
Reverse Software Engineer ing

Large Object Or iented Software Systems

using the UML Notation

Surendranath Ramasubbu

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Dr. Pushkin Kachroo, Chair

Dr. Lynn Abbott

Dr. Binoy Ravindran

Mr. Mark W Vinson

 April 26, 2001

Blacksburg, Virginia

Keywords: Reverse Engineering, Unified Modeling Language, Design Recovery,
Program Comprehension, Re-engineering, Software Engineering

Copyright 2000, Surendranath Ramasubbu

Reverse Software Engineer ing Large Object Or iented Software Systems

using the UML Notation

Surendranath Ramasubbu

ABSTRACT

A common problem experienced by the software engineering community traditionally

has been that of understanding legacy code. A decade ago, legacy code was used to refer

to programs written in COBOL, typically for large mainframe systems. However, current

software developers predominantly use Object Oriented languages like C++ and Java.

The belief prevalent among software developers and object philosophers that

comprehending object-oriented software will be relatively easier has turned out to be a

myth. Tomorrow’s legacy code is being written today, since object oriented programs are

even more complex and difficult to comprehend, unless rigorously documented. Reverse

Engineering is a methodology that greatly reduces the time, effort and complexity

involved in solving the program comprehension problem.

This thesis deals with Reverse Engineering complex object oriented software and the

experiences with a sample case study. Extensive survey of literature and contemporary

research on reverse engineering and program comprehension was undertaken as part of

this thesis work. An Energy Information System (EIS) application created by a leading

energy service provider and one that is being used extensively in the real world was

chosen as a case study. Reverse engineering this industry strength Java application

necessitated the definition of a formal process. An intuitive Reverse Engineering Process

(REP) was defined and used for the reverse engineering effort. The learning experiences

gained from this case study are discussed in this thesis.

Acknowledgements

It would be fitting to thank my advisor, Dr Pushkin Kachroo at the outset, who besides

providing constant support and encouragement for completing my thesis work, also

placed immense faith in my abilities and gave me enough freedom and space to explore

and research.

Special thanks to Dr Lynn Abbott and Dr Binoy Ravindran for having spared time and

effort in supporting my Graduate course work as also for this thesis.

My list of people to thank would be incomplete without acknowledging the contribution

of Mr. Mark Vinson, at AEP Communications towards the work that formed the

backbone of this thesis. His words of encouragement and interest and a penchant for the

“Big Picture” kept me motivated at times when the going was tough. Along with him I

thank all the folks at AEPC, Roanoke for their support and for sitting through my

lectures!

Most of all, many thanks to my wife Anitha, who patiently endured long lonely hours,

and to my family for making me everything I am.

iv

Contents

Chapter 1: Introduction--- 1

 1.1 Motivation-- 2

 1.2 Reverse Engineering and Object Orientation --------------------------------- 3

1.3 Case Study: Reverse Engineering the EIS Client application -------------- 3

 1.3.1 History of the EIS Client --- 4

 1.3.2 Initial Status of the EIS Client --- 4

1.4 Contribution-- 5

Chapter 2: The State of the Ar t in Reverse Engineer ing----------------------------------- 6

2.1 Early work in Reverse Engineering -- 7

2.1 A Taxonomy --- 8

2.3 Difficulties in Reverse Engineering -- 9

2.4 Different Approaches to Reverse Engineering------------------------------- 10

 2.4.1 Program Comprehension Approach ------------------------------------ 11

 2.4.2 Extracting Design Patterns--- 12

 2.4.3 Knowledge based Approach--- 13

 2.4.4 Domain Analysis Approach-- 16

 2.4.5 Program Slicing Approach--- 17

 2.4.6 Other Automated Approaches--- 19

2.5 Survey of Tools and Benchmarks-- 20

2.6 The Case for Modeling during Development -------------------------------- 21

Contents v

2.7 Survey of similar and related work -- 23

Chapter 3: A br ief introduction to the UML -- 26

3.1 The Need for a Modeling Language--- 27

3.2 History of the UML -- 27

3.3 Evolution of the UML --- 28

3.4 Goals of the UML -- 28

3.5 Modeling using UML – an Overview --- 29

 3.5.1 The Need for Modeling--- 29

 3.5.2 Principle of Modeling using UML -------------------------------------- 30

 3.5.3 UML – the Language--- 31

3.6 The UML Notation – an Overview -- 33

 3.6.1 Things in the UML --- 34

 3.6.1.1 Structural Things in the UML --------------------------------- 34

 3.6.1.2 Behavioral Things in the UML -------------------------------- 36

 3.6.1.3 Grouping Things in the UML---------------------------------- 37

 3.6.1.4 Annotational Things in the UML------------------------------ 37

 3.6.2 Relationships in the UML --- 38

 3.6.3 Diagrams in the UML-- 40

 3.6.3.1 Class Diagram-- 40

 3.6.3.2 Package/Component Diagram--------------------------------- 41

 3.6.3.3 Use Case Diagram--- 42

 3.6.3.4 Interaction Diagram - Sequence------------------------------- 43

 3.6.3.5 Interaction Diagrams - Collaboration------------------------- 44

 3.6.3.6 Activity Diagram -- 45

 3.6.3.7 State Diagram -- 46

3.7 Comments--- 47

Chapter 4: Preliminary work before Reverse Engineer ing------------------------------- 48

 4.1 Generic Ideas--- 49

 4.1.1 Collect the Various Artifacts-- 49

Contents vi

 4.1.2 Develop Functional Experience -- 49

 4.1.3 Establish Control over building the software system---------------- 49

 4.1.4 Evaluate Tools for Reverse Engineering------------------------------ 50

 4.1.5 Select the Visual Modeling Medium----------------------------------- 50

 4.1.6 Build the Architectural Models of the System ----------------------- 50

 4.1.7 Adapt to a Suitable Development Environment---------------------- 51

 4.1.1 Debug the Software in the Development Environment ------------- 51

 4.2 Case Study Experience --- 52

 4.2.1 Collection of Artifacts --- 52

 4.2.2 Functional Experience --- 52

 4.2.3 Control over building the software------------------------------------- 52

 4.2.4 Tools for Reverse Engineering --- 52

 4.2.5 Choice of the Visual Modeling Medium------------------------------ 53

 4.2.6 Architectural Models of the System ----------------------------------- 53

 4.2.7 Adaptation to a Suitable Development Environment---------------- 53

Chapter 5: Reverse Engineer ing Process: a Case Study ---------------------------------- 54

5.1 Introduction and Motivation-- 55

5.2 Related Work --- 56

5.3 Abstraction -- 56

5.4 A Reverse Engineering Process (REP)-- 59

 5.4.1 Definition of Goals of RE --- 59

 5.4.2 Development of a Feature Description -------------------------------- 60

 5.4.3 Extraction of Source Model --- 60

 5.4.4 Abstraction of Architectural Model ------------------------------------ 61

 5.4.5 Consolidation-- 62

 5.4.6 Utilization-- 63

5.5 Case Study – the EIS Client Application ------------------------------------- 64

 5.5.1 Definition of Goals--- 64

 5.5.2 Feature Description--- 65

 5.5.2.1 Use Case Diagram example – top level ---------------------- 66

Contents vii

 5.5.2.2 Use Case Diagram example – fine grained ------------------ 72

 5.5.2.3 Activity Diagram for a Use Case------------------------------ 73

 5.5.3 Extraction of Source Model --- 75

 5.5.3.1 Class Diagram example--- 76

 5.5.3.2 Interaction Diagrams example--------------------------------- 78

 5.5.4 Abstraction of the Architectural Model ------------------------------- 80

 5.5.5 Consolidation-- 81

 5.5.6 Utilization-- 81

5.6 Lessons Learned-- 82

Conclusion and Future Work --- 83

Bibliography -- 85

Vita-- 89

viii

List of Figures

3.1 Class Notation in UML--- 34

3.2 Interface Notation in UML -- 35

3.3 Collaboration Notation in UML -- 35

3.4 Use Case Notation in UML-- 35

3.5 Component Notation in UML --- 36

3.6 Node Notation in UML--- 36

3.7 Interaction Notation in UML -- 36

3.8 State Notation in UML --- 37

3.9 Grouping Notation in UML-- 37

3.10 Annotation Notation in UML --- 37

3.11 Dependency Notation in UML -- 38

3.12 Association Notation in UML--- 38

3.13 Aggregation Notation in UML -- 39

3.14 Generalization Notation in UML --- 39

3.15 A typical UML Class Diagram-- 40

3.16 A typical UML Package Diagram -- 41

3.17 A typical UML Use Case Diagram--- 42

3.18 A typical UML Sequence Diagram--- 43

List of Figures ix

3.19 A typical UML Collaboration Diagram-- 44

3.20 A typical UML Activity Diagram -- 45

3.21 A typical UML State Diagram -- 46

5.1 Levels of Abstraction--- 58

5.2 The REP phases--- 63

5.3 Use Case Diagram for the EIS Client -- 66

5.4 Fine grained Use Case Diagram -- 72

5.5 Activity Description for the EIS Client Begins Use Case------------------------------- 74

5.6 Example Class Diagram showing classes that implement EIS Client Start-up ------ 77

5.7 Sequence Diagram that Describes the Application Start-up---------------------------- 78

5.8 Collaboration Diagram that Describes the Application Start-up----------------------- 78

5.9 Architectural Description of the Application --- 80

1

Chapter 1

Introduction

The primary product of a development team is not beautiful documents, world-
class meetings, great slogans, or Pulitzer-prize-winning lines of source code.
Rather it is good software that satisfies the evolving needs of its users and the
business. Everything else is secondary.

Booch, Rumbaugh and Jacobson

2

1 Introduction

1.1 Motivation

A common problem experienced by the software engineering community traditionally

has been that of understanding legacy code. Legacy code is a semi-formal term that refers

to the programs coded for typically industry strength projects, which become increasingly

difficult to understand as they grow in size and complexity.

Software engineering has undergone a paradigm shift as the size of the software systems

deployed increased dramatically and businesses began to rely increasingly on computers

and information systems. A substantial portion of the software development effort is

spent on maintaining existing systems rather than developing new ones [2]. An estimated

50% to 80% of the time and material involved in software development is devoted to

maintenance of existing code [15]. Crucial to the maintenance of existing systems is the

task of program comprehension, an emerging area in software engineering. 47% of the

time spent on enhancements to existing programs and 62% of that spent on program

corrections involve program comprehension tasks like reading the documentation,

scanning the source code, and understanding the changes to be made [16].

A decade ago, legacy code was used to refer to programs written in COBOL, typically for

large mainframe systems. However, today’s software developers predominantly use

Object Oriented languages like C++ and Java. This means that tomorrow’s legacy code is

being written today, since object oriented programs are even more complex and difficult

to comprehend, unless rigorously documented. Unless this kind of revolution sweeps the

Chapter 1. Introduction 3

software industry, we are going to end up with software that is even more obscure

accompanied by insufficient design documentation.

Reverse Engineering is a methodology that greatly reduces the time, effort and

complexity involved in solving the program comprehension problem. Reverse

Engineering is best defined by Chikofsky and Cross [1] as “ the process of analyzing a

subject system

• To identify the system’s components and their inter-relationships and

• To create representations of the system in another form or at a higher level of

abstraction.”

1.2 Reverse Engineer ing and Object Or ientation

The belief prevalent among software developers and object philosophers that

comprehending object-oriented software is relatively easier has turned out to be a myth.

Sneed and Donbovari conclude that object oriented programming per se does not increase

maintainability as many would like to believe, but that a constrained and disciplined

object-oriented approach may do so. Software systems built using non-object-oriented

languages like COBOL, FORTRAN, PASCAL and C can be reverse engineered from an

algorithmic perspective. However, large object-oriented programs in C++, Java are

highly fragmented and the reverse engineering effort is extremely difficult [4].

1.3 Case Study: Reverse engineer ing the “ EIS Client” application

This thesis deals with Reverse Engineering in general and the experiences with a sample

case study. An Energy Information System (EIS) application created by a leading energy

service provider (ESP) and one that is being used intensively in the real world was

chosen for the purpose of this project. It includes a portfolio of products and services that

supply information about energy use in order to help customers save time and money. It

consists of several components, the Database, Middle tier, Server Applications and an

EIS Analysis application, as well as other supporting applications and utilities. This thesis

Chapter 1. Introduction 4

adopts the EIS application (heretofore referred to simply as “EIS client”) at the client side

as a specific real world case for the reverse engineering study. Due to business reasons

coming in the way of disclosure of the intellectual property of the said ESP, and due to

the public nature of this thesis, the names of the EIS application and the ESP would

remain anonymous for the purpose of this thesis document.

1.3.1 History of EIS Client

The EIS client is a heavy industry strength software application that was developed for

the energy service provider by a sub-contractor. After the release and deployment of the

application, the developers were forced to renounce all ties with the EIS client due to

certain operational reasons. Due to the rapidity and scale of the development of the

application, proper documentation of the project in terms of modeling diagrams,

including comments etc. was not done.

In order to encourage research to solve such a prevalent problem, the EIS client

application was turned over to us for the purpose of this thesis to be used as a Case Study

for Reverse Software Engineering. Since this is found to be a typical situation for the

application of Reverse Engineering, the thesis goes into tackling this non-trivial problem

and possible means of solving it. Since the application was written using the Java

programming language in the Object Oriented Programming (OOP) paradigm, the task

was found to be all the more relevant and contemporary.

1.3.2 Initial status of the EIS client

The ESP passed on the knowledge it had gained about the EIS client in the form of the

developer’s documentation and some diagrams during the beginning of this thesis work.

1. The application could not be built from the source files available based on the

Developer’s documentation.

2. Around 600 Java files were in the archive with little documentation on how

they are connected or used.

Chapter 1. Introduction 5

3. A number of third party libraries were used in the project like JClass and DSG

libraries. There was no knowledge on what parts of these libraries were used

and how they were employed.

4. The EIS client could not be built or executed in an Integrated development

environment (IDE).

5. A few static class diagrams were provided for the most complex parts of the

application. However, these diagrams were too complex and not very different

from the complex source code files.

However, the entire system was deployed and the application was, and is, being used by a

growing number of customers across the country. This led to significant problems in

maintenance and customer support for the application due to the scanty knowledge about

the working of the application.

This, therefore, was the state of the application where it was being widely deployed while

there was seemingly little intellectual control on the implementation and source code.

The ESP had inherited a new generation legacy system, which later became the

foundation for this research.

1.4 Contr ibution

A summary of the author’s contributions as a result of this thesis work is shown below.

1. A general, intuitive and formal process for Reverse Engineering Large Scale OO

software has been defined. This process is general at this point and could be extended,

modified or developed to accommodate automated steps.

2. A design artifact (a UML design documentation) has been released to the sponsor as a

result of reverse engineering the case study EIS Client application.

6

Chapter 2

The State of the Ar t

Life can only be understood backwards, but it must be lived forwards.

Soren Kierkegaard

7

2 The State of the Ar t

Considerable work is being done in the area of reverse engineering by various

universities and numerous papers have been published by the IEEE Computer Society

Press - Technical Council on Software Engineering for Reverse Engineering and Re-

engineering besides the proceedings of the IEEE Working Conference on Reverse

Engineering and that on Program Comprehension. Quite a few journal papers have also

been published in this field of work. A glimpse of the literature on reverse engineering,

by no means comprehensive is provided here. Papers that have the most relevance to this

thesis have been chosen and an abstract presented. From a holistic perspective, the papers

have been classified into categories based on the problem domain and the approach

adopted.

2.1 Ear ly Work in Reverse Engineer ing

Reverse Engineering is a well-established practice in that there are numerous CASE tools

available to map source code to good quality structural models. These CASE tools were

being used along side sequential programming languages like COBOL to maintain the

design documentation. However, the concept of Reverse Engineering emerged from the

hardware world where hardware circuits were reverse-engineered to create clones. When

the software engineers adopted the same term to describe some software engineering

practices, there was a dearth of well-defined terminology to use for both technical and

market-place discussions.

Chapter 2. The State of the Ar t 8

2.2 A Taxonomy

It is in the above described context that Chikofsky and Cross [1] made a very successful

attempt at providing some precise and long standing definitions for much of the

terminology used to this day in the field of Reverse Engineering. In this paper, they have

started with a description of the ANSI definition of software maintenance and established

the concept of software development life cycles. Emphasis is placed on the theory that

there exist several higher level abstractions that can be used to describe a subject system

during various stages of the software development life cycle. After defining three specific

abstractions, definitions for Forward Engineering, Reverse Engineering, Restructuring

and Re-engineering are provided.

Reverse Engineering is further classified into Redocumentation and Design Recovery.

Redocumentation is defined as “ the creation or revisions of a semantically equivalent

representation within the same relative abstraction level” , which can then provide easier

ways to visualize relationships among program components. Design Recovery is then

defined as “a subset of Reverse Engineering in which domain knowledge, external

information, and deduction or fuzzy reasoning are added”, to add more meaningful

abstractions than that obtained by examining the system itself.

The objectives of Reverse Engineering are also laid out, the most important of which are

discussed here. The notion of Reverse Engineering is to cope with the complexity of a

software system by building models. These models can be built at different levels of

abstraction, and there could be multiple views of a system. This is analogous to the

different views shown on the blueprint for a building, where no single view is sufficient

to describe the entire system.

The paper concludes with a discussion of the economics of Reverse Engineering. A point

very forcefully made is that even if the reverse engineering effort meets with a limited

Chapter 2. The State of the Ar t 9

level of success, there could be substantial savings in the cost of the software

development and maintenance efforts.

2.3 Difficulties in Reverse Engineer ing

Spencer Rugaber [2] gives an interesting introduction to Reverse Engineering as an

inescapable part of the software development effort. Describing the work done by his

research group at Georgia Tech, the paper introduces Reverse Engineering and begins

with a detailed discussion of the practical difficulties involved in the task. These

difficulties include that of the choice of the level of abstraction needed, and that of the

formal/cognitive distinction. Computers and programming languages are formal, while

the human cognitive capabilities are non-formal. Therefore, the result of any reverse

engineering work could be very subjective. Any program is “understood to the extent that

the reverse engineer can build up correct high level chunks from the low level details

available in the program.”

A discussion of how these difficulties are manifested to the reverse engineer follows. The

choice of methodology, representation and tools used will define the usefulness of the

derived reverse engineering information. The work done on integrating the top-down and

bottom-up approaches to understanding a program to develop an approach, called the

Synchronized Refinement is described. This approach is based on the detection of design

decisions in the source code and the organization of the information into an information

structure suitable for browsing by software maintainers. However, the process suggested

is labor intensive, though the paper suggests that automating the individual tasks in the

process can reduce the rigor involved.

The author suggests that many of the activities described in the Synchronized Refinement

methodology are automatable. He suggests that if a comprehensive information structure

is populated with information about a program, different views of the system can be

extracted from the database as required for understanding a particular part of the source

code.

Chapter 2. The State of the Ar t 10

2.4 Different approaches to Reverse Engineer ing

Reverse Engineering can be attempted at different levels of abstraction. For example, the

executable file could be the subject, the goal being to generate the source code from the

executable. For the purpose of this research, reverse engineering is addressed at the

source code level, building higher levels of abstraction being the objective.

2.4.1 Program Comprehension approach

Erdos and Sneed [3] suggest partial comprehension of complex programs, since huge

legacy programs are “so complex that they cannot be comprehended in their entirety no

matter what forms of representation are used”. The authors contend that maintenance

tasks require the comprehension of a relatively small portion of the program and they

suggest a set of questions, which are answered by an automated tool built by the authors.

The objective of the research is to permit programmers unfamiliar with the purpose and

function of the programs to maintain them at reasonable cost, which has been achieved

with some justifiable assumptions. The approach presented by the authors was developed

while working with maintenance programmers and considering their requests and

requirements.

Instead of a call graph type of diagram to describe the procedures and their interactions

with other procedures in the program, the authors suggest that a Fan-in diagram can be

used along with Low level Data Flow Diagrams. Decision Trees are used to model

complex conditional series of statements. Variables that are referred in multiple locations

in the program are displayed in a window of cross-references. External object references

are also maintained in a separate window. The use of the above tools enables the

programmer to view a set of simple diagram and data windows and comprehend enough

to perform simple maintenance tasks. The authors report a total productivity increase of

30%. A final comparison is made with similar approaches and a conclusion reached that a

partial comprehension approach is the most suitable for any program comprehension

Chapter 2. The State of the Ar t 11

situation where large programs are involved. However the sample programs chosen were

unique in that it was assumed that the users are knowledgeable enough to direct

maintenance requests to particular components, which the maintenance programmer can

use as a starting point for further analysis.

The supposed ease of comprehension of object-oriented programs is squarely denounced

by Sneed and Dombovari [4]. Their paper deals with an ongoing research project that

aims at the difficult task of comprehending complex, distributed, object-oriented software

systems by approaching in a formal disciplined manner. Citing contemporary work in

similar initiatives, the paper goes on to explain that if modeled properly and if supported

by automated tools, even complex, object oriented systems can be comprehended

formally. Most tools suggested in this paper have been implemented and are in operation.

The authors also contend that though the UML is a good choice if a project is well

documented using it, they point out that the person using the design documentation

should be conditioned to think in those terms. Their approach does not use the UML,

since understanding the design gets tied to understanding UML.

A real life case study is examined to estimate the challenge in comprehending a complex

distributed object-oriented system. The C++ front-end of a stockbroker trading system is

considered. This system is more complex than any of the systems considered in previous

research in this area. A dual strategy of top-down and bottom-analysis is adopted. From

the top, one has to start from the existing requirement documentation and trace the

requirements down to the technical implementation artifacts. From the bottom, one has to

start from the existing code and derive technical implementation artifacts, which can be

traced back to the requirements. For this purpose, s set of standard entity definitions and a

tool to extract them with a database to store them in are employed. The goal is a

comprehensive documentation model. Finally the implementation model is linked to the

specification model. This is primarily a problem of association to determine the mapping

between entities in the two models that result from the top-down and bottom-up

approaches respectively. Again, this paper also places emphasis on reverse engineering

required only to the extent of maintaining software like the previous paper discussed.

Chapter 2. The State of the Ar t 12

A similar approach to the one described above was adopted by Mayrhauser and Vans [14]

where only large scale programs were considered, but where cognition was considered

the primary focus area. The paper reports on a software understanding study during

adaptation of large-scale software. The study was designed as an observational field

study of professional maintenance programmers adapting software. The paper details the

design of the study and discusses the results from the programmers. The goal was to

answer several questions about how programmers approach software adaptations, their

work process and their information needs. The programmers were found to work

predominantly at the domain model level, adopting opportunistic and systematic

understanding. A report on the general understanding process, the type of action

programmers performed during the adaptation task, and the level of abstraction at which

they work is included. Though the paper deals with large-scale software, it is more of a

cognitive study about the human element involved in program comprehension.

2.4.2 Extracting Design Patterns

An approach to recover object-oriented design patterns from the design and code is

presented by Antoniol et al. [5]. Design patterns are micro-architectures, high level

building blocks. Design patterns are an emergent technology: they represent well-known

solutions to common design problems in a given context. From the perspective of reverse

engineering the discovery of patterns in software artifacts represents a step in the

program understanding process. A pattern provides knowledge about the role of each

class within the pattern, the reason for certain relationships among pattern constituents

and/or the remaining parts of the system. Design patterns being a relatively young filed,

there are currently few works that address design pattern recovery in the field of program

understanding and design recovery.

A pattern description encompasses its static structure, in terms of classes and objects

participating to the pattern and their relationships, but also behavioral pattern dynamics,

in terms of participants exchanged messages. Five specific design patterns suggested in

Chapter 2. The State of the Ar t 13

previous literature are chosen as samples for recovery. The paper suggests a multi-stage

reduction strategy using software metrics and structural properties to extract structural

design patterns from object-oriented design or code. An intermediate form called the

Abstract Object Language (AOL) is used which is then parsed to get the Abstract Syntax

Tree (AST) from which the software metrics are extracted. Experiments performed on

public domain code and on industrial code have been discussed and the results analyzed.

An average precision of 55% is observed on public domain code, whereas very few

design patterns were detected in industrial code. This is attributed to the observation that

“patterns retrieved from design and code had no intersection” . The tool discussed has

been developed on Java to assure portability across platforms, but at the price of being

quite inefficient.

2.4.3 Knowledge based approach

A knowledge-based approach to achieve program comprehension is evaluated by Abd-El-

Hafiz [17]. The author in this paper evaluates the approach proposed by the same author

in previous publications. It mechanically documents programs by generating first order

predicate logic annotations of their loops. A family of analysis techniques have been

developed and tailored to cover different levels of program complexity. Loop events are

generated and they are verified using a knowledge base of ‘plans’ . The term ‘plan’ is

used to refer to a unit of knowledge required to identify an abstract concept in a program.

The plans in the existing database are used to analyze five different programs. The author

states that this “proves that the knowledge base built by analyzing one program is

generally usable beyond that program.” The knowledge based approach exploits the fact

that there are certain stereotyped programming concepts that are heavily used in

programs and detecting these can be easy using this approach.

A knowledge based loop analysis approach is employed to decompose loops into

fragments, called events. The loop representation is normalized to make it independent of

the programming language. Using the above a knowledge base is built and a chosen set of

programs are used to evaluate the usefulness of the approach. An attempt is made to

Chapter 2. The State of the Ar t 14

prove that the knowledge base built using a specific program can help in understanding

similar stereotyped programming constructs in other programs. In this aspect, detaching

the program construct from the programming language it was written in very useful in

extending the utility of the knowledge base. The author further states that “our approach

can be greatly enhanced by trying to create knowledge bases that are sufficient for

specific application domains” . Future goals include the evaluation of the performance of

this process when used in the above mentioned “application specific domain” based

situations.

Jahnke and Walenstein [18] start from the premise that Reverse Engineering, as such, is a

task that is fraught with imperfections. This is because there are certain simple tasks,

which can be automated during reverse engineering, but there are certain others where a

human element is definitely deemed necessary. Since the task is complex and a holistic

view of the system and the domain are often needed, accounting for imperfect knowledge

is essential. Therefore any realistic characterization of Reverse Engineering should be an

effort to describe it as a joint effort between reverse engineers and supportive computer

tools. This paper evaluates the requirements that a tool should meet to qualify as a

human-centered automation tool for Reverse Engineering. The authors use a prototype

tool called Varlet that is evaluated in an industrial environment. The application being

reverse-engineered is an industrial database. The authors provide a catalogue of

information on the necessity for adopting the imperfect knowledge paradigm in building

reverse-engineering tools. They also mention that though there is no dearth of literature

on the subject, there are not many tools that incorporate the human element into the

reverse-engineering task.

The authors present an argument that “better methods of externally representing,

manipulating and mechanically processing imperfect knowledge must be developed.”

Based on experiences in using a specific tool, the authors extrapolate the conclusions

drawn to other tools used for reverse engineering. A task independent argumentation is

presented to transform the imperfect knowledge and processing from the users into the

tools. Instead of extending the rigor and formality associated with the current reverse

Chapter 2. The State of the Ar t 15

engineering tools, the authors conclude that the tools must be made suitably flexible to

manage the complexity and imperfection associated with the reverse-engineering process.

The paper shows that fully automated tools for reverse engineering would provide precise

artifacts, which will, unfortunately be as useless as the artifacts being reverse-engineered.

Another knowledge based program understanding effort is described by Burnstein and

Saner [10]. A knowledge-based program understanding/fault localization tool called

BUG-DOCTOR is the basis of this research. Stereotypical programming concepts are

represented in a plan library as program plans. The premise for this research is that an

exhaustive search through such a plan library to identify a plan for the target code can be

computationally very inefficient. A two step approach to solving the plan

search/similarity problem is proposed. The first step involves search and retrieval, and the

second, ranking and selection. To make the first step computationally faster, a signature

is identified for every plan in the library as well as the target code. To identify matching

plans in the library the signature of that target code is compared with the signatures of all

the plans in the plan library. Once a set of plans has been identified, the search can be

fine tuned using other approaches listed. One of these approaches will be chosen during

future research. Once the set of plans is retrieved, a fuzzy reasoner is applied to rank the

choices and select the most suitable one.

An example for determining plan similarity using fuzzy reasoning is presented. Finally

the authors conclude that the preliminary results are encouraging in that a fuzzy reasoner

may be very effective for determining the relative similarities of plans and code chunks.

The authors believe that “such a system will be easy to setup, easy to maintain and easy

to understand” . The effectiveness of future research can be evaluated using the criteria of

usefulness of the selected attributes in predicting chunk/plan similarity and the accuracy

of plan ranking, besides performance issues.

Chapter 2. The State of the Ar t 16

2.4.4 Domain Analysis approach

DeBaud et al. [6] contend that instead of the current reverse engineering techniques that

takes a program and constructs a high level representation by analyzing the lexical,

syntactic and semantic rules, an approach that utilizes the relationship between the

application domain analysis and reverse engineering can be used. A domain is a problem

area and domain analysis is “an attempt to identify the objects, operators, and

relationships between what domain experts perceive to be important about the domain” .

A domain description will give the reverse engineer a set of expected constructs to look

for in the code. Two case studies are presented in this paper.

The first case study explores how reverse engineering can be aided by the existence of a

domain model. In this research the authors have chosen to use object-oriented

frameworks as a domain model representation mechanism. An object-oriented framework

is a carefully chosen and crafted set of abstract base classes that collaborate to carry out

certain responsibilities. This enables the development of a reusable design for the entire

class of applications or subsystems. The conclusion from this case study is that object-

oriented frameworks provide a useful and clear representation to guide the reverse

engineering effort. However, frameworks are prone to difficulties when used to model

fluid domains.

The second case study describes how a domain model can be developed by reverse

engineering a program. Synchronized refinement is used as a technique for reverse

engineering. Domain artifacts identified are extracted from the code therefore shrinking

the problem domain. The paper concludes that “any major breakthrough in the automated

program understanding and reverse engineering area ” will “ take significant advantage of

domain information.

Chapter 2. The State of the Ar t 17

2.4.5 Program slicing approach

Korel and Rilling [7] suggest another approach to the understanding of large programs:

program-slicing. Program slicing transforms a large program into a smaller one that

contains only statements relevant to the computation of a given function. Program slicing

was initially proposed to guide programmers during program debugging, but is has been

found to be useful for the process of understanding programs. Dynamic slicing is used to

identify these parts of the program that contribute to the computation of the selected

function for a given program execution. This can be used to understand program

execution by adopting a commonly used high level abstraction –the call-graph of a

program.

On the call-graph level a program is represented by a set of modules (procedures) and a

set of call relationships between modules, where each module is graphically represented

b a rectangle and each call relationship by a line connecting two modules. A program

slice may be represented not only at the source code level but also on a call-graph level

referred to as a call-graph slice. Dynamic slicing techniques provide a means to prune

unrelated computation, and it may help to narrow down this part of a program that

contributes to the computation of a function of interest for a particular program input.

The paper presents dynamic slicing features that support the process of program

understanding and the understanding of program executions on a module level.

Zhao [8] has put forth a method for slicing concurrent Java programs. Extending from the

previous work, this paper presents the multithreaded dependence graph for concurrent

Java programs on which static slices of the programs can be computed efficiently.

Starting by explaining the concurrency model in Java, Zhao goes on to put forth the

thread dependence graphs for single threads and then for multithreaded Java programs.

Further the use of this multithreaded dependence graph for Java program slicing is

dwelled upon and the costs of using this technique are discussed. The multithreaded

dependence graph of a concurrent Java program is composed of a collection of thread

Chapter 2. The State of the Ar t 18

dependence graphs each representing a single thread in the program. Some special kinds

of dependence arcs are used to represent thread interactions between different threads.

The paper suggests that statement slicing may not be sufficient for large Java Programs

and suggests that architectural slicing can be used for such cases. Architectural slicing

can provide knowledge about the high-level structure of a software system.

In their paper based on the design of a toolset for dynamic analysis of concurrent Java

Programs, Bechini et al. [9] describe the design of a toolset, called JaDA(Java Dynamic

Analyzer), that provides testing and debugging tools for concurrent Java Programs. The

goals of JaDA are to investigate the use of object oriented technology for building

dynamic analysis tools for concurrent Java programs and to provide an integrated and

extensible environment that allows easy implementation of different dynamic analysis

techniques for concurrent Java programs. Dynamic Analysis of a program involves

executing the program and analyzing the collected runtime information. Starting with the

goals of JaDA, the authors explain the architecture of JaDA and how it manages threads

and computes vector time stamps on the fly. The authors further state the features of the

current implementation of JaDA.

Chapter 2. The State of the Ar t 19

2.4.6 Other automated approaches

Wills [11] describes a flexible control approach for Program Recognition. Some

commonly used data structures and algorithms that can be recognized by an experienced

programmer knowing how they implement higher level abstractions are called cliches.

Examples are algorithmic computations like binary search, and common data structures,

such as priority queue and hash table. The author and her research group have developed

an experimental recognition system, called GRASPR (Graph based System for Program

Recognition), which when given a library of cliches, finds all instances of cliches in a

program. It can generate multiple views if a program as well as near-miss recognition of

cliches. It has a flexible adaptable control structure that can accept advice and guidance

from external agents.

GRASPR uses a graph parsing approach to automating program recognition, by

representing a program as a restricted form of a directed acyclic graph. Recognition is

achieved by parsing the dataflow graph in accordance with a graph grammar, whose rules

impose constraints on the attributes of flow graphs matching the rules’ right-hand sides.

The author concludes that recognition by graph parsing has significant advantages in

tolerating variation and uncovering implementational design decisions. GRASPR can be

tailored to the resources available and recognition power required for a particular task,

making it applicable in multiple reverse engineering tasks.

Mancoridis et al. [12] describe using automatic clustering to produce high level system

organizations of source code. The paper explains a collection of algorithms that we

developed and implemented to facilitate the automatic recovery of the modular structure

of a software system from its source code. Automatic modularization is treated as an

optimization problem and the algorithms described use traditional hill-climbing and

genetic algorithms. An automatic software modularization environment is defined and a

case study is shown to illustrate the effectiveness of the modularization technique.

Clustering is considered as an optimization problem where the goal is to maximize an

Chapter 2. The State of the Ar t 20

objective function based on a formal characterization of the trade-off between inter and

intra-connectivity.

A fundamental assumption underlying the approach is that well-designed software

systems are organized into cohesive clusters that are loosely interconnected. The

clustering technique, which is strictly based on the topology of the module dependency

graph, might not convey an accurate representation of a systems modularization when the

magnitude of the interconnection strengths of the actual module relations differ

significantly.

2.4.7 Survey of tools and benchmarks

Sim and Sorey [18, 19] describe a novel empirical study in which developers of program

understanding tools were invited to participate in a study where each of their tools was

tested using a common subject system. The different tool teams were given a common

reverse engineering problem unfamiliar to any of them. The authors state that the goal of

this effort was to bridge the gap between the tool developers in the academia and the

industry, which has not taken to any of these tools till now. The work described in this

paper is that of the development of a structured tool demonstration in order to set a

benchmark that can be used to evaluate reverse engineering tools in future. Further, such

a structured method also encapsulates the knowledge necessary to perform an empirical

tool evaluation. “Consequently” , the authors say, “ it will be easier for someone with little

knowledge of experimental design to conduct a reasonable study.” Several positive

notions were imbibed as a result of the study, and allowed contemporaries to compare

their respective tools, while opening up new opportunities to work together to develop

better tools.

Chapter 2. The State of the Ar t 21

2.5 The case for modeling dur ing development

Antoniol, Tonella and Fiutem [13] address the theme of tracing object-oriented design

into its implementation and evolving it. The paper presents an approach to checking the

compliance of OO design with respect to the source code and supports its evolution. The

authors state that “maintaining consistency between software artifacts is a costly and

tedious activity frequently sacrificed during the development and maintenance due to

market pressure.” The process recovers an “as is” design from the code, compares

recovered design with the actual design and helps the user to deal with inconsistencies.

The design artifacts are expressed with the Object Modeling Technique (OMT) and

accept C++ source code. A comparison is made at various stages during the evolution of

the program and compliance between the design and the code is maintained.

Comparing the artifacts in the design and those in the code to identify the closest match is

the procedure adopted. Sources of imprecision like context information are handled by

removing them from the design altogether. Difference visualization is adopted to identify

pairs of versions of the same information by coloring them differently. The proposed

approach has been experimented on Industrial design and code and it has allowed to

obtain an average traceability 89.1%, with on average 2.24 unmatched classes in the

design. By making some clean-up modifications, an increased average traceability of

92.5% was observed, with a reduction in the unmatched classes (0.24). A case study is

included in the paper and results discussed for the same in finer detail. The paper

concludes that building automated tools to support design-code compliance checking,

“showing potential discrepancies and lack of traceability between the two artifacts are

helpful to drive design evolution.” The concept of similar entities in the design and code,

and relaxing the rules to identify the best match proved to be an important observation.

Chapter 2. The State of the Ar t 22

Koskimies et. al. [19] describe the usefulness of describing the dynamic behavior of

objects using “scenario diagrams” (Sced). The “article explores how automated tools

might support the dynamic modeling phase of OO software development.” The Object

Modeling Technique (OMT) is used as a guideline and for notation. However, the authors

state that the idea can be easily adopted and used along with other notations like the

UML. Class diagrams, state diagrams and dataflow diagrams are the basic graphical

notations used in the OMT. A scenario diagram is differentiated clearly from a state

diagram. Whereas the state diagram gives the behavior of a single object, the scenario

diagram gives a single behavior of a set of objects. The problem idea here is to automate

the bridge between the scenario diagrams and the state diagrams. If a tool can combine

automated state diagram synthesis and scenario diagram editing which is controlled by a

state diagram driver, dynamic modeling becomes a little less complex and manageable if

iteratively implemented. In this case the state and scenario diagrams are developed in

concert rather than sequentially.

The paper describes the scenario diagram notation and a synthesis algorithm that can

synthesize program code from a scenario diagram. This is called Design by example. The

authors also describe the process of using existing State Diagrams to generate a scenario

as “Design by animation” , sine these different state diagrams when combined suitably

give rise to a complete scenario. The approach also accounts for incomplete information

in a state diagram by involving the user and prompting him to make the changes.

Combined with state diagram synthesis, the animation capability of Sced becomes a

reverse engineering tool. These ideas were tested and used by an industrial partner in

developing and managing complex business processes. Future work could involve

integrating the Sced tool with an integrated object oriented development environment

rather than developing it as a separate tool. However, some of the tools described are

recent developments and lack proper validation.

Chapter 2. The State of the Ar t 23

2.6 Survey of similar and/or related research

Cheng and Gannod [21] describe their research work in which the primary focus is to

apply the use of formal methods to the reverse engineering of program code in order to

support maintenance and evolutionary activities, where the formal approach facilitated

automated processing. This paper is discussed in this thesis because there is a close

parallel to the nature of the problem space adopted. The paper describes background

material in formal methods in reverse engineering. One particular formal reverse

engineering technique that is based on the use of the strongest post-condition predicate

transformer is described in detail. This is followed by a methodology for combining the

formal and informal techniques for reverse engineering. However, the authors narrow the

application of formal techniques to critical systems. That is, the formal methods are

targeted to the systems that have the highest pay-off. Actually, both semi-formal and

formal methods are used. A three-phase approach involving a local analysis, use analysis

and global analysis are described. The objective of the first step is to gain a high level

understanding of the logical complexity of the given code. The second phase is a

recursive step where the three phases are applied to the functions and the procedures used

by the original module. In the global analysis phase, the use analysis information is

combined with the local analysis information to obtain a global description of the original

module

A case study application is considered and the observations derived out of the study are

also discussed. The utilization of a combined formal and informal process enhanced the

usefulness of both the informal and formal techniques. Early discovery and organization

of the functionality of the system was made possible. A number of tools built to

implement the methods described in this project are mentioned with the noticeable

advantages in their use. Future investigations include comparison with plan based and

structured abstraction techniques for reverse engineering.

Chapter 2. The State of the Ar t 24

An industrial experience report is presented by Riva [22] in which reverse architecting as

a flavor of reverse engineering is described. The paper is an experience report that gives

an overview of the reverse engineering process that was followed in recovering the

architecture of an embedded software system developed in Nokia. The paper presents the

current needs of the reverse software engineering community. The author defines

software architecture, as the collection of design decisions on how to implement the

features required by the system. These are usually in the minds of the developers and they

are seldom documented. Neither are they directly identifiable from the code. Describing a

software architecture means “ to put light on these mappings and to give them a formal

specification.” The author distinguishes between the problem domain and the solution

domain. The problem domain focuses on the user perspective of the system and provides

the requirements that the system has to satisfy. The solution domain is centered on the

developer perspective where there are a number of artifacts that are used to implement

and maintain the system.

Five levels of abstraction are identified that scope the system artifacts: requirements,

features, architecture, design and implementation. Reverse architecting is the flavor of

reverse engineering that concerns all activities for making existing software architectures

explicit. A six-phase process is described for reverse architecting.

1. Definition of architectural concepts

2. Extraction of the source code model

3. Abstraction

4. Improvement of architecture documents

5. Analysis of extracted architecture

6. Architectural reorganization of source code

The analysis on the case study is presented using the steps above. Future research could

try and automate this process for reverse architecting.

Chapter 2. The State of the Ar t 25

Chung and Lee [20] describe how reverse software engineering can be applied to

websites to build visual models using UML. The size and number of websites have been

increasing rapidly in recent years. Maintaining huge websites is a challenge to site

administrators, who have to keep up with the complexity of the navigation schemes and

the directory structures. The implementation models of such current websites can be

reverse engineered using the Unified process and the UML. These models can help in

maintenance, besides in communicating the structure of the website for future

development. The navigation schemes and physical directory structures are represented

using the component and deployment views in UML. The Unified process is used in this

research as a methodology for reverse engineering.

The web elements are modeled using components and stereotypes. The navigation among

the web elements is described using dependencies among components in the component

diagrams. Directories and their relationships are represented using the packages in the

component diagrams. A sample case study is discussed and reverse-engineered. The case

study involves a University website that has been built partially and needs to be extended

further. The paper provides empirical results deduced from the case study and discusses

the merits of using the component diagrams to represent the website. The visual models

and component views for the website can help the administrator maintain the website

easier. It can help bridge the gap in knowledge between the web administrator and the

developers. Maintenance of these visual models throughout the development of the

website can help developers “ renovate the current web sites with strong foundation and it

will reduce the risks of the renovation project. Also the development time of a subsequent

version of the website will be greatly reduced since the functionality is conveyed better

using the visual models.

26

Chapter 3

A Br ief Introduction to the Unified Modeling Language

In every age there is a turning point, a new way of seeing and asserting the

coherence of the world.

J Bronowski

27

3 A Br ief Introduction the UML

3.1 The need for a modeling language

As the size and complexity of software systems increase it is imperative that the complex

relationships be documented sufficiently enough for a person with basic knowledge of the

system to understand it without significant help from the source code. Communicating

the design decisions made during the development phase of a project is being felt to be

increasingly important. It is intuitive for a traditional developer to assume that well

commented source code should be sufficient to communicate the design and working of

software. However, the object oriented programming paradigm has shaken this traditional

assumption about understandable and maintainable code. A decade or two ago, CASE

tools allowed the developer to map large-scale software built using sequential

programming languages using graphical diagrams like flow charts etc. The need for such

CASE tools for object oriented systems was felt once the number and scale of systems

developed on the OO paradigm increased in the late eighties and early nineties.

3.2 History of the UML

Between 1989 and 1994, the number of modeling languages [25] available to the

developer increased from less than 10 to more than 50. The most significant examples of

these are Booch, Rumbaugh’s OMT (Object Modeling Technique), and Jacobson’s

OOSE (Object Oriented Software Engineering). More than being an embarrassment of

riches, these modeling languages were disparate in their syntax and notation. Therefore

all developers did not universally follow the design documentation done in a specific

modeling language. Users of OO methods had trouble finding complete satisfaction in

Chapter 3. A Br ief Introduction to the UML 28

any one modeling language, fueling the "method wars." This led to the need for

standardizing a modeling language for the OO paradigm. Development of UML began in

late 1994 when Booch and Rumbaugh of Rational Software Corporation began their work

on unifying the Booch and OMT (Object Modeling Technique) methods. In 1995,

Jacobson and his Objectory company joined Rational and this unification effort, merging

in the OOSE (Object-Oriented Software Engineering) method.

3.3 Evolution of the UML

The unification [24,26] of the “ three amigos” led to the release of the version 0.8 draft of

the Unified Method in October 1995. After Jacobson pitched in with his OOSE method,

the first official version of the UML 0.9 was released in June 1996. Since several

software and corporate entities found the UML strategic to their business interests, a

UML consortium was formed with several organizations willing to dedicate resources to

work toward a strong and complete UML definition. As a result of the efforts of this

consortium the UML 1.0 was offered for standardization to the Object Management

Group (OMG) for standardization in January 1997. After the release of the UML 1.1 by

OMG, by which time the original group of partners was expanded to include virtually all

of the other submitters and contributors to the original OMG response, the maintenance

of UML was then taken over by the OMG Revision Task Force (RTF). UML versions 1.2

and 1.3 were released in 1998 and the current version 1.4 in 2000.

3.4 Goals of the UML

A summary list of the goals as listed by the charter of the OMG [26] is given below.

• Provide users with a ready-to-use, expressive visual modeling language so

they can develop and exchange meaningful models.

• Provide extensibility and specialization mechanisms to extend the core

concepts.

Chapter 3. A Br ief Introduction to the UML 29

• Be independent of particular programming languages and development

processes.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of the OO tools market.

• Integrate best practices.

3.5 Modeling using UML – an overview

Though this introduction to the UML notation is by no means comprehensive, the

intention is to present a birds-eye view of the rich semantics offered by the UML for

modeling OO software constructs. The material presented is primarily a concise

compilation of the salient points from the description provided in [24], besides other

sources. The examples presented are not associated with the EIS Client, the case study

used in this thesis. They are simple and self-descriptive examples used to describe the

semantics of the modeling language rather than to model a software system. The

functions and relationships modeled are meant to be intuitively understandable, and

suitable explanations are given for each UML diagram where necessary.

3.5.1 The need for modeling

This pertinent question has been already addressed in the previous chapters, however a

summary is presented below in the context of an organization churning out OO software

projects regularly.

• Modeling is a central part of all the activities that lead up to the deployment

of good software

• Communicates the desired structure and behavior of the system

• Visualize and control the system’s architecture

Chapter 3. A Br ief Introduction to the UML 30

• Better understand the system that is being built often exposes opportunities

for simplification and reuse.

• Build models to MANAGE RISK!!

Risk in a software project arises typically after a release when the system has been

deployed, and maintenance issues come up. The development team may not be involved

in the maintenance of the project and the task is handed off to a support group in most

organizations. It is essential that the maintenance team grasp the intricacies of the design

decisions in order to be able to debug and maintain the system later.

3.5.2 Principles of modeling using UML

The choice of what models to create has a profound influence on how a problem is

attacked and how a solution is shaped.

The intention of using a modeling language is to provide a level of abstraction above the

source code for the subsequent user to look at the system. Therefore it is not necessary

that the models closely follow the flow of the source code. This is intuitively difficult to

accept, since it may leave room for discrepancies between the source code and the

models built to describe them. However, if the models were to represent each and every

line of the source code, the intention of abstracting the details of the source code in the

models is lost. To view the system and understand it from the source code level, one

might as well try reading well-commented source code.

Every model may be expressed at different levels of precision.

Different levels of abstraction can be used to describe the entire system. At the topmost

level, the system can be represented from the user perspective and at the lowermost level,

from that of the developer. This is in keeping with the notion presented before that the

models can be built at varying levels of abstraction to convey the design of the system.

Chapter 3. A Br ief Introduction to the UML 31

The best models are connected to reality.

Since OO systems are themselves rather intuitive when compared to the traditional non

OO programming paradigm, it is but natural that the models used to describe OO systems

be close to reality as well.

No single model is sufficient.

Every nontrivial system is best approached through a small set of nearly independent

models. A good analogy would be the blueprints used to describe the design of a

building. The top view, elevation view and the layout view of the building, are different

blueprints for the same building. Besides these, an electrical layout of the building would

provide a totally different perspective of the same building. OO systems are similar in

that no single model would suffice to describe the system in its entirety. It is only by

correlating the various views of the system that even a “big picture” understanding of the

system can be gained.

3.5.3 UML – the language

Modeling language is a language whose vocabulary and rules focus on the conceptual

and physical representation of a system. UML is essentially not a programming language,

but can be tied to several different programming languages and databases. The models

built using UML could typically cut across the barriers of different syntactic elements of

multiple platforms on which software is implemented. UML therefore transcends the

confines of strong ties with implementation platforms and can potentially provide a more

holistic view of the system.

UML is a standard language for software blueprints. Since the UML has been

standardized by the OMG, and over the past few years been embraced by the software

community at large, it can be used as a common language for communication. This

notion is with reference to the situation in the early nineties when there were multiple

modeling notations available for developers to choose from.

Chapter 3. A Br ief Introduction to the UML 32

Modeling yields an understanding of the system. This is widely regarded as the most

important reason for an organization to invest in modeling during development of

software. The models built would be strategic and essential to businesses due to the

dynamic nature of the project teams and the employee turnover. This is in addition to the

necessity to understand the system for the maintenance engineer after deployment. For

cases where developers work temporarily in writing code for a client, and move on after

the work is complete, building UML models assumes greater significance in providing

the documentation necessary for the continuation of the development effort. High

employee turnover and on-site development being the norm, businesses have begun to

depend on such models to convey the design.

Multiple interconnected models are required to completely describe a system. The nature

and number of models would generally be left to the discretion of the modeler, since the

level of abstraction and essentiality of minor details would be very perspective and

necessity dependent.

The UML is a language, according to [24], used for visualizing, specifying, constructing,

and documenting the artifacts in an OO software system.

Visualizing

❚ An explicit model facilitates communication

❚ Some things are best modeled textually, others are best modeled graphically

❚ In all systems there are structures that transcend what can be represented in a

programming language

❚ UML is more than a bunch of graphical symbols - each symbol has well-defined

semantics

Specifying

❚ Specifying means building models that are precise, unambiguous and complete

❚ UML addresses the specification of all the important

Chapter 3. A Br ief Introduction to the UML 33

❙ analysis

❙ design and

❙ implementation

decisions made in developing and deploying a software system

Constructing

❚ UML models can be directly connected to a variety of programming languages

❚ things that are best expressed graphically are done in UML

❚ Forward Engineering which is the generation of code from a UML model into a

programming language

❚ The reverse is also possible. I.e. updating the UML models from the source code.

Combining the forward and reverse engineering functions leads to what has gained

popularity as round-trip engineering.

Documenting

❚ A healthy software organization delivers numerous artifacts in addition to raw

executable code.

❚ These include requirements, architecture, design, source code, project plans, tests,

prototypes, releases etc.

❚ Depending on the development culture, some of these artifacts are treated more or

less formally than others

❚ UML addresses the documentation of a systems architecture and all of its details

3.6 The UML Notation – an overview

The vocabulary of the UML encompasses three kinds of basic conceptual entities: things,

relationships and diagrams.

Chapter 3. A Br ief Introduction to the UML 34

Things

Things in the UML are abstractions that are first class citizens in a model.

Good examples of a UML thing are classes, use cases and components,

each of which will be defined later.

Relationships

The relationships tie the “ things” together. Different types of relationships

supported by the UML are also defined in the ensuing sections.

Diagrams

The diagrams are essentially the models that communicate the design of

the software system. A diagram simply groups an interesting collection of

things to convey some meaning with respect to the system.

3.6.1 Things in the UML

There are four types of things in the UML. They are structural, behavioral, grouping and

annotational.

3.6.1.1 Structural things in the UML

A class is a structural entity that is typically a description for a set of objects. The UML

notation for a class is shown in Fig.3.1. The name of the class appears in the top of the

class, followed by its attributes and operations. In this example the window class contains

attributes origin and size and operations that open, close, move or display the window.

Window

origin
size

open()
close()
move()

display()

Fig.3.1 Class Notation in UML

Chapter 3. A Br ief Introduction to the UML 35

An interface is a collection of operations that specifies a service of a class or component.

It typically describes the externally visible behavior of that element. The notation for the

interface entity is as shown in Fig.3.2. The interface My-interface is modeled by using a

circle as shown.

A collaboration defines an interaction and is a society of roles that work together to

provide some cooperative behavior that’s bigger than the sum of all the elements. The

notation for the collaboration entity in UML is shown in Fig.3.3.

The use case is a description of a set of sequence of actions. The system performs these

actions that yields an observable result which is of value to an actor. A use case is used to

structure the behavioral things in a model. The example in Fig.3.4 shows a Use Case to

place an order, which is some part of what the system is required to do so an observable

result can be obtained.

My-interface
Fig.3.2 Interface notation in UML

Chain of
responsibility

Fig.3.3 Collaboration notation in UML

Fig.3.4 Use Case notation in UML

Place Order

Chapter 3. A Br ief Introduction to the UML 36

A component is a physical and replaceable part of a system, which conforms to and

provides the realization of a set of interfaces. A component (Fig. 3.5) typically represents

the physical packaging of otherwise logical elements.

A node is a physical element that exists at runtime and represents a computational

resource generally having atleast some memory, and often, processing capability. The

notation is as shown in Fig 3.6.

3.6.1.2 Behavioral things in the UML

These are the dynamic parts of the UML models or the verbs of a model, representing

behavior over time and space. An interaction (Fig 3.7) is a behavior like messages, action

sequences and links.

Fig.3.5 Component notation in UML

source.java

Fig.3.6 Node notation in UML

server

Fig.3.7 Interaction notation in UML

display

Chapter 3. A Br ief Introduction to the UML 37

A state machine is a behavior that specifies the sequences of states that an object goes

through during its lifetime usually in response to events. The notation shown in Fig.3.8

represents a state of an object.

3.6.1.3 Grouping things in the UML

Grouping things (Fig. 3.9) are the organizational parts of UML. A package is a general-

purpose mechanism for organizing elements into groups. It is purely conceptual and is in

keeping with the directory and package terminology.

3.6.1.4 Annotational things in the UML

The annotational things form the explanatory parts of the UML model. A note is simply a

symbol for rendering constraints and comments attached to an element(s). Diagrams are

adorned with those comments (Fig. 3.10) that are best-expressed in informal or formal

text.

Fig.3.8 State notation in UML

Waiting

Fig.3.9 Grouping notation in UML

Root
Directory

Fig.3.10 Annotation notation in UML

Read me

Chapter 3. A Br ief Introduction to the UML 38

3.6.2 Relationships in the UML

Dependency (Fig. 3.11) is a semantic relationship between two things where change to

one thing may affect the semantics of the other thing (“using” relationship).

Association is a structural relationship that describes a set of links, a link being a

connection among objects. It is a structural relationship that specifies that objects of one

thing are connected to objects of another. Multiplicity (Fig. 3.12) occurs when many

objects may be connected across an instance of an association. Just “how many” is the

multiplicity of the association.

Aggregation (Fig. 3.13) is a special kind of association (whole part) where one class

represents a larger thing (“ the whole”) and which consists of smaller things (“parts”).

Plain association between 2 classes represents a structural relationship between peers.

Fig.3.11 Dependency notation in UML

FilmClip

Name

start()
stop

reset()

channel

Fig.3.12 Association notation in UML

person company
works for

1…* *

employee employer

Chapter 3. A Br ief Introduction to the UML 39

Generalization (Fig. 3.14) is a specialization/generalization relationship. Objects of the

specialized element are substitutable for objects of the generalized element.

Realization is a semantic relationship between classifiers. One classifier specifies a

contract and the other guarantees to carry it out. The notation used is similar to the

generalization relationship, but is between an interface and the class that realizes it.

company

Department

1

*

whole

part

aggregation

Fig.3.13 Aggregation notation in UML (“ is a” relationship)

Shape
origin

move()
resize()
display()

circle
radius:float

Fig.3.14 Generalization notation in UML

Chapter 3. A Br ief Introduction to the UML 40

3.6.3 Diagrams in the UML

Typical diagrams that can be built using the UML are shown and described below.

3.6.3.1 Class Diagram

A typical class diagram looks like the one in Fig.3.15. A single customer may be

associated with multiple customers as shown by the one-to-many association relationship.

A constraint can also be placed on this relationship. Corporate and Personal Customers

are derived from the Customer class.

Order

Date received
is prepaid
Number

Price

Dispatch()
close()

Order

Product
Quantity

Price

Customer

Name
Address

Credit Rating

Corporate
Customer

Contact Name
Credit Rating
Credit Limit

Remind()

Personal
Customer

Credit card #

Operations

Generalization

* 1

Association

Attributes

Class

Constrain

{ Orders for a
customer with poor
credit rating must be

prepaid}

1

*

Fig.3.15 A typical UML Class Diagram

Chapter 3. A Br ief Introduction to the UML 41

3.6.3.2 Package Diagram

The following example (Fig. 3.16) shows a typical package diagram in a UML model.

The relationships shown are predominantly weak dependencies, since strong relationships

can be shown at the class diagram level or below.

In this diagram, a central GUI library package is shown and two other User Interface (UI)

packages are seen to be dependent on this package. The UI’s in turn depend upon their

respective back-end packages which in turn have other dependencies as well. This kind of

a package diagram helps illustrate a bird’s eye view scenario of the dependencies in the

system, which can be otherwise difficult to assimilate.

Stocks
Pricer UI

PortFolio UI

GUI Library

Stocks
Pricer

Stocks
database Positions Scenario

Manager

Portfolio
Application

Dependency

Package

Fig.3.16 A typical UML package diagram

Chapter 3. A Br ief Introduction to the UML 42

3.6.3.3 Use Case Diagram

The Use Case Diagram example below (Fig. 3.17) illustrates the EIS application dealt

with as a case study in this thesis. The sticky men outside the central system block are the

actors for this system. These actors could be human users, like the EIS Energy Analysts

or a Customer Energy Manager, which itself is a software. However, all systems external

to the system under study are considered to be actors. Use Cases inside the system are

shown and their dependencies are also illistrated. For example the middle tier use case

uses the Database to service requests from the Client software. A Use case diagram is

typically used to capture the requirements of a system and for testing to see if these are

met when the system has been developed.

EIS
Client

Software

Customer
Data

Config tools

DIS Config.
tools

Internet <<uses>>

Database

<<uses>>

<<uses>>

Middle
tier

softwar<<uses>>

<<uses>>
EIS

Energy Analyst 1

EIS
Energy Analyst 3

EIS
Energy Analyst 2

Customer
Energy

Manager

Fig.3.17 A typical UML Use Case Diagram

Chapter 3. A Br ief Introduction to the UML 43

3.6.3.4 Interaction Diagram – Sequence

A sequence diagram is a type of interaction diagram that emphasizes on the time-ordering

of the messages passed among objects. It can be seen from the example below (Fig. 3.18)

that the entire life span of each object is depicted and new objects created are also shown.

The sequence diagram is a useful diagram to understand the mapping between a use case

and its implementation in source code. Along with the collaboration diagram, it forms the

heart of the UML model constructed.

Fig.3.18 A typical UML Sequence Diagram

an Order
EntryWind

ow

an order an Order
line

a Stock
Item

prepare()

*prepare()

hasStock
:=

check()

[hasStock]
remove()

Needsreorder :=
needsToReorder()

a Reorder
Item

a Delivery
Item[hasStock]

new

[needsReorder]
new

creation

Self
delegation

Message

iteration

Object

Condition

deletion

Chapter 3. A Br ief Introduction to the UML 44

3.6.3.5 Interaction Diagram – Collaboration

Another type of interaction diagram (Fig. 3.19) is the Collaboration diagram, which is

isomorphic to the sequence diagram. In contrast to the sequence diagram, this diagram

shows how objects collaborate among each other, with the time factor de-emphasized.

However, a sequence number is used to show the order of message execution. The

example shown below can be correlated to the sequence diagram in the previous section

to understand the subtle differences between the two views. Though they are perfectly

isomorphic to each other, sequence and collaboration diagrams are useful representations

of the same interactions and it is very difficult to do without either one of them.

Fig.3.19 A typical UML Collaboration Diagram

:Order Entry Window

:Order

Talisker line:order
Line

:Delivery item

talisker stock:Stock
item

:reorder item

1:prepare()

1.1 * [for all order lines]:prepare()

1.1.3:[hasStock] new

1.1.1:[hasStock] := check()
1.1.2:[hasStock] remove()

1.1.2.2:[needsReorder] new

1.1.2.1:needsReorder
needsToReorder()

Self delegation

message

Object

Sequence number

Chapter 3. A Br ief Introduction to the UML 45

3.6.3.6 Activity Diagram

An activity diagram is used typically to describe the implementation of use cases. The

emphasis here is on the flow of execution in order to implement the functionality

necessitated by the associated Use Case. It is very useful to depict multithreaded or

parallel execution in the system. For example in the Fig.3.20, after receiving the order,

the assign goods to item activity and the authorize payment activity are executed

concurrently. At the end of the parallel execution the two threads fork back again

together to dispatch the order. There is another useful feature, the swim lanes, which

allow the modeler to distinguish between different threads executed at the same time.

Fig.3.20 A typical UML Activity Diagram

Receive
Order

Assign Goods to
item

Authorize
Payment

Dispatch
Order

Reorder
Goods

Cancel
Order

* [for each line item]

[failed]

[succeeded]

[need to
reorder]

[stock assigned to all items and payment authorized

Chapter 3. A Br ief Introduction to the UML 46

3.6.3.7 State Diagram

A State Diagram (Fig. 3.21) is used to describe the behavior of an object throughout its

lifetime. The object may respond the different conditions differently based on its current

situation. Therefore a state chart diagram would be most appropriate to describe this kind

of behavior where some stimulant causes the object to change state. An example of a

state diagram applied to an industrial bottling process is shown below, where the different

states and the actions that could cause the state changes are shown.

Fig.3.21 A typical UML State Diagram

Empty Full

SealedBroken

In
Progress

Squirt(n)[content+n >= capacity]

capbreak

Squirt(n)[content+n < capacity]

Chapter 3. A Br ief Introduction to the UML 47

3.7 Comments

It would be worthwhile to note that though UML provides a modeling language rich in

semantics, it provides no direction as to the process to employ UML in for a software

development effort. This was done intentionally to allow the users of UML to design and

adopt processes suited to their respective and sometimes unique environments, platforms

and development efforts. There are may processes suggested currently for employing

UML in a software development process, one of which is the Unified Software

development process by Booch, Rumbaugh and Jacobson.

There are currently more than 20 different tools that provide for support in software

development using the UML notation. Most of these tools support round-trip engineering,

and many offer other capabilities like configuration management etc. However,

Rational’s UML tool, ROSE (heretofore referred to as Rose) is certainly the most

recognized Object modeling tool in the market. Rose’s market share exceeds that of its

four closest competitors, combined! There are other powerful tools like GD pro,

Paradigm Plus and StP which offer comparable, if not better, features as Rose does. On

the other hand there are some basic drawing tools like Visio that allows the modeler to

construct the diagrams without any language support or other advanced features offered

by Rose and other tools.

After having observed the CASE tools industry for the past few years, the author would

like to emphasize the notion that this industry is actually in its infancy. In the future more

powerful tools with advanced and intelligent features can be expected to roll out, making

the documentation and management of complex software more developer friendly than

ever.

48

Chapter 4

Preliminary Work Before Reverse Engineer ing

The greatest part of the software maintenance process is devoted to reading

documentation, scanning the source code, and understanding the changes to be

made.

Spencer Rugaber

49

4 Preliminary Work Before Reverse Engineer ing

4.1 Gener ic Ideas

Some generic ideas imbibed from previous work and intuitive notions were decided upon

initially to set up the environment for the Reverse Engineering effort. The various steps

adopted as part of the effort can be described as follows.

4.1.1 Collect the var ious ar tifacts

There are several artifacts in any software system like the source code, design documents,

specification documents and the Developer knowledge/experience that are of vital

importance for the Reverse Engineering effort. These are gathered together in an effort to

build the knowledge base for the software system.

4.1.2 Develop functional exper ience

Understanding the functionality of the software system aids in the Reverse Engineering

process. An abstract understanding of the functions that the system performs is the first

step towards understanding the works inside.

4.1.3 Establish control over building the software system

To determine the level of control achieved over the software system, it is essential that

the software be compiled and built from scratch using the artifacts mentioned in 4.1. This

Chapter 4. Preliminary Work Before Reverse Engineer ing 50

vital step could help ensure that certain artifacts used by the developers for peripheral

testing and other verification purposes are eliminated from the purview of the system

artifacts. This essentially refines the sample space of the reverse engineering problem,

besides establishing the validity of the repository made available.

4.1.4 Evaluate tools for Reverse Engineer ing

A tremendous amount of work is being done currently in the Reverse Engineering area

and some new tools are being developed to aid the same. Therefore, evaluating and

choosing one such tool to suit the problem domain is another step of paramount

importance. For example, to reverse engineer a project using the Java programming

language, there is relatively new tool named “Visicomp” which, according to its

developers, helps in visualizing and understanding a Java software system. Besides this,

the major visual modeling toolmakers plan to integrate a Reverse Engineering module

into the modeling tools in the future.

4.1.5 Select the visual modeling medium

Logically, the next step is to decide upon the means to communicate the understanding

achieved at the end of the Reverse Engineering effort. At the point in the software-

engineering era when thesis is being written, the Unified Modeling Language (UML) has

become the de-facto standard adopted by the software industry to visualize and

communicate a software system design. Therefore it is strongly recommended that a

suitable modeling tool be chosen that supports UML in the paradigm of the software

system being reverse engineered.

4.1.6 Build the architectural model of the system

The architecture or the physical model of the system artifacts could be built using the

UML and these will help in communicating the relationships among the physical artifacts

Chapter 4. Preliminary Work Before Reverse Engineer ing 51

in the system. For example, the relationship between the various classes in a typical

Object Oriented (OO) software system would help convey the static architecture of the

classes.

4.1.7 Adapt to a suitable development environment

Another vital choice would be that of a suitable development environment that would

enable stepping through the code and understanding its functionality by setting

breakpoints etc. A typical example would be the choice of an Integrated Development

Environment (IDE) like Symantec Visual Café to step through a software system written

in the Java programming language. Compiling the system and executing the same from

an IDE is usually a non-trivial task for systems that were not developed using an IDE in

the first place.

4.1.8 Debug the system in the development environment

The source code of the software system can be stepped-through in the development

environment chosen and the control flow of the system could be understood.

Chapter 4. Preliminary Work Before Reverse Engineer ing 52

4.2 Case Study: Exper ience in setting up the environment for the EIS Client

The steps detailed above were used for reverse engineering the application and the

experience during the effort is cited below.

4.2.1 Collection of the ar tifacts

With help from the client, all the artifacts used in the development and deployment of the

project were gathered and the scanty documentation was thoroughly pored over to gain

whatever knowledge was available.

4.2.2 Functional exper ience

The application was tested and used with sample data to gain an understanding into the

workings of the system.

4.2.3 Control over building the software system

The application was built after consulting with the developers and determining the errors

and inconsistencies in the documentation. The EIS Client source had make files written

for them and the application could be built using these make files from the bash shell.

This went a long way in giving an idea about the directories and files used in the project.

4.2.4 Tool for Reverse Engineer ing

There were numerous tools that could be used for reverse engineering. However, many of

these tools were designed for Forward engineering a project development life cycle. After

analyzing many options it was determined that the UML is the standard modeling

language adopted by the Object world. Besides, UML has been documented extensively

Chapter 4. Preliminary Work Before Reverse Engineer ing 53

and is being widely used in the industry and academia. Therefore UML is the tool chosen

for the purpose of this reverse engineering effort.

4.2.5 Choice of the visual modeling medium

Numerous tools are available in the market today for using the UML. However, very few

of these tools have notable capabilities for reverse engineering. Rational Rose 2000 is the

most advanced of these tools and it has quite a few reverse engineering tasks built in.

Moreover Rose occupies prime of place in the UML tools domain and has a market share

of over four times the combined market share of its 4 nearest competitors. Also since it

supported the Java language and had been tried and tested for use with Java, the Rational

Rose 2000 Professional J version was chosen as the modeling medium.

4.2.6 The architectural model of the system

The static architecture of the EIS Client application was built using the Rose J tool and

the relationships between and among the various components or the packages in the

system was shown.

4.2.7 Adaptation to a suitable development environment

The EIS Client application was adapted to the Visual Café IDE and the application can

now be compiled, built and executed directly from this environment. This proved to be a

tremendous step forward in understanding the innards of the application since the

environment allows debugging and step by step execution of the application.

The process followed to Reverse Engineer the application and a sample of the diagrams

developed are described in chapter 5 of this thesis.

54

Chapter 5

A Reverse Engineer ing Process:

Case Study

Man cannot survive except by gaining knowledge, and reason is the only means to
gain it. Reason is the faculty that perceives, identifies and integrates the material
provided by his senses.

John Galt (A.R)

55

5 A Reverse Engineer ing Process: Case Study

5.1 Introduction and Motivation

The previous chapter dealt with the issues that a typical Reverse Engineering effort

would encounter as stumbling blocks. However, the biggest and most underestimated

block that has to be overcome is that of defining the process to be adopted for Reverse

Engineering. The emergence of UML as a widely used CASE tool for Object Oriented

software development has happened only due to the emergence of well defined processes

for forward engineering (as defined in Chapters 1 and 2). There are quite a number of

such processes defined by experts in the development community, a good example for

which is the “Unified Software Development Process” defined by Booch, Rumbaugh and

Jacobson. Though such processes emphasize on the importance of correlation between

the model and the implementation, a clearly defined process for reverse engineering as a

part of the round trip engineering during development is not presented. The definition of

such a process may not be critical to a development effort, but maintenance or reverse

engineering effort makes it absolutely essential.

The intention of this work is to define a suitable process for Reverse Engineering, which

itself is based on the experience gained while trying to reverse engineer an industry

strength software product, namely the EIS Client discussed earlier. Important concepts

necessary to understand the scenario are presented first, followed by the definition of the

process itself, which is followed by a review of the experience in using this process for

the case study.

Chapter 5. A Reverse Engineer ing Process: Case Study 56

5.2 Related Work

This work [22] was stimulated by a previous work on defining a process for reverse

architecting, as opposed to reverse engineering. It is a description of the process that was

adopted in reverse architecting a case study (discussed in Chapter 2 of this thesis).

However, it is limited to extracting the static architecture of a system from the source

code. The case study is an embedded software system written in the C programming

language. An approach to the task of reverse architecting is defined followed by a

description of the experience with the case study. This thesis work takes off on the

platform provided by this article, and builds on it to describe a reverse engineering

process, and the experience obtained while using it on a case study. This thesis work is

different in that the case study is an object oriented software system, and that the CASE

tool used is UML. The process itself had to be redefined to incorporate the complexities

of reverse engineering an OO software system and the lack of available tools for the

same.

5.3 Abstraction

Problem and Solution domains:

A distinction between the problem and solution domains has to be model. There are two

ways to view software systems’ functionality. From the perspective of the user, the

requirements of the system are specified in the problem domain. The problem domain

outlines what the system is supposed to do. From the perspective of a developer, the

system can be viewed in the solution domain, which specifies how the system achieves

the tasks specified in the problem domain.

Since reverse engineering itself is a process requiring abstraction at different levels, the

system artifacts should be constrained to five levels of abstraction.

Chapter 5. A Reverse Engineer ing Process: Case Study 57

Requirements:

The user requirements represent the highest level of abstraction at which the system can

be represented. The functionality is expressed at a fine grain level without any emphasis

whatsoever on the implementation dependent details. The software system is expected to

satisfy the requirements specified. The requirement specification document is typically

the product of a system analyst’s interactions with the potential users and system experts,

resulting in a text document supported by figures and diagrams.

Features:

A Use Case is a functional requirement expected of the system, and could potentially be a

uniquely identifiable entity for development. The features bridge the gap between the

artifacts that are being developed and the requirements specified. They are useful in

testing the system functionality during and after development. Use Cases can be directly

mapped to the Use Cases in UML.

Architecture:

The architecture of a system specifies how the artifacts of the system combine together to

implement the desired functionality. The component diagrams and sequence diagrams

can combine well with the class diagrams in specifying the system architecture in UML.

Design:

The internal design and implementation of the system artifacts are the elements of the

design layer of abstraction. The classes, activity diagrams and state chart diagrams can be

mapped to the design level documentation. The design only goes to show the functional

decisions made while building the system, which usually resides in the minds of the

developers and is rarely conveyed in any form. Design entities like classes, structures,

and user-defined data types etc. are modeled in this layer of abstraction.

Chapter 5. A Reverse Engineer ing Process: Case Study 58

Implementation:

This is the lowest level of abstraction and constitutes those artifacts that implement the

functionality of the system. It is done using a programming language and is usually rich

in details. Source files, directories and file systems typically make up the implementation

layer.

Implementation

Design Design Design

Architecture

Requirements

Features

ab
st

ra
ct

io
n

Fig 5.1 Levels of abstraction (Courtesy: Riva C. [22])

pr
ob

le
m

 d
om

ai
n

so
lu

ti
on

 d
om

ai
n

Chapter 5. A Reverse Engineer ing Process: Case Study 59

5.4 A Process for Reverse Engineer ing

Reverse Engineering is best-defined [1] as “ the process of analyzing a subject system to

identify the system’s components and their inter-relationships and to create

representations of the system in another form or at a higher level of abstraction.” A more

fine-grained definition of this process is provided as a result of our work in this thesis.

This process is aimed at assisting the activity of reverse engineering an object oriented

software system. Our approach is depicted in Fig 5.2, and each phase of the process is

encapsulated in a dashed box, artifact(s) in the process in rectangles, and activities in

ellipses. A description of each phase of our approach to reverse engineering follows.

5.4.1 Definition of goals of reverse engineer ing

Before beginning the reverse engineering activity, it is important to identify the goals and

limitations of the effort. Typical industry strength OO systems are huge and complex, and

reverse engineering such a system could be limited to the extraction of the architectural

design from the source code, for example. A re-engineering effort might entail the

adoption of a process to define the feature level abstraction of the system functionality.

Reverse engineering is seldom a time bound activity, and a clear definition of the how far

to go as a trade off against the cost involved is necessary. The effort is also expected to

be iterative and incremental, and could potentially lead to a bigger and more complex

artifact than the source code. It is therefore important to keep the “big picture” in mind

and focus on predetermined goals.

The documentation available for the software system, the nature and size of the source

code itself, and suggestions and ideas from the system experts or developers would be the

inputs to develop such milestones. Reverse engineering is an active area of research

currently, and it would be useful to survey the available tools and other products of

research before embarking on the project.

Chapter 5. A Reverse Engineer ing Process: Case Study 60

5.4.2 Development of a Feature Descr iption

This phase involves developing models for the feature level of abstraction described

earlier. The reverse engineer would first benefit by learning the usage of features offered

by the system and its actions and reactions to stimuli. Reading the fine print of the user

documentation would also provide a better understanding of the system’s capabilities.

The development of a feature description, say a Use Case diagram in UML, documents

the functional features of the system. This could be useful for maintenance as well as re-

engineering. This description can also be mapped to the requirement specifications for

the system to verify the success of the development effort.

Ideally, the development of the system should have begun with the development of a

feature description, in the absence of which, this step would enable to understand some of

the reasons driving the design decisions made by the developers of the software.

5.4.3 Extraction of the Source Model

Extracting an abstract model for the source code could potentially be the most difficult

part of the reverse engineering process. The source code is a flat view of the system as

extracted from the source files. One or more of the following methods can be used

together to gain an understanding of the source code functionality and to model it at an

abstract level.

1. Developers documentation

Software developers normally document important and complex portions of the source

code with comments and other notes. OO software developers typically provide the UML

class diagrams for the complex artifacts in the code.

Chapter 5. A Reverse Engineer ing Process: Case Study 61

2. Debug source code

Stepping through the source code using a development environment would provide vital

clues about the flow of control in complex software projects. This could prove especially

useful for OO systems since they are more complex and non-intuitive than sequential

programs. For example, object interactions in an OO system can be identified and

modeled by running through the code and by closely watching the objects of interest

during their transactions.

3. Use of parsers and other tools

There are several tools available that parse through source code written in a variety of

programming languages and provide a description in an abstract notation. For example,

the Rigi tool parses the source code and identifies the dependencies between components

and files in the architecture. The use of such tools can save some effort and time for the

reverse engineer. However, the notation used for the abstract representation, the level of

abstraction that can reached, and the flexibility offered by the tool to control such

decisions should drive this choice.

Certain CASE tools for OO programming languages offer support for reverse engineering

static information like attributes and operations of a class into a visual representation.

This and other advanced features could reduce some of the rigor involved in reverse

engineering source code. Optimum selection of the level of abstraction required has to be

made to ensure that the reverse engineered document itself does not become a more

complex legacy than the source code itself. The underlying goal should always be

paramount, “communication.”

5.4.4 Abstraction of the Architectural Model

The architectural model can be extracted with the understanding gained out of performing

the above steps and reading the developers documentation. Several OO CASE tools

provide the functionality of extracting the architectural information by parsing the source

Chapter 5. A Reverse Engineer ing Process: Case Study 62

code and by understanding some of the static dependencies between the various artifacts.

Besides these, the models extracted from the source code are a useful source to

understand the architecture of the system. Abstracting away the inner details of the source

model would yield the architectural model for the system.

The component and package diagrams in UML can convey a wealth of information about

the architecture of the system, much more than a lengthy textual discussion.

5.4.5 Consolidation

Once the models are developed at the different levels of abstraction described above, it is

important to correlate them to verify and glean away any discrepancies. Another useful

exercise would be to try to map the feature description to the source and architectural

models, which would make the abstractions completely connected among each other.

Redocumentation of the models will increase comprehension about the system and also

offer scope for improving the models before they are released. The result of this phase of

the process is the reverse engineered documentation, which can then be utilized.

5.4.6 Utilization

This phase consists of analyzing the documentation generated by reverse engineering and

using the understanding gained for purposes like maintenance of the system or for

suggesting improvements to the system. As suggested in the literature, the result of

reverse engineering would also aid in re-engineering or in the development of a new

system.

C
ha

pt
er

 5
.

A
 R

ev
er

se
 E

ng
in

ee
ri

ng
 P

ro
ce

ss
:

C
as

e
St

ud
y

 63

D
o

cu
m

en
ta

ti
o

n
S

o
u

rc
e

C
o

d
e

S
ys

te
m

E
xp

er
ts

d
ev

el
o

p

Id
en

ti
fy

 G
o

al
s

D
o

cu
m

en
ta

ti
o

n
F

u
n

ct
io

n
al

it
y

d
ev

el
o

p

U
se

 C
as

e
D

es
cr

ip
ti

o
n

D
o

cu
m

en
ta

ti
o

n
C

A
S

E
 T

o
o

ls
D

eb
u

g
g

in
g

ex
tr

ac
t

S
o

u
rc

e
co

d
e

m
o

d
el

D
o

cu
m

en
ta

ti
o

n
C

A
S

E
 T

o
o

ls

ab
st

ra
ct

A
rc

h
it

ec
tu

re
 M

o
d

el

C
o

rr
el

at
e

M
ai

n
te

n
an

ce

A
n

al
ys

is Im
p

ro
ve

m
en

t
P

la
n

s

D
es

ig
n

 A
rt

if
ac

t

P
ha

se
 2

P
ha

se
 5

P
ha

se
 3

P
ha

se
 4

P
ha

se
 6

P
ha

se
 1

Fi
g

5.
2

T
he

 R
E

P
ph

as
es

Chapter 5. A Reverse Engineer ing Process: Case Study 64

5.5 Case Study – the EIS Client Application

As described in previous chapters, this thesis grew out of a reverse engineering project

undertaken here at Virginia Tech. The EIS Client was reverse engineered using the

approach described as a process for reverse engineering in the previous section (5.4).

This section deals with the experiences thereof.

5.5.1 Definition of goals

The EIS Client was a huge and complex Java application inherited by our client as a

legacy system. The goals for this project were set forth as follows.

1. To build a model that would scale down the learning curve for someone trying to

understand the system.

2. To develop means of compiling the application in a suitable environment for

debugging and maintenance.

3. To trace the flow of control in the source code and identify the major structural

classes in the OO application.

4. To limit the models to a high level of abstraction and to abstract away the richness of

the implementation level details in the source code, unless absolutely necessary.

5. To limit the model to the source code developed for this application. The EIS Client

uses several third party libraries like the KL Group’s JClass, Free Software

Foundation’s open source etc. Extensive documentation and comments accompany

these programs. Therefore the scope of this project was restricted to modeling the

source code developed for the EIS Client.

6. To model the interactions between key classes, with least emphasis on modeling the

functionality of single classes.

7. To keep the final model as simple as possible, since the intent of the reverse

engineering project is not to generate extensive documentation for the source, but to

generate a compact model containing only those artifacts critical to the application.

Chapter 5. A Reverse Engineer ing Process: Case Study 65

5.5.2 Feature Descr iption

One of the first steps taken while reverse engineering the EIS Client was to build the Use

Case description for the system as a whole from a requirements perspective. This was

achieved using the following steps.

1. The first step was to learn to use the EIS Client application with help from the user

guide and from our client. We were allowed to access some sample data from the

server, and a good understanding about the functional aspects of the application was

developed.

2. By reading some of the developers documentation.

3. By building a Use Case diagram at the system level and by providing fine grain Use

Case diagrams wherever necessary.

The following example shows the system level Use Case diagram (Fig 5.3) built for the

EIS Client. Each use case was documented textually to provide more understanding about

its functionality.

Chapter 5. A Reverse Engineer ing Process: Case Study 66

5.5.2.1 Use Case Diagram for the EIS Client Application – top level

Diagram Documentation

The requirements of the EIS Client system is captured using this top level Use

Case description.

EIS Client Application Use Cases
Analyze daily demand

Analyze time interval

Analyze threshold

Analyze cummulative
threshold

Analyze summary

Analyze weekly demand

Analyze as metered

Analyze needle

Analyze simutaneous events

Setup critical events

View critical events

Start and Validate User

View vitals

View analysis types

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>
View intro. to critical events

<<extend>>

<<extend>>

View Analysis Modules

<<include>>

<<extend>>

<<extend>>

<<extend>>

EIS User

Fig 5.3 Use Case Diagram for the EIS Client

Chapter 5. A Reverse Engineer ing Process: Case Study 67

The EIS client user is the actor who double-clicks on the EIS Client icon and

starts the application. He also types in the validation information (Username and

password) when the system shows the authorization request window.

The View Analysis use case begins just after the user starts the EIS Client

Application. The system first validates the user (Validate user use case), then

shows the system modules: Analysis, Critical Events, and Vitals. The use case

ends when the user selects any one of the modules.

The Start and Validate User use case begins when the user starts the EIS Client

Application. It starts the application, verifies the version and validates the user.

The system prompts the user to enter his/her user name and password. If an

invalid user name or password is entered, the system re-prompts the user to

enter a valid user name and password. The use case ends when a valid user

name and password are entered. This use case is described by a fine grained

use case diagram that follows this description in 5.5.2.2.

The View Vitals use case begins when the user selects Vitals module. It provides

the capability to view site specific information. The system shows the user the

specific information on chosen sites. The use case ends when the user chooses

any one of the other analysis modules.

The View Intro to Critical Events use case begins when the user selects Critical

Events module. It provides the capability to view and select setting up or viewing

critical events. The system shows the user introduction to critical events with two

options: Setup Critical Events and View Critical Events. The use case ends when

the user selects either one of the two options.

The View Analysis Types use case begins when the user selects Analysis

module. It provides the capability to view and select the analysis types. The

system shows the user analysis types: Summary, Daily Demand, Weekly

Chapter 5. A Reverse Engineer ing Process: Case Study 68

Demand, Time Interval, As Metered, Threshold, Needle, Cumulative Threshold,

and Simultaneous Events.

The View Critical Events use case begins when the user selects View Events

option. It provides the capability to view the latest occurrence of a critical event.

The user views the latest occurrence of a critical event. The use case ends when

the user selects another option or other modules.

The Setup Critical Events use case begins when the user selects Setup Events

option. It provides the capability to define critical events based on saved

analyses that represent critical events’ definitions. The user sets up critical

events by giving the critical events information. The use case ends when the user

selects another option or other modules.

The Analyze Daily Demand use case begins when the user selects Daily

Demand analysis type. It provides the capability to display a summary of each

15-minute interval. The user sets up the date range and chooses site(s) for

analyzing, and the system prompts the user to select measurement channels

(power, energy cost, or both), and then displays the name and type of the site(s)

and the daily demand. Day of week or month of year can set the date selection

criteria. The data can also be displayed in graph by selecting Display Graph

option. The use case ends when the user selects other analysis types or

modules.

The Analyze Summary use case begins when the user selects Summary

analysis type. It provides the capability to display a general summary (peak,

average, minimum and sum). The user sets up the date range and chooses

site(s) for analyzing, and the system prompts the user to select measurement

channels (power, energy cost, or both), and then displays the name and type of

the site(s) and the summary. The date selection criteria can be set up by time of

day, day of week, or month of year. The data can also be displayed in graph by

Chapter 5. A Reverse Engineer ing Process: Case Study 69

selecting Display Graph option. The use case ends when the user selects other

analysis types or modules.

The Analyze Time Interval use case begins when the user selects Time Interval

analysis type list. It provides the capability to display data on daily, monthly,

yearly or custom month interval. The user sets up the date range, display interval

and chooses site(s) for analyzing, and the system prompts the user to select

measurement channels (power, energy cost, or both), and then displays the

name and type of the site(s) and the data on time intervals. Day of week or

month of year can set up the date selection criteria. The data can also be

displayed in graph by selecting Display Graph option. The use case ends when

the user selects other analysis types or modules.

The Analyze Weekly Demand use case begins when the user selects Weekly

Demand analysis type. It provides the capability to display a summary of each

day of the week. The user sets up the date range and chooses site(s) for

analyzing, and the system prompts the user to select measurement channels

(power, energy cost, or both), and then displays the name and type of the site(s)

and the weekly demand. Day of week or month of year can set up the date

selection criteria. The data can also be displayed in graph by selecting Display

Graph option. The use case ends when the user selects other analysis types or

modules.

The Analyze Threshold use case begins when the user selects Threshold

analysis type. It provides the capability to display violations of chosen

thresholds. The user sets up the date range, grouping and chooses site(s) for

analyzing, and the system prompts the user to select measurement channels

(power, energy cost, or both), and then displays the name and type of the site(s)

and the violations of the thresholds. The date selection criteria can be set up by

time of day, day of week, or month of year. The data can also be displayed in

Chapter 5. A Reverse Engineer ing Process: Case Study 70

graph by selecting Display Graph option. The use case ends when the user

selects other analysis types or modules.

The Analyze as Metered use case begins when the user selects As Metered

analysis type. It provides the capability to display the as metered data (currently

15-minute interval). The user sets up the date range and chooses site(s) for

analyzing, and the system prompts the user to select measurement channels

(power, energy cost, or both), and then displays the name and type of the site(s)

and the as metered data. The date selection criteria can be set up by time of day,

day of week, or month of year. The data can also be displayed in graph by

selecting Display Graph option. The use case ends when the user selects other

analysis types or modules.

The Analyze Needle use case begins when the user selects Needle analysis

type. It provides the capability to display peaks of a selected magnitude and

width. The user sets up the date range, grouping and chooses site(s) for

analyzing, and the system prompts the user to select measurement channels

(power, energy cost, or both), and then displays the name and type of the site(s)

and the needles. The date selection criteria can be set up by time of day, day of

week, or month of year. The data can also be displayed in graph by selecting

Display Graph option. The use case ends when the user selects other analysis

types or modules.

The Analyze Cumulative Threshold use case begins when the user selects

Cumulative Threshold analysis type. It provides the capability to display

violations of chosen cumulative thresholds. The user sets up the date range,

accumulation interval, grouping and chooses site(s) for analyzing, and the

system prompts the user to select measurement channels (power, energy cost,

or both), and then displays the name and type of the site(s) and the violations of

the cumulative thresholds. The date selection criteria can be set up by time of

day, day of week, or month of year. The data can also be displayed in graph by

Chapter 5. A Reverse Engineer ing Process: Case Study 71

selecting Display Graph option. The use case ends when the user selects other

analysis types or modules.

The Analyze Simultaneous Events use case begins when the user selects

Simultaneous Events analysis type. It provides the capability to display

simultaneous violations of chosen thresholds for a primary and secondary

measurement type. The user sets up the date range, grouping and chooses

site(s) for analyzing, and the system prompts the user to select measurement

channels (power, energy cost, or both), and then displays the name and type of

the site(s) and the simultaneous violations of the thresholds. The date selection

criteria can be set up by time of day, day of week, or month of year. The data can

also be displayed in graph by selecting Display Graph option. The use case ends

when the user selects other analysis types or modules.

Chapter 5. A Reverse Engineer ing Process: Case Study 72

5.5.2.2 Use Case Diagram for the EIS Client Star t-up

In this Use Case Diagram (Fig. 5.4) the user starts the EIS Client Application. It

starts the application, verifies the version and validates the user. The system

prompts the user to enter his/her user name and password. If an invalid user

name or password is entered, the system re-prompts the user to enter a valid

user name and password.

This EIS Client Begins use case represents the start of EIS Client application in

its entirety. The sequence diagram associated with this use case shows how it

interacts with the actor. See the associated activity diagram.

Fig. 5.4 Fine grain Use Case Diagram for one of the Use Cases in Fig. 5.3

Version verificationEIS Client App
Begins

<<include>
>

Authorization request

<<include>
>

EIS Client
User

Use case description of the EIS application start-up

Chapter 5. A Reverse Engineer ing Process: Case Study 73

The version verification use case relates to the verification done in the

DSGJavashell class. The current version number of the jre.exe is determined

and checked for compatibility.

The user has to be authenticated before he can be allowed to use the EIS

application and to access relevant data. This use case handles the authorization

request and asks the user to enter the user name and password. The system

then sends the data across the network to the server and validates the user. A

HTTP connection is also established in this phase.

5.5.2.3 Activity Diagram for the EIS Client Begins Use Case

This activity diagram (Fig. 5.5) describes the activities and actions initiated by the

EIS Client Begins Use Case. First, checks the current version of the jre.exe file

being used to run the EIS Client application. Loads all the EIS Client classes in

the application and raise exceptions whenever a class file is not found or is

inaccessible. This activity is implemented in the Loader.java class, which is

generated by the makefile.

Chapter 5. A Reverse Engineer ing Process: Case Study 74

Check jre
version

Authenticate
the user

Establish http
connection

Is connection
established?

Yes

Request user to
re-enter network info

No

Retrieve data from
Datapult Central

Start the User
Interface

Load all
classes

Activity Diagram description for the Datapult Begins Use Case

Fig 5.5 Activity Description for the EIS Client Begins Use Case

Chapter 5. A Reverse Engineer ing Process: Case Study 75

5.5.3 Extraction of the Source Model

Analyzing the source code was the most challenging part of the project. Several modules

of the source were scantily documented, and debugging the source was the primary

method used to extract the model as an abstraction. The reasons for this decision are

discussed further.

1. Developers documentation

Certain important classes and objects in the system were documented textually by the

developers. These documents were scanned thoroughly for clues about the critical

modules in the application. In this case, the developers’ documentation provided for

knowledge about the classes that implement the structure of the client application. The

classes responsible for creating the various frames in the application was the most

important information contained in these documents.

2. Use of parsers and other tools

Though there are several parsers and other reverse engineering tools available, very few

of them had support for the Java programming language. Some tools that were

programming language independent were not flexible enough to accommodate specific

reverse engineering needs like restraining the tool from modeling a third party library.

One specific tool that was evaluated for this project is Visicomp, a tool supposedly useful

for reverse engineering complex Java projects. It was indeed a powerful tool, but we

could not use it for this project due to several reasons. Two of them being that Visicomp

generates non-UML graphical descriptions after reverse engineering, and there being no

flexibility in controlling the tool while it reverse engineers the software. The EIS Client

application being as huge as it is, the tool could not handle the size and complexity. For

the most part, it generated a complex mesh of complete connected graphs. Hence a

decision was made to stick to debugging the source code in an IDE.

Chapter 5. A Reverse Engineer ing Process: Case Study 76

However, OO CASE tools like Rational Rose support UML and allow very limited, albeit

convenient support for reverse engineering. The Rose tool can reverse engineer OO

software’s classes into the model, then allows the reverse engineer to use it in his

diagrams. However, the support it offers is limited to extracting the static information and

all the dynamic information has to be understood by debugging the source.

3. Debugging

This was found to be the best method of understanding program flow and the interaction

between the various classes in the application. Every class had several implementation

level functionalities like exception handling etc., which were largely ignored for the

purpose of reverse engineering. The emphasis while debugging was towards finding vital

clues as to how objects interact to implement a Use Case, and ignoring interactions that

effect other Use Cases not relevant to the view being presented. The Visual Café IDE was

used to debug the EIS Client in the Java environment.

5.5.3.1 Class Diagram for the EIS Client Begins Use Case

The class diagram in Fig 5.6 shows the major classes that implement the

functionality seen during the beginning of the application. The interactions

between these classes or their objects and messages passed among them are

described by means of sequence diagrams, one of which is used to illustrate the

point in Fig. 5.7.

Chapter 5. A Reverse Engineer ing Process: Case Study 77

Fig 5.6 Example Class Diagram showing classes which implement the EIS Client
start-up

java

sun
DSGJavaShell

$ NORMAL : int =
0$ RESTART : int =
11$ REDIRECT_FAILED : int = 12

main()
windowClosing()
actionPerformed()
DSGJavaShell()

Loader

Loader()

DSGAppLoader

$ FRAME_WIDTH : int =
400$ FRAME_HEIGHT : int =
200$ DIALOG_WIDTH : int =
420$ DIALOG_HEIGHT : int =
100$ LICENSE_WIDTH : int =
500$ LICENSE_HEIGHT : int =
280$ NORMAL : int =
0$ RESTART : int =
11$ REDIRECT_FAILED : int =
12$ UPDATE_PERCENT : long = 5
imageWidth_ : int = 0
imageHeight_ : int = 0
timeout_ : int =
0authCancelled_ : boolean = false
hostPortErr_ : boolean = false
closer_ : ErrorWindowAdapter
restartApp_ : boolean = false
sysExit_ : boolean = true
update_ : boolean = false
accepted_ : boolean = false

main()
actionPerformed()
DSGAppLoader()
imageUpdate()
paint()
update()
doit()
finishLoading()
deleteDirContents()
unzipArchive()
setupProperties()
loadFileRecs()
verifyVersions()
updateFiles()
copyFile()
setPercent()

HTTPClient

Handler

Handler()
openConnection()

(from http)

EIASApp

$ TIMEME : boolean = false
$ DEBUG : boolean = false
$ APP_WIDTH : int =
800$ APP_HEIGHT : int =
600$ DEFAULT_COMMAND_INVOKER_TIMEOUT : long = 1000 * 60 * 5
$ port_ : int = -
1$ acceptConnection_ : boolean
$ commandInvokerTimeout_ : long = DEFAULT_COMMAND_INVOKER_TIMEOUT
canceled_ : boolean = false
errorDisplayed_ : boolean = false

singleton()
main()
getFrameManager()
messageDelivery()
init()
init()
callback()
getPort()
requestConnection()
closeConnection()
setConnectionTimestamp()
displayError()

-$singleton_

This class diagram shows the primary classes that interact during the beginning of the application.

Chapter 5. A Reverse Engineer ing Process: Case Study 78

5.5.3.2 Interaction Diagrams for the EIS Client Star t-Up

 These interaction diagrams (Fig. 5.7 and Fig. 5.8) show how the objects

combine to start up the EIS Client application. They realize the EIS Client start

and Validate user use cases. This is a very high level view of the system and

their interactions. More details can be understood from the source code.

The DSGJavaShell is invoked when the user double clicks on the icon on the

desktop.

Fig. 5.7 Sequence Diagram that describes the application start-up

Fig. 5.8 Collaboration Diagram that describes the application start-up

 :
DSGJavaShell

 : (Logical
View::com::dsg::apploader::DSGAppLoader)

 : EIASApp

3: singleton()

Interaction that implements the start of the Datapult
application

1: Runtime.getRuntime.exec(appCmd)

2: main

 : DSGJavaShell : (Logical
View::com::dsg::apploader::DSGAppLoader)

 : EIASApp

Runtime.getRuntime.exec(appCmd)

main

Sequence diagram that describes the start-up of the application at a high level

singleton()

Chapter 5. A Reverse Engineer ing Process: Case Study 79

Diagram Documentation for source-code model

The DSGJavaShell class is the topmost class in the hierarchy of the EIS Client

application. When the application is started, the control transfers to the

DSGJavaShell Class. The arguments are passed to its own constructor where a

new process is created. The DSGAppLoader class is executed from here by a

separate process generated by the Runtime class.

The process handler "app" is held here and it is used to wait for the process to

complete. If the process returns a RESTART command, the process creation

routine is repeated again.

The EIASApp class loads the application by calling its own constructor and also

creates the various GUI components that come up during the initialization of the

application.

The DSGAppLoader class is one of the most important classes in the EIS Client

application. The EIASApp class makes the initializations for the graphical

interfaces that adorn the application and also handle the HTTP connection

request/closure etc. The classes that actually implement the GUI are described in

other class and sequence diagrams.

More such class and interactions diagrams illustrate the EIS Client application’s source

code implementation. The level of abstraction evident here is typical of the intention of a

reverse engineer. The goal is to generate models less rigorous than the source code itself.

Chapter 5. A Reverse Engineer ing Process: Case Study 80

5.5.4 Abstraction of the Architectural Model

Abstracting the architectural description was an ongoing process throughout the length of

the project. However, the static architecture of the system artifacts was identified in the

beginning, and incremental changes were made as more information was learnt.

Component diagrams were built in UML and the relationships among the components

were visually represented by a dependency relationship between them. Major packages

were also identified in these diagrams and this graphical view would simplify the first

time viewer’s effort to understand the architectural layout of the software. One such

component view is shown here as an example (Fig. 5.9).

This component diagram shows the weak dependency relationships among the

components and packages used in the project. This also is a holistic view.

Typically dependencies are due to the import statements in the Java files.

EIASApp

HTTPClient

httpsshttp

ie

Loader

com
jclass

QuickDate
Generator

http

Component Diagram that describes the EIS Client applications component/package relationships

Fig 5.9 Architectural description of the application

Chapter 5. A Reverse Engineer ing Process: Case Study 81

5.5.5 Consolidation

Once the various models were built, the consolidation phase took hold. The models were

studied again in light of the goals specified during the beginning of the project. Complex

models that could potentially be unclear than the source code were removed from the

model. Some models were enhanced when they were attached to another view of the

system. For example, the EIS_start Use Case diagram was substantiated by the

implementation views in the class diagram and sequence/collaboration diagrams that

describe the classes and their interactions.

For the maintenance engineer who is concerned only about the start portion of the

application for debugging, the use case diagram encapsulates the functionality, the class

and component diagrams show key elements in its structure, and the sequence diagrams

show the interactions among objects that implement this function. Several such additions,

relationships and corrections were made to the constructed models during this phase.

5.5.6 Utilization

The end result of this project was one coherent UML model that correlates all the

knowledge gained. Care was taken to ensure that the model was not another legacy

system handed to the client. Analyzing the UML model generated and using it for future

maintenance and development would determine the utility of this reverse engineering

effort. The model developed using this case study has been submitted along with this

thesis (dpult_description.mdl viewed using Rational Rose version 2000 or higher.)

5.6 Lessons Learned

A summary of key learning experiences and pitfalls encountered during this project is

listed below.

1. Abstraction was found to be very useful for the purpose of hiding the real complexity

of the source code. It can be seen that a few graphical descriptions can greatly reduce

Chapter 5. A Reverse Engineer ing Process: Case Study 82

the effort in trying to comprehend the relationships and interactions among the source

code’s artifacts.

2. There are many commercially available tools that claim to have a capability for

reverse engineering. However, besides the propaganda, none of these tools show the

ability to reverse engineer source code into dynamic models. The exception being

Visicomp, but this tool needs to be made more user-friendly and reliable.

3. The first phase of the project is by far the most important one. It helps the reverse

engineer limit the scope of exploration, and thereby enables him/her to work without

getting lost in the maze of complex code.

4. UML was found to be a very useful notation for modeling the complex OO software.

Tool support for UML is also very good at this point, and the industry shows no sign

of slowing down. This augurs well for the future, since better reverse engineering

capabilities can be expected in future. Rational Rose, used for this project is one of

the better tools available for UML.

5. The process used was very intuitive, but attempts to automate one or more steps in the

process met with discouraging results. The process needs to be fine tuned and

modified to accommodate steps which may be automatable using existing tools.

6. One drawback of this process is that the limited scope does not allow it to be iterative.

A full-scale reverse engineering process would be iterative, generating more complex

models at the end of each cycle. This should be viewed as a trade-off between the

accuracy aimed and the complexity of the model generated.

83

Conclusion and Future work

There are grounds for cautious optimism that we may now be near the end of the
search for the ultimate laws of nature

Hawking, Stephen W.

84

Conclusion and Future work

Though it has been some years since the UML was standardized, there exist few

processes defined for some or all phases of reverse engineering. The CASE tools industry

is bursting at its seams currently, and there were atleast 16 different vendors of such

UML based tools at last count. As these tools increasingly provide more intelligent

functionality, it can be predicted that the future augurs for the OO community. As a

culmination of efforts in the industry and in academia towards better tools for reverse

engineering, CASE tools with advanced capabilities are on the anvil. Several vendors

promise intelligent processing of knowledge about the dynamics of OO systems and

options to reverse engineer them. Focus on the growing and adaptive needs of the

industry could fuel a potential market for such tools in the future.

This thesis work is one of the earliest done in applying a reverse engineering process to

Object Oriented Systems. The formal process described does not have any automated

approaches involved at this point, but the emergence of such tools is expected from the

tools industry soon. Therefore, this process can be adapted suitably to integrate the

automatable phases. Further, the process is rather holistic at this stage. As the field

matures, each phase can be elaborated with more fine-grained precision. A summary of

the author’s contributions as a result of this thesis work is shown below.

1. A general, intuitive and formal process for Reverse Engineering Large Scale OO

software has been defined. This process is general at this point and could be extended,

modified or developed to accommodate automated steps.

2. A design artifact (a UML model) has been released to the sponsor (ESP) as a result of

reverse engineering the case study EIS Client application.

85

Bibliography

Destructors for virtual base classes are executed in the reverse order of their
appearance in a depth-first left-to-right traversal of the directed acyclic graph of
base classes....

B. Stroustrup

86

Bibliography

[1] Elliot J. Chikofsky and James H. Cross II, "Reverse Engineering and Design

Recovery: A Taxonomy," IEEE Software, vol. 7, no. 1, January 1990.

[2] Spencer Rugaber, "Program Comprehension for Reverse Engineering,"

http://www.cc.gatech.edu/reverse/papers.html, College of Computing, Georgia

Institute of Technology, March 9, 1994.

[3] K. Erdos, H.M. Sneed, "Partial Comprehension of Complex Programs (enough to

perform maintenance)," IEEE Proceedings - Sixth International Workshop on

Program Comprehension, June 24 – 26, 1998.

[4] H.M. Sneed, T. Donbovari, "Comprehending a Complex, Distributed, Object-

oriented Software System A Report from the Field," IEEE Proceedings - Seventh

International Workshop on Program Comprehension, pp. 218-225, 5-7 May 1999.

[5] G Antoniol, R. Fiutem, L. Cristoforetti, "Design Pattern Recovery in Object

Oriented Software," IEEE Proceedings - Sixth International Workshop on Program

Comprehension, June 24 – 26, pp. 153-160, 1998.

[6] J.M. DeBaud, B. Moopen, S. Rugaber, "Domain Analysis and Reverse

Engineering," http://www.cc.gatech.edu/reverse/papers.html, College of

Computing, Georgia Institute of Technology.

[7] B. Korel, J. Rilling, "Program Slicing in Understanding of Large Programs," IEEE

Proceedings - Sixth International Workshop on Program Comprehension, June 24 –

26, pp. 145-152, 1998.

[8] Jianjun Zhao, "Slicing Concurrent Java Programs, "IEEE Proceedings - Seventh

International Workshop on Program Comprehension, pp. 126-133, 5-7 May 1999.

Bibliography 87

[9] A. Bechini, K.C. Tai, "Design of a Toolset for Dynamic Analysis of Concurrent

Java Programs," IEEE Proceedings - Sixth International Workshop on Program

Comprehension, June 24 – 26, pp. 190-197, 1998.

[10] I. Burnstein, F. Saner, "An Application of Fuzzy Reasoning to Support Automated

Program Comprehension," IEEE Proceedings - Seventh International Workshop on

Program Comprehension, pp. 66-73, 5-7 May 1999.

[11] Linda. M. Wills, "Flexible Control for Program Recognition," IEEE Working

Conference on Reverse Engineering, Baltimore, Maryland, pp-134-143, May 1993.

[12] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, E. R. Gansner, "Using

Automatic Clustering to Produce High-Level System Organizations of Source

Code," IEEE Proceedings - Sixth International Workshop on Program

Comprehension, pp. 45-52, June 24 – 26, 1998.

[13] G. Antoniol, A. Potrich, P. Tonella, R. Fiutem, "Evolving Object Oriented Design

to Improve Code Traceability," IEEE Proceedings - Seventh International

Workshop on Program Comprehension, pp. 151-160, 5-7 May 1999.

[14] A. V. Mayrhauser, A. M. Vans, "Program Understanding Behavior During the

Adaptation of Large Scale Software," IEEE Proceedings - Sixth International

Workshop on Program Comprehension, pp. 164-172, June 24 – 26, 1998.

[15] Barry W. Boehm, Software Engineering Economics, Prentice Hall, 1981.

[16] R. K. Fjeldstad and W. T. Hamlen., "Application Program Maintenance Study:

Report to our Respondents," Proceedings GUIDE 48, Philadelphia, PA, 1979.

Tutorial on Software Maintenance, G. Parikh and N. Zvegintozov, editors, IEEE

Computer Society, April 1983.

[17] Abd-El-Hafiz S.K., "Evaluation of a Knowledge based approach to Program

Understanding," IEEE Proceedings – Working Conference in Reverse Engineering,

'96," pp. 259 – 269, 1996.

[18] Jahnke J.H, Walenstein A., "Reverse Engineering tools as Media for Imperfect

Knowledge," IEEE Proceedings – Working Conference in Reverse Engineering,

'00, pp. 22 – 32, 2000.

[19] Koskimies K., Systa T., Tuomi J., Mannisto T., "Automated Support for Modeling

OO Software," IEEE Software, January-February, 1998.

Bibliography 88

[20] Cung A., Lee Y.S., "Reverse Software Engineering with UML for website

maintenance," IEEE Proceedings – Working Conference in Reverse Engineering,

'00, pp. 157– 172, 2000.

[21] Gannod G.C, Cheng B.H.C, "A Formal Approach for Reverse Engineering," IEEE

Proceedings – Working Conference in Reverse Engineering, '99, pp. 100 – 111,

2000.

[22] Riva C., "Reverse Architecting: an Industrial Experience Report," IEEE

Proceedings – Working Conference in Reverse Engineering, '00, pp. 42– 50, 2000.

[23] Lucca G.A.D, Fasolino A.R, Carlini U.D, "Recovering Use Case models from

Object Oriented Code: a Thread-based Approach," IEEE Proceedings – Working

Conference in Reverse Engineering, '00, pp. 108– 117, 2000.

[24] Booch G., Rumbaugh J. and Jacobson I., The Unified Modeling Language User

Guide, Addison Wesley Longman Inc., 1991.

[25] Rational Corporation website http://www.rational.com

[26] Object Management Group website http://www.omg.org/uml

89

Vita

Surendranath Ramasubbu is a graduate student at Virginia Tech (VPI & SU) at the time

of submitting this thesis. A native of the state of Tamil Nadu (TN) in the southern

peninsula of India, he did his schooling in many districts in the state. Later, he graduated

with Distinction from PSG College of Technology, Coimbatore, with a Bachelor of

Engineering (BE) degree in 1998. For a year after graduation, he worked as a Software

Engineer at Tata Infotech Ltd., Bangalore. In 1999, after realizing that his passion for

academic work was unquenched, he decided to embark on a journey to learn more

through graduate study in the United States. At present, he is planning to graduate with

the degree of Master of Science in Electrical Engineering in May 2001.

