
Structured Approach to Dynamic Computing Application

Development

Stephen Douglas Craven

A dissertation submitted to the Faculty of Virginia

Polytechnic Institute and State University in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

Dr. Peter M. Athanas, Chair

Dr. Cameron D. Patterson

Dr. Patrick R. Schaumont

Dr. Gary S. Brown

Dr. Shawn A. Bohner

May 1, 2008

Bradley Department of Electrical and Computer Engineering

Blacksburg, Virginia

Keywords: FPGA, Reconfigurable Computing, Dynamic Computing, Development

Environment

Copyright 2008 c©, Stephen Douglas Craven

Structured Approach to Dynamic Computing Application

Development

Stephen Douglas Craven

(ABSTRACT)

The ability of some configurable logic devices to modify their hardware during operation

has long held great potential to increase performance and reduce device cost. However, de-

spite many research projects and a decade of research, the dynamic reconfiguration of Field

Programmable Gate Arrays (FPGAs) is still very much an art practiced by few. Previous

attempts to automate the many low-level details that complicate Run-Time Reconfigurable

(RTR) application development suffer severe limitations. This dissertation describes a com-

prehensive approach to dynamic hardware development, providing a designer with appropri-

ate models for computation, communication, and reconfiguration integrated with a high-level

design environment. In this way, many manual and time consuming tasks associated with

partial reconfiguration are hidden, permitting a designer to focus instead on a design’s be-

havior. This design and implementation environment has been validated on a variety of

relevant applications, quantifying the effects of high-level design.

Acknowledgments

I owe a very large measure of gratitude to Dr. Peter Athanas. Without his efforts, I could

not have entered Virginia Tech when I did. His guidance was essential in the development of

this dissertation. Through his assistance I partook in a variety of experiences not normally

granted graduate students, including teaching and proposal writing.

For his technical and career advice, I am indebted to Dr. Cameron Patterson. Our early

morning conversations in the lab were a welcome source of inspiration.

I thank the rest of my committee, who each uniquely contributed to my progress. Dr.

Patrick Schaumont provided insightful suggestions that significantly shaped certain aspects

of this dissertation. Dr. Shawn Bohner graciously took time out of his busy schedule to

provide advice on both research and career. I experienced Dr. Gary Brown’s excellent

service to the department first as a Bradley Fellow, which he oversees, and as a member of

my committee. I am grateful for his support.

I owe much to everyone in the Configurable Computing Lab at Virginia Tech, many of

whom I consider dear friends. Dr. Neil Steiner was a constant source of support and advice

on all matters, technical and personal. Anthony Mahar was always a pleasure to work with.

And Tingting Meng was willing to assist in any endeavor. Dr. Chris Anderson would always

respond quickly to any radio-related emergency. His duties were gratefully replaced by Matt

Shelburne upon his graduation.

Yousef Iskander deserves special recognition for the support and motivation he provided,

without which this dissertation would have not occurred.

The staff at Impulse Accelerated Technologies, Inc., particularly David Pellerin and Brian

Durwood, were especially helpful, providing access to the tools and code that made the

implementation possible.

iii

My present employer, Luna Innovations, Inc., and all of the engineerings in the Secure

Computing Group must be thanked for tolerating my variable schedule and permitting me

a leave of absence to complete much of the research.

My family’s support, love, and prayers, though physically distant, were felt very strongly

and greatly appreciated. The motivation and support provided by my dear friends, especially

Kristina Karnes and the men of the Graduate Christian Fellowship, were instrumental in

keeping me focused.

Finally, I must thank God for the amazing opportunities with which he has blessed me.

iv

Contents

Acronyms viii

List of Figures ix

List of Tables xii

1 Introduction 1

2 Background 5

2.1 Reconfigurable Computing . 5

2.2 Design Methodologies . 13

3 Approach 22

3.1 Models and Abstractions . 23

3.1.1 Computation and Communication Models 25

3.1.2 Reconfiguration Model . 27

3.1.3 Programming Model . 28

3.2 Design Flow . 29

v

3.2.1 Design Entry and Partitioning . 30

3.2.2 Simulation . 31

3.3 Implementation Flow . 32

3.3.1 Reconfigurable Computing Specification Format 33

3.3.2 Configuration Management . 35

3.4 Verification . 36

3.5 Reconfiguration Synchronization . 37

3.6 Use Model . 47

4 Implementation 50

4.1 Design Capture . 51

4.2 Produced Design . 55

4.3 Tools . 56

4.3.1 Frontend . 57

4.3.2 Design Exchange . 58

4.3.3 Backend . 61

5 Application Development 68

5.1 Video Processing . 68

5.1.1 Application Description and Simulation 69

5.1.2 Implementation . 74

5.2 Software Defined Radio . 76

vi

5.2.1 BSP Creation . 77

5.2.2 AM Radio Application . 78

5.3 Benchmarking Applications . 82

6 Results 83

6.1 Benchmark Applications . 83

6.1.1 Coprocessor Application . 84

6.1.2 Cryptographic Accelerator . 87

6.1.3 Application Porting . 89

6.1.4 Software Defined Radio Application 90

6.2 Conclusions . 92

7 Conclusion 98

Bibliography 101

vii

Acronyms

ASIC Application Specific Integrated Circuit

CCM Configurable Computing Machine

CSP Communicating Sequential Processes

DSP Digital Signal Processing

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

HLL High Level Language

HLS High Level Synthesis

HPC High Performance Computing

JIT Just-In-Time

KPN Kahn Process Network

LUT Look Up Table

RCSF Reconfigurable Computing Specification Format

RTL Register Transfer Level

RTR Run Time Reconfiguration

SDR Software Defined Radio

viii

List of Figures

2.1 Typical FPGA structure. 6

2.2 Xilinx Virtex configuration architecture. 8

2.3 Verbauwhede and Schaumont’s taxonomy of reconfiguration (from [1]). . . . 9

2.4 Virtual hardware for increasing an application’s breadth (a) and depth (b). . 10

3.1 Combined design and implementation flow. 23

3.2 Secure network streaming application. 25

3.3 Mutually exclusive set of processes. 28

3.4 Design flow. 30

3.5 Architecture-specific implementation flow. 34

3.6 System with indeterminant output. 38

3.7 Synchronized system with deterministic output. 39

3.8 Synchronous Data Flow description of configuration control. 40

3.9 Pipeline flushing scheme. 43

3.10 Two processes sharing single channel. 44

3.11 Process transition diagram. 44

ix

3.12 CSP description of reconfiguration synchronization scheme. 46

4.1 Example Impulse C application. 52

4.2 Example DR Impulse C application. 54

4.3 Final design implementation. 55

4.4 Project Makefile. 57

4.5 Frontend Tool Flow. 58

4.6 Preprocess usage. 59

4.7 Retargetable Design Specification. 60

4.8 BSP directory structure. 61

4.9 Board Support Package Specification. 62

4.10 Backend Tool Flow. 63

4.11 Example Floorplanner placement for four PR regions on xc2vp30. 66

5.1 Video processing application. 70

5.2 Impulse C description of median filter. 72

5.3 DR Impulse C configuration function for video filter. 73

5.4 DR Impulse C configuration control function for video filter. 74

5.5 RCSF file for simulated video processing design. 75

5.6 RCSF file for implemented video processing design. 76

5.7 Floorplan of implementation in a Xilinx XC2VP30. 77

5.8 Morpheus BSP hardware components. 78

5.9 AM demodulation through envelop detection. 79

x

5.10 DR Impulse C simulation of AM demodulation. 80

5.11 RCSF file for simulated SDR design. 81

5.12 RCSF file for implemented SDR design. 81

6.1 Co-processor implementation for designs created manually (left) and with

development flow (right) on a Xilinx XC2VP30. 85

6.2 Comparison of EAPR flow to high level development environment for normal-

ized area, performance, and development time for applications on the Virtex-II

Pro (V2P) and Virtex-4 (V4). 93

6.3 Area savings from partial reconfiguration. 95

xi

List of Tables

2.1 Previous RTR Development Environments 21

6.1 Coprocessor module performance benchmarks on a Xilinx Virtex-II Pro. . . . 86

6.2 Coprocessor productivity and performance benchmarks. 87

6.3 Cryptographic module performance benchmarks in a Xilinx Virtex-II Pro. . . 88

6.4 Cryptographic application performance benchmarks. 88

6.5 Cryptographic application productivity benchmarks. 89

6.6 Cryptographic application performance benchmarks ported to Xilinx Virtex-4. 90

6.7 AM radio application performance benchmarks on the Morpheus SDR platform. 92

6.8 Cost and power benefits of partial reconfiguration 96

xii

Chapter 1

Introduction

Configurable computing devices, such as Field Programmable Gates Arrays (FPGAs), permit

arbitrary reprogramming of the devices’ hardware functionality after manufacture. This pro-

grammability greatly decreases development costs and time-to-market compared to Application-

Specific Integrated Circuits (ASICs). For many applications the drawbacks to FPGAs, lower

performance and increased per device cost, are far outweighed by the fast implementation

time — minutes to hours, instead of the months to years required to design and manufacture

an ASIC.

Almost all commercial designs using FPGAs do not reconfigure the hardware once the

product is deployed; however, previous research has demonstrated performance benefits from

partially or fully reconfiguring an FPGA during operation [2] [3] [4]. Two mechanisms can

be used to achieve a benefit from this Run-Time Reconfiguration (RTR): fine-grained circuit

customization and virtual hardware. Dynamically creating custom digital circuits tailored

to the task at hand; for example, by customizing an encryption circuit for a specific key,

can provide significant performance improvements. Virtual hardware, on the other hand,

permits a design to be larger than the available resources, with idle logic swapped out for

active circuits. By removing configurable logic resource limitations, RTR can permit smaller

and cheaper devices to be fielded.

1

2

Unfortunately, developing RTR applications has been a difficult undertaking. The re-

ported successful RTR designs generally involved much low-level work by designers with

detailed knowledge about an FPGA’s inner workings. In spite of several attempts to ab-

stract these lower-level details [5] [6] [7], no tools currently exist for modern architectures

to assist a designer in these complex tasks. FPGA design tools share a lineage with ASIC

tools, with both assuming static designs. What little vendor support that has been available

forced the designer to do much manual, low-level work. Commercial tools in the form of

design capture environments and simulators are non-existent. An FPGA designer developing

an RTR application is very much a trailblazer, forced to improvise the required tools with

little assurance that the final design will even function.

Seeing the need for an RTR application development methodology, several researchers over

the past decade have proposed design environments and implementation flows supporting

RTR. These projects range from paper proposals to integrated environments supporting both

hardware and software development. More ambitious efforts perform automatic spatial and

temporal partitioning. Acceptance of these methodologies, however, has been hindered for a

variety of reasons; including esoteric design capture methodologies, architecture-dependence,

and inferior tool performance.

Recent trends and technology advances have rekindled interest in RTR. The configuration

architecture of the latest FPGAs is much more amenable to fast partial reconfiguration

and, for the first time, true two-dimensional reconfiguration is available in high-performance

mainstream devices. The inclusion of embedded processors has freed dynamic hardware

designs from their previous reliance on a PC for configuration management, opening new

application domains. The growing importance of FPGAs in Software Defined Radios (SDRs)

[8] is prompting FPGA vendors to provide backend tool support for RTR [9].

The objective of this dissertation is to define an architecture-agnostic, structured ap-

proach to RTR application development, incorporating the latest advances and trends in

configurable computing, to permit the rapid creation of dynamic hardware for streaming

3

applications from a high-level specification. Previous research attempts, unaccepted even in

their own time, were unable to capitalize on these current advances. Leveraging existing re-

search, this approach enables the use of commercial design entry and simulation tools, fully

incorporates embedded processors into the computational and programming models, and

permits dynamic partial self-reconfiguration through an embedded configuration controller.

This research offers the following contributions:

• Creation of a design and implementation flow for streaming RTR applications. The

project provides a unified development environment for both hardware and software

through the seamless integration of embedded processors.

• Development of a practical RTR design and research environment. While the design

flow can utilize a variety of tools for design capture, a commercial high-level synthesis

tool has been extended to support the simulation and synthesis of RTR designs. This

approach is in-line with previous research, where several projects attempted some form

of high-level design entry. To avoid the development issues, performance limitations,

and lack of acceptance previous projects encountered using custom high-level specifica-

tion methodologies, a partnership with a commercial high-level synthesis tool company

has been formed.

• Inclusion of partial reconfiguration into design abstractions. Few previous projects

consider partial reconfiguration and those that do attempt to shield the developer

from reconfiguration decisions. In contrast, this work provides high-level abstractions,

permitting the developer to utilize partial reconfiguration to modify computation and

communication structures at run-time.

• Demonstration of the benefits of RTR on modern FPGA architectures. To extend

existing research detailing the performance enhancements of RTR to include the latest

FPGA architectures, the design flow and environment have been used to implement

encryption and image processing applications, domains well suited to the approach’s

4

computational model. These applications serve as benchmarks; with the design time

and performance compared to traditional static designs as well as designs implemented

using traditional RTR design flows.

Chapter 2 provides an overview of prior related work, including successful RTR designs

and development environments for RTR applications. Attention is paid to the limitations

of these flows along with methodologies for configuration management. Chapter 3 begins

with an overview of the approach before expounding upon each stage. Chapter 4 details the

realization of the approach, describing the design capture and implementation tools. Exam-

ple applications created using this approach are discussed in Chapter 5 with performance

and productivity results presented in Chapter 6. Finally, Chapter 7 discusses the project’s

conclusions and future work.

Chapter 2

Background

2.1 Reconfigurable Computing

Reconfigurable Computing (RC), also known as configurable computing or adaptive com-

puting, is an area of computer engineering concerning computational devices that can be

configured at the hardware level after manufacture [10]. General purpose processors, such

as are found in desktop computers, can programmed via software to perform any computa-

tional task. However, the processor’s hardware remains static – the number of multipliers

and adders and the size of the cache can never be modified after the chip leaves the factory.

Likewise, ASICs have a fixed hardware structure optimized for an application.

Several families of devices, however, may modify their internal hardware after manufac-

ture. The most widely used RC devices are programmable logic devices, such as FPGAs.

Other devices exist that provide more coarse-grained configurability. While many of these

coarse-grained architectures have been proposed and implemented [11] [12], none have at-

tained commercial success.

Initially used as glue logic for interfacing other digital components, FPGAs have evolved

into stand-alone computational devices with performance that can exceed that of proces-

5

6

Slice
Slice

Slice

0

1

2

15

4-Input LUT

4
address

Flip Flop

Switch Box

Slice

Configurable
 Logic Block

adder +
muxes

FPGA multiplier

memory

Figure 2.1: Typical FPGA structure.

sors in many applications. Figure 2.1 shows a typical FPGA’s internal structure. A pro-

grammable Look-Up Table (LUT) acts as a logic element implementing any logic function of

up to, in the case of the presented architecture, four variables or behaving as a 16-bit mem-

ory. In the Xilinx Virtex-II and Virtex-4 architectures represented in the figure, the LUT is

paired with a flip flop storage element. Two of these LUTs are grouped into a slice. Four

of these slices, along with a programmable switch box, comprise a configurable logic block.

The configurability of an FPGA comes primarily from two elements: the LUTs configure the

computational elements and the switch boxes configure the communication between LUTs.

Note that modern FPGAs include more coarse-grained computational and storage ele-

ments, such as dedicated multipliers and memories, called block multipliers and block RAMs,

7

respectively, in the terminology of the largest FPGA vendor, Xilinx. Certain FPGAs, such

as the Xilinx Virtex-II Pros and Virtex-4 FXs, also incorporate embedded processors in the

sea of configurable logic. Additional processors, known as soft processors, may be created

out of the configurable logic.

The fine-grained configurability offered by these architectures enable the hardware to be

tailored specifically for the problem at hand. In applications that may be heavily paral-

lelized or pipelined, FPGAs may greatly exceed the performance of processors in spite of

their generally much lower clock frequencies. Domains that play to this strength of FP-

GAs are Digital Signal Processing (DSP) [13], cryptography [14], network applications [3],

bio-informatics [15], and image processing [16].

The configuration architecture of Xilinx FPGAs is shown in Figure 2.2. The device

is configured by the loading of configuration data in segments called frames. A frame runs

vertically the entire height of the device for older Xilinx FPGAs. The newer Virtex-4 devices

consist of multiple, independent frames per column. To program the device these frames must

be loaded into the FPGA from the bitstream through one of several interfaces. One or two

Internal Configuration Access Ports (ICAPs) exist inside the device to permit the device

to control its own configuration. Using the ICAP, the FPGA may load in new modules

stored as partial bitstreams in an external storage medium such as memory. Additional

external configuration interfaces permit another device, such as a processor, to manage the

configuration.

While for a specific hardware configuration an ASIC will always outperform an FPGA

by a significant margin, design and initial manufacturing costs for modern, deep-submicron

ASICs run into the millions of dollars, making ASIC cost prohibitive for all but high volume

products. For low volume designs or for short time-to-market products where the long design,

manufacturing, and testing delays of ASICs may be prohibitive, FPGAs become attractive.

The reconfigurability of FPGAs provides an additional advantage over ASICs. A design

mistake that spells disaster for an ASIC [17] could be fixed in an FPGA with a corrected

8

Internal Configuration
Access Port

Configuration
Frame

Figure 2.2: Xilinx Virtex configuration architecture.

configuration file. More interesting uses exist for this reconfigurability, however. By re-

configuring the device during operation the digital circuits can be tailored to the specific

environment in which the FPGA is operating.

Many aspects of a hardware application can be reconfigured, from modifying a single

gate to swapping out an entire soft processor. A taxonomy created by Verbauwhede and

Schaumont [1] serves to illustrate and categorize the possible applications of RTR in hardware

designs. Shown in Figure 2.3, this taxonomy maps the design space of RTR applications

using three axes: architectural features, abstraction level, and configuration binding time.

For a given architectural feature reconfiguration may be used at different levels of abstraction.

Early RTR projects worked at the lower layers of LUTs and switches, with subsequent work

raising the level of abstraction. The configuration binding rate corresponds to the rate at

which configuration information is bound, or attached, to hardware. Static designs have

a binding rate of zero – the configuration is fixed at design time. The binding rate is

limited by the configuration speed of the FPGA and, in some designs, by the speed of the

implementation tools.

9

Binding
Rate

Architectural
Feature

Level of
Abstraction

Design Time

App Start Time

Systems

Gates

Components

During Operation Communication
Storage

Computation

Networks

Buses

Switches

Memories

Register Files

LUTs, Flops

Processors

ALU,
multiplier

LUTs

Figure 2.3: Verbauwhede and Schaumont’s taxonomy of reconfiguration (from [1]).

In addition to categorizing RTR applications on the basis of binding rate, abstraction

level, and architectural features, a distinction can be made based on when the configuration

files, called bitstreams, were created. Just-In-Time (JIT) customization involves creating or

modifying a circuit during operation, tailoring the design to the specific conditions [18] [19].

Virtual hardware, on the other hand, uses the dynamic reconfigurability of an FPGA to

emulate a much larger device, much like virtual memory in a computer [20] [21]. At any

instance in time, only a portion of the entire design is resident and functioning on the device.

A common optimization for JIT customization is constant propagation, also known as

data folding, wherein constants that are only known at runtime, such as filter coefficients

and encryption keys, are hard-coded directly into the hardware, reducing area and improving

performance [19]. For many applications, however, the slow speed of FPGA implementation

tools limit the utility of JIT customization as the traditional implementation flow requires

seconds to hours to complete. Alternative tool flows exist [22], but these tools suffer several

limitations. Architectural modifications to FPGAs have been considered to simplify the

implementation process and speed JIT compilation [23], though currently these are strictly

10

Stage 1 Stage 2 Stage 3

Stage #

FPGA

Memory

Intermediate
Results

Stages Swapped In
Sequentially

Static Dynamic Static

FPGA

Module Library

Modules Swapped in
as Required

(a) Application Depth
Increase

(b) Application
Breadth Increase

Figure 2.4: Virtual hardware for increasing an application’s breadth (a) and depth (b).

academic in nature.

Virtual hardware may be used to increase the depth of a sequential pipeline, by swapping

pipeline stages in and out of the device, or to increase the breath of a design, by swapping

in and out functionality as required. Figure 2.4 demonstrates the difference between RTR

for breadth and RTR for depth. When an entire design is not resident on the device at a

single time, as is the case when pipeline stages are swapped in and out of the device, some

form of data buffering must occur between stages.

Numerous research projects have incorporated RTR into their designs. Common appli-

cations include automatic target recognition [24], gene sequencing [2], image and video pro-

cessing [25], network applications [3], electronic design automation [26], neural networks [4],

and instruction set extension [27]. While this list validates the utility of RTR in a variety of

applications, it is quite small considering the length of time that RTR has been considered.

If suitable tools and techniques existed the list of RTR applications could be much larger.

11

In general, candidates for virtual hardware are applications that can be divided into

distinct sequential stages or applications in which certain circuits are mutually exclusive.

Applications utilizing constants that are defined only at run-time (encryption, gene sequenc-

ing, filters, etc.) are candidates for JIT customization.

One of the more impressive results of JIT customization is a DES encryption implemen-

tation described by Patterson [28]. The encryption circuit is customized at runtime to the

specific encryption key, resulting in a throughput that is greater than a generic ASIC imple-

mentation. The encryption circuit was tailored to its key using JBits [22]. A Java API to

the configuration bitstreams of certain families of Xilinx FPGAs, JBits permits the designer

to quickly modify bitstreams at the lowest level. A JBits Java program, when executed,

produces a bitstream without running the traditional implementation flow. The fast imple-

mentation time, combined with inherent support for runtime parameterizable cores, makes

JBits a powerful tool for JIT customization.

Additional projects utilizing JIT customization include neural networks [4] [29], where

constant coefficient multipliers are updated at run-time, gene sequencing [2], with the search

sequence defined at run-time, and boolean satisfiability [26], where the specific problem is

not known at design time. In a gene sequencing application, Lemoine [2] was able to achieve

a two to three order of magnitude speed-up compared to a processor, even with the JIT

synthesis overhead of running the entire implementation toolchain.

An an alternative to running the entire implementation tool flow, several projects make

use of JBits for directly generating a bitstream and reducing the overhead of JIT compilation.

However there are severe limitations to the power of JBits and JIT compilation. JBits only

supports a subset of older Xilinx FPGA families. Timing information is not available from

within JBits, making timing-driven placement and routing impossible. While a recent project

aimed to alleviate certain limitations by fusing the JHDL design environment with JBits, the

JHDLBits project was abandoned before usable tools were released [30]. Even assuming these

issues are addressed, the much shorter implementation times of JIT compilation will always

12

produce an inferior result when compared to longer running traditional implementation tools.

Because of these issues, JIT compilation is not a focus of this project.

FPGA configuration files may be used to reconfigure the entire device, a process known

as full reconfiguration, or may only reconfigure a section of the hardware through partial

reconfiguration. Full reconfiguration has the benefit of using the traditional implementation

tools to generate the configuration files. However, fully reconfiguring the device may take a

significant amount of time, potentially on the order of tens of milliseconds, during which the

device may be unavailable. Also, without a large design effort, full reconfiguration requires

an external host for control. Partial reconfiguration, on the other hand, permits sections

of the FPGA that are not being reconfigured to continue functioning. Because of this, a

partially reconfigurable design may implement its own configuration controller internally [31].

Finally, as only sections of the device are being reconfigured, partial reconfiguration reduces

the latency of dynamically configuring the FPGA.

As previously mentioned, virtual hardware can be used to increase an application’s

breadth or its depth. One of the first uses of virtual hardware to increase an applica-

tion’s depth was RRANN, a neural network project that divided the training task into three

sequential stages [32]. By using RTR the final project required only a single FPGA instead

of three. The overhead of fully reconfiguring the FPGA hurt performance, prompting the

authors’ to rework the design to utilize partial reconfiguration [33]. An RTR design by

Villasenor similarly decomposes video compression into three stages: discrete wavelet trans-

form, quantization, and entropy encoding [34]. By executing each stage sequentially on the

FPGA, the required resources are reduced by a factor of three.

An alternative use for virtual hardware is to increase an application’s breadth. In these

applications there is a complete application in the FPGA at all times. As required, new

circuits may replace existing functions on the FPGA. Software Defined Radio (SDR) may

be seen as an example of this. At any given moment the FPGA may implement a specific

radio modulation scheme. When requested, the modulator in the FPGA can be replaced

13

from a library of existing, stored modulators. The modulator designs are mutually exclusive,

in that only a single modulator will be running at any one time. Increasing an application’s

breadth may reduce the effects of reconfiguration overhead as, for many domains, the rate of

reconfiguration is less than for utilizing virtual hardware to increase an application’s depth.

This is the case for the commercial FALCON II radio marketed by Harris Corp., featuring

software-controlled reconfiguration of its hardware [35].

An additional virtual hardware domain that increases the breadth of computation is that

of instruction set extension. Several research projects have tightly coupled a configurable

fabric with a processor for the purpose of adding custom instructions tailored to a given

application [36] [37] [27]. An incarnation of this technology is currently marketed by Stretch,

Inc. [38].

2.2 Design Methodologies

While design complexity increases with time in any domain, the manufacturing process im-

provements characterized by Moore’s Law have doubled transistor density every 18 months.

The first integrated circuit designs were completely hand crafted, limiting devices to thou-

sands of transistors. Over time tools and methodologies were developed, permitting the

designer to operate at higher levels of abstraction and increasing his or her design efficiency.

Instead of transistors or logic gates, designers now operate at the level of registers, on the

lower end of the abstraction spectrum, and existing blocks of intellectual property, on the

high end. A few lines of code in a Hardware Description Language (HDL) can describe a

design incorporating thousands of transistors.

In spite of these advances, there is a growing design-productivity gap. The number of

transistors available to a designer is growing much faster than a designer’s ability to effec-

tively use them [39]. With many computer chips now containing hundreds of millions of

transistors, much research in industry and academia is focused on automating time consum-

14

ing design steps, such as Hardware / Software partitioning [40] and Register Transfer Level

(RTL) design [41], permitting the designer to work at a higher level of abstraction.

Hardware designs start from a high level specification expressing function and performance

requirements. Generally a functional model is then created in a High Level Language (HLL),

such as C or MATLAB. Subsequent design iterations can then be compared to this high level

model to ensure correctness. For the vast majority of hardware, the final design is expressed

at the RTL level in an HDL, describing the flow of data between registers. This RTL

description is at a much lower level than the initial HLL description and significant effort is

required to translate the specifications expressed in the HLL to RTL HDL. Thus, in essence,

the application has been described twice, once at a high-level and once at a low-level.

To further increase the level of abstraction, and thus a designer’s efficiency, High Level

Synthesis (HLS) has been suggested by many [42]. HLS involves an automated translation

of a behavioral description expressed in an HLL into a description appropriate for hardware

implementation, usually an HDL. These researchers feel that HLS is the natural progres-

sion of design automation. The time consuming tasks of control and datapath definition,

datapath sizing, pipelining, etc., normally performed by experienced and costly hardware

design engineers, are replaced by computer programs driven by optimization routines and

heuristics.

The Processor Reconfiguration through Instruction-Set Metamorphosis (PRISM) project

was one of the first attempts at automatic generation of FPGA accelerator cores from a

high-level specification [37]. A traditional C program, decomposed by the programmer into

functions, is analyzed and functions suitable for hardware implementation are automatically

identified. A C-to-gates flow then produces hardware accelerators for these simple functions,

which are then integrated back into the executable C code. During program execution the

processor, when encountering an accelerated function, writes the operands to the FPGA

coprocessor which produces results within a single cycle. This initial attempt at high-level

synthesis limits the subset of C that can be accelerated and imposes the requirement that

15

all generated hardware produce a result in a single cycle.

Many other academic HLS projects followed PRISM, including Streams-C, a project out

of Los Alamos National Laboratory that produces synthesizable HDL from a subset of ANSI

C [43]. Utilizing the Communicating Sequential Processes (CSP) computational and com-

munication model, the user describes his or her application as a set of concurrently running

processes communicating through blocking data streams. This model is well suited to stream-

ing applications such as multimedia, DSP, and cryptography. The compiler, a modification of

Stanfords SUIF work, synthesizes for each process a Finite State Machine (FSM) controller

and a pipelined datapath. While compiler inefficiencies reduce performance by a factor of

two to three over handcrafted designs, the order of magnitude productivity increase could

justify its use for certain applications. Unlike PRISM, Streams-C generates a stand-alone

application without the requirement of a host processor.

Several researchers have turned to SystemC to provide a simulation environment for

RTR [44] [45]. These projects are very high-level in nature, simulating the design at the

transaction level. This Transaction Level Modeling focuses on the communication between

modules, abstracting away the modules’ implementations. As such, this approach provides

no support for evaluating different design implementations.

In addition to programming languages, other projects use a model-based approach. Rep-

resentative of these is the University of Tennessee’s CHAMPION framework, targeting im-

age processing applications [46]. Dataflow-based applications are constructed by connecting

pre-defined modules, each module containing C++ and VHDL descriptions permitting high-

level simulation in software before implementation. The design is automatically partitioned

across multi-FPGA CCMs. Although tailored to image processing there is no reason why

this method, graphically connecting modules from a predefined library, could not be applied

to other domains.

The few projects discussed above are representative of the many academic HLS tools that

have been created. However, HLS is no longer just a topic of research. Several compa-

16

nies currently offer commercial quality HLS tools. Supporting C-based design is Celoxica’s

Handel-C [47], Impulse Accelerated Technologies’ Impulse C [48], and Nallatech’s DIME-

C [49]. SRC Computer’s CARTE design environment generates hardware from a C or FOR-

TRAN description [50]. Model-based design tools, marketed toward DSP applications, are

being offered by Xilinx with its System Generator [51].

HLS is not without its critics, who point to the suboptimal designs HLS produces com-

pared to experienced hardware engineers and the inappropriateness of sequential program-

ming models for describing parallel hardware. However, HLS significantly reduces design

time and costs. It should be noted that any design automation produces inefficiencies. Pro-

gramming at the assembly level or constructing circuits manually out of transistors produce

better performing designs than coding with C or Verilog, respectively. Just as industry has

accepted HLL compiler inefficiencies for software development, in many circumstances the

performance penalty of these hardware design tools may be worth the reduced design costs

and faster time-to-market. Furthermore, while not definitive, a recent comparison of several

HLL-to-gates compilers indicated that for some applications the performance penalty of HLS

is marginal compared to standard HDLs [52].

With few exceptions, existing design methodologies do not support dynamic hardware.

This is due, in part, to the ASIC heritage of FPGA design tools. The high manufacturing

costs and fixed structure of ASIC designs led to the development of robust design tools,

as an ASIC implementation must function correctly on the first attempt. Reconfigurable

computing has benefited from ASIC tool development, borrowing many of the ideas and

algorithms. However, the implicit assumption in the ASIC world of static hardware hinders

the development of RTR applications using the existing ASIC-based tools and models.

Traditional hardware design flows lack basic constructs and tools required for RTR ap-

plication development, including:

• Methods for specifying dynamic communication and computational structures. Dy-

namically reconfigurable hardware places additional demands on any communication

17

structure. Tradition design methodologies push this added complexity back onto the

designer, further complicating the design process.

• Simulation of dynamic hardware. All commercial hardware simulators implicitly as-

sume that the hardware is static, requiring any verification of the dynamic-nature of

the application to be performed in hardware. This lengthens the design cycle and

increases the probability of design errors in a released product.

• Design abstractions for reconfiguration. While synthesizable HDL may be easily ported

from one configurable architecture to another, configuration interfaces vary across ar-

chitectures, necessitating redesign.

To address the difficulties in applying traditional design methodologies to RTR appli-

cations several researchers have proposed or implemented new methodologies targeting the

requirements of dynamic hardware.

Janus [5] was an early effort at a unified RTR application development environment cen-

tered around Java. Software for the host PC was written in Java while the hardware for the

multi-FPGA system was created from JHDL, a Java-based structural hardware description

language. JHDL was chosen after a previous attempt at a high-level language, GDL, en-

countered difficulty in solving multiple problems associated with HLL-to-gates synthesis [53].

Using the same environment for both hardware and software, Janus speeds development and

enables high-level simulation of hardware / software interaction. A configuration controller

residing on the host PC is automatically generated, managing the configurations of each

FPGA in the system.

Janus was created under the coprocessor paradigm in which the FPGA is essentially a

slave to an external host processor. Partial reconfiguration and dynamic scheduling are not

supported. For the attached coprocessor computational model the lack of partial reconfigu-

ration is not a limitation, although for embedded designs this omission would be an obstacle.

Janus did not gain acceptance owing largely to the choice of seldom-used and low-level JHDL

18

as a design language.

Eisenring and Platzner’s RTR Framework [54] describes a tool-independent design and

implementation methodology. The design is specified by a problem graph, an architecture

graph, and a mapping between the two. This formalism simplifies tool development. The

synchronous dataflow examples provided utilize three nodes types for design capture: task,

buffer, and dispatcher. Hierarchical configuration control is achieved through a separate

configurator node running on the host processor. The architecture graph specifies the target

device and may include processors, memories, buses, and FPGAs. A set of constraints

guide the allowable architecture graph to problem graph mappings. Like Janus, partial

reconfiguration is not supported and a host processor is required. As years have passed

since the initial description and no implementation has yet been described, it appears that

progress on this framework has ceased.

The PADReH framework [55] focuses solely on hardware development, defining an open

development flow permitting multiple methods of design capture, simulation, and partition-

ing to be used. Partial bitstream generation occurs within the Xilinx Modular Design Flow,

which is the only fully specified step in the framework. An example of a configurable in-

struction set processor was created. Little is provided to the designer in terms of tools or

abstractions.

Berkley’s Stream Computations Organized for Reconfigurable Execution (SCORE) project

[56] proposes an FPGA-like architecture. Multiple fine-grained reconfigurable regions on the

chip communicate through large First-In-First-Out (FIFO) buffers implemented in memory.

An on-chip processor can run traditional programs while managing the scheduling of the

reconfigurable arrays. Hardware pages can be swapped in and out of these regions dynam-

ically. Unlike an FPGA, these pages are location-independent. Applications, consisting of

a datapath and FSM, are described using TDF, an RTL-like hardware description language

created specifically for SCORE. Designed for extending an application’s depth by swapping

sequential pipeline stages in and out of hardware, SCORE can also extend an application’s

19

breath. In spite of the suitability of SCORE for streaming applications, no commercially

available devices exist.

Synthesis and Partitioning for Adaptive Reconfigurable Computing Systems (SPARCS)

[6] starts with a behavioral VHDL description of the application separated into tasks com-

municating through shared memory or direct connections. Temporal and spatial scheduling

occurs across multiple FPGAs. A high-level synthesis tool converts the behavioral descrip-

tion to RTL that is then processed with traditional tools.

The Caronte PR framework defines a high-level development environment targeting co-

processor applications [57]. Simulation of PR occurs is possible via SystemC, with design

entry via HDLs or Impulse C [58]. Caronte’s use of Impulse C differs from the work presented

in this paper in that Caronte merely uses Impulse C to produce HDL and not capture the

totality of the application including the configuration control. The bus-based communication

of Caronte limits its applicability to streaming applications.

The Institute for Software Integrated Systems (ISIS) describes a prototype model-integrated

design environment for dataflow applications [59]. ISIS focuses on constraint-driven devel-

opment and verification. Tools automatically apply user-specified constraints to prune the

design space. Co-simulation is provided for at multiple levels of abstraction. A complete

runtime environment is described linking the dynamic hardware modules to a software OS.

Design entry occurs via graphical tools linking to pre-described modules. The development

environment targets board-level designs comprised of heterogeneous computing elements

(FPGAs, DSPs, processors, etc.), limiting the utility for FPGA-centric applications. Partial

reconfiguration is not supported.

Luk et al. from Imperial College [60] describe a framework of tools supporting RTR for

the Xilinx XC6200 FPGA. The unique architecture of the XC6200 limits the applicability

of their work to modern FPGAs. Their modeling methodology involves using multiplexers

to select which module from a set is active at any one time. The multiplexer select lines are

then controlled by a FSM. If space is available on the FPGA, no reconfiguration is required,

20

with the multiplexers selecting which module is active.

More recent work from Imperial College is of particular relevance to this research. By

defining abstractions of low-level details, a HLL-based approach to RTR application devel-

opment is described [61]. A modified form of C, RT-C, captures the design behaviour at a

high-level, including configuration control. The RT-C is then translated into Handel-C [47],

a commercial C-to-gates synthesis tool. An implementation flow generates the required

configuration files, with configuration management handled by a host processor. The imple-

mentation flow, however, is based on JBits and therefore is limited to older architectures.

Also, a manual translation is required to go from the Handel-C generated HDL to JBits and

the resulting design is shackled to a host processor.

Brigham Young University developed a JHDL-based Reconfigurable Computing Applica-

tion Framework (RCAF) with the distinguishing feature that the framework, consisting of

control, communication, and debugging aids, is deployed in the finished product [62]. The

framework assumes a tight integration of the FPGA with a host processor running a con-

trolling Java program. While an excellent debugging and I/O platform, this framework does

little to facilitate the capture of configuration management or the incorporation of embedded

processors.

These previous projects, summarized in Table 2.1, all suffer from the major omission of

partial reconfiguration support. Additionally, most assume a model of external configuration

control, mandating the use of a host processor. For embedded application this requirement

is generally prohibitive. It is also interesting to note that no project has been extended, by

its authors or others, since its initial implementation. This is perhaps in part due to the

tight coupling of many of these frameworks to a specific architecture or design capture tool.

21

Project Design Entry Model of Architecture Limitations
Computation

Janus JHDL unspecified host + FPGA No partial RTR
Requires host

SCORE modified C dataflow custom Custom architecture
SPARCS behavioral HDL dataflow host + FPGA Requires macro library

No partial RTR
Eisenring’s dataflow graph dataflow host + FPGA Incomplete description

No partial RTR
Model-Integrated dataflow graph dataflow independent No partial RTR

Requires model library
RCAF JHDL unspecified host + FPGA No partial RTR

Requires host
Few abstractions

Imperial College library-based dataflow XC6200 Few abstractions
Imperial College RT-C dataflow limited by JBits Requires host

Manual translation
Caronte various co-processor embedded proc Limited automation
SystemC SystemC unspecified unspecified Simulaton only

Table 2.1: Previous RTR Development Environments

Chapter 3

Approach

The central contributions of this dissertation are tools and techniques for simplifying dynamic

hardware development. To this end, design abstractions supporting dynamic hardware in

streaming applications have been defined. Leveraging these models, tools have been de-

veloped that significantly reduce a dynamic hardware designer’s workload. Novel features

discussed in this chapter include the incorporation of partial reconfiguration, on-chip con-

figuration management, seamless integration of embedded processors, and a mechanism to

guarantee equivalence of high-level simulation and hardware execution.

The complete approach consists of an architecture-agnostic frontend design flow coupled

with an architecture-specific backend implementation flow. As shown in Figure 3.1, the

inputs to the design flow are a functional description of the application in a high-level

language. The design flow translate this specification into HDL and software along with

a special RTR Computing Specification Format (RCSF) file. All design flow outputs are

passed to the backend flow, the output of which are the required configuration bitstreams

for the FPGA. The interface between the design and implementation flows is neutral from

an architectural and design environment standpoint, permitting the direct porting of the

designs between architectures.

22

23

Design
Entry

Architecture-
Specific

Implementation

Frontend Design

Backend
Implementation

High Level
Specification

HDL SW
Reconfigurable

Computing
 Specification

Partial
Configuration

Bitstreams

Initial
Configuration
Bitstream +
Controller

Figure 3.1: Combined design and implementation flow.

This chapter first describes the models used to abstract computation, communication,

programming, and reconfiguration. Next, an explanation of the architecture-agnostic fron-

tend design flow is presented, followed by a description of the architecture-specific backend

implementation flow.

3.1 Models and Abstractions

Models and abstractions are important in hardware design, simplifying the design process

by limiting the design space, hiding low-level details, and facilitating verification. There is

a trade-off between the flexibility of a model and the design time. Less restrictive models

provide the designer with greater flexibility at the expense of increased design time to prune

the larger design space. For configurable computing, the models chosen for computation,

communication, and reconfiguration greatly affect the design difficulty.

24

A model of computation describes how computational elements are constructed and op-

erate. Common models of computation include Finite State Machines (FSMs), continuous

time, multi-threaded, and dataflow. Ideally the model should be selected to fit the applica-

tion. For example, FSMs are well suited for use as controllers while dataflow computation

accurately describes many signal processing problems. Models may be mixed; a datapath

controlled by an FSM is a commonly used computational model for hardware.

Communication models specify how data and control signals are exchanged between design

elements. For multi-threaded programming, common communication models are message

passing and shared memory. Hardware modules may communicate via direct connections,

buses, shared memory, and networks, among other methods. An improper selection of the

communication model can significantly impact performance.

The model of reconfiguration describes how reconfiguration is managed. Several previous

projects controlled FPGA configuration via an attached host processor. Other methods have

included hierarchical FSMs and network reconfiguration. The reconfiguration model affects

the types of applications that can benefit from RTR. For example, processor-controlled

reconfiguration permits complex configuration schedules that may tailor the circuits to the

environment at a much finer level than an FSM controller. However, this scheduling flexibility

comes at the expense of a processor.

The term programming model generally is applied only to software-programmable proces-

sors to describe the mechanisms and abstractions of which the programmer may make use.

The programming model describes how components (processors, threads, I/O, etc.) interact

from the programmer’s point of view. As this dissertation fully integrates embedded proces-

sors into RTR design, a programming model is required to interface these processors with

the dynamic hardware.

25

Packet DecryptorPacket Filter
From Network

Encrypted
Packets

To Secure
Application

Figure 3.2: Secure network streaming application.

3.1.1 Computation and Communication Models

The models of computation and communication were selected to favor the traditional appli-

cations of FPGAs, namely streaming applications. Streaming applications, consisting of a

repeatable schedule of computations operating on a steady flow of data, are typically found

in networking, signal processing, and cryptographic domains, all strong suits of configurable

logic. These applications generally benefit from low-overhead, high bandwidth communi-

cation channels and deep computational pipelines. Streaming applications are typically

decomposed into a pipeline of independent computational elements connected by unidirec-

tional data streams. These computational elements function concurrently to one another,

sharing no state or information except the data that is passed through streams. An example

of a streaming application is an encrypted network interface, a diagram of which is shown in

Figure 3.2. Packets from the network are first filtered with the encrypted payload streamed

to a decryption unit.

The focus on streaming applications limits the utility of this research to other arenas, such

as High Performance Computing (HPC) applications. Although there has been a resurgence

of interest in FPGAs in HPC, an economic analysis indicates that FPGAs are not yet cost

competitive with commodity processors for the floating point applications typical in HPC

[63].

Several computational and communication models can accurately describe streaming ap-

plications, including several dataflow flow models and the CSP model. In selecting an ap-

propriate model it was imperative that the actual functionality of hardware be captured. It

is desired that the model of computation be accepted by the design community, as demon-

26

strated by the availability of commercial development tools. An additional desirable trait is

that of determinism. For a fixed stream of input data, the output of the application should

be the identical regardless of the execution platform.

Kahn Process Networks (KPNs) are commonly used in DSP development environments

[64]. A KPN is a collection of concurrently executing processes that communicate via in-

finitely long unidirectional FIFO buffers. A write operation is non-blocking and always

succeeds while a read operation blocks until data is present in the FIFO. KPNs are, with a

few qualifications, provably deterministic.

A somewhat related model of computation is CSP [65]. Like KPNs, concurrently running

processes in CSP communicate over unidirectional FIFO streams. However, in CSP there is

no notion of an infinitely long FIFO buffer, with write operations blocking when the finite

storage in the FIFO buffer has been exhausted. Because of this, CSP more accurately models

hardware. With some qualifications, such as an infinite FIFO stream buffer, CSP can be

made equivalent to KPN.

Several development environments and languages support the CSP model, such as the

CoDeveloper toolset [48], the Occam programming language [66], Codetronix Mobius de-

velopment environment [67], and the FDR2 refinement checker [68]. Additionally, with few

exceptions, the many products that support dataflow models of computation such as KPN

can be utilized within the CSP model, including the Ptolomey modeling tools [69]. Tradi-

tional HDL design tools can also easily capture and implement streaming applications using

the CSP model, as has been demonstrated by the creation of CSP macros for Verilog [70].

For these reasons, CSP has been selected as the computational model for this dissertation.

CSP, as originally conceived, includes operators to describe non-deterministic behavior.

For the purposes of this dissertation these operators are not allowed. Determinism is a greatly

desired attribute, as it guarantees that the application will produce identical output across

various execution platforms; ensuring, for example, that the software simulation matches the

hardware implementation.

27

The implementation of the CSP application description is straightforward. Communica-

tion channels, or streams, can be created out of asynchronous FIFO buffers. These provide

a high-bandwidth, low-latency connection between concurrent processes with minimal com-

munication overhead. By using asynchronous FIFOs, processes can be clocked at different

rates, potentially increasing the overall throughput. The FIFO-based communication per-

mits easy integration with Xilinx embedded processors as both the Xilinx MicroBlaze soft

processor [71] and later versions of the PowerPC processor found on Xilinx FPGAs feature

Fast Simplex Link (FSL) interfaces that are nothing more than asynchronous FIFO buffers

linking the processor to peripherals.

3.1.2 Reconfiguration Model

A methodology for configuration control has been selected that is centered on the idea of

mutually exclusive modules. In this discussion it is assumed that a module is the hardware

implementation of a single process in the CSP model. The designer identifies a set of modules

that are mutually exclusive in that only one of the set’s members is active in hardware at

any one time, as shown in Figure 3.3. The figure describes a cryptographic application.

The user may need to decrypt data from a network interface using a variety of algorithms.

Leveraging the reconfigurability of the hardware, there is no need to implement in hardware

every possible algorithm that may be required. The figure shows a set of these mutually

exclusive cryptographic cores, of which only one will be resident in the dynamic hardware

at a time. Any module within this set may be selected for implementation, at which time

the configuration manager reconfigures the FPGA to swap in the selected module. During

reconfiguration modules reading from or writing to the process being swapped into hardware

will block until configuration is complete. This abstraction is similar the Swappable Logic

Unit of Brebner [20] and the dynamic hardware modeling scheme of Luk [21].

The FIFO-based communication model reduces the importance of placement on commu-

nication throughput. Increased communication latency resulting from a poor placement of

28

Decryption
CoreNetwork Interface Display

3DES

AES

Dynamic HardwareStatic Hardware Software

Figure 3.3: Mutually exclusive set of processes.

modules may be addressed by inserting additional storage elements in the communication

streams. This increases the throughput by introducing addition cycles of latency, mitigat-

ing the effects of a sub-optimal placement and permitting research-quality tools for module

placement to be utilized without a significant performance penalty.

This reconfiguration model enables the designer to utilize partial RTR to extend an ap-

plication’s breadth, by adding new functionality at runtime, or to extend an application’s

depth, by swapping pipelined application stages in and out of the device. It is left to the

designer to properly buffer results between the application stages.

3.1.3 Programming Model

Embedded software has become a integral part of many systems. For FPGA-based designs

embedded processors may perform critical control functions, interfacing the custom hard-

ware with the outside environment. While several previous RTR development environments

tightly integrate hardware and software design, these projects target systems with a dedicated

host processor separate from the FPGA. This system model is unable to address embedded

systems, where a separate host running a desktop operating system is not practical.

In this dissertation the programming model tightly integrates software with the dynamic

hardware through a low-latency message passing interface. The processor may directly com-

municate with the dynamic hardware via reads and writes to the FIFO-based data streams.

29

This approach, adopted by Williams and Bergman [72] in their uCLinux port to the MicroB-

laze soft processor, fully integrates processors into the CSP model. While this model limits

interactions between hardware and the processor to the passing of data, for the streaming

applications targeted in this dissertation the hardware control overhead is minimal with the

majority of communication between the processor and hardware being data-related.

In the event that a different communication model between hardware and software better

suits the application, the designer may break with the CSP model and utilize shared memory

or dedicated control signals.

3.2 Design Flow

The high-level design flow, shown in Figure 3.4, consists of a front-end high-level design entry

and synthesis environment accepting an HLL application description. High-level synthesis

techniques, using any development environment supporting the CSP computational model,

produce synthesizable HDL for implementation by the architecture-specific backend flow.

The inherit flexibility in the methodology permits the specific development environment to

be chosen to suit the application. For HPC applications an HLL-based environment, such

as the Impulse C-based CoDeveloper tools, may be used. For embedded, timing-critical

applications a library-based approach, such as found in Xilinx System Generator, may be

appropriate.

Though the development environment is not specified, the methodology does stipulate

that the environment permit high-level simulation and hardware / software partitioning.

Unlike some previous attempts, HW / SW partitioning is performed under user control, as

commercial-quality tools automating this partitioning are unavailable. When partitioning

methods are sufficiently mature they may be easily integrated into the framework. The

application developer may utilize profiling tools to identify critical tasks for implementation

in hardware.

30

HLL Design
Entry

High Level
Specification

HW / SW
Partitioning

High Level
Simulation

HW SW

High Level
Synthesis

HW

SWHDL

RTR Spec
Extraction

RTR
Computing

Spec

From Backend
(as required)

Figure 3.4: Design flow.

After partitioning, a high-level simulation, discussed below, is performed. The design is

then compiled to synthesizable HDL by the high-level synthesis tools.

3.2.1 Design Entry and Partitioning

The frontend design flow makes use of commercial-quality high-level development tools for

design entry. While this work utilizes Impulse C [48], any high-level development environ-

ment supporting the CSP model may be used, including AccelDSP [73] and System Gener-

ator [51]. Regardless of the specific environment used, the procedure is the same for design

entry.

Design entry begins by partitioning the high-level specifications into separate modules.

For the streaming applications targeted by this dissertation divisions between modules can

occur at the natural boundaries between different computations. This stage permits the de-

31

signer to identify parallelism and concurrency in the design. While other projects automate

this partitioning, a designer familiar with the application is generally better at extracting

high-level, coarse-grained parallelism than current algorithms. The high-speed, low-latency

FIFO-based communication between modules simplify this partitioning and permit the de-

signer to easily repartition without redesigning a communication scheme. Similarly, the CSP

communication model ensures correct synchronization between the modules regardless of the

chosen partitioning.

Hardware / Software partitioning is performed under direct designer control. In spite of

years of research [40], no commercially successful automated partitioning tools exist; though

tools, such as System C, do exist to investigate the effects of different partitioning schemes.

Streaming applications, unlike HPC applications, can be straightforward to partition. The

computational datapath is generally placed in hardware with control and interface functions

placed in software. For applications where the division between hardware and software is

less apparent, any software profiling tool may be used to assist the designer in locating code

appropriate for hardware implementation.

While a high-level design specification greatly simplifies application development, it also

reduces performance compared to hand-crafted hardware. For those cases where performance

is paramount, the hardware generated by the HLS tools may be augmented with hand-crafted

code in the implementation phase, with a simple behavioral model of the custom hardware

utilized for high-level simulation. The RTR Control Specification file can be easily edited to

add HDL or netlists generated from other sources.

3.2.2 Simulation

High-level simulation of an integrated HW / SW RTR application is an ability found only

in relatively few research projects, notably Janus [5]. By simulating the entire design early

in the design cycle functionality can be quickly verified and integration issues identified.

Furthermore, behavioral simulations run much faster than gate-level simulations, permitting

32

more thorough tests to be run.

The design flow specifies that high-level simulation be performed prior to HLS. Many

commercially available design environments facilitate this simulation. In Impulse C, for

example, simulation is performed by compiling the design with special simulation libraries.

When the result is executed, each CSP process is started as a separate software thread

communicating via blocking reads and writes to shared memory buffers.

In order for any simulation to be effective, the simulation must accurately model the real

world. For the case of RTL simulations this is accomplished by simulating the hardware

design at the register level. For high-level simulations, however, no hardware details are

present and only the functionality is modeled. The lack of lower-level details prevents any

high-level simulation from matching actual hardware on a clock cycle basis, as the simulator

in this case knows nothing about the clock. The best that a high-level simulation can

accomplish is to correctly model the system’s output for a given input sequence.

3.3 Implementation Flow

RTR modifications to the frontend design flow enable high-level simulation of designs. How-

ever, a backend implementation flow is required to actually create the architecture-specific

partial bitstreams required for RTR. Numerous previous projects have attempted to produce

a usable RTR implementation flow with limited success. These projects generally have taken

one of two forms: a modification of the Xilinx Modular Design Flow [74] or extension of the

low-level JBits tools [22].

Design flows based on JBits, while significantly more powerful than those using the Mod-

ular Design Flow, are limited to the older Xilinx devices that JBits supports. Because JBits

functions at such a low level, development time is significantly increased.

Projects that have targeted the Modular Design Flow have seen a limited lifetime as Xil-

33

inx’s support for partial reconfiguration has varied significantly with each version of their

implementation tools. Recent market trends towards SDR have prompted FPGA vendors to

finally support RTR as an integral part of their tools, simplifying development of reconfig-

urable hardware [9]. To mitigate the effects of modifications to the configuration architecture

or development tools, this dissertation clearly separates frontend design from backend imple-

mentation, permitting any RTR-capable backend implementation flow to be used with only

minor modifications to parse the RCSF file.

The backend implementation flow, shown in Figure 3.5, accepts HDL and software from

the frontend design phase. Commercial synthesis tools convert the HDL into a gate-level

netlist. Based on the size of the resulting modules, the design is area constrained and floor-

planned using tools developed for this dissertation. Vendor-supplied place and route and

timing analysis tools are then run to determine the maximum clock frequency for each mod-

ule. From these numbers and RTL simulation results, the throughput of the final design can

be calculated. If this performance is unacceptable three options exist. The implementation

flow can be repeated after reconstraining the design to provide critical modules with more

area or better placement. Alternatively, additional tasks may be moved into hardware by

repeating HW/SW partitioning in the frontend design flow. Finally, different implementa-

tions of the application, from an algorithmic level, may be attempted and the entire flow

repeated. The extreme automation of this approach permits a quick design cycle, facilitating

the comparison of a variety of implementations.

3.3.1 Reconfigurable Computing Specification Format

This methodology for capturing the design must include a format for specifying all aspects

of the design. In traditional static hardware design, several formats may be used, depending

on which stage of design is being performed. HDLs, such as Verilog and VHDL, capture the

behavior of the design and the flow of data between registers. Other formats, such as EDIF,

may be used to describe the gate-level netlists. Finally, an architecture-specific bitstream file

34

RTR Computing
Spec

Synthesis

Placement /
Area

Constraints

HDL

Netlist

Place
&

Route

Controller
Generation

Unacceptable
Timing

Repeat HW/SW
Partitioning

SW Insertion /
System

Integration

Bitstreams

SW

Partial
Bitstreams

Full Initial
Bitstream

Figure 3.5: Architecture-specific implementation flow.

stores the configuration data for the device. Additional files are required for implementation.

At the very least the design’s inputs and outputs must be constrained to specific pins on the

actual device.

For an RTR application, there are aspects to the design that cannot be specified easily

using these traditional formats. The HDL-focused methodologies, with their ASIC roots,

treat the hardware as static and include no provisions for describing dynamic modules or

connections. The Xilinx partial reconfiguration flow [74] uses HDLs to capture the design of

each module and the connections between them. To describe dynamic hardware the Xilinx

implementation flow permits multiple modules, each with the same name and connections,

to be created in such a way that there are interchangeable in the final design.

There are several severe limitations with the Xilinx approach. No format exists for cap-

turing the list of dynamic modules. Configuration management is completely unspecified,

with the designer forced to develop his or her own scheme. These omissions force designers

35

to develop their own implementation methodologies and design capture formats, increas-

ing design effort and inhibiting the exchange of designs. Finally, dynamic modification of

wiring cannot be specified. As the Xilinx flow provides no method for modifying connec-

tions between modules, this is not a big limitation, though research is attempting to change

this [75] [76] [77].

Previous projects have created their own methods for capturing the RTR-specific require-

ments. In general these formats have not been published or, where they are available, are

not suited to other development environments. This dissertation addresses the deficiencies

in existing work by developing a flexible file format, the RCSF, capturing the architecture-

agnostic design details in a single, easy to understand format. The intention is to free the

designer from a single development environment or device architecture. The RCSF will serve

as the interface between the frontend design flow and the backend implementation flow. As

the format should permit exchange of designs across different devices and architectures some

board-level requirements will also be captured.

The following design information that is currently not captured in other files will be

specified by the RCSF:

• List of dynamic modules, including connections.

• Location of files describing each module, along with the file format.

• List of embedded processors, including connections to other modules.

• Location of software for each processor.

• Architecture-independent configuration control information.

3.3.2 Configuration Management

A control mechanism is required to manage reconfiguration as none is present on an FPGA.

This controller must determine when to reconfigure the device, fetch the appropriate bit-

36

streams from external storage, and interface with the internal configuration port to perform

the reconfiguration. During reconfiguration the logic under reconfiguration will be in an un-

known state, potentially producing bogus outputs that may affect active logic. A mechanism

for isolating the modules as they undergo reconfiguration must exist. For complex designs

reconfiguration may need to be managed by software. As the configuration architecture

varies across FPGA families, an architecture-independent method for describing configura-

tion management is required to permit easy porting of applications.

3.4 Verification

Design verification is a well developed field for ASICs, where a single logic error can cost

millions of dollars. A host of tools exist to verify the final design against the original speci-

fication, ensuring that the desired functionality was preserved by the tools.

In FPGAs design verification tools are not as widely used, as bugs found in hardware

testing do not incur the large time and financial penalties that ASICs face. The addition

of RTR and HLS add design dimensions that complicate traditional hardware testing and

debugging. The benefits of this dissertation are lessened if a designer must spend hours

debugging an ICAP controller or HLS-generated HDL.

While beyond the scope of this work, techniques have been identified to automate the

verification of hardware created by this development environment. This include:

• Automatic creation of an HDL testbench from the designer’s HLL testbench.

• Use of the configuration backplane to monitor the FIFO streams connecting modules.

In the CSP model, the communication between processes is deterministic and synchro-

nized, making them excellent points for comparing the hardware to simulated HDL

and HLL results.

• Leverage and extension of tools from a related project [77] for verification of partial

37

bitstreams.

The goal of these techniques is to provide verification of the results of each step in the

design flow to the previous one. These concepts are discussed more fully in Section 7.

3.5 Reconfiguration Synchronization

Designs based on the KPN and CSP computational domains can, with a few restrictions,

be completely deterministic in nature. The rendezvous nature of communication provides

synchronization in the absence of a clock. Determinism ensures that any simulation or im-

plementation of the design will produce the same output for a given input. Unfortunately,

the addition of reconfiguration can destroy this determinism if no mechanism exists to syn-

chronize reconfiguration with communication.

Consider, for example, the system shown in Figure 3.6, consisting of an input stream that

attaches, via a fork operation, to both a configuration controller and a reconfigurable set of

operators. The fork module merely copies the single input stream to two output streams.

Suppose the configuration controller is programmed to swap from the Left Shift process to

the Right Shift module if the input exceeds a threshold of 255. Assume that the input is

composed of the stream of numbers {2, 8, 256, 32}. The fork process presents this stream of

numbers simultaneously to the controller and Left Shift which process new inputs in parallel.

Due to the asynchronous nature of computation in the CSP domain, there is no certainty

which process, the controller or the left shift, will complete first. This leads to three possible

system output streams.

If both processes read an input value with the controller analyzing the input and initiating

a reconfiguration before Left Shift has computed its result, the system’s output would be

{4, 16, 16}. The input value of 256 would be lost when the Left Shift was removed from the

hardware.

38

Operators

Left Shift

Right Shift

Configuration
Controller

Fork

Output

Input

Figure 3.6: System with indeterminant output.

If, however, Left Shift operation completes prior to the controller initiating reconfigu-

ration, the system’s output would be {4, 16, 512, 16}. The input value of 256 would be

doubled, possibly contrary to the designer’s intent.

Finally, if the controller initiated reconfiguration before Left Shift read its data from the

stream, the system’s output would be {4, 16, 128, 16}. To complicate matters, this behavior

could differ between runs, whether in hardware or software simulation.

It can be argued that for many applications this infrequent and brief indeterminacy is

acceptable. In an SDR application the slight delay in reconfiguration or the loss of a small

number of data samples might be acceptable for voice communications. However, in certain

applications, such as network processing or cryptography, it is desirable to have guarantees

concerning the correctness of the system’s output at all times.

To provide determinacy, reconfiguration must be linked to communication, as in the CSP

domain communication between processes is the only source of synchronization. Therefore

to ensure determinacy in this scheme the configuration controller has a dedicated stream to

each reconfigurable set, acting as a back channel for synchronizing processes. This is shown

for the case of a single reconfigurable set in Figure 3.7.

The reconfigurable set reads from this Reconfig stream before it reads from its other

39

Set Wrapper

Process 1

Process 2

Configuration
Controller

Fork

Output

Input Reconfig

Figure 3.7: Synchronized system with deterministic output.

inputs. If a reconfiguration is required the set halts. The configuration controller blocks until

the set has read from the Reconfig stream, reconfiguring the device as needed afterwards.

This ensures that reconfiguration occurs repeatedly at the same time, relative to the incoming

data stream, in both software simulation and hardware implementation.

The configuration controller will often reside on an embedded processor, taking several

cycles to determine if a reconfiguration is required. If the controller must communicate a

reconfiguration decision to the reconfigurable set with every input sample, the reconfigurable

set will be forced to run at a much reduced rate. As the actual action of partially reconfiguring

an FPGA takes a large number of clock cycles, the penalty for producing a reconfiguration

decision every N input samples instead is minor. The actual value of N is set by the

designer, possibly taking advantage of natural breaks in the input stream as would occur

between packets in a packet-based system or frames in video processing.

To further reduce the data processing required by the controller, the Fork process in

Figure 3.7 can reduce the rate at which data enters the controller by passing the controller

a single sample for every L samples passed to the set wrapper. This data reduction can also

represent the effect of preprocessing on the controller’s data stream.

Though CSP can provide a valid description of the synchronization scheme, the use of

40

Fork

Set

Control

N

M 1

1
1

L
L

N

Figure 3.8: Synchronous Data Flow description of configuration control.

Synchronous Data Flow (SDF) techniques facilitate the derivation of the conditions necessary

to prevent deadlock. In SDF, each process, or node, waits until all required data is available

on its inputs before performing its computation, or firing [78].

Unlike CSP, the channels in SDF are considered to be FIFO buffers of limitless depth. To

ensure that a physical implementation using fixed-depth buffers is possible, an analysis can be

performed to verify that each process’s sample rate is consistent. That is, the production and

consumption rates of all processes in the circuit are such that the data residing in the buffers

between processes does not grow with time. With consistent sample rates implementation

is possible with limited-size FIFOs. This is equivalent to preventing deadlock in the CSP

domain, as CSP processes block when any output channel’s buffer is full.

Shown in Figure 3.8 is the synchronization scheme drawn as a data flow graph. The labels

on each arc represent the number of data values, or tokens, produced or consumed at each

firing of the node. There are three variables in this circuit:

• N , the number of tokens the set accepts before querying the configuration controller,

• M , the number of tokens the configuration controller accepts before communicating

its reconfiguration decision, and

• L, the number of tokens consumed by a set for each data sample consumed by the

controller.

41

The SDF graph of Figure 3.8 can be expressed as a topology matrix, with a row for each

arc in the circuit and a column for each node. The (i, j)th entry in this matrix is the number

of data tokens consumed (if negative), or produced (if positive) by node j on arc i at each

firing of the node. For this synchronization circuit the topology matrix, T , is given by:

L −N 0

1 0 −M

0 −1 1

In order for the sample rates of the nodes in this circuit to be consistent, it is necessary

that the rank of the topology matrix T equal one less than the number of nodes [78]. The

rank of a matrix is the number of linearly independent rows or columns. It is apparent by

inspection that the second and third rows of T are independent. To ensure consistent sample

rates, values for L, N , and M must be found such that the first row is a linear combination

of the other two.

Considering each row as a column vector, a relationship between the three variables must

be found such that:

c1

1

0

−M

 + c2

0

−1

1

 =

L

−N

0

Readily apparent from the above equation, c1 must equal L and c2 must equal N . With

these relations in hand, the problem becomes finding a relationship between L, M , and N

that satisfies the bottom equation:

−M ∗ c1 + c2 = 0

Inserting the values for c1 and c2 found above, the required relationship becomes evident.

42

−ML + N = 0

N = LM

When N = LM , the rank of the circuit’s topology matrix is two, ensuring consistent

sample rates and verifying the absence of deadlock in a physical implementation with CSP

communication.

In this configuration scheme, any internal state, including pipeline state, of the recon-

figurable process is lost when a reconfiguration is performed. For many applications this is

likely to be acceptable but situations do exist, such as in cryptography, where the internal

state of a process’s pipeline should be recovered prior to reconfiguration.

To recover the data still in a process’s pipeline before reconfiguration, counters are added

to the set’s inputs and outputs, as shown in Figure 3.9. When the control stream issues a

reconfiguration command, the set’s inputs are fed zeros until the pipeline is flushed. Logic

added to the set determines when the flushing is complete by comparing the input counter

to the output counter. For processes that produce an output for every input, these counters

will differ by the pipeline depth. For more complex processes (cryptographic hash functions,

decimating filters, etc.) that consume multiple input values before producing a single output,

the designer specifies the ratio of input samples consumed to outputs produced. This infor-

mation is used by the set’s wrapper to determine when the process has completed flushing.

Once the data in the pipeline has been completely flushed, the process’s outputs are disabled

in preparation for reconfiguration.

When a reconfiguration is indicated via the Reconfig stream, the reconfigurable process

is, in effect, disconnected from the incoming data stream, permitting the process to consume

zeros as quickly as it can to flush its pipeline. Thus all synchronization between the set

wrapper the configuration controller is lost. As the controller must wait until the reconfig-

urable process has flushed its state before performing a reconfiguration or risk losing pipeline

43

Counter
CounterReconfigurable

Process

0

Set Controller

0

Input

Output

Reconfigure

Figure 3.9: Pipeline flushing scheme.

state, some additional mechanism is required to notify the configuration controller that the

process has completed flushing its state.

It is possible for the reconfigurable process to, in effect, peek inside the Reconfig stream

to see if a reconfiguration had been requested, allowing the reconfigurable process to flush

its state before the actual read of the Reconfig stream. This is possible because typical

hardware implementations of FIFOs provide as outputs status signals regarding the existence

of data in the queue as well as the actual data value at the top of the queue. The set wrapper

can therefore look ahead to determine if a reconfiguration event is at the top of the queue

and, if required, flush its pipeline state before acknowledging the reconfiguration request by

reading from the queue.

The synchronization scheme with the pipeline flushing enhancements can also be for-

malized using the CSP language. Communication in CSP occurs through point-to-point,

unidirectional channels. Figure 3.10 shows two processes, O and P , connected by a single

channel, c. Assuming that O does nothing but write to the channel and process P does

nothing but read from the channel, the processes can be expressed as

O = c!x→ O

P = c?x→ P

44

P Tc

Figure 3.10: Two processes sharing single channel.

P

Q R

c!yc!x

Figure 3.11: Process transition diagram.

with ! indicating transmission of x and ? indicating reception of x.

Development environments using the CSP model of computation do not permit processes

to be swapped out during run-time. CSP, however, does permit a process to change its

behavior as a result of communication with its environment using the choice operator, |.

For example, a process, P , that behaves like process Q after receiving x from channel c or

behaves like process R after receiving y is given by

P = (c?x→ Q) | (c?y → R)

A graphical representation of this can be seen in Figure 3.11.

To describe the reconfiguration synchronization scheme in terms of CSP, each set of

reconfigurable processes is treated as a single process that can take on the behavior of any

process in the set in response to communication from the configuration controller. The

processes within the set behave as normal, with the exception that after every N input

samples the process polls the reconfiguration stream to determine if a reconfiguration is

requested.

45

The equations that follow describe the system presented in Figure 3.12. The reconfig-

urable set, SET , has two channels, set in and set out, for processing data and one channel,

Reconfig, for interfacing with the configuration controller CONTROL. SET implements

P or Q when 0 or 1, respectively, is received on channel Reconfig.

SET = (Reconfig?0→ P) | (Reconfig?1→ Q) (3.1)

Either process will return to implementing SET after N input samples have been pro-

cessed so that SET can communicate with CONTROL.

P =set in?x1 → set out!fP (x1)→ set in?x2 → set out!fP (x2)→ ...

→ set in?xN → set out!fP (xN)→ SET (3.2)

Q =set in?x1 → set out!fQ(x1)→ set in?x2 → set out!fQ(x2)→ ...

→ set in?xN → set out!fQ(xN)→ SET (3.3)

CONTROL also processes inputs on its channel control in. After collecting M sam-

ples, CONTROL makes a decision as to which reconfigurable process should be running,

communicating this decision to SET via channel Reconfig.

CONTROL =control in?x1 → ...→ control in?xM

→ Reconfig!f(x1, ..., xM)→ CONTROL (3.4)

While not a required component of a system, FORK has been defined to formalize the

46

SET

CONTROL

set_outset_in

control_in

ReconfigFORK
samples

Figure 3.12: CSP description of reconfiguration synchronization scheme.

case where SET and CONTROL process their input channels at different rates. FORK

feeds every input it receives to SET and every Lth input to CONTROL.

FORK =samples?x1 → set in!x1 → ...

→ samples?xL → set in!xL → control in!xL → FORK (3.5)

In CSP, parallel execution of processes is indicated with the || operator. Processes execut-

ing in parallel synchronize to each other on events that are common to their alphabets. In

SY STEM these common events are comprised of communication over the shared channels.

SY STEM = (FORK || SET || CONTROL) (3.6)

While the absence of deadlock was proven using SDF, another concern of multi-process

systems is livelock. Livelock occurs when two processes continually react to one another,

making no progress in computations but continuing to execute. A common analogy for

livelock is two people heading towards each other in a hallway. If both continual move

towards the same wall at the same time to avoid the other, neither will make any headway.

Instead, both persons will be continually moving from one wall to the other.

47

In the case of SY STEM livelock is not possible as, with one exception, the processes do

not react to each other. The sole exception concerns the response of SET to a reconfiguration

command from CONTROL. Though SET does react to CONTROL by swapping the

executing process, CONTROL is incapable of modifying its behavior in response to SET .

3.6 Use Model

Identification of the end user is an important step in the creation of any design tool. While

many in the HLS community target software programmers or scientific computing users as

end users, a lack of standards and tool immaturity generally prevent a novice in hardware

design from developing useful hardware applications. Few standards exist among FPGA

board vendors to support the seamless porting of applications, requiring the user to create

the interface logic between an FPGA and its peripherals in an HDL. Though a few HPC

platforms integrate an FPGA with a processor, allowing HLS tool vendors to provide a

complete end-to-end flow for targeted system, these integrated systems are not suitable for

embedded applications.

Furthermore, as discussed in Chapter 5 and in [48], while current HLL-to-gates tools do

accept as input code written in a standard HLL, the process of writing code in C for execution

on a processor is different from writing C to be synthesized to hardware. Specifically, while

the ability to code in C instead of HDL significantly increases productivity, the designer

must think in terms of the hardware to be generated.

The tools and techniques presented in this dissertation, while raising the level of abstrac-

tion of dynamic hardware design, are hindered by these limitations in the current generation

of HLS tools. As such, the targeted end user in this work is a hardware designer.

While the developed tools specifically target dynamic hardware development, the envi-

ronment can be used to support a variety of other use models.

48

• Multiprocessor System Design

Single-chip multi-processing is an area currently receiving great interest from indus-

try and academia. Multi-processor designs are becoming the norm in many domains,

including desktop, server, and embedded computing. FPGAs are an excellent imple-

mentation platform for multi-processor system owing to their inherit flexibility and the

maturity of the soft-core processors offered by the FPGA vendors.

The Xilinx MicroBlaze soft-core processor is small enough that a dozen or more pro-

cessors to be placed even on the smaller FPGAs [79]. In the standard tool flow, system

creation is accomplished through the Xilinx Embedded Development Kit (EDK). From

within a GUI the designer can add peripherals, customize the processor, and compile

software. However, the EDKs flexibility can be a detriment to the rapid creation of

multi-processor systems. Each processor in the system must manually be connected

to the system, as well as any peripherals the processors require. Finally, the devel-

oper must decide on a communication scheme (shared memory, direct connection) and

create a software API to support the selected scheme.

In contrast to the many steps required to implement a multi-processor system in the

Xilinx EDK, this dissertation’s development flow inherently supports multi-processor

creation from an Impulse C description. Each CSP process in the design can be flagged

for software implementation, resulting in the automatic generation and programming

of a multiprocessor system.

• Mixed-IP Design

Given the NRE costs of IP development, companies attempt to reuse existing IP wher-

ever possible. While HLL-to-gates tools facilitate the rapid creation of hardware IP, the

performance is not on par with IP created by an experienced hardware designer [52].

For many applications the reduced time-to-market and lower development costs pro-

vided by these HLL-to-gates tools outweigh the performance penalties. However, if

superior IP exists a method for integrating IP into the development flow is required.

49

The tools created for this dissertation greatly simplify the addition of existing IP. To

facilitate high-level simulation and integration, the designer describes the existing IP

in a HLL, possible porting existing simulation code. The high-level simulations will

then correctly model the final system. After the frontend tool flow has been run the

designer simply edits the RCSF file to point to the synthesized netlist of the existing

IP. The implementation flow will then pull the existing IP into the system.

• Rapid Prototyping of Static Designs

HLS tools, such as Impulse C, facilitate the rapid prototyping of static hardware in

FPGAs. However, for common cases these tools do not automatically produce an

implementable design. Impulse C, for example, creates a design description in synthe-

sizable HDL, requiring the application developer to integrate this hardware with his

or her system before implementing the designs outside of the Impulse C environment.

For a few supported platforms HLS tools may go further and automate the integra-

tion of the generated hardware with the platform, though bitstream creation is still

the user’s concern. In contrast, this work’s development flow automates all stages of

system implementation, including system integration and bitstream creation.

Building flexibility into the development environment is key to incorporating multiple

use models into a single environment. Stable and known interfaces into the different stages

of the development flow enable a user to see the environment as an unconstrained, multi-

purpose tool that facilitates design exploration. For this reason the implementation of this

methodology utilized a modular approach with defined, human-readable exchange formats

between components.

The methodology discussed in this chapter provides abstractions and techniques that

facilitate the rapid creation of dynamically reconfigurable hardware. While this methodology

is applicable to a variety of design entry environments, an implementation of these ideas using

the Impulse C language allows the pros and cons to be quantified.

Chapter 4

Implementation

The previous chapter described the approach to simplifying dynamic hardware development.

The actual implementation of this approach is the focus of this chapter. While the com-

mercial HLS tools perform the generation of the HDL from an HLL, much work remains

to be done to produce a deployable design. Tools created or modified for this dissertation

enable high-level simulation of dynamic hardware, floorplan the design, create a clocking

scheme, insert a configuration controller, generate partial bitstreams using Xilinx tools, and

package the bitstreams in a simple file system for retrieval at run-time. The complete tool

flow integrates more than a dozen tools into a single, automated flow.

This chapter begins with a discussion of the design capture methodology, including the

language extensions defined in this dissertation to describe partial reconfiguration. The

results of the tool flow are then described, followed by an overview of each tool and file

format created for this dissertation.

50

51

4.1 Design Capture

While many HLS development environments exist, Impulse C was selected as the design entry

format owing to the suitability of its CSP-based model of computation and the availability

of tools and source code.

Impulse C [48] is an ANSI C-based language utilizing the same stream and process ab-

stractions as Los Alamos National Lab’s Streams-C work [43]. Based on the CSP model,

Impulse C permits the application developer to describe hardware using a large subset of

ANSI C.

Figure 4.1 illustrates a simple SDR application described in Impulse C. The developer first

decomposes the application into concurrently running processes connected by FIFO-based

streams. A process is defined as a standard C function, called the process’s run function,

which accepts a special stream data type as arguments. Calls to the Impulse C functions

co stream read and co stream write read from or write to a stream’s FIFO buffer, respec-

tively. These are blocking function calls, in sticking with the CSP communication model,

with writes blocking until the destination is ready to accept data and reads blocking until

data is available.

The connectivity between processes is specified by the application’s configuration function.

The configuration function also assigns processes to hardware or software implementation.

As Impulse C is ANSI C compliant, a main() function exists. When compiled against the

Impulse C simulation library, an executable is produced that simulates the application’s

behavior by spinning off each process’s run function as a separate thread. When compiled to

hardware using the CoDeveloper toolset, any process marked for hardware implementation

is compiled to HDL and wrapped in a interface of the user’s choosing.

While the Impulse C tools provide an excellent high-level development environment for

FPGA applications, no provisions exist for describing dynamic hardware. Through the

addition of new functions and slight modifications to the behavior of the existing tools, the

52

void processor (co_stream in)
{
...
 co_stream_read(in, &data, sizeof(int));
 // Filter
 co_stream_write(out, &result, sizeof(int));
...
}

void Demod (co_stream in, co_stream out)
{
...
 co_stream_read(in, &data, sizeof(int));
 // Filter
 co_stream_write(out, &result, sizeof(int));
...
}

void FIR (co_stream in, co_stream out)
{
...
 co_stream_read(in, &data, sizeof(int));
 // Filter
 co_stream_write(out, &result, sizeof(int));
...
}

void config_SDR (void)
{
 // Declare processes and streams
 co_process demodProc, firProc, swProc;
 co_stream rf, filtered, baseband;

 // Create streams
 rf = co_stream_create(“rf”, DEPTH, WIDTH);
...

 // Instantiate and connect processes
 firProc = co_process_create(“firProc”,
 (co_function) FIR, 2, rf, filtered);
...
 // Assign processes to HW implementation
 co_process_config(firProc, co_loc, PE0);
...
}

// Include Impulse C simulation library
#include “co.h”

R
un

 F
un

ct
io

ns
C

on
fig

ur
at

io
n

Fu
nc

tio
n

firProc
FIR Run Fns

demodProc
Demod Run Fns

swProc
processor Run Fns

filtered
stream

rf
stream

baseband
stream

int main(int argc, char *argv[])
{
...
 co_execute(myArchitecture);
...
}S

im
ul

at
io

n
S

et
up

Figure 4.1: Example Impulse C application.

53

Impulse C language becomes a powerful development framework for dynamic reconfiguration

of FPGA hardware.

Modifications to the CoDeveloper simulation library and corresponding extensions to Im-

pulse C have been made permitting dynamic hardware to be simulated at a high level 1. This

modified language is referred to as DR Impulse C, highlighting its Dynamic Reconfiguration

(DR) ability.

The Impulse C simulation library stores all information concerning the system’s architec-

ture in a data structure called the arch. The modifications to the simulation library involve

extending this data structure to include information about the reconfigurable processes. Im-

pulse C simulations are multi-threaded in nature. Each concurrently-running CSP process

occupies a separate thread. Communication occurs through writes and reads to shared cir-

cular buffers in memory. Semaphores are used to correctly synchronize the communicating

threads. To describe dynamic hardware a method for stopping running threads was devel-

oped that involves status flags added to the data structure describing each process. When a

process attempts communication via co stream read and co stream write functions, the

modified functions first check the process’s status flag to verify that the process is still active.

If the process has been stopped, the modified code safely kills the thread.

To describe RTR applications in DR Impulse C, the programmer defines sets of mutually

exclusive Impulse C processes. Figure 4.2 highlights the language extensions in the context

of the SDR application. The demodulation scheme can be swapped at run-time, as directed

by a software configuration manager process. New functions are utilized to create a set of

reconfigurable processes (co reconfig create) and select a new dynamic process to execute

in hardware (co architecture config). Chapter 5 demonstrates the use of these language

extensions for a variety of applications.

1Through an agreement with Impulse Accelerated Technologies, Inc., the CoDeveloper Impulse C appli-

cation development environment has been obtained, along with the source code to the Impulse C simulation

library.

54

void FIR (co_stream in, co_stream out)
{
...
 co_stream_read(in, &data, sizeof(int));
 // Filter
 co_stream_write(out, &result, sizeof(int));
...
}

void demodFm (co_stream in, co_stream out)
{
...
 co_stream_read(in, &data, sizeof(int));
 // Filter
 co_stream_write(out, &result, sizeof(int));
...
}

void demodAm (co_stream in, co_stream out)
{
...
 co_stream_read(in, &data, sizeof(int));
 // Filter
 co_stream_write(out, &result, sizeof(int));
...
}

void processor (co_stream in)
{
...
 co_stream_read(in, &data, sizeof(int));

 co_architecture_reconfig(“demodSet”,
 “demodAmProc”);
...
}

void config_SDR (void)
{
 // Declare processes, streams, and sets
 co_process demodAmProc, demodFmProc;
 co_process firProc, swProc;
 co_stream rf, filtered, baseband;
 co_reconfig demodSet;

 // Create streams
 rf = co_stream_create(“rf”, DEPTH, WIDTH);
...

 // Instantiate and connect processes
 demodAmProc = co_process_create(“demodAmProc”,
 (co_function) demodAm, 2, filtered,
 baseband);
 demodFmProc = co_process_create(“demodFmProc”,
 (co_function) demodFm, 2, filtered,
 baseband);
...
 // Assign processes to Sets
 co_reconfig_create(demodSet, 2, demodAmProc,
 demodFmProc);
}

// Include Impulse C simulation library
#include “co.h”

R
un

 F
un

ct
io

ns
C

on
fig

ur
at

io
n

Fu
nc

tio
n

firProc
FIR Run Fns

swProc
processor Run Fns

filtered
stream

rf
stream

baseband
stream

demodAmProc
demodAm Run

Fns

demodAmProc
demodAm Run

Fns

demodSet
(demodAmProc,
demodFmProc)

Figure 4.2: Example DR Impulse C application.

55

swProc

FPGA

ICAP

External
Memory

Lookup
Table

AM
bitfile

FM
bitfile

MicroBlaze
UART

I/O

firProc

ADC
I/F

rf

filtered

PR
Control

AM
Demod

bb

ADC

Bus Macro
enable

PR reset

DCMs

Clock

To modules

FSL

Bus
Macro

Control /
Clock

Legend

Figure 4.3: Final design implementation.

4.2 Produced Design

Working solely from the application designer’s DR Impulse code and a Board Support Pack-

age, the automated flow produces a bitstream ready for FPGA programming, along with a

memory image containing the partial bitstreams and the scripts required to load both onto

the target platform.

Figure 4.3 presents an example implementation, based on the SDR application presented

in the previous section. In this example an Analog-to-Digital Converter (ADC) supplies

data samples to an FIR filter, which in turn feeds a demodulator module. The demodulator

module may be dynamically reconfigured to support either AM or FM waveforms. All data

in the design are communicated using the FIFO-based Fast Simplex Link (FSL), supporting

asynchronous reads and writes.

Several important aspects of this dissertation are presented in Figure 4.3. The Partially

Reconfigurable (PR) module in the figure has been area constrained to a specific location

of the FPGA by the Floorplanner tool. All non-reconfigurable modules are unconstrained,

56

permitting the Xilinx tools to choose their optimum locations.

All non-clock signals crossing the boundary between the static and PR regions must pass

through a bus macro. During the actual reconfiguration process the logic internal to the

region undergoing PR is in an undefined state. To stop the internal logic from producing

random outputs that affect the reset of the system, the bus macro on the output of a PR

region can be disabled. The tool flow automatically creates a PR Control module for each PR

region that disables the bus macros before reconfiguration and places any newly reconfigured

module into a known, good state by toggling the module’s reset line.

Control of partial reconfiguration is handled by a MicroBlazed-based system running

the user’s control code. When a co architecture reconfig instruction is encountered

the MicroBlaze reads a Look-Up Table (LUT) from an external storage device. This LUT

contains a list of all partial bitstreams and their locations in external storage. Once the

correct bitstream has been found, the MicroBlaze disables the bus macros on the PR module

and streams the partial bitstream to the ICAP. When complete the PR module is reset and

the bus macros enabled.

CSP permits each process to run at its own speed. To replicate this in hardware, each

process receives its own clock, subject to resource availability. The FSL connections between

processes are implemented as asynchronous FIFOs to enable cross-clock domain communi-

cation. The clocking structure is automatically generated using timing estimates from the

synthesis tool.

4.3 Tools

The complete tool flow is tied together using Make, a dependency tracking utility commonly

used in software development projects to automate the building of applications [80]. Com-

mands for generating each file, as well as the dependencies between files, are expressed in a

Makefile that is passed to the Make utility. By only regenerating files whose dependencies

57

HEADER FILE = img.h

HARDWARE FILE = img hw.c

SOFTWARE FILE = img sw.c

ARCH NAME = img

BSP = ../bsps/memec/memec.xml

Figure 4.4: Project Makefile.

have changed since the last build, Make speeds the building process. Though not shown

in Figure 4.5 or Figure 4.10, Make encompasses both the frontend and backend flows, from

HLL simulation to FPGA programming.

The designer edits a local project makefile shown in Figure 4.4, providing a link to the

input files and specifying the target architecture’s Board Support Package (BSP) for imple-

mentation. This local project makefile is read by the main Makefile. These are the only

settings a user need provide the flow.

4.3.1 Frontend

As discussed above, Impulse C was selected as the design capture language. The CoDeveloper

toolset compiles Impulse C to synthesizable HDL. Extensions to Impulse C created for this

dissertation permit Dynamically Reconfigurable (DR) hardware to be described from an

HLL. This modified language is called DR Impulse C.

The frontend flow, shown in detail in Figure 4.5, consists of the CoDeveloper Toolset

for generating HDL from an HLL, the Preprocess script for creating the Reconfigurable

Computing Specification Format (RCSF) file, and the GCC compiler for creating a simulation

executable.

The Preprocess tool prepares the DR Impulse C code for compilation by the CoDeveloper

tools. The extensions to Impulse C implemented in this dissertation are not recognized by

the CoDeveloper tools. As shown in Figure 4.6, the Preprocess script parses the designers

DR Impulse C code, converting it into the generic Impulse C code that the CoDeveloper tools

58

Preprocess

CoDeveloper
(Impulse Accelerated)

CoDeveloper
Projects

XML C

DR Impulse C

Fr
on
te
nd

HDL

gcc
(GNU)

Simulation
Exe

Simulation
Library

To Backend Flow

Tools created by this project

Commercial tools

Figure 4.5: Frontend Tool Flow.

understand by dividing the DR Impulse C project into a series of Impulse C projects, one

for each CSP process in the design. Each CSP hardware process is then taken through the

CoDeveloper compilation step individually. Software processes in the project are converted

to ANSI C suitable for compilation for the target processor. This modularization of the

design facilitates IP reuse and design modifications further downstream in the flow.

The Preprocess script also generates an XML description of the design in the RCSF. This

XML description, discussed in the next section, is human-readable and contains only the es-

sential, architecture-agnostic information for the design. By editing this file additional IP can

be added to the design, permitting different component implementations to be substituted

according to the specific implementation requirements.

4.3.2 Design Exchange

To permit seamless porting of applications between platforms, the architecture-agnostic fron-

tend flow is decoupled from the architecture-specific backend flow. The backend flow accepts

59

void filter(co_stream input,...)
{
...
}
void demod(co_stream input,...)
{
...
}
void processor(co_stream out,...)
{
...
}

DR Impulse C Project

Preprocess
Tool

void demod(...)
{
...
}void filter(...)

{
...
}

Impulse C Projects
One for each HW process

<<?xml version="1.0" ?>
<project name="x2p_arch">
...
</project>

RCSF
Describes connectivity

and reconfiguration

CoDeveloper
Toolset

module fsl_demod()
...
endmodulemodule fsl_filter()

...
endmodule

//processor1 code
void main(void)
{
...
}

//processor0 code
void main(void)
{
...
}

SW
ANSI C, One file per
embedded processor

HDL
One module per

hardware process

Figure 4.6: Preprocess usage.

the outputs of the frontend flow (HDL, C code, and RCSF) as well as a BSP describing the

target platform.

This dissertation utilizes XML as the mechanism for capturing architecture-agnostic in-

formation about a design in the Reconfigurable Computing Specification Format (RCSF).

The XML listing shown in Figure 4.7 presents the retargetable design specification for a

simple application.

Each process in the design has a separate entry capturing the I/O streams, location of the

process’s HDL, and the type of process: dynamic, static, software, or IP. Software processes

are mapped to an embedded soft processor. IP processes use existing hardware that is

included with the BSP. All I/O to the FPGA is controlled by software or IP processes. Each

dynamic process in a reconfigurable set must share the same module name.

Each set of reconfigurable processes has its own entry in the RCSF indicating which

processes are in the set, as well as which process is the default in hardware. As the automated

60

<?xml version="1.0" ?>

<project name="CaseChange">

<process folder="hw upper" module name="fsl SetA" name="upper" type="dynamic">

<stream direction="input" name="s2" port name="FSL0 S"/>

<stream direction="output" name="s1" port name="FSL1 M"/>

</process>

...

<process co arch reconfig="true" folder="sw process0" name="proc0" type="sw">

<stream direction="input" name="s1" port name="FSL0 S"/>

<stream direction="output" name="s2" port name="FSL1 M"/>

</process>

<reconfig index="0" name="SetA">

<process name default="true" index="0" name="upper"/>

<process name index="1" name="lower"/>

</reconfig>

</project>

Figure 4.7: Retargetable Design Specification.

implementation flow tracks reconfigurable processes based on numbers, instead of names, an

index number is provided linking the process’s name with its number in the implementation

flow.

The Board Support Package (BSP) contains all information about a platform required by

the implementation flow, including peripherals, implementation constraints, and compilation

libraries. This information is organized into the directory structure in Figure 4.8.

All peripherals and soft processors are stored as Xilinx-proprietary NGC netlists, instead

of HDL, to simplify and speed implementation. For every peripheral supported by the BSP,

there is a corresponding netlist in the netlist directory and, where required, a UCF con-

straints file, a BMM memory mapping file, and an ELF executable in data. Soft processors

add a script to compile code and a directory containing the compilation libraries in the

src directory. Platform-specific scripts to download bitstreams and program the FPGA’s

external memory with the partial bitstreams are found in the etc directory.

61

BSP NAME/

BSP NAME.xml

data/

BSP NAME.ucf PROC0 NAME.ucf PROC0 ports.vhd PROC0.bmm

etc/

download.sh xmd.scr PROC0 elf.sh

netlist/

PROC0.ngc PRR controller.ngc fsl stream.ngc

busmacros/

busmacros.v busmacro xc2vp l2r async narrow.nmc ...

src/

PROC0 NAME/

reconfig.c xhwicap.h ...

Figure 4.8: BSP directory structure.

An XML file specifies all of the peripherals and soft processors contained in the BSP. This

file, shown in 4.9, organizes all required information about the board, including number of

internal clocks available, clock frequency, and device number. For each soft processor or

peripheral this file specifies placement keep-out regions, clock requirements, and internal

port names.

4.3.3 Backend

The architecture-specific implementation flow accepts the RCSF file, HDL modules, and C

code from the frontend. In addition, a Board Support Package (BSP) must be specified,

supplying all the platform-specific information required to produce a deployable design. The

implementation tool flow, shown in Figure 4.10 integrates multiple applications, including

tools automating placement, HDL generation, and clock creation. These tools are discussed

in the following sections.

The tool flow shown above in Figure 4.10 is responsible for transitioning the user’s design

to a deployable format of an initial bitstream and a memory image containing the partial

62

<?xml version="1.0" ?>

<platform name="Memec" reset="active-low" device="xc4vlx25-ff668-10" clock="100MHz"

clock location="top" num clocks="16">

<description>Text description of platform and peripherals.</description>

<processor name="Microblaze" compiler="mb-gcc" prefix="mb cntl"

max instances="1" uart="true" icap="true" reset="active-low" ddr="true"

clock="50MHz" dcm="true" keepout="0,16 - 2 ,64" num clocks="5"/>

<processor name="Microblaze Plain" compiler="mb-gcc" prefix="mb plain"

reset="active-low" dcm="false" max instances="0" clock="100MHz"/>

<peripheral name="LED Driver" reset="active-high" dcm="false"

prefix="ledDriver" max instances="1" clock="100MHz">

<port direction="input" prefix="FSL0 S"/>

</peripheral>

</platform>

Figure 4.9: Board Support Package Specification.

bitstreams. Like all aspects of the automated flow, backend implementation is controlled by

Make. While Make is an excellent tool for managing the generation of files and executables,

it is limited in its parsing and processing capabilities. Because of these limitations, it is the

Postprocess tool that handles the bulk of the backend file generation.

The Postprocess script parses the XML RCSF file generated by the Preprocess tool and

the BSP. During the course of implementation, Postprocess can act in three different modes:

1. XST: Postprocess creates XST scripts to automate the generation of a netlist from the

CoDeveloper-created HDL.

2. HDL: After synthesis has occurred, Postprocess examines the synthesis logs to deter-

mine a module’s resource requirements and estimated clock frequency. The clocking

information is compared against the FPGA’s available clocking resources to generate

a set of clocks. The application’s RCSF file is parsed and any software processes are

mapped to soft processors available on that board. The output of this mode is a top-

level Verilog netlist, instantiating each process in the design, and a settings file for the

63

NGDBuild

Map

PAR

Bitgen

PR_Merge

PR Makefile

XST
(Xilinx)

Stage_bitstreams

CreateLUT

Top-level
Verilog

Partial
Bitstreams

Memory
Image

Full
Bitstream

Initial
Bitstream

ELF

Constraints
File (UCF)

B
ac
ke
nd

Tools created by
this project

Tools modified by
this project

Commercial tools

Netlists

X
ilin

x
Pa

rti
al

R

ec
on

fig
ur

at
io

n
Fl

ow

Partial
Bitstreams

Trace

Postprocess

Stage_netlists

Floorplanner BusMacroHelper

Netlists

R
es

ou
rc

e
R

eq
ui

re
m

en
ts

Synthesis
Script

Options
FilePlacements Options

File
Bus Macro
Placements

gcc
(GNU)

XST
(Xilinx)

XMLHDL

Netlist

Board Support
Package

C

Figure 4.10: Backend Tool Flow.

64

Floorplanner tool.

3. BMH: Postprocess parses the output of Floorplanner to create a set of UCF constraint

files and a settings file for the BusMacroHelper (BMH) tool. This mode produces all

of the constraint files required for implementation by the Xilinx tools.

The Stage netlists script copies the synthesized netlists for each CSP process into the

appropriate directories in the implementation flow directory structure.

The Floorplanner utility is responsible for creating area constraints for each reconfigurable

region of the FPGA. This tool accepts as input as list of the resource requirements of each set

and a list of keep-out regions. The keep-out regions correspond to areas of the FPGA that

must be available for peripherals or soft processors, such as regions near critical I/Os. In

keeping with other FPGA floorplanning projects [81] [82] [83], Floorplanner uses a Simulated

Annealing (SA) algorithm to find a near-optimal minimum of a cost function. While other

techniques, such as Integer Linear Programming, can guarantee the solution is optimal, the

computational requirements can be higher than SA.

Unlike most previous work, Floorplanner has knowledge of the device’s configuration

architecture and attempts to find placements that minimize reconfiguration overhead. For

the Virtex-II and Virtex-II Pro architectures, where configuration frames run the entire

height of the device, this involves finding a solution that has a high aspect ratio (height versus

width) to use as much of the configuration frame as possible for the reconfigurable module.

In the Virtex-4 architectures, where configuration frames are 16 CLBs tall, Floorplanner

places all modules on configuration frame edges.

Floorplanner starts by first populating a list of possible module placements, called real-

izations. All possible module placements are considered in the creation of this realization

list, with placements that are overly wasteful of resources being removed. Once a list of

acceptable placements has been created, SA is performed to minimum the cost function

cost = 10, 000 ∗ overlap + 10 ∗ aspectError + waste + distance

65

Module overlap, contained in overlap as the sum of all overlapping CLBs, is weighted

orders of magnitude higher in the cost function to ensure that no two PR regions will

overlap. aspectError penalizes the placements for having a poor aspect ratio while waste

is a measure of extra resources within the placement that will not be utilized on the device.

The distance variable represents the total distance between reconfigurable regions and is

used to minimize routing delays between reconfigurable regions.

Floorplanner is ignorant of static modules in the design beyond any keep-out regions that

are specified in the BSP. This is not seen as a major limitation as the Xilinx placement tools

are superior at static placement. The addition of static placement into Floorplanner would

also require consideration of connectivity in the design and, for optimal results, some notion

of timing. Figure 4.11 shows a sample placement performed by Floorplanner. Upon selection

of a suitable placement, the tool produces the textual display of the solution shown in the

figure.

To produce the partial bitstreams requires a special path to the standard Xilinx ISE

toolset. These modified tools make up the Xilinx Early Access PR (EAPR) Flow. In-

cluded are tools to synthesize HDL into netlists (XST), translate netlists into Xilinx-standard

databases (NGDBuild), place-and-route the design (PAR), analyze timing (TRCE) and gen-

erate a bitstream (Bitgen).

The Xilinx EAPR Flow requires that special connection points, called bus macros, sur-

round reconfigurable modules. These bus macros are fixed in location providing stable

connection points for the reconfigurable modules. BusMacroHelper is a tool developed for a

related project that was modified for this dissertation to correctly connect enable signals to

bus macros. These enable signals are required to disable a module’s outputs during recon-

figuration. BusMacroHelper accepts the top-level Verilog netlist created by the Postprocess

script and a list of reconfigurable modules. The tool breaks the connections to these modules,

inserting bus macros between the static and reconfiguration regions.

The Stage bitstreams script copies the partial bitstreams created by the automated imple-

66

@ RECONFIG_SET0: (19, 51) -- (20, 8)
RECONFIG_SET1: (34, 31) -- (42, 8)
* RECONFIG_SET2: (11, 31) -- (14, 8)
^ RECONFIG_SET3: (25, 27) -- (27, 4)

% dram_keepout: (0, 64) -- (2, 16)
O V2P_PPC: (7, 47) -- (14, 32)
/ V2P_PPC: (31, 47) -- (38, 32)

I B B B B B B B B I
I B B B B B B B B I
I B B B B B B B B I
I B B B B B B B B I
I%%B% B B B B B B B I
I%%B% B B B B B B B I
I%%B% B B B B B B B I
I%%B% B B @B@ B B B B I
I%%B% OBOOOOOOBO @B@ B /B//////B/ B I
I%%B% OBOOOOOOBO @B@ B /B//////B/ B I
I%%B% OBOOOOOOBO @B@ B /B//////B/ B I
I%%B% OBOOOOOOBO @B@ B /B//////B/ B I
I%%B% B ***B* @B@ B B ####B##### B I
I%%B% B ***B* @B@ ^B^^ B ####B##### B I
I%%B% B ***B* @B@ ^B^^ B ####B##### B I
I%%B% B ***B* @B@ ^B^^ B ####B##### B I
I B B ***B* @B@ ^B^^ B ####B##### B I
I B B ***B* @B@ ^B^^ B ####B##### B I
I B B B B ^B^^ B B B I
I B B B B B B B B I

LEGEND: B = BRAM I = IOB

Figure 4.11: Example Floorplanner placement for four PR regions on xc2vp30.

67

mentation flow to the bitstreams directory. Stage bitstreams renames the partial bitstreams

to a human-readable format.

The CreateLUT tool performs two tasks. It creates a binary Look-Up Table (LUT)

that lists the size and location in memory of each partial bitstream. This LUT is used

by the MicroBlaze configuration controller to find the desired partial bitstream in memory.

Secondly, the script concatenates the LUT and the partial bitstreams together into a single

memory image, simplifying application execution.

The automated tool flow described in this chapter abstracts low-level details away from

the application designer while eliminating the many manual, error-prone tasks that plague

dynamic hardware development. These tools enable the creation of a diverse set of applica-

tions commonly encountered by FPGA designers.

Chapter 5

Application Development

To demonstrate the capabilities of this dissertation’s development environment, designs were

implemented from a broad sampling of streaming applications, including cryptography, SDR,

and video processing. In some of these applications all hardware was generated from a high-

level description, while in others existing IP was utilized. Several of these applications

were also implemented manually, using the existing Xilinx implementation flow, to provide

comparison points from which to judge the productivity enhancements and performance

penalties of this high level development environment.

This first section steps through a video processing application, detailing the application

development process in this high level development environment. Additional properties of the

development environment are highlighted by applications described in the following sections.

5.1 Video Processing

A video processing application has been implemented using this development flow with a

camera’s video stream filtered in real time with one of several filters and displayed on a moni-

tor. A separate filter acts on each of three colors and each can be independently reconfigured

68

69

to implement an edge detector, a median image filter, or a pass-through. Video processing

is considered representative of streaming applications that can benefit from reconfigurable

hardware. The steps required to implement this application are described below.

5.1.1 Application Description and Simulation

In this application all reconfigurable hardware and configuration control logic are described

in DR Impulse C. However, while no HDL need be written to create an application in this

high-level development environment, hardware design knowledge is required. The first step in

the creation of an application is partitioning. Use of the CSP model requires that operations

to be implemented in reconfigurable hardware be divided into separate processes.

For many designs this is a straightforward procedure. Distinct operations are assigned

to independent processes. The user should be cognizant of the limitations in HLS tools.

The CoDeveloper toolset performs synthesis on each process independently of the others.

Grouping only related functionality in a process can improve results from the tools. If

existing IP is available for some or all of the application, the partitioning can be performed

around the available hardware modules.

In the case of the video processing application, the video enters the FPGA as a continuous

stream of pixels, row by row. The implemented filters (edge detection, smoothing, and

median filtering) operate on a square window of pixels. Several methods exist for converting

a stream of pixels into a window. These different methods may produce different CSP

topologies. The designer must evaluate these methods to determine which is best given the

hardware constraints of the application.

For example, a frame buffer could be constructed from external memory, as internal

resources are insufficient for buffering a full frame, with one process pushing the video stream

to external memory and another process reading out the desired window of pixels. While

perfectly capable of meeting the area and through-put constraints, this approach requires

70

FilterColumns

FilterColumnsProducer
Reconfigurable

Filter

Consumer

Red
Columns

Green

Blue

BMP
File

BMP
Files

Figure 5.1: Video processing application.

the addition of a memory controller and the creation of FSL-to-memory interfaces. As the

window size for effective edge detectors and median filters is not large, it was decided to

implement buffers on the FPGA to create the window by storing five rows of pixels. This

approach significantly reduced the complexity of the design.

Three separate filtering pipelines were constructed, one for each color. While a single

pipeline was possible, separation of the colors increases the flexibility of the application, as

each color’s filter can be independently configured. Furthermore, as the filtering of one color

shares no resources or data with another color, separation of the filters assists the HLS tools.

The final partition, shown in Figure 5.1, consists of two testbench processes, Producer

and Consumer, three video stream buffers, Columns, and three sets of reconfigurable pro-

cesses, each set containing identical filters. The Columns process buffers five rows of pixels,

presenting a column of five pixels to the filters, which in turn buffer five of these columns to

obtain a 5x5 window of pixels.

While HLS tools permit hardware to be generated from an HLL, the designer must be

cognizant of tool and hardware limitations. An example of this is in the design of the median

image filter. Median filters examine a windows of pixels around the target pixel, replacing

71

the target pixel with the median value of its surroundings. Calculation of the median value

of the window requires sorting to be performed.

The key requirement for this filter was the ability to process data at a rate matching the

video capture card output of 27 MB/sec. Typical software approaches to finding the median

value, using a sorting algorithm or a histogram, are not conducive to fast hardware imple-

mentation and are incapable of meeting the performance requirement without consuming

significant FPGA resources.

A reasonable hardware design approach is to use a set of comparators to determine re-

lations between the pixels in the window. Figure 5.2 shows an implementation of a 4-point

median filter, replacing the target pixel with the median of the pixels above and below and

left and right. Larger filters are possible, though the filter’s area grows exponentially with

the window size. The code can be pipelined by the HLS tool, producing a result every cycle.

In contrast to a sorting algorithm, the latency of this approach is deterministic and the code

can be easily pipelined. Note that, while the code is written in C, the approach is very

similar to a design created in an HDL.

The DR Impulse C configuration function for this application, specifying the connections

between processes, is shown in Figure 5.3. The three reconfigurable sets are created using

the co reconfig create() function. Every filter instance in a set shares the same I/O

connections, as is evident by the arguments to the co process create(). Processes that

belong to a reconfigurable set are automatically targeted for hardware implementation.

The reconfiguration control code, shown in Figure 5.4, reconfigures the three reconfig-

urable sets serially, one after the other. Reconfiguration control is performed by a single

process using of the co architecture reconfig() function.

The filters, configuration control logic, and testbenches are all described in DR Impulse C.

For high-level simulation the two testbench processes load an input image from a Windows

Bitmap (BMP) file, stream the pixels row by row to the filtering pipelines, and translate the

filters’ outputs to a BMP, as shown in Figure 5.1.

72

1 void medianFilterCross(co stream r0, co stream r1, co stream r2,
2 co stream r3, co stream r4, co stream output stream)
3 {
4 co uint8 a, b, c, d, pixelMag;

...
...

5 a gt b = a > b; a gt c = a > c; a gt d = a > d;
6 b gt a = b > a; b gt c = b > c; b gt d = b > d;

...
...

7 if(a gt b & a gt c & a gt d) // Determine largest value
8 aGreatest = 1;
9 else if(b gt a & b gt c & b gt d)
10 bGreatest = 1;

...
...

11 if(!a gt b & !a gt c & !a gt d) // Determine smallest
12 aLeast = 1;
13 else if(!b gt a & !b gt c & !b gt d)
14 bLeast = 1;

...
...

15 if(aGreatest & bLeast)
16 pixelMag = (c + d) >> 1; // pixelMag is filter’s output
17 else if(aGreatest & cLeast)
18 pixelMag = (b + d) >> 1; // Average 2 median pixels

...
...

19 }

Figure 5.2: Impulse C description of median filter.

73

1 void config video(void *arg)
2 {
3 // Declare Streams
4 co stream blue source pixeldata, green source pixeldata, red source pixeldata;
5 co stream blueColumn0, blueColumn1, blueColumn2, blueColumn3, blueColumn4;

...
...

6 // Declare Processes
7 co process producerProcess, consumerProcess, controlProcess;
8 co process blueFilter, greenFilter, redFilter;
9 co process blueColumns, greenColumns, redColumns;

...
...

10 // Declare Reconfigurable Sets
11 co reconfig BlueFilterSet, GreenFilterSet, RedFilterSet;

...
...

12 // Create Streams
13 blue source pixeldata = co stream create("blue source", UINT TYPE(12), 2);
14 blueColumn0 = co stream create("blueColumn0", UINT TYPE(12), 2);

...
...

15 // Create and connect processes
16 // PROCESS INST = co process create("NAME", IMPULSE C FNS, # CONNECTIONS,
17 // CONNECTION LIST);
18 blueColumns = co process create("blueColumns", (co function) columns,
19 6, blue source pixeldata, blueColumn0, blueColumn1, blueColumn3,
20 blueColumn4);
21
22 blueFilter = co process create("blueFilter", (co function) medianFilterCross,
23 6, blueColumn0, blueColumn1, blueColumn2, blueColumn3, blueColumn4,
24 blue result pixeldata);
25
26 blueEdge = co process create("blueEdge", (co function) edge detect,
27 6, blueColumn0, blueColumn1, blueColumn2, blueColumn3, blueColumn4,
28 blue result pixeldata);

...
...

29 // Create and populate reconfigurable sets
30 BlueFilterSet = co reconfig create("BlueFilterSet", 3, blueFilter,
31 bluePassthru, blueEdge);

...
...

32 }

Figure 5.3: DR Impulse C configuration function for video filter.

74

1 void controller(void)
2 {
3 volatile int delay;
4
5 while(1)
6 {
7 // Delay
8 for(delay = 0; delay < 40000000; delay++)
9 {}
10
11 printf("Reconfiguring for pass thru!\r\n");
12 co architecture reconfig("BlueFilterSet","bluePassthru");
13 co architecture reconfig("GreenFilterSet","greenPassthru");
14 co architecture reconfig("RedFilterSet","redPassthru");

...
...

15 }
16 }

Figure 5.4: DR Impulse C configuration control function for video filter.

5.1.2 Implementation

Implementation begins with the selection of a target platform. The development environment

currently contains three BSPs targeting the Xilinx University Program (XUP) Virtex-II

Pro development board, Memec Design’s Virtex-4 MB development board, and Harris’s

Morpheus SDR platform. The only platform supporting video I/O is the XUP. Selection of

the XUP as the target is made by editing the project’s make file (Figure 4.4) to point to the

proper BSP.

The DR Impulse C application used for high-level simulation includes two testbench

processes that are not suitable for implementation. The BSP for the target FPGA platform

contains an IP block for interfacing with both an attached video capture card and the on-

board video DAC. The application’s automatically created RCSF file, shown in Figure 5.5

includes the two testbench processes, Producer and Consumer. To interface with the actual

hardware on the target platform, the RCSF must be edited to replace these processes with

75

1 <?xml version="1.0" ?>
2 <project implementation="xilinx fsl" name="img arch">
3 <!-- Software testbenches for high-level simulation -->
4 <process co arch reconfig="true" folder="sw producerProcess"
5 name="producerProcess" type="sw">
6 <stream direction="output" name="blue source pixeldata" port name="FSL0 M"/>
7 <stream direction="output" name="green source pixeldata" port name="FSL1 M"/>
8 <stream direction="output" name="red source pixeldata" port name="FSL2 M"/>
9 </process>
10 <process folder="sw consumerProcess" name="consumerProcess" type="sw">
11 <stream direction="input" name="blue result pixeldata" port name="FSL0 S"/>
12 <stream direction="input" name="green result pixeldata" port name="FSL1 S"/>
13 <stream direction="input" name="red result pixeldata" port name="FSL2 S"/>
14 </process>

...
...

15 </project>

Figure 5.5: RCSF file for simulated video processing design.

IP from the BSP for interfacing with the platform’s video I/O. As seen is Figure 5.6, this

edit involves the modification of only ten lines of XML code.

With modifications to the RCSF XML complete, the entire implementation process is

performed with a single command, make bits. If desired for debugging purposes a static,

non-RTR version of the design can be created with make static. In either case commands

are provided to automate deployment to the target platform. The command make download

places an initial bitstream on the board and then connects to the configuration controller

to download an external memory image containing the partial bitstreams and the look-up

table required for the configuration controller to find the correct bitstream.

The runtime of the tool flow depends heavily on the number of reconfigurable sets and

the number of modules in each set. For the video processing application, with three re-

configurable sets of three modules each, nearly an hour was required to run through the

implementation flow as the Xilinx EAPR flow must run the implementation flow once for

each module that can be dynamically reconfigured.

76

1 <?xml version="1.0" ?>
2 <project implementation="xilinx fsl" name="img arch">
3 <!-- IP video interface from BSP -->
4 <process module name="vid capt" name="VC0" type="ip">
5 <stream direction="output" port name="MFSL R" name="red source pixeldata"/>
6 <stream direction="output" port name="MFSL G" name="green source pixeldata"/>
7 <stream direction="output" port name="MFSL B" name="blue source pixeldata"/>
8 <stream direction="input" port name="SFSL R" name="red result pixeldata"/>
9 <stream direction="input" port name="SFSL G" name="green result pixeldata"/>
10 <stream direction="input" port name="SFSL B" name="blue result pixeldata"/>
11 </process>

...
...

12 </project>

Figure 5.6: RCSF file for implemented video processing design.

The implemented design, the layout of which is seen in Figure 5.7, encompasses 63% of

a Xilinx Virtex-II Pro-30 FPGA. The filters operate at 57 MHz, sufficiently fast to support

the incoming 640x480 video stream at 60 Hz. The total area of the all reconfigurable filters

is 1,707 slices while the floorplanned reconfigurable regions consume 1,328 slices, resulting

in an area savings of 379 slices from using PR. Any additional filters added to the system

would increase this area savings.

5.2 Software Defined Radio

The ideal SDR is a single processor connected to an Analog-to-Digital Converter (ADC),

digitizing signals directly from an antenna. Computational requirements, however, generally

prohibit this as even a basic band-pass filter can require billions of multiply-accumulate

operations per second. These demands necessitate the inclusion of hardware accelerators

into an SDR.

An AM radio receiver was created targeting Harris’s Morpheus SDR platform. The Mor-

pheus includes four Xilinx Virtex 4 LX-60 FPGAs along with an ARM processor, all on a

77

Figure 5.7: Floorplan of implementation in a Xilinx XC2VP30.

System-In-Package (SIP). The Morpheus development board contains the SIP along with

the RF electronics and ADCs required to implement a variety of radio waveforms.

5.2.1 BSP Creation

Unlike the other development platforms targeted in this dissertation, the Morpheus FPGAs

do not have direct access to external memory. Instead, all memory accesses must originate

from the ARM processor. The BSP for the Morpheus departed from this dissertation’s

configuration model as the partial bitstreams are not directly accessible to the FPGA. The

Morpheus BSP targets the configuration controller code to the external ARM processor

instead of an embedded MicroBlaze.

78

Bus
Interface

ADC

Configuration
Controller

FSL
Interface

FSL FSL

To Arm
Processor

FPGA

SDR
Interface

Configurable Logic

Figure 5.8: Morpheus BSP hardware components.

5.2.2 AM Radio Application

The AM interface module in the Morpheus BSP produces a stream of samples at 6 MHz.

Before sampling by the ADC, the signal from the antenna is band-limited to 1.9 MHz by

an analog low-pass filter to prevent aliasing during digitization. There are two primary

approaches to AM demodulation: envelop detection and product detection. As product

detection requires the generation of a phase and frequency matched sine wave to downconvert

the RF signal to baseband, envelop detection was used instead.

Envelop detection leverages trigonometric identities to achieve down conversion of the sig-

nal from RF frequencies to baseband through a simple absolute value or squaring operation.

As shown in Figure 5.9, the RF signal is band pass filtered to remove all but the desired

station, downconverted to baseband via a squaring function, and decimated to reduce the

sample rate from RF to audio frequencies.

Station tuning was achieved through filter swapping. Multiple band pass filters were

created, one for each station, with partial reconfiguration placing the desired filter on the

79

Band Pass Filter
Reconfigurable

X2

Frequency

Am
pl

itu
de

Target
Station

Frequency

A
m

pl
itu

de

Frequency

Am
pl

itu
de

Low Pass Filter

Frequency

Am
pl

itu
de

Decimation

Frequency

Am
pl

itu
de

From ADC

To audio playback device

Figure 5.9: AM demodulation through envelop detection.

80

Producer
Band Pass

Filter
(Reconfigurable)RF

(6 MHz)

Data File
(from Matlab)

Wave File
(8-bit, 8 kHz)

Absolute Value
Low Pass

Decimating
Filter Audio

(8 kHz)

Consumer

Figure 5.10: DR Impulse C simulation of AM demodulation.

radio. The demodulation scheme was first proved using Matlab. Test signals were created

using data sampled from an antenna in the AM band. The stations in this test sample were

frequency shifted to the same frequency as actual stations receivable by the Morpheus SDR.

From this test set, filter coefficients for the bandpass and lowpass filters were created.

Simulations in Matlab are by default performed using floating point arithmetic. While

floating point is preferable in many instances, it is not amenable to high-performance FPGA

implementation. Because of this most signal processing, whether on FPGAs or DSPs, is

performed using fixed-point math. Emulating real hardware, Impulse C uses integer math

unless floating point variables are explicitly declared. The Impulse C simulation, see Fig-

ure 5.10, was a valuable resource to verify the Matlab filter coefficients in the presence of

quantization affects caused by converting from floating point to fixed point.

Like the video processing application discussed above, the RCSF file generated for the

SDR application had to be modified to remove the Impulse C testbench processes and replace

them with the SDR Interface module from the Morpheus BSP, as can be seen by comparing

Figures 5.11 and 5.12. Furthermore, due to the demanding performance constraints, the

bandpass and lowpass filters were taken from the Xilinx CoreGen IP generation tool.

To effectively filter a single AM station, with its 10 kHz bandwidth, from a data stream

sampled at 6 MHz required a 700 tap filter. If the filter ran at the same 6 MHz sampling fre-

quency, 700 multipliers would be required, far more than is available on the device. However,

the multipliers on the actual FPGA are capable of running much faster. By running the

filter at 96 MHz and time-sharing a multiplier between several filter coefficients, the resource

81

1 <?xml version="1.0" ?>
2 <project implementation="Generic VHDL" name="sdr arch">
3 <process folder="1430" module name="fsl2bpf" name="bpf process" type="static">
4 <stream direction="input" name="waveform raw" port name="FSL0 S"/>
5 <stream direction="output" name="waveform filtered" port name="FSL0 M"/>
6 </process>
7 <process module name="sdr if" name="SDR0" type="ip">
8 <stream direction="input" name="baseband" port name="FSL1 S"/>
9 <stream direction="output" name="waveform raw" port name="FSL0 M"/>
10 </process>

...
...

11 </project>

Figure 5.11: RCSF file for simulated SDR design.

1 <?xml version="1.0" ?>
2 <project implementation="Generic VHDL" name="sdr arch">
3 <process folder="hw bpf process" module name="fsl bpf process"
4 name="bpf process" type="static">
5 <stream direction="input" name="waveform raw" port name="FSL0 S"/>
6 <stream direction="output" name="waveform filtered" port name="FSL1 M"/>
7 </process>
8 <process folder="sw consume process" name="consume process" type="sw">
9 <stream direction="input" name="baseband" port name="FSL0 S"/>
10 </process>
11 <process folder="sw prod process" name="prod process" type="sw">
12 <stream direction="output" name="waveform raw" port name="FSL0 M"/>
13 </process>

...
...

14 </project>

Figure 5.12: RCSF file for implemented SDR design.

82

requirements are reduced to a point that the entire radio easily fits inside the FPGA. These

multi-rate filters are readily available from the CoreGen tool, whereas to describe them in

Impulse C requires additional forethought. An FSL-interface to the CoreGen-created filters

was developed to facilitate use of existing IP. With these interfaces in hand, a user can de-

scribe the application in DR Impulse C while leveraging the full power of Xilinx-optimized

filters, all without having to write a single line of HDL.

5.3 Benchmarking Applications

Two additional applications, an integer co-processor and a cryptographic accelerator, were

created in the high-level development environment. Combined with the video processing and

SDR applications, this set of demonstration designs validates the utility and productivity

improvements afforded by this methodology. Furthermore, though tailored to streaming

applications, the integer co-processor application shows that these techniques are applicable

across other models of computation. The results of these benchmarking trials appear in the

following chapter.

Chapter 6

Results

To quantify the productivity enhancements afforded by this development flow, a set of appli-

cations was implemented in this development environment and compared to implementations

made manually using the Xilinx EAPR Flow. The differences in development time and ap-

plication throughput are compared in the following sections.

This chapter concludes with a discussion of the results. The break-even point at which a

PR application might be more advantageous than a static hardware application is presented

for several applications. An analysis of the sources of area and performance penalties, as

well as a discussion of mitigation techniques to improvement performance, follows.

6.1 Benchmark Applications

A coprocessor, cryptographic accelerator, and an SDR application have been benchmarked,

providing three points of comparison. An additional comparison point was obtained by

porting an existing application to a different FPGA architecture. These applications were

selected as representative of the embedded, streaming applications where FPGAs are typi-

cally used.

83

84

6.1.1 Coprocessor Application

While the models of computation and communication selected by this dissertation favor

streaming applications, the principles are applicable to other application domains. Copro-

cessor accelerators are frequently encountered in embedded applications. A small embedded

processor may lack the performance required to meet the application’s demands. By at-

taching a coprocessor tailored to a specific task, overall performance can be improved by

off-loading demanding tasks to the coprocessor. The utility of an attached coprocessor in-

creases with the number of functions it implements.

A reconfigurable coprocessor for an embedded MicroBlaze processor was created in this

environment. This coprocessor, attached via an FSL interface, can be reconfigured to im-

plement either a 32-bit integer divider or an integer square root function. Typical imple-

mentations of square root rely on the iterative CORDIC algorithm. To ease application

development an existing software algorithm, using a look-up table for an initial estimate

that is iteratively refined, was ported to Impulse C.

The descriptions for both functions were obtained from existing IP using the Xilinx Core-

gen tool and the OpenCores internet IP repository, in the case of the EAPR Flow, and using

example code provided with the Impulse C tools, in the case of this project’s development

environment.

The development time for both environments, from initial design description to working

hardware implementation, was recorded. In both cases significant portions of time were

spent debugging. In the case of the Xilinx EAPR Flow troubleshooting was required of the

control code that manages the ICAP configuration port, as well as the logic interfacing the

CoreGen-created modules to the FSL interface. For this dissertation’s high-level develop-

ment environment the configuration code generation and FSL-interface logic generation were

performed automatically, requiring no user intervention. However, issues with the hardware

Impulse C generated for the division operation required an HDL simulation to successfully

troubleshoot. A slight revision of the Impulse C description of this function resolved the

85

Figure 6.1: Co-processor implementation for designs created manually (left) and with devel-
opment flow (right) on a Xilinx XC2VP30.

issues.

The layout of each implemented design is presented in Figure 6.1. The PR region of the

Xilinx EAPR Flow was hand placed and is 36% smaller than the Impulse C-based approach,

owing to inefficiencies in HLS and automated floorplanning.

Table 6.1 presents area and performance results at the module level. The Impulse C-

generated divider compares well with the OpenCores divider, while the Coregen square

root function is significantly smaller than the Impulse C-generated module. The Impulse C-

generated square root function has a latency that is data-dependent. It should be noted that

this high-level development environment can use existing IP and is not limited to Impulse

C-created hardware. At the moment the implementation flow only supports IP with an FSL

86

Module Area Speed Throughput
(Slices/BRAMs/BMults) (MHz) (ops/sec)

Divider (Impulse C) 258 / 0 / 0 134 3.8 (106)
Divider (OpenCores) 159 / 0 / 0 123 3.4 (106)
Square Root (Impulse C) 760 / 1 / 9 56 0.7 (106) - 4.7 (106)
Square Root (CoreGen) 266 / 0 / 0 114 9.5 (106)

Table 6.1: Coprocessor module performance benchmarks on a Xilinx Virtex-II Pro.

interface.

As presented in Table 6.2, for the co-processor application the high-level development

environment produced a 56% reduction in development time while incurring a 71% penalty

in average throughput and a 8% overall area penalty when compared to a manual imple-

mentation in the Xilinx EAPR Flow. This throughput metric averages the best and worst

case throughputs for the divider and square root modules. The manual EAPR implementa-

tion ran the co-processor at the system’s 100 MHz clock rate. The high level development

environment ran the co-processor at 80% of the synthesis-tool estimated clock rate for the

slowest co-process module, which resulted in a 43 MHz clock.

The lines of code for the application is listed in Table 6.2. The high-level development

approach required 33% fewer lines of code. With increasing code size comes increasing

complexity, cost, and development time. It should be noted that the lines of code for the

high-level development environment are written strictly in Impulse C, which is ANSI C

compliant. The Xilinx EAPR code, on the other hand, is a mixture of HDL and C, for

the controller. Mixed language designs further increase complexity and mandate additional

skill requirements. Furthermore, the Impulse C lines of code metric includes a high-level

testbench, in addition to the application description. The EAPR metric excludes any HDL

testbench.

The performance penalty could be reduced by leveraging existing IP instead of using

Impulse C-generated HDL. Additional gains are possible by dynamically modifying the clock

rate of the co-processor instead of running the all co-processors at the speed of the slowest.

87

Environment Area Ave. Throughput Lines of Code Dev. Time
(slices) (ops/sec) (hrs)

High Level (Impulse C) 3,118 1.6 (106) 293 6
Xilinx EAPR 2,883 5.6 (106) 439 13.5

Table 6.2: Coprocessor productivity and performance benchmarks.

The small area penalty is due to the superiority of hand-placed designs.

6.1.2 Cryptographic Accelerator

Cryptographic hash functions transform a string of bits comprising a message into a fixed-

length number, called the message digest. These functions have the desirable property

that any small change in the message will result in a completely different message digest.

Hash functions are typically used to verify that data was transmitted without errors or

modifications.

A cryptographic accelerator was described in DR Impulse C that implements either an

MD5 hash or a SHA-1 hash. The DR Impulse C description was developed from scratch.

While C code for both of these functions is widely available, most implementations utilize

data types and functions are that are not directly supported in Impulse C. Furthermore,

the development of an involved application from start to finish aided in benchmarking the

development environment.

In this application a reconfigurable region on the FPGA could be configured for either

the MD5 or the SHA-1 standard. The hash functions were created from scratch using both

Impulse C and Verilog. Area and performance numbers for each function are shown in Table

6.3. The Verilog-described SHA-1 consumed 12% more slices than the Impulse C design

owing to the use of five independent memories to permit simultaneous access to the message

data. This approach increases throughput at the expense of area. Had area been of primary

concern a Verilog design would have been smaller than the Impulse C-created hardware.

The Impulse C MD5 and SHA-1 cores underperformed the Verilog cores by 39% and 63%,

88

Module Area Speed Throughput
(Slices/BRAMs) (MHz) (blocks/sec)

MD5 (Impulse C) 1305 / 2 66 0.43 (106)
MD5 (Verilog) 613 / 0 61 0.71 (106)
SHA-1 (Impulse C) 1080 / 1 73 0.17 (106)
SHA-1 (Verilog) 1214 / 0 76 0.46 (106)

Table 6.3: Cryptographic module performance benchmarks in a Xilinx Virtex-II Pro.

Environment Area Throughput
(slices) (blocks/sec)

High Level (Impulse C) 4,574 0.25 (106)
Xilinx EAPR 4,107 0.53 (106)

Table 6.4: Cryptographic application performance benchmarks.

respectively.

Table 6.4 presents the performance results with the cryptographic modules integrating

into the reconfiguration application including the configuration controller. The high-level de-

velopment environment imparts a 11% overall area increase and a 53% performance penalty,

compared to the conventional Verilog design.

The productivity advantage of the high-level development environment was hampered

in this application by a bug in the Impulse C-generated hardware, as seen in Table 6.5.

The HLS-generated hardware’s barrel shifter, required by the MD5 hash, used incorrect

VHDL datatypes for synthesis. While a workaround was identified from a support forum,

the additional time spent troubleshooting this and another issue with the MD5 hash resulted

in a 28% greater frontend design time for the high-level development environment than for

a Verilog-created design. If the MD5 design time was removed from consideration, the

frontend design times for the high-level and the conventional approaches are 1.0 and 2.2

hours, respectively. This 55% frontend design time improvement is more in line with the

co-processor productivity results. If the MD5 design and debug time is considered the total

development improvement of the high-level approach is 10%, while if the MD5 design time

is excluded from both designs the high-level productivity improvement increases to 49%,

89

Environment
Frontend Backend Total Lines of Code

(hrs) (w/o MD5) (hrs) (hrs) (w/o MD5)
High Level 8.1 1.0 3.3 11.3 4.3 472
Xilinx EAPR 6.3 2.2 6.3 12.5 8.5 593

Table 6.5: Cryptographic application productivity benchmarks.

approximating the results for the co-processor application. In terms of lines of code, the

high-level development approach required 20% fewer lines of code to describe.

6.1.3 Application Porting

The initial design effort required to deploy an application is an important part of an overall

productivity metric. An additional component of productivity is the effort required to port

an existing application to a new platform. To evaluate the utility of this dissertation to

application porting, the cryptographic accelerator, originally created on a Xilinx Virtex-II

Pro FPGA was ported to a Virtex-4 FPGA.

The differences between these two devices for RTR applications is quite large. The

Virtex-4 incorporates an updated configuration architecture with more granular configu-

ration frames. The ICAP port on a Virtex-4 is capable of operating in a 32-bit mode, as

opposed to the 8-bit mode of the Virtex-II Pro, speeding reconfiguration but complicating

partial bitstream creation. The locations and structures of dedicated memories and multi-

pliers is different between the two architectures. These differences necessitate the creation of

a new configuration controller and floorplan, as well as a reimplementation of all modules.

The results, summarized in Table 6.6, indicate that the high-level development environ-

ment imparts a 14% area penalty and a 74% performance penalty compared to a manual

implementation with the EAPR. The performance difference between the two flows for the

cryptographic accelerator is much larger in the Virtex-4 architecture than the Virtex-II Pro

owing to an increased sensitivity of timing to placement. The critical path that determines

the clock frequency at which a reconfigurable module runs was found to be in the FSL con-

90

Environment Area Throughput Time to Port
(slices) (blocks/sec) (hrs)

High Level (Impulse C) 5,083 0.14 (106) 0.7
Xilinx EAPR 4,392 0.53 (106) 3.0

Table 6.6: Cryptographic application performance benchmarks ported to Xilinx Virtex-4.

trol and status signals for the Virtex-4. These signals originate in the reconfigurable module

and must pass through the bus macros to reach the FSL FIFO control logic, after which the

signal is used to produce a status flag that is sent back through the bus macros to arrive at

the reconfigurable module before the next rising clock. Due to the differences between the

Virtex-II Pro and Virtex-4 FPGAs, the timing on these paths is more critical in the Virtex-4,

as they did not appear prominently in the timing reports of Virtex-II Pro designs. While far

from optimal, the chosen solution was to modify the timing generation tool to reduce the

clock frequency for reconfigurable modules in Virtex-4 FPGAs. The reconfigurable modules’

clock frequency for the automated flow was 31 MHz, compared to 60 MHz for the manually

placed design. Alternative solutions, such as improving the quality of the floorplanner tool’s

placements or the addition of a latency-independent interface, are left to future work.

The productivity improvement of the high level development environment was found to

be 77%, in line with the implementation time improvements seen in the other applications.

6.1.4 Software Defined Radio Application

The AM radio application targeting the Morpheus SDR platform was implemented in both

the high-level development environment and the Xilinx EAPR Flow. The results provided

in Table 6.7 only record the implementation time and exclude the frontend design effort.

As described in Section 5.2.2, Impulse C was leveraged in the radio’s design to understand

the quantization effects of fixed-point arithmetic. Because this high-level development tool

was utilized in the initial design of both the EAPR and HLS radios, it was not possible to

separate the time spent in the frontend design stage for each flow.

91

Limitations in Impulse C’s HLS required the use of pre-existing filters. While capable of

producing high-performance filters, the large number of taps in the AM radio’s band pass

filter appear to be beyond the capabilities of the tool. A multirate filter could be realized by

Impulse C to meet the required specifications at the expense of increased design complexity.

As GUI-customized, architecture-optimized filters are available from all the major FPGA

vendors, it is reasonable to assume that a design engineer would leverage these existing cores

rather than accept a performance penalty for HLS. Furthermore, the AM radio application

demonstrates the applicability of this high-level development approach to typical IP reuse

scenarios. By leveraging existing IP the development can be further reduced.

The FPGAs in the Morpheus development platform do not have direct access to external

storage. Partial bitstreams are pushed to the FPGA from an ARM processor. As the high-

level development environment expects an embedded configuration controller, hand editing

of the automatically created top level Verilog wrapper was required to properly connect the

reconfigurable module’s reset and bus macro enable signals.

The floorplan created by the automated Floorplanner tool required manual tweaking

to correct a user mistake in the creation of an XML file specifying the module’s resource

requirements. This manual editing resulted in both flows using the same area.

While the lines of code required to describe the application in each development environ-

ment were similar, it should be noted that the Impulse C description includes the high-level

testbench that reads in real RF data from a file and produces an audio WAV file for verifi-

cation.

The implementation time in Table 6.7 refers to the time it took to transition from the

initial static design to a partially reconfigurable design. The automation provided by the

high-level approach reduced implementation time by 70%, largely due to the elimination of

the errors that are inevitable in the design process.

92

Environment Area Throughput Implement. Time Lines of Code
(slices) (Msamples/sec) (hrs)

High Level 2,684† 6.0 0.8 515
Xilinx EAPR 2,685 6.0 2.7 520

†Hand-crafted area constraints.

Table 6.7: AM radio application performance benchmarks on the Morpheus SDR platform.

6.2 Conclusions

Figure 6.2 graphically displays the results from the preceding section. The results for area,

performance, and development time for this dissertation’s high-level development environ-

ment are normalized to those of the EAPR flow for each benchmark application. As can be

seen in the figure, the area penalty of a high-level development approach is minimal. Per-

formance, in terms of throughput, does suffer notably, but the performance penalty closely

mirrors the productivity gains. Note that the SDR application results differ somewhat from

this trend, as the performance of both radio implementations met the minimum required

throughput.

It should be noted that these results do not take into account the additional skill set

required to even attempt an RTR application using the Xilinx EAPR Flow. The vendor-

provided documentation assumes a detailed knowledge of the Xilinx implementation tools

and of the Virtex FPGA architecture. Furthermore, little vendor support is available to re-

solve RTR design issues. The numbers present in Figure 6.2 were obtained by an experienced

designer intimately familiar with Xilinx FPGA tools and architectures.

In comparison, this dissertation’s high-level development environment requires only a

working knowledge of Impulse C, though a user with hardware design experience would

produce improved results. As Impulse C leverages standard ANSI C, the pool of potential

users is orders of magnitude larger than that of the Xilinx EAPR flow.

The area and performance penalties introduced by this dissertation’s development envi-

93

0

0.2

0.4

0.6

0.8

1

1.2

1.4

EAPR High Level
(Embedded)

High Level
(Crypto V2P)

High Level
(Crypto V4)

High Level
(SDR)

A
re

a
/ P

er
fo

rm
an

ce
 /

D
ev

el
op

m
en

t T
im

e
(N

or
m

al
iz

ed
 to

 E
A

P
R

) Area
Performance
Development Time

Figure 6.2: Comparison of EAPR flow to high level development environment for normalized
area, performance, and development time for applications on the Virtex-II Pro (V2P) and
Virtex-4 (V4).

ronment, compared to the Xilinx EAPR flow, come from three sources:

1. HLS inefficiencies. The hardware generated by any current HLS tool will be larger and

slower than hardware that an experienced designer could produce. These penalties

have been documented by others [52] [84] and the cryptographic accelerator results are

in line with the published research.

2. Conservative floorplans. Currently, the automated implementation flow is not closed-

loop. A partially reconfigurable region that is sized too small to hold a module will

result in an error that requires user intervention. The floorplanner tool therefore sizes

the reconfigurable regions conservatively, slightly increasing the area penalty.

3. Conservative clocking estimates. As in the case of the automated floorplanner, the

clock generation algorithm conservatively selects a lower clock speed than might be

acceptable to avoid a design failing timing analysis.

94

Of these sources, the HLS tool is the largest contributor to the area increases and through-

put reductions. While directly addressing HLS tool inefficiencies is beyond the scope of this

dissertation, some avenues do exist to improve performance using the current tools. Many

HLS tools, Impulse C included, feature advanced directives to provide guidance as to the

structure of the generated hardware. As productivity was weighted higher than performance

for application benchmarking, only basic directives, such as which loops to pipeline, were

provided to the HLS tool. By experimenting with multiple optimizations it is likely the

penalties of the HLS tool could be reduced at the expense of development time.

The final two sources of area and performance penalties, the conservative floorplanning

and clocking estimates, can be address by making the automated implementation flow closed-

loop. Any design that is unroutable because of poorly sized area constraints could be re-

floorplanned using a larger estimate of the resource requirements. Similarly, a design that

misses timing could have its clocks adjusted to the fastest obtainable speed.

The benchmark applications permit an analysis of the utility of partial reconfiguration to

be made. Figure 6.3 shows the area savings, in percent of slices, that partial reconfiguration

provides for the number of modules that can be swapped in and out of hardware. This figure

compares the area of a completely static design, where all of the modules is implemented in

hardware at all times, to a partially reconfigurable design, where only one a single module is

resident in the hardware at a time. In terms of area savings only, the break-even point where

a completely static design uses the same amount of resources as a partially reconfigurable

design is indicated on the figure as the location of a line’s X-axis crossing. For the embedded

coprocessor application this break-even point occurs between one and two reconfigurable

modules. Any additional modules added to the system increase the area savings of partial

reconfiguration. The area of a module in the figure was taken to be the average of the areas

of the implemented modules for that application.

The equation of the area savings lines in the figure is given below, where N is the number

of modules and Asavings is in percent. The break-even point can be found by setting Asavings

95

-80

-60

-40

-20

0

20

40

60

80

1 2 3 4 5

Number of Modules

A
re

a
 S

a
v
in

g
 (

%
)

Embedded (HLS)

Embedded (EAPR)

Crypto (HLS)

Crypto (EAPR)

Figure 6.3: Area savings from partial reconfiguration.

to zero and solving for N .

Asavings = ((Astatic + N ∗ Amodule)/(Astatic + Aoverhead + Apr region)− 1) ∗ 100

Note that this figure presents a larger area savings for HLS designs compared to the

EAPR flow, as evident by the higher slope of the HLS lines. This is because the area savings

for the HLS applications are calculated based on the larger HLS reconfigurable modules.

As is evident from the figure, there is a large discrepancy in the area savings of the two

applications. The embedded coprocessor application requires an embedded processor be

integrated into the design. This embedded processor can also handle the configuration man-

agement of the device. For the cryptographic accelerator, however, no embedded processor

is required to perform the hash function. The addition of a MicroBlaze processor to manage

the reconfiguration adds to the area overhead of partial reconfiguration. Thus, partial recon-

figuration is more advantageous for applications that already require an embedded processor.

96

Design Cost [85] Static Power [86]
PR HLS (XC4VLX60-10) $635 487 mW
Static HLS (XC4VLX25-10) $220 227 mW

Table 6.8: Cost and power benefits of partial reconfiguration

If the architecture incorporates a hard core processor, such as the PPC405 found in Xilinx

Virtex-II Pro and Virtex-4 FX devices, this processor can supply configuration management

with a reduced area penalty.

To better quantify the benefits of partial reconfiguration it is instructive to consider actual

device cost and power consumption. Because larger die are more prone to defects, FPGA

device costs increase non-linearly with device size. For an application with the same area

savings as the embedded application in Figure 6.3, if it is assumed that the static design

would fit inside a Xilinx XC4VLX60 FPGA, than the dynamically reconfigurable design

could be placed within a XC4VLX25. Table 6.8 presents the cost and area benefits for such

an application. By using partial reconfiguration the FPGA device cost is reduced by 65%

and the static power consumption is reduced by 53%.

The experience of benchmarking multiple applications revealed reoccurring implementa-

tion issues common to both the high-level development environment and the Xilinx EAPR

flow. Addressing the following issues would improve performance and productivity for all

RTR applications:

• Standardized configuration interfaces. In spite of the fact that the ports on the Xilinx

ICAP remain similar across the architectures, the timing of the signals varies across

the devices and the interface cores provided by Xilinx change between versions of their

tools. As was experienced in the creation of the BSPs for the high-level development

environment and the manual implementation of a configuration controller using the

Xilinx EAPR flow, the differences in the ICAP and its interface cores can greatly

complicate system integration. Furthermore, debugging of any configuration issues

frequently requires the modification of the design to insert logic analyzer probes directly

97

to the ICAP inputs and outputs. No other component of a Xilinx FPGA requires such

effort to utilize. The creation of a static, well-defined interface to the ICAP that is

portable across architectures and tool versions would facilitate the implementation of

RTR designs.

• Dynamic clock frequency modifications. Currently, in both the high-level development

environment and the Xilinx EAPR flow, the clock frequency of a reconfigurable module

is locked to a single fixed value at compile time. This reduces the clock frequency of

a reconfigurable module to the frequency of the slowest module that might be placed

on the device. However, dynamic modification of a module’s clock frequency can be

achieved through partial reconfiguration of the FPGA’s clock managers or through the

use of a dynamic reconfiguration port available on the clocking resources of certain

FPGAs. In the case of the embedded coprocessor application, this dynamic clock

modification could have increased the throughput of the integer divider by a factor of

two.

• Latency-independent communication schemes. As previously discussed, in many de-

signs implemented on the Virtex-4 the critical timing path is in status and control logic

in the FSL communication link. To improve perform of the designs and significantly

reduce the sensitivity of performance to a design’s floorplan, a latency-independent

communication scheme should be adopted. FSL links, as well as many busses, generally

require that a module respond quickly to a control or status event. A communication

scheme that was more tolerant of delays would remove the communication intercon-

nects from the critical timing path, thus increasing clock frequency and throughput.

These benchmark results validate this high-level development methodology, while sug-

gesting avenues for improvement. In real-world scenarios the benefits of this approach would

likely be greater, as these tools empower designers with limited hardware experience to tackle

challenging dynamic hardware applications.

Chapter 7

Conclusion

This dissertation has defined a comprehensive approach to dynamic hardware application

development. Models of computation, communication, and reconfiguration are specified ap-

propriate to streaming applications. Through the creation of configuration management

functions, the low-level details of partial reconfiguration are hidden from a designer. The

specified design flow is independent of a specific language and design environment, per-

mitting the development environment to fit the application. As HDLs cannot describe the

dynamic modification of communication or computation structures, a special specification

format augments the HDL, describing the configuration controller, dynamic hardware, and

other design aspects not captured elsewhere. This RTR computing specification links the

frontend design flow to the backend implementation flow. By separating the design from the

implementation, applications can be easily ported across different architectures.

This dissertation has created an end-to-end design and implementation environment, per-

mitting, for the first time, the high-level development of autonomous, partially reconfigurable

applications. The open nature of the design and implementation flows enables other projects

to extend this work to encompass additional high-level design capture environments, FPGA

architectures, and reconfiguration strategies.

98

99

Through the creation of a set of benchmarking application, the performance and area

penalties of this high-level design environment were compared to those obtained by a tradi-

tional, manual implementation. The results indicate that for a modest area overhead, the

high-level design approach can reduce development time by 50% or more. While a per-

formance penalty on the order of 50% to 70% percent was observed, in many applications

the reduced design time would make this approach attractive, particularly in light of the

significantly reduced skill set that this high-level development approach affords.

Unlike previous attempts to raise the level of design abstraction for partially reconfigurable

applications, this dissertation has produced a complete design and implementation flow,

never requiring the designer to depart from HLLs. The extensible nature of this development

environment facilitates the addition of new architectures and design entry techniques. The

automated inclusion of a configuration controller opens the domain of embedded computing

to the benefits of dynamically reconfigurable hardware.

The results validate the benefits of partial reconfiguration. By reducing the area re-

quirements, cost and power consumption are reduced. While the overheads associated with

partial reconfiguration, in terms of a configuration controller, and HLS, in terms of area

inefficiencies, substantial improvements in cost and power are seen for designs that can share

hardware resource between four or more reconfigurable modules.

While demonstrated with FPGAs, the relevance of this work extends to other domains

that leverage the CSP model and permit dynamic modification of computational operations.

Multiple-processor systems operated in a streaming application paradigm can leverage these

models and techniques, as can certain coarser-grained configurable architectures.

Multiple avenues exist for expanding the breadth and depth of this work, including:

• Removal of Xilinx EAPR Flow constraints. This dissertation builds off of the Xilinx

EAPR Flow and shares some of its limitations. A partial bitstream can only be placed

in a single reconfigurable region communicating over fixed interconnections. A related

100

project recently demonstrated the ability to relocate partial bitstreams while rerout-

ing the signals coming to and from the modules [77]. Integration of these tools into

this work would increase its utility for certain application domains, such as SDR, by

enabling dynamic topologies.

• Integration of debugging and verification tools. HLS tools generally do not provide

a direct mechanism for simulating the design at the HDL level. In many instances

no HDL simulation is required. However, for debugging an HLS-generated design,

HDL simulation is invaluable. By automating the creation of an HDL testbench from

the user’s HLL testbench, the process of verifying the HDL against the user’s HLL

description can be automated. This automatic verification can be extended to the

hardware as well. The streams connecting CSP modules are excellent observation and

comparison points, as the data that passes through the streams should match at each

level of abstraction – executing hardware, HDL simulation, and HLL simulation.

• Cross-platform support. The CSP computation model can encompass multi-core pro-

cessing quite easily. For certain applications, such as floating-point arithmetic, a Gen-

eral Purpose Processor (GPP) is preferable to an FPGA. By expanding the envi-

ronment to include GPPs, the applicability of this dissertation can encompass other

computational domains.

Bibliography

[1] I. Verbauwhede and P. Schaumont, “The happy marriage of architecture and application

in next-generation reconfigurable systems,” in CF ’04: Proceedings of the 1st conference

on Computing frontiers, (New York, NY, USA), pp. 363–376, ACM Press, 2004.

[2] E. Lemoine and D. Merceron, “Run time reconfiguration of fpga for scanning genomic

databases,” in FCCM ’95: Proceedings of the IEEE Symposium on FPGA’s for Custom

Computing Machines, (Washington, DC, USA), p. 90, IEEE Computer Society, 1995.

[3] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor, “Reprogrammable network

packet processing on the field programmable port extender (FPX),” in FPGA, pp. 87–

93, 2001.

[4] P. James-Roxby and B. Blodget, “Adapting constant multipliers in a neural network im-

plementation,” in FCCM’00: IEEE Symposium on Field-Programmable Custom Com-

puting Machines (FCCM), (Washington, DC, USA), p. 335, IEEE Computer Society,

2000.

[5] D. I. Lehn, R. D. Hudson, and P. M. Athanas, “Framework for architecture-independent

run-time reconfigurable applications,” Reconfigurable Technology: FPGAs for Comput-

ing and Applications II, vol. 4212, no. 1, pp. 162–172, 2000.

[6] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Vemuri, “An integrated

partitioning and synthesis system for dynamically reconfigurable multi-FPGA architec-

tures,” in IPPS/SPDP Workshops, pp. 31–36, 1998.

101

102

[7] K. Bondalapati, P. Diniz, P. Duncan, J. Granack, M. Hall, R. Jain, and H. Ziegler,

“Defacto: a design environment for adaptive computing technology,” in Parallel and

Distributed Processing. 11th IPPS/SPDP’99 Workshops, (Berlin, Germany), 1999.

[8] A. Rudra, “The rising importance of FPGA technology in software defined radio,”

COTS Journal, January 2005. January 2005.

[9] A. Malagamba, “SDR prêt-á-porter,” FPGA and Structured ASIC Journal. February

28th, 2006.

[10] J. Villasenor and W. Mangione-Smith, “Configurable computing,” Scientific American,

pp. 66–71, June 1997.

[11] P. Schaumont, I. Verbauwhede, K. Keutzer, and M. Sarrafzadeh, “A quick safari through

the reconfiguration jungle,” in Design Automation Conference, pp. 172–177, 2001.

[12] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk, and P. Y. K.

Cheung, “Reconfigurable computing: architectures and design methods,” Computers

and Digital Techniques, IEE Proceedings-, vol. 152, no. 2, pp. 193–207, 2005.

[13] R. Tessier and W. Burleson, “Reconfigurable computing for digital signal processing: A

survey,” Journal of VLSI Signal Processing, vol. 28, pp. 7–27, June 2001.

[14] K. Jarvinen, M. Tommiska, and J. Skytta, “Comparative survey of high-performance

cryptographic algorithm implementations on fpgas,” in Information Security, IEE Pro-

ceedings, vol. 152, pp. 3–12, 2005.

[15] T. Ramdas and G. Egan, “A survey of FPGAs for acceleration of high performance

computing and their application to computational molecular biology,” in Proceedings of

TENCON, pp. 1–6, Nov 2005.

[16] P. Athanas and A. Abbott, “Real-time image processing on a custom computing plat-

form,” Computer, vol. 28, no. 2, pp. 16–25, 1995.

103

[17] V. Pratt, “Anatomy of the Pentium Bug,” in TAPSOFT’95: Theory and Practice of

Software Development (P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, eds.), no. 915,

pp. 97–107, Springer Verlag, 1995.

[18] E. Lechner and S. Guccione, “The Java environment for reconfigurable computing,”

in 7th International Workshop on Field Programmable Logic and Applications, FPL,

pp. 284–293, 1997.

[19] M. J. Wirthlin and B. L. Hutchings, “Improving functional density through run-

time constant propagation,” in ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, (Monterey, CA), pp. 86–92, 1997.

[20] G. Brebner, “The swappable logic unit: a paradigm for virtual hardware,” in FCCM’97:

IEEE Symposium on FPGAs for Custom Computing Machines, pp. 77–86, 1997.

[21] W. Luk, N. Shirazi, and P. Cheung, “Modelling and optimising run-time reconfigurable

systems,” in FCCM’06: IEEE Symposium on FPGAs for Custom Computing Machines

(K. L. Pocek and J. Arnold, eds.), (Los Alamitos, CA), pp. 167–176, IEEE Computer

Society Press, 1996.

[22] S. Guccione, D. Levi, and P. Sundararajan, “JBits: Java based interface for recon-

figurable computing,” in Proceedings of Military and Aerospace Applications of Pro-

grammable Logic Devices Conference (MAPLD), (Laurel, Maryland), 1999.

[23] R. Lysecky, F. Vahid, and S. Tan, “Dynamic fpga routing for just-in-time fpga compi-

lation,” in Design Automation Conference, 2004.

[24] K. Chia, H. Kim, S. Lansing, W. Mangione-Smith, and J. Villasenor, “High-performance

automatic target recognition through data-specific VLSI,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 6, no. 3, pp. 364–371, 1998.

[25] D. Ross, O. Vellacott, and M. Turner, “An FPGA-based hardware accelerator for image

processing,” in Selected papers from the Oxford 1993 international workshop on field

104

programmable logic and applications on More FPGAs, (Oxford, UK, UK), pp. 299–306,

Abingdon EE&CS Books, 1994.

[26] A. Rashid, J. Leonard, and W. H. Mangione-Smith, “Dynamic circuit generation for

solving specific problem instances of boolean satisfiability,” in FCCM’98: IEEE Sym-

posium on FPGAs for Custom Computing Machines, pp. 196–204, 1998.

[27] M. J. Wirthlin and B. L. Hutchings, “Sequencing run-time reconfigured hardware with

software,” in ACM/SIGDA International Symposium on Field Programmable Gate Ar-

rays, (Monterey, CA), pp. 122–128, 1996.

[28] C. Patterson, “High performance DES encryption in Virtex FPGAs using JBits,” in

FCCM’00: IEEE Symposium on FPGAs for Custom Computing Machines, pp. 113–

121, 2000.

[29] C. Cox and W. Blanz, “Ganglion—a fast field-programmable gate array implementa-

tion of a connectionist classifier,,” IEEE Journal of Solid-state Circuits, vol. 27, no. 3,

pp. 288–299, 1992.

[30] A. Poetter, “JHDLBits: An open-source model for fpga design automation,” Master’s

thesis, Virginia Polytechnic and State University, 2004.

[31] B. Blodget, S. McMillan, and P. Lysaght, “A lightweight approach for embedded re-

configuration of FPGAs,” in Proceedings of the Design,Automation and Test in Europe

Conference and Exhibition, 2003.

[32] J. G. Eldredge and B. L. Hutchings, “RRANN: a hardware implementation of the

backpropagation algorithm using reconfigurable FPGAs,” vol. 4, pp. 2097–2102 vol.4,

1994.

[33] J. D. Hadley and B. L. Hutchings, “Design methodologies for partially reconfigured

systems,” pp. 78–84, 1995.

105

[34] J. Villasenor, C. Jones, and B. Schoner, “Video communications using rapidly reconfig-

urable hardware,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 5, no. 6, pp. 565–567, 1995.

[35] “FALCON II global family of products,” product brief, RF Communications Division,

Harris Corp., 2006.

[36] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp architecture and C com-

piler,” Computer, vol. 33, no. 4, pp. 62–69, 2000.

[37] P. M. Athanas and H. F. Silverman, “Processor reconfiguration through instruction-set

metamorphosis,” Computer, vol. 26, no. 3, pp. 11–18, 1993. 0018-9162.

[38] “S5530 software-configurable processor,” product brief, Stretch, Inc., 2006.

[39] Semiconductor Industry Association, “International Technology Roadmap for Semicon-

ductors (ITRS).”

[40] W. Wolf, “A decade of hardware/software codesign,” Computer, vol. 36, no. 4, pp. 38–

43, 2003.

[41] R. Goering, “High-level synthesis rollouts enable ESL,” EETimes. May 31, 2004.

[42] D. D. Gajski and L. Ramachandran, “Introduction to high-level synthesis,” IEEE Design

and Test of Computers, vol. 11, no. 4, pp. 44–54, 1994.

[43] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented FPGA comput-

ing in the Streams-C high level language,” in FCCM’00: Proceedings of IEEE Sympo-

sium on Field-Programmable Custom Computing Machines (FCCM), pp. 49–56, 2000.

[44] A. Brito, M. Khnle, M. Hbner, J. Becker, and E. Melcher, “Modelling and simulation

of dynamic and partially reconfigurable systems using SystemC,” in processing of IEEE

Computer Society Annual Symposium on VLSI, pp. 35–40, 2007.

106

[45] A. Pelkonen, K. Masselos, and M. Cupak, “System-level modeling of dynamically recon-

figurable hardware with systemc,” in processing of International Parallel and Distributed

Processing Symposium, 2003.

[46] S. Natarajan, B. Levine, C. Tan, D. Newport, and D. Bouldin, “Automatic mapping of

khoros-based applications to adaptive computing systems,” in Proceedings of Military

and Aerospace Applications of Programmable Devices Conference (MAPLD), (Washing-

ton, D.C.), 1999.

[47] Celoxica, Inc., “Handel-C for hardware design,” white paper, 2006.

[48] D. Pellerin and S. Thibault, Practical FPGA Programming in C. Upper Saddle River,

N.J.: Prentice Hall, 2005.

[49] Nallatech, “Dimetalk v3.0 application development environment,” product brief, 2006.

[50] D. Poznanovic, “Application development on the SRC Computers, Inc. systems,” in

Proceedings of the 19th IEEE International Parallel and Distributed Processing Sympo-

sium, 2005.

[51] Xilinx, Inc., “Xilinx System Generator for DSP version 8.2,” user’s guide, 2006.

[52] B. Holland, M. Vacas, V. Aggarwal, R. DeVille, and A. Troxel, I. George, “Survey

of c-based application mapping tools for reconfigurable computing,” in Proceedings of

Conference on Military and Aerospace Programmable Logic Devices (MAPLD), (Wash-

ington, D.C.), 2004.

[53] R. D. Hudson, D. Lehn, J. Hess, J. Atwell, D. Moye, K. Shiring, and P. Athanas,

“Spatio-temporal partitioning of computational structures onto configurable computing

machines,” in Configurable Computing: Technology and Applications, Proc. SPIE 3526

(J. Schewel, ed.), (Bellingham, WA), pp. 62–71, SPIE – The International Society for

Optical Engineering, 1998.

107

[54] M. Eisenring and M. Platzner, “A framework for run-time reconfigurable systems,” J.

Supercomput., vol. 21, no. 2, pp. 145–159, 2002.

[55] E. Carvalho, N. Calazans, E. Briao, and F. Moraes, “Padreh - a framework for the design

and implementation of dynamically and partially reconfigurable systems,” pp. 10–15,

2004.

[56] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon, “Stream compu-

tations organized for reconfigurable execution (SCORE),” in Field-Programmable Logic

and Applications, (Berlin, Germany), 2000.

[57] F. Ferrandi, M. Santambrogio, and D. Sciuto, “A design methodology for dynamic recon-

figuration: the caronte architecture,” Parallel and Distributed Processing Symposium,

2005. Proceedings. 19th IEEE International, pp. 4 pp.–, 4-8 April 2005.

[58] A. Antola, M. Santambrogio, M. Fracassi, P. Gotti, and C. Sandionigi, “A novel hard-

ware/software codesign methodology based on dynamic reconfiguration with impulse c

and codeveloper,” 3rd Southern Conference on Programmable Logic, (SPL), pp. 221–

224, 28-26 Feb. 2007.

[59] T. Bapty, S. Neema, J. Scott, J. Sztipanovits, and S. Asaad, “Model-integrated tools

for the design of dynamically reconfigurable systems,” technical report, Institute for

Software Integrated Systems, Vanderbilt University, 2000.

[60] W. Luk, N. Shirazi, and P. Y. K. Cheung, “Compilation tools for run-time reconfig-

urable designs,” in FCCM ’97: IEEE Symposium on FPGA-Based Custom Computing

Machines, (Washington, DC, USA), p. 56, IEEE Computer Society, 1997.

[61] T. K. Lee, A. Derbyshire, W. Luk, and P. Y. K. Cheung, “High-level language exten-

sions for run-time reconfigurable systems,” in Field-Programmable Technology (FPT).

Proceedings. IEEE International Conference on, pp. 144–151, 2003.

108

[62] A. L. Slade, B. E. Nelson, and B. L. Hutchings, “Reconfigurable computing application

frameworks,” in FCCM’03: IEEE Symposium on Field-Programmable Custom Comput-

ing Machines, pp. 251–260, 2003.

[63] S. Craven and P. Athanas, “Examining the viability of FPGA supercomputing,”

EURASIP Journal on Embedded Systems, 2007.

[64] E. A. Lee and T. M. Parks, “Dataflow process networks,” in Proceedings of the IEEE,

pp. 773–799, May 1995.

[65] C. Hoare, “Communicating sequential processes,” Commun. ACM, vol. 21, no. 8,

pp. 666–677, 1978.

[66] P. Welch and D. Wood, “The Kent Retargetable occam Compiler,” in Parallel Processing

Developments, Proceedings of WoTUG 19, vol. 47, pp. 143–166, Mar. 1996.

[67] P. Ljung, “How to create fixed- and floating-point IIR filters for FPGAs,” Programmable

Logic Design Line. May 31, 2006.

[68] Formal Systems, “Failures-divergence refinement,” user manual, 2005.

[69] E. Lee, “Overview of the ptolemy project,” summary paper, 2003. Available at

http://ptolemy.eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf.

[70] A. Saifhashemi and P. Beerel, “High level modeling of channel-based asynchronous cir-

cuits using Verilog,” in Communicating Process Architectures Conference, (Eindhoven,

Netherlands), 2005.

[71] Xilinx, Inc., “Microblaze processor reference guide,” reference manual, 2006.

[72] J. A. Williams, N. W. Bergmann, and X. Xie, “FIFO communication models in oper-

ating systems for reconfigurable computing,” in FCCM’05: IEEE Symposium on Field-

Programmable Custom Computing Machines, pp. 277–278, 2005.

109

[73] Xilinx, Inc., “AccelDSP synthesis tool,” product information, 2006. Available at

http://www.xilinx.com/ise/dsp design prod/acceldsp/index.htm.

[74] I. Xilinx, “XAPP290: Two flows for partial reconfiguration: Module based or difference

based,” 2004.

[75] S. Koh and O. Diessel, “Comma: A communications methodology for dynamic module-

based reconfiguration of fpgas,” in proceedings of the Dynamically Reconfigurable Sys-

tems Workshop in the International Conference of Architectures of Computing Systems,

2006.

[76] C. Bobda and B. Ali Ahmadinia, “Dynamic interconnection of reconfigurable modules

on reconfigurable devices,” IEEE Design and Test of Computers, vol. 22, no. 5, pp. 443–

451, 2005.

[77] P. Athanas, J. Bowen, T. Dunham, C. Patterson, M. Rice, J. Shelburne, J. Suris,

M. Bucciero, and J. Graf, “Wires on demand: Run-time communication synthesis for

reconfigurable computing,” in International Conference on Field Programmable Logic

and Applications, FPL, 2007.

[78] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” in Proceedings of the

IEEE, vol. 75, pp. 1235–1245, 1987.

[79] J. Newcomb, “A scalable approach to multi-core prototyping,” master, Virginia Poly-

technic Institute and State University, 2008.

[80] R. Stallman, R. McGrath, and P. Smith, The GNU Make Manual. Boston, MA: Free

Software Foundation, 2006.

[81] L. Cheng and M. Wong, “Floorplan design for multimillion gate FPGAs,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and System, vol. 25, no. 12,

pp. 2795–2805, 2006.

110

[82] Y. Feng and D. Mehta, “Heterogeneous floorplanning for FPGAs,” in Proceedings of the

19th International Conference on VLSI Design (VLSID06), (Washington, DC, USA),

IEEE Computer Society, 2006.

[83] L. Singhal and E. Bozorgzadeh, “Multi-layer floorplanning on a sequence of reconfig-

urable designs,” in International Workshop on Field Programmable Logic and Applica-

tions, FPL, 2006.

[84] E. El-Araby, M. Taher, M. Abouellail, T. El-Ghazawi, and G. Newby, “Comparative

analysis of high level programming for reconfigurable computers: Methodology and

empirical study,” Programmable Logic, 2007. SPL ’07. 2007 3rd Southern Conference

on, 28-26 Feb. 2007.

[85] Avnet, Inc., “Avnet partbuilder,” price quote, May 15, 2008.

[86] Xilinx, Inc., “Xilinx power estimator user guide,” reference manual, 2008.

	Title
	Abstract
	Table of Contents
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	Reconfigurable Computing
	Design Methodologies

	Approach
	Models and Abstractions
	Computation and Communication Models
	Reconfiguration Model
	Programming Model

	Design Flow
	Design Entry and Partitioning
	Simulation

	Implementation Flow
	Reconfigurable Computing Specification Format
	Configuration Management

	Verification
	Reconfiguration Synchronization
	Use Model

	Implementation
	Design Capture
	Produced Design
	Tools
	Frontend
	Design Exchange
	Backend

	Application Development
	Video Processing
	Application Description and Simulation
	Implementation

	Software Defined Radio
	BSP Creation
	AM Radio Application

	Benchmarking Applications

	Results
	Benchmark Applications
	Coprocessor Application
	Cryptographic Accelerator
	Application Porting
	Software Defined Radio Application

	Conclusions

	Conclusion
	Bibliography

