List of Figures

Figure 1-1:	Simplified DSL Architecture.	4
Figure 1-2:	Twisted-pair electrical characteristics for 22 AWG (green), 24 AWG (red), and	
8	26 AWG (blue) – attenuation function (a), phase function (b), magnitude (c) and	
	phase (d) of characteristic impedance.	6
Figure 1-3:	PIC (blue), and pulp (green) insulated 24-AWG twisted-pair electrical	
8	characteristics – attenuation function (a), phase function (b), magnitude (c) and	
	phase (d) of characteristic impedance	7
Figure 1-4:	General structure of telephone subscriber loop.	
Figure 1-5:	Texas Instruments Study — Simulated ADSL downstream data rate as function	
0	of length of single 24-AWG segment.	10
Figure 1-6:	Insertion loss due to single 1-km 24-AWG segment loop (blue), and result of	
	adding a 250-m 24-AWG BT to the loop at midway (green)	10
Figure 2-1:	Equivalent lumped RLCG circuit of a unit length of twisted-pair transmission	
1 18010 = 11	line.	14
Figure 2-2:	Graph representation of subscriber line	
Figure 2-3:	Loop measurement setup	
Figure 2-4:	LTI System (a) and voltage divider circuit (b) representations of TP loop	
1184102 11	measurement setup	17
Figure 2-5:	Frequency Response of CSA #1 at Node 4.	
Figure 2-6:	Frequency Response of CSA #4 at Node 1	
Figure 2-7:	TDR input signal example. 10-V 1-µs raised-cosine (Hanning) pulse	
Figure 2-8:	TDR response of CSA #1 Loop from Node 4	
Figure 2-9:	TDR response of CSA #4 loop from Node 1	
Figure 2-10:	TP loop discontinuity possibilities—source-to-loop (a), termination (b), gauge	22
118416 2 10.	change (c), and bridged tap (d)	25
Figure 2-11:	Single-segment loop configuration	
Figure 2-12:	Bounce diagram for the local loop configuration in Figure 2-11.	
Figure 2-13:	The TDR response of Figure 2-11 loop with 250-m 24-AWG TP segment. Input	20
118416 2 13.	source:10-V 1-µs raised-cosine pulse	28
Figure 2-14:	First 4 of the TDR reflections within the TDR response in Figure 2-13.	
Figure 2-15:	Two-segment loop with gauge change	
	Bounce diagram for Figure 2-15.	
Figure 2-17:	Block diagram for Figure 2-11 loop (a), Figure 2-15 loop (b), and CSA #1 loop	50
11guic 2-17.	(c). Segment blocks—propagation blocks. Node blocks—	
	reflection/transmission blocks	21
Figure 2-18:	System components — propagation (a), source node (b), termination node (c),	51
11guic 2-16.	GC node (d), and BT node (e)	32
Figure 2-19:	Complete block diagram for measurement of Figure 2-11 loop.	
Figure 3-1:	Partial loop model after first iteration.	
Figure 3-2:	Illustration of initial reflection (red), Node 2 first reflection (blue), and Node 2	50
1 iguic <i>3-2</i> .	secondary reflection (green) paths for the loop in Figure 2-11	36
Figure 3-3:	TDR response and partial model with infinitely long segment.	
Figure 3-4:	Error between the TDR responses in Figure 3-3, sampled at 40 MHz.	
Figure 3-4.	CSSE of the TDR responses in Figure 3-3, sampled at 40 MHz.	
1 18u1C J-J.	COOL OF the IDIX responses in Figure 3-3	55

Figure 3-6:	Actual and first iteration model TDR responses (a) and corresponding error (b)	40
Figure 3-7:	The CSSE based on the residual in Figure 3-6(b).	41
Figure 3-8:	The WCSSE of residue plot in Figure 3-6(b).	
Figure 3-9:	Velocity profile of the ANSI T1.601 PIC TP.	
Figure 3-10:	Magnitude spectrum of TDR input pulse and various reflections (single segment case)	45
Figure 3-11:	Actual structure of LUI (a) and model structure after 1 st iteration (b) and after incorporation of estimated length (red) and subsequent structure (c). (MN — measurement node)	48
Figure 3-12:	TDR responses of measured, model after 1 st iteration, and model with length estimate (a); measured and model with length estimate after subtracting the 1 st iteration model (b).	48
Figure 3-13:	Correlation window for the refinement of the second iteration model in Figure 3-11(c)	49
Figure 3-14:	Cross-correlation of the TDR responses with the window defined in Figure 3-13	50
_	Possible node types—termination (a), gauge change (b), and bridged tap (c).	
O	(←MN—the location of the measurement node; RN—reflection node)	51
Figure 3-16:	All potential node configurations for the identification of the GC node	
Figure 3-17:	TDR responses of all candidates and the LUI after subtraction of the first iteration model.	
Figure 3-18:	Cross-correlation between the measurement and each candidate	
Figure 3-19:	CSA #1 TDR response measured from Node 1	
Figure 3-20:	CSA #1 Node 1 First Iteration — candidate TDR response fit to the LUI (a) and the resulting partial model (b). WSSE for each candidate shown in the	
E: 2.24	legend (a).	
Figure 3-21:	Residual after the first iteration for CSA #1 measured from Node 1	5 /
Figure 3-22:	Initial reflections from remaining nodes superimposed in the residual in Figure 3-21	57
Figure 3-23:	LUI and Candidate TDR responses (removed 1 st reflection) in 2 nd Iteration for CSA #1 measured from Node 1. (5,900 ft. assumed known)	58
Figure 4-1:	The reference pulse for MODE-WRELAX experiment 1 (a) and its 512-point DFT magnitude spectrum in dB (b) (only positive frequencies shown)	71
Figure 4-2:	MODE-WRELAX Experiment 1 objective signal — individual pulses (a); and composite signal (b).	
Figure 4-3:	Experiment 1 — Monte-Carlo (x100) MODE-WRELAX estimation results (AWGN with $\sigma = 10^{-5}$). Line indicates compensatory behavior of estimates	
Figure 4-4:	The reference pulse for MODE-WRELAX experiment 2 (a) and its 512-point	
Figure 4-5:	DFT magnitude spectrum in dB (b) (only positive frequencies shown)	
Figure 4-6:	Experiment 2 — Monte-Carlo (x100) MODE-WRELAX estimation results	
Figure 4-7:	(AWGN w/ σ = 10 ⁻⁵). Line indicates compensatory behavior of estimates	
E' 40	(c). (All line types: ANSI PIC 26 AWG)	/8
Figure 4-8:	Complete TDR responses of the loop in Figure 4-7(a) and of the partial model in Figure 4-7(b)	79

Figure 4-9:	Residual (blue) and reference pulse (green).	80
Figure 4-10:	Dominant reflections hidden in the residual signal	
Figure 4-11:	Magnitude spectra of reference signal (blue) and overlapping signal (green)	
Figure 4-12:	The MODE-WRELAX estimation results — actual residual (blue), MODE	
C	reconstructed residual (green), and MODE-WRELAX reconstructed residual	
	(red) — $\hat{L} = 2$ (a), $\hat{L} = 3$ (b), $\hat{L} = 4$ (c), $\hat{L} = 5$ (d), $\hat{L} = 6$ (e), and $\hat{L} = 7$ (f)	84
Figure 4-13:	The spectral ratio of individual overlapping reflections to the reference.	
Figure 4-14:	1 0	
riguie i ri.	26 AWG TPs — modeled over 1 MHz to 2 MHz.	88
Figure 4-15:	Least-squares estimates of magnitude (a) and phase (b) of the reflection function	
rigure (13.	at GC node. Gauge change between 24 & 26 AWG TPs — modeled over 1	
	MHz to 2 MHz.	89
Figure 4-16	Least-squares estimates of magnitude (a) and phase (b) of the transmission	07
11guic 4-10.	function at GC node. Gauge change between 24 & 26 AWG TPs — modeled	
	over 1 MHz to 2 MHz	89
Figure 4-17:	Least-squares estimates of magnitude (a) and phase (b) of the reflection function	07
rigate (17.	at BT node. Combination configuration defined in Table 4-6 — modeled over 1	
	MHz to 2 MHz.	90
Figure 4-18.	Least-squares estimates of magnitude (a) and phase (b) of the transmission	70
riguic +-10.	function at BT node. Combination configuration defined in Table 4-6 —	
	modeled over 1 MHz to 2 MHz.	90
Figure 4-19:	Outline of the MODE-type algorithm procedure [26]	
Figure 4-19.	71 0 1	
Figure 4-20.	Signal for MODE-type test 1 — Sum of 10 exponential modes. Pole location of ten sinusoidal modes.	
0	Estimation results — SNR = 0 dB (a) and SNR = 20 dB (b).	
Figure 4-22:		99
rigure 4-23:	Reference raised-cosine pulse (a) and its 512-point DFT magnitude spectrum in	100
Ei 4 24.	dB (b). (only positive frequency shown)	100
Figure 4-24:	MODE-type test signal 1 with sparsely overlapping pulses; individual pulses (a),	101
Ei 4 25.	combined signal (b).	101
Figure 4-25:	MODE-type experiment 2 — reconstructed objective signal with MODE,	
	MODE-WRELAX, and MODE-type algorithms (a) and corresponding	100
E' 4.06	estimation errors (b).	102
Figure 4-26:	MODE-type test signal 2 with substantially overlapping pulses; individual pulses	102
E' 4.07	(a), combined signal (b).	103
Figure 4-27:	MODE-type experiment 1— reconstructed objective signal with MODE,	
	MODE-WRELAX, and MODE-type algorithms (a) and corresponding	404
D' 5.4	estimation errors (b). (MODE-WRELAX on top of MODE)	104
Figure 5-1:	Frequency response decomposition (a) and its first three reflection frequency	
E' 50	responses (b)	111
Figure 5-2:	An illustration of mismatch between actual and model reflections based the	4.4.0
	strongest-reflection first approach (by skipping over a GC node)	113
Figure 5-3:	MDL Criterion as function of k for all $m \in 3.33$ (a) and estimated number of	
	reflections for all m (b). Note $k = 0.2$ in (a) are ∞ for most cases	118
Figure 5-4:	Possible node types when new node is inserted in between two existing model	
	nodes. GC (a) and BT(b); Termination is no longer an option.	122
Figure 5-5:	Model loop after the second iteration of the GC example in Figure 3-11 with the	
	frequency-response-based approach. The GC node has been neglected	122

All potential node configurations given Figure 5-5 and new length estimate of	
152.25 m relative to Node 1. The tables indicate possible line types	123
Illustration of multimodal nature of SSE	124
Example for node clustering. Dashed ellipse shows the cluster	128
Two-step candidate selection process	129
Typical $\Gamma(f)$ of loop nodes.	130
Reflection energy strength for all node types. Total energy levels are shown in	
the legend	131
Energy level of reflections as a function of segment length for various node	
types. Dashed lines indicate segment lengths for different node types that	
produce same reflection strength level.	132
	152.25 m relative to Node 1. The tables indicate possible line types. Illustration of multimodal nature of SSE. Example for node clustering. Dashed ellipse shows the cluster. Two-step candidate selection process. Typical $\Gamma(f)$ of loop nodes. Reflection energy strength for all node types. Total energy levels are shown in the legend. Energy level of reflections as a function of segment length for various node types. Dashed lines indicate segment lengths for different node types that