
Thwarting Electromagnetic Fault Injection Attack Utilizing Timing

Attack Countermeasure

Marjan Ghodrati

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Leyla Nazhandali, Chair

Patrick R. Schaumont

A. Lynn Abbott

December 15, 2017

Blacksburg, Virginia

Keywords: Electromagnetic Fault Injection, Countermeasure, Attack

Copyright 2017, Marjan Ghodrati

Thwarting Electromagnetic Fault Injection Attack Utilizing Timing

Attack Countermeasure

Marjan Ghodrati

Abstract

The extent of embedded systems role in modern life has continuously increased over the years.

Moreover, embedded systems are assuming highly critical functions with security require-

ments more than ever before. Electromagnetic fault injection (EMFI) is an efficient class

of physical attacks that can compromise the immunity of secure cryptographic algorithms.

Despite successful EMFI attacks, the effects of electromagnetic injection on a processor are

not well understood. This includes lack of solid knowledge about how EMFI affects the

circuit and deviates it from proper functionality. Also, effects of EM glitches on the global

networks of a chip such as power, clock and reset network are not known. We believe to

properly model EMFI and develop effective countermeasures, a deeper understanding of the

EM effect on a chip is needed. In this thesis, we present a bottom-up analysis of EMFI effects

on a RISC microprocessor. We study these effects at three levels: at the wire-level, at the

chip-network level, and at the gate-level considering parameters such as EM-injection loca-

tion and timing. We conclude that EMFI induces local timing errors implying current timing

attack detection and prevention techniques can be adapted to overcome EMFI. To further

validate our hypothesis, we integrate a configurable timing sensor into our microprocessor

to evaluate its effectiveness against EMFI.

Thwarting Electromagnetic Fault Injection Attack Utilizing Timing

Attack Countermeasure

Marjan Ghodrati

General Audience Abstract

In the current technology era, embedded systems play a critical role in every human’s life.

They are collecting very precise and private information of the users. So, they can become a

potential target for the attackers to steal this valuable information. As a result, the security

of these devices becomes a serious issue in this era.

Electromagnetic fault injection (EMFI) is an efficient class of physical attacks that can inject

faults to the state of the processor and deviate it from its proper functionality. Despite its

growing popularity among the attackers, limitations and capabilities of this attack are not

very well understood. Several detection techniques have been proposed so far, but most of

them are either very expensive to implement or not very effective. We believe to properly

model EMFI and develop effective countermeasures, a deeper understanding of the EM effect

on a chip is needed. In this research work, we try to perform a bottom-up analysis of EM

fault injection on a RISC microprocessor and do a comprehensive study at all wire-level,

chip-network level, and gate-level and finally propose a solution for it.

To My Happy Family

My devoted parents: Abbas Ghodrati and Narjes Ansari

My wonderful husaband: Ali Marzoughi

My best friend and lovely son: Keon Marzoughi

iv

Acknowledgments

I am glad to have an opportunity to demonstrate my gratitude to all those who supported

me since I joined Virginia Tech.

I would like to express my sincere gratitude to my advisor, Dr. Leyla Nazhandali, for

her support and encouragement during my studies. I have learned so much from her rich

knowledge, method of approaching a problem and devoted attitude toward research.

It is an honor for me to have Prof. Patrick Schaumont as a committee member. I am very

thankful to his rigorous knowledge, great ideas and gentle personality. I am sincerely grateful

to my other committee member, Dr. Lynn Abbot for inspiring me to look at the problems

that I was facing from different angles. I would never be able to discover as many aspects

of my work that I have discussed, without discussions, opinions and suggestions from the

committee members.

I would like to acknowledge my lab-mates in Secure Embedded System lab, especially those

with whom I worked in FAME project: Bilgiday Yuce, Chinmay Deshpande.

I also appreciate all other colleagues and friends outside the projects on which I have worked:

v

Conor Patrick, Yuan Yao, Archanaa Krishnan and Surabhi Gujar. It was a great fortune to

have the opportunity to learn from each other in the past two-and-a-half years, and widen

the knowledge of different areas in the vast field of hardware security.

I also would like to give special praise to my great husband for all his help and support.

Without his support and encouragement, this accomplishment would be impossible.

I am sure I have missed so many names in my appreciation.

To you all, thank you!

vi

Contents

1 Introduction 1

1.1 Fault Attack . 2

1.1.1 Electromagnetic Fault Injection . 5

1.2 Motivation . 7

1.3 Contributions . 9

1.4 Organization . 10

2 Related Work 11

3 EMFI Experimental Setup and the Target Device 15

3.1 The EMFI Setup . 15

3.1.1 Motorized XYZ table . 16

3.1.2 Inspector . 17

vii

3.1.3 VC Glitcher . 19

3.1.4 EMFI Probe . 20

3.1.5 Oscilloscope . 20

3.1.6 Target Processor . 21

3.2 Target Device . 21

3.2.1 FAME Microprocessor . 21

4 A Bottom-up Analysis of EMFI on a RISC Microprocessor 24

4.1 Wire-level effects of EM injection . 25

4.2 Chip-level Effects of EM injection . 27

4.3 Gate-level effects of EM injection . 30

4.3.1 Temporal argument: Effect of the timing of the injection 31

4.3.2 Spatial argument: Effect of the attack location relative to the clock tree 32

5 EM Countermeasure 36

5.1 Principal of the integrated timing sensor . 36

5.2 Integration of the timing sensor into the microprocessor 38

5.2.1 Floorplanning . 39

viii

5.2.2 Powerplanning . 40

5.2.3 Placement . 41

5.2.4 Clock tree synthesis . 42

5.2.5 Routing . 43

5.2.6 Chip finishing . 43

5.3 Experimental results . 46

6 Conclusion 51

APPENDICES 53

A floorplanning 53

B Powerplanning 57

C Placement 59

D Clock tree synthesis 61

E Routing 63

F Chip finishing 64

ix

Bibliography 67

x

List of Figures

3.1 Picture of our experimental setup. 16

3.2 Controlling the XYZ table . 18

3.3 Perturbation window . 19

3.4 FAME microprocessor . 22

4.1 Effect of EM glitch on a pin. (a) powered-down circuit (b) powered-up circuit 26

4.2 Effect of glitch intensity on the EM perturbation. (a)30%, (b)40%, (c)60%,

(d)70% . 27

4.3 Effect of EM injection on the clock signal. Two plots show injecting during

(a) high phase, and (b) low phase of the clock. 28

4.4 Effect of the EM injection on top of the reset pin 29

4.5 Glitch offset effect on clock. (a) offset = 0ns, (b) offset = 10ns, (c) offset =

20ns, (d) offset = 25ns, (e) offset = 30ns, (f) offset = 40ns 32

xi

4.6 Clock tree, observable FFs and two injection points on the layout of the processor 33

4.7 The trigger signal which is used to capture the pipeline registers’ values . . . 34

4.8 Faulty FFs on the layout. (a) injection point on the root of clock tree, (b)

injection point on the lower levels of clock tree 35

5.1 Timing sensor structure [29] . 37

5.2 Design flow . 38

5.3 Layout of the chip with the timing sensor highlighted on it 45

5.4 detected vs not detected cases. (a) is detected by the sensor, (b) is not de-

tected by the sensor . 47

5.5 (a) injection point on the root of the clock tree which is always detected by

the sensor, (b) injection point on the lower levels of the clock tree which is

always remained as undetected. 48

5.6 Fault injection ratio and detection ratio . 49

xii

Chapter 1

Introduction

The extent of embedded systems’ role in modern life has continuously increased over the

years. Moreover, embedded systems are assuming highly critical functions with security

requirements more than ever before. Physical attacks can compromise the effectiveness of

the most secure cryptographic algorithms by manipulating or just observing the hardware

that implements them. There are two types of physical attacks, side-channel attacks, and

fault attacks. Unlike side-channel attacks which are passive, fault attacks are active. In

these attacks, the attacker manipulates the working conditions of the circuit to the point

that it deviates from its correct functionality [11] [21]. This can result in either bypassing

the security checks or creating new side-channels that help uncover the cryptographic keys.

The focus of this research is on the second category (fault attacks) which has gained a

lot of attention recent years. In section 1.1, different types of fault attacks are discussed.

Subsection 1.1.1 gives an overview to Electromagnetic current induction and talks about

1

Marjan Ghodrati Chapter 1. Introduction 2

how it can turn into an attack. Section 1.2 presents the motivation behind this research. We

provide the contribution of this work and organization of the thesis in section 1.3 and 1.4

respectively.

1.1 Fault Attack

Fault injection is the process of deliberately changing the operational condition of a device to

deviate it from its proper functionality. So, fault injection can lead a vulnerable computing

device to a state that leaks the secure information and bypass security [20]. There are

different types of fault attacks. Below, some of the most common ones are discussed.

• Clock glitching: Clock glitching is a fault injection technique that relies on modifi-

cation of the processors clock signal [8]. By using this method, the attacker increases

the clock frequency of a digital circuit for a short period. So, if the clock frequency

of the circuit fall below the critical path of it, different kind of faults can be injected

depends on when the clock line of the processor is manipulated [9]. An instruction

can be changed or skipped, a corrupted data might be loaded from memory, or data

can be stored wrongly in a memory address [1] [10]. Clock glitching is one of the sim-

plest methods of fault injection. That is why it is broadly using to break the security

of microprocessors. However, there are very promising and effective countermeasures

available for this type of fault attacks.

• Voltage glitching: Voltage glitching or power glitching is a common method of fault

Marjan Ghodrati Chapter 1. Introduction 3

injection that the attacker increases or decreases the voltage of a target device above

or below a threshold for a fixed period of time [11]. Also, inserting transients into the

power supply lines known as spikes may lead to faulty executions with controllable

timing accuracy [28] [31].

• Laser-based fault injection: In this method of fault injection, the attacker uses

laser beams to induce faults at precise locations [27] [8]. To implement this attack,

the chip should be decapsulated to allow the light from the laser to reach the surface

of the chip. This light can switch on or off each transistor of the processor, and as a

result, change the behavior of it.

• Micro-probing: By placing very tiny needles called probes, the attacker can measure

or overwrite a signal permanently or at a specific time [25]. So in this case, the

chip should be depackaged until the attacker gets access to the surface to observe or

manipulate the integrated circuit.

• Temperature: Heating or cooling a crypto-device may induce an error into a crypto-

device and alter its behavior [28] [26]. It is proven by [17] that heating a circuit changes

its behavior. In this paper [17], the author observed some flip bits in memory while it

was heated to 100C.

• Electromagnetic fault injection: Electromagnetic fault injection which is the topic

of this research, is a method of fault injection which is based on electromagnetic in-

duction. In this method, the attacker places a metal coil close to the surface of the

Marjan Ghodrati Chapter 1. Introduction 4

chip, and creates a magnetic field around it. As a result, currents can be induced

into the processor. Since each processor consists of millions of transistors, the induced

currents can change the state of these transistors and as a result change the behavior

of the processor [14] [19] [18]. This method does not need decapsulation, which is a

complicated process with the risk of damaging the target device.

In principle, there are three kinds of fault attacks, non-invasive, semi-invasive, and in-

vasive [25]. The faults that do not need any modification to the chip are categorized in the

first group, non-invasive, such as clock glitching, voltage glitching and heating. Fault attacks

that require the chip to be decapsulated, but do not modify the circuit are categorized in the

second group, semi-invasive such as laser fault injection. Finally, the faults that need mod-

ification to the chip such as cutting a wire on the circuit are classified as invasive attacks

[25]. Micro-probing is an example of the third category. Electromagnetic fault injection,

which is the focus of this thesis, is a non-invasive type of attacks. Since, it does not require

decapsulation or any modification of the device.

Additionally, faults can have different timely behavior [18]:

• Permanent faults are the faults that damage the chip or a component permanently

[18].

• Temporary faults are recoverable. They only affect the circuit behavior for a limited

time like a single transistor connectivity [18].

• Transient faults are similar to temporary faults but the fault may put the system

Marjan Ghodrati Chapter 1. Introduction 5

in an erroneous state. As a result, the system may need a reboot to go back to the

normal operation [18].

Based on all the experiments that have been done in this research, the only effects of EMFI

could be either temporary or transient.

1.1.1 Electromagnetic Fault Injection

Electromagnetic fault injection is referred to perturbations that are based on electromagnetic

induction and injected to the target system/processor to interfere in its operation. The aim

of injecting this type of fault is to stop the device from operating properly. To be more

specific, by introducing a parasitic to the processor while it is in the middle of calculations,

an error is introduced to the output. In order to inject an electromagnetic fault, first, a

voltage signal is generated and fed to a probe. The voltage V creates current I in the probe,

leading to a magnetic field B according to Maxwell-Faraday equations. The intensity of the

magnetic field B in a ring-shaped conductor with radius R and current I in vacuum can be

calculated according to equations (1.1).

B := (µ0µrI)/2R (1.1)

[10] has formulated the magnetic filed B of a one loop coil as (1.2):

B := (µrIb
2)/2(b2 + z2)(3/2) (1.2)

In the above equation, µr is a constant representing permeability of the material that the

Marjan Ghodrati Chapter 1. Introduction 6

magnetic field is passing through. For vacuum, this constant is equal to unity. However, for

other materials, it has different (higher) magnitudes. b and z parameters are the radius of

the coil and the distance from the plane of the coil respectively. Then the magnetic flux can

be calculated by equation (1.3).

φB := BAcos(θ) (1.3)

So, if a current pulse is sent through the coil, the current I of the coil suddenly changes [28].

Changing the current I, will change the electromagnetic field B which in-turn will affect the

magnetic flux φB of the coil. Once the intensity of the magnetic field was calculated from

(1.2), The Maxwell-Faraday equation (1.4) can be used to link the voltage E induced across

a conductor that is subject to the field.∫
E.dl = −d/dt

∫ ∫
B.dS (1.4)

According to the equation above, variations in the magnetic field intensity can introduce a

voltage in a conductor. Also, moving a conductor in a constant magnetic field can introduce

a voltage across it. The method used for injection of EM fault into processors and systems

is to apply an alternating voltage V (resulting in an alternating current I) to a conductor.

Accordingly, the resulting alternating magnetic field will induce a voltage to the system

under attack, interfering with its operation. So according to equations (1.2) and (1.3) the

injected magnetic flux is affected by:

• The angle between the target device and the coil (setting the angle to 90, makes the

cos(θ) one and generates a stronger magnetic flux)

Marjan Ghodrati Chapter 1. Introduction 7

• The distance between the coil and the target device (smaller distance will lead to a

more significant magnetic flux)

• The current amplitude that runs through the coil (more current will result in a bigger

magnetic flux)

• The area of the coil (bigger probe will create a bigger magnetic flux)

• The magnetic permeability of the coils core (a material with higher magnetic perme-

ability will create a stronger magnetic flux)

So we should consider the above-mentioned parameters while we are injecting electromagnetic

faults to implement a successful attack.

1.2 Motivation

As discussed in the previous section, there are several techniques for fault injection such

as clock glitching, voltage glitching, optical fault injection, temperate, microprobing and

electromagnetic fault injection that can compromise the immunity of secure cryptographic

algorithms. These methods can affect the processor in different ways, like skipping an in-

struction, bit set, bit reset and so on.

The most common forms of fault attacks are clock and voltage glitching. However, designers

have proposed several countermeasures against these specific types of fault attacks which

have rendered them unusable. For another popular form of fault attack, optical injection,

Marjan Ghodrati Chapter 1. Introduction 8

the attacker needs to decapsulate the chip, which is a complicated process with the risk of

damaging the target device. Moreover, it is possible to employ countermeasures such as light

sensors to detect such attacks. Therefore, there has been an increasing interest in EMFI in

the past several years as there is no need to decapsulate the chip. Furthermore, with EMFI,

the attackers have a broad range of options such as radiation intensity as well as offset and

duration of the radiation at their disposal. These options allow the adversaries to fine tune

their attack to quickly achieve their desired faulty behavior.

Clearly, EMFI is a method of fault injection with several advantages over the other methods

which is able to inject faults to the state of the processor and deviate it from its proper

operation. It has been shown by many publications that EMFI is able to break the cryp-

tographic algorithms such as AES and RSA. In [13], the authors used EMFI to break AES

code on an 8-bit microcontroller and extracted the secure key.

Despite its growing popularity, limitations and capabilities of this attack are not very well

understood. Several detection techniques have been proposed, but most of them are either

very expensive to implement or not very effective. We believe to properly model EMFI and

develop effective countermeasures, a deeper understanding of the EM effect on a chip is

needed. In this research work, we try to perform a bottom-up analysis of EM fault injection

on a RISC microprocessor and do a comprehensive study at all wire-level, chip-network level,

and gate-level and finally propose a solution for it.

Marjan Ghodrati Chapter 1. Introduction 9

1.3 Contributions

In this research, a total of three goals is being pursued. First, it is desired to explore

the effects of EMFI on a microprocessor at different levels to have a better knowledge of

what is occurring while the chip is under EM fault attack. Second, this research is trying

to optimize the parameters that affect the EMFI to have the highest success rate of fault

injection. Finally, based on results and the conclusion, an effort is made to find an effective

and low-cost countermeasure for EM fault attack. The main research questions of this thesis

are as follows:

1. What are the effects of EMFI at wire-level on a 32-bit microprocessor?

2. What are the effects of EMFI at chip-level on a 32-bit microprocessor?

3. What are the effects of EMFI at gate-level on a 32-bit microprocessor?

4. How to optimize the parameters that are affecting EMFI to have the highest success

rate of fault injection?

5. Is the common timing fault detector (glitch detector) effective as a countermeasure

against EMFI?

Currently, there is little information available about the effects of EMFI at different levels

on a microprocessor. Without knowing the effects of EMFI on a microprocessor, it would

not be possible to propose an efficient and effective countermeasure against this type of fault

Marjan Ghodrati Chapter 1. Introduction 10

attack. So after answering the first three questions, we can provide an answer to the final

question.

1.4 Organization

This chapter provides an introduction to the fault attacks and more specifically Electromag-

netic fault injection. It also presents the motivation behind this work as well as research

goals. The rest of this thesis is organized as follows:

Chapter 2: provides a brief look at other related works.

Chapter 3: introduces the target device which is used in this research as well as the EMFI

setup.

Chapter 4: provides a bottom-up analysis of EMFI on a RISC microprocessor

Chapter 5: proposes a possible solution to protect embedded systems against EMFI

Chapter 6: Finally, in this chapter, we summarize the research work and warp it up with a

conclusion and future works.

Chapter 2

Related Work

Electromagnetic fault injection was introduced by [24] in 2002. According to [24], an external

electromagnetic field can induce eddy currents on the surface of the chip, and as a result,

inject faults into the transistors and memory cells of the processor. They showed this induced

fault caused some flip bits in RAM and EPROM memory cells. Later in 2007, reference

[19] used high-frequency spark gaps instead of magnetic field to disturb a cryptographic

computation. The induced spark-gaps change the flowing current suddenly and lead to a

powerful electromagnetic burst and radiation. They used this method to break the CRT-

based RSA algorithm which is using very commonly in cryptographic systems. Finally, they

could extract the secure key successfully. Dehbaoui et al. in [14] used EM pulses to implement

a successful attack on a software implementation of AES on an 8-bit microcontroller and a

hardware AES embedded in an FPGA. The authors were able to inject faults into every byte

of AES. They were also able to inject single or multiple faults to the hardware AES on the

11

Marjan Ghodrati Chapter 2. Related Work 12

FPGA. Based on their observation, they draw a hypothesis that EM pulses induce timing

violations. Then they added a timing sensor on the FPGA that had AES on it. During their

experiments, they noted the sensor was only able to detect 10% of induced faults. A year

later, Moro et al. in [22] explored the impact of an electromagnetic glitch fault injection on

a state-of-the-art microcontroller and built an associated register-transfer level fault model.

According to this paper, EM pulses can affect both data flow and program flow. So, an

attacker can change one instruction to another one, or change the value of a piece of data

loaded from memory. They also showed some instructions or registers are more vulnerable

than the others, but due to lack of access to the architecture of the microprocessor, their

fault model is not comprehensive. The authors in [23] created an experimental setup for

performing fault injection and were able to provide the preliminary nature of the induced

fault model. They experimentally demonstrated that the faults were very local and produced

a combination of bit-set/reset faults.

Reference [30] explored the efficiency of a glitch detector against EMFI. The detector was a

delay based timing sensor which was first designed to detect clock or power glitches. This

method identifies setup time violations by using fixed guarding delay which is set slightly

higher than critical path of the design. Hence, voltage disturbances will be detected, and

an alarm will be issued. They proved one glitch detector is not enough to detect a good

percentage of electromagnetic fault injections.Since, EM is more local than global. They also

investigated the efficiency of five glitch detector against EMFI. It is reported that only 32%

of faults could be detected by all five sensors. So as mentioned in this paper, the number

Marjan Ghodrati Chapter 2. Related Work 13

of detectors to be used to get a high detection ratio, as well as their optimal placement on

the IC surface, remained open problems. Wei et al. in [21] proposed a PLL based sensor

composed of a watchdog ring oscillator (RO) and a phase-locked-loop (PLL) to detect the

EMFI-induced phase shift in a watchdog ring oscillator. This detector compares two clock

input timings, one is an external reference clock, and the other one is a feedback internal

core clock. In case of any phase or frequency difference between two clock sources, PLL

may enter an unlocked state and raise the alarm. It is mentioned in this paper, that by

distributing the feedback clock path all over the security sensitive cryptographic core, the

EMFI attack can be easily captured as an unlock event in PLL loop. The experiments

show a very good detection ratio with significant power security margin. However, the

proposed countermeasure is based on PLL module which is not available in low power-

constrained devices due to very high power consumption. Authors in [12] proposed a novel

EMFI detector which is based on Hogge Phase-Detector. They implemented a Hogge Phase

Detector to detect the ring oscillator disturbance which is induced by EMFI. They reported

93.15% detection ratio with a failure of 0.0069. However, the shortcoming of this paper is

considering and detecting the injection attempts which even does not inject any faults to the

state of the processor. In their experiments, they vary the glitch intensity in a range of 40%

to 100% randomly. So some of these injections (usually below 75%) are not powerful enough

to corrupt the operation of the processor, and by raising the alarm for all these disturbances,

the performance will be sacrificed. Chinmay et al. in [16] proposed an EMFI detector based

on two flip-flops (FFs), main and shadow ones. These two FFs always have complementary

Marjan Ghodrati Chapter 2. Related Work 14

values. If due to EMFI injection, either main FF or shadow FF gets affected, the injected

fault would be detected by XNORing the output of these two registers. The drawback of

this work is the very high overhead. Since for a full detection, all the flip-flops should be

doubled.

Chapter 3

EMFI Experimental Setup and the

Target Device

This Chapter gives an overview of the setup which is used to implement and induce EM

faults, and the target device that is used as the device under test for doing experiments in

this research.

3.1 The EMFI Setup

The EMFI setup is shown in figure 3.1. It consists of a computer which has the inspector on

it, a glitch controller (VC glitcher), the EMFI probe, an oscilloscope, XYZ motorized stage,

and finally the target processor. Below, each of these elements will be described briefly.

15

Marjan Ghodrati Chapter 3. EMFI Experimental Setup and the Target Device 16

Figure 3.1: Picture of our experimental setup.

3.1.1 Motorized XYZ table

The motorized XYZ stage which is shown in figure 3.1 is an instrument that the EMFI

probe can be placed on it, and it will provide the fully automated scan over the chip surface.

The XYZ stage is movable in all directions automatically and can be programmed by the

inspector. Small step size and little repositioning error of the XYZ table allow profiting

from the spatial resolution provided by the EM probe [5]. So the EMFI probe can move

automatically on different locations on the surface of the chip as well as move vertically to

get closer or further from the surface of the processor by using the XYZ motorized stage.

Marjan Ghodrati Chapter 3. EMFI Experimental Setup and the Target Device 17

3.1.2 Inspector

Inspector which is developed by Riscure [4] is a software runs on the PC to control the

XYZ table, configure the attack parameters and send them to the glitch controller, and

communicate with the target processor. In the following, these features will be explained in

more details.

• Controlling the XYZ table: There is a window which is shown in figure 3.2 available

in inspector that can be used to set the location of fault injection. There are two options

available, scanning the chip or injecting fault at a single point. To scan the chip, three

points should be set as reference points, and the number of injection on both X or Y

axis should be defined

• Configuring the attack parameters: Different attack parameters can be set by

Inspector such as Glitch offset, Glitch source power, Glitch length and glitch repetition.

Figure 3.3 shows the configuration panel of the inspector which is used to set EMFI

parameters.

– Gitch offset : refers to the timing of EMFI relative to the trigger signal and can

take any values to target a specific instruction. In our setup, there is always

some delays (about 110ns) between the time trigger raises and the moment the

EMFI probe creates the glitch. To attack a specific instruction, we should always

consider this delay, and regarding this value, set the glitch offset. We will later

see that the glitch offset has a significant effect on the attack success.

Marjan Ghodrati Chapter 3. EMFI Experimental Setup and the Target Device 18

Figure 3.2: Controlling the XYZ table

– Glitch source power : refers to the intensity of the glitch, and it is a percentage

of the highest injection voltage, which is 450V. For example, an EMFI with 45V

pulse is considered at 10% intensity.

– Glitch length: is the amount of time that the EMFI probe should provide current

through coil continuously. In these experiments, we fixed it to 50ns.

– Glitch repetition: is the number of glitches the EMFI probe will generate. In our

study, we set it to one glitch.

• Communicating with the target device: The inspector communicates with the

target devices through a UART port. We have a UART module implemented on the

Marjan Ghodrati Chapter 3. EMFI Experimental Setup and the Target Device 19

Figure 3.3: Perturbation window

microprocessor. Also, there is a java module on inspector that is modified to implement

this communication. It sends a command to the target device to start the operation and

finally receives all the results from the processor. This module compares the received

results with the correct result and determines if it is faulty or not.

3.1.3 VC Glitcher

VC glitcher or glitch controller is a tool developed by Riscure to perform clock/voltage fault

injection as well as control optical pulses and EMFI [6]. It is connected to the inspector,

EMFI probe, and the target device. It receives the attack parameters from the inspector,

Marjan Ghodrati Chapter 3. EMFI Experimental Setup and the Target Device 20

and once, it receives the trigger from the target processor, it will send the attack commands

to the EMFI probe to implement an electromagnetic fault injection.

3.1.4 EMFI Probe

The EM-FI transient probe induces fast, high power, EM pulses on a user-defined location

of the chip [3]. It is connected to the VC glitcher and receives the attack parameters such as

the glitch intensity from the inspector through the VC glitcher. There are different probes

available to generate different EM field over the chip surface. The tip of two probes is single

loop metal coil with a diameter of 1.5mm, while the tip’s diameter of the other two is 4mm.

The current pulse of the 4 mm tip is weaker and longer due to the higher inductance of the

larger tip coil. However, since the loop area of 4mm tip is six times bigger than 1.5 mm tip,

the EM pulse will be stronger. For this reason, 4mm tip is suggested when targets thickness

exceeds 1.5 mm. Otherwise, 1.5 mm tip is suggested [3].

The polarity of the probes is also different. We have two red probes with positive polarity

and two black probes with negative polarity. The polarity of the tips determines the polarity

of glitch voltage induces in the target device.

3.1.5 Oscilloscope

The oscilloscope Techtronix is used to measure the trigger signals, coil current and the

perturbation.

Marjan Ghodrati Chapter 3. EMFI Experimental Setup and the Target Device 21

3.1.6 Target Processor

Target processor is placed below the EMFI probe with a less than a 2mm distance between

them. The trigger signal which should be connected to the trigger port of the VC glitcher,

is generated by the target processor. It is set during execution of the target program at a

specific instruction which is the target instruction of the attack. In next section, the target

device which is used in this research is introduced.

3.2 Target Device

In this research, FAME microprocessor which stands for Fault-attack Awareness using Mi-

croprocessor Enhancements used as the target device. The features of FAME which is a

custom-made microprocessor by our team are provided in next subsection.

3.2.1 FAME Microprocessor

The device under attack, which is shown in figure 3.4 is a microprocessor with an in-order

RISC processor implementing the SPARC-V8 instruction set. The processor is manufactured

in 180 nm TSMC process on a 5 × 5 mm2 packaged die. The processor core is based on

the open-source 32-bits LEON3-design [2]. In addition to the RISC core, the prototype

chip includes 2KB data cache and 1KB instruction cache. It also provides a 4-pin General

Purpose Input Output (GPIO) port with interrupt capability and a Universal Asynchronous

Marjan Ghodrati Chapter 3. EMFI Experimental Setup and the Target Device 22

Figure 3.4: FAME microprocessor

Receiver/Transmitter (UART) interface. The chip mounts on a 108-pin Pin Grid Array

(PGA) package, which is socketed on a custom testing board which is developed as an

extension to the SAKURA-G Board [7] and attaches to it using the standard expansion

headers. FAME microprocessor has seven pipeline stages and a maximum clock frequency of

80 MHz. A configurable delay-based timing sensor is integrated into the chip to detect faults

at the hardware level and mitigate them by an appropriate response in software. There are

three reasons why we use a custom-made processor as the target device as opposed to an

off-the-shelf microprocessor:

Knowledge of layout: We have the detailed information about the layout including the

Marjan Ghodrati Chapter 3. EMFI Experimental Setup and the Target Device 23

location of the clock network, memories, various pipeline flip-flops (FFs), etc. This helps

us explain why attacking the processor at various points on the chip results in different

outcomes.

Extra observability: We have designed our processor such that we can observe its state in

its most detailed form. All the pipeline FFs on the processor are memory-addressable and

therefore, readable using the program. Furthermore, we have the option to copy the state of

all the FFs in an identical set of shadow FFs utilizing an input signal that we control from

outside the chip. This allows us to take a snapshot of the processor’s state at any desired

time, particularly right after the EM injection.

Timing Sensor: As discussed earlier a configurable delay-based timing sensor is integrated

into the chip. To look for its efficiency against EMFI, we need a microprocessor that has at

least one timing sensor on it.

So, this target device provides all necessary requirements needed for analyzing the effect of

EMFI on a microprocessor. On the contrary to commercial processors, it is not like a black

box. That is why we can explore and understand the EMFI effects on it much better.

Chapter 4

A Bottom-up Analysis of EMFI on a

RISC Microprocessor

As discussed earlier, Electromagnetic fault injection (EMFI) is an efficient class of physical

attacks that can compromise the immunity of secure cryptographic algorithms. Despite

successful EMFI attacks, the effects of electromagnetic injection (EM) on a processor are

not well understood. In this chapter, we present a bottom-up analysis of EMFI effects on a

RISC microprocessor. We study these effects at three levels: at the wire-level, at the chip-

network level, and at the gate-level considering parameters such as EM-injection location

and timing.

24

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 25

4.1 Wire-level effects of EM injection

An EM injection affects the victim circuit in a fashion that is very similar to a transformer’s

operation. The coil on the EM probe acts as the primary winding of the transformer. The

wires inside the chip form some loops that serve as the secondary winding of the transformer.

During EM injection, a variable current flows through the coil, due to coupling some current

is generated on the wires. This, in turn, results in changes in the voltage of the wires.

Figure 4.1a shows the effect of the EM injection on one of the pins of the chip that is

not powered up. The blue waveform shows the coil current, and the red waveform is the

perturbation on the mentioned pin. When the current in the coil ramps up, the wire’s voltage

is positive while when the current goes down, its voltage is negative. Based on Faraday’s

law, the magnitude of this voltage depends on the rate that the probe’s current fluctuates.

As the probe’s current dampens, so does the voltage on the wire.

Figure 4.1b shows the same effect on one of the pins when the chip is powered up. The

observed pin is a General purpose I/O (GPIO) pin that the processor is driving it to logic

’0’. When the current increases, the pin’s voltage shoots higher to the point that it can

be considered logic ’1’. As the current in the coil decreases, the voltage drops back to the

ground.

Figures 4.2a-d show the same effect on a clock net. The injection is happening in the low

phase of the clock. The difference between the figures is the intensity of injection. While

at 30% intensity (Figures 4.2a), the difference is merely a nudge, at 70% (Figures 4.2d) a

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 26

Figure 4.1: Effect of EM glitch on a pin. (a) powered-down circuit (b) powered-up circuit

full-grown glitch is observable.

In a digital circuit, the previously observed phenomenon translates into a more specific effect:

When the net carries logic 1 (VDD), increasing the current in the coil, does not have any

impact as the voltage is capped at VDD, but decreasing of the current can lower the net’s

voltage. If the electromagnetic field is powerful enough, it can even push the net to logic 0

(GND). On the other hand, when the net carries logic 0 (GND), decreasing the coil current

does not affect the voltage, but increasing it can increase the net’s voltage, sometimes turning

the net to logic 1 (VDD). Figures 4.3a-b captures this phenomenon. In (a), the attack is

done while the clock is high and in (b), the attack is performed when the clock is low. In

(a), there is no noticeable change in the voltage while the coil’s current increases, but the

voltage drops to GND as the current decreases. In (b), the clock net is pushed to VDD as

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 27

Figure 4.2: Effect of glitch intensity on the EM perturbation. (a)30%, (b)40%, (c)60%,

(d)70%

the current increases and drops back to GND when the current decreases.

4.2 Chip-level Effects of EM injection

In the previous section, we showed the impact of injection on individual wires/pins on the

chip. During an EM injection, the electromagnetic field is the strongest right under the

probe. As we move further from the probe, the EM is reduced and so does its effect on the

wire regarding altering the voltage. Nevertheless, EM can use the global networks on the

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 28

Figure 4.3: Effect of EM injection on the clock signal. Two plots show injecting during (a)

high phase, and (b) low phase of the clock.

chip to extend its influence. In this section, we study such effects.

There are three global networks on a typical chip: power network, clock network, and reset

network. The power network is designed such that it withstands noise and other coupling

effects. It is excessively redundant to ensure there is always enough power to keep the

circuit in working condition without slowing down. Designers perform elaborate voltage

drop analysis to find weak points in the network and correct it by adding more power pins,

power straps or power rings. With such sophisticated design, it is not surprising that when

we examine power or ground pins that are relatively far from the point of attack, we cannot

observe any effect. In other words, the power network does not allow the influence of a single

affected power pin to propagate to the rest of the chip.

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 29

Figure 4.4: Effect of the EM injection on top of the reset pin

Another global network is the clock network. As for the clock, it is designed to ensure a high

speed in distributing the clock. There are numerous buffers on the clock tree to boost the

signal and allow fast transfer of the clock voltage to all corners of the chip. We expect that

this works in favor of an attacker. If an attacker affects the root of the clock tree or one of the

nodes close to the root, we expect that the malicious changes in the voltage will propagate

quickly throughout the chip. Unlike power network where we have access to many power

and ground pins around the chip, we are not able to directly observe the clock in various

locations to verify our hypothesis. Instead, we will use circumstantial clues to support this

theory, which we will present in the next section.

Finally, the reset network is used to reset all the FFs in the design to zero. A typical reset

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 30

network is not as fast as a clock network to reduce area and power consumption. On our

chip, the reset is active low and in its inactive state is driven by a high current voltage

regulator which does not allow the reset pin to deviate from high voltage. Figure 4.4 shows

the effect of the EM injection on top of the reset pin. We can see that the reset voltage does

not change to the point that causes a reset. It is possible that inside the chip, local reset

wires get affected by EM injection and induce a ”reset” on some FFs. We will consider this

possibility in the next section.

4.3 Gate-level effects of EM injection

In this section, we make an effort to explain how the EM effects at the wire/chip level

manifest themselves at the gate-level to the point that puts the microprocessor in a faulty

state. Based on the observations in the previous two sections, we can envision three scenarios

that turn the processor’s state into an erroneous state:

1: Some of the inputs of the FFs swing to the incorrect logic, and while they are in this

state, the positive edge of the clock arrives, and the FF captures this wrong value.

2: The EM injection activates the reset wire for some of the FFs, and that forces those FFs

to go to logic ’0’, which can be a wrong value for some of those FFs. Since our design uses

a synchronous reset, this can also only happen at the rising edge of the clock.

3: The EM injection creates a clock glitch. Similar to a timing attack, the FF opens its

gates and latches the values before the correct output has been calculated resulting in a

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 31

faulty state.

We think that one or more of the above situations might be at works when a fault happens.

However, we do not have access to internal wirings of the chip and cannot prove or disprove

any of the above cases by observing them. Nevertheless, we can use some indirect clues to

conclude which ones are more likely to be the source of the errors. Based on our experiments,

we believe most of the EM injection faults are caused due to glitches in the clock network.

We provide two arguments to support our claim:

4.3.1 Temporal argument: Effect of the timing of the injection

Figure 4.5 shows the clock under attack with varying offset values. The numbers on the top

left corner of each plot shows the ratio of the number of corrupted FFs to the total number

of FFs. These results are the average for several points on the chip. We can see that the

effect varies from no glitches (cases (b) and (d) with 0% faulty FFs), to one glitch (cases

(a), (c) and (d) with 44%, 13%, and 23% faulty FFs), and finally to two glitches (case (f)

with 72% faulty FFs). All of these cases can be explained by the phenomenon described in

Section 4.1. If any of scenarios 1 or 2 described earlier in this section were true, we should

only observe faults for case (f), where the attack happens shortly before the rising edge of

the clock. Nevertheless, we can see that the number of faults is non-zero for cases (a), (c),

and (e) despite the fact that the injection is not close to the rising edge. Instead, the number

of faults becomes 0 when the clock is not affected, namely cases (b) and (d). These results

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 32

Figure 4.5: Glitch offset effect on clock. (a) offset = 0ns, (b) offset = 10ns, (c) offset = 20ns,

(d) offset = 25ns, (e) offset = 30ns, (f) offset = 40ns

.

strongly suggest that the EM faults happen due to disturbances in the clock caused by EM.

4.3.2 Spatial argument: Effect of the attack location relative to

the clock tree

Figure 4.6 presents an image of our chip layout where the top levels of the clock tree and all

the FFs are highlighted. It also shows two points where we inject EM to explore the effects

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 33

Figure 4.6: Clock tree, observable FFs and two injection points on the layout of the processor

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 34

of EMFI on different locations on the clock tree. While the injection point A is very close

to the root of the clock, point B sits at much lower branches of the clock tree (level 15). As

discussed earlier, we can take a snapshot of the processor state using a trigger, which is set

one clock cycle after EM injection. The trigger is shown in figure 4.7.

Figure 4.7: The trigger signal which is used to capture the pipeline registers’ values

In our program, we read the content of these FFs and record them in a file. We create two

files, one after the attack and one for correct operation. Using some scripts, we discover all

the faulty FFs. Figure 5.5a-b shows the corrupted FFs on the layout for each of the attack

points described earlier. When we inject the EM close to the root of the tree, there are

146 affected FFs, and they are spread all over the chip whereas, for the other case, there

Marjan Ghodrati Chapter 4. A Bottom-up Analysis of EMFI on a RISC Microprocessor 35

are only 24 corrupted FFs, and they are compacted around the injection point. Based on

these results, we conclude that the clock tree is propagating the glitch effect from the higher

levels to the lower branches of the clock tree, confirming that the EM attack, in essence, is a

timing attack. We verified this observation at several other points on the chip with different

programs, and we always observe similar outcomes.

Figure 4.8: Faulty FFs on the layout. (a) injection point on the root of clock tree, (b)

injection point on the lower levels of clock tree

Chapter 5

EM Countermeasure

Based on our experimental observations and analysis, we could postulate that EMFI induces

local timing faults in a chip. To further validate our hypothesis, we integrated a configurable

timing sensor into our microprocessor. The architecture of the implemented timing sensor,

as well as details about the detection mechanism used on it, are presented in section 5.1.

Section 5.2 provides the necessary steps toward integration of the mentioned timing sensor

into a microprocessor. Finally, section 5.3 demonstrates experimental results to show the

effectiveness of the timing sensor for detecting EMFI.

5.1 Principal of the integrated timing sensor

The timing sensor which is demonstrated in figure 5.1 monitors the propagation delay in

the critical path of the circuit and raises the alarm if there are violations of the setup time

36

Marjan Ghodrati Chapter 5. EM Countermeasure 37

constraints [15].

Figure 5.1: Timing sensor structure [29]

It consists of three flip-flops, toggle, capture and dummy flip-flops. There is a specific

amount of delay before the dummy flip-flop which is less than a clock cycle. During a

normal operation, the dummy flip-flop receives the data after the mentioned delay. Finally,

the output of these two flip-flops will be XORed. Since the dummy flip-flop receives the

data after a delay but before the next clock cycle, the alarm signal which is the xor of the

two capture and dummy flip-flops will be zero. However, if a clock glitch is injected into

the state of the processor, the clock period becomes smaller. As a result, the delay value

becomes bigger than the clock period, and the dummy flip-flop receives the data in the next

clock cycle. So, the capture and dummy flip-flops will have different values, and the alarm

will be raised.

Marjan Ghodrati Chapter 5. EM Countermeasure 38

5.2 Integration of the timing sensor into the micropro-

cessor

In this section, we provide all the steps needed to integrate a timing sensor into a micropro-

cessor. The design flow which is shown in figure 5.2 consists of RTL design and synthesis

which is called front-end and place and route which is called back-end.

Figure 5.2: Design flow

Marjan Ghodrati Chapter 5. EM Countermeasure 39

In the RTL design, the timing sensor code in VHDL is combined with the processor code,

and after the RTL simulation and synthesizing, a gate-level netlist of the design is extracted

and imported to a software tool called IC Compiler. We used IC compiler from Synopsys

company to implement the back-end of the manufactured chip. Back-end flow which is

shown with the green diagrams at the right-hand side of figure 5.2 consists of floor planning,

power planning, placement, clock tree synthesis, routing, chip finishing and finally sign-off

verification. Each of the mentioned steps is explained in more details below.

5.2.1 Floorplanning

All the steps of floorplanning are as follows:

1. First, the tool environment setup and the technology libraries should be prepared. All

paths to the standard cell library, I/O pad library, bonding pad library and memory

library should be set.

2. The gate-level netlist which is extracted after synthesis, as well as the SDC (design

constrained) file should be imported to the IC Compiler.

3. The floorplan of the chip is created in this step. The core utilization, the chip boundary,

and the chip size should be specified here.

4. The gaps between I/O pads should be filled with I/O filler cells. To do so, we are using

command insert pad filler.

Marjan Ghodrati Chapter 5. EM Countermeasure 40

5. The I/O pads should be powered up. The command create pad rings makes the power

rails to go through all I/O pads.

6. Memory macros are placed at this step. We create a keep-out margin of all the memory

macros and fix their placement.

The script of floorplanning is attached in Appendix A to provide more information.

5.2.2 Powerplanning

Once the desired floorplan was created, we move on to design power networks for the whole

chip. The steps to create the power networks are as follows.

1. The power plan script starts by defining power network synthesis (PNS) constraints,

including layer constraints, power rings and straps constraints, and global constraints.

For our FAME chip, we make use of METAL 5 layer for horizontal distribution of the

straps and METAL6 layer for vertical distribution of the straps.

2. The no routing over macros constraint is enabled making sure that we do not route

power lines over the memory macros.

3. We define constraints on the power and ground rings that are automatically created

around plan groups and macros.

4. Then we synthesize power network based on the specified constraints.

Marjan Ghodrati Chapter 5. EM Countermeasure 41

5. The power network (power/ground wires and vias) based on power network synthesis

(PNS) results are committed.

The script for power planning is attached in Appendix B.

5.2.3 Placement

In placement process, the tool will place all the cells at the appropriate places and try to

optimize the area, power, etc. The steps necessary for the placement are mentioned below.

1. The placement process starts by connecting the pins in instances to power and ground

targets. Next, it hooks up power pins on all macros and standard cells to the power

and ground rails.

2. The set pnet options command prevents standard cells to be placed under PNS layer

to avoid power strap violations.

3. We place hard macros and standard cells virtually using timing-driven placement mode

while preventing the grouping of cells within the same hierarchal block.

4. This is followed by global routing on the design using Zroute and timing optimization

on the design.

5. We perform the actual placement while enabling area recovery for the cells not on the

critical timing paths. The use of congestion removal algorithms for improved routability

and scan chain optimization during placement is ensured.

Marjan Ghodrati Chapter 5. EM Countermeasure 42

6. An incremental logic optimization will be performed to optimize power, area as well

as fix the design rule violations.

The script for placement is attached in Appendix C.

5.2.4 Clock tree synthesis

Clock Tree Synthesis (CTS) is a process which makes sure that the clock gets distributed

evenly to all sequential elements in a design. We present the steps of CTS in a microprocessor

below.

1. The clock network synthesis starts by setting the target skew/latency constraints for

clock trees. For our chip, the target skew and clock uncertainty are fixed to 0.1ns.

2. We force the CTS to use clock-double-spacing rules on all clock route segments, except

for the first level sinks. We also restricted the clock routes to metal layers 3 to 5.

3. The set clock tree references command makes use of specific buffers, inverters to per-

form CTS. By using this, we can use only buffers and inverters that have balanced

rising and falling time.

4. We also set the clock delay calculator to Arnoldi. This makes the tool to use the more

accurate Arnoldi-based delay models on clock nets.

5. We perform clock tree synthesis and optimize it to improve the area and scan chain

routing.

Marjan Ghodrati Chapter 5. EM Countermeasure 43

6. We make sure that all the setup and hold violations are fixed.

The script for clock tree synthesis is attached in Appendix D.

5.2.5 Routing

The routing of the chip consists of four main steps presented below.

1. The routing process starts by setting the Zroute as the tool to route our chip. The

medium effort level is used to optimize wire length and via counts.

2. We set the options common to all phases of Zroute routing. For our ASIC, the auto-

matic redundant via insertion after each detail routing step is set to medium.

3. We perform one-step global routing, track assignment, and detail routing.

4. route zrt eco command is used to perform ECO routing. It connects the open nets as

well as fixed the DRC violations.

The script for routing is attached in Appendix E.

5.2.6 Chip finishing

Chip finishing is the process of preparing the final layout for fabrication. This consists of

several steps:

Marjan Ghodrati Chapter 5. EM Countermeasure 44

1. We check the design for any form of violation such as timing, DRC, LVS, antenna

errors. In case we observe some errors, we need to fix them before proceeding further.

The commands used to report and fix these errors are presented in Appendix F.

2. We use filler cells to cover empty spaces between standard cells to ensure continuous

power and ground rail connections in each row. We perform this step after routing is

done, but before metal filling.

3. We insert redundant vias into the chip for a similar reason as previous step.

4. We fill the chip with metal layers to meet the metal density rules.

5. We connect the power, ground pins to respective VDD, VSS network for the pins which

might have got the power connections removed during optimization or fixing antenna

errors.

6. We write the GDSII of the design into a file. This GDSII is the final output from the

IC compiler ready for physical verification using Calibre from Mentor Graphics.

All the commands used for this section mentioned in Appendix F.

The final layout with the timing sensor integrated into it is shown in figure 5.3. The bold

white thing is the mentioned timing sensor. Due to having only one timing sensor in this

design, the IC Compiler placed the sensor itself somewhere on the chip surface. However, if

there is more than one timing sensor that needs to be placed on the chip surface, we should

create macros out of them and place them at different locations. The placement of sensors

Marjan Ghodrati Chapter 5. EM Countermeasure 45

should be fixed until the tool cannot change it during optimization. After extracting the

GDSII from the final layout, and checking it for DRC/LVS/Antenna violation in the second

verification tool (Calibre from Mentor Graphics), the chip sent for fabrication.

Figure 5.3: Layout of the chip with the timing sensor highlighted on it

As mentioned in chapter 3, the chip is built in 180 nm TSMC, with a frequency of up to 80

MHz. We mounted the chip on a custom-made PCB board and placed the PCB on a Sakura-

G FPGA board. Then we tested the chip functionality, and it worked as it was supposed to.

Marjan Ghodrati Chapter 5. EM Countermeasure 46

Finally, the chip went under electromagnetic fault injection to check its integrated sensor’s

effectiveness against this type of attack. In the next section, the results of testing the sensor

are presented.

5.3 Experimental results

We started our experiments by performing EMFI on 100 different locations on the processor

(scanning the chip surface 10× 10), where each location was attacked 100 times. We found

that the timing sensor was able to detect 100% of the injected faults on some locations

whereas it could not detect any faults on some other other locations. Then, we started

to find an answer for this behavior. We used the same method described in chapter 4 for

capturing the affected pipeline registers. We highlighted the faulty pipeline registers on the

layout for both detected and undetected cases. We noticed when the pipeline registers are

on the same clock tree as the sensor, the detection is successful. This means the EM effect is

present on both the pipeline registers and the sensor flip-flops. However, when the pipeline

registers that get affected are far from the sensor, more specifically on another clock tree

branches, the EM effect is not propagated to the sensor, and as a result, the sensor is not

able to detect it. Figure 5.4 a-b show these two cases, (a) is the case which was detected by

the sensor, and (b) is the case which remained undetected. To investigate more, we looked

to find a relationship between detection ratio of the sensor and the place of EM injection.

We noticed that the sensor is able to detect the faults with a very good percentage (mostly

Marjan Ghodrati Chapter 5. EM Countermeasure 47

Figure 5.4: detected vs not detected cases. (a) is detected by the sensor, (b) is not detected

by the sensor

100%, for some cases close to 100%) when EM is injected around the root of the clock tree as

shown in Figure 5.5a. On the contrary, it is not able to detect any faults when the injection

point is on the lower levels of the clock tree similar to the case shown in Figure 5.5b.

figure 5.6 shows the results of the experiment in more detailed format. The numbers in each

square shows the percentage of fault injection. Different colors is used in this figure to show

the detection ratio of each point. Red color means the detection ratio is 0% while blue color

shows the detection ratio of 100%. Gray squares mean no fault has injected at these spots

on the chip, while the black squares means UART or IU errors has occurred. On these spots,

the processor moved to an error mode and did not provide any response due to EMFI. With

Marjan Ghodrati Chapter 5. EM Countermeasure 48

Figure 5.5: (a) injection point on the root of the clock tree which is always detected by the

sensor, (b) injection point on the lower levels of the clock tree which is always remained as

undetected.

this observations, we could infer that when the fault is injected at the top level of the clock

tree, the glitch effect gets propagated to the lower levels including the branch that timing

sensor resides. As a result, the timing sensor can detect it. However, when the fault is

injected at the lower levels of the clock tree, the effect does not propagate and therefore,

remains local. This means the timing sensor observes a healthy clock and assumes no fault

has happened.

Suitable timing sensor for EMFI: Based on the above observations and analysis, we

can interpret that to increase the percentage of EM fault detection, the number of timing

sensors in the chip should increase. Their placing is also very important. The designer needs

Marjan Ghodrati Chapter 5. EM Countermeasure 49

Figure 5.6: Fault injection ratio and detection ratio

to make sure that no matter how far from the root of the clock the injection happens, there

is a timing sensor in the vicinity that can catch the fault. The number of needed timing

sensors and their locations is part of our future work.

Detecting faulty state versus detecting EM injection: Even at a proper offset, lo-

cation, and intensity, an EM injection may not be successful to induce faults due to noise

effects. For example, when injecting EM at point A (from Figure 4.6), with 80% intensity

and 40 ns offset, out of 1000 injections, only 720 of them push the processor into an incorrect

state. Our timing detector can catch all these 720 cases and does not raise the alarm for

Marjan Ghodrati Chapter 5. EM Countermeasure 50

the remaining 280 injections. On the contrary, if we had used a coil to detect the presence

of EM filed, the alarm would have been raised for all those 1000 times regardless of whether

the injection is causing a fault or not. Depending on the application, one or the other might

be desirable. For a typical design where both security and speed are essential, the timing

detector is preferable as it prevents wasted cycles during those cases that no fault has oc-

curred. Nevertheless, for some devices where security has the utmost importance in design,

the designer might prefer to catch an attack even if it is not causing a fault yet.

Chapter 6

Conclusion

In this research, we made an effort to unravel the way an EM attack affects a microprocessor

on different levels of abstraction. We presented a bottom-up analysis of EMFI effects on

a RISC microprocessor at three levels: at the wire-level, at the chip-network level, and at

the gate-level. At wire-level, we explored the EM effects on the pins/wires of the chip. At

chip-network level, we explored the EM effects on all the global networks of the chip, namely

power, clock and reset network. From our experiments, we saw that these effects were most

apparent in the clock network when compared to the other two global networks. Then, we

made an effort to explain how the EM effects at the wire/chip level manifest themselves

at the gate-level to the point that puts the microprocessor in a faulty state. Based on our

experiments, we believe most of the EM injection faults are caused due to glitches in the

clock network. Furthermore, we showed that relative delay and position of the EM injection

concerning the clock plays a significant role in the effectiveness of EMFI.

51

Marjan Ghodrati Chapter 6. Conclusion 52

In conclusion, our work suggested that EM attacks behaved similar to timing attacks and

could propagate using the clock tree network. Thus, with some modifications, we believe that

the current countermeasures for timing attacks like timing detectors can be used to thwart

EM attacks. To validate our hypothesis, we integrated a configurable timing sensor into

our microprocessor. The timing sensor monitors the propagation delay in the critical path

of the circuit and raises the alarm if there are violations of the setup time constraints. We

found that the timing sensor was able to detect 100% of the injected faults on some locations

whereas it could not detect any faults on some other spots. Based on our observations and

results, we could make the inference that when the fault is injected at the top levels of the

clock tree, the glitch effect gets propagated to the lower levels including the branch that

timing sensor resides. As a result, the timing sensor can detect it. However, when the fault

is injected at the lower levels of the clock tree, the effect does not propagate and therefore

remains local. We plan to expand this work by integrating more timing sensors into a

microprocessor and evaluate their effectiveness against EMFI. We believe the detection ratio

will be increased with this change. The number of needed timing sensors and their locations

is part of our future work.

Appendix A

floorplanning

set host options -max core 72

set tech 180nm

set grtechlibdir ”/opt/libs/tsmc180/extracted”

set cell path ”$grtechlibdir/tsmc/cl018g/sc9 base rvt/2008q3v01/”

set cell lib path ”$cell path/db/”

set io path ”$grtechlibdir/gpio/TPZ018NV/TS02IG502/fb tpz018nv 280a r6p0-02eac0/”

set io lib path ”$io path/timing power noise/NLDM/tpz018nv 280a/”

set memory path ”/home/bilgiday/sram new/”

set memory lib path ”$memory path/db/”

53

Marjan Ghodrati Appendixes 54

set grtechlibpath ”. $cell lib path io lib path memory lib path”

set grtechtargetlib ”sage-x tsmc cl018g rvt ss 1p62v 125c.db”

set iolib ”tpz018nvwc.db”

set memlib ”/home/bilgiday/sram new/db/sram12x8 slow syn.db /home/bilgiday/sram new/db/sram6x26 slow syn.db

/home/bilgiday/sram new/db/sram8x25 slow syn.db /home/bilgiday/sram new/db/sram9x32 slow syn.db

/home/bilgiday/sram new/db/sram6x32 slow syn.db /home/bilgiday/sram new/db/sram8x32 slow syn.db

/home/bilgiday/sram new/db/sram2p8x32 slow syn.db /home/bilgiday/sram new/db/sram13x8 slow syn.db”

set grtechlinklib ”$grtechtargetlib $iolib $memlib”

set search path $grtechlibpath

set target library $grtechtargetlib

set link library $grtechlinklib

set tlu plus files -max tluplus /home/bilgiday/sram new/typical.tluplus -min tluplus /home-

/bilgiday/sram new/typical.tluplus -tech2itf map /home/bilgiday/sram new/tluplus.map

set icc input cel leon3mp dct

set mw design library leon3mp mw lib

open mw cel $icc input cel -library ./$mw design library

read sdc synopsys/leon3mp dare.sdc

read def synopsys/leon3mp scan.def -verbose

Marjan Ghodrati Appendixes 55

check scan chain

report scan chain

derive pg connection -power net VDD -ground net VSS -power pin VDD -ground pin VSS

derive pg connection -power net VDD -ground net VSS -tie

check mv design -power nets

source -echo pad cell constraints.tcl

source -echo bonding pads.tcl

create floorplan -core utilization 0.8 -control type width and height -core width 4516 -core height

4516 -left io2core 50 -right io2core 50 -top io2core 50 -bottom io2core 50 -flip first row -

start first row

insert pad filler -cell {PFILLER20 PFILLER10 PFILLER5 PFILLER1 PFILLER05 PFILLER0005

}

create pad rings -nets {VDD VDDPST VSS VSSPST}

set fp placement strategy -sliver size 50

set fp placement strategy -macros on edge on -sliver size 50 -virtual IPO on

set keepout margin -type hard -all macros -outer 20 20 20 20

create fp placement -timing driven -no hierarchy gravity

set dont touch placement [all macro cells]

Marjan Ghodrati Appendixes 56

save mw cel -as floorplan cell

Appendix B

Powerplanning

set fp rail constraints -add layer -layer METAL5 -direction horizontal -max strap 128 -min strap

16 -max width 12 -min width 8 -spacing minimum

set fp rail constraints -add layer -layer METAL6 -direction vertical -max strap 128 -min strap

16 -max width 12 -min width 8 -spacing minimum

set fp rail constraints -set ring -nets {VDD VSS} -horizontal ring layer {METAL3 } -vertical ring layer

{ METAL4 } -ring max width 20 -ring min width 15 -extend strap core ring

set fp rail constraints -set global -no routing over hard macros

set fp block ring constraints -add -horizontal layer METAL5 -horizontal width 8.000 -horizontal offset

0.600 -vertical layer METAL6 -vertical width 6.000 -vertical offset 0.600 -block type instance

-block {core0 leon3core0 leon3s0 leon3x0 cmem0 itags0 0 x0 id0 core0 leon3core0 leon3s0 leon3x0 rf0 rhu x0 x0 id0

core0 leon3core0 ahbram0 aram x0 2 x0 id0 core0 leon3core0 ahbram0 aram x0 2 x0 id1 core0 leon3core0 leon3s0 leon3x0 tbmem0 ram0 0 x1 x0 id0

57

Marjan Ghodrati Appendixes 58

core0 leon3core0 ahbram0 aram x0 0 x0 id0 core0 leon3core0 ahbram0 aram x0 0 x0 id1 core0 leon3core0 leon3s0 leon3x0 tbmem0 ram0 1 x0 x0 id0

core0 leon3core0 ahbram0 aram x0 3 x0 id0 core0 leon3core0 ahbram0 aram x0 3 x0 id1 core0 leon3core0 leon3s0 leon3x0 cmem0 ddata0 0 x0 id0

core0 leon3core0 leon3s0 leon3x0 cmem0 idata0 0 x0 id0 core0 leon3core0 leon3s0 leon3x0 rf0 rhu x1 x0 id0

core0 leon3core0 ahbram0 aram x0 1 x0 id0 core0 leon3core0 ahbram0 aram x0 1 x0 id1 core0 leon3core0 leon3s0 leon3x0 tbmem0 ram0 1 x1 x0 id0

core0 leon3core0 leon3s0 leon3x0 tbmem0 ram0 0 x0 x0 id0 core0 leon3core0 leon3s0 leon3x0 cmem0 dtags0 0 x0 id0}

-net {VDD VSS}

synthesize fp rail -power budget {1000} -voltage supply {1.8} -target voltage drop {100} -

output directory ./pna output -nets {VDD VSS} -create virtual rails {METAL1} -synthesize power plan

-synthesize power pads -use strap ends as pads -pad masters VDD:PVDD1DGZ.FRAM VSS:PVSS1DGZ.FRAM

commit fp rail

save mw cel -as Powered cell

Appendix C

Placement

preroute instances

preroute standard cells -connect horizontal -remove floating pieces -fill empty rows -port filter mode

off -cell master filter mode off -cell instance filter mode off -voltage area filter mode off -

route type {P/G Std. Cell Pin Conn} preroute standard cells -connect horizontal -remove floating pieces

-fill empty rows -port filter mode off -cell master filter mode off -cell instance filter mode off

-voltage area filter mode off -route type {P/G Std. Cell Pin Conn}

set pnet options -complete {METAL5 METAL6} create fp placement -timing driven -no hierarchy gravity

route zrt global

optimize fp timing -fix design rule

define routing rule clock double spacing -default reference rule -multiplier spacing 2

59

Marjan Ghodrati Appendixes 60

report routing rule clock double spacing

set clock tree options -routing rule clock double spacing -layer list {METAL3 METAL6} -

use default routing for sinks 1

place opt -area recovery -effort high -congestion -optimize dft

legalize placement

psynopt -area recovery -power -only design rule

save mw cel -as placed cell

Appendix D

Clock tree synthesis

set clock tree options -target skew 0.1

set clock uncertainty 0.1 [all clocks]

define routing rule clock double spacing -default reference rule -multiplier spacing 2

report routing rule clock double spacing

set clock tree options -routing rule clock double spacing -layer list {METAL3 METAL6} -

use default routing for sinks 1

set clock tree references -references {CLKBUFX1 CLKBUFX2 CLKBUFX3 CLKBUFX4

CLKBUFX8 CLKBUFX12 CLKBUFX16 CLKBUFX20 CLKBUFXL CLKINVX1 CLK-

INVX2 CLKINVX3 CLKINVX4 CLKINVX8 CLKINVX12 CLKINVX16 CLKINVX20 CLK-

INVXL}

61

Marjan Ghodrati Appendixes 62

check physical design -stage pre clock opt -display

set delay calculation options -arnoldi effort medium check clock tree

clock opt -only cts -no clock route

set fix hold [all clocks]

extract rc

clock opt -only psyn -area recovery -no clock route -optimize dft

route zrt group -all clock nets -reuse existing global route true

save mw cel -as CTS cell

Appendix E

Routing

set route mode options -zroute true

set route zrt detail options -optimize wire via effort level medium

set route zrt common options -post detail route redundant via insertion medium

route zrt auto -max detail route iterations 500 -save after detail route true -save cell prefix

routed

route zrt eco

derive pg connection -power net VDD -ground net VSS -power pin VDD -ground pin VSS

derive pg connection -power net VDD -ground net VSS -tie

save mw cel -as route Cell

63

Appendix F

Chip finishing

report qor

focal opt -drc nets all

focal opt -drc pins all

route opt

report qor

report constraint -all violators

set lib [current mw lib] remove antenna rules $lib

define antenna rule $lib -mode 4 -diode mode 3 -metal ratio 400 -cut ratio 20

define antenna layer rule $lib -mode 4 -layer ”METAL1” -ratio 400 -diode ratio 0.203 0

400.00 2200

64

Marjan Ghodrati Appendixes 65

define antenna layer rule $lib -mode 4 -layer ”METAL2” -ratio 400 -diode ratio 0.203 0

400.00 2200

define antenna layer rule $lib -mode 4 -layer ”METAL3” -ratio 350 -diode ratio 0.203 0

400.00 2200

define antenna layer rule $lib -mode 4 -layer ”METAL4” -ratio 400 -diode ratio 0.203 0

400.00 2200

define antenna layer rule $lib -mode 4 -layer ”METAL5” -ratio 400 -diode ratio 0.203 0

400.00 2200

define antenna layer rule $lib -mode 4 -layer ”METAL6” -ratio 400 -diode ratio 0.203 0

8000.00 30000

define antenna layer rule $lib -mode 4 -layer ”VIA12” -ratio 20 -diode ratio 0.203 0 83.33 75

define antenna layer rule $lib -mode 4 -layer ”VIA23” -ratio 20 -diode ratio 0.203 0 83.33 75

define antenna layer rule $lib -mode 4 -layer ”VIA34” -ratio 20 -diode ratio 0.203 0 83.33 75

define antenna layer rule $lib -mode 4 -layer ”VIA45” -ratio 20 -diode ratio 0.203 0 83.33 75

define antenna layer rule $lib -mode 4 -layer ”VIA56” -ratio 20 -diode ratio 0.203 0 83.33 75

set route zrt detail options -insert diodes during routing true -check antenna on pg true -

port antenna mode jump -macro pin antenna mode jump

route zrt detail

Marjan Ghodrati Appendixes 66

route zrt detail -incremental true

save mw cel -as Antenna free cell

derive pg connection -power net VDD -ground net VSS -power pin VDD -ground pin VSS

derive pg connection -power net VDD -ground net VSS -tie

verify lvs -check short locator

verify pg nets

verify drc

insert stdcell filler -cell with metal ”FILL64 FILL32 FILL16 FILL8 FILL4 FILL2 FILL1”

-connect to power {VDD} -connect to ground {VSS} -between std cells only

insert zrt redundant vias -effort medium

insert metal filler -bounding box { {175.165 168.730} {4672.595 4666.160} } -out self -

dont overwrite -width {poly 0.3} -fill poly

Bibliography

[1] http://www.t4f.org/articles/fault-injection-attacks-clock-glitching-tutorial/.

[2] LEON3 processor. http://www.gaisler.com/index.php/products/processors/

leon3. [Online; accessed 18-May-2015].

[3] Riscure: EMFI Probe Datasheet. https://www.riscure.com/uploads/2017/07/

datasheet_em-fi_transient_probe.pdf.

[4] Riscure: Inspector Datasheet. https://www.riscure.com/security-tools/

inspector-sca/.

[5] Riscure: VC Glitcher Datasheet. https://www.riscure.com/uploads/2017/07/

datasheet_emprobestation.pdf.

[6] Riscure: VC Glitcher Datasheet. https://www.riscure.com/documents/datasheet_

vcglitcher.pdf.

[7] SAKURA hardware security project. http://satoh.cs.uec.ac.jp/SAKURA/index.

html. [Online; accessed 29-April-2016].

67

Marjan Ghodrati Bibliography 68

[8] M. Aarts. Electromagnetic Fault Injection using Transient Pulse Injections. Master’s

thesis, Eindhoven University of Technology, Netherlands, 2013.

[9] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria. When Clocks Fail:

On Critical Paths and Clock Faults, pages 182–193. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2010.

[10] J. Balasch, B. Gierlichs, and I. Verbauwhede. An in-depth and black-box characteriza-

tion of the effects of clock glitches on 8-bit mcus. In 2011 Workshop on Fault Diagnosis

and Tolerance in Cryptography, pages 105–114, Sept 2011.

[11] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault injection attacks on

cryptographic devices: Theory, practice, and countermeasures. Proceedings of the IEEE,

100(11):3056–3076, Nov 2012.

[12] J. Breier, S. Bhasin, and W. He. An electromagnetic fault injection sensor using hogge

phase-detector. In Quality Electronic Design (ISQED), 2017 18th International Sym-

posium on, pages 307–312. IEEE, 2017.

[13] A. Dehbaoui, J.-M. Dutertre, B. Robisson, P. Orsatelli, M. Maurine, and A. Tria. Injec-

tion of transient faults using electromagnetic pulses -practical results on a cryptographic

system. In IACR Cryptology ePrint Archive (2012), vol. 2012. informal publication: p.

123, 2012.

[14] A. Dehbaoui, J. M. Dutertre, B. Robisson, and A. Tria. Electromagnetic transient faults

Marjan Ghodrati Bibliography 69

injection on a hardware and a software implementations of aes. In 2012 Workshop on

Fault Diagnosis and Tolerance in Cryptography, pages 7–15, Sept 2012.

[15] C. Deshpande, B. Yuce, N. F. Ghalaty, D. Ganta, P. Schaumont, and L. Nazhandali. A

configurable and lightweight timing monitor for fault attack detection. In 2016 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), pages 461–466, July 2016.

[16] C. Deshpande, B. Yuce, P. Schaumont, and L. Nazhandali. Employing dual-

complementary flip-flops to detect emfi attacks. In VLSI (AsianHOST), 2017 Asian

Hardware Oriented Security and Trust Symposium. IEEE, 2017.

[17] S. Govindavajhala and A. W. Appel. Using memory errors to attack a virtual machine.

In 2003 Symposium on Security and Privacy, 2003., pages 154–165, May 2003.

[18] T. Hummel. Exploring Effects of Electromagnetic Fault Injection on a 32-bit High Speed

Embedded Device Microprocessor. Master’s thesis, University of Twente, Netherlands,

2014.

[19] J. marc Schmidt and M. Hutter. Optical and em fault-attacks on crt-based rsa: Concrete

results.

[20] P. Maurine, K. Tobich, T. Ordas, and P. Y. Liardet. Yet Another Fault Injection Tech-

nique : by Forward Body Biasing Injection. In YACC’2012: Yet Another Conference

on Cryptography, Porquerolles Island, France, Sept. 2012.

[21] N. Miura, Z. Najm, W. He, S. Bhasin, X. T. Ngo, M. Nagata, and J.-L. Danger. Pll to

Marjan Ghodrati Bibliography 70

the rescue: a novel em fault countermeasure. In Design Automation Conference (DAC),

2016 53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[22] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz. Electromagnetic

fault injection: Towards a fault model on a 32-bit microcontroller. In 2013 Workshop

on Fault Diagnosis and Tolerance in Cryptography, pages 77–88, Aug 2013.

[23] S. Ordas, L. Guillaume-Sage, K. Tobich, J.-M. Dutertre, and P. Maurine. Evidence of

a Larger EM-Induced Fault Model, pages 245–259. Springer International Publishing,

Cham, 2015.

[24] J.-J. Quisquater and D. Samyde. Eddy current for magnetic analysis with active sensor.

01 2002.

[25] S. Skorobogatov. Semi-invasive attacks: A new approach to hardware security analysis.

Technical report, University of Cambridge, 2005.

[26] S. Skorobogatov. Local heating attacks on flash memory devices. In 2009 IEEE Inter-

national Workshop on Hardware-Oriented Security and Trust, pages 1–6, July 2009.

[27] S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks. In Revised

Papers from the 4th International Workshop on Cryptographic Hardware and Embedded

Systems, CHES ’02, pages 2–12, London, UK, UK, 2003. Springer-Verlag.

[28] R. Spyk, R. Velegalati, and J. Woudenberg. Electro magnetic fault injection in practice.

2013.

Marjan Ghodrati Bibliography 71

[29] B. Yuce, N. F. Ghalaty, C. Deshpande, C. Patrick, L. Nazhandali, and P. Schaumont.

Fame: Fault-attack aware microprocessor extensions for hardware fault detection and

software fault response. In Proceedings of the Hardware and Architectural Support for

Security and Privacy 2016, HASP 2016, pages 8:1–8:8, New York, NY, USA, 2016.

ACM.

[30] L. Zussa, A. Dehbaoui, K. Tobich, J.-M. Dutertre, P. Maurine, L. Guillaume-Sage,

J. Clediere, and A. Tria. Efficiency of a glitch detector against electromagnetic fault in-

jection. In Design, Automation and Test in Europe Conference and Exhibition (DATE),

2014, pages 1–6. IEEE, 2014.

[31] L. Zussa, J.-M. Dutertre, J. Cldire, B. Robisson, and A. Tria. Investigation of timing

constraints violation as a fault injection means. 11 2012.

