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An approach to time-ordered operators based upon von Neumann's infinite tensor product 
Hilbert spaces is used to define Feynman-Dyson algebras. This theory is used to show that a 
one-to-one correspondence exists between path integrals and semi groups, which are integral 
operators defined by a kernel, the reproducing property of the kernel being a consequence of 
the semigroup property. For path integrals constructed from two semigroups, the results are 
more general than those obtained by the use of the Trotter-Kato formula. Perturbation series 
for the Feynman-Dyson operator calculus for time evolution and scattering operators are 
discussed, and it is pointed out that they are "asymptotic in the sense of Poincare" as defined 
in the theory of semi groups, thereby giving a precise formulation to a well-known conjecture of 
Dyson stated many years ago in the context of quantum electrodynamics. Moreover, the series 
converge when these operators possess suitable holomorphy properties. 

I. INTRODUCTION 

It has long been an open question as to what mathemat­
ical meaning can be given to the Feynman-Dyson time-or­
dered operator calculus, which was developed in the 1950's 
for the study of quantum electrodynamics. In this paper we 
define Feynman-Dyson algebras and show that they give a 
natural algebraic framework which allows for the replace­
ment of the noncommutative structure of quantum theory 
with a uniquely defined commutative structure in the time­
ordered sense. This approach is analogous to the well-known 
method in the study of Lie algebras wherein the use of the 
universal enveloping algebra allows the replacement of a 
nonassociative structure with a uniquely defined associative 
structure for the development of a coherent representation 
theory.l 

The use of this tensor algebra framework allows us to 
improve upon the customary formal approach to time-or­
dered operators based upon product integration. 

In Sec. II we discuss infinite tensor product Hilbert 
spaces Vand V¢ modeled on an arbitrary separable Hilbert 
space JY' and discuss the relationship between algebras of 
bounded linear operators on these two types of spaces. It is 
shown that V¢ may be assumed separable with no loss in 
generality (see also Sec. IV). 

In Sec. III we apply these considerations to the discus­
sion of time-ordered integral operators and discuss how this 
approach leads to unique solutions to the Cauchy problem 
for the Schrodinger equation with time-dependent Hamilto­
nians. The use of infinite tensor product Hilbert spaces re­
quires the introduction of a new topology, and so we discuss 
how uniqueness in the Cauchy problem is to be understood 
in this framework. 

In Sec. IV we discuss the relationship between various 
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algebras of bounded linear operators on infinite tensor prod­
uct Hilbert spaces and give a mathematically rigorous treat­
ment of algebras of time-ordered operators on these spaces. 
The latter algebras, called Feynman-Dyson algebras, pro­
vide a mathematical treatment ofFeynman's operator calcu­
lus. 2 Our use of infinite tensor product Hilbert spaces in this 
connection can be seen to be the mathematical embodiment 
of the method of Fujiwara3 in the implementation of Feyn­
man's approach. The definition of these so-called "expan­
sional" operators has been discussed in a Banach algebraic 
framework different from that of the present paper by Mir­
anker and Weiss4 and Araki. 5 Related discussions of time­
ordered operators have been given by Nelson6 and Maslov. 7 

In Sec. V we apply our theory of time-ordered operators 
to the discussion of path integrals of the type first envisioned 
by Feynman.8 We show that there exists a one-to-one corre­
spondence between path integrals and semigroups which are 
integral operators defined by a kernel. In this situation, the 
reproducing property of the kernel follows from the semi­
group property. In this section, path integrals are written for 
more general Hamiltonians than perturbations of Lapla­
cians by making use of some results of Maslov and Shish­
marev9

,10 on hypoelliptic pseudodifferential operators. In 
those cases in which one is dealing with two semigroups, it is 
not necessary to assume that the sum of the generators is a 
generator of a third semigroup. In particular, it is not neces­
sary to assume that one of the two generators is small in some 
sense relative to the other. 

In Sec. VI we discuss perturbation expansions for time­
evolution operators. It is shown that these expansions gener­
ally do not converge, but are "asymptotic in the sense of 
Poincare" as this term is used in the theory of semigroups. II 
This nonconvergence of the perturbation expansions was 
conjectured in the special case of the renormalized perturba­
tion expansions of quantum electrodynamics in a well­
known paper by Dyson.12 We also prove that these series 
converge when the semigroups possess suitable holomorphy 
properties. 

Section VII consists of some concluding remarks. 
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II. PRELIMINARIES 

Let J = [ - T,T], T> 0, denote a compact subinterval 
of the real line and V = ® SEJdY(S) the infinite tensor prod­
uct Hilbert space, where dYes) = dY for each sEJ and dY 
denotes a fixed abstract separable Hilbert space. Here 
L [dY] and L [ V] denote the bounded linear operators on the 
respective spaces. Here L [dY(s)] is defined by 

L[dY(s)] = {B(S) = ® I, ®B®( ® Ir)IBEL [dY]} 
T;;~f;;"S s> r> - T 

(2.1) 

where Ir is the identity operator, and L # [ V] is the uniform 
closure of the algebra generated by the family: 
{L[dY(s») IsEJ}. 

Definition 2.1: We say that ¢ = ® s¢s is equivalent to 
¢ = ® s ¢s and write ¢ = ¢ if and only if 

(2.2) 

where < , ) s denotes the inner product on dY (s ). It is to be 
understood that the sum is meaningful only if at most a 
countable number of terms are different from zero. The fol­
lowing result is due to von Neumann, 13 but see Guichardet '4 

for a simplified proof. 
Theorem 2.1: The above relation is an equivalence rela­

tion V. If we let V", denote the closure of the linear spin of all 
¢=¢, then (1) ¢not equivalent to¢ implies v,pn V", = {O}; 
and (2) if we replace J by] C J, where] is a countable dense 
subset, in our definition of V [i.e., V = ; SE] (s)], then Vis a 
separable Hilbert space. 

Let lP '" be the projection from V onto V"'. 
Theorem 2.213

: For all TEL # [ V ], the restriction of T to 
V", is a bounded linear operator, and 

V. 

lP",T= IF", . (2.3) 

Let C [V] denote the set of closable linear operators on 

Definition 2.2: An exchange operator E[t,t'] is a linear 
operator defined on C [V] for pairs t,t'EJ such that 

(1) E[t,t'] mapsC[dY(t'») ontoC[dY(t)]' 
(2) E[t,s] E[s,t'] = E[t,!'], 
(3) E[t,t'] E[t',t] =1, 
(4) ifs0;6t,t',thenE[t,t']A(s) =A(s),forall 

A (S)EC[dY(S)]. 

It should be noted that E [t,t '] is linear in the sense that 
whenever the sum of two closable operators is defined and 
closable, then E[t,t'] maps in the appropriate manner (see 
Gill 15 ). In particular, E[ t,t '] restricted to L # [ V] is a 
Banach algebra isomorphism and E[t,t'] E[s,s'] 
=E[s,s'] E[t,t'] for distinct pairs (t,t') and (s,s') inJ. 

Theorem 2.3: If F=n:~IE[7n,Sn]' {(7n,Sn)EJ 
XJ InEN} then F is a Banach algebra isomorphism on 
L #[ V] and 

(1) IIFII# = 1, 
(2)F- ' =F. 
Proof As liE [7,S] 11# = 1, Fis a convergent product of 

algebra isomorphisms and IIFII# .;;;;IIE [7n,Sn] 11# = 1. On 
the other hand, 1 = III II # = IIF(l) II # .;;;; IIF II # III II #' so 
that IIFII# = 1. Since E[7n,SnJE[sn,7nJ =1 and ex-
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change operators for distinct pairs commute, we see that 
FZ=I~F-'=F. 

Definition 2.3:A chronological morphism (or c-mor­
phism) on L # [ V] is any (Banach) algebra isomorphism F 
on L # [ V] composed of products of exchange operators 
such that 

(1) IIFII# = 1, 
(2) F- ' =F. 
Definition 2.4: Let {H(t) ItEJ} C C[dY) denote a family 

of densely defined closed self-adjoint operators on dY, then 
the corresponding time-ordered version in C [V] is defined 
by 

H(t) = ® Is ®H(t) ® ( ® Is). (2.4) 
T>S>I t>s> - T 

Definition 2.5: A family {H (t) I tEJ} C C [ V] is said to be 
chronologically continuous (or c-continuous) in the strong 
sense at to if there exists an exchange operator E[to,t] such 
that 

limllE [to,t ]H(t)¢ - H(to)¢11 = 0 , (2.5) 
t--- to 

where ¢E ® SEJ .80 [dY(s)]. 
Definition 2.6: The family {H(t) ItEJ} is said to be 

chronologically differentiable (or c-differentiable) in the 
strong sense at to if there exists an operator DH(to) and an 
exchange operator E(ta,t) such that 

lim II E(ta,t)H(t)¢ - H(ta)¢ - DH(ta)¢ II = 0, 
1-10 t-ta 

for all ¢E® S€J .8O(H(s»). 
Theorem 2.4: Suppose the family of operators 

{H(t) ItEJ} have a common domain. Then the correspond­
ing family {H(t) ItEJ} is strongly c-continuous iff 
{H(t) ItEJ} is strongly continuous. 

Proof See Gill. 15 

III. INTEGRALS AND EVOLUTIONS 

In the following discussion, all operators of the form 
{A (t) I tEJ} are closed infinitesimal generators of contraction 
semi groups, while {H(t) It€I} are strongly continuous 
densely defined linear operators with a common domain, 
and generate unitary groups. The corresponding operators 
of the form {A (t) It€I} Crespo {H(t) ItEJ}) are the time-or­
dered versions. Define A z (t) by 

Az(t) =exp{zA(t)}-Ilz (3.1) 

and recall that exp{A z (t)} is a linear contraction and 
s-limzla A Z(t) =A(t) (strong limit). Similar results hold 
for HZ(t), with z replaced by iz in (3.1). 

Definition 3.1: An integral approximate on L # [ V] is a 
family of operators of the form {Q ~ [t, - T] with 
- T.;;;;t.;;;;T,A.>O}, where 

00 (UT)n k(n) 
Q~ [t, - T] = e- 2AT I I MjA Z(7j) . 

n~a n! j~l 

For each n,k=k(n)-;;.n and {lP'k={-T=t l 

< tz' .. < tk = t}, n,kEN} is a family of partitions of [ - T,t] 
such that limn _ oc llP'k I = 0 and we take 7j E [tj _ I ,tj)' 

Definition 3.2: Let {Q~ [t, - T]} and {Q~ [t, - T]} 
be any two families of integral approximates. We say Q ~ is c-

T. L. Gill and W. W. Zachary 1460 
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equivalent to Q ~ and write Q ~ ~ Q ~ (in the uniform sense) 

if and only if there exists a c-morphism F = F [Q ~ ,Q ~ ] 
such that 

lim IIQ~ [t, - T] - FQ~ [t, - T] II = O. (3.2) 
).-00 

Theorem 3.1: The relation ~ is an equivalence relation 
on the set of all integral approximates on L # [ V] . 

Proof· Reflexivity is obvious. To prove symmetry, we 
note that 

IIQ~ - FQ~ II = IIF-IQ~ - Q~ II 

since IIFII = 1, and F= F- 1
• Hence Q~ ~Q~ implies 

Q~ ~Q~. To prove transitivity, supposeFI andF2 exist such 

that 

Setting F = FIF2 we have 

IIQ~ -FQ~II = IIQ~ -FIQ~ +FIQ~ -FIF2Q~11 
.;;;IIQ~ -FIQ~II + IIQ~ +F2Q~II, 

hence lim)._oo IIQ~ - FQ~ II = 0, so that Q~ ~Q~. 
Here QZ[t, - T] = s-lim)._oo Q~ [t, - T] is called the 

time-ordered integral operator associated with the family 
{A Z (t) I tEJ} C L # [ V] if the above limit exists. 

Theorem 3.2 (existence): For the family {Hz(t)ltEJ} 
wehave(1) s-lim)._oo Q~ [t, - T] = QZ[t, - T] exists and 

QZ[t, _ T] = QZ[t,s] + QZ[s, - T], - T';;;s<t, 

(2) s-limz!o QZ[t, - T] = Q [t, - T] exists, is a densely 
I 

IfwenowletA ..... 00, we obtain lim)._oo IIQ~cp -FQ~cpll <€. 
Since € was arbitrary we are done. II 

Let us note that in Theorem 3.3 it is not necessary to 
require that Sj' 'Tj E [ tj _ 1 ,tj ). It suffices to assume that for n 
sufficiently large, ISj-'Tjl<o, 1.;;;J.;;;k(n) [i.e., 
limn _ oo I!.L -'Tjl~O 'rJj , 1.;;;J.;;;k(n)]. 

Let Q ~ and Q ~ be two integral approxima~s generated 
from arbitrary families of partitions {PI }, {PI,} with re­
spec~ve ylace values T/E(tl_1,tl ), '1.;;;1.;;;/~(n), and 
7/E [tl _ 1 ,tl ), 1.;;;1.;;;lz (n). Define a new family of partitions 

1461 J. Math. Phys., Vol. 28, No.7, July 1987 

defined generator of a unitary group on V, and 

Q[t, - T] = Q[t,s] + Q[s, - T] , 

and 

(3) s-lim[s-lim Q~ [t, - TJ] = s-lim[s-lim Q~ [t, - TJ]. 
A--OO zlO Z!o A~oo 

Proof" See Gill, 16 Theorems ( 1.1) and (1.2). 

From now on, our results assume that we are working 
with the family {Hz(t) ItEJ}. 

Theorem 3.3: Let Q~ [t, - T] and Q~ [t, - T] be two 
integral approximates with the same family of partitions but 
different points 'Tj,SjE[tj _ 1 ,tj) ("place values"). Then 

Q~ ~Q~ (in the strong sense). 

Proof" Define 

F= n~I(~XE['Tj'Sj]) 
so that 

Finz -2AT ~ (UT)n ~ A E [ ]HZ() 
~). = eLL utj 'Tj ,sj Sj. 

n~O n! j~1 
(3.3 ) 

By Theorem 2.3, we see that Fis a c-morphism and 

IIQ~cp - FQ~cpll 

k 

X I !l.tj IIHZ( 'Tj)CP - E ['Tj,Sj ]HZ(Sj )cpll . 
j~l 

We now note that strong c-continuity of H (t) (cf. definition 
2.5) implies strong c-continuity of HZ(t) so, given €>O, 
there exists 0> 0 such that I'T - S I < 0 implies for CPE V, 
IIHZ('T)cp-E['T,s]HZ(s)cpll<€I(t+T). Now, choose N 
so large that n>Nimplies IPk I <0, then 

P k = PI, U PI, and integral approximate 
'TjE[tj_l,tj). 

Since PI, CPk , 

may be reindexed to give 

Q~ 

T. L. Gill and W. W. Zachary 
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wheresj = 7/ for (/-1 <Jj _ 1 <t/:;,(/. Thus Q~ and Q~ have 
the same family of partitions, but different place values. 

- c= 
Theorem 3.4: Q ~ = Q ~ . 

Proof: We first show that Q~ ~Q~. From the above 

remarks, it suffices to show that ITj - Sj 1-0, n -: 00. To see 
this, recall that TjE [ tj _ ptj) and Sj = 7/ for t/_ 1 <tj _ 1 

< tj <t, hence h - Sj 1< at/ --+0 as n - 00. Therefore 

Q~ ~Q~ by Theorem 3.3. The same argument with Q~ re­

placed by Q ~ shows that Q ~ ~ Q ~. We now use the transi­

tivity of ~ to conclude that Q ~ ~ Q ~ . II 
Definition 3.3: A time-ordered integral operator is said 

to be chronologically unique (or c-unique) if every integral 
approximate is c-equivalent. 

Let Q[t, - T] = s-limZIO QZ[t, - T]. 
Theorem 3.5: (1) Q Z [t, - T] is c-unique. 
(2) Q[t, - T] is a generator ofa unitary group (densely 

defined and closed) . 
Proof: (1) is clear; (2) is in Gill. 16 

The uniqueness property in part (1) of this theorem is 
an important feature of our theory. There are path integrals 
which depend upon the choice of partition. See Ref. 17 for a 
discussion. 

Theorem 3.6: UZ[t, - T] = exp{ - iQZ[t, - Tn sat­
isfies 

(1) UZ[t, - T] = UZ[t,s]UZ[s, - T], - T<s<t, 

(2) i aUZ[~t- T] = HZ(t) UZ[t, - T] , 

(3) U [t, - T] = s-lim uz[t, - T] 
zlO 

= exp{ - iQ [t, - Tn 

satisfies 

U[t,s]U[s, - T] = U[t, - T], - T<s<t, 

(4) i aU[t, - T] =H(t)U[t, - T]. 
at 

Proof: See Gill. 16 The derivatives are in the strong 
chronological sense. This theorem allows us to give a com­
plete solution to the Cauchy problem. Recall that if 
¢oED (H( t») C J7'" for tEJ, then the initial value problem 

i af(t) =H(t)f(t) , f( - T) =¢o, 
at 

has a unique solution f(t) provided a few additional as­
sumptions are made. For a direct proof with explicit state­
ments of the required additional assumptions, see Tanabe. IS 

We prove a similar result in the Hilbert space V with no 
additional assumptions. 

Theorem 3.7: Let ¢s = ¢o, Ii¢oll = 1, sEJ, and set 
¢ = ® S ¢s' Then ¢(t) = U(t, - T)¢ is the c-unique solu­
tion to 

i a¢a~t) = H(t)¢(t) , ¢( - T) = ¢ , 

1462 J. Math. Phys., Vol. 28, No.7, July 1987 

where the derivatives are interpreted in the strong chronolo­
gical sense. 

Proof: Follows from Theorems 3.5 and 3.6. 

IV. OPERATOR ALGEBRAS 

Let us recall from Theorem 2.1 that if we replace J by 
]CJ, where ] is a dense subset and construct 
V = ~ SEJ J7"'(s) then V¢ (the closure of the linear span of all 
if; = ¢) is a separable (Hilbert) subspace. The next theorem 
is quite interesting in view of the fact that Vand V are not 
related as spaces. 

Theorem 4.1: L # [V] CL # [ V] (i.e., is an injection 
into ). 

Proof: From (2.1), it is easy to see that L [J7"'(s)] is a 
closed subalgebra of L # [ V] for each sEJ (a detailed proof is 
in von Neumann \3). This is also true for each s6i, so the 
result follows trivially, since L # [V] is generated by 
{L [J7"'(s)] Is6J}, and L [J7"'(s) ] CL # [ V], sEJ. 

Let us note that the existence and uniqueness of 
Q Z[t, - T] and U[t, - T] do not change if we restrict 
{rj 11 <J<k(n), nEN}, to lie inJin defining Q~ and U).. This 
means that the following holds. 

Theorem 4.2: 

(1) QZ[t, - T] and U[t, - T] belong to L # [V] , 

(2) QZ[t, - T]lv"EL [V¢] , (4.1) 

(3) U[t,-T]lv"EL[V¢]. (4.2) 

Proof: (1) is obvious while (2) and (3) follows from 
Theorem 2.3. 

The above result shows that both U[ t, - T] and 
Q[t, - T] are well defined (and the same operators as in 
V¢ ) when restricted to V¢, which is a separable Hilbert 
space. This means that all of standard quantum theory can 
be formulated in our setting. 

We now turn to some other important properties of 
L # [ V]. First, let us establish some notation. If {o (t), tEJ} 

denotes an arbitrary family of opertors in L [J7"'] , the opera­
tor fitEJB(t) (when defined) is understood in its natural 
order: 

II B(t). (4.3 ) 
1>t> - T 

It is easy to see that every operator A in L # [ V] that depends 
on a countable number of elements in J may be written as 

n, 

A = Ia; II A;(tk) , (4.4 ) 
k=1 

where Ai (tk )EL [J7"'Ctk )], t l ,t2 , ... ,tn, for all i. Define dT: 

L #[ V] -L [J7"'] by 

00 

dT[A]=Ia; II A;(tk)' (4.5 ) 
i= 1 nj>k;;;d 

Lemma 4.2: The map dTis a bounded linear map which 
is surjective but not injective. 

Proof: The proof is trivial. To see that dTis not injective, 
note that (for example) dT[E[t,s]A(s)] = dT[A(s)] yet 
A(s)EL[J7"'(s)] while E[t,s]A(s)EL[J7"'(t)] so that these 
operators are not equal when t ,#s. 

T. L. Gill and W. W. Zachary 1462 
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From Theorem 2.2, we know that the algebras 
L [Jt" (t) ] and L [Jt"] are isomorphic as Banach algebras so 
that for each tEJ, there exists an isomorphism to: 
L [Jt"] ..... L [Jt"(t)]. Now to -I: L [Jt"(t)] ..... L [Jt"]; and 
since L [Jt" (t)] is a closed subalgebra of L # [ V], we know 
that dT restricted to L [Jt"(t)] is an algebra homomor­
phism. 

Theorem 4.3: dTL [JY'(t) J = to -I. 
Proof.· It is clear thattO -I [A (t)] = A (t) anddT [A (t)] 

= A (t), A (t)EL [Jt"(t)], so we need only show that dT is 
injective when restricted to L [Jt" (t) ]. If A (t) and B (t) be­
long to L [Jt"(t)] and dT[A (t)] = dT[B(t)]' then 
A (t) = B(t) (by definition of dT) so that A (t) = B(t) by 
definition of L [Jt"( t)]. 

Definition 4.1: The map dT is called the disentanglement 
morphism. 

Definition 4.2: The quadruple ({to !tEJ}, L [Jt"], 
dT,L # [V]), is called a Feynman-Dyson algebra (FD alge­
bra) over Jt" for the parameter set J. 

We now show that the FD algebra is universal for time 
ordering in the following sense. 

Theorem 4.4: Given any family {B(t) !tEJ}E(L[Jt"])J 
there is a unique family {B(t) !tEJ}CL # [V] such that the 
following conditions hold. 

(1) B(t)EL[Jt"(t)], tEJ. 

(2) dT[B(t)] = B(t), tEJ. 

(3) For an arbitrary family {{rj!1 <j<n}!nEN}, 1"j EJ 
(distinct) the map 

00 00 

X (B(1"n)'···,B(1"I») ..... I an IT B(1"j) 
n = I n = I n>j> 1 

from 

n~ 1 t~1 L [Jt"]} toL[Jt"], 

has a unique factorization through L # [ V] so that 

i: an IT B( 1"j) 
n=O n>j>1 

corresponds to 
00 n 

I an IT B(1"j) . 
n=O j=1 

Here we naturally assume that {an} is such that 

i: an IT B( 1"j)EL [Jt"] . 
n=O n>j>1 
Proof B(t) = to[BU)], 'VtEJ, gives (1). By Theorem 

4.3 we have dT[B(t)] = to -I [BU)] = B(t) which gives 
(2). To prove (3), note that 

8: n~ 1 t~1 L [Jt"]} ..... n~ 1 j~1 L [Jt"(1"j)] 

defined by 

8[X:= 1 (An,1n-I> ... ,1I)] 

=X:=I (1"n O [An] , 1"n_I O [An_d,···,1"IO [Ad) 

is one-to-one and onto (1"j O [Aj] =A(1"j)EL [Jt"(1"j))). 
The map 

00 00 00 

X (B(1"n)'···,B(1"I») ..... I an IT B(1"j)EL#[V] 
n=1 n=1 j=1 

factors through the tensor algebra 
EB : = 1 { ® ; = 1 L [Jt" ( 1"j ) J} via the universal property of 
that object (Hu,19 p. 179). We now note that 
EB := 1 { ® ; = 1 L [Jt" ( 1") J} C L # [ V] . In diagram form we 
have 

X (B(1"n). ... ,B(1"I»)EX {.x L[Jt"]} ~ i: an IT B(1"j)EL[Jt"] · ~ , oT' r' · ~ '.>,» I dT 

n~ 1 (B( 1"n ), ... ,B( 1"1»)E n~ 1 t~ 1 L [Jt"( 1"j))} -: ntl an j~1 B( 1"j)EL # [V] 

so that dToj ® 00 = f 
Example 1: Let 

A(t) = ® IT®A®( ® IT)' 
T>r>t t>'1"> - T 

where A and B are bounded on Jt". If s < t, then by Lemma 
2.3 in Ref. 15, we have 

A (t)B(s) = B(s)A (t) 

= ® IT®A®( ® IT)®B®( ® IT)' 
T;;o-r>t t>r>s s>r> - T 

so that dT[A (t)B(s)] = dT[B(s)A (t)] = AB, while 
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I 
dT[A (t)B(s) - B(t)A (s)] 

= dT[A (t)B(s) - A (s)B(t)] = AB - BA . 

Example 2: Let {net) !tEJ} be strongly continuous 
(with common dense domain), and suppose this family gen­
erates a product integral (Dollard and Friedman20

). Choose 
any family {If\ !nEN} of partitions such that 

n 

lim IT exp{ - i!:J.t/"l( 1"j)} = f; [t, - T] , 
n ....... oo j= 1 

then lim,,_ 00 U" [t, - T] = U [t, - T], where 

U,,[t,-T] 

00 (UT)n n ._ 
= e- UT I IT exp{ -1!:J.tj H(1"j)}. 

n=O n! j=1 

This follows from the fact that Borel summability is regular. 
For the same family {Pn !nEN}, construct 
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U). [t, - T] 

00 (u,T)n {n } 
= e - 2AT n~o n! exp - i /~1 l:it)H( 7) . 

As in Ref. 16, we see that U[t, - T] = lim)._oo U). [t, - T] 
exists in L # [ V] . Furthermore, dT{ U [t, - T]} 
=dTlim)._oo U).[t, -T] =lim)._oo dT{U).[t, -Tn 
= U [t, - T]. We can interchange limits since dT is a 
closed linear operator on L # [ V]. It should be noted that 
the above limit can exist even if the standard product integral 
does not. This result will be discussed in a subsequent paper 
(see Gill and Zachary21 ) • 

v. APPLICATIONS TO THE CONSTRUCTION OF PATH 
INTEGRALS 

In the present section we consider time-ordered opera­
tors in more detail, and discuss the proposition that there 

Vn (t, - T)¢o = exp [ - i )tl f~ I E( 7),7)Ho( 7)d7] ¢o 

exists a one-to-one correspondence between path integrals 
and semigroups which are integral operators defined by a 
kernel. We apply our formulation of time-ordered operators 
to the discussion of path integrals of the type first considered 
by Feynman. 8 There have been many approaches to the 
mathematical construction of time-ordered operators and 
path integrals in recent years. We will not be using any of 
these approaches, so we content ourselves with offering the 
following admittedly incomplete list of references 7,9,10,22-25 

from which the reader can trace these developments. 
Let us consider the time-independent self-adjoint gener­

ator Ho of a unitary group defined on JY'in terms of a transi­
tion kernel K which satisfies the Chapman-Kolmogorov 
equation. 

If we replace the operator H 0 by its time-ordered version 
{Ho (t): tEJ}, we induce a natural family of kernels 
K(x(t),t;y(s),s) via Theorem 3.2. To see this, note that 

= IT [( ® Is) ® exp[ - i(t) - t)_1 )Ho] ® ( ® Is)] ¢o 
j=l t">S>Tj 'Tj>s>-T 

where ¢o = ® SEJ ¢(s), J = [ - T,T]. In (5.1), x) = x(t) 
and the index 7) on lK. is used to indicate the time at which lK. 
acts. Combination of (5.1) with Theorem 3.2 shows that 
V). (t, - T) may be represented in the form 

V). (t, - T)¢o 
00 

= e- 2AT I. 
n=O 

(5.2) 

Since U). (t, - T) exists as a well-defined bounded operator, 
and 

lim V). (t, - T) = Uo(t, - T) 
).-00 

exists in the uniform operator topology, Uo(t, - T) has a 
natural representation as an operator-valued path integral: 

Uo(t, - T) = r lK.(x(t),t;x(s),s) § [x(s)] , (5.3) J?(t, - T) 

where 2" (t, - T) = Rk(t, - T) denotes the set of all functions 
from [t, - T] to Rk. In (5.3) we have used a formal "func­
tional measure" notation, although a measure generally does 
not exist, as we discuss in more detail below. 

In recent years many authors have attempted to bypass 
the difficulty that Feynman-type path integrals cannot gen­
erally be written in terms of countably additive measures, 25 
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(5.1 ) 

as is the case for its closest relative, the Wiener integral. In 
the present paper we take the point of view that integration 
theory, as contrasted with measure theory, is the appropriate 
vehicle to be considered for a theory of path integration. An 
essential ingredient in our approach is the idea that it is pos­
sible to define path integrals by giving up the requirement of 
the existence of a countably additive measure. This idea has a 
precursor in the theory of integration in Euclidean spaces. 
That is, it is possible to define a consistent theory of integra­
tion, which generalizes Lebesgue integration, in which the in­
tegrals are finitely additive, but are generally not countably 
additive. 26 Indeed, Henstock27 has already discussed the 
Feynman integral from this point of view. 

Returning now to our discussion of (5.3), we note that 
many authors have sought to restrict consideration to con­
tinuous functions in the definition of path integrals. The best 
known example is undoubtedly the Wiener integral. 28 How­
ever, the fact that we must see 2" (t, - T) follows naturally 
from the time-ordered operator calculus, and such a restric­
tion is probably neither possible nor desirable in our theory. 
This means that our approach does not encourage attempts 
at the standard measure theoretic formulations with counta­
bly additive measures. In previous work by one of us, 15 the 
Riemann-complete (generalized Riemann) integral of Hen­
stock and Kurzweil26 was employed, because the time-or­
dered integrals need not be absolutely integrable, even in the 
bounded operator case. These issues will be studied in 
greater depth at another time. We note in passing that this 
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failure of absolute integrability also plays an important role 
in the path integral theory of Albeverio and H0egh-Krohn, 23 

and also in more recent developments (see, e.g., Ref. 24). 
Our theory, to be discussed in the remainder of the present 
section, allows for more general Hamiltonians. 

Before proceeding to a discussion of these results, we 
pause to discuss some examples. The first one is well 
known-the familiar Laplacian operator. Our purpose in 
discussing it here is to show how our theory works in a famil­
iar case. 

Let Ho = - a/2 so that Ho{t) = - a t /2, where the 
subscript t indicates the time slot at which this operator is to 
be evaluated. We have 

K(x,t; y,s) = (21Ti(t - s») - k/2 exp[ilx - yl2/2(t - s)] . 

In this case it is easy to see that 

Un (t, - T)<po 

= exp -~---..::..-..::..-) )- (1".) lIn 1 [i{tj.-tj._ I ) IX'-X' 112 ] 
j = I Rk 2 tj - tj _ I j 

dXj _ 1 <Po 
X----'~~~-

[21Ti{tj - tj _ l ) ]k/2 
(5.4 ) 

= ( exp[i ± ~(tj_tj_I)IXj-Xj-1 1\1"j)] 
JRk" j = I 2 tj - tj _ I 

n dx. I 

X II . j - k /2 <Po . 
j= I [21Tl{tj - tj _ I )] 

(5.5) 

By analogy with the definition ofHo{t) given above, the (1"j) 

are used to remind us that the corresponding functions in 
(5.4) and (5.5) are not ordinary exponentials because they 
have a specific time slot at which they are evaluated. This is 
our version of the occurrence of expansionals in the usual 
approachY Using (5.5) with (5.2), we have 

U~ (t, - T)<po 

n 

X II D(xj _ 1 ) <Po , 
j= I 

where D(xj _ I) = (21Ti{tj - tj _ I ») - k/2 dxj _ I' This means 
that U°{t, - T) may be represented by 

U°{t, - T)<p = i exp[~ i Jt 1 dx 12 dS] 
ir(t, - n 2 - T ds 

X II D (x(s) )<Po . 
t>s> - T 

As our second example, we consider the operator 
H = ~ - a + w 2 • It was shown by Pursey29 that the Barg­
mann-Wigner equation for a relativistic particle of any phy­
sically allowed spin value s = O,p,~, ... is unitarily equiva­
lent to the equation defining the Cauchy problem for this 
square root operator. Foldy and Wouthuysen30 showed that 
this operator is nonlocal with effective spatial extension 
equal to a Compton wavelength. Our interest here is to show 
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that it is an integral operator defined by a kernel K. 
The method of pseudodifferential operators can be used 

to show that a kernel exists and, under reasonable condi­
tions, can provide a phase space representation as we discuss 
in detail more general operators later in this section. How­
ever, if we desire a direct representation, then other methods 
are required. In our case, we have found that the method of 
fractional powers of operator semigroups allows us to solve 
the problem in a simple manner. By using results on pp. 281 
and 302 of Ref. 31, p. 260 of Ref. 32, and p. 498 of Ref. 11, it 
can be shown that the semigroup generated by the closure of 

~ - a + w2
, T( 1"), can be written in the form 

T( 1")<p(x) = iw
2 

( K2 [w1"~lx ~ y12/? - 1] <p( y)dy , 
2r1" JR' Ix - yl I~ - 1 

(5.6) 

where K2 ( .) denotes the modified Bessel function of the 
third kind of order 2. It is clear that T( 1") is holomorphic. 
From (5.6) we see that we have an example ofa semigroup 
with a kernel that is not of the form 

[ mix. - x· I 12 ] exp i - j j - (tj - tj _ I) . 
2 tj-tj _ 1 

(5.7) 

Since (5.7) is appropriate for the nonrelativistic regime, 
we cannot expect it to have general validity. However, if the 
argument of the Bessel function is large, we should expect 
the kernel in (5.6) to approximate (5.7) when 
I (Xj - x j _ I )/(tj - tj _ 1 ) I is small compared to unity 
( = speed of light). Since K 2(z) -~1T/2 e -zlz forlarge ar­
gument, we see that we may approximate the kernel in (5.6) 

by (using,.fiT=T - i,JT=ll ) 
K(xj,tj;Xj_1 ,tj _ I) 

iw2 

2r{tj - tj _ I) 

Jf exp[ - iw{tj - tj _ 1 ),JT=Il] 
X - ~=======:::::;;~;=:~=-

2 ~ iw(tj - tj _ I ),JT=Il (1 - v2) 

where v = I (Xj - xj _ 1 )/{tj - tj _ l ) I. Now, letting v-O in 
the denominator and approximating the square root in the 
numerator, we obtain 

K(xj,tj;Xj _ I ,tj _ I ) 

~ + i( . W )3/2 exp[ - iw{tj - tj _ I)] 
21Tl{tj - tj _ I) 

[
Wi x· - x· I 12 ] X exp i -) j - (tj - tj _ I) . 
2 tj-tj _ 1 

(5.8) 

Thus we see that the kernel in (5.6) reduces to the nonrelati­
vistic limit except for the extra phase factor which corre­
sponds to a rest mass term in the standard approaches. It is 
important to realize, however, that two distinct assumptions 
are required to obtain (5.8). The first corresponds to obser­
vations far removed from the particle, while the second in­
volves the nonrelativistic approximation. In order to see the 
effect of the first assumption, we need only note that for 
smallz, 

(5.9) 
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It is also of interest to investigate the limit UJ -- 0 corre­
sponding to a massless particle. In this case we replace K 2 (z) 
by (5.9) to obtain 

K(Xj,fj;Xj _ 1 ,fj _ l ) 

+ i [1 _I Xj - Xj - I 12] - 2 
t?(tj - fj _ I )3 fj - fj _ 1 

(5.10) 

It is very interesting to note that both (5.8) and (5.10) are 
propagators for unitary groups. 

In order to describe path integrals for more general 
situations than covered thus far in the present section, we 
consider the case of two families of self-adjoint time-ordered 
operators {Ho(t): fEJ} and {HI (t): fEJ} with respective do­
mains Do and DI which are dense in V¢. It is assumed that 
both families are strongly c-continuous generators of unitary 
groups. Consider a partition Pn of [ - T,t] as in Definition 
3.1 and let 7j ,SjE[fj _ 1 ,f). We then define 

Un (t, - T) = eXP[jtl (tj - fj _ I ){Ho( 7j ) + HI (Sj)} ] , 

U~ (t, - T) = eXP[jtl (tj - tj _ I )Ho( 7j ) ] , 

U~ (t, - T) = eXP[jtl (tj - fj _ 1 )HI (S)] . 

Since we do not assume any relationship between Do and Dp 
Un (f, - T) is well defined except when 7j = Sj for some j. In 
the contrary case we have 

Un (t, - T) = U~ (t, - T) U ~ (t, - T) 

= U~(t, - T)U~(t, - T). 

Now, defining Vi (t, - T), U~ (t, - T), and U 1 (t, - T) by 
combining the notations of Theorems 3.2 and 3.6, we have 
the following theorem. 

Theorem 5.416
: 

(1) lim Vi (t, - T) = U(t, - T) exists a.s., 
,1-00 

(2) U(t, - T) = UI(t, - T)U°(t, - T) 

= U°(t, - T)UI(t, - T) a.s. 

By specializing the partition Pn by choosing 
fj -tj _ 1 = lin, I <,J<,n, we have 

UA (t, - T) = e - 2AT n~o (~~)n [ill exp { ~ H o( 7)}] 

X [ill exp{ ~ HI (Sj) }] . 

This is reminiscent of the Trotter-Kato product formu­
la, 31.33 but is more general due to our weak restrictions on the 
two self-adjoint operator families and our use of the Borel 
summability procedure. For example, it is not necessary to 
assume that H o + HI is self-adjoint as in Ref. 33. This means 
that, in particular, it is not necessary to assume that one of 
the operators, HI say, is small in some sense relative to the 
other, Ho' The fact that Theorem 5.4 does not depend on the 
domains is anticipated by the work of Chernoff 34 on the 
"generalized additivity" of generators of semigroups arising 
from Trotter-Kato-type product formulas. This author has 
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given an extensive discussion of these formulas for quite ar­
bitrary domains. See also Kat035 for a discussion of the case 
of two positive self-adjoint operators on a Hilbert space 
when the intersection of their domains may be arbitrary. 

We remind the reader at this point that the Trotter­
Kato formula is one of the standard methods for formal deri­
vations of Feynman's formula for the nonrelativistic time­
evolution operator. 23

,36 Similarly, Theorem 5.4 is the basis 
for our treatment of the Feynman integral which, however, 
is completely rigorous. 

We now discuss the results in Theorem 5.4 from a slight­
ly different point of view. We see from this theorem that 

UCt, - T) =exp [ -i fT {Ho(7) +HI (7)}d7] 

exists a.e. and 

U(t, - T) = lim UA Ct, - T) , 
,1_ 00 

where 

xexp [ - i jtl r~ 1 {E( 7j ,7)Ho( 7) 

+E(Sj,7)HI (7)}d7] (5.11) 

with 7j,SjE [tj _ I ,tj ). Ifwe use (5.5), the exponent in (5.11) 
can be replaced by 

n { IX'-X' 112 iI (tj-fj _ l ) j j- (7j ) 
j=1 tj-tj _ 1 -r~ 1 E(Sj,7)HI(x( 7),7)d7} . 

Taking limits, we have 

UCt, - T) = J r eXP[iJI {~/ dx /2 
Jr(l, - n - T 2 ds 

- HI(X(S),S)} dS] II D (x(s») . 
I>s> - T 

(5.12) 

It is clear that our conditions on the family HI (x,s) are suffi­
ciently general to cover most cases of interest in nonrelativis­
tic quantum theory. We can now write (5.12) in the form 
originally envisioned by Feynman, namely, 

U(t, - T) = ( exp[i JI L (X(S),X(S),S)dS] 
J"'(I. - n - T 

XII D(x(s»), 
s 

where xes) = dx/ds and 

L (x(s),x(s),s) = ~/ dx /2 _ HI(x(s),s) 
2 ds 

denotes the Lagrangian. 
We now generalize the representation (5.12) by consid­

ering more general choices for the operator Ho( 7). For these 
operators we choose the class of hypo elliptic pseudodifferen­
tial operators studied by Shishmarev. \0 In this way, we are 
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able to derive a representation for U(t, - T) analogous to 
(5.12) which will include cases useful for studies in relativ­
istic quantum mechanics such as, e.g., perturbations of the 
square root operator studied earlier. 

LetH(x,p) denoteak xkmatrixoperator [Hij(x,p)], 
i,j = 1,2, ... ,k, whose components are pseudodifferential op­
erators with symbols hij (x,1/ )EC 00 (]RN X ]RN) and we have, 
for any multi-indices a and {3, 

Ih ~~~) (x,1/) I <CaP (1 + 11/I)m -,; lal + I>IP I , 

where 

h~~~) (x,1/) =aapphij(x,1/) 

(5.13 ) 

with a l = a la1/I' and PI = (l/i)(a lax l ). The multi-in­
dices are defined in the usual manner by a = (a I"" ,aN) for 
integers a j ;;;.0, and la I = };f"~ I a j , with similar definitions 
for {3. The notation for derivatives is aa = af'" ·a~N and 
pp = It,· . ·lJ:. Here, m, {3, and {j are real numbers satisfying 
O<{j <S. Equation (5.13) states that each hij (x,1/) belongs 
to the symbol class3

? S 21> . 
Leth(x,1/) = [hij(x,1/)] be the matrix-valued symbol 

for H(x,p), and letA I (x,1/), ... ,Adx,1/) denote its eigenval­
ues. If 1'1 denotes a norm in the space of k X k matrices, we 
suppose that the following conditions are satisfied by 
h(x,1/): For 11/1> Co > 0 and XE]RN we have 

(1) Ih ~.B; (x,1/) I <CaP Ih(x,1/) I (1 + 11/1) -,; lal +l>IPI 

(hypoellipticity) , 

(2) Ao(X,1/) = max ReAj (x,1/) <0, 
I<j<k 

(3) Ih(x,1/) I =0((1 + 11/1)(,;-I»/(2k-E») , €>O. 
IAo(X,1/) I 
We assume that H(x,p) is a self-adjoint generator of a 

unitary group, so that 

U(t,O)¢o(x) = exp[ - itH(x,p) ]¢o(x) = ¢(x,t) 

solves the Cauchy problem 

i a¢ = H(x,p)¢,¢(x,o) = ¢o(x) . 
at 

(5.14 ) 

Definition 5.1: We say that Q(x,t,1/,O) is asymbolfor the 
Cauchy problem (5.14) if ¢(x,t) may be represented as 

¢(x,t) = (21T) -N/2 r ei(X,TilQ(x,t,1/,o)¢o(1/)d1/. (5.15) 
JRN 

It suffices to assume that ¢o belongs to the Schwartz 
space y (]RN), which is contained in the domain of H(x,p), 
in order that (5.15) makes sense. 

Following Shishmarev,1O and using the theory of Four­
ier integral operators, we define an operator-valued kernel 
for U(t,O) by 

K(x,t; y,O) = (21T) - N /2 r ei(X - y;rilQ(x,t,1/,O)d1/, 
JRN 

so that 

U(t,O)¢o(x) = ¢(x,t) = r K(x,t;y,O)¢o( y) dy. (5.16) 
JRN 

1467 

The following results are due to Shishmarev. lo 

Theorem 5.5: Suppose H (x,p) is a self-adjoint generator 
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of a strongly continuous unitary group with a domain which 
is dense in L 2(]RN) and contains y(]RN), such that condi­
tions (1 )-( 3) are satisfied. Then there exists precisely one 
symbol Q(x,t,1/,O) for the Cauchy problem (5.14). 

Theorem 5.6: Suppose one replaces condition (3) in 
Theorem 5.5 by the condition 

(3') Ih(x,1/) I = 0((1 + 11/i)(,;-I»/(3k-I-E») , 
IAo(X,1/) I 

€ > 0 , 11/1 > Co . 

Then the symbol Q(x,t,1/,O) of the Cauchy problem (5.14) 
has the following asymptotic behavior as t ..... O: 

Q(x,t,1/,O) = exp[ - ith(x,1/)] + 0(1) , 

uniformly for X,1/E]RN. 
Now, using Theorem 5.6 we see that under the strength­

ened condition (3') the kernel K(x,t; y,O) satisfies 

K(x,t;y,O) = r exp[i{(x - y,1/) - th(x'1/)}]~ JRN (21T)N 

+ r exp[i(x-y'1/)]~ 0(1). JRN (21T)N 

We now apply the results discussed earlier in this section 
to construct the path integral associated with H(x,p). The 
group property of U(t,O) insures thatK has the reproducing 
property expressed by the Chapman-Kolmogorov equation. 
In our time-ordered version, we obtain 

K,.(x,t;y,O) = r exp[i{(x-y,1/) -th,.(x,1/)}] JRN(,.) 

x~+o(1). 
(21T)N 

This representation leads to the Feynman phase space ver­
sion of the path integral. 

We can now obtain more general path integrals than 
(5.12) by replacing (5.5) by (5.16). It follows from Theo­
rems 5.4-5.6 that path integrals exist which are generaliza­
tions of (5.12). These new path integrals correspond, of 
course, to Hamiltonian operators which are perturbations of 
the operators described in Theorems 5.5 and 5.6, rather than 
to Hamiltonians which are perturbations of Laplacians. 
These path integrals constitute a very large class which con­
tain most integrals of interest in mathematical physics. 

VI. PERTURBATION EXPANSIONS 

In this section we discuss the Feynman-Dyson operator 
calculus for U(t, - T). It is shown that the corresponding 
perturbation expansions do not converge in general, but are 
"asymptotic in the sense of Poincare" in the sense used in the 
theory of semigroups. liOn the other hand, if we assume that 
the semigroups possess certain holomorphy properties, then 
the perturbation series converge. Previous investigations of 
these perturbation expansions have been confined to the in­
teraction representation in the framework of nonrelativistic 
scattering by time-dependent potentials38 and external field 
problems in quantum field theory.39 

Our results of this section pertaining to the asymptotic 
nature of these perturbation expansions affirms a well-

T. L. Gill and W. W. Zachary 1467 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Mon, 24 Mar 2014 17:01:03



known conjecture of Dyson 12 made in the context of the 
special case of the renormalized perturbation expansions in 
quantum electrodynamics on the basis of a simple physical 
argument. Although presently, many people believe quan­
tum electrodynamics should be formulated in a Hilbert 
space with an indefinite metric (see, e.g., Ref. 40 and the 
works cited therein), Dyson made no such assumptions. In 
our concluding remarks to this section, we make explicit our 
basic assumptions and argue that they certainly cover condi­
tions that physicists believe QED should satisfy. 

9>nsider the infinite tensor product Hilbert space 
V = ® seJ JY(s) of Sec. II, where J = [ - T,T], 
JY(s) = JY for each sEJ, and JY denotes a fixed abstract 
separable Hilbert space. For a family {H(t): tEJ} of densely 
defined strongly continuous self-adjoint operators on JY, 
the corresponding time-ordered family {H(t): tEJ} is de­
fined on Vby (2.4). Let U(t, - T) denote the corresponding 
time-evolution operator whose existence is guaranteed by 
Theorem 3.2. 

Let 

Q(t, - T) = - i J~ T H(s)ds 

denote the time-ordered integral of the family { - iH (t) : 
tEJ}. Then the closure of Q(t, - T), which we will also de­
note by Q(t, - T), generates the strongly c-continuous uni­
tarygroup U(t, - T) = exp[Q(t, - T)] on V. We also have 
the following. 

Theorem 6.1: Suppose ¢JED (HN(S») for - T<s<t. 
Then U(t, - T)¢J can be written in the form 

N-I 1 
U(t, - T)t/J = L -(Q(t, - T»)k¢J + RN(t, - T)¢J, 

k=O k! 

(6.1 ) 

with the following representations for the remainder term: 

RN (t, - T)¢J = f dvO - V)N-I exp[vQ(t, - T)] 

X (Q(t, - T) )N ¢J 
(N-l)! ' 

( 6.2) 

and 

I
t IT, 

RN(t, - T)¢J = (- i)N _ T dTN'" _ T d71 

XH(7N)"'H(71 )U(71, - T)¢J. (6.3 ) 

Proof' It follows from a result of Hille and Phillips (Ref. 
11, p. 354) that (6.1) holds with the remainder term given 
by (6.2). The equality of the latter with (6.3) is a conse­
quence of the following result, which establishes a Fubini­
type theorem for the Feynman-Dyson operator calculus. 

Lemma 6.1: For any N = 1,2, ... , we have 

-!'[It 

H( 7)d7]N 
N. -T 

It ITN IT' = d7N d7N_ I '" d71 H(7N )···H(71)· 

-T -T -T 

Proof: Recall that the bounded operators 

H z (7) = [exp(zH(7»)-I]lz, z>o, 
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convergeasz!OtoH(7) onD(H( 7») uniformly in 70n com­
pact sets. We can therefore, without loss in generality, as­
sume that H ( 7) is bounded for each 7. The proof can then be 
completed by a bounded operator version of the usual inte­
gration by parts procedure for functions. 

In the remainder of this section we discuss the problem 
of approximating the various terms in the expansion (6.1). 
For this purpose we use the form (6.2) for the remainder 
term. 

Using the fact that Q(t, - T) generates the strongly c­
continuous unitary group U(t, - T), we find from the the­
ory of semi groups 11,41 that 

P
z 
(t, - T) = (exp[zQ(t, - T)] - I)/z, z>O, 

convergestoQ(t, - T) onD(Q(t, - T»)aszW. More gener­
ally, we have the following. 

Lemma 6.2: Fix some re{1,2, ... } and take 
lED ({Q(t, - T)}'). Then 

s-lim {Pz (t, - T) YI = {Q(t, - T) Y I· 
z10 

Proof: From p. 99 of Ref. 41 we have 

(P~ - Q')¢J 

=~ i (-1),-jl(~) 
r. j= I J 

X{~[eiZQ¢J- 'il (jZ;k Qk¢J] -Q'¢J}, 
(JZ) k=O k. 

so that 

I/(P; - Q')¢JII< sup II(euQ -I)Q't/JII, 
O<u<rz 

from which the proof readily follows. 
Let us now define the bounded operators 

Uz (t, - T) = exp[ Pz (t, - T)] 

N - I [Pz (t, - T) ] k 

= L +R~, 
k=O k! 

where 

R ~(t, - T) = f dv(l - V)N-I exp[vPz(t, - T)] 

[ Pz (t, - T) ] N 
X...!:..--"-------..:!-

(N - 1)! 
(6.4 ) 

The boundedness of these operators follows from the esti­
mates, 

I/{Pz(t, - T)}'II«2!z)', r= 1,2, ... , (6.5) 

which are, in turn, consequences of the fact that Q( t, - T) 
generates a contractive semigroup. 

Now we have the following Theorem. 
Theorem 6.2: 

(a) s-lim Uz (t, - T) = U(t, - T) , 
Z10 

(b) s-lim R ~(t, - T)¢J 
z10 
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Proo/" (a) follows from the fact that U(t, - T) is a 
strongly c-continuous unitary group on V and Hille's first 
exponential formula (see, e.g., Ref. 41, Theorem 1.2.2). 

To prove (b) we write, using (6.2) and (6.4), 

(R _Rz )A.= (dV(l-V)N-l [eVQQN_eVPzpN]A. 
N N 'f' Jo (N _ I)! z 'f' 

so that 

+ lIeVPZ(QN - P:)¢II] . (6.6) 

For the first term on the right-hand side of (6.6) we use the 
fact that, by Theorem 1.2.2 of Ref. 41, 

II (evQ - eVPZ)QN¢II--.O as ztO, 

for ¢ED(QN) uniformly with respect to vE[O,l]. The van­
ishing of the remaining term in (6.6) as z!O follows from 
Lemma 6.2 coupled with the estimate 

Ilexp[vPz(t, - T)]11<1, (6.7) 

which in turn follows from Hille's first exponential formula 
and the fact that U(t, - T) is unitary. II 

We see from (6.4) that R ~ is a bounded operator, and 
we find with the help of ( 6.5) and (6.7), 

IIR ~II« liN!) (2!Z)N. 

Now, using this estimate and Theorem 6.2, we obtain an 
estimate for the remainder term of the perturbation series: 

IIRN¢II<IIR~¢II + II(R N -R~)¢II 

(6.8 ) 

where, for N fixed and given € > 0, we choose Zo> ° suffi­
ciently small that 

II(RN-R~)¢II<€, ¢ED(QN) , 

for z <zoo However, it does not follow from the estimate 
( 6. 8) that R N¢ --> ° as N --. 00 because Zo cannot be chosen 
independently of N. Thus the perturbation series does not 
converge. 

It does follow from the above results, however, that the 
perturbation expansion is "asymptotic in the sense of Poin­
care." Compare the definition of this concept on p. 487 of 
Ref. 11 with Theorem 2.2.13 of Ref. 41. 

We can use techniques similar to those discussed in the 
present section to obtain results for the perturbation series 
for the scattering operator, since limT _ 00 U). [T,t ] 
=U[oo,t] and limT_ooU).[t,-T]=U[t,-oo]; 

S[ 00, - 00] = U[ oo,t] U[t, - 00]. 
We now make a few remarks concerning the conver­

gence of the perturbation expansions when the correspond­
ing semigroup is holomorphic. The semigroup that we have 
been considering is U(t, - T) = exp{Q(t, - T)}, which we 
now rewrite in the form 

U(t, - T) = exp[ 1"{Q(t, - T)/r}] 

in terms ofa parameter 1". We say that U(t, - T) is holomor-
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phic if, as a function of 1", it can be continued into a neighbor­
hood of unity in the complex 1"-plane (compare with Ref. 32, 
p. 254). It then follows from the general theory of semi­
groups that the perturbation series (6.1) converges. The 
proof is similar to that of Theorem 1.1.11 in Ref. 41. 

In conclusion, it is important to note that our only as­
sumptions are (1 ) H (1) = S R H (t,x) dx is the generator of a 
unitary group on 3Y' for each t [where H(t,x) is the field 
energy density on ]Rn]; (2) the set of operators {H(n ItE.!} is 
strongly continuous with common dense domain; and (3) 
3Y'is a separable Hilbert space. It could be argued that the 
assumption of a common dense domain for the Hamilto­
nians is too strong for any formulation of QED; however, 
this assumption is not necessary for our theory to apply. This 
will be taken up at a later time when we consider applications 
to nonlinear formulations. 

VII. CONCLUDING REMARKS 

In this paper we have used an algebraic approach to 
time-ordered operators based upon von Neumann's infinite 
tensor product Hilbert spaces to define path integrals which 
appear to include most cases of interest in mathematical 
physics. We have proved that there exists a one-to-one corre­
spondence between path integrals and semigroups which are 
integral operators defined by a kernel. The reproducing 
property of the kernel is a consequence of the semigroup 
property. 

The generality of our construction is intimately con­
nected with the fact that our tensor product Hilbert spaces 
are constructed using an abstract separable Hilbert space as 
a base. This allows application to many different physical 
problems according to different choices of this base Hilbert 
space. We will consider some of these applications in future 
work. 

We have shown that our treatment is a generalization of 
the customary approach to time-ordered operators and path 
integration by means of product integrals. Moreover, when 
Hamiltonians which are sums of two parts (in a certain well­
defined sense) are considered, our results do not depend 
upon the domains of the latter operators. 

We have also shown that our approach leads to unique 
solutions to the Cauchy problem for Schrodinger equations 
with time-dependent Hamiltonians. This is clearly of inter­
est for mathematics as well as physics, since one is concerned 
here with linear time-evolution equations. 

We have advanced the point of view that it is unnatural 
to try to force path integrals into a description by means of 
countably additive measures. The viewpoint has been ex­
pressed that the theory of integration, rather than measure 
theory, is the appropriate vehicle for a general formulation 
of path integration. Thus, although path integrals can be 
written in terms of countably additive measures in certain 
special cases, this is not the situation in general. 

We have also discussed perturbation expansions for 
time-evolution operators. It has been shown that these ex­
pansions generally do not converge, but are asymptotic in a 
certain well-defined sense. On the other hand, these series 
converge when the semigroups possess suitable holomorphy 
properties. It should also be noted that our approach shows 
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that the general belief expressed in Ref. 39, to the effect that 
the Dyson expansion can only hold with H(t) bounded, is 
not quite correct (see p. 283 of that reference). 
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