly determined by the core size of

the MMF.

4.4 Fringe visibility of GI-MMF-EFPI sensors

GI-MMFs are more common and less expensive than their step-index counterpart due to the

fact that the MMFs used in optical fiber communications are mostly graded-index owning to

their much smaller modal dispersion than SI-MMFs which are important for high-capacity

signal transmission. As shown in Section 4.2, the spectral fringes from the MMF-EFPI

sensors are independent of the modal dispersion of MMF. However, the fringe visibility of

sensors fabricated by GI-MMF is slightly different from those fabricated by SI-MMF with

the same core diameter and modal volume owing to the differences between the mode profiles

of a SI-MMF and a GI-MMF.

In the simulation, it is assumed that the GI-MMF has an unlimited cladding and its

refractive index profile can be described by Eq. (4.33), in which n1 = 1.476, n2 = 1.4624,

and a = 25 μm. Since n1 − n2 << 1, the weakly-guiding approximation applies and the

mode profile of each LP mode supported by the fiber can be calculated as illustrated in

Section 4.2.2. Compared to Fiber 3 in Table 4.1, the core diameter of the GI-MMF (25μm)

used in the simulation is the same and the number of the supported modes, which is 30, is

also close to Fiber 3. Therefore, the fringe visibility of EFPI sensors constructed by these

two MMFs are compared.

Figure 4.11 shows the intensity profiles of the first order mode (LP01) and a higher order

mode (LP34) from the GI-MMF and the SI-MMF. The mode profile of the SI-MMF generally

has a wider spread than the GI-MMF for modes with the same order numbers. This is more

evident for the LP01 modes, the profile of which can be approximated as a Gaussian function

for both fibers. The mode field diameter of the GI-MMF is much smaller than that of the
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Figure 4.11: The profiles of LP01 and LP34 modes from the GI-MMF considered

here and the SI-MMF of Fiber 3 in Table 4.1.

SI-MMF, as shown in Figure 4.11(a) and (b). In fact, the mode profile of the LP01 mode of

the GI-MMF is close to that of a standard SMF as shown in Figure 2.3(a), even though the

GI-MMF has a much larger core size than the SMF [51][52]. Note that due to the match

between these two mode profiles, it is expected that most of the light power is coupled into

the LP01 mode of the GI-MMF when it is illuminated by a SMF output. For higher order

modes, the differences between the mode profiles of the GI-MMF and the SI-MMF are not

as evident as for the low order modes.

The fringe visibility as a function of gap-length for the GI-MMF is shown in Fig-

ure 4.12(a) for three different mode power distributions. The black curve corresponds to

the case where all the modes supported by the fiber are equally excited. Comparing to the
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Figure 4.12: Fringe visibility versus gap-length,(a), and wedge angle (b) for the

GI-MMF at three different mode field distributions.

case of Fiber 3 as shown in Figure 4.8(a) (red curve), the fringe visibility of the GI-MMF-

EFPI sensor is slightly degraded in the sense that the first minimum of the visibility occurs

at gap-length d ≈ 45 μm, while the fringe visibility of the SI-MMF-EFPI sensor reaches its

first minimum at d ≈ 65 μm, which is much larger. Another difference is that the sidelobe

structure is less evident for the GI-MMF case than for the SI-MMF case. The blue curve in

Figure 4.12(a) is the case that the fiber is illuminated by a SMF output, the visibility sensi-

tivity to the gap-length for the GI-MMF is much smaller than for the SI-MMF. For example,

the visibility for the GI-MMF is still as large as 65% at gap-length d = 120 μm, while the

visibility for Fiber 3 decreases to 25% for the same gap-length as shown in Figure 4.8(b).

This is because, as mentioned earlier, most of the light power is coupled to LP01 mode of the

GI-MMF when it is illuminated by the SMF output, therefore, the number of the excited

modes is much less than the case of the SI-MMF. The dominance of LP01 mode excitation in

the GI-MMF when illumniated by the SMF output can be confirmed by the small difference

in the fringe visiblity curves between the cases of “SMF illumnation” and “LP01 mode only”

in Figure 4.12(a).

For the unparallelism imperfection of the sensor head, Figure 4.12(b) plots the visibility

as a function of wedge angles at gap-length d = 30 μm for the three abovementioned MPDs.
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In the case of all the modes supported by the MMFs are equally excited, the fringe visibility

for the GI-MMF is less sensitive to the wedge angle variations than for the SI-MMF of Fiber

3 as shown in Figure 4.10 (red curve). For example, the fringe visibility drops to 18% at

the wedge angle of 1� for the GI-MMF case, while the visibility is only 5% at the same

wedge angle for the SI-MMF case. However, the sensitivity to wedge angles is significantly

reduced in cases where the GI-MMF is illuminated by a SMF output and only LP01 mode

is exited. This is expected because, as shown in Section 4.9, the fringe visibility sensitivity

to the wedge angle is mostly related to the spacial spread of light field in the fiber and the

light field of LP01 mode in the GI-MMF is confined to a small area in the core, therefore the

sentivity is reduced. Actually, the visiblity sensitivity to the wedge angle for the GI-MMF

case when only LP01 mode is excited is similiar to the SMF case as shown in Figure 2.7.

In summary, the simulation results show that when the modes supported by the MMF

are all equally excited, the fringe visibility of a GI-MMF-EFPI sensor is close to a SI-MMF-

EFPI sensor the MMF of which has the same number of modes and core size. However, if

the GI-MMF is illuminated by a SMF output or only the LP01 mode is excited, the fringe

visibility is similar to that of a SMF-EFPI sensor.

4.5 SMF-EFPI and MMF-EFPI sensors Comparison

In this section, theoretical results of MMF-EFPI sensors are compared to SMF-EFPI sensors

in terms of fringe visibility variations related to gap-lengths changes and sensor imperfections.

The analysis presented in Section 4.3 has shown that the fringe visibility of a MMF-EFPI

sensor is much more sensitive to the gap-length and the unparallelism of the two reflectors

in the FP cavity compared to that of a SMF-EFPI sensor. For example, the fringe visibility

of a perfect MMF-EFPI sensor fabricated by a MMF with core size 100 μm and NA = 0.15

quickly reduces to 10% when the gap-length is as small as 60 μm at wavelength 1550 nm

if all the modes supported by the fiber are equally excited (see Figure (4.8)). The fringe
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visibility reduces even more quickly for a MMF with a smaller core-size. However, a perfect

SMF-EFPI sensor constructed by a standard SMF still has a visibility of 80% when the

gap-length increases to 100 μm at the same wavelength (see Figure (2.6)). The requirement

for the parellelism of the two reflectors in the FP cavity is also much more stringent for a

MMF-EFPI sensor than for a SMF-EFPI sensor. The fringe visibility of the 100 μm core

MMF-EFPI sensor reduces to its first minimumm (≈ 5%) when the second reflector is tilted

by an angle of only 0.55� with respect to the first reflector. However, a SMF-EFPI fiber with

a gap-length of 20 μm still maintains its visibility above 35% even when the wedge angle is as

large as 5�. This situation suggests that a MMF-EFPI sensor require a much more stringent

fabrication accuracy and have less freedom of gap-length selections in order to achieve a

similar visibility performance as that of a SMF-EFPI sensor. The fiber end-face processed

by a commercially available fiber cleaver, which usually has an average angle of about 1�

with respect to the plane vertical to the fiber axis, might not be adequate to function as a

reflector for a MMF-EFPI sensor with reasonable fringe visibility. The previous analysis has

assumed that the light wavelength is 1550 nm, while the popular CCD-based spectrometers

in today’s market are all designed for wavelengths below 1000 nm. When the wavelength

is reduced, the fiber supports more modes. For example, the V number of a fiber is almost

doubled when the wavelength is changed from 1550 to 850 nm and the number of modes

supported by the fiber will be quadrupled as it is proportional to the square of the V number.

This will lead to a much stronger sensivity to gap-length changes. Therefore, one key issue

in the wide spread use of MMF-EFPI sensors is to develop high-accuracy and low cost sensor

fabrication methods so that sensors with desired fringe visibility can be mass-produced.
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4.6 Mechanisms limiting the performance of MMF-

EFPI sensors

In order to understand the fundamental mechanism that limits the fringe visibility of a

MMF-EFPI sensor and its essential difference from a SMF-EFPI sensor under the modal

theory, Eqs. (4.22) and (2.16), which describe the fringe patterns output from a SMF-EFPI

and a MMF-EFPI sensor, respectively, are rewritten to (with a little modification)

ISMF = 1 + |η1| cos(4πd/λ + π − θ1); (4.53)

and

IMMF = 1 +
2

1 + ηR2

N∑
k=1

|pk|2|ηk| cos(4πd/λ + π − θk). (4.54)

Eq. (4.53) is for the SMF-EFPI sensor and Eq. (4.54) is for the MMF-EFPI sensor. Recall

that, in the above equations, d is the gap-length, λ is the wavelength, |pk|2 represents the

modal power distribution, ηR2 is the power coupling coefficient of the the lead-in fiber from

an identical fiber placed at a distance of 2d, and ηk is the complex coupling coefficient

between the mode k propagating along −z direction and the same mode propagating along

+z direction but reflected back by the second reflector of the F-P cavity. The coupling

occurs at the first reflector of the F-P cavity. Note that k = 1, 2, ..., N for MMF-EFPI

sensors, where N is the mode number in the MMF, and k = 1 for SMF-EFPI sensor, where

only one mode is present. In Eq. (4.54), |pk|2 is related to the MPD in the MMF; We have

assumed ηk = |ηk| exp(iθk). Therefore θk is defined as the coupling-induced phase-shift of

mode k. For convenience, we define |ηk| as the amplitude coupling coefficient of mode k.

A comparison of Eqs. (4.53) and (4.54) shows that, a significant difference between a

SMF-EFPI sensor and a MMF-EFPI sensor is that the visibility of a SMF-EFPI sensor is

only dependent on the amplitude coupling coefficient, while both the amplitude coupling

coefficient and the coupling-induced phase-shift play important roles in the visibility per-

formance of a MMF-EFPI sensor. The second term of Eq. (4.54) is a superposition of N
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Figure 4.13: Amplitude coupling coefficient of all modes in the fiber for perfect

MMF-EFPI sensors at different gap-lengths.

cosine waves with different phase θk and weighed by factors that are related to the amplitude

coupling coefficients and the MPD coefficients. Constructive and destructive interferences

between the cosine waves, which depend on the relationship between their phases of θk, might

occur. Obviously, the destructive interference causes a reduction in the fringe visibility of a

MMF-EFPI sensor.

In order to illustrate the different effects of the amplitude coupling coefficient and the

coupling-induced phase-shift on the fringe visibility of a MMF-EFPI sensor, Fiber 1 in Ta-

ble 4.1, which has a core radius of 50 μm, a NA of 0.15, and supports N = 127 LP modes

at wavelength 1550 nm, is chosen as an example. The mode order number k is counted in

such a way as k = 1 for LP0,1 mode, ..., k = 10 for LP0,10 mode, k = 11 for LP1,1 mode,

k = 12 for LP1,2 mode, ..., and k = 127 for LP26,1 mode. The case of a perfect sensor

(wedge angle = 0) is first considered. Figures 4.13 and 4.14 show the amplitude coupling

coefficient and the coupling-induced phase-shift of all the modes in the fiber for sensors with

different gap-lengths. A comparison between Figures 4.13(a), (b), (c) and (d) indicates that,
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Figure 4.14: Coupling-induced phase-shift of all modes in the fiber for perfect MMF-

EFPI sensors at different gap-lengths.

although the average amplitude coupling efficiency decreases as the gap-length increases,

generally speaking, the amplitude coupling coefficient is not sensitive to the gap-length vari-

ations. Most (≈ 80%) modes maintain their amplitude coupling coefficients above 80% for

gap-lengths used in the simulations. Figure 4.14 reveals that it is the dependence of the

coupling-induced phase-shift on the gap-length that is responsible for the quick reduction of

the fringe visibility as the gap-length increases. At small gap-lengths, the coupling-induced

phase-shifts of all the modes are distributed in a small portion of range [−π, +π]. Therefore

the interference among all the modes are generally constructive. As shown in Figure 4.14 (a),

(b), (c), and (d), when the sensor has a gap-length of 10 μm, the coupling-induced phase-

shift is roughly uniformly distributed in the range [0, 0.3π]; As the gap-length increases to

30 μm, the distribution range expands to [0, 0.8π]; the coupling-induced phase-shift is in the

range [−π, 0] for approximately one third of the modes when the gap-length increases to 50

μm, at which the destructive interference between some of the modes has occured; Finally,

more modes will show in the [−π, 0] range when the gap-length is 70 μm; The coupling-
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Figure 4.15: Amplitude coupling coefficient of all modes in the fiber for MMF-EFPI

sensors at different wedge angle. The gap-length is 30 μm.

induced phase-shift is roughly uniformly distributed in the range of [−π, +π]. Therefore the

constructive and destructive interference among all the modes in general cancel each other

and the fringe visibility of the sensor is minimum.

The visibility reduction owing to wedge angles is studied in a similar way. The am-

plitude coupling efficient and the coupling-induced phase-shift of all the modes for a sensor

with a gap-length of 30 μm at different wedge angles are plotted in Figures 4.15 and 4.16,

respectively. It is shown that the average amplitude coupling coefficient of all the modes

decreases quickly when the wedge angle increases from 0 to 0.4� (see Figure 4.15(a), (b),

(c)). However, the coupling-induced phase-shift is not sensitive to the wedge angle varia-

tions in this range. From Figure 4.16(a), (b), and (c), the distributions of coupling-induced

phase-shift are similar, and are roughly uniform in the range [0, π]. However, as the wedge

angle further increases, the decrease of the average amplitude coupling coefficient becomes

slower (see Figure 4.15(d)) and the coupling-induced phase-shift starts to be responsible for

the visibility reduction as its distribution range expands to [−π, 0] (see Figure 4.16(d)).
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Figure 4.16: Coupling-induced phase-shift of all modes in the fiber for MMF-EFPI

sensors at different wedge angle. The gap-length is 30 μm.

4.7 Mode-lobe position effect

As mentioned in Section 4.2.3, depending on the mode-lobe positions, a given wedge angle

might have different effect to a circularly non-symmetric mode of a MMF in the calculation

of the mode coupling coefficient. In this section, this effect is analyzed for two types of

MMFs. The first is the conventional MMFs that support a large number of modes and the

second is the MMFs that only support two lowest order modes.

4.7.1 Conventional MMFs

As an example, the Fiber 1 in Table 4.1 which supports 127 LP modes at wavelength 1550

nm is considered. It is assumed that the MMF-EFPI sensor has a wedge angle of 0.4� and a

gap-length of 50 μm. The mode field profiles are obtained from Eq. (4.31). Figure 4.17(a)

shows the amplitude mode coupling coefficient as a function of the initial azimuthal angle

ϕ0 for different circularly non-symmetric modes of LPα,m, (α = 1, 2, ..., and m = 1, 2, ...).
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Figure 4.17: Mode coupling coefficients of different modes as a function of initial

azimuthal angle ϕ0, (a); and visibility of the MMF-EFPI sensor when all modes

in the MMF is equally excited and the initial azimuthal angle ϕ0 of each mode is

randomly chosen from [0, 360�] at each trial, (b).

The amplitude mode coupling coefficient can also be viewed as the fringe visibility of the

MMF-EFPI sensor when only the corresponding mode is excited in the MMF. It is clear that

the mode-lobe position effect is most evident for the modes with α = 1 and rapidly wears

out as α number increases. For example, the peak-to-peak variations of the amplitude mode

coupling coefficients are 0.52 and 0.38 for LP1,1 and LP1,6 modes, respectively. While the

peak-to-peak variations decrease to 0.05 for LP2,4 mode and become invisible in the figure

for those modes with α ≥ 4.

In practice, the number of excited modes in a conventional MMF of a MMF-EFPI sensor

is usually large. In order to investigate the overall effect of the mode-lobe positions on the

fringe visibility of a MMF-EFPI sensor, it is assumed that the modes supported by the MMF

are all equally excited and the initial azimuthal angles ϕ0 of all the modes are uncorrelated

and each of them is uniformly distributed in the range of [0, 360�]. Figure 4.17(b) shows the

fringe visibility of a MMF-EFPI sensor with a gap-length of d = 30 μm for 60 simulation

trials at wedge angles of δθ = 0.2�, 0.3�, and 0.4�. Each simulation trial uses a different
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set of initial azimuthal angles ϕ0 for all the modes each of which is randomly selected from

[0, 360�]. It is clear that the variations of the fringe visibility increase as the wedge angle

becomes larger. However, the standard deviations of the variations are all small (< 0.5% for

all three cases). Therefore, it is concluded that the fringe visibility of such a MMF-EFPI

sensor is not sensitive to the mode-lobe positions. There are two reasons that are responsible

for the insentivity to mode-lobe positions of such a sensor. The first is that only the modes

with α = 1 are sensitive to mode-lobe positions and these modes only constitute a small

portion of the modes that are excited in the fiber. The second is that even for those modes

with α = 1, the mode-lobe effect on these modes partially cancels each other as the initial

azimuthal angles ϕ0 for all these modes are uncorrelated and uniformly distibuted in the

range of [0, 360�].

4.7.2 Two-mode MMFs

As the number of the modes supported in a MMF decreases, the mode-lobe position effect on

the fringe visibility of the MMF-EFPI sensor might become significant. Here the case that

the MMF only supports the two lowest order modes which are the LP01 and LP11 modes

is considered. The analysis is also practically important because in the 850 nm wavelength

window which is also the working wavelength range of the most popular CCD-based spec-

trometers, the conventional standard SMFs start to support the two abovementioned modes

as these fibers usually have cutoff wavelengths larger than 850 nm (around 1200 nm).

In the simulations, a conventional SMF (Corning SMF-28) which works at wavelength

λ = 850 nm is considered. The parameters of the fiber are a = 4.5 μm, n1 = 1.448, and

n2 = 1.444. The V -number of the fiber is 3.99, therefore it supports the two lowest order

modes (LP01 and LP11). It is assumed that the two modes are equally excited. Figure 4.18(a)

shows the fringe visibility of a sensor with gap-length d = 50 μm as a function of the initial

azimuthal angle ϕ0 of LP1,1 mode at wedge angles of δθ = 0.2�, 0.5�, and 1�. The mode-lobe

position effect on the fringe visibility is evident especially when the wedge angle is large. For
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Figure 4.18: Fringe visibility as a function of the initial azimuthal angle ϕ0 of LP1,1

mode, (a); and fringe visibility when the initial azimuthal angle ϕ0 of LP1,1 mode

is randomly chosen from [0, 360�] at each trial, (b).

example, the peak-to-peak variations of fringe visibility is almost 10% for the wedge angle

of 1�. To simulate such a fiber with randomly changed mode-lobe positions, Figure 4.18(b)

shows the fringe visibility of 60 simulation trial for each of the same three wedge angles, in

which initial azimuthal angle ϕ0 of LP1,1 mode is randomly chosen from [0, 360�] for each

trial.

Different from a conventional MMF, the LP1,1 mode, which is most sensitive to the

mode-lobe position effect, could carry significant power in a two-mode fiber. The mode-lobe

position is not stable in such a fiber. For example, it can be changed simply by touching the

fiber. As many EFPI sensor systems use the standard SMF and the light sources of 850 nm,

special care must be taken to suppress the LP1,1 mode to achieve stable spectral fringes in

practice.

The above analysis has assumed that a specific circularly non-symmetric mode whose

profile is described by Eq (4.31) has a fixed azimuthal phase of ϕ0. This might be the

case if the MMF is excited by a light source with a spatial coherence length much larger

than the size of the fiber core. However, if a spatially incoherent or semi-coherent light
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source whose spatial coherence length is much smaller than the size of the fiber core, such

as a light-emitting diode (LED) or a thermal light, the same LP mode with different initial

azimuthal phases can be independently excited at the same time. In such a case the visibility

fluctuations caused by the mode-lobe effect can be significantly reduced as lobes average and

the power of the mode is distributed more uniformly over the fiber cross-section.

4.8 Mode-mixing effect

As described in Section 4.2.1, in a MMF-EFPI sensor, a particular mode reflected by surface

R1 can only couple its power to the same mode that transmits along the −z direction in the

lead-in/out fiber. However, the same mode reflected by the surface R2 can couple its power to

the modes with different mode numbers owing to the separation between the two reflection

surfaces. On the other side, a particular mode transmitting along −z have contributions

from different modes that are reflected by surface R2. There mode-mixing occurs. The

analysis in Section 4.2.1 has assumed that the contributions to specific mode from modes

with different mode numbers are negligible because their interferences with the reflection

from the surface R1 tend to cancel out owing to the random phase relationship between

different modes. Apparently, it has been assumed that the mode number is sufficiently large

so that the perturbations to the fringe visibility owing to the mode-mixing effect is negligible.

In many cases, this mode-mixing effect cannot be ignored and it is analyzed in this section,

The equation that describes the spectral fringes of a MMF-EFPI sensor with the con-

sideration of the mode-mixing effect is Eq. (4.22), which is rewritten here:

I =

N∑
k=1

(|pk|2 + |ηk|2|pk|2 + |ck|2) + 2

N∑
k=1

|ηk||pk||ck| cos(θk
′ − θk − ϕk)

+2

N∑
k=1

|pk||ck| cos(φ0 − θk
′ + ϕk) + 2

N∑
k=1

|ηk||pk|2 cos(φ0 − θk). (4.55)

The definitions of parameters ηk, pl, φ0, and ck can be found in Eqs. (4.16)−(4.19). As an

example, a MMF-EFPI sensor that is constructed by Fiber 3 in Table 4.1 is considered. It is
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further assumed that all modes supported by the MMF are excited. As shown in Table 4.1,

the MMF supports 33 LP modes. However, it must be noted that LP modes are not really

true modes; rather they are “pseudo” modes constructed by “degenerate” HE and EH modes.

The relationships of the LPα,m modes with the conventional modes are [33]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

LP0,m : HE1,m

LP1,m : TE0,m, TM0,m, HE2,m

LPα,m : HEα+1,m, EHl−1,m.

(4.56)

Moreover, each mode with α �= 0 has the degeneracy of order two due to the freedom to choose

two orthogonal initial phases of ϕ0 in Eq (4.31) (for example, ϕ0 = 0 and ϕ0 = π/2 represent

two independent modes). Considering that the Fiber 3 support 5 LP0,m (m = 1, 2, 3, 4, 5)

modes, 4 LP1,m (m = 1, 2, 3, 4), and 24 other LP modes, the number of the conventional

modes it supports is 5×1+4×6+24×4 = 125. As the mode-mixing effect is very sensitive

to the number of modes that is excited in the MMF, in the case that the modes in the

MMF is fully excited, it should be more meaningful to use the number of the conventional

modes. In order to illustrate the mode-mixing effect, it is assumed in the simulation that the

phases of all the modes are independent on each other and the phase, φk
′ − ϕk, is uniformly

distributed in the phase range of [−π, π]. To simulate the 125 conventional modes in the

MMF, Eq. (4.55) is modified to

I =
N∑

k=1

(|pk|2 + |ηk|2|pk|2 + |ck|2) + 2
N∑

k=1

|ηk||pk||ck| cos(θk
′ − θk − ϕk)

+2

N∑
k=1

q(k)∑
n=1

1

q(k)
|pk||ck| cos(φ0 − θk,n

′ + ϕk,n)

+2

N∑
k=1

|ηk||pk|2 cos(φ0 − θk). (4.57)

where

q(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, LP0,m (k = 1, 2, · · · , 5)

6, LP1,m (k = 6, 7, · · · , 9)

4, LP1,m (k = 10, 11, · · · , 33)

; (4.58)
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Figure 4.19: Fringe visibility fluctuations caused by mode-mixing effect in a MMF-

EFPI sensor.

The phases terms, φk
′ −ϕk and φk,n

′ −ϕk,n, are randomly picked from range [−π, π] for each

k and for each trial of simulation; And |pk| = 1/N is used because of the assumption that

all modes are equally excited.

Figure 4.19(a) shows the fringe visibility fluctuations of 60 simulation trials owing to

the mode-mixing effect for a MMF-EFPI sensor constructed by Fiber 3 for gap-lengths of

20, 40, and 60 μm. It is assumed that the two reflection surfaces of the FP cavity in the

sensor head is parallel to each other. It is evident that as the gap-length increases, the fringe

visibility fluctuations become larger. This is so because more power of a mode transmitting

along −z direction in the MMF is from modes with different mode numbers reflected by

surface R2. Therefore, the mode-mixing effect is more significant. The calculated standard

deviations are 1.3%, 2.4%, and 3.6% for gap-lengths of 20, 40, and 60 μm, respectively.

Figure 4.19(b) is the result for the case that the FP reflection surfaces of the MMF-EFPI

sensor have wedge angles. The gap-length of the sensor remains 40 μm for all wedge angles.

The fringe fluctuations become larger as mode-mixing becomes more significant when the

wedge angle increases. The calculated standard deviations are 2.8%, 4.2%, and 5.5% for

wedge-angles of 0�, 0.2�, and 0.4�, respectively. The standard deviations for the gap-length

of 40 μm and the zero wedge angle calculated in Figure 4.19(a) and (b) are slightly different
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Figure 4.20: A general configuration of MMF-EFPI sensors: the FP cavity is illu-

minated by a MMF.

(2.4% vs. 2.8%). This is because different sets of randon numbers are used in these two

cases.

4.9 FP cavity illuminated by a MMF

The mathematical model used in previous analysis has assumed that one of the two surfaces

of the sensing FP cavity is the end-face of the MMF which is perpendicular to the fiber axis.

This assumption greatly simplifies the analysis as modes with different mode numbers have no

coupling at the reflection of this end-face. However, many MMF-EFPI sensors do not use the

fiber end-face to form the FP cavity. The MMF is used only as a lead-in/out fiber to deliver

the light to and collect the reflected light from a separate FP cavity which is placed close or

at a distance to the MMF end. A more general MMF-EFPI sensor configuration is shown in

Figure 4.20, in which each mode in the MMF propagates in a free-space of optical distance

d0 before it reaches the sensing FP cavity with optical thickness d. Examples of such a

configuration include thin polymer films as FP sensing interferometers illuminated by MMFs

for the detection of acoustic and thermal signals [53][54][55][56] and sapphire diaphragms

illuminated by sapphire fibers for extremely high temperature measurement [8]. The previous

configuration of using the end-face of the MMF as an reflection surface can be considered
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as a special case of d0 = 0 in the configuration shown in Figure 4.20. Therefore, theoretical

analysis of such sensor configurations is of great interest not only for the fabrication and

application of such sensors, but also for a more general modal theory of MMF-EFPI sensors.

4.9.1 Spectral fringe representation

Similar to the analysis in Section 4.2.1, it is assumed that the MMF supports N eigenmodes

(φi, i = 1, 2, · · · , N). Each mode that propagates along −z direction in the MMF arises

from the reflections of surfaces R1 and R2. For example, we consider the kth mode (φk)

propagating along −z direction in the fiber. Not only the kth mode, but also any other

mode that propagate along +z direction in the fiber could contribute to mode φk after they

are reflected back by surfaces R1 and R2 as both of these two surfaces have a distance to

the fiber end. Therefore, the kth mode propagating along −z direction in the MMF can be

expressed as

qkφk =

N∑
l=1

plξlkφk exp[−j(4πd0/λ)] +

N∑
l=1

plζlkφk exp[−j(4πd0 + d/λ) + π], (4.59)

in which pi is related to the mode power distribution; ξlk and ζlk are the coupling coefficients

to the kth mode propagating along −z direction of the lth mode propagating along +z

direction that is reflected by surfaces R1 and R2, respectively; 4πd0/λ and 4π(d0 + d)/λ are

phase shifts related to the free space transmission of distances d0 and d0 + d, respectively,

while the extra phase shift π arises from the reflection of light incident from an optically less

dense medium to an optically denser medium. Similar to the derivation of Eq. (4.21), the
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light intensity of the kth mode can be expressed as

Ik = 〈qkq
∗
k〉

= 〈
{

N∑
l=1

plξlk exp[−j(4πd0/λ)] +

N∑
l=1

plζlk exp{−j[(4π(d0 + d)/λ]} + π]

}

×
{

N∑
l=1

p∗l ξ
∗
lk exp[j(4πd0/λ)] +

N∑
l=1

p∗l ζ
∗
lk exp{j[4π(d0 + d)/λ + π]}

}
〉

=

(
N∑

l=1

plξlk

)(
N∑

l=1

p∗l ξ
∗
lk

)
+

(
N∑

l=1

plζlk

)(
N∑

l=1

p∗l ζ
∗
lk

)

+

(
N∑

l=1

plξlk

)(
N∑

l=1

p∗l ζ
∗
lk

)
exp[j(4πd/λ + π)] + c.c

=
N∑

l=1

N∑
m=1

plp
∗
mξlkξ

∗
mk +

N∑
l=1

N∑
m=1

plp
∗
mζlkζ

∗
mk

+

N∑
l=1

N∑
m=1

plp
∗
mξlkζ

∗
mk exp[j(4πd/λ + π)] + c.c.. (4.60)

Then the total light intensity of the reflected light in the MMF is

I =
N∑

k=1

Ik

=

N∑
k=1

N∑
l=1

N∑
m=1

plp
∗
mξlkξ

∗
mk +

N∑
k=1

N∑
l=1

N∑
m=1

plp
∗
mζlkζ

∗
mk

+
N∑

k=1

N∑
l=1

N∑
m=1

plp
∗
mξlkζ

∗
mk exp[j(4πd/λ + π)] + c.c. (4.61)

Using the fact that the phase of coefficients pl is uncorrelated and assumed to be uniformly

distributed in the range of [−π, π], and further assuming that the mode number is large

enough, similar to the analysis in Section 4.2.1, those terms with l �= m thus cancel each

other out and Eq. (4.61) is then reduced to

I =

N∑
k=1

N∑
l=1

|pl|2|ξlk|2 +

N∑
k=1

N∑
l=1

|pl|2|ζlk|2

+

N∑
k=1

N∑
l=1

|pl|2ξlkζ
∗
lk exp[j(4πd/λ + π)] + c.c. (4.62)
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By defining

ηR1 =
N∑

k=1

|pi|2
(

N∑
i=1

|ξik|2
)

, (4.63)

ηR2 =

N∑
k=1

|pi|2
(

N∑
i=1

|ζik|2
)

, (4.64)

and

ηi =

N∑
i=1

ξ∗ikζik = |ηi| exp(jθi), (4.65)

Eq. (4.62) is simplified to

I = ηR1 + ηR2 +
N∑

i=1

|pi|2η∗
i exp[j(4πd/λ + π)] + c.c.

= ηR1 + ηR2 + 2
N∑

i=1

|pi|2|ηi| cos(4πd/λ + π − θi). (4.66)

Eq. (4.66) can be further simplified by defining

ηeff = |ηeff | exp(jθeff), (4.67)

which reduces Eq. (4.66) to

I ∝ 1 +
2

ηR1 + ηR2

|ηeff | cos(4πd/λ + π − θeff ). (4.68)

Note that ηR1 and ηR2 are actually the light coupling losses between the MMF and its mirror

image fiber with respect to surfaces R1 and R2, respectively. The result of Eq. (4.66) is

similar to that of Eq. (4.26) which is the case where the fiber end-face is used as one of the

reflection surfaces except that the calculation of ηi in Eq. (4.66) is much more complicated

and yet more general. Provided the mode profile of each mode supported by the MMF is

known, the coupling coefficients ξik and ζik can be calculated following the same procedure as

shown in Section 4.2.3 and then ηR1 , ηR2 , and ηi can be obtained through Eqs. (4.63−4.65).

With the knowledge of the mode power distribution (|pi|2) of the MMF, the spectral fringes

are then obtained by either of Eqs. (4.66) and (4.68).



94

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Wedge angle (deg.)

V
is

ib
ili

ty
 (

10
0)

d0 = 60 m, d = 10 m

d0 = 56 m, d = 14 m

d0 = 50 m, d = 20 m

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Gap-Length d ( m)

V
is

ib
ili

ty
 (

10
0)

d0 = 0 m

d0 = 50 m

d0 = 70 m

(a) (b)

Figure 4.21: Visibility changes as a function of gap-length, (a); and visibility changes

as a function of the sensing cavity wedge angle, (b).

4.9.2 Visibility analysis

The visibility, Vb, of the spectral fringes from a MMF-EFPI sensor is readily obtained from

Eq. (4.68), which is given by

Vb =
2

ηR1 + ηR2

|ηeff |. (4.69)

As an example, the MMF used here is Fiber 2 in Table 4.1. We analyze the fringe

visibility with respect to d0 which is the distance between the lead-in/out MMF end-face

and the FP sensing interferometer. Figure 4.21(a) shows the visibility changes as a function

of gap-length d when the MMF is placed at different distances of d0 = 0, 50, and 70 μm to the

FP cavity. It is assumed that the two surfaces of the FP cavity are perfectly parallel to each

other. The d0 = 0 curve reduces to the case where the MMF end-face is used as one of the

reflection surfaces of the FP cavity. It is clear that by placing the MMF at a distance to the

FP cavity, the visibility is slightly improved and the sensitivity to the gap-length is reduced.

For example, the d0 = 0 curve reduces to its first minimum of less than 10% at gap-length

d ≈ 16 μm, while the visibilty still remains larger than 50% at the same gap-length if the

MMF is placed 70 μm away from the FP cavity.
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For the case that the FP cavity is not perfectly parallel, Figure 4.21(b) plots the visibility

change as a function of the wedge angle between the two FP reflection surfaces. Compared

to the result d0 = 0 for the same fiber which conforms to the result shown in Figure (4.10)

(blue curve), the visibility sensitivity to wedge angle is also slightly reduced.

Note that though the fringe visibility is improved by the distance between the FP

cavity and the MMF that illuminates the cavity, the total power output from the MMF

is also reduced due to the increased power coupling loss of the reflected light from the FP

cavity to the lead-in/out MMF. However, it might still be advantageous in some cases where

the light power is not a concern while the desirable visibility is difficult to achieve. A good

example of such a case is a sapphire diaphragm illuminated by a sapphire fiber for extremely

high temperature measurement, in which the thickness of the diaphragm is at least tens of

micrometer and optical thickness is almost double the thickness because of the high refractive

index of the sapphire.

4.10 Experimental validation of MMF-EFPI theory

To validate the theory and the analysis, the fringe visibility as a function of the wedge angle

was measured to compare with the theoretical results. The experimental setup is shown in

Figure 4.22(a).

To maximally excite the modes of the MMF, the light from a fiber optic light system

(Model: MKII, Nikon, Inc.) was directly coupled into one meter long SI-MMF with a core

diameter of 105 μm and a cladding diameter of 125 μm. A 3-dB SI-MMF coupler was used

to separate the input and output light from the EFPI. The core and cladding diameters of

the fiber used for the coupler were 100 μm and 140 μm respectively. Another one meter

long 105/125 μm SI-MMF was used to transmit the input light to and output light from

the interferometer. The detail of the interferometer is shown in Figure 4.22(b). To ensure

that the two reflection surfaces are flat, instead of using a cleaved fiber end as the reflection
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surface, a 50 μm thick optically flat fused silica substrate was attached to the fiber end. Thus

the side S1 of the substrate formed one reflection surface of the EFPI. The other reflection

surface was formed by the side S2 of a 170 μm thick optically flat fused silica substrate, which

is mounted onto a 5-dimensional positioner to allow the adjustment of the wedge angle δθ.

Index matching gel was applied to the fiber end and the sides of the diaphragms where

reflections are undesirable. An optical spectrum analyzer (OSA) (Model: AQ-6315A, Ando

Electric Co., Ltd) was used to measure the interference fringes from the EPFI and monitor

the gap length d. The resolution of the OSA was set to 2 nm during the measurement. The

wedge angle was changed from −0.3� to +0.5�, and the gap length was maintained 16 μm

during the measurement, which was achieved by maintaining the number of fringes present

in the 250 nm (1425-1575 nm) wavelength range of measurement during the experiment. The

position of the positioner corresponding to zero wedge angle was set to the position where

maximum fringe visibility occurs. Therefore the wedge angle could be accurately monitored

with the help of a fixed Helium-Neon laser and a mirror attached onto the 5-dimensional

positioner which reflects the red laser light onto a screen 1 meter away from the positioner.

The wedge angle was calculated simply by formula δθ = Lp/L0, where Lp is the distance

that the laser point on the screen moves form its position corresponding to the zero wedge

angle and L0 is the distance between the screen and the positioner.

The blue line in Figure 4.23(a) shows the light spectral fringes output from the lead-
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Figure 4.22: Experimental setup to measure the fringe visibility as a function of

wedge angle (a), and details of FP interferometer (b).
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Figure 4.23: Original spectrum output from lead-in fiber and its least square linear

fit (a); and a typical spectral fringe pattern obtained by the OSA (b).

in/out fiber and the red line is its LSE linear fitting, which was used to normalize the spectral

fringes obtained by the OSA. Figure 4.23(b) shows a typical fringe pattern that the OSA

measured before normalization. Figure 4.24 shows the normalized spectral fringes at wedge

angles of 0�, 0.12�, 0.29�and 0.44�.

The normalization is necessary in the calculation of the fringe visibility in the frequency

domain, which is given by Vb = (Iλ,max − Iλ,min)/(Iλ,max + Iλ,min), where Iλ,max and Iλ,max

are the maximum and minimum spectral intensities of the normalized spectral fringes. From

Figure 4.24, the reduction of the fringe visibility due to the wedge angle increase is evident,

and the fringe pattern is barely visible when the wedge angle is as small as 0.44�. Since the

fiber parameters are unknown, the mode profiles in the MMF and consequently the absolute

value of fringe visibility are difficult to predict. However, as shown in Section 4.9, when a SI-

MMF is used for the MMF-EFPI sensor, the drop rate of the fringe visibility as the wedge

angle increases is mainly determined by the core size of the MMF. Therefore it is more

meaningful to compare the experimental and theoretical results of the percentage change

instead of the absolute values of the fringe visibility as a function of the wedge angle. The

comparison is shown in Figure 4.25. The modal theory and the analysis of the MMF-EFPI

sensors have been validated by the good agreement between the experimental and theoretical
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Figure 4.24: Normalized spectrum from the interferometer at different tilt angles.

results.

4.11 Conclusion

A modal theory is developed for low-finesse MMF-EFPI sensors. Comparing with geometric

optics, the modal theory is more universal and accurate. Theoretically the modal theory

can accurately predict the output spectral fringes for a MMF-EFPI sensor fabricated by any

MMF provided the mode profiles and mode field distribution are known, and is literally free

of any limitations imposed by geometric-optics-based theory.

Based on the modal theory, the fringe visibility variations as functions of the gap-

length of the sensing FP interferometer and the wedge angles between the two reflection

surfaces of the FP cavity are analyzed for different types of MMFs and different MPDs
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on the percentage change of fringe visibility as a function of wedge angle.

of the MMFs. It is shown that, in general, the fringe visibility of MMF-EFPI sensors is

much more sensitive to the gap-length and wedge angle variations than SMF-EFPI sensors.

Therefore the fabrication process for the MMF-EFPI sensors could involve more complexity

to ensure the fabrication accuracy owing to the great sensitivity of fringe visibility on sensor

gap-length and imperfections.

We have revealed the mechanism that is responsible for the sensitivity to the gap-

length and sensor imperfections of MMF-EFPI sensors from the view of modal coupling.

The coupling-induced phase-shift variations owing to gap-length changes is responsible for

the gap-length sensitivities; On the other hand, the phase coupling coefficient variations

owing to wedge angles is responsible for the wedge angle sensitivity at small angles; while

at large angles, both the coupling-induced phase-shift and amplitude coupling coefficient

become responsible.

It is possible to reduce the visibility sensitivities to gap-lengths and wedge angles in

a MMF-EFPI sensor by selectively exciting those modes whose coupling-induced phase-

shift and amplitude coupling coefficient are less sensitive to the gap-length and wedge angle
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variations.

We also reveal that the mode-lobe positions of the circularly non-symmetric modes in a

MMF may have significant effect on the fringe visibility of a MMF-EFPI sensor with wedge

angles, especially for MMFs with significant amount of power carried by LP1,m, (m = 1, 2, ...)

modes.

Finally, we develop a more general mathematical description of the fringes from a FP

cavity illuminated by a MMF at a distance to the sensing FP cavity. The fringe visibility

of MMF-EFPI sensors with such a configuration is also analyzed. We have shown that by

placing the MMF at distance instead of closely to the FP cavity, the fringe visibility can be

improved. This technique could be useful in cases where FP thickness is difficult to reduce

for a desired fringe visibility.



Chapter 5

Signal processing for white-light

MMF-EFPI sensor systems

5.1 Motivation

As discussed in Chapter 4, the visibility performance of MMF-EFPI sensors is usually limited

by their gap-length and sensor imperfections. This limited fringe visibility makes their white-

light version more favorable in many applications because the signal demodulation for a

white-light EFPI sensor system is much less sensitive to the fringe visibility than for an

intensity-based EFPI sensor system in which the output SNR is proportional to the fringe

visibility. Surprisingly, very few work has been done for the signal processing of white-

light MMF-EFPI sensor systems. One might expect that the signal processing methods

used in SMF-EFPI sensor systems can be directly carried over to the MMF-EFPI sensor

systems. This is true for most of them such as the methods of Type 2 and Type 3 curve

fitting, Fourier Transform, two-point interrogation, and wavelength-tracking. However, Type

1 curve-fitting method presented in Chapter 3, which has been successfully applied in SMF-

EFPI sensors and proved to have large dynamic ranges and the best measurement resolution,

in principle is not valid for white-light MMF-EFPI sensor systems because the required

101
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accurate predication of the coupling-induced phase-shift of the spectral fringe pattern output

from a white-light MMF-EFPI sensor system is difficult, as the coupling-induced phase-shift

could vary greatly for different fiber types. Even for a given type of fiber, the variation of

mode power distribution (MFD) in the MMF that could be varied by changes of light launch

conditions and fiber operation conditions can cause significant variations in the coupling-

induced phase-shift. The method proposed by Qi [37] et al. is invalid either because the

assumption of an arbitrary constant phase shift is not valid in MMF-EFPI sensor systems and

the variation of the coupling-induced phase-shift caused by gap-length changes could be large

enough to cause errors in the calculation of the fringe number K. In fact, a signal processing

method for MMF-EFPI sensor systems that could simultaneously achieve a large dynamic

range and an ultra-high measurement resolution is, if not impossible, extremely difficult to

develop. Even for some of the methods that could be directly carried over to the MMF-EFPI

sensor systems from SMF-EFPI sensor systems, their performance may vary significantly in

practice owing to the MFD effect. In this Chapter, we take the fringe peak-tracking method

as an example and analyze its performance in MMF-EFPI sensor systems.

The rest of the chapter is constructed by the following three parts: In Section 5.2, the

MPD effect on the performance of the fringe peak-tracking method is theoretically analyzed.

In Section 5.3, experiments are carried out to validate the MPD effect. Finally comments

and conclusions are given in Section 5.5.

5.2 MPD effect in wavelength-tracking method

As we have known, the wavelength-tracking method uses the wavelength position of a par-

ticular fringe peak (or valley) to map the parameters being measured and is shown to have

an ultra-high measurement resolution in a white-light SMF-EFPI sensor system [36]. Even

though this method has a limited dynamic range and is not capable of absolute measure-

ment, it is still widely used in SMF-EFPI sensors due to its advantages of signal processing
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simplicity and ultra-high measurement resolution. However, in this section, we show that the

measurement resolution of this method might be significantly affected by MPD variations in

the MMF when it is applied to a white-light MMF-EFPI sensor system.

The modal theory developed in Chapter 4 tells that the spectral fringes from a MMF-

EFPI sensor can be described by a single cosine function of

I(d, λ) = 1 +
2

1 + ηR2

|ηeff | cos(4πd/λ + π − ϕeff). (5.1)

The wavelength positions of the fringe peaks are found by solving

4πd/λm + π − ϕeff = 2mπ, (5.2)

where λm is the wavelength position of the fringe peak and m is a positive integer number

denoting the order number. The solution of Eq. (5.2) is given by

λm = [(2m − 1)π + ϕeff ]/4πd. (5.3)

Suppose the wavelength-tracking method uses variations of the wavelength position of a

fringe peak with a particular number of m to map the measurand-induced gap-length

changes. Note that, from Eq. (4.28), besides the dependence on the coupling phase co-

efficients ηk, which are determined by the fiber parameters only, ηeff is also a function of

the MPD of the MMF which is difficult to measure in practice. MPD could vary owning to

many factors. The initial MPD in a MMF is determined by light launching conditions; The

MPD could evolve as light propagates along the fiber simply because the intrinsic fiber loss

is different for different modes; Light power coupling between different modes that changes

the MPD could occur owing to fiber core size variations, fiber bending, fiber deformation

and environmental perturbations [34][57]. Optical components that are necessary in a sensor

system such as the fiber couplers and the fiber connectors, could also significantly modify

the MPD as light propagates through them [58]. Any MPD variations during the mea-

surement could cause measurement errors in the wavelength-tracking method because these

variations could cause the changes of ϕeff in Eq. (5.3) which is erroneously translated into
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Figure 5.1: Mode power distribution of Fiber 1 in Table 4.1 illuminated by a SMF

output.

the measurand-induced gap-length changes. In order to analyze the MPD effect on the

wavelength-tracking method, the simulation uses a MMF-EFPI sensor that is constructed

by Fiber 1 in Table 4.1 which supports N = 127 modes at central wavelength λ0 = 1550.

Three different MPDs are considered: In the first one, only one lowest order mode (LP0,1)

in the MMF is excited; in this case |pk|2 is equal to 1 for k = 1, and is equal to 0 for other

k values. The second distribution corresponds to the case that the MMF is illuminated by

a standard SMF. As discussed in Section 4.3.1, only LP0,n modes (n = 1, 2, ..., 11), which

correspond to the lowest 11 modes (k = 1, 2, ..., 11) supported by the MMF, are excited and

the |pk|2 values for mode number k are shown in Figure 5.1. The third MPD is the case that

all modes supported by the MMF are equally excited; therefore |pk|2 = 1/N for all k values.

Figure 5.2 shows the phase-shift ϕeff for the three MPDs as a function of the gap-length

of the MMF-EFPI sensor. The phase-shift ϕeff increases as the gap-length d increases from

the same starting point (d = 0, ϕeff = 0). However, the increasing rate varies greatly for

different MPDs. The “LP0,1 mode excited only“ case gives the least phase-shift of 0.01π
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Figure 5.2: Phase-shift ηeff as a function of gap-lengths of a MMF-EFPI sensor

with different mode power distributions.

for a gap-length change from 0 to 60 μm; while for the same gap-length range, the “SMF-

illumination” case gives a phase-shift of 0.22π which corresponds to 0.11 fringe period; and

the “all modes equally-excited” case gives a phase-shift of 0.7π corresponding to 0.35 fringe

period.

The fringe pattern changes owing to different MPDs in the MMF of a MMF-EFPI

sensor with gap-length d = 30 μm are shown in Figure 5.3. As expected, the dependence

of fringe visibility on the MPD is evident with the single-mode excitation case having the

best fringe visibility. More importantly, the wavelength positions of both fringe peaks and

valleys vary significantly owing to the MPD differences. For example, the fringe peak located

at wavelength λ = 1519 nm for the case of only LP0,1 excited in the MMF would shift to

λ = 1522 nm for the case of SMF-illumination, and to λ = 1527 nm for the case of all modes

equally-excited. Any fringe peak position variations would be translated into the measurand-

induced gap-length variations in the fringe peak-tracking signal processing method; Therefore

the MPD variations might reduce measurement resolutions and/or cause measurement errors.

In the worst case of our analysis, the mode power distribution is changed from “SMF output
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Figure 5.3: Fringe pattern changes owning to different mode power distributions for

a MMF-EFPI sensor with gap-length d = 30 μm.

excitation” to “all modes equally excited”, and the fringe peak position is shifted by 8 nm

(1519-1527 nm). Considering that the spectral fringe pattern has a period of 40 nm and a

central wavelength of 1550 nm, this phase-shift would cause an error of 310 nm of the gap-

length measurement. Although this extreme conditions are not likely to occur in practice,

MPD variations caused by unexpected fiber bendings or environmental perturbations in a

practical white-light MMF-EFPI sensor system is of great concern in the performance of the

wavelength-tracking signal processing method.

5.3 Experimental verification of MPD effect

An experiment was carried out to verify the dependence of fringes patterns on the MPD in

MMF-EFPI sensors. The schematic of the experimental setup is shown in Figure 5.4(a). The

FP cavity was formed by two surfaces of a 50 μm thickness fused silica diaphragm as shown

in the inset of Figure 5.4(b). The inherent parallelism between the two surfaces ensured the

best achievable fringe visibility. The diaphragm was closely attached to the MMF end which
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Figure 5.4: Experimental setup to verify the MPD effect on fringe patterns of a

white-light MMF-EFPI sensor system,(a); and the detail of the FP cavity, (b).

was cleaved to an angle of around 2� to eliminate the interferences between the fiber end and

the diaphragm surfaces. Graded-index multimode pigtail fibers from the ports of the coupler

were used as lead-in/out MMF and fibers transmitting light to and from the FP cavity. The

pigtail fibers were approximately 1 meter long each and have core and cladding diameters

of 100 and 140 μm, respectively. A Halogen bulb was used as a large-area incoherent source

to directly launch the light into the fiber. Since the coherent area of the Halogen bulb is

much larger than the core size of the fiber, it is expected that all modes supported by the

fiber were equally excited [59]. To generate different MPDs in the fiber, a fiber clamp was

placed on the lead-in/out fiber to introduce lateral load on a 1 cm length of the fiber. It is

known that the lateral pressure in the fiber causes greater loss to higher order modes than to

lower order modes [60]. The overall effect of the lateral pressure is to force the MPD toward

equilibrium where most of the light power is carried by lower order modes. We also observed

that when pressure was applied, slight fiber bending was introduced which might cause MPD

variations as well through mode-coupling and mode-mixing. An optical spectrum analyzer

(OSA) was used to record the interferometric fringes from the FP cavity.

Figure 5.5 shows the spectrum of the light that illuminated the diaphragm which was

measured directly at the output of the lead-in/out fiber. The spectrum is not uniform with

the wavelength. A 10 order polynomial function is then used to fit the measured spectrum

as a function of wavelength. The fitted curve was then used to normalize the obtained

fringes. Figure 5.6 shows the fringe patterns recorded by the OSA for three fiber operation
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Figure 5.5: The spectrum of the light that illuminated the FP cavity (blue dot);

and its 10 order polynomial fit (black line).

conditions. The positions of the valleys of each fringe are found using the same method in

Section 3.4.4 and are marked by the vertical curves with the same color of the corresponding

fringe curve. The black fringe is the case that the fiber was undisturbed and therefore all

modes in the fiber were equally excited. When a small pressure was applied, it is expected

that the light power was distributed heavier on lower order modes so we observed the fringe

(blue curve) shifted around 0.7 nm toward the shorter wavelength from the undisturbed

case. As the pressure was increased and more percentage of light power was carried by lower

order modes, the total shift toward shorter wavelength of the fringe (red curve) was around

1.3 nm with respect to the undisturbed case. Considering the period of the fringes is 15

nm, a wavelength shift of 1.3 nm is equivalent to a phase shift of 0.17π. And this phase

shift would be erroneously translated into the gap-length changes of the FP cavity by signal

demodulations such as the wavelength-tracking method. For example, a change of 63 nm in

the FP cavity gap-length would yield the same phase-shift in this case.



109

1510 1515 1520 1525 1530 1535 1540 1545 1550
0

0.5

1

1.5

2

Wavelength (nm)

N
or

m
an

iz
ed

 In
te

ns
ity

Figure 5.6: Fringe patterns obtained by the OSA. The black, blue, and red fringes

correspond to fiber conditions of no perturbation, smaller and larger lateral pressure,

respectively. The wavelength positions of the fringes valleys are marked by the

vertical lines of corresponding colors.

5.4 Mode-mixing effect

It has been shown in Section 4.8 that the mode-mixing in a MMF-EFPI sensor that occurs as

the light reflected by Surface R2 is coupled back to the lead-in/out MMF can cause random

variations of the fringe visibility as the phase relationship between different modes is random.

There is no surprise that this mode-mixing effect can also cause random changes in spectral

fringe phases in a white-light MMF-EFPI sensor system.

Similar to the analysis in Section 4.8, it is assumed that Fiber 3 in Table 4.1 is the lead-

in/out MMF of the sensor and all modes (in the sense of conventional modes) are equally

excited in the MMF. The interference signal is thus given by Eq. (4.57). In order to calculate

the spectral fringe phase variations, it is convenient to reduce Eq. (4.57) to a single cosine

function of variable ϕ0 which is defined by ϕ0 = 4πd/λ. Let

γ = |γ| exp(jθγ)

=

N∑
k=1

q(k)∑
n=1

1

q(k)
|pk||ck| exp[j(θk,n

′ − ϕk,n)] +

N∑
k=1

ηk|pk|2 (5.4)
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Figure 5.7: Phase variations owing to the mode-mixing effect of a MMF-EFPI sensor.

and after some straightforward algebra, Eq. (4.57) is reduced to

I =

N∑
k=1

(|pk|2 + |ηk|2|pk|2 + |ck|2) + 2

N∑
k=1

|ηk||pk||ck| cos(θk
′ − θk − ϕk)

+|γ| cos(ϕ0 − θγ). (5.5)

Therefore, the coupling-induced phase-shift can be obtained through Eq. (5.4) when the

mode-mixing effect is considered. In the simulation, the random variables of θk
′ − ϕk are

chosen the same way as in Section 4.8.

Figure 5.7(a) shows the phase variations (φγ) owing to the mode-mixing effect for differ-

ent gap-lengths of a MMF-EFPI sensor constructed by Fiber 3. It is assumed that the sensor

head has no wedge angle. When the gap-length increases, the mode-mixing effect becomes

more significant and the phase variations become larger. For example, the standard devia-

tions of the phase variations are 0.004π, 0.02π, and 0.07π for gap-lengths d = 20, 40, and

60 μm, respectively. Figure 5.7(b) is the comparison of the mode-mixing effect for different

wedge angles of 0�, 0.2�, and 0.4�of the sensor and the corresponding standard deviation of

the phase variations are 0.014π, 0.022π, and 0.044π, respectively. As expected, the standard

deviations is larger when the mode-mixing is more significant at larger wedge-angles.

Similar to the MPD effect, the phase variations of the spectral fringes could cause
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measurement error in a signal processing method that uses the phase information of the

spectral fringes, such as the wavelength-tracking method.

It should be noted that, as shown in Section 4.7, when the MMF is excited by a semi-

coherent or incoherent light source whose spatial coherence length is much smaller than the

core size of the MMF, the effective mode number could be much larger than the number of

the modes that the MMF can support as each mode with different azimuthal angles can be

excited independently. Therefore, we expect that the mode-mixing effect can be reduced by

using a thermal light or a LED that have small spatial coherence lengths.

5.5 Conclusions

It is revealed that the phase of the fringe patterns from a white-light MMF-EFPI sensor

system could be significantly changed by the variations of the MPD of light in the MMF.

In practical applications of the MMF-EFPI sensors, the change of the MPD in the MMF,

and consequently the phase variations of the fringe patterns, could occur due to various

uncontrollable factors such as the ambient perturbations on the MMFs. An experiment was

performed to verify the MPD effect predicted by the modal theory. In the experiment, by

purposely applying lateral pressure on the MMF, a phase variation of 0.17π was observed

in a FP cavity with essentially unchanged cavity length. Because of this uncertainty in the

fringe phase, the Type 1 curve-fitting and wavelength-tracking methods, which show the best

measurement resolutions among all the methods being discussed for a white-light SMF-EFPI

sensors, can not be applied to MMF-EFPI sensors because the required assumption that the

fringe phase is solely dependent on their gap-lengths is invalid for a MMF-EFPI sensor in

which the MPD of the MMF is not stable and unpredictable.

One might speculate that by placing a mode scrambler in the MMF right before the

sensor head would help to stabilize the the spectral fringe patterns as the MPD in the MMF is

stabilized by the mode scrambler before the light is launched into the sensor head. However,
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the MPD effect is not alleviated because the spectral fringes is sensitive to MPD variations

that occur anywhere along the fiber, not only to the local MPD at the sensor head.

Another effect that is unique to the MMF-EFPI sensors is the mode-mixing effect, which

arises from the fact that different modes with random phase relationship could couple their

power into the same modes in the lead-in/out MMF when they are reflected by the reflection

surface that is placed at a distance to the end of the lead-in/out MMF. Simulations have

shown that mode-mixing effect could cause random phase variations of the spectral fringes,

and consequently, cause measurement error in wavelength-tracking method. The mode-

mixing effect is closely related to the effective number of modes excited in the MMF and can

be reduced by using a light source with small spatial coherence length.

As shown in Eq. (5.1), the period of the spectral fringes from a MMF-EFPI sensor is

related to the gap-length the same way as in a SMF-EFPI sensor. Therefore, other methods

including the Two-point interrogation, Fourier transform, and Type 2 and 3 curve-fitting

methods, which do not require the knowledge of the fringe phase, are still applicable in

MMF-EFPI sensor systems. We expect these methods would show similar performances

in MMF-EFPI sensors as they do in SMF-EFPI sensors provided the SNR of the fringes is

similar in both types of sensors. As shown in Section 3.5, the resolution of these methods are

at least one order of magnitude worse than the Type 1 curve-fitting method and wavelength-

Tracking method.



Chapter 6

Summary and future work

A detailed and systematic analysis on EFPI fiber optic sensors is performed in this disserta-

tion to provide a better understanding of the fundamental principles of the sensor operations.

More importantly, the analysis is useful in the design, fabrication, optimization, and appli-

cation of EFPI fiber optic sensor systems. This chapter summarizes the main conclusions

obtained from the research. Future research tasks that could lead to a more complete work

are outlined.

6.1 Summary

In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated by a

Gaussian beam and the obtained spectral transfer function of the sensors includes an extra

phase shift due to the light coupling into the fiber end-face. This extra phase shift has not

been addressed by previous researchers and is of great importance for high accuracy and high

resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation

due to gap-length increase and unparallelism of the two reflection surfaces in a sensor, which

is one of the most common sensor imperfections, is studied. The results indicate that the

113
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fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and

sensor imperfections.

Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors,

a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented

for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods

including the methods of wavelength-tracking, Type 2-3 curve fitting, Fourier transform,

and two-point interrogation, are reviewed and systematically analyzed. An experiment was

carried out to compare the performance of these signal processing methods. In the exper-

iment, the spectral fringes of a SMF-EFPI sensor at different gap-lengths were measured

and recorded by a spectrometer with high accuracy and high measurement resolution. The

abovementioned signal processing methods were then implemented to the measured spectral

fringes to obtain the gap-length. The results show that the methods of Type 1 curve-fitting

and wavelength-tracking exhibit the highest measurement resolution of 0.2 nm, which is at

least one order of magnitude higher than any of the other methods. However, the wavelength-

tracking method is not capable of absolute measurement. Therefore, it is concluded that

the novel Type 1 curve-fitting method has the most superior performance in terms of mea-

surement resolution and capability of absolute measurement. Disadvantages of the Type 1

curve-fitting as well as the other two curve-fitting methods are their low-speed and stringent

requirement on the SNR of the fringes.

Previous mathematical models for MMF-EFPI sensors are all based on geometric-optics;

therefore their applications have many limitations. In this dissertation, a modal theory is

developed that can be used for any MMFs in any situations and is more accurate. The

mathematical description of the spectral fringes of MMF-EFPI sensors is obtained by the

modal theory of the MMF. Effect on the fringe visibility of system parameters including the

sensor head structure, the fiber parameters, and the mode power distribution (MPD) in the

MMF of the MMF-EFPI sensors is analyzed. It is shown that the sensitivity of the fringe

visibility to the gap-length is mainly determined by the number of modes that are present in

the MMF, while the visibility sensitivity to the wedge angle is mainly related to the spatial
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spread of the light field in the MMF. It is also found that comparing to SMF-EFPI sensors,

the MMF-EFPI sensors are generally much more sensitive to the gap-length changes and the

unparallelism between the two reflection surfaces of the FP cavity, which is responsible for the

fabrication difficulty we have experienced for many years. It is shown that, in some situations

at which fringe visibility is important and difficult to achieve, a simple method of launching

the light into the MMF-EFPI sensor system from the output of a SMF could be used to

improve the fringe visibility and to ease the fabrication difficulties of MMF-EFPI sensors.

Experiments was carried out to validate the theory. Fundamental mechanism that causes the

fringe visibility degradation in MMF-EFPI sensors are revealed under the presented modal

theory. The modal theory also predicates that the mode-lobe positions could have significant

effect on the fringe visibility of a two-mode fiber EFPI sensors in which the two reflection

surfaces of the FP cavity are not parallel with each other. Moreover, the modal theory for a

more general MMF-EFPI sensor configuration, in which a FP cavity is illuminated by a MMF

that is placed at a distance to the cavity, is presented. The fringe visibility performance of

sensors with such a configuration is analyzed.

Signal processing methods that are well-understood in white-light SMF-EFPI sensor

systems may exhibit new aspects when they are applied to white-light MMF-EFPI sensor

systems. In this dissertation, it is revealed that the variations of the MPDs in the MMF

could cause phase variations of the spectral fringes from a MMF-EFPI sensor and introduce

measurement errors for a signal processing method in which the phase information is used.

This MPD effect on the wavelength-tracking method in white-light MMF-EFPI sensors is

theoretically analyzed. The fringe phases changes caused by MPD variations as predicted

by the proposed modal theory were experimentally confirmed.
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6.2 Contributions and publications

The major contributions of this dissertation include

� For the first time, the coupling-induced phase-shift is included in the mathematical

description of the spectral fringes from SMF-EFPI sensors.

� A novel spectral-domain curve-fitting method is presented and experimentally verified

for white-light SMF-EFPI sensors that achieves high accuracy, high resolution, large

dynamic range, and absolute measurement at the same time. The measurement resolu-

tion is at least one order of magnitude higher than the currently absolute measurement

signal processing methods.

� For the first time, a modal theory is developed for MMF-EFPI sensors. The modal

theory is general and has no limitations that are present in a geometric-optics-based

theory.

� For the first time, the mode-lobe position effect in MMF-EFPI sensors is theoretically

predicted.

� For the first time, it is theoretically predicted and experimentally verified that the mode

power distribution variations in the MMF of a MMF-EFPI sensor could significantly

vary the spectral fringe patterns from the sensor.

The major publications by the author during the dissertation work include

1. M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber

extrinsic Fabry-Perot interferometric sensor systems,” Optics Letters. 31, 1202-1204

(2006).

2. M. Han, X. Wang, J. Xu, K. L. Cooper, and A. Wang, “Diaphragm-based extrinsic

Fabry-Perot interferometric optical fiber sensor for acoustic wave detection under high

background pressure,” Optical Engineering, 44, 060506 (2005).
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3. M. Han and A. Wang, “Analysis of a loss-compensated recirculating delayed self-

heterodyne interferometer for laser linewidth measurement,” Applied Physics B-Lasers

& Optics, 81, 53 (2005).

4. M. Han and A. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry-

Perot interferometers,” Applied Optics, 43, 4659 (2004).

5. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algo-

rithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Optics

Letters, 29, 1736 (2004).

6.3 Recommendations for future work

Based on the research that has been done in this dissertation, future work is recommended

here. We believe the following work could provide deeper understanding of SMF-EFPI and

MMF-EFPI sensors and accelerate the movement of these sensors toward wider applications.

1. Experiment to verify the predicted couping-induced phase-shift in a SMF-

EFPI sensor

In the analysis of SMF-EFPI sensors, we have predicted that the phasor of spectral

fringe pattern includes a term of coupling induced phase-shift. This phase shift occurs

when the reflected light from the second surface of the FP cavity is coupled to the

lead-in fiber after propagating a distance in the free-space. However, there has been no

experimental observation of this phase shift. Therefore it is of great interest to design

and carry out an experiment to verify the existence of this term and measure the value

of the phase-shift as a function of the free-space transmission distance.

2. Study of mode power distributions in MMFs

We have shown that the MPD variations in a MMF can cause significant change of

the spectral fringes in a white-light MMF-EFPI sensors. Furthermore, the spectral
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fringe from a MMF-EFPI sensor is a cosine function of the wave number only if the

MPDs of light at all wavelengths of interest are consistent. However, this assumption

has not been throughly checked. If the MPDs in the MMF were different for different

wavelengths, the spectral fringes would be a cosine function with random phase which

could distort the spectral fringes and jeopardize the effectiveness of many spectral

domain signal processing methods for MMF-EFPI sensors that are based on the cosine

spectral fringes.

3. Performance study of spectral domain signal processing methods for white-

light MMF-EFPI sensors

The available spectral processing methods for white-light MMF-EFPI sensors that are

immune to MPD effect include Type 2-3 curve-fitting methods, two-point interrogation

method, and Fourier transform method. However, the performance of these methods

has not been studied yet. Therefore research should be performed to study and com-

pare the measurement resolution, measurement accuracy, and robustness to ambient

perturbations for all these methods. This is of great importance for the wide-spread

use of the MMF-EFPI sensors.

4. Effect of mode coupling and mode mixing in MMFs

It is inevitable that the coupling and mixing among different modes in a MMF occur

as the light propagates along the fiber,especially when the light passes through some

optical components such as a fiber coupler that are necessary to comprise the sensor

system. For example, we consider the case that a SMF is spliced to an input port of

a MMF coupler. We have observed that the spectrum from output port of the MMF

coupler is significantly deformed from the spectrum measured at the SMF output.

This can be only explained by the mode coupling and mixing occurring along the fiber

and at the coupler. The effect of the mode coupling and mixing on the output of a

MMF-EFPI sensor system needs to be studied in order to optimize its performance.
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[56] P. C. Beard, F. Pérennès, E. Draguioti, and T. N. Mills, “Optical fiber photoacoustic

photothermal probe,” Opt. Lett. 23, 1235-1237 (1998).

[57] D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,”

Appl. Opt. 11, 2506-2513 (1972).

[58] M. Ikeda, Y. Murakami, and K. Kitayama, “Mode scrambler for optical fibers,” Appl.

Opt. 16, 1045-1049 (1977).



125

[59] D. Marcuse, “Excitation of parabolic-index fibers with incoherent sources,” Bell Syst.

Tech. J. 54, 1507-1530 (1975).

[60] S. Sumida, H. Murata, and Y. Katsuyama, “A new method of optical fiber loss mea-

surement by the side-illumination technique,” J. Lightwave Technol. LT-2, 642-646

(1984).



Vita

Ming Han was born in Shandong, China on July 6, 1975. He received his B.S. degree and

M.S. degree in Electrical Engineering in 1998 and 2000, respectively, both from Tsinghua

University, Beijing, China. From 1997 to 2000, he was a Research Assistant in the National

Key Laboratory of Integrated Optoelectronics of China , where he worked on fiber optical

communications and nonlinear fiber optics.

In 2000, Ming Han started his Ph.D. study in the Bradley Department of Electrical

Engineering of Virginia Polytechnic Institute and State University (Virginia Tech). He was

a Graduate Research Associate in the Center for Photonics Technology (CPT) at Virginia

Tech, where he worked on numerous projects on fiber optic sensors, laser characterization,

high speed spectrometers, and constancy test of physical constants. He has authored and

co-authored more than 10 journal papers.

As of May 2006, Ming Han started a new position as a Research Associate at CPT.

126


